xref: /openbmc/linux/block/blk-core.c (revision 5f30b2e8)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time_ns = ktime_get_ns();
200 	rq->part = NULL;
201 }
202 EXPORT_SYMBOL(blk_rq_init);
203 
204 static const struct {
205 	int		errno;
206 	const char	*name;
207 } blk_errors[] = {
208 	[BLK_STS_OK]		= { 0,		"" },
209 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
210 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
211 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
212 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
213 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
214 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
215 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
216 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
217 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
218 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
219 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
220 
221 	/* device mapper special case, should not leak out: */
222 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
223 
224 	/* everything else not covered above: */
225 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
226 };
227 
228 blk_status_t errno_to_blk_status(int errno)
229 {
230 	int i;
231 
232 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 		if (blk_errors[i].errno == errno)
234 			return (__force blk_status_t)i;
235 	}
236 
237 	return BLK_STS_IOERR;
238 }
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
240 
241 int blk_status_to_errno(blk_status_t status)
242 {
243 	int idx = (__force int)status;
244 
245 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 		return -EIO;
247 	return blk_errors[idx].errno;
248 }
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
250 
251 static void print_req_error(struct request *req, blk_status_t status)
252 {
253 	int idx = (__force int)status;
254 
255 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 		return;
257 
258 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 			   __func__, blk_errors[idx].name, req->rq_disk ?
260 			   req->rq_disk->disk_name : "?",
261 			   (unsigned long long)blk_rq_pos(req));
262 }
263 
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 			  unsigned int nbytes, blk_status_t error)
266 {
267 	if (error)
268 		bio->bi_status = error;
269 
270 	if (unlikely(rq->rq_flags & RQF_QUIET))
271 		bio_set_flag(bio, BIO_QUIET);
272 
273 	bio_advance(bio, nbytes);
274 
275 	/* don't actually finish bio if it's part of flush sequence */
276 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 		bio_endio(bio);
278 }
279 
280 void blk_dump_rq_flags(struct request *rq, char *msg)
281 {
282 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 		(unsigned long long) rq->cmd_flags);
285 
286 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
287 	       (unsigned long long)blk_rq_pos(rq),
288 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
290 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
291 }
292 EXPORT_SYMBOL(blk_dump_rq_flags);
293 
294 static void blk_delay_work(struct work_struct *work)
295 {
296 	struct request_queue *q;
297 
298 	q = container_of(work, struct request_queue, delay_work.work);
299 	spin_lock_irq(q->queue_lock);
300 	__blk_run_queue(q);
301 	spin_unlock_irq(q->queue_lock);
302 }
303 
304 /**
305  * blk_delay_queue - restart queueing after defined interval
306  * @q:		The &struct request_queue in question
307  * @msecs:	Delay in msecs
308  *
309  * Description:
310  *   Sometimes queueing needs to be postponed for a little while, to allow
311  *   resources to come back. This function will make sure that queueing is
312  *   restarted around the specified time.
313  */
314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
315 {
316 	lockdep_assert_held(q->queue_lock);
317 	WARN_ON_ONCE(q->mq_ops);
318 
319 	if (likely(!blk_queue_dead(q)))
320 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 				   msecs_to_jiffies(msecs));
322 }
323 EXPORT_SYMBOL(blk_delay_queue);
324 
325 /**
326  * blk_start_queue_async - asynchronously restart a previously stopped queue
327  * @q:    The &struct request_queue in question
328  *
329  * Description:
330  *   blk_start_queue_async() will clear the stop flag on the queue, and
331  *   ensure that the request_fn for the queue is run from an async
332  *   context.
333  **/
334 void blk_start_queue_async(struct request_queue *q)
335 {
336 	lockdep_assert_held(q->queue_lock);
337 	WARN_ON_ONCE(q->mq_ops);
338 
339 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 	blk_run_queue_async(q);
341 }
342 EXPORT_SYMBOL(blk_start_queue_async);
343 
344 /**
345  * blk_start_queue - restart a previously stopped queue
346  * @q:    The &struct request_queue in question
347  *
348  * Description:
349  *   blk_start_queue() will clear the stop flag on the queue, and call
350  *   the request_fn for the queue if it was in a stopped state when
351  *   entered. Also see blk_stop_queue().
352  **/
353 void blk_start_queue(struct request_queue *q)
354 {
355 	lockdep_assert_held(q->queue_lock);
356 	WARN_ON_ONCE(q->mq_ops);
357 
358 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 	__blk_run_queue(q);
360 }
361 EXPORT_SYMBOL(blk_start_queue);
362 
363 /**
364  * blk_stop_queue - stop a queue
365  * @q:    The &struct request_queue in question
366  *
367  * Description:
368  *   The Linux block layer assumes that a block driver will consume all
369  *   entries on the request queue when the request_fn strategy is called.
370  *   Often this will not happen, because of hardware limitations (queue
371  *   depth settings). If a device driver gets a 'queue full' response,
372  *   or if it simply chooses not to queue more I/O at one point, it can
373  *   call this function to prevent the request_fn from being called until
374  *   the driver has signalled it's ready to go again. This happens by calling
375  *   blk_start_queue() to restart queue operations.
376  **/
377 void blk_stop_queue(struct request_queue *q)
378 {
379 	lockdep_assert_held(q->queue_lock);
380 	WARN_ON_ONCE(q->mq_ops);
381 
382 	cancel_delayed_work(&q->delay_work);
383 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
384 }
385 EXPORT_SYMBOL(blk_stop_queue);
386 
387 /**
388  * blk_sync_queue - cancel any pending callbacks on a queue
389  * @q: the queue
390  *
391  * Description:
392  *     The block layer may perform asynchronous callback activity
393  *     on a queue, such as calling the unplug function after a timeout.
394  *     A block device may call blk_sync_queue to ensure that any
395  *     such activity is cancelled, thus allowing it to release resources
396  *     that the callbacks might use. The caller must already have made sure
397  *     that its ->make_request_fn will not re-add plugging prior to calling
398  *     this function.
399  *
400  *     This function does not cancel any asynchronous activity arising
401  *     out of elevator or throttling code. That would require elevator_exit()
402  *     and blkcg_exit_queue() to be called with queue lock initialized.
403  *
404  */
405 void blk_sync_queue(struct request_queue *q)
406 {
407 	del_timer_sync(&q->timeout);
408 	cancel_work_sync(&q->timeout_work);
409 
410 	if (q->mq_ops) {
411 		struct blk_mq_hw_ctx *hctx;
412 		int i;
413 
414 		cancel_delayed_work_sync(&q->requeue_work);
415 		queue_for_each_hw_ctx(q, hctx, i)
416 			cancel_delayed_work_sync(&hctx->run_work);
417 	} else {
418 		cancel_delayed_work_sync(&q->delay_work);
419 	}
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422 
423 /**
424  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425  * @q: request queue pointer
426  *
427  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428  * set and 1 if the flag was already set.
429  */
430 int blk_set_preempt_only(struct request_queue *q)
431 {
432 	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
433 }
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435 
436 void blk_clear_preempt_only(struct request_queue *q)
437 {
438 	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
439 	wake_up_all(&q->mq_freeze_wq);
440 }
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
442 
443 /**
444  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445  * @q:	The queue to run
446  *
447  * Description:
448  *    Invoke request handling on a queue if there are any pending requests.
449  *    May be used to restart request handling after a request has completed.
450  *    This variant runs the queue whether or not the queue has been
451  *    stopped. Must be called with the queue lock held and interrupts
452  *    disabled. See also @blk_run_queue.
453  */
454 inline void __blk_run_queue_uncond(struct request_queue *q)
455 {
456 	lockdep_assert_held(q->queue_lock);
457 	WARN_ON_ONCE(q->mq_ops);
458 
459 	if (unlikely(blk_queue_dead(q)))
460 		return;
461 
462 	/*
463 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 	 * the queue lock internally. As a result multiple threads may be
465 	 * running such a request function concurrently. Keep track of the
466 	 * number of active request_fn invocations such that blk_drain_queue()
467 	 * can wait until all these request_fn calls have finished.
468 	 */
469 	q->request_fn_active++;
470 	q->request_fn(q);
471 	q->request_fn_active--;
472 }
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
474 
475 /**
476  * __blk_run_queue - run a single device queue
477  * @q:	The queue to run
478  *
479  * Description:
480  *    See @blk_run_queue.
