xref: /openbmc/linux/block/blk-core.c (revision 600a711c)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 
44 DEFINE_IDA(blk_queue_ida);
45 
46 /*
47  * For the allocated request tables
48  */
49 static struct kmem_cache *request_cachep;
50 
51 /*
52  * For queue allocation
53  */
54 struct kmem_cache *blk_requestq_cachep;
55 
56 /*
57  * Controlling structure to kblockd
58  */
59 static struct workqueue_struct *kblockd_workqueue;
60 
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 	struct hd_struct *part;
64 	int rw = rq_data_dir(rq);
65 	int cpu;
66 
67 	if (!blk_do_io_stat(rq))
68 		return;
69 
70 	cpu = part_stat_lock();
71 
72 	if (!new_io) {
73 		part = rq->part;
74 		part_stat_inc(cpu, part, merges[rw]);
75 	} else {
76 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 		if (!hd_struct_try_get(part)) {
78 			/*
79 			 * The partition is already being removed,
80 			 * the request will be accounted on the disk only
81 			 *
82 			 * We take a reference on disk->part0 although that
83 			 * partition will never be deleted, so we can treat
84 			 * it as any other partition.
85 			 */
86 			part = &rq->rq_disk->part0;
87 			hd_struct_get(part);
88 		}
89 		part_round_stats(cpu, part);
90 		part_inc_in_flight(part, rw);
91 		rq->part = part;
92 	}
93 
94 	part_stat_unlock();
95 }
96 
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 	int nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 	if (nr > q->nr_requests)
103 		nr = q->nr_requests;
104 	q->nr_congestion_on = nr;
105 
106 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 	if (nr < 1)
108 		nr = 1;
109 	q->nr_congestion_off = nr;
110 }
111 
112 /**
113  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114  * @bdev:	device
115  *
116  * Locates the passed device's request queue and returns the address of its
117  * backing_dev_info
118  *
119  * Will return NULL if the request queue cannot be located.
120  */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 	struct backing_dev_info *ret = NULL;
124 	struct request_queue *q = bdev_get_queue(bdev);
125 
126 	if (q)
127 		ret = &q->backing_dev_info;
128 	return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 	memset(rq, 0, sizeof(*rq));
135 
136 	INIT_LIST_HEAD(&rq->queuelist);
137 	INIT_LIST_HEAD(&rq->timeout_list);
138 	rq->cpu = -1;
139 	rq->q = q;
140 	rq->__sector = (sector_t) -1;
141 	INIT_HLIST_NODE(&rq->hash);
142 	RB_CLEAR_NODE(&rq->rb_node);
143 	rq->cmd = rq->__cmd;
144 	rq->cmd_len = BLK_MAX_CDB;
145 	rq->tag = -1;
146 	rq->ref_count = 1;
147 	rq->start_time = jiffies;
148 	set_start_time_ns(rq);
149 	rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152 
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 			  unsigned int nbytes, int error)
155 {
156 	if (error)
157 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 		error = -EIO;
160 
161 	if (unlikely(nbytes > bio->bi_size)) {
162 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 		       __func__, nbytes, bio->bi_size);
164 		nbytes = bio->bi_size;
165 	}
166 
167 	if (unlikely(rq->cmd_flags & REQ_QUIET))
168 		set_bit(BIO_QUIET, &bio->bi_flags);
169 
170 	bio->bi_size -= nbytes;
171 	bio->bi_sector += (nbytes >> 9);
172 
173 	if (bio_integrity(bio))
174 		bio_integrity_advance(bio, nbytes);
175 
176 	/* don't actually finish bio if it's part of flush sequence */
177 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 		bio_endio(bio, error);
179 }
180 
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 	int bit;
184 
185 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 		rq->cmd_flags);
188 
189 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
190 	       (unsigned long long)blk_rq_pos(rq),
191 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
193 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 
195 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 		printk(KERN_INFO "  cdb: ");
197 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 			printk("%02x ", rq->cmd[bit]);
199 		printk("\n");
200 	}
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203 
204 static void blk_delay_work(struct work_struct *work)
205 {
206 	struct request_queue *q;
207 
208 	q = container_of(work, struct request_queue, delay_work.work);
209 	spin_lock_irq(q->queue_lock);
210 	__blk_run_queue(q);
211 	spin_unlock_irq(q->queue_lock);
212 }
213 
214 /**
215  * blk_delay_queue - restart queueing after defined interval
216  * @q:		The &struct request_queue in question
217  * @msecs:	Delay in msecs
218  *
219  * Description:
220  *   Sometimes queueing needs to be postponed for a little while, to allow
221  *   resources to come back. This function will make sure that queueing is
222  *   restarted around the specified time.
223  */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 				msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230 
231 /**
232  * blk_start_queue - restart a previously stopped queue
233  * @q:    The &struct request_queue in question
234  *
235  * Description:
236  *   blk_start_queue() will clear the stop flag on the queue, and call
237  *   the request_fn for the queue if it was in a stopped state when
238  *   entered. Also see blk_stop_queue(). Queue lock must be held.
239  **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 	WARN_ON(!irqs_disabled());
243 
244 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 	__blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248 
249 /**
250  * blk_stop_queue - stop a queue
251  * @q:    The &struct request_queue in question
252  *
253  * Description:
254  *   The Linux block layer assumes that a block driver will consume all
255  *   entries on the request queue when the request_fn strategy is called.
256  *   Often this will not happen, because of hardware limitations (queue
257  *   depth settings). If a device driver gets a 'queue full' response,
258  *   or if it simply chooses not to queue more I/O at one point, it can
259  *   call this function to prevent the request_fn from being called until
260  *   the driver has signalled it's ready to go again. This happens by calling
261  *   blk_start_queue() to restart queue operations. Queue lock must be held.
262  **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 	cancel_delayed_work(&q->delay_work);
266 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269 
270 /**
271  * blk_sync_queue - cancel any pending callbacks on a queue
272  * @q: the queue
273  *
274  * Description:
275  *     The block layer may perform asynchronous callback activity
276  *     on a queue, such as calling the unplug function after a timeout.
277  *     A block device may call blk_sync_queue to ensure that any
278  *     such activity is cancelled, thus allowing it to release resources
279  *     that the callbacks might use. The caller must already have made sure
280  *     that its ->make_request_fn will not re-add plugging prior to calling
281  *     this function.
282  *
283  *     This function does not cancel any asynchronous activity arising
284  *     out of elevator or throttling code. That would require elevaotor_exit()
285  *     and blkcg_exit_queue() to be called with queue lock initialized.
286  *
287  */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 	del_timer_sync(&q->timeout);
291 	cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294 
295 /**
296  * __blk_run_queue - run a single device queue
297  * @q:	The queue to run
298  *
299  * Description:
300  *    See @blk_run_queue. This variant must be called with the queue lock
301  *    held and interrupts disabled.
302  */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 	if (unlikely(blk_queue_stopped(q)))
306 		return;
307 
308 	q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311 
312 /**
313  * blk_run_queue_async - run a single device queue in workqueue context
314  * @q:	The queue to run
315  *
316  * Description:
317  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318  *    of us.
319  */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 	if (likely(!blk_queue_stopped(q)))
323 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326 
327 /**
328  * blk_run_queue - run a single device queue
329  * @q: The queue to run
330  *
331  * Description:
332  *    Invoke request handling on this queue, if it has pending work to do.
333  *    May be used to restart queueing when a request has completed.
334  */
335 void blk_run_queue(struct request_queue *q)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(q->queue_lock, flags);
340 	__blk_run_queue(q);
341 	spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344 
345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
351 /**
352  * blk_drain_queue - drain requests from request_queue
353  * @q: queue to drain
354  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355  *
356  * Drain requests from @q.  If @drain_all is set, all requests are drained.
357  * If not, only ELVPRIV requests are drained.  The caller is responsible
358  * for ensuring that no new requests which need to be drained are queued.
359  */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 	int i;
363 
364 	while (true) {
365 		bool drain = false;
366 
367 		spin_lock_irq(q->queue_lock);
368 
369 		/*
370 		 * The caller might be trying to drain @q before its
371 		 * elevator is initialized.
372 		 */
373 		if (q->elevator)
374 			elv_drain_elevator(q);
375 
376 		blkcg_drain_queue(q);
377 
378 		/*
379 		 * This function might be called on a queue which failed
380 		 * driver init after queue creation or is not yet fully
381 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
382 		 * in such cases.  Kick queue iff dispatch queue has
383 		 * something on it and @q has request_fn set.
384 		 */
385 		if (!list_empty(&q->queue_head) && q->request_fn)
386 			__blk_run_queue(q);
387 
388 		drain |= q->nr_rqs_elvpriv;
389 
390 		/*
391 		 * Unfortunately, requests are queued at and tracked from
392 		 * multiple places and there's no single counter which can
393 		 * be drained.  Check all the queues and counters.
394 		 */
395 		if (drain_all) {
396 			drain |= !list_empty(&q->queue_head);
397 			for (i = 0; i < 2; i++) {
398 				drain |= q->nr_rqs[i];
399 				drain |= q->in_flight[i];
400 				drain |= !list_empty(&q->flush_queue[i]);
401 			}
402 		}
403 
404 		spin_unlock_irq(q->queue_lock);
405 
406 		if (!drain)
407 			break;
408 		msleep(10);
409 	}
410 
411 	/*
412 	 * With queue marked dead, any woken up waiter will fail the
413 	 * allocation path, so the wakeup chaining is lost and we're
414 	 * left with hung waiters. We need to wake up those waiters.
415 	 */
416 	if (q->request_fn) {
417 		struct request_list *rl;
418 
419 		spin_lock_irq(q->queue_lock);
420 
421 		blk_queue_for_each_rl(rl, q)
422 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 				wake_up_all(&rl->wait[i]);
424 
425 		spin_unlock_irq(q->queue_lock);
426 	}
427 }
428 
429 /**
430  * blk_queue_bypass_start - enter queue bypass mode
431  * @q: queue of interest
432  *
433  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
434  * function makes @q enter bypass mode and drains all requests which were
435  * throttled or issued before.  On return, it's guaranteed that no request
436  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437  * inside queue or RCU read lock.
438  */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 	bool drain;
442 
443 	spin_lock_irq(q->queue_lock);
444 	drain = !q->bypass_depth++;
445 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 	spin_unlock_irq(q->queue_lock);
447 
448 	if (drain) {
449 		blk_drain_queue(q, false);
450 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
451 		synchronize_rcu();
452 	}
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455 
456 /**
457  * blk_queue_bypass_end - leave queue bypass mode
458  * @q: queue of interest
459  *
460  * Leave bypass mode and restore the normal queueing behavior.
461  */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 	spin_lock_irq(q->queue_lock);
465 	if (!--q->bypass_depth)
466 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 	WARN_ON_ONCE(q->bypass_depth < 0);
468 	spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471 
472 /**
473  * blk_cleanup_queue - shutdown a request queue
474  * @q: request queue to shutdown
475  *
476  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
477  * future requests will be failed immediately with -ENODEV.
478  */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 	spinlock_t *lock = q->queue_lock;
482 
483 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
484 	mutex_lock(&q->sysfs_lock);
485 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
486 	spin_lock_irq(lock);
487 
488 	/*
489 	 * Dead queue is permanently in bypass mode till released.  Note
490 	 * that, unlike blk_queue_bypass_start(), we aren't performing
491 	 * synchronize_rcu() after entering bypass mode to avoid the delay
492 	 * as some drivers create and destroy a lot of queues while
493 	 * probing.  This is still safe because blk_release_queue() will be
494 	 * called only after the queue refcnt drops to zero and nothing,
495 	 * RCU or not, would be traversing the queue by then.