481  */
482 void __blk_run_queue(struct request_queue *q)
483 {
484 	lockdep_assert_held(q->queue_lock);
485 	WARN_ON_ONCE(q->mq_ops);
486 
487 	if (unlikely(blk_queue_stopped(q)))
488 		return;
489 
490 	__blk_run_queue_uncond(q);
491 }
492 EXPORT_SYMBOL(__blk_run_queue);
493 
494 /**
495  * blk_run_queue_async - run a single device queue in workqueue context
496  * @q:	The queue to run
497  *
498  * Description:
499  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
500  *    of us.
501  *
502  * Note:
503  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504  *    has canceled q->delay_work, callers must hold the queue lock to avoid
505  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
506  */
507 void blk_run_queue_async(struct request_queue *q)
508 {
509 	lockdep_assert_held(q->queue_lock);
510 	WARN_ON_ONCE(q->mq_ops);
511 
512 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
513 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
514 }
515 EXPORT_SYMBOL(blk_run_queue_async);
516 
517 /**
518  * blk_run_queue - run a single device queue
519  * @q: The queue to run
520  *
521  * Description:
522  *    Invoke request handling on this queue, if it has pending work to do.
523  *    May be used to restart queueing when a request has completed.
524  */
525 void blk_run_queue(struct request_queue *q)
526 {
527 	unsigned long flags;
528 
529 	WARN_ON_ONCE(q->mq_ops);
530 
531 	spin_lock_irqsave(q->queue_lock, flags);
532 	__blk_run_queue(q);
533 	spin_unlock_irqrestore(q->queue_lock, flags);
534 }
535 EXPORT_SYMBOL(blk_run_queue);
536 
537 void blk_put_queue(struct request_queue *q)
538 {
539 	kobject_put(&q->kobj);
540 }
541 EXPORT_SYMBOL(blk_put_queue);
542 
543 /**
544  * __blk_drain_queue - drain requests from request_queue
545  * @q: queue to drain
546  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
547  *
548  * Drain requests from @q.  If @drain_all is set, all requests are drained.
549  * If not, only ELVPRIV requests are drained.  The caller is responsible
550  * for ensuring that no new requests which need to be drained are queued.
551  */
552 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 	__releases(q->queue_lock)
554 	__acquires(q->queue_lock)
555 {
556 	int i;
557 
558 	lockdep_assert_held(q->queue_lock);
559 	WARN_ON_ONCE(q->mq_ops);
560 
561 	while (true) {
562 		bool drain = false;
563 
564 		/*
565 		 * The caller might be trying to drain @q before its
566 		 * elevator is initialized.
567 		 */
568 		if (q->elevator)
569 			elv_drain_elevator(q);
570 
571 		blkcg_drain_queue(q);
572 
573 		/*
574 		 * This function might be called on a queue which failed
575 		 * driver init after queue creation or is not yet fully
576 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
577 		 * in such cases.  Kick queue iff dispatch queue has
578 		 * something on it and @q has request_fn set.
579 		 */
580 		if (!list_empty(&q->queue_head) && q->request_fn)
581 			__blk_run_queue(q);
582 
583 		drain |= q->nr_rqs_elvpriv;
584 		drain |= q->request_fn_active;
585 
586 		/*
587 		 * Unfortunately, requests are queued at and tracked from
588 		 * multiple places and there's no single counter which can
589 		 * be drained.  Check all the queues and counters.
590 		 */
591 		if (drain_all) {
592 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
593 			drain |= !list_empty(&q->queue_head);
594 			for (i = 0; i < 2; i++) {
595 				drain |= q->nr_rqs[i];
596 				drain |= q->in_flight[i];
597 				if (fq)
598 				    drain |= !list_empty(&fq->flush_queue[i]);
599 			}
600 		}
601 
602 		if (!drain)
603 			break;
604 
605 		spin_unlock_irq(q->queue_lock);
606 
607 		msleep(10);
608 
609 		spin_lock_irq(q->queue_lock);
610 	}
611 
612 	/*
613 	 * With queue marked dead, any woken up waiter will fail the
614 	 * allocation path, so the wakeup chaining is lost and we're
615 	 * left with hung waiters. We need to wake up those waiters.
616 	 */
617 	if (q->request_fn) {
618 		struct request_list *rl;
619 
620 		blk_queue_for_each_rl(rl, q)
621 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 				wake_up_all(&rl->wait[i]);
623 	}
624 }
625 
626 void blk_drain_queue(struct request_queue *q)
627 {
628 	spin_lock_irq(q->queue_lock);
629 	__blk_drain_queue(q, true);
630 	spin_unlock_irq(q->queue_lock);
631 }
632 
633 /**
634  * blk_queue_bypass_start - enter queue bypass mode
635  * @q: queue of interest
636  *
637  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
638  * function makes @q enter bypass mode and drains all requests which were
639  * throttled or issued before.  On return, it's guaranteed that no request
640  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641  * inside queue or RCU read lock.
642  */
643 void blk_queue_bypass_start(struct request_queue *q)
644 {
645 	WARN_ON_ONCE(q->mq_ops);
646 
647 	spin_lock_irq(q->queue_lock);
648 	q->bypass_depth++;
649 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 	spin_unlock_irq(q->queue_lock);
651 
652 	/*
653 	 * Queues start drained.  Skip actual draining till init is
654 	 * complete.  This avoids lenghty delays during queue init which
655 	 * can happen many times during boot.
656 	 */
657 	if (blk_queue_init_done(q)) {
658 		spin_lock_irq(q->queue_lock);
659 		__blk_drain_queue(q, false);
660 		spin_unlock_irq(q->queue_lock);
661 
662 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
663 		synchronize_rcu();
664 	}
665 }
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
667 
668 /**
669  * blk_queue_bypass_end - leave queue bypass mode
670  * @q: queue of interest
671  *
672  * Leave bypass mode and restore the normal queueing behavior.
673  *
674  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675  * this function is called for both blk-sq and blk-mq queues.
676  */
677 void blk_queue_bypass_end(struct request_queue *q)
678 {
679 	spin_lock_irq(q->queue_lock);
680 	if (!--q->bypass_depth)
681 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 	WARN_ON_ONCE(q->bypass_depth < 0);
683 	spin_unlock_irq(q->queue_lock);
684 }
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686 
687 void blk_set_queue_dying(struct request_queue *q)
688 {
689 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
690 
691 	/*
692 	 * When queue DYING flag is set, we need to block new req
693 	 * entering queue, so we call blk_freeze_queue_start() to
694 	 * prevent I/O from crossing blk_queue_enter().
695 	 */
696 	blk_freeze_queue_start(q);
697 
698 	if (q->mq_ops)
699 		blk_mq_wake_waiters(q);
700 	else {
701 		struct request_list *rl;
702 
703 		spin_lock_irq(q->queue_lock);
704 		blk_queue_for_each_rl(rl, q) {
705 			if (rl->rq_pool) {
706 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
708 			}
709 		}
710 		spin_unlock_irq(q->queue_lock);
711 	}
712 
713 	/* Make blk_queue_enter() reexamine the DYING flag. */
714 	wake_up_all(&q->mq_freeze_wq);
715 }
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717 
718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
719 void blk_exit_queue(struct request_queue *q)
720 {
721 	/*
722 	 * Since the I/O scheduler exit code may access cgroup information,
723 	 * perform I/O scheduler exit before disassociating from the block
724 	 * cgroup controller.
725 	 */
726 	if (q->elevator) {
727 		ioc_clear_queue(q);
728 		elevator_exit(q, q->elevator);
729 		q->elevator = NULL;
730 	}
731 
732 	/*
733 	 * Remove all references to @q from the block cgroup controller before
734 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
735 	 * e.g. blkcg_print_blkgs() to crash.
736 	 */
737 	blkcg_exit_queue(q);
738 
739 	/*
740 	 * Since the cgroup code may dereference the @q->backing_dev_info
741 	 * pointer, only decrease its reference count after having removed the
742 	 * association with the block cgroup controller.
743 	 */
744 	bdi_put(q->backing_dev_info);
745 }
746 
747 /**
748  * blk_cleanup_queue - shutdown a request queue
749  * @q: request queue to shutdown
750  *
751  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
752  * put it.  All future requests will be failed immediately with -ENODEV.
753  */
754 void blk_cleanup_queue(struct request_queue *q)
755 {
756 	spinlock_t *lock = q->queue_lock;
757 
758 	/* mark @q DYING, no new request or merges will be allowed afterwards */
759 	mutex_lock(&q->sysfs_lock);
760 	blk_set_queue_dying(q);
761 	spin_lock_irq(lock);
762 
763 	/*
764 	 * A dying queue is permanently in bypass mode till released.  Note
765 	 * that, unlike blk_queue_bypass_start(), we aren't performing
766 	 * synchronize_rcu() after entering bypass mode to avoid the delay
767 	 * as some drivers create and destroy a lot of queues while
768 	 * probing.  This is still safe because blk_release_queue() will be
769 	 * called only after the queue refcnt drops to zero and nothing,
770 	 * RCU or not, would be traversing the queue by then.
771 	 */
772 	q->bypass_depth++;
773 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
774 
775 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
776 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
777 	queue_flag_set(QUEUE_FLAG_DYING, q);
778 	spin_unlock_irq(lock);
779 	mutex_unlock(&q->sysfs_lock);
780 
781 	/*
782 	 * Drain all requests queued before DYING marking. Set DEAD flag to
783 	 * prevent that q->request_fn() gets invoked after draining finished.
784 	 */
785 	blk_freeze_queue(q);
786 	spin_lock_irq(lock);
787 	queue_flag_set(QUEUE_FLAG_DEAD, q);
788 	spin_unlock_irq(lock);
789 
790 	/*
791 	 * make sure all in-progress dispatch are completed because
792 	 * blk_freeze_queue() can only complete all requests, and
793 	 * dispatch may still be in-progress since we dispatch requests
794 	 * from more than one contexts.
795 	 *
796 	 * No need to quiesce queue if it isn't initialized yet since
797 	 * blk_freeze_queue() should be enough for cases of passthrough
798 	 * request.
799 	 */
800 	if (q->mq_ops && blk_queue_init_done(q))
801 		blk_mq_quiesce_queue(q);
802 
803 	/* for synchronous bio-based driver finish in-flight integrity i/o */
804 	blk_flush_integrity();
805 
806 	/* @q won't process any more request, flush async actions */
807 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
808 	blk_sync_queue(q);
809 
810 	/*
811 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
812 	 * has been removed.
813 	 */
814 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
815 
816 	blk_exit_queue(q);
817 
818 	if (q->mq_ops)
819 		blk_mq_free_queue(q);
820 	percpu_ref_exit(&q->q_usage_counter);
821 
822 	spin_lock_irq(lock);
823 	if (q->queue_lock != &q->__queue_lock)
824 		q->queue_lock = &q->__queue_lock;
825 	spin_unlock_irq(lock);
826 
827 	/* @q is and will stay empty, shutdown and put */
828 	blk_put_queue(q);
829 }
830 EXPORT_SYMBOL(blk_cleanup_queue);
831 
832 /* Allocate memory local to the request queue */
833 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
834 {
835 	struct request_queue *q = data;
836 
837 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
838 }
839 
840 static void free_request_simple(void *element, void *data)
841 {
842 	kmem_cache_free(request_cachep, element);
843 }
844 
845 static void *alloc_request_size(gfp_t gfp_mask, void *data)
846 {
847 	struct request_queue *q = data;
848 	struct request *rq;
849 
850 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
851 			q->node);
852 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
853 		kfree(rq);
854 		rq = NULL;
855 	}
856 	return rq;
857 }
858 
859 static void free_request_size(void *element, void *data)
860 {
861 	struct request_queue *q = data;
862 
863 	if (q->exit_rq_fn)
864 		q->exit_rq_fn(q, element);
865 	kfree(element);
866 }
867 
868 int blk_init_rl(struct request_list *rl, struct request_queue *q,
869 		gfp_t gfp_mask)
870 {
871 	if (unlikely(rl->rq_pool) || q->mq_ops)
872 		return 0;
873 
874 	rl->q = q;
875 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
876 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
877 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
878 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
879 
880 	if (q->cmd_size) {
881 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 				alloc_request_size, free_request_size,
883 				q, gfp_mask, q->node);
884 	} else {
885 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 				alloc_request_simple, free_request_simple,
887 				q, gfp_mask, q->node);
888 	}
889 	if (!rl->rq_pool)
890 		return -ENOMEM;
891 
892 	if (rl != &q->root_rl)
893 		WARN_ON_ONCE(!blk_get_queue(q));
894 
895 	return 0;
896 }
897 
898 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
899 {
900 	if (rl->rq_pool) {
901 		mempool_destroy(rl->rq_pool);
902 		if (rl != &q->root_rl)
903 			blk_put_queue(q);
904 	}
905 }
906 
907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
908 {
909 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
910 }
911 EXPORT_SYMBOL(blk_alloc_queue);
912 
913 /**
914  * blk_queue_enter() - try to increase q->q_usage_counter
915  * @q: request queue pointer
916  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
917  */
918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
919 {
920 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
921 
922 	while (true) {
923 		bool success = false;
924 
925 		rcu_read_lock();
926 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
927 			/*
928 			 * The code that sets the PREEMPT_ONLY flag is
929 			 * responsible for ensuring that that flag is globally
930 			 * visible before the queue is unfrozen.
931 			 */
932 			if (preempt || !blk_queue_preempt_only(q)) {
933 				success = true;
934 			} else {
935 				percpu_ref_put(&q->q_usage_counter);
936 			}
937 		}
938 		rcu_read_unlock();
939 
940 		if (success)
941 			return 0;
942 
943 		if (flags & BLK_MQ_REQ_NOWAIT)
944 			return -EBUSY;
945 
946 		/*
947 		 * read pair of barrier in blk_freeze_queue_start(),
948 		 * we need to order reading __PERCPU_REF_DEAD flag of
949 		 * .q_usage_counter and reading .mq_freeze_depth or
950 		 * queue dying flag, otherwise the following wait may
951 		 * never return if the two reads are reordered.
952 		 */
953 		smp_rmb();
954 
955 		wait_event(q->mq_freeze_wq,
956 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
957 			    (preempt || !blk_queue_preempt_only(q))) ||
958 			   blk_queue_dying(q));
959 		if (blk_queue_dying(q))
960 			return -ENODEV;
961 	}
962 }
963 
964 void blk_queue_exit(struct request_queue *q)
965 {
966 	percpu_ref_put(&q->q_usage_counter);
967 }
968 
969 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
970 {
971 	struct request_queue *q =
972 		container_of(ref, struct request_queue, q_usage_counter);
973 
974 	wake_up_all(&q->mq_freeze_wq);
975 }
976 
977 static void blk_rq_timed_out_timer(struct timer_list *t)
978 {
979 	struct request_queue *q = from_timer(q, t, timeout);
980 
981 	kblockd_schedule_work(&q->timeout_work);
982 }
983 
984 /**
985  * blk_alloc_queue_node - allocate a request queue
986  * @gfp_mask: memory allocation flags
987  * @node_id: NUMA node to allocate memory from
988  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
989  *        serialize calls to the legacy .request_fn() callback. Ignored for
990  *	  blk-mq request queues.
991  *
992  * Note: pass the queue lock as the third argument to this function instead of
993  * setting the queue lock pointer explicitly to avoid triggering a sporadic
994  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
995  * the queue lock pointer must be set before blkcg_init_queue() is called.
996  */
997 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
998 					   spinlock_t *lock)
999 {
1000 	struct request_queue *q;
1001 	int ret;
1002 
1003 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1004 				gfp_mask | __GFP_ZERO, node_id);
1005 	if (!q)
1006 		return NULL;
1007 
1008 	INIT_LIST_HEAD(&q->queue_head);
1009 	q->last_merge = NULL;
1010 	q->end_sector = 0;
1011 	q->boundary_rq = NULL;
1012 
1013 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1014 	if (q->id < 0)
1015 		goto fail_q;
1016 
1017 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1018 	if (ret)
1019 		goto fail_id;
1020 
1021 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1022 	if (!q->backing_dev_info)
1023 		goto fail_split;
1024 
1025 	q->stats = blk_alloc_queue_stats();
1026 	if (!q->stats)
1027 		goto fail_stats;
1028 
1029 	q->backing_dev_info->ra_pages =
1030 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1031 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1032 	q->backing_dev_info->name = "block";
1033 	q->node = node_id;
1034 
1035 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1036 		    laptop_mode_timer_fn, 0);
1037 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1038 	INIT_WORK(&q->timeout_work, NULL);
1039 	INIT_LIST_HEAD(&q->queue_head);
1040 	INIT_LIST_HEAD(&q->timeout_list);
1041 	INIT_LIST_HEAD(&q->icq_list);
1042 #ifdef CONFIG_BLK_CGROUP
1043 	INIT_LIST_HEAD(&q->blkg_list);
1044 #endif
1045 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1046 
1047 	kobject_init(&q->kobj, &blk_queue_ktype);
1048 
1049 #ifdef CONFIG_BLK_DEV_IO_TRACE
1050 	mutex_init(&q->blk_trace_mutex);
1051 #endif
1052 	mutex_init(&q->sysfs_lock);
1053 	spin_lock_init(&q->__queue_lock);
1054 
1055 	if (!q->mq_ops)
1056 		q->queue_lock = lock ? : &q->__queue_lock;
1057 
1058 	/*
1059 	 * A queue starts its life with bypass turned on to avoid
1060 	 * unnecessary bypass on/off overhead and nasty surprises during
1061 	 * init.  The initial bypass will be finished when the queue is
1062 	 * registered by blk_register_queue().