496 	 */
497 	q->bypass_depth++;
498 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
499 
500 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 	queue_flag_set(QUEUE_FLAG_DEAD, q);
503 	spin_unlock_irq(lock);
504 	mutex_unlock(&q->sysfs_lock);
505 
506 	/* drain all requests queued before DEAD marking */
507 	blk_drain_queue(q, true);
508 
509 	/* @q won't process any more request, flush async actions */
510 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
511 	blk_sync_queue(q);
512 
513 	spin_lock_irq(lock);
514 	if (q->queue_lock != &q->__queue_lock)
515 		q->queue_lock = &q->__queue_lock;
516 	spin_unlock_irq(lock);
517 
518 	/* @q is and will stay empty, shutdown and put */
519 	blk_put_queue(q);
520 }
521 EXPORT_SYMBOL(blk_cleanup_queue);
522 
523 int blk_init_rl(struct request_list *rl, struct request_queue *q,
524 		gfp_t gfp_mask)
525 {
526 	if (unlikely(rl->rq_pool))
527 		return 0;
528 
529 	rl->q = q;
530 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
531 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
532 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
533 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
534 
535 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
536 					  mempool_free_slab, request_cachep,
537 					  gfp_mask, q->node);
538 	if (!rl->rq_pool)
539 		return -ENOMEM;
540 
541 	return 0;
542 }
543 
544 void blk_exit_rl(struct request_list *rl)
545 {
546 	if (rl->rq_pool)
547 		mempool_destroy(rl->rq_pool);
548 }
549 
550 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
551 {
552 	return blk_alloc_queue_node(gfp_mask, -1);
553 }
554 EXPORT_SYMBOL(blk_alloc_queue);
555 
556 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
557 {
558 	struct request_queue *q;
559 	int err;
560 
561 	q = kmem_cache_alloc_node(blk_requestq_cachep,
562 				gfp_mask | __GFP_ZERO, node_id);
563 	if (!q)
564 		return NULL;
565 
566 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
567 	if (q->id < 0)
568 		goto fail_q;
569 
570 	q->backing_dev_info.ra_pages =
571 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
572 	q->backing_dev_info.state = 0;
573 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
574 	q->backing_dev_info.name = "block";
575 	q->node = node_id;
576 
577 	err = bdi_init(&q->backing_dev_info);
578 	if (err)
579 		goto fail_id;
580 
581 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
582 		    laptop_mode_timer_fn, (unsigned long) q);
583 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
584 	INIT_LIST_HEAD(&q->queue_head);
585 	INIT_LIST_HEAD(&q->timeout_list);
586 	INIT_LIST_HEAD(&q->icq_list);
587 #ifdef CONFIG_BLK_CGROUP
588 	INIT_LIST_HEAD(&q->blkg_list);
589 #endif
590 	INIT_LIST_HEAD(&q->flush_queue[0]);
591 	INIT_LIST_HEAD(&q->flush_queue[1]);
592 	INIT_LIST_HEAD(&q->flush_data_in_flight);
593 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
594 
595 	kobject_init(&q->kobj, &blk_queue_ktype);
596 
597 	mutex_init(&q->sysfs_lock);
598 	spin_lock_init(&q->__queue_lock);
599 
600 	/*
601 	 * By default initialize queue_lock to internal lock and driver can
602 	 * override it later if need be.
603 	 */
604 	q->queue_lock = &q->__queue_lock;
605 
606 	/*
607 	 * A queue starts its life with bypass turned on to avoid
608 	 * unnecessary bypass on/off overhead and nasty surprises during
609 	 * init.  The initial bypass will be finished at the end of
610 	 * blk_init_allocated_queue().
611 	 */
612 	q->bypass_depth = 1;
613 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
614 
615 	if (blkcg_init_queue(q))
616 		goto fail_id;
617 
618 	return q;
619 
620 fail_id:
621 	ida_simple_remove(&blk_queue_ida, q->id);
622 fail_q:
623 	kmem_cache_free(blk_requestq_cachep, q);
624 	return NULL;
625 }
626 EXPORT_SYMBOL(blk_alloc_queue_node);
627 
628 /**
629  * blk_init_queue  - prepare a request queue for use with a block device
630  * @rfn:  The function to be called to process requests that have been
631  *        placed on the queue.
632  * @lock: Request queue spin lock
633  *
634  * Description:
635  *    If a block device wishes to use the standard request handling procedures,
636  *    which sorts requests and coalesces adjacent requests, then it must
637  *    call blk_init_queue().  The function @rfn will be called when there
638  *    are requests on the queue that need to be processed.  If the device
639  *    supports plugging, then @rfn may not be called immediately when requests
640  *    are available on the queue, but may be called at some time later instead.
641  *    Plugged queues are generally unplugged when a buffer belonging to one
642  *    of the requests on the queue is needed, or due to memory pressure.
643  *
644  *    @rfn is not required, or even expected, to remove all requests off the
645  *    queue, but only as many as it can handle at a time.  If it does leave
646  *    requests on the queue, it is responsible for arranging that the requests
647  *    get dealt with eventually.
648  *
649  *    The queue spin lock must be held while manipulating the requests on the
650  *    request queue; this lock will be taken also from interrupt context, so irq
651  *    disabling is needed for it.
652  *
653  *    Function returns a pointer to the initialized request queue, or %NULL if
654  *    it didn't succeed.
655  *
656  * Note:
657  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
658  *    when the block device is deactivated (such as at module unload).
659  **/
660 
661 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
662 {
663 	return blk_init_queue_node(rfn, lock, -1);
664 }
665 EXPORT_SYMBOL(blk_init_queue);
666 
667 struct request_queue *
668 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
669 {
670 	struct request_queue *uninit_q, *q;
671 
672 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
673 	if (!uninit_q)
674 		return NULL;
675 
676 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
677 	if (!q)
678 		blk_cleanup_queue(uninit_q);
679 
680 	return q;
681 }
682 EXPORT_SYMBOL(blk_init_queue_node);
683 
684 struct request_queue *
685 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
686 			 spinlock_t *lock)
687 {
688 	if (!q)
689 		return NULL;
690 
691 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
692 		return NULL;
693 
694 	q->request_fn		= rfn;
695 	q->prep_rq_fn		= NULL;
696 	q->unprep_rq_fn		= NULL;
697 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
698 
699 	/* Override internal queue lock with supplied lock pointer */
700 	if (lock)
701 		q->queue_lock		= lock;
702 
703 	/*
704 	 * This also sets hw/phys segments, boundary and size
705 	 */
706 	blk_queue_make_request(q, blk_queue_bio);
707 
708 	q->sg_reserved_size = INT_MAX;
709 
710 	/* init elevator */
711 	if (elevator_init(q, NULL))
712 		return NULL;
713 
714 	blk_queue_congestion_threshold(q);
715 
716 	/* all done, end the initial bypass */
717 	blk_queue_bypass_end(q);
718 	return q;
719 }
720 EXPORT_SYMBOL(blk_init_allocated_queue);
721 
722 bool blk_get_queue(struct request_queue *q)
723 {
724 	if (likely(!blk_queue_dead(q))) {
725 		__blk_get_queue(q);
726 		return true;
727 	}
728 
729 	return false;
730 }
731 EXPORT_SYMBOL(blk_get_queue);
732 
733 static inline void blk_free_request(struct request_list *rl, struct request *rq)
734 {
735 	if (rq->cmd_flags & REQ_ELVPRIV) {
736 		elv_put_request(rl->q, rq);
737 		if (rq->elv.icq)
738 			put_io_context(rq->elv.icq->ioc);
739 	}
740 
741 	mempool_free(rq, rl->rq_pool);
742 }
743 
744 /*
745  * ioc_batching returns true if the ioc is a valid batching request and
746  * should be given priority access to a request.
747  */
748 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
749 {
750 	if (!ioc)
751 		return 0;
752 
753 	/*
754 	 * Make sure the process is able to allocate at least 1 request
755 	 * even if the batch times out, otherwise we could theoretically
756 	 * lose wakeups.
757 	 */
758 	return ioc->nr_batch_requests == q->nr_batching ||
759 		(ioc->nr_batch_requests > 0
760 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
761 }
762 
763 /*
764  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
765  * will cause the process to be a "batcher" on all queues in the system. This
766  * is the behaviour we want though - once it gets a wakeup it should be given
767  * a nice run.
768  */
769 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
770 {
771 	if (!ioc || ioc_batching(q, ioc))
772 		return;
773 
774 	ioc->nr_batch_requests = q->nr_batching;
775 	ioc->last_waited = jiffies;
776 }
777 
778 static void __freed_request(struct request_list *rl, int sync)
779 {
780 	struct request_queue *q = rl->q;
781 
782 	/*
783 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
784 	 * blkcg anyway, just use root blkcg state.
785 	 */
786 	if (rl == &q->root_rl &&
787 	    rl->count[sync] < queue_congestion_off_threshold(q))
788 		blk_clear_queue_congested(q, sync);
789 
790 	if (rl->count[sync] + 1 <= q->nr_requests) {
791 		if (waitqueue_active(&rl->wait[sync]))
792 			wake_up(&rl->wait[sync]);
793 
794 		blk_clear_rl_full(rl, sync);
795 	}
796 }
797 
798 /*
799  * A request has just been released.  Account for it, update the full and
800  * congestion status, wake up any waiters.   Called under q->queue_lock.
801  */
802 static void freed_request(struct request_list *rl, unsigned int flags)
803 {
804 	struct request_queue *q = rl->q;
805 	int sync = rw_is_sync(flags);
806 
807 	q->nr_rqs[sync]--;
808 	rl->count[sync]--;
809 	if (flags & REQ_ELVPRIV)
810 		q->nr_rqs_elvpriv--;
811 
812 	__freed_request(rl, sync);
813 
814 	if (unlikely(rl->starved[sync ^ 1]))
815 		__freed_request(rl, sync ^ 1);
816 }
817 
818 /*
819  * Determine if elevator data should be initialized when allocating the
820  * request associated with @bio.
821  */
822 static bool blk_rq_should_init_elevator(struct bio *bio)
823 {
824 	if (!bio)
825 		return true;
826 
827 	/*
828 	 * Flush requests do not use the elevator so skip initialization.
829 	 * This allows a request to share the flush and elevator data.
830 	 */
831 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
832 		return false;
833 
834 	return true;
835 }
836 
837 /**
838  * rq_ioc - determine io_context for request allocation
839  * @bio: request being allocated is for this bio (can be %NULL)
840  *
841  * Determine io_context to use for request allocation for @bio.  May return
842  * %NULL if %current->io_context doesn't exist.
843  */
844 static struct io_context *rq_ioc(struct bio *bio)
845 {
846 #ifdef CONFIG_BLK_CGROUP
847 	if (bio && bio->bi_ioc)
848 		return bio->bi_ioc;
849 #endif
850 	return current->io_context;
851 }
852 
853 /**
854  * __get_request - get a free request
855  * @rl: request list to allocate from
856  * @rw_flags: RW and SYNC flags
857  * @bio: bio to allocate request for (can be %NULL)
858  * @gfp_mask: allocation mask
859  *
860  * Get a free request from @q.  This function may fail under memory
861  * pressure or if @q is dead.
862  *
863  * Must be callled with @q->queue_lock held and,
864  * Returns %NULL on failure, with @q->queue_lock held.
865  * Returns !%NULL on success, with @q->queue_lock *not held*.