1063 	 */
1064 	q->bypass_depth = 1;
1065 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1066 
1067 	init_waitqueue_head(&q->mq_freeze_wq);
1068 
1069 	/*
1070 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1071 	 * See blk_register_queue() for details.
1072 	 */
1073 	if (percpu_ref_init(&q->q_usage_counter,
1074 				blk_queue_usage_counter_release,
1075 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1076 		goto fail_bdi;
1077 
1078 	if (blkcg_init_queue(q))
1079 		goto fail_ref;
1080 
1081 	return q;
1082 
1083 fail_ref:
1084 	percpu_ref_exit(&q->q_usage_counter);
1085 fail_bdi:
1086 	blk_free_queue_stats(q->stats);
1087 fail_stats:
1088 	bdi_put(q->backing_dev_info);
1089 fail_split:
1090 	bioset_exit(&q->bio_split);
1091 fail_id:
1092 	ida_simple_remove(&blk_queue_ida, q->id);
1093 fail_q:
1094 	kmem_cache_free(blk_requestq_cachep, q);
1095 	return NULL;
1096 }
1097 EXPORT_SYMBOL(blk_alloc_queue_node);
1098 
1099 /**
1100  * blk_init_queue  - prepare a request queue for use with a block device
1101  * @rfn:  The function to be called to process requests that have been
1102  *        placed on the queue.
1103  * @lock: Request queue spin lock
1104  *
1105  * Description:
1106  *    If a block device wishes to use the standard request handling procedures,
1107  *    which sorts requests and coalesces adjacent requests, then it must
1108  *    call blk_init_queue().  The function @rfn will be called when there
1109  *    are requests on the queue that need to be processed.  If the device
1110  *    supports plugging, then @rfn may not be called immediately when requests
1111  *    are available on the queue, but may be called at some time later instead.
1112  *    Plugged queues are generally unplugged when a buffer belonging to one
1113  *    of the requests on the queue is needed, or due to memory pressure.
1114  *
1115  *    @rfn is not required, or even expected, to remove all requests off the
1116  *    queue, but only as many as it can handle at a time.  If it does leave
1117  *    requests on the queue, it is responsible for arranging that the requests
1118  *    get dealt with eventually.
1119  *
1120  *    The queue spin lock must be held while manipulating the requests on the
1121  *    request queue; this lock will be taken also from interrupt context, so irq
1122  *    disabling is needed for it.
1123  *
1124  *    Function returns a pointer to the initialized request queue, or %NULL if
1125  *    it didn't succeed.
1126  *
1127  * Note:
1128  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1129  *    when the block device is deactivated (such as at module unload).
1130  **/
1131 
1132 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1133 {
1134 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1135 }
1136 EXPORT_SYMBOL(blk_init_queue);
1137 
1138 struct request_queue *
1139 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1140 {
1141 	struct request_queue *q;
1142 
1143 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1144 	if (!q)
1145 		return NULL;
1146 
1147 	q->request_fn = rfn;
1148 	if (blk_init_allocated_queue(q) < 0) {
1149 		blk_cleanup_queue(q);
1150 		return NULL;
1151 	}
1152 
1153 	return q;
1154 }
1155 EXPORT_SYMBOL(blk_init_queue_node);
1156 
1157 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1158 
1159 
1160 int blk_init_allocated_queue(struct request_queue *q)
1161 {
1162 	WARN_ON_ONCE(q->mq_ops);
1163 
1164 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1165 	if (!q->fq)
1166 		return -ENOMEM;
1167 
1168 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1169 		goto out_free_flush_queue;
1170 
1171 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1172 		goto out_exit_flush_rq;
1173 
1174 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1175 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1176 
1177 	/*
1178 	 * This also sets hw/phys segments, boundary and size
1179 	 */
1180 	blk_queue_make_request(q, blk_queue_bio);
1181 
1182 	q->sg_reserved_size = INT_MAX;
1183 
1184 	if (elevator_init(q))
1185 		goto out_exit_flush_rq;
1186 	return 0;
1187 
1188 out_exit_flush_rq:
1189 	if (q->exit_rq_fn)
1190 		q->exit_rq_fn(q, q->fq->flush_rq);
1191 out_free_flush_queue:
1192 	blk_free_flush_queue(q->fq);
1193 	q->fq = NULL;
1194 	return -ENOMEM;
1195 }
1196 EXPORT_SYMBOL(blk_init_allocated_queue);
1197 
1198 bool blk_get_queue(struct request_queue *q)
1199 {
1200 	if (likely(!blk_queue_dying(q))) {
1201 		__blk_get_queue(q);
1202 		return true;
1203 	}
1204 
1205 	return false;
1206 }
1207 EXPORT_SYMBOL(blk_get_queue);
1208 
1209 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1210 {
1211 	if (rq->rq_flags & RQF_ELVPRIV) {
1212 		elv_put_request(rl->q, rq);
1213 		if (rq->elv.icq)
1214 			put_io_context(rq->elv.icq->ioc);
1215 	}
1216 
1217 	mempool_free(rq, rl->rq_pool);
1218 }
1219 
1220 /*
1221  * ioc_batching returns true if the ioc is a valid batching request and
1222  * should be given priority access to a request.
1223  */
1224 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1225 {
1226 	if (!ioc)
1227 		return 0;
1228 
1229 	/*
1230 	 * Make sure the process is able to allocate at least 1 request
1231 	 * even if the batch times out, otherwise we could theoretically
1232 	 * lose wakeups.
1233 	 */
1234 	return ioc->nr_batch_requests == q->nr_batching ||
1235 		(ioc->nr_batch_requests > 0
1236 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1237 }
1238 
1239 /*
1240  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1241  * will cause the process to be a "batcher" on all queues in the system. This
1242  * is the behaviour we want though - once it gets a wakeup it should be given
1243  * a nice run.
1244  */
1245 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1246 {
1247 	if (!ioc || ioc_batching(q, ioc))
1248 		return;
1249 
1250 	ioc->nr_batch_requests = q->nr_batching;
1251 	ioc->last_waited = jiffies;
1252 }
1253 
1254 static void __freed_request(struct request_list *rl, int sync)
1255 {
1256 	struct request_queue *q = rl->q;
1257 
1258 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1259 		blk_clear_congested(rl, sync);
1260 
1261 	if (rl->count[sync] + 1 <= q->nr_requests) {
1262 		if (waitqueue_active(&rl->wait[sync]))
1263 			wake_up(&rl->wait[sync]);
1264 
1265 		blk_clear_rl_full(rl, sync);
1266 	}
1267 }
1268 
1269 /*
1270  * A request has just been released.  Account for it, update the full and
1271  * congestion status, wake up any waiters.   Called under q->queue_lock.