866  */
867 static struct request *__get_request(struct request_list *rl, int rw_flags,
868 				     struct bio *bio, gfp_t gfp_mask)
869 {
870 	struct request_queue *q = rl->q;
871 	struct request *rq;
872 	struct elevator_type *et = q->elevator->type;
873 	struct io_context *ioc = rq_ioc(bio);
874 	struct io_cq *icq = NULL;
875 	const bool is_sync = rw_is_sync(rw_flags) != 0;
876 	int may_queue;
877 
878 	if (unlikely(blk_queue_dead(q)))
879 		return NULL;
880 
881 	may_queue = elv_may_queue(q, rw_flags);
882 	if (may_queue == ELV_MQUEUE_NO)
883 		goto rq_starved;
884 
885 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
886 		if (rl->count[is_sync]+1 >= q->nr_requests) {
887 			/*
888 			 * The queue will fill after this allocation, so set
889 			 * it as full, and mark this process as "batching".
890 			 * This process will be allowed to complete a batch of
891 			 * requests, others will be blocked.
892 			 */
893 			if (!blk_rl_full(rl, is_sync)) {
894 				ioc_set_batching(q, ioc);
895 				blk_set_rl_full(rl, is_sync);
896 			} else {
897 				if (may_queue != ELV_MQUEUE_MUST
898 						&& !ioc_batching(q, ioc)) {
899 					/*
900 					 * The queue is full and the allocating
901 					 * process is not a "batcher", and not
902 					 * exempted by the IO scheduler
903 					 */
904 					return NULL;
905 				}
906 			}
907 		}
908 		/*
909 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
910 		 * root blkcg anyway, just use root blkcg state.
911 		 */
912 		if (rl == &q->root_rl)
913 			blk_set_queue_congested(q, is_sync);
914 	}
915 
916 	/*
917 	 * Only allow batching queuers to allocate up to 50% over the defined
918 	 * limit of requests, otherwise we could have thousands of requests
919 	 * allocated with any setting of ->nr_requests
920 	 */
921 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
922 		return NULL;
923 
924 	q->nr_rqs[is_sync]++;
925 	rl->count[is_sync]++;
926 	rl->starved[is_sync] = 0;
927 
928 	/*
929 	 * Decide whether the new request will be managed by elevator.  If
930 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
931 	 * prevent the current elevator from being destroyed until the new
932 	 * request is freed.  This guarantees icq's won't be destroyed and
933 	 * makes creating new ones safe.
934 	 *
935 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
936 	 * it will be created after releasing queue_lock.
937 	 */
938 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
939 		rw_flags |= REQ_ELVPRIV;
940 		q->nr_rqs_elvpriv++;
941 		if (et->icq_cache && ioc)
942 			icq = ioc_lookup_icq(ioc, q);
943 	}
944 
945 	if (blk_queue_io_stat(q))
946 		rw_flags |= REQ_IO_STAT;
947 	spin_unlock_irq(q->queue_lock);
948 
949 	/* allocate and init request */
950 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
951 	if (!rq)
952 		goto fail_alloc;
953 
954 	blk_rq_init(q, rq);
955 	blk_rq_set_rl(rq, rl);
956 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
957 
958 	/* init elvpriv */
959 	if (rw_flags & REQ_ELVPRIV) {
960 		if (unlikely(et->icq_cache && !icq)) {
961 			if (ioc)
962 				icq = ioc_create_icq(ioc, q, gfp_mask);
963 			if (!icq)
964 				goto fail_elvpriv;
965 		}
966 
967 		rq->elv.icq = icq;
968 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
969 			goto fail_elvpriv;
970 
971 		/* @rq->elv.icq holds io_context until @rq is freed */
972 		if (icq)
973 			get_io_context(icq->ioc);
974 	}
975 out:
976 	/*
977 	 * ioc may be NULL here, and ioc_batching will be false. That's
978 	 * OK, if the queue is under the request limit then requests need
979 	 * not count toward the nr_batch_requests limit. There will always
980 	 * be some limit enforced by BLK_BATCH_TIME.
981 	 */
982 	if (ioc_batching(q, ioc))
983 		ioc->nr_batch_requests--;
984 
985 	trace_block_getrq(q, bio, rw_flags & 1);
986 	return rq;
987 
988 fail_elvpriv:
989 	/*
990 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
991 	 * and may fail indefinitely under memory pressure and thus
992 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
993 	 * disturb iosched and blkcg but weird is bettern than dead.
994 	 */
995 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
996 			   dev_name(q->backing_dev_info.dev));
997 
998 	rq->cmd_flags &= ~REQ_ELVPRIV;
999 	rq->elv.icq = NULL;
1000 
1001 	spin_lock_irq(q->queue_lock);
1002 	q->nr_rqs_elvpriv--;
1003 	spin_unlock_irq(q->queue_lock);
1004 	goto out;
1005 
1006 fail_alloc:
1007 	/*
1008 	 * Allocation failed presumably due to memory. Undo anything we
1009 	 * might have messed up.
1010 	 *
1011 	 * Allocating task should really be put onto the front of the wait
1012 	 * queue, but this is pretty rare.
1013 	 */
1014 	spin_lock_irq(q->queue_lock);
1015 	freed_request(rl, rw_flags);
1016 
1017 	/*
1018 	 * in the very unlikely event that allocation failed and no
1019 	 * requests for this direction was pending, mark us starved so that
1020 	 * freeing of a request in the other direction will notice
1021 	 * us. another possible fix would be to split the rq mempool into
1022 	 * READ and WRITE
1023 	 */
1024 rq_starved:
1025 	if (unlikely(rl->count[is_sync] == 0))
1026 		rl->starved[is_sync] = 1;
1027 	return NULL;
1028 }
1029 
1030 /**
1031  * get_request - get a free request
1032  * @q: request_queue to allocate request from
1033  * @rw_flags: RW and SYNC flags
1034  * @bio: bio to allocate request for (can be %NULL)
1035  * @gfp_mask: allocation mask
1036  *
1037  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1038  * function keeps retrying under memory pressure and fails iff @q is dead.
1039  *
1040  * Must be callled with @q->queue_lock held and,
1041  * Returns %NULL on failure, with @q->queue_lock held.
1042  * Returns !%NULL on success, with @q->queue_lock *not held*.
1043  */
1044 static struct request *get_request(struct request_queue *q, int rw_flags,
1045 				   struct bio *bio, gfp_t gfp_mask)
1046 {
1047 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1048 	DEFINE_WAIT(wait);
1049 	struct request_list *rl;
1050 	struct request *rq;
1051 
1052 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1053 retry:
1054 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1055 	if (rq)
1056 		return rq;
1057 
1058 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1059 		blk_put_rl(rl);
1060 		return NULL;
1061 	}
1062 
1063 	/* wait on @rl and retry */
1064 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1065 				  TASK_UNINTERRUPTIBLE);
1066 
1067 	trace_block_sleeprq(q, bio, rw_flags & 1);
1068 
1069 	spin_unlock_irq(q->queue_lock);
1070 	io_schedule();
1071 
1072 	/*
1073 	 * After sleeping, we become a "batching" process and will be able
1074 	 * to allocate at least one request, and up to a big batch of them
1075 	 * for a small period time.  See ioc_batching, ioc_set_batching
1076 	 */
1077 	ioc_set_batching(q, current->io_context);
1078 
1079 	spin_lock_irq(q->queue_lock);
1080 	finish_wait(&rl->wait[is_sync], &wait);
1081 
1082 	goto retry;
1083 }
1084 
1085 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1086 {
1087 	struct request *rq;
1088 
1089 	BUG_ON(rw != READ && rw != WRITE);
1090 
1091 	/* create ioc upfront */
1092 	create_io_context(gfp_mask, q->node);
1093 
1094 	spin_lock_irq(q->queue_lock);
1095 	rq = get_request(q, rw, NULL, gfp_mask);
1096 	if (!rq)
1097 		spin_unlock_irq(q->queue_lock);
1098 	/* q->queue_lock is unlocked at this point */
1099 
1100 	return rq;
1101 }
1102 EXPORT_SYMBOL(blk_get_request);
1103 
1104 /**
1105  * blk_make_request - given a bio, allocate a corresponding struct request.
1106  * @q: target request queue
1107  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1108  *        It may be a chained-bio properly constructed by block/bio layer.
1109  * @gfp_mask: gfp flags to be used for memory allocation
1110  *
1111  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1112  * type commands. Where the struct request needs to be farther initialized by
1113  * the caller. It is passed a &struct bio, which describes the memory info of
1114  * the I/O transfer.
1115  *
1116  * The caller of blk_make_request must make sure that bi_io_vec
1117  * are set to describe the memory buffers. That bio_data_dir() will return
1118  * the needed direction of the request. (And all bio's in the passed bio-chain
1119  * are properly set accordingly)
1120  *
1121  * If called under none-sleepable conditions, mapped bio buffers must not
1122  * need bouncing, by calling the appropriate masked or flagged allocator,
1123  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1124  * BUG.
1125  *
1126  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1127  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1128  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1129  * completion of a bio that hasn't been submitted yet, thus resulting in a
1130  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1131  * of bio_alloc(), as that avoids the mempool deadlock.
1132  * If possible a big IO should be split into smaller parts when allocation
1133  * fails. Partial allocation should not be an error, or you risk a live-lock.
1134  */
1135 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1136 				 gfp_t gfp_mask)
1137 {
1138 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1139 
1140 	if (unlikely(!rq))
1141 		return ERR_PTR(-ENOMEM);
1142 
1143 	for_each_bio(bio) {
1144 		struct bio *bounce_bio = bio;
1145 		int ret;
1146 
1147 		blk_queue_bounce(q, &bounce_bio);
1148 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1149 		if (unlikely(ret)) {
1150 			blk_put_request(rq);
1151 			return ERR_PTR(ret);
1152 		}
1153 	}
1154 
1155 	return rq;
1156 }
1157 EXPORT_SYMBOL(blk_make_request);
1158 
1159 /**
1160  * blk_requeue_request - put a request back on queue
1161  * @q:		request queue where request should be inserted
1162  * @rq:		request to be inserted
1163  *
1164  * Description:
1165  *    Drivers often keep queueing requests until the hardware cannot accept
1166  *    more, when that condition happens we need to put the request back
1167  *    on the queue. Must be called with queue lock held.
1168  */
1169 void blk_requeue_request(struct request_queue *q, struct request *rq)
1170 {
1171 	blk_delete_timer(rq);
1172 	blk_clear_rq_complete(rq);
1173 	trace_block_rq_requeue(q, rq);
1174 
1175 	if (blk_rq_tagged(rq))
1176 		blk_queue_end_tag(q, rq);
1177 
1178 	BUG_ON(blk_queued_rq(rq));
1179 
1180 	elv_requeue_request(q, rq);
1181 }
1182 EXPORT_SYMBOL(blk_requeue_request);
1183 
1184 static void add_acct_request(struct request_queue *q, struct request *rq,
1185 			     int where)
1186 {
1187 	drive_stat_acct(rq, 1);
1188 	__elv_add_request(q, rq, where);
1189 }
1190 
1191 static void part_round_stats_single(int cpu, struct hd_struct *part,
1192 				    unsigned long now)
1193 {
1194 	if (now == part->stamp)
1195 		return;
1196 
1197 	if (part_in_flight(part)) {
1198 		__part_stat_add(cpu, part, time_in_queue,
1199 				part_in_flight(part) * (now - part->stamp));
1200 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1201 	}
1202 	part->stamp = now;
1203 }
1204 
1205 /**
1206  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1207  * @cpu: cpu number for stats access
1208  * @part: target partition
1209  *
1210  * The average IO queue length and utilisation statistics are maintained
1211  * by observing the current state of the queue length and the amount of
1212  * time it has been in this state for.
1213  *
1214  * Normally, that accounting is done on IO completion, but that can result
1215  * in more than a second's worth of IO being accounted for within any one
1216  * second, leading to >100% utilisation.  To deal with that, we call this
1217  * function to do a round-off before returning the results when reading
1218  * /proc/diskstats.  This accounts immediately for all queue usage up to
1219  * the current jiffies and restarts the counters again.
1220  */
1221 void part_round_stats(int cpu, struct hd_struct *part)
1222 {
1223 	unsigned long now = jiffies;
1224 
1225 	if (part->partno)
1226 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1227 	part_round_stats_single(cpu, part, now);
1228 }
1229 EXPORT_SYMBOL_GPL(part_round_stats);
1230 
1231 /*
1232  * queue lock must be held
1233  */
1234 void __blk_put_request(struct request_queue *q, struct request *req)
1235 {
1236 	if (unlikely(!q))
1237 		return;
1238 	if (unlikely(--req->ref_count))
1239 		return;
1240 
1241 	elv_completed_request(q, req);
1242 
1243 	/* this is a bio leak */
1244 	WARN_ON(req->bio != NULL);
1245 
1246 	/*
1247 	 * Request may not have originated from ll_rw_blk. if not,
1248 	 * it didn't come out of our reserved rq pools
1249 	 */
1250 	if (req->cmd_flags & REQ_ALLOCED) {
1251 		unsigned int flags = req->cmd_flags;
1252 		struct request_list *rl = blk_rq_rl(req);
1253 
1254 		BUG_ON(!list_empty(&req->queuelist));
1255 		BUG_ON(!hlist_unhashed(&req->hash));
1256 
1257 		blk_free_request(rl, req);
1258 		freed_request(rl, flags);
1259 		blk_put_rl(rl);
1260 	}
1261 }
1262 EXPORT_SYMBOL_GPL(__blk_put_request);
1263 
1264 void blk_put_request(struct request *req)
1265 {
1266 	unsigned long flags;
1267 	struct request_queue *q = req->q;
1268 
1269 	spin_lock_irqsave(q->queue_lock, flags);
1270 	__blk_put_request(q, req);
1271 	spin_unlock_irqrestore(q->queue_lock, flags);
1272 }
1273 EXPORT_SYMBOL(blk_put_request);
1274 
1275 /**
1276  * blk_add_request_payload - add a payload to a request
1277  * @rq: request to update
1278  * @page: page backing the payload
1279  * @len: length of the payload.
1280  *
1281  * This allows to later add a payload to an already submitted request by
1282  * a block driver.  The driver needs to take care of freeing the payload
1283  * itself.
1284  *
1285  * Note that this is a quite horrible hack and nothing but handling of
1286  * discard requests should ever use it.
1287  */
1288 void blk_add_request_payload(struct request *rq, struct page *page,
1289 		unsigned int len)
1290 {
1291 	struct bio *bio = rq->bio;
1292 
1293 	bio->bi_io_vec->bv_page = page;
1294 	bio->bi_io_vec->bv_offset = 0;
1295 	bio->bi_io_vec->bv_len = len;
1296 
1297 	bio->bi_size = len;
1298 	bio->bi_vcnt = 1;
1299 	bio->bi_phys_segments = 1;
1300 
1301 	rq->__data_len = rq->resid_len = len;
1302 	rq->nr_phys_segments = 1;
1303 	rq->buffer = bio_data(bio);
1304 }
1305 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1306 
1307 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1308 				   struct bio *bio)
1309 {
1310 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1311 
1312 	if (!ll_back_merge_fn(q, req, bio))
1313 		return false;
1314 
1315 	trace_block_bio_backmerge(q, bio);
1316 
1317 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1318 		blk_rq_set_mixed_merge(req);
1319 
1320 	req->biotail->bi_next = bio;
1321 	req->biotail = bio;
1322 	req->__data_len += bio->bi_size;
1323 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1324 
1325 	drive_stat_acct(req, 0);
1326 	return true;
1327 }
1328 
1329 static bool bio_attempt_front_merge(struct request_queue *q,
1330 				    struct request *req, struct bio *bio)
1331 {
1332 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1333 
1334 	if (!ll_front_merge_fn(q, req, bio))
1335 		return false;
1336 
1337 	trace_block_bio_frontmerge(q, bio);
1338 
1339 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1340 		blk_rq_set_mixed_merge(req);
1341 
1342 	bio->bi_next = req->bio;
1343 	req->bio = bio;
1344 
1345 	/*
1346 	 * may not be valid. if the low level driver said
1347 	 * it didn't need a bounce buffer then it better
1348 	 * not touch req->buffer either...
1349 	 */
1350 	req->buffer = bio_data(bio);
1351 	req->__sector = bio->bi_sector;
1352 	req->__data_len += bio->bi_size;
1353 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1354 
1355 	drive_stat_acct(req, 0);
1356 	return true;
1357 }
1358 
1359 /**
1360  * attempt_plug_merge - try to merge with %current's plugged list
1361  * @q: request_queue new bio is being queued at
1362  * @bio: new bio being queued
1363  * @request_count: out parameter for number of traversed plugged requests
1364  *
1365  * Determine whether @bio being queued on @q can be merged with a request
1366  * on %current's plugged list.  Returns %true if merge was successful,
1367  * otherwise %false.
1368  *
1369  * Plugging coalesces IOs from the same issuer for the same purpose without
1370  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1371  * than scheduling, and the request, while may have elvpriv data, is not
1372  * added on the elevator at this point.  In addition, we don't have
1373  * reliable access to the elevator outside queue lock.  Only check basic
1374  * merging parameters without querying the elevator.
1375  */
1376 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1377 			       unsigned int *request_count)
1378 {
1379 	struct blk_plug *plug;
1380 	struct request *rq;
1381 	bool ret = false;
1382 
1383 	plug = current->plug;
1384 	if (!plug)
1385 		goto out;
1386 	*request_count = 0;
1387 
1388 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1389 		int el_ret;
1390 
1391 		if (rq->q == q)
1392 			(*request_count)++;
1393 
1394 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1395 			continue;
1396 
1397 		el_ret = blk_try_merge(rq, bio);
1398 		if (el_ret == ELEVATOR_BACK_MERGE) {
1399 			ret = bio_attempt_back_merge(q, rq, bio);
1400 			if (ret)
1401 				break;
1402 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1403 			ret = bio_attempt_front_merge(q, rq, bio);
1404 			if (ret)
1405 				break;
1406 		}
1407 	}
1408 out:
1409 	return ret;
1410 }
1411 
1412 void init_request_from_bio(struct request *req, struct bio *bio)
1413 {
1414 	req->cmd_type = REQ_TYPE_FS;
1415 
1416 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1417 	if (bio->bi_rw & REQ_RAHEAD)
1418 		req->cmd_flags |= REQ_FAILFAST_MASK;
1419 
1420 	req->errors = 0;
1421 	req->__sector = bio->bi_sector;
1422 	req->ioprio = bio_prio(bio);
1423 	blk_rq_bio_prep(req->q, req, bio);
1424 }
1425 
1426 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1427 {
1428 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1429 	struct blk_plug *plug;
1430 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1431 	struct request *req;
1432 	unsigned int request_count = 0;
1433 
1434 	/*
1435 	 * low level driver can indicate that it wants pages above a
1436 	 * certain limit bounced to low memory (ie for highmem, or even
1437 	 * ISA dma in theory)
1438 	 */
1439 	blk_queue_bounce(q, &bio);
1440 
1441 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1442 		spin_lock_irq(q->queue_lock);
1443 		where = ELEVATOR_INSERT_FLUSH;
1444 		goto get_rq;
1445 	}
1446 
1447 	/*
1448 	 * Check if we can merge with the plugged list before grabbing
1449 	 * any locks.
1450 	 */
1451 	if (attempt_plug_merge(q, bio, &request_count))
1452 		return;
1453 
1454 	spin_lock_irq(q->queue_lock);
1455 
1456 	el_ret = elv_merge(q, &req, bio);
1457 	if (el_ret == ELEVATOR_BACK_MERGE) {
1458 		if (bio_attempt_back_merge(q, req, bio)) {
1459 			elv_bio_merged(q, req, bio);
1460 			if (!attempt_back_merge(q, req))
1461 				elv_merged_request(q, req, el_ret);
1462 			goto out_unlock;
1463 		}
1464 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1465 		if (bio_attempt_front_merge(q, req, bio)) {
1466 			elv_bio_merged(q, req, bio);
1467 			if (!attempt_front_merge(q, req))
1468 				elv_merged_request(q, req, el_ret);
1469 			goto out_unlock;
1470 		}
1471 	}
1472 
1473 get_rq:
1474 	/*
1475 	 * This sync check and mask will be re-done in init_request_from_bio(),
1476 	 * but we need to set it earlier to expose the sync flag to the
1477 	 * rq allocator and io schedulers.
1478 	 */
1479 	rw_flags = bio_data_dir(bio);
1480 	if (sync)
1481 		rw_flags |= REQ_SYNC;
1482 
1483 	/*
1484 	 * Grab a free request. This is might sleep but can not fail.
1485 	 * Returns with the queue unlocked.
1486 	 */
1487 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1488 	if (unlikely(!req)) {
1489 		bio_endio(bio, -ENODEV);	/* @q is dead */
1490 		goto out_unlock;
1491 	}
1492 
1493 	/*
1494 	 * After dropping the lock and possibly sleeping here, our request
1495 	 * may now be mergeable after it had proven unmergeable (above).
1496 	 * We don't worry about that case for efficiency. It won't happen
1497 	 * often, and the elevators are able to handle it.
1498 	 */
1499 	init_request_from_bio(req, bio);
1500 
1501 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1502 		req->cpu = raw_smp_processor_id();
1503 
1504 	plug = current->plug;
1505 	if (plug) {
1506 		/*
1507 		 * If this is the first request added after a plug, fire
1508 		 * of a plug trace. If others have been added before, check
1509 		 * if we have multiple devices in this plug. If so, make a
1510 		 * note to sort the list before dispatch.
1511 		 */
1512 		if (list_empty(&plug->list))
1513 			trace_block_plug(q);
1514 		else {
1515 			if (!plug->should_sort) {
1516 				struct request *__rq;
1517 
1518 				__rq = list_entry_rq(plug->list.prev);
1519 				if (__rq->q != q)
1520 					plug->should_sort = 1;
1521 			}
1522 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1523 				blk_flush_plug_list(plug, false);
1524 				trace_block_plug(q);
1525 			}
1526 		}
1527 		list_add_tail(&req->queuelist, &plug->list);
1528 		drive_stat_acct(req, 1);
1529 	} else {
1530 		spin_lock_irq(q->queue_lock);
1531 		add_acct_request(q, req, where);
1532 		__blk_run_queue(q);
1533 out_unlock:
1534 		spin_unlock_irq(q->queue_lock);
1535 	}
1536 }
1537 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1538 
1539 /*
1540  * If bio->bi_dev is a partition, remap the location
1541  */
1542 static inline void blk_partition_remap(struct bio *bio)
1543 {
1544 	struct block_device *bdev = bio->bi_bdev;
1545 
1546 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1547 		struct hd_struct *p = bdev->bd_part;
1548 
1549 		bio->bi_sector += p->start_sect;
1550 		bio->bi_bdev = bdev->bd_contains;
1551 
1552 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1553 				      bdev->bd_dev,
1554 				      bio->bi_sector - p->start_sect);
1555 	}
1556 }
1557 
1558 static void handle_bad_sector(struct bio *bio)
1559 {
1560 	char b[BDEVNAME_SIZE];
1561 
1562 	printk(KERN_INFO "attempt to access beyond end of device\n");
1563 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1564 			bdevname(bio->bi_bdev, b),
1565 			bio->bi_rw,
1566 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1567 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1568 
1569 	set_bit(BIO_EOF, &bio->bi_flags);
1570 }
1571 
1572 #ifdef CONFIG_FAIL_MAKE_REQUEST
1573 
1574 static DECLARE_FAULT_ATTR(fail_make_request);
1575 
1576 static int __init setup_fail_make_request(char *str)
1577 {
1578 	return setup_fault_attr(&fail_make_request, str);
1579 }
1580 __setup("fail_make_request=", setup_fail_make_request);
1581 
1582 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1583 {
1584 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1585 }
1586 
1587 static int __init fail_make_request_debugfs(void)
1588 {
1589 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1590 						NULL, &fail_make_request);
1591 
1592 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1593 }
1594 
1595 late_initcall(fail_make_request_debugfs);
1596 
1597 #else /* CONFIG_FAIL_MAKE_REQUEST */
1598 
1599 static inline bool should_fail_request(struct hd_struct *part,
1600 					unsigned int bytes)
1601 {
1602 	return false;
1603 }
1604 
1605 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1606 
1607 /*
1608  * Check whether this bio extends beyond the end of the device.