1272  */
1273 static void freed_request(struct request_list *rl, bool sync,
1274 		req_flags_t rq_flags)
1275 {
1276 	struct request_queue *q = rl->q;
1277 
1278 	q->nr_rqs[sync]--;
1279 	rl->count[sync]--;
1280 	if (rq_flags & RQF_ELVPRIV)
1281 		q->nr_rqs_elvpriv--;
1282 
1283 	__freed_request(rl, sync);
1284 
1285 	if (unlikely(rl->starved[sync ^ 1]))
1286 		__freed_request(rl, sync ^ 1);
1287 }
1288 
1289 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1290 {
1291 	struct request_list *rl;
1292 	int on_thresh, off_thresh;
1293 
1294 	WARN_ON_ONCE(q->mq_ops);
1295 
1296 	spin_lock_irq(q->queue_lock);
1297 	q->nr_requests = nr;
1298 	blk_queue_congestion_threshold(q);
1299 	on_thresh = queue_congestion_on_threshold(q);
1300 	off_thresh = queue_congestion_off_threshold(q);
1301 
1302 	blk_queue_for_each_rl(rl, q) {
1303 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1304 			blk_set_congested(rl, BLK_RW_SYNC);
1305 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1306 			blk_clear_congested(rl, BLK_RW_SYNC);
1307 
1308 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1309 			blk_set_congested(rl, BLK_RW_ASYNC);
1310 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1311 			blk_clear_congested(rl, BLK_RW_ASYNC);
1312 
1313 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1314 			blk_set_rl_full(rl, BLK_RW_SYNC);
1315 		} else {
1316 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1317 			wake_up(&rl->wait[BLK_RW_SYNC]);
1318 		}
1319 
1320 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1321 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1322 		} else {
1323 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1324 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1325 		}
1326 	}
1327 
1328 	spin_unlock_irq(q->queue_lock);
1329 	return 0;
1330 }
1331 
1332 /**
1333  * __get_request - get a free request
1334  * @rl: request list to allocate from
1335  * @op: operation and flags
1336  * @bio: bio to allocate request for (can be %NULL)
1337  * @flags: BLQ_MQ_REQ_* flags
1338  * @gfp_mask: allocator flags
1339  *
1340  * Get a free request from @q.  This function may fail under memory
1341  * pressure or if @q is dead.
1342  *
1343  * Must be called with @q->queue_lock held and,
1344  * Returns ERR_PTR on failure, with @q->queue_lock held.
1345  * Returns request pointer on success, with @q->queue_lock *not held*.
1346  */
1347 static struct request *__get_request(struct request_list *rl, unsigned int op,
1348 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1349 {
1350 	struct request_queue *q = rl->q;
1351 	struct request *rq;
1352 	struct elevator_type *et = q->elevator->type;
1353 	struct io_context *ioc = rq_ioc(bio);
1354 	struct io_cq *icq = NULL;
1355 	const bool is_sync = op_is_sync(op);
1356 	int may_queue;
1357 	req_flags_t rq_flags = RQF_ALLOCED;
1358 
1359 	lockdep_assert_held(q->queue_lock);
1360 
1361 	if (unlikely(blk_queue_dying(q)))
1362 		return ERR_PTR(-ENODEV);
1363 
1364 	may_queue = elv_may_queue(q, op);
1365 	if (may_queue == ELV_MQUEUE_NO)
1366 		goto rq_starved;
1367 
1368 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1369 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1370 			/*
1371 			 * The queue will fill after this allocation, so set
1372 			 * it as full, and mark this process as "batching".
1373 			 * This process will be allowed to complete a batch of
1374 			 * requests, others will be blocked.
1375 			 */
1376 			if (!blk_rl_full(rl, is_sync)) {
1377 				ioc_set_batching(q, ioc);
1378 				blk_set_rl_full(rl, is_sync);
1379 			} else {
1380 				if (may_queue != ELV_MQUEUE_MUST
1381 						&& !ioc_batching(q, ioc)) {
1382 					/*
1383 					 * The queue is full and the allocating
1384 					 * process is not a "batcher", and not
1385 					 * exempted by the IO scheduler
1386 					 */
1387 					return ERR_PTR(-ENOMEM);
1388 				}
1389 			}
1390 		}
1391 		blk_set_congested(rl, is_sync);
1392 	}
1393 
1394 	/*
1395 	 * Only allow batching queuers to allocate up to 50% over the defined
1396 	 * limit of requests, otherwise we could have thousands of requests
1397 	 * allocated with any setting of ->nr_requests
1398 	 */
1399 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1400 		return ERR_PTR(-ENOMEM);
1401 
1402 	q->nr_rqs[is_sync]++;
1403 	rl->count[is_sync]++;
1404 	rl->starved[is_sync] = 0;
1405 
1406 	/*
1407 	 * Decide whether the new request will be managed by elevator.  If
1408 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1409 	 * prevent the current elevator from being destroyed until the new
1410 	 * request is freed.  This guarantees icq's won't be destroyed and
1411 	 * makes creating new ones safe.
1412 	 *
1413 	 * Flush requests do not use the elevator so skip initialization.
1414 	 * This allows a request to share the flush and elevator data.
1415 	 *
1416 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1417 	 * it will be created after releasing queue_lock.
1418 	 */
1419 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1420 		rq_flags |= RQF_ELVPRIV;
1421 		q->nr_rqs_elvpriv++;
1422 		if (et->icq_cache && ioc)
1423 			icq = ioc_lookup_icq(ioc, q);
1424 	}
1425 
1426 	if (blk_queue_io_stat(q))
1427 		rq_flags |= RQF_IO_STAT;
1428 	spin_unlock_irq(q->queue_lock);
1429 
1430 	/* allocate and init request */
1431 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1432 	if (!rq)
1433 		goto fail_alloc;
1434 
1435 	blk_rq_init(q, rq);
1436 	blk_rq_set_rl(rq, rl);
1437 	rq->cmd_flags = op;
1438 	rq->rq_flags = rq_flags;
1439 	if (flags & BLK_MQ_REQ_PREEMPT)
1440 		rq->rq_flags |= RQF_PREEMPT;
1441 
1442 	/* init elvpriv */
1443 	if (rq_flags & RQF_ELVPRIV) {
1444 		if (unlikely(et->icq_cache && !icq)) {
1445 			if (ioc)
1446 				icq = ioc_create_icq(ioc, q, gfp_mask);
1447 			if (!icq)
1448 				goto fail_elvpriv;
1449 		}
1450 
1451 		rq->elv.icq = icq;
1452 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1453 			goto fail_elvpriv;
1454 
1455 		/* @rq->elv.icq holds io_context until @rq is freed */
1456 		if (icq)
1457 			get_io_context(icq->ioc);
1458 	}
1459 out:
1460 	/*
1461 	 * ioc may be NULL here, and ioc_batching will be false. That's
1462 	 * OK, if the queue is under the request limit then requests need
1463 	 * not count toward the nr_batch_requests limit. There will always
1464 	 * be some limit enforced by BLK_BATCH_TIME.
1465 	 */
1466 	if (ioc_batching(q, ioc))
1467 		ioc->nr_batch_requests--;
1468 
1469 	trace_block_getrq(q, bio, op);
1470 	return rq;
1471 
1472 fail_elvpriv:
1473 	/*
1474 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1475 	 * and may fail indefinitely under memory pressure and thus
1476 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1477 	 * disturb iosched and blkcg but weird is bettern than dead.
1478 	 */
1479 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1480 			   __func__, dev_name(q->backing_dev_info->dev));
1481 
1482 	rq->rq_flags &= ~RQF_ELVPRIV;
1483 	rq->elv.icq = NULL;
1484 
1485 	spin_lock_irq(q->queue_lock);
1486 	q->nr_rqs_elvpriv--;
1487 	spin_unlock_irq(q->queue_lock);
1488 	goto out;
1489 
1490 fail_alloc:
1491 	/*
1492 	 * Allocation failed presumably due to memory. Undo anything we
1493 	 * might have messed up.
1494 	 *
1495 	 * Allocating task should really be put onto the front of the wait
1496 	 * queue, but this is pretty rare.
1497 	 */
1498 	spin_lock_irq(q->queue_lock);
1499 	freed_request(rl, is_sync, rq_flags);
1500 
1501 	/*
1502 	 * in the very unlikely event that allocation failed and no
1503 	 * requests for this direction was pending, mark us starved so that
1504 	 * freeing of a request in the other direction will notice
1505 	 * us. another possible fix would be to split the rq mempool into
1506 	 * READ and WRITE
1507 	 */
1508 rq_starved:
1509 	if (unlikely(rl->count[is_sync] == 0))
1510 		rl->starved[is_sync] = 1;
1511 	return ERR_PTR(-ENOMEM);
1512 }
1513 
1514 /**
1515  * get_request - get a free request
1516  * @q: request_queue to allocate request from
1517  * @op: operation and flags
1518  * @bio: bio to allocate request for (can be %NULL)
1519  * @flags: BLK_MQ_REQ_* flags.
1520  * @gfp: allocator flags
1521  *
1522  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1523  * this function keeps retrying under memory pressure and fails iff @q is dead.
1524  *
1525  * Must be called with @q->queue_lock held and,
1526  * Returns ERR_PTR on failure, with @q->queue_lock held.
1527  * Returns request pointer on success, with @q->queue_lock *not held*.