1609  */
1610 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1611 {
1612 	sector_t maxsector;
1613 
1614 	if (!nr_sectors)
1615 		return 0;
1616 
1617 	/* Test device or partition size, when known. */
1618 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1619 	if (maxsector) {
1620 		sector_t sector = bio->bi_sector;
1621 
1622 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1623 			/*
1624 			 * This may well happen - the kernel calls bread()
1625 			 * without checking the size of the device, e.g., when
1626 			 * mounting a device.
1627 			 */
1628 			handle_bad_sector(bio);
1629 			return 1;
1630 		}
1631 	}
1632 
1633 	return 0;
1634 }
1635 
1636 static noinline_for_stack bool
1637 generic_make_request_checks(struct bio *bio)
1638 {
1639 	struct request_queue *q;
1640 	int nr_sectors = bio_sectors(bio);
1641 	int err = -EIO;
1642 	char b[BDEVNAME_SIZE];
1643 	struct hd_struct *part;
1644 
1645 	might_sleep();
1646 
1647 	if (bio_check_eod(bio, nr_sectors))
1648 		goto end_io;
1649 
1650 	q = bdev_get_queue(bio->bi_bdev);
1651 	if (unlikely(!q)) {
1652 		printk(KERN_ERR
1653 		       "generic_make_request: Trying to access "
1654 			"nonexistent block-device %s (%Lu)\n",
1655 			bdevname(bio->bi_bdev, b),
1656 			(long long) bio->bi_sector);
1657 		goto end_io;
1658 	}
1659 
1660 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1661 		     nr_sectors > queue_max_hw_sectors(q))) {
1662 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1663 		       bdevname(bio->bi_bdev, b),
1664 		       bio_sectors(bio),
1665 		       queue_max_hw_sectors(q));
1666 		goto end_io;
1667 	}
1668 
1669 	part = bio->bi_bdev->bd_part;
1670 	if (should_fail_request(part, bio->bi_size) ||
1671 	    should_fail_request(&part_to_disk(part)->part0,
1672 				bio->bi_size))
1673 		goto end_io;
1674 
1675 	/*
1676 	 * If this device has partitions, remap block n
1677 	 * of partition p to block n+start(p) of the disk.
1678 	 */
1679 	blk_partition_remap(bio);
1680 
1681 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1682 		goto end_io;
1683 
1684 	if (bio_check_eod(bio, nr_sectors))
1685 		goto end_io;
1686 
1687 	/*
1688 	 * Filter flush bio's early so that make_request based
1689 	 * drivers without flush support don't have to worry
1690 	 * about them.
1691 	 */
1692 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1693 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1694 		if (!nr_sectors) {
1695 			err = 0;
1696 			goto end_io;
1697 		}
1698 	}
1699 
1700 	if ((bio->bi_rw & REQ_DISCARD) &&
1701 	    (!blk_queue_discard(q) ||
1702 	     ((bio->bi_rw & REQ_SECURE) &&
1703 	      !blk_queue_secdiscard(q)))) {
1704 		err = -EOPNOTSUPP;
1705 		goto end_io;
1706 	}
1707 
1708 	/*
1709 	 * Various block parts want %current->io_context and lazy ioc
1710 	 * allocation ends up trading a lot of pain for a small amount of
1711 	 * memory.  Just allocate it upfront.  This may fail and block
1712 	 * layer knows how to live with it.
1713 	 */
1714 	create_io_context(GFP_ATOMIC, q->node);
1715 
1716 	if (blk_throtl_bio(q, bio))
1717 		return false;	/* throttled, will be resubmitted later */
1718 
1719 	trace_block_bio_queue(q, bio);
1720 	return true;
1721 
1722 end_io:
1723 	bio_endio(bio, err);
1724 	return false;
1725 }
1726 
1727 /**
1728  * generic_make_request - hand a buffer to its device driver for I/O
1729  * @bio:  The bio describing the location in memory and on the device.
1730  *
1731  * generic_make_request() is used to make I/O requests of block
1732  * devices. It is passed a &struct bio, which describes the I/O that needs
1733  * to be done.
1734  *
1735  * generic_make_request() does not return any status.  The
1736  * success/failure status of the request, along with notification of
1737  * completion, is delivered asynchronously through the bio->bi_end_io
1738  * function described (one day) else where.
1739  *
1740  * The caller of generic_make_request must make sure that bi_io_vec
1741  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1742  * set to describe the device address, and the
1743  * bi_end_io and optionally bi_private are set to describe how
1744  * completion notification should be signaled.
1745  *
1746  * generic_make_request and the drivers it calls may use bi_next if this
1747  * bio happens to be merged with someone else, and may resubmit the bio to
1748  * a lower device by calling into generic_make_request recursively, which
1749  * means the bio should NOT be touched after the call to ->make_request_fn.
1750  */
1751 void generic_make_request(struct bio *bio)
1752 {
1753 	struct bio_list bio_list_on_stack;
1754 
1755 	if (!generic_make_request_checks(bio))
1756 		return;
1757 
1758 	/*
1759 	 * We only want one ->make_request_fn to be active at a time, else
1760 	 * stack usage with stacked devices could be a problem.  So use
1761 	 * current->bio_list to keep a list of requests submited by a
1762 	 * make_request_fn function.  current->bio_list is also used as a
1763 	 * flag to say if generic_make_request is currently active in this
1764 	 * task or not.  If it is NULL, then no make_request is active.  If
1765 	 * it is non-NULL, then a make_request is active, and new requests
1766 	 * should be added at the tail
1767 	 */
1768 	if (current->bio_list) {
1769 		bio_list_add(current->bio_list, bio);
1770 		return;
1771 	}
1772 
1773 	/* following loop may be a bit non-obvious, and so deserves some
1774 	 * explanation.
1775 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1776 	 * ensure that) so we have a list with a single bio.
1777 	 * We pretend that we have just taken it off a longer list, so
1778 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1779 	 * thus initialising the bio_list of new bios to be
1780 	 * added.  ->make_request() may indeed add some more bios
1781 	 * through a recursive call to generic_make_request.  If it
1782 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1783 	 * from the top.  In this case we really did just take the bio
1784 	 * of the top of the list (no pretending) and so remove it from
1785 	 * bio_list, and call into ->make_request() again.
1786 	 */
1787 	BUG_ON(bio->bi_next);
1788 	bio_list_init(&bio_list_on_stack);
1789 	current->bio_list = &bio_list_on_stack;
1790 	do {
1791 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1792 
1793 		q->make_request_fn(q, bio);
1794 
1795 		bio = bio_list_pop(current->bio_list);
1796 	} while (bio);
1797 	current->bio_list = NULL; /* deactivate */
1798 }
1799 EXPORT_SYMBOL(generic_make_request);
1800 
1801 /**
1802  * submit_bio - submit a bio to the block device layer for I/O
1803  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1804  * @bio: The &struct bio which describes the I/O
1805  *
1806  * submit_bio() is very similar in purpose to generic_make_request(), and
1807  * uses that function to do most of the work. Both are fairly rough
1808  * interfaces; @bio must be presetup and ready for I/O.
1809  *
1810  */
1811 void submit_bio(int rw, struct bio *bio)
1812 {
1813 	int count = bio_sectors(bio);
1814 
1815 	bio->bi_rw |= rw;
1816 
1817 	/*
1818 	 * If it's a regular read/write or a barrier with data attached,
1819 	 * go through the normal accounting stuff before submission.
1820 	 */
1821 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1822 		if (rw & WRITE) {
1823 			count_vm_events(PGPGOUT, count);
1824 		} else {
1825 			task_io_account_read(bio->bi_size);
1826 			count_vm_events(PGPGIN, count);
1827 		}
1828 
1829 		if (unlikely(block_dump)) {
1830 			char b[BDEVNAME_SIZE];
1831 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1832 			current->comm, task_pid_nr(current),
1833 				(rw & WRITE) ? "WRITE" : "READ",
1834 				(unsigned long long)bio->bi_sector,
1835 				bdevname(bio->bi_bdev, b),
1836 				count);
1837 		}
1838 	}
1839 
1840 	generic_make_request(bio);
1841 }
1842 EXPORT_SYMBOL(submit_bio);
1843 
1844 /**
1845  * blk_rq_check_limits - Helper function to check a request for the queue limit
1846  * @q:  the queue
1847  * @rq: the request being checked
1848  *
1849  * Description:
1850  *    @rq may have been made based on weaker limitations of upper-level queues
1851  *    in request stacking drivers, and it may violate the limitation of @q.
1852  *    Since the block layer and the underlying device driver trust @rq
1853  *    after it is inserted to @q, it should be checked against @q before
1854  *    the insertion using this generic function.
1855  *
1856  *    This function should also be useful for request stacking drivers
1857  *    in some cases below, so export this function.
1858  *    Request stacking drivers like request-based dm may change the queue
1859  *    limits while requests are in the queue (e.g. dm's table swapping).
1860  *    Such request stacking drivers should check those requests agaist
1861  *    the new queue limits again when they dispatch those requests,
1862  *    although such checkings are also done against the old queue limits
1863  *    when submitting requests.
1864  */
1865 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1866 {
1867 	if (rq->cmd_flags & REQ_DISCARD)
1868 		return 0;
1869 
1870 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1871 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1872 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1873 		return -EIO;
1874 	}
1875 
1876 	/*
1877 	 * queue's settings related to segment counting like q->bounce_pfn
1878 	 * may differ from that of other stacking queues.
1879 	 * Recalculate it to check the request correctly on this queue's
1880 	 * limitation.
1881 	 */
1882 	blk_recalc_rq_segments(rq);
1883 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1884 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1885 		return -EIO;
1886 	}
1887 
1888 	return 0;
1889 }
1890 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1891 
1892 /**
1893  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1894  * @q:  the queue to submit the request
1895  * @rq: the request being queued
1896  */
1897 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1898 {
1899 	unsigned long flags;
1900 	int where = ELEVATOR_INSERT_BACK;
1901 
1902 	if (blk_rq_check_limits(q, rq))
1903 		return -EIO;
1904 
1905 	if (rq->rq_disk &&
1906 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1907 		return -EIO;
1908 
1909 	spin_lock_irqsave(q->queue_lock, flags);
1910 	if (unlikely(blk_queue_dead(q))) {
1911 		spin_unlock_irqrestore(q->queue_lock, flags);
1912 		return -ENODEV;
1913 	}
1914 
1915 	/*
1916 	 * Submitting request must be dequeued before calling this function
1917 	 * because it will be linked to another request_queue
1918 	 */
1919 	BUG_ON(blk_queued_rq(rq));
1920 
1921 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1922 		where = ELEVATOR_INSERT_FLUSH;
1923 
1924 	add_acct_request(q, rq, where);
1925 	if (where == ELEVATOR_INSERT_FLUSH)
1926 		__blk_run_queue(q);
1927 	spin_unlock_irqrestore(q->queue_lock, flags);
1928 
1929 	return 0;
1930 }
1931 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1932 
1933 /**
1934  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1935  * @rq: request to examine
1936  *
1937  * Description:
1938  *     A request could be merge of IOs which require different failure
1939  *     handling.  This function determines the number of bytes which
1940  *     can be failed from the beginning of the request without
1941  *     crossing into area which need to be retried further.