1528  */
1529 static struct request *get_request(struct request_queue *q, unsigned int op,
1530 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1531 {
1532 	const bool is_sync = op_is_sync(op);
1533 	DEFINE_WAIT(wait);
1534 	struct request_list *rl;
1535 	struct request *rq;
1536 
1537 	lockdep_assert_held(q->queue_lock);
1538 	WARN_ON_ONCE(q->mq_ops);
1539 
1540 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1541 retry:
1542 	rq = __get_request(rl, op, bio, flags, gfp);
1543 	if (!IS_ERR(rq))
1544 		return rq;
1545 
1546 	if (op & REQ_NOWAIT) {
1547 		blk_put_rl(rl);
1548 		return ERR_PTR(-EAGAIN);
1549 	}
1550 
1551 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1552 		blk_put_rl(rl);
1553 		return rq;
1554 	}
1555 
1556 	/* wait on @rl and retry */
1557 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1558 				  TASK_UNINTERRUPTIBLE);
1559 
1560 	trace_block_sleeprq(q, bio, op);
1561 
1562 	spin_unlock_irq(q->queue_lock);
1563 	io_schedule();
1564 
1565 	/*
1566 	 * After sleeping, we become a "batching" process and will be able
1567 	 * to allocate at least one request, and up to a big batch of them
1568 	 * for a small period time.  See ioc_batching, ioc_set_batching
1569 	 */
1570 	ioc_set_batching(q, current->io_context);
1571 
1572 	spin_lock_irq(q->queue_lock);
1573 	finish_wait(&rl->wait[is_sync], &wait);
1574 
1575 	goto retry;
1576 }
1577 
1578 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1579 static struct request *blk_old_get_request(struct request_queue *q,
1580 				unsigned int op, blk_mq_req_flags_t flags)
1581 {
1582 	struct request *rq;
1583 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1584 	int ret = 0;
1585 
1586 	WARN_ON_ONCE(q->mq_ops);
1587 
1588 	/* create ioc upfront */
1589 	create_io_context(gfp_mask, q->node);
1590 
1591 	ret = blk_queue_enter(q, flags);
1592 	if (ret)
1593 		return ERR_PTR(ret);
1594 	spin_lock_irq(q->queue_lock);
1595 	rq = get_request(q, op, NULL, flags, gfp_mask);
1596 	if (IS_ERR(rq)) {
1597 		spin_unlock_irq(q->queue_lock);
1598 		blk_queue_exit(q);
1599 		return rq;
1600 	}
1601 
1602 	/* q->queue_lock is unlocked at this point */
1603 	rq->__data_len = 0;
1604 	rq->__sector = (sector_t) -1;
1605 	rq->bio = rq->biotail = NULL;
1606 	return rq;
1607 }
1608 
1609 /**
1610  * blk_get_request - allocate a request
1611  * @q: request queue to allocate a request for
1612  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1613  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1614  */
1615 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1616 				blk_mq_req_flags_t flags)
1617 {
1618 	struct request *req;
1619 
1620 	WARN_ON_ONCE(op & REQ_NOWAIT);
1621 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1622 
1623 	if (q->mq_ops) {
1624 		req = blk_mq_alloc_request(q, op, flags);
1625 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1626 			q->mq_ops->initialize_rq_fn(req);
1627 	} else {
1628 		req = blk_old_get_request(q, op, flags);
1629 		if (!IS_ERR(req) && q->initialize_rq_fn)
1630 			q->initialize_rq_fn(req);
1631 	}
1632 
1633 	return req;
1634 }
1635 EXPORT_SYMBOL(blk_get_request);
1636 
1637 /**
1638  * blk_requeue_request - put a request back on queue
1639  * @q:		request queue where request should be inserted
1640  * @rq:		request to be inserted
1641  *
1642  * Description:
1643  *    Drivers often keep queueing requests until the hardware cannot accept
1644  *    more, when that condition happens we need to put the request back
1645  *    on the queue. Must be called with queue lock held.
1646  */
1647 void blk_requeue_request(struct request_queue *q, struct request *rq)
1648 {
1649 	lockdep_assert_held(q->queue_lock);
1650 	WARN_ON_ONCE(q->mq_ops);
1651 
1652 	blk_delete_timer(rq);
1653 	blk_clear_rq_complete(rq);
1654 	trace_block_rq_requeue(q, rq);
1655 	rq_qos_requeue(q, rq);
1656 
1657 	if (rq->rq_flags & RQF_QUEUED)
1658 		blk_queue_end_tag(q, rq);
1659 
1660 	BUG_ON(blk_queued_rq(rq));
1661 
1662 	elv_requeue_request(q, rq);
1663 }
1664 EXPORT_SYMBOL(blk_requeue_request);
1665 
1666 static void add_acct_request(struct request_queue *q, struct request *rq,
1667 			     int where)
1668 {
1669 	blk_account_io_start(rq, true);
1670 	__elv_add_request(q, rq, where);
1671 }
1672 
1673 static void part_round_stats_single(struct request_queue *q, int cpu,
1674 				    struct hd_struct *part, unsigned long now,
1675 				    unsigned int inflight)
1676 {
1677 	if (inflight) {
1678 		__part_stat_add(cpu, part, time_in_queue,
1679 				inflight * (now - part->stamp));
1680 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1681 	}
1682 	part->stamp = now;
1683 }
1684 
1685 /**
1686  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1687  * @q: target block queue
1688  * @cpu: cpu number for stats access
1689  * @part: target partition
1690  *
1691  * The average IO queue length and utilisation statistics are maintained
1692  * by observing the current state of the queue length and the amount of
1693  * time it has been in this state for.
1694  *
1695  * Normally, that accounting is done on IO completion, but that can result
1696  * in more than a second's worth of IO being accounted for within any one
1697  * second, leading to >100% utilisation.  To deal with that, we call this
1698  * function to do a round-off before returning the results when reading
1699  * /proc/diskstats.  This accounts immediately for all queue usage up to
1700  * the current jiffies and restarts the counters again.