1942  *
1943  * Return:
1944  *     The number of bytes to fail.
1945  *
1946  * Context:
1947  *     queue_lock must be held.
1948  */
1949 unsigned int blk_rq_err_bytes(const struct request *rq)
1950 {
1951 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1952 	unsigned int bytes = 0;
1953 	struct bio *bio;
1954 
1955 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1956 		return blk_rq_bytes(rq);
1957 
1958 	/*
1959 	 * Currently the only 'mixing' which can happen is between
1960 	 * different fastfail types.  We can safely fail portions
1961 	 * which have all the failfast bits that the first one has -
1962 	 * the ones which are at least as eager to fail as the first
1963 	 * one.
1964 	 */
1965 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1966 		if ((bio->bi_rw & ff) != ff)
1967 			break;
1968 		bytes += bio->bi_size;
1969 	}
1970 
1971 	/* this could lead to infinite loop */
1972 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1973 	return bytes;
1974 }
1975 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1976 
1977 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1978 {
1979 	if (blk_do_io_stat(req)) {
1980 		const int rw = rq_data_dir(req);
1981 		struct hd_struct *part;
1982 		int cpu;
1983 
1984 		cpu = part_stat_lock();
1985 		part = req->part;
1986 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1987 		part_stat_unlock();
1988 	}
1989 }
1990 
1991 static void blk_account_io_done(struct request *req)
1992 {
1993 	/*
1994 	 * Account IO completion.  flush_rq isn't accounted as a
1995 	 * normal IO on queueing nor completion.  Accounting the
1996 	 * containing request is enough.
1997 	 */
1998 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1999 		unsigned long duration = jiffies - req->start_time;
2000 		const int rw = rq_data_dir(req);
2001 		struct hd_struct *part;
2002 		int cpu;
2003 
2004 		cpu = part_stat_lock();
2005 		part = req->part;
2006 
2007 		part_stat_inc(cpu, part, ios[rw]);
2008 		part_stat_add(cpu, part, ticks[rw], duration);
2009 		part_round_stats(cpu, part);
2010 		part_dec_in_flight(part, rw);
2011 
2012 		hd_struct_put(part);
2013 		part_stat_unlock();
2014 	}
2015 }
2016 
2017 /**
2018  * blk_peek_request - peek at the top of a request queue
2019  * @q: request queue to peek at
2020  *
2021  * Description:
2022  *     Return the request at the top of @q.  The returned request
2023  *     should be started using blk_start_request() before LLD starts
2024  *     processing it.
2025  *
2026  * Return:
2027  *     Pointer to the request at the top of @q if available.  Null
2028  *     otherwise.
2029  *
2030  * Context:
2031  *     queue_lock must be held.
2032  */
2033 struct request *blk_peek_request(struct request_queue *q)
2034 {
2035 	struct request *rq;
2036 	int ret;
2037 
2038 	while ((rq = __elv_next_request(q)) != NULL) {
2039 		if (!(rq->cmd_flags & REQ_STARTED)) {
2040 			/*
2041 			 * This is the first time the device driver
2042 			 * sees this request (possibly after
2043 			 * requeueing).  Notify IO scheduler.
2044 			 */
2045 			if (rq->cmd_flags & REQ_SORTED)
2046 				elv_activate_rq(q, rq);
2047 
2048 			/*
2049 			 * just mark as started even if we don't start
2050 			 * it, a request that has been delayed should
2051 			 * not be passed by new incoming requests
2052 			 */
2053 			rq->cmd_flags |= REQ_STARTED;
2054 			trace_block_rq_issue(q, rq);
2055 		}
2056 
2057 		if (!q->boundary_rq || q->boundary_rq == rq) {
2058 			q->end_sector = rq_end_sector(rq);
2059 			q->boundary_rq = NULL;
2060 		}
2061 
2062 		if (rq->cmd_flags & REQ_DONTPREP)
2063 			break;
2064 
2065 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2066 			/*
2067 			 * make sure space for the drain appears we
2068 			 * know we can do this because max_hw_segments
2069 			 * has been adjusted to be one fewer than the
2070 			 * device can handle
2071 			 */
2072 			rq->nr_phys_segments++;
2073 		}
2074 
2075 		if (!q->prep_rq_fn)
2076 			break;
2077 
2078 		ret = q->prep_rq_fn(q, rq);
2079 		if (ret == BLKPREP_OK) {
2080 			break;
2081 		} else if (ret == BLKPREP_DEFER) {
2082 			/*
2083 			 * the request may have been (partially) prepped.
2084 			 * we need to keep this request in the front to
2085 			 * avoid resource deadlock.  REQ_STARTED will
2086 			 * prevent other fs requests from passing this one.
2087 			 */
2088 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2089 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2090 				/*
2091 				 * remove the space for the drain we added
2092 				 * so that we don't add it again
2093 				 */
2094 				--rq->nr_phys_segments;
2095 			}
2096 
2097 			rq = NULL;
2098 			break;
2099 		} else if (ret == BLKPREP_KILL) {
2100 			rq->cmd_flags |= REQ_QUIET;
2101 			/*
2102 			 * Mark this request as started so we don't trigger
2103 			 * any debug logic in the end I/O path.
2104 			 */
2105 			blk_start_request(rq);
2106 			__blk_end_request_all(rq, -EIO);
2107 		} else {
2108 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2109 			break;
2110 		}
2111 	}
2112 
2113 	return rq;
2114 }
2115 EXPORT_SYMBOL(blk_peek_request);
2116 
2117 void blk_dequeue_request(struct request *rq)
2118 {
2119 	struct request_queue *q = rq->q;
2120 
2121 	BUG_ON(list_empty(&rq->queuelist));
2122 	BUG_ON(ELV_ON_HASH(rq));
2123 
2124 	list_del_init(&rq->queuelist);
2125 
2126 	/*
2127 	 * the time frame between a request being removed from the lists
2128 	 * and to it is freed is accounted as io that is in progress at
2129 	 * the driver side.
2130 	 */
2131 	if (blk_account_rq(rq)) {
2132 		q->in_flight[rq_is_sync(rq)]++;
2133 		set_io_start_time_ns(rq);
2134 	}
2135 }
2136 
2137 /**
2138  * blk_start_request - start request processing on the driver
2139  * @req: request to dequeue
2140  *
2141  * Description:
2142  *     Dequeue @req and start timeout timer on it.  This hands off the
2143  *     request to the driver.
2144  *
2145  *     Block internal functions which don't want to start timer should
2146  *     call blk_dequeue_request().
2147  *
2148  * Context:
2149  *     queue_lock must be held.
2150  */
2151 void blk_start_request(struct request *req)
2152 {
2153 	blk_dequeue_request(req);
2154 
2155 	/*
2156 	 * We are now handing the request to the hardware, initialize
2157 	 * resid_len to full count and add the timeout handler.
2158 	 */
2159 	req->resid_len = blk_rq_bytes(req);
2160 	if (unlikely(blk_bidi_rq(req)))
2161 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2162 
2163 	blk_add_timer(req);
2164 }
2165 EXPORT_SYMBOL(blk_start_request);
2166 
2167 /**
2168  * blk_fetch_request - fetch a request from a request queue
2169  * @q: request queue to fetch a request from
2170  *
2171  * Description:
2172  *     Return the request at the top of @q.  The request is started on
2173  *     return and LLD can start processing it immediately.
2174  *
2175  * Return:
2176  *     Pointer to the request at the top of @q if available.  Null
2177  *     otherwise.
2178  *
2179  * Context:
2180  *     queue_lock must be held.
2181  */
2182 struct request *blk_fetch_request(struct request_queue *q)
2183 {
2184 	struct request *rq;
2185 
2186 	rq = blk_peek_request(q);
2187 	if (rq)
2188 		blk_start_request(rq);
2189 	return rq;
2190 }
2191 EXPORT_SYMBOL(blk_fetch_request);
2192 
2193 /**
2194  * blk_update_request - Special helper function for request stacking drivers
2195  * @req:      the request being processed
2196  * @error:    %0 for success, < %0 for error
2197  * @nr_bytes: number of bytes to complete @req
2198  *
2199  * Description:
2200  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2201  *     the request structure even if @req doesn't have leftover.
2202  *     If @req has leftover, sets it up for the next range of segments.
2203  *
2204  *     This special helper function is only for request stacking drivers
2205  *     (e.g. request-based dm) so that they can handle partial completion.
2206  *     Actual device drivers should use blk_end_request instead.
2207  *
2208  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2209  *     %false return from this function.
2210  *
2211  * Return:
2212  *     %false - this request doesn't have any more data
2213  *     %true  - this request has more data
2214  **/
2215 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2216 {
2217 	int total_bytes, bio_nbytes, next_idx = 0;
2218 	struct bio *bio;
2219 
2220 	if (!req->bio)
2221 		return false;
2222 
2223 	trace_block_rq_complete(req->q, req);
2224 
2225 	/*
2226 	 * For fs requests, rq is just carrier of independent bio's
2227 	 * and each partial completion should be handled separately.
2228 	 * Reset per-request error on each partial completion.
2229 	 *
2230 	 * TODO: tj: This is too subtle.  It would be better to let
2231 	 * low level drivers do what they see fit.
2232 	 */
2233 	if (req->cmd_type == REQ_TYPE_FS)
2234 		req->errors = 0;
2235 
2236 	if (error && req->cmd_type == REQ_TYPE_FS &&
2237 	    !(req->cmd_flags & REQ_QUIET)) {
2238 		char *error_type;
2239 
2240 		switch (error) {
2241 		case -ENOLINK:
2242 			error_type = "recoverable transport";
2243 			break;
2244 		case -EREMOTEIO:
2245 			error_type = "critical target";
2246 			break;
2247 		case -EBADE:
2248 			error_type = "critical nexus";
2249 			break;
2250 		case -EIO:
2251 		default:
2252 			error_type = "I/O";
2253 			break;
2254 		}
2255 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2256 				   error_type, req->rq_disk ?
2257 				   req->rq_disk->disk_name : "?",
2258 				   (unsigned long long)blk_rq_pos(req));
2259 
2260 	}
2261 
2262 	blk_account_io_completion(req, nr_bytes);
2263 
2264 	total_bytes = bio_nbytes = 0;
2265 	while ((bio = req->bio) != NULL) {
2266 		int nbytes;
2267 
2268 		if (nr_bytes >= bio->bi_size) {
2269 			req->bio = bio->bi_next;
2270 			nbytes = bio->bi_size;
2271 			req_bio_endio(req, bio, nbytes, error);
2272 			next_idx = 0;
2273 			bio_nbytes = 0;
2274 		} else {
2275 			int idx = bio->bi_idx + next_idx;
2276 
2277 			if (unlikely(idx >= bio->bi_vcnt)) {
2278 				blk_dump_rq_flags(req, "__end_that");
2279 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2280 				       __func__, idx, bio->bi_vcnt);
2281 				break;
2282 			}
2283 
2284 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2285 			BIO_BUG_ON(nbytes > bio->bi_size);
2286 
2287 			/*
2288 			 * not a complete bvec done
2289 			 */
2290 			if (unlikely(nbytes > nr_bytes)) {
2291 				bio_nbytes += nr_bytes;
2292 				total_bytes += nr_bytes;
2293 				break;
2294 			}
2295 
2296 			/*
2297 			 * advance to the next vector
2298 			 */
2299 			next_idx++;
2300 			bio_nbytes += nbytes;
2301 		}
2302 
2303 		total_bytes += nbytes;
2304 		nr_bytes -= nbytes;
2305 
2306 		bio = req->bio;
2307 		if (bio) {
2308 			/*
2309 			 * end more in this run, or just return 'not-done'
2310 			 */
2311 			if (unlikely(nr_bytes <= 0))
2312 				break;
2313 		}
2314 	}
2315 
2316 	/*
2317 	 * completely done
2318 	 */
2319 	if (!req->bio) {
2320 		/*
2321 		 * Reset counters so that the request stacking driver
2322 		 * can find how many bytes remain in the request
2323 		 * later.