1701  */
1702 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1703 {
1704 	struct hd_struct *part2 = NULL;
1705 	unsigned long now = jiffies;
1706 	unsigned int inflight[2];
1707 	int stats = 0;
1708 
1709 	if (part->stamp != now)
1710 		stats |= 1;
1711 
1712 	if (part->partno) {
1713 		part2 = &part_to_disk(part)->part0;
1714 		if (part2->stamp != now)
1715 			stats |= 2;
1716 	}
1717 
1718 	if (!stats)
1719 		return;
1720 
1721 	part_in_flight(q, part, inflight);
1722 
1723 	if (stats & 2)
1724 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1725 	if (stats & 1)
1726 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1727 }
1728 EXPORT_SYMBOL_GPL(part_round_stats);
1729 
1730 #ifdef CONFIG_PM
1731 static void blk_pm_put_request(struct request *rq)
1732 {
1733 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1734 		pm_runtime_mark_last_busy(rq->q->dev);
1735 }
1736 #else
1737 static inline void blk_pm_put_request(struct request *rq) {}
1738 #endif
1739 
1740 void __blk_put_request(struct request_queue *q, struct request *req)
1741 {
1742 	req_flags_t rq_flags = req->rq_flags;
1743 
1744 	if (unlikely(!q))
1745 		return;
1746 
1747 	if (q->mq_ops) {
1748 		blk_mq_free_request(req);
1749 		return;
1750 	}
1751 
1752 	lockdep_assert_held(q->queue_lock);
1753 
1754 	blk_req_zone_write_unlock(req);
1755 	blk_pm_put_request(req);
1756 
1757 	elv_completed_request(q, req);
1758 
1759 	/* this is a bio leak */
1760 	WARN_ON(req->bio != NULL);
1761 
1762 	rq_qos_done(q, req);
1763 
1764 	/*
1765 	 * Request may not have originated from ll_rw_blk. if not,
1766 	 * it didn't come out of our reserved rq pools
1767 	 */
1768 	if (rq_flags & RQF_ALLOCED) {
1769 		struct request_list *rl = blk_rq_rl(req);
1770 		bool sync = op_is_sync(req->cmd_flags);
1771 
1772 		BUG_ON(!list_empty(&req->queuelist));
1773 		BUG_ON(ELV_ON_HASH(req));
1774 
1775 		blk_free_request(rl, req);
1776 		freed_request(rl, sync, rq_flags);
1777 		blk_put_rl(rl);
1778 		blk_queue_exit(q);
1779 	}
1780 }
1781 EXPORT_SYMBOL_GPL(__blk_put_request);
1782 
1783 void blk_put_request(struct request *req)
1784 {
1785 	struct request_queue *q = req->q;
1786 
1787 	if (q->mq_ops)
1788 		blk_mq_free_request(req);
1789 	else {
1790 		unsigned long flags;
1791 
1792 		spin_lock_irqsave(q->queue_lock, flags);
1793 		__blk_put_request(q, req);
1794 		spin_unlock_irqrestore(q->queue_lock, flags);
1795 	}
1796 }
1797 EXPORT_SYMBOL(blk_put_request);
1798 
1799 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1800 			    struct bio *bio)
1801 {
1802 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1803 
1804 	if (!ll_back_merge_fn(q, req, bio))
1805 		return false;
1806 
1807 	trace_block_bio_backmerge(q, req, bio);
1808 
1809 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1810 		blk_rq_set_mixed_merge(req);
1811 
1812 	req->biotail->bi_next = bio;
1813 	req->biotail = bio;
1814 	req->__data_len += bio->bi_iter.bi_size;
1815 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1816 
1817 	blk_account_io_start(req, false);
1818 	return true;
1819 }
1820 
1821 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1822 			     struct bio *bio)
1823 {
1824 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1825 
1826 	if (!ll_front_merge_fn(q, req, bio))
1827 		return false;
1828 
1829 	trace_block_bio_frontmerge(q, req, bio);
1830 
1831 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1832 		blk_rq_set_mixed_merge(req);
1833 
1834 	bio->bi_next = req->bio;
1835 	req->bio = bio;
1836 
1837 	req->__sector = bio->bi_iter.bi_sector;
1838 	req->__data_len += bio->bi_iter.bi_size;
1839 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1840 
1841 	blk_account_io_start(req, false);
1842 	return true;
1843 }
1844 
1845 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1846 		struct bio *bio)
1847 {
1848 	unsigned short segments = blk_rq_nr_discard_segments(req);
1849 
1850 	if (segments >= queue_max_discard_segments(q))
1851 		goto no_merge;
1852 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1853 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1854 		goto no_merge;
1855 
1856 	req->biotail->bi_next = bio;
1857 	req->biotail = bio;
1858 	req->__data_len += bio->bi_iter.bi_size;
1859 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1860 	req->nr_phys_segments = segments + 1;
1861 
1862 	blk_account_io_start(req, false);
1863 	return true;
1864 no_merge:
1865 	req_set_nomerge(q, req);
1866 	return false;
1867 }
1868 
1869 /**
1870  * blk_attempt_plug_merge - try to merge with %current's plugged list
1871  * @q: request_queue new bio is being queued at
1872  * @bio: new bio being queued
1873  * @request_count: out parameter for number of traversed plugged requests
1874  * @same_queue_rq: pointer to &struct request that gets filled in when
1875  * another request associated with @q is found on the plug list
1876  * (optional, may be %NULL)
1877  *
1878  * Determine whether @bio being queued on @q can be merged with a request
1879  * on %current's plugged list.  Returns %true if merge was successful,
1880  * otherwise %false.
1881  *
1882  * Plugging coalesces IOs from the same issuer for the same purpose without
1883  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1884  * than scheduling, and the request, while may have elvpriv data, is not
1885  * added on the elevator at this point.  In addition, we don't have
1886  * reliable access to the elevator outside queue lock.  Only check basic
1887  * merging parameters without querying the elevator.
1888  *
1889  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1890  */
1891 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1892 			    unsigned int *request_count,
1893 			    struct request **same_queue_rq)
1894 {
1895 	struct blk_plug *plug;
1896 	struct request *rq;
1897 	struct list_head *plug_list;
1898 
1899 	plug = current->plug;
1900 	if (!plug)
1901 		return false;
1902 	*request_count = 0;
1903 
1904 	if (q->mq_ops)
1905 		plug_list = &plug->mq_list;
1906 	else
1907 		plug_list = &plug->list;
1908 
1909 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1910 		bool merged = false;
1911 
1912 		if (rq->q == q) {
1913 			(*request_count)++;
1914 			/*
1915 			 * Only blk-mq multiple hardware queues case checks the
1916 			 * rq in the same queue, there should be only one such
1917 			 * rq in a queue
1918 			 **/
1919 			if (same_queue_rq)
1920 				*same_queue_rq = rq;
1921 		}
1922 
1923 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1924 			continue;
1925 
1926 		switch (blk_try_merge(rq, bio)) {
1927 		case ELEVATOR_BACK_MERGE:
1928 			merged = bio_attempt_back_merge(q, rq, bio);
1929 			break;
1930 		case ELEVATOR_FRONT_MERGE:
1931 			merged = bio_attempt_front_merge(q, rq, bio);
1932 			break;
1933 		case ELEVATOR_DISCARD_MERGE:
1934 			merged = bio_attempt_discard_merge(q, rq, bio);
1935 			break;
1936 		default:
1937 			break;
1938 		}
1939 
1940 		if (merged)
1941 			return true;
1942 	}
1943 
1944 	return false;
1945 }
1946 
1947 unsigned int blk_plug_queued_count(struct request_queue *q)
1948 {
1949 	struct blk_plug *plug;
1950 	struct request *rq;
1951 	struct list_head *plug_list;
1952 	unsigned int ret = 0;
1953 
1954 	plug = current->plug;
1955 	if (!plug)
1956 		goto out;
1957 
1958 	if (q->mq_ops)
1959 		plug_list = &plug->mq_list;
1960 	else
1961 		plug_list = &plug->list;
1962 
1963 	list_for_each_entry(rq, plug_list, queuelist) {
1964 		if (rq->q == q)
1965 			ret++;
1966 	}
1967 out:
1968 	return ret;
1969 }
1970 
1971 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1972 {
1973 	struct io_context *ioc = rq_ioc(bio);
1974 
1975 	if (bio->bi_opf & REQ_RAHEAD)
1976 		req->cmd_flags |= REQ_FAILFAST_MASK;
1977 
1978 	req->__sector = bio->bi_iter.bi_sector;
1979 	if (ioprio_valid(bio_prio(bio)))
1980 		req->ioprio = bio_prio(bio);
1981 	else if (ioc)
1982 		req->ioprio = ioc->ioprio;
1983 	else
1984 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1985 	req->write_hint = bio->bi_write_hint;
1986 	blk_rq_bio_prep(req->q, req, bio);
1987 }
1988 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1989 
1990 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1991 {
1992 	struct blk_plug *plug;
1993 	int where = ELEVATOR_INSERT_SORT;
1994 	struct request *req, *free;
1995 	unsigned int request_count = 0;
1996 
1997 	/*
1998 	 * low level driver can indicate that it wants pages above a
1999 	 * certain limit bounced to low memory (ie for highmem, or even
2000 	 * ISA dma in theory)
2001 	 */
2002 	blk_queue_bounce(q, &bio);
2003 
2004 	blk_queue_split(q, &bio);
2005 
2006 	if (!bio_integrity_prep(bio))
2007 		return BLK_QC_T_NONE;
2008 
2009 	if (op_is_flush(bio->bi_opf)) {
2010 		spin_lock_irq(q->queue_lock);
2011 		where = ELEVATOR_INSERT_FLUSH;
2012 		goto get_rq;
2013 	}
2014 
2015 	/*
2016 	 * Check if we can merge with the plugged list before grabbing
2017 	 * any locks.
2018 	 */
2019 	if (!blk_queue_nomerges(q)) {
2020 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2021 			return BLK_QC_T_NONE;
2022 	} else
2023 		request_count = blk_plug_queued_count(q);
2024 
2025 	spin_lock_irq(q->queue_lock);
2026 
2027 	switch (elv_merge(q, &req, bio)) {
2028 	case ELEVATOR_BACK_MERGE:
2029 		if (!bio_attempt_back_merge(q, req, bio))
2030 			break;
2031 		elv_bio_merged(q, req, bio);
2032 		free = attempt_back_merge(q, req);
2033 		if (free)
2034 			__blk_put_request(q, free);
2035 		else
2036 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2037 		goto out_unlock;
2038 	case ELEVATOR_FRONT_MERGE:
2039 		if (!bio_attempt_front_merge(q, req, bio))
2040 			break;
2041 		elv_bio_merged(q, req, bio);
2042 		free = attempt_front_merge(q, req);
2043 		if (free)
2044 			__blk_put_request(q, free);
2045 		else
2046 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2047 		goto out_unlock;
2048 	default:
2049 		break;
2050 	}
2051 
2052 get_rq:
2053 	rq_qos_throttle(q, bio, q->queue_lock);
2054 
2055 	/*
2056 	 * Grab a free request. This is might sleep but can not fail.