2324 		 */
2325 		req->__data_len = 0;
2326 		return false;
2327 	}
2328 
2329 	/*
2330 	 * if the request wasn't completed, update state
2331 	 */
2332 	if (bio_nbytes) {
2333 		req_bio_endio(req, bio, bio_nbytes, error);
2334 		bio->bi_idx += next_idx;
2335 		bio_iovec(bio)->bv_offset += nr_bytes;
2336 		bio_iovec(bio)->bv_len -= nr_bytes;
2337 	}
2338 
2339 	req->__data_len -= total_bytes;
2340 	req->buffer = bio_data(req->bio);
2341 
2342 	/* update sector only for requests with clear definition of sector */
2343 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2344 		req->__sector += total_bytes >> 9;
2345 
2346 	/* mixed attributes always follow the first bio */
2347 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2348 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2349 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2350 	}
2351 
2352 	/*
2353 	 * If total number of sectors is less than the first segment
2354 	 * size, something has gone terribly wrong.
2355 	 */
2356 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2357 		blk_dump_rq_flags(req, "request botched");
2358 		req->__data_len = blk_rq_cur_bytes(req);
2359 	}
2360 
2361 	/* recalculate the number of segments */
2362 	blk_recalc_rq_segments(req);
2363 
2364 	return true;
2365 }
2366 EXPORT_SYMBOL_GPL(blk_update_request);
2367 
2368 static bool blk_update_bidi_request(struct request *rq, int error,
2369 				    unsigned int nr_bytes,
2370 				    unsigned int bidi_bytes)
2371 {
2372 	if (blk_update_request(rq, error, nr_bytes))
2373 		return true;
2374 
2375 	/* Bidi request must be completed as a whole */
2376 	if (unlikely(blk_bidi_rq(rq)) &&
2377 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2378 		return true;
2379 
2380 	if (blk_queue_add_random(rq->q))
2381 		add_disk_randomness(rq->rq_disk);
2382 
2383 	return false;
2384 }
2385 
2386 /**
2387  * blk_unprep_request - unprepare a request
2388  * @req:	the request
2389  *
2390  * This function makes a request ready for complete resubmission (or
2391  * completion).  It happens only after all error handling is complete,
2392  * so represents the appropriate moment to deallocate any resources
2393  * that were allocated to the request in the prep_rq_fn.  The queue
2394  * lock is held when calling this.
2395  */
2396 void blk_unprep_request(struct request *req)
2397 {
2398 	struct request_queue *q = req->q;
2399 
2400 	req->cmd_flags &= ~REQ_DONTPREP;
2401 	if (q->unprep_rq_fn)
2402 		q->unprep_rq_fn(q, req);
2403 }
2404 EXPORT_SYMBOL_GPL(blk_unprep_request);
2405 
2406 /*
2407  * queue lock must be held
2408  */
2409 static void blk_finish_request(struct request *req, int error)
2410 {
2411 	if (blk_rq_tagged(req))
2412 		blk_queue_end_tag(req->q, req);
2413 
2414 	BUG_ON(blk_queued_rq(req));
2415 
2416 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2417 		laptop_io_completion(&req->q->backing_dev_info);
2418 
2419 	blk_delete_timer(req);
2420 
2421 	if (req->cmd_flags & REQ_DONTPREP)
2422 		blk_unprep_request(req);
2423 
2424 
2425 	blk_account_io_done(req);
2426 
2427 	if (req->end_io)
2428 		req->end_io(req, error);
2429 	else {
2430 		if (blk_bidi_rq(req))
2431 			__blk_put_request(req->next_rq->q, req->next_rq);
2432 
2433 		__blk_put_request(req->q, req);
2434 	}
2435 }
2436 
2437 /**
2438  * blk_end_bidi_request - Complete a bidi request
2439  * @rq:         the request to complete
2440  * @error:      %0 for success, < %0 for error
2441  * @nr_bytes:   number of bytes to complete @rq
2442  * @bidi_bytes: number of bytes to complete @rq->next_rq
2443  *
2444  * Description:
2445  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2446  *     Drivers that supports bidi can safely call this member for any
2447  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2448  *     just ignored.
2449  *
2450  * Return:
2451  *     %false - we are done with this request
2452  *     %true  - still buffers pending for this request
2453  **/
2454 static bool blk_end_bidi_request(struct request *rq, int error,
2455 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2456 {
2457 	struct request_queue *q = rq->q;
2458 	unsigned long flags;
2459 
2460 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2461 		return true;
2462 
2463 	spin_lock_irqsave(q->queue_lock, flags);
2464 	blk_finish_request(rq, error);
2465 	spin_unlock_irqrestore(q->queue_lock, flags);
2466 
2467 	return false;
2468 }
2469 
2470 /**
2471  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2472  * @rq:         the request to complete
2473  * @error:      %0 for success, < %0 for error
2474  * @nr_bytes:   number of bytes to complete @rq
2475  * @bidi_bytes: number of bytes to complete @rq->next_rq
2476  *
2477  * Description:
2478  *     Identical to blk_end_bidi_request() except that queue lock is
2479  *     assumed to be locked on entry and remains so on return.
2480  *
2481  * Return:
2482  *     %false - we are done with this request
2483  *     %true  - still buffers pending for this request
2484  **/
2485 bool __blk_end_bidi_request(struct request *rq, int error,
2486 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2487 {
2488 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2489 		return true;
2490 
2491 	blk_finish_request(rq, error);
2492 
2493 	return false;
2494 }
2495 
2496 /**
2497  * blk_end_request - Helper function for drivers to complete the request.
2498  * @rq:       the request being processed
2499  * @error:    %0 for success, < %0 for error
2500  * @nr_bytes: number of bytes to complete
2501  *
2502  * Description:
2503  *     Ends I/O on a number of bytes attached to @rq.
2504  *     If @rq has leftover, sets it up for the next range of segments.
2505  *
2506  * Return:
2507  *     %false - we are done with this request
2508  *     %true  - still buffers pending for this request
2509  **/
2510 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2511 {
2512 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2513 }
2514 EXPORT_SYMBOL(blk_end_request);
2515 
2516 /**
2517  * blk_end_request_all - Helper function for drives to finish the request.
2518  * @rq: the request to finish
2519  * @error: %0 for success, < %0 for error
2520  *
2521  * Description:
2522  *     Completely finish @rq.
2523  */
2524 void blk_end_request_all(struct request *rq, int error)
2525 {
2526 	bool pending;
2527 	unsigned int bidi_bytes = 0;
2528 
2529 	if (unlikely(blk_bidi_rq(rq)))
2530 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2531 
2532 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2533 	BUG_ON(pending);
2534 }
2535 EXPORT_SYMBOL(blk_end_request_all);
2536 
2537 /**
2538  * blk_end_request_cur - Helper function to finish the current request chunk.
2539  * @rq: the request to finish the current chunk for
2540  * @error: %0 for success, < %0 for error
2541  *
2542  * Description:
2543  *     Complete the current consecutively mapped chunk from @rq.
2544  *
2545  * Return:
2546  *     %false - we are done with this request
2547  *     %true  - still buffers pending for this request
2548  */
2549 bool blk_end_request_cur(struct request *rq, int error)
2550 {
2551 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2552 }
2553 EXPORT_SYMBOL(blk_end_request_cur);
2554 
2555 /**
2556  * blk_end_request_err - Finish a request till the next failure boundary.
2557  * @rq: the request to finish till the next failure boundary for
2558  * @error: must be negative errno
2559  *
2560  * Description:
2561  *     Complete @rq till the next failure boundary.
2562  *
2563  * Return:
2564  *     %false - we are done with this request
2565  *     %true  - still buffers pending for this request
2566  */
2567 bool blk_end_request_err(struct request *rq, int error)
2568 {
2569 	WARN_ON(error >= 0);
2570 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2571 }
2572 EXPORT_SYMBOL_GPL(blk_end_request_err);
2573 
2574 /**
2575  * __blk_end_request - Helper function for drivers to complete the request.
2576  * @rq:       the request being processed
2577  * @error:    %0 for success, < %0 for error
2578  * @nr_bytes: number of bytes to complete
2579  *
2580  * Description:
2581  *     Must be called with queue lock held unlike blk_end_request().
2582  *
2583  * Return:
2584  *     %false - we are done with this request
2585  *     %true  - still buffers pending for this request
2586  **/
2587 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2588 {
2589 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2590 }
2591 EXPORT_SYMBOL(__blk_end_request);
2592 
2593 /**
2594  * __blk_end_request_all - Helper function for drives to finish the request.
2595  * @rq: the request to finish
2596  * @error: %0 for success, < %0 for error
2597  *
2598  * Description:
2599  *     Completely finish @rq.  Must be called with queue lock held.
2600  */
2601 void __blk_end_request_all(struct request *rq, int error)
2602 {
2603 	bool pending;
2604 	unsigned int bidi_bytes = 0;
2605 
2606 	if (unlikely(blk_bidi_rq(rq)))
2607 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2608 
2609 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2610 	BUG_ON(pending);
2611 }
2612 EXPORT_SYMBOL(__blk_end_request_all);
2613 
2614 /**
2615  * __blk_end_request_cur - Helper function to finish the current request chunk.
2616  * @rq: the request to finish the current chunk for
2617  * @error: %0 for success, < %0 for error
2618  *
2619  * Description:
2620  *     Complete the current consecutively mapped chunk from @rq.  Must
2621  *     be called with queue lock held.
2622  *
2623  * Return:
2624  *     %false - we are done with this request
2625  *     %true  - still buffers pending for this request
2626  */
2627 bool __blk_end_request_cur(struct request *rq, int error)
2628 {
2629 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2630 }
2631 EXPORT_SYMBOL(__blk_end_request_cur);
2632 
2633 /**
2634  * __blk_end_request_err - Finish a request till the next failure boundary.
2635  * @rq: the request to finish till the next failure boundary for
2636  * @error: must be negative errno
2637  *
2638  * Description:
2639  *     Complete @rq till the next failure boundary.  Must be called
2640  *     with queue lock held.
2641  *
2642  * Return:
2643  *     %false - we are done with this request
2644  *     %true  - still buffers pending for this request
2645  */
2646 bool __blk_end_request_err(struct request *rq, int error)
2647 {
2648 	WARN_ON(error >= 0);
2649 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2650 }
2651 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2652 
2653 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2654 		     struct bio *bio)
2655 {
2656 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2657 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2658 
2659 	if (bio_has_data(bio)) {
2660 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2661 		rq->buffer = bio_data(bio);
2662 	}
2663 	rq->__data_len = bio->bi_size;
2664 	rq->bio = rq->biotail = bio;
2665 
2666 	if (bio->bi_bdev)
2667 		rq->rq_disk = bio->bi_bdev->bd_disk;
2668 }
2669 
2670 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2671 /**
2672  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2673  * @rq: the request to be flushed
2674  *
2675  * Description:
2676  *     Flush all pages in @rq.
2677  */
2678 void rq_flush_dcache_pages(struct request *rq)
2679 {
2680 	struct req_iterator iter;
2681 	struct bio_vec *bvec;
2682 
2683 	rq_for_each_segment(bvec, rq, iter)
2684 		flush_dcache_page(bvec->bv_page);
2685 }
2686 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2687 #endif
2688 
2689 /**
2690  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2691  * @q : the queue of the device being checked
2692  *
2693  * Description:
2694  *    Check if underlying low-level drivers of a device are busy.
2695  *    If the drivers want to export their busy state, they must set own
2696  *    exporting function using blk_queue_lld_busy() first.
2697  *
2698  *    Basically, this function is used only by request stacking drivers
2699  *    to stop dispatching requests to underlying devices when underlying
2700  *    devices are busy.  This behavior helps more I/O merging on the queue
2701  *    of the request stacking driver and prevents I/O throughput regression
2702  *    on burst I/O load.
2703  *
2704  * Return:
2705  *    0 - Not busy (The request stacking driver should dispatch request)
2706  *    1 - Busy (The request stacking driver should stop dispatching request)
2707  */
2708 int blk_lld_busy(struct request_queue *q)
2709 {
2710 	if (q->lld_busy_fn)
2711 		return q->lld_busy_fn(q);
2712 
2713 	return 0;
2714 }
2715 EXPORT_SYMBOL_GPL(blk_lld_busy);
2716 
2717 /**
2718  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2719  * @rq: the clone request to be cleaned up
2720  *
2721  * Description:
2722  *     Free all bios in @rq for a cloned request.
2723  */
2724 void blk_rq_unprep_clone(struct request *rq)
2725 {
2726 	struct bio *bio;
2727 
2728 	while ((bio = rq->bio) != NULL) {
2729 		rq->bio = bio->bi_next;
2730 
2731 		bio_put(bio);
2732 	}
2733 }
2734 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2735 
2736 /*
2737  * Copy attributes of the original request to the clone request.
2738  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2739  */
2740 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2741 {
2742 	dst->cpu = src->cpu;
2743 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2744 	dst->cmd_type = src->cmd_type;
2745 	dst->__sector = blk_rq_pos(src);
2746 	dst->__data_len = blk_rq_bytes(src);
2747 	dst->nr_phys_segments = src->nr_phys_segments;
2748 	dst->ioprio = src->ioprio;
2749 	dst->extra_len = src->extra_len;
2750 }
2751 
2752 /**
2753  * blk_rq_prep_clone - Helper function to setup clone request
2754  * @rq: the request to be setup
2755  * @rq_src: original request to be cloned
2756  * @bs: bio_set that bios for clone are allocated from
2757  * @gfp_mask: memory allocation mask for bio
2758  * @bio_ctr: setup function to be called for each clone bio.
2759  *           Returns %0 for success, non %0 for failure.
2760  * @data: private data to be passed to @bio_ctr
2761  *
2762  * Description:
2763  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2764  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2765  *     are not copied, and copying such parts is the caller's responsibility.
2766  *     Also, pages which the original bios are pointing to are not copied
2767  *     and the cloned bios just point same pages.
2768  *     So cloned bios must be completed before original bios, which means
2769  *     the caller must complete @rq before @rq_src.
2770  */
2771 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2772 		      struct bio_set *bs, gfp_t gfp_mask,
2773 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2774 		      void *data)
2775 {
2776 	struct bio *bio, *bio_src;
2777 
2778 	if (!bs)
2779 		bs = fs_bio_set;
2780 
2781 	blk_rq_init(NULL, rq);
2782 
2783 	__rq_for_each_bio(bio_src, rq_src) {
2784 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2785 		if (!bio)
2786 			goto free_and_out;
2787 
2788 		__bio_clone(bio, bio_src);
2789 
2790 		if (bio_integrity(bio_src) &&
2791 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2792 			goto free_and_out;
2793 
2794 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2795 			goto free_and_out;
2796 
2797 		if (rq->bio) {
2798 			rq->biotail->bi_next = bio;
2799 			rq->biotail = bio;
2800 		} else
2801 			rq->bio = rq->biotail = bio;
2802 	}
2803 
2804 	__blk_rq_prep_clone(rq, rq_src);
2805 
2806 	return 0;
2807 
2808 free_and_out:
2809 	if (bio)
2810 		bio_free(bio, bs);
2811 	blk_rq_unprep_clone(rq);
2812 
2813 	return -ENOMEM;
2814 }
2815 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2816 
2817 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2818 {
2819 	return queue_work(kblockd_workqueue, work);
2820 }
2821 EXPORT_SYMBOL(kblockd_schedule_work);
2822 
2823 int kblockd_schedule_delayed_work(struct request_queue *q,
2824 			struct delayed_work *dwork, unsigned long delay)
2825 {
2826 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2827 }
2828 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2829 
2830 #define PLUG_MAGIC	0x91827364
2831 
2832 /**
2833  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2834  * @plug:	The &struct blk_plug that needs to be initialized
2835  *
2836  * Description:
2837  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2838  *   pending I/O should the task end up blocking between blk_start_plug() and
2839  *   blk_finish_plug(). This is important from a performance perspective, but
2840  *   also ensures that we don't deadlock. For instance, if the task is blocking
2841  *   for a memory allocation, memory reclaim could end up wanting to free a
2842  *   page belonging to that request that is currently residing in our private
2843  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2844  *   this kind of deadlock.
2845  */
2846 void blk_start_plug(struct blk_plug *plug)
2847 {
2848 	struct task_struct *tsk = current;
2849 
2850 	plug->magic = PLUG_MAGIC;
2851 	INIT_LIST_HEAD(&plug->list);
2852 	INIT_LIST_HEAD(&plug->cb_list);
2853 	plug->should_sort = 0;
2854 
2855 	/*
2856 	 * If this is a nested plug, don't actually assign it. It will be
2857 	 * flushed on its own.
2858 	 */
2859 	if (!tsk->plug) {
2860 		/*
2861 		 * Store ordering should not be needed here, since a potential
2862 		 * preempt will imply a full memory barrier
2863 		 */
2864 		tsk->plug = plug;
2865 	}
2866 }
2867 EXPORT_SYMBOL(blk_start_plug);
2868 
2869 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2870 {
2871 	struct request *rqa = container_of(a, struct request, queuelist);
2872 	struct request *rqb = container_of(b, struct request, queuelist);
2873 
2874 	return !(rqa->q <= rqb->q);
2875 }
2876 
2877 /*
2878  * If 'from_schedule' is true, then postpone the dispatch of requests
2879  * until a safe kblockd context. We due this to avoid accidental big
2880  * additional stack usage in driver dispatch, in places where the originally
2881  * plugger did not intend it.
2882  */
2883 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2884 			    bool from_schedule)
2885 	__releases(q->queue_lock)
2886 {
2887 	trace_block_unplug(q, depth, !from_schedule);
2888 
2889 	/*
2890 	 * Don't mess with dead queue.
2891 	 */
2892 	if (unlikely(blk_queue_dead(q))) {
2893 		spin_unlock(q->queue_lock);
2894 		return;
2895 	}
2896 
2897 	/*
2898 	 * If we are punting this to kblockd, then we can safely drop
2899 	 * the queue_lock before waking kblockd (which needs to take
2900 	 * this lock).
2901 	 */
2902 	if (from_schedule) {
2903 		spin_unlock(q->queue_lock);
2904 		blk_run_queue_async(q);
2905 	} else {
2906 		__blk_run_queue(q);
2907 		spin_unlock(q->queue_lock);
2908 	}
2909 
2910 }
2911 
2912 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2913 {
2914 	LIST_HEAD(callbacks);
2915 
2916 	while (!list_empty(&plug->cb_list)) {
2917 		list_splice_init(&plug->cb_list, &callbacks);
2918 
2919 		while (!list_empty(&callbacks)) {
2920 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2921 							  struct blk_plug_cb,
2922 							  list);
2923 			list_del(&cb->list);
2924 			cb->callback(cb, from_schedule);
2925 		}
2926 	}
2927 }
2928 
2929 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2930 				      int size)
2931 {
2932 	struct blk_plug *plug = current->plug;
2933 	struct blk_plug_cb *cb;
2934 
2935 	if (!plug)
2936 		return NULL;
2937 
2938 	list_for_each_entry(cb, &plug->cb_list, list)
2939 		if (cb->callback == unplug && cb->data == data)
2940 			return cb;
2941 
2942 	/* Not currently on the callback list */
2943 	BUG_ON(size < sizeof(*cb));
2944 	cb = kzalloc(size, GFP_ATOMIC);
2945 	if (cb) {
2946 		cb->data = data;
2947 		cb->callback = unplug;
2948 		list_add(&cb->list, &plug->cb_list);
2949 	}
2950 	return cb;
2951 }
2952 EXPORT_SYMBOL(blk_check_plugged);
2953 
2954 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2955 {
2956 	struct request_queue *q;
2957 	unsigned long flags;
2958 	struct request *rq;
2959 	LIST_HEAD(list);
2960 	unsigned int depth;
2961 
2962 	BUG_ON(plug->magic != PLUG_MAGIC);
2963 
2964 	flush_plug_callbacks(plug, from_schedule);
2965 	if (list_empty(&plug->list))
2966 		return;
2967 
2968 	list_splice_init(&plug->list, &list);
2969 
2970 	if (plug->should_sort) {
2971 		list_sort(NULL, &list, plug_rq_cmp);
2972 		plug->should_sort = 0;
2973 	}
2974 
2975 	q = NULL;
2976 	depth = 0;
2977 
2978 	/*
2979 	 * Save and disable interrupts here, to avoid doing it for every
2980 	 * queue lock we have to take.
2981 	 */
2982 	local_irq_save(flags);
2983 	while (!list_empty(&list)) {
2984 		rq = list_entry_rq(list.next);
2985 		list_del_init(&rq->queuelist);
2986 		BUG_ON(!rq->q);
2987 		if (rq->q != q) {
2988 			/*
2989 			 * This drops the queue lock
2990 			 */
2991 			if (q)
2992 				queue_unplugged(q, depth, from_schedule);
2993 			q = rq->q;
2994 			depth = 0;
2995 			spin_lock(q->queue_lock);
2996 		}
2997 
2998 		/*
2999 		 * Short-circuit if @q is dead
3000 		 */
3001 		if (unlikely(blk_queue_dead(q))) {
3002 			__blk_end_request_all(rq, -ENODEV);
3003 			continue;
3004 		}
3005 
3006 		/*
3007 		 * rq is already accounted, so use raw insert
3008 		 */
3009 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3010 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3011 		else
3012 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3013 
3014 		depth++;
3015 	}
3016 
3017 	/*
3018 	 * This drops the queue lock
3019 	 */
3020 	if (q)
3021 		queue_unplugged(q, depth, from_schedule);
3022 
3023 	local_irq_restore(flags);
3024 }
3025 
3026 void blk_finish_plug(struct blk_plug *plug)
3027 {
3028 	blk_flush_plug_list(plug, false);
3029 
3030 	if (plug == current->plug)
3031 		current->plug = NULL;
3032 }
3033 EXPORT_SYMBOL(blk_finish_plug);
3034 
3035 int __init blk_dev_init(void)
3036 {
3037 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3038 			sizeof(((struct request *)0)->cmd_flags));
3039 
3040 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3041 	kblockd_workqueue = alloc_workqueue("kblockd",
3042 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3043 	if (!kblockd_workqueue)
3044 		panic("Failed to create kblockd\n");
3045 
3046 	request_cachep = kmem_cache_create("blkdev_requests",
3047 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3048 
3049 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3050 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3051 
3052 	return 0;
3053 }
3054