2057 	 * Returns with the queue unlocked.
2058 	 */
2059 	blk_queue_enter_live(q);
2060 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2061 	if (IS_ERR(req)) {
2062 		blk_queue_exit(q);
2063 		rq_qos_cleanup(q, bio);
2064 		if (PTR_ERR(req) == -ENOMEM)
2065 			bio->bi_status = BLK_STS_RESOURCE;
2066 		else
2067 			bio->bi_status = BLK_STS_IOERR;
2068 		bio_endio(bio);
2069 		goto out_unlock;
2070 	}
2071 
2072 	rq_qos_track(q, req, bio);
2073 
2074 	/*
2075 	 * After dropping the lock and possibly sleeping here, our request
2076 	 * may now be mergeable after it had proven unmergeable (above).
2077 	 * We don't worry about that case for efficiency. It won't happen
2078 	 * often, and the elevators are able to handle it.
2079 	 */
2080 	blk_init_request_from_bio(req, bio);
2081 
2082 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2083 		req->cpu = raw_smp_processor_id();
2084 
2085 	plug = current->plug;
2086 	if (plug) {
2087 		/*
2088 		 * If this is the first request added after a plug, fire
2089 		 * of a plug trace.
2090 		 *
2091 		 * @request_count may become stale because of schedule
2092 		 * out, so check plug list again.
2093 		 */
2094 		if (!request_count || list_empty(&plug->list))
2095 			trace_block_plug(q);
2096 		else {
2097 			struct request *last = list_entry_rq(plug->list.prev);
2098 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2099 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2100 				blk_flush_plug_list(plug, false);
2101 				trace_block_plug(q);
2102 			}
2103 		}
2104 		list_add_tail(&req->queuelist, &plug->list);
2105 		blk_account_io_start(req, true);
2106 	} else {
2107 		spin_lock_irq(q->queue_lock);
2108 		add_acct_request(q, req, where);
2109 		__blk_run_queue(q);
2110 out_unlock:
2111 		spin_unlock_irq(q->queue_lock);
2112 	}
2113 
2114 	return BLK_QC_T_NONE;
2115 }
2116 
2117 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2118 {
2119 	char b[BDEVNAME_SIZE];
2120 
2121 	printk(KERN_INFO "attempt to access beyond end of device\n");
2122 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2123 			bio_devname(bio, b), bio->bi_opf,
2124 			(unsigned long long)bio_end_sector(bio),
2125 			(long long)maxsector);
2126 }
2127 
2128 #ifdef CONFIG_FAIL_MAKE_REQUEST
2129 
2130 static DECLARE_FAULT_ATTR(fail_make_request);
2131 
2132 static int __init setup_fail_make_request(char *str)
2133 {
2134 	return setup_fault_attr(&fail_make_request, str);
2135 }
2136 __setup("fail_make_request=", setup_fail_make_request);
2137 
2138 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2139 {
2140 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2141 }
2142 
2143 static int __init fail_make_request_debugfs(void)
2144 {
2145 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2146 						NULL, &fail_make_request);
2147 
2148 	return PTR_ERR_OR_ZERO(dir);
2149 }
2150 
2151 late_initcall(fail_make_request_debugfs);
2152 
2153 #else /* CONFIG_FAIL_MAKE_REQUEST */
2154 
2155 static inline bool should_fail_request(struct hd_struct *part,
2156 					unsigned int bytes)
2157 {
2158 	return false;
2159 }
2160 
2161 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2162 
2163 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2164 {
2165 	if (part->policy && op_is_write(bio_op(bio))) {
2166 		char b[BDEVNAME_SIZE];
2167 
2168 		WARN_ONCE(1,
2169 		       "generic_make_request: Trying to write "
2170 			"to read-only block-device %s (partno %d)\n",
2171 			bio_devname(bio, b), part->partno);
2172 		/* Older lvm-tools actually trigger this */
2173 		return false;
2174 	}
2175 
2176 	return false;
2177 }
2178 
2179 static noinline int should_fail_bio(struct bio *bio)
2180 {
2181 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2182 		return -EIO;
2183 	return 0;
2184 }
2185 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2186 
2187 /*
2188  * Check whether this bio extends beyond the end of the device or partition.
2189  * This may well happen - the kernel calls bread() without checking the size of
2190  * the device, e.g., when mounting a file system.
2191  */
2192 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2193 {
2194 	unsigned int nr_sectors = bio_sectors(bio);
2195 
2196 	if (nr_sectors && maxsector &&
2197 	    (nr_sectors > maxsector ||
2198 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2199 		handle_bad_sector(bio, maxsector);
2200 		return -EIO;
2201 	}
2202 	return 0;
2203 }
2204 
2205 /*
2206  * Remap block n of partition p to block n+start(p) of the disk.
2207  */
2208 static inline int blk_partition_remap(struct bio *bio)
2209 {
2210 	struct hd_struct *p;
2211 	int ret = -EIO;
2212 
2213 	rcu_read_lock();
2214 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2215 	if (unlikely(!p))
2216 		goto out;
2217 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2218 		goto out;
2219 	if (unlikely(bio_check_ro(bio, p)))
2220 		goto out;
2221 
2222 	/*
2223 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2224 	 * Include a test for the reset op code and perform the remap if needed.
2225 	 */
2226 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2227 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2228 			goto out;
2229 		bio->bi_iter.bi_sector += p->start_sect;
2230 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2231 				      bio->bi_iter.bi_sector - p->start_sect);
2232 	}
2233 	bio->bi_partno = 0;
2234 	ret = 0;
2235 out:
2236 	rcu_read_unlock();
2237 	return ret;
2238 }
2239 
2240 static noinline_for_stack bool
2241 generic_make_request_checks(struct bio *bio)
2242 {
2243 	struct request_queue *q;
2244 	int nr_sectors = bio_sectors(bio);
2245 	blk_status_t status = BLK_STS_IOERR;
2246 	char b[BDEVNAME_SIZE];
2247 
2248 	might_sleep();
2249 
2250 	q = bio->bi_disk->queue;
2251 	if (unlikely(!q)) {
2252 		printk(KERN_ERR
2253 		       "generic_make_request: Trying to access "
2254 			"nonexistent block-device %s (%Lu)\n",
2255 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2256 		goto end_io;
2257 	}
2258 
2259 	/*
2260 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2261 	 * if queue is not a request based queue.
2262 	 */
2263 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2264 		goto not_supported;
2265 
2266 	if (should_fail_bio(bio))
2267 		goto end_io;
2268 
2269 	if (bio->bi_partno) {
2270 		if (unlikely(blk_partition_remap(bio)))
2271 			goto end_io;
2272 	} else {
2273 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2274 			goto end_io;
2275 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2276 			goto end_io;
2277 	}
2278 
2279 	/*
2280 	 * Filter flush bio's early so that make_request based
2281 	 * drivers without flush support don't have to worry
2282 	 * about them.
2283 	 */
2284 	if (op_is_flush(bio->bi_opf) &&
2285 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2286 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2287 		if (!nr_sectors) {
2288 			status = BLK_STS_OK;
2289 			goto end_io;
2290 		}
2291 	}
2292 
2293 	switch (bio_op(bio)) {
2294 	case REQ_OP_DISCARD:
2295 		if (!blk_queue_discard(q))
2296 			goto not_supported;
2297 		break;
2298 	case REQ_OP_SECURE_ERASE:
2299 		if (!blk_queue_secure_erase(q))
2300 			goto not_supported;
2301 		break;
2302 	case REQ_OP_WRITE_SAME:
2303 		if (!q->limits.max_write_same_sectors)
2304 			goto not_supported;
2305 		break;
2306 	case REQ_OP_ZONE_REPORT:
2307 	case REQ_OP_ZONE_RESET:
2308 		if (!blk_queue_is_zoned(q))
2309 			goto not_supported;
2310 		break;
2311 	case REQ_OP_WRITE_ZEROES:
2312 		if (!q->limits.max_write_zeroes_sectors)
2313 			goto not_supported;
2314 		break;
2315 	default:
2316 		break;
2317 	}
2318 
2319 	/*
2320 	 * Various block parts want %current->io_context and lazy ioc
2321 	 * allocation ends up trading a lot of pain for a small amount of
2322 	 * memory.  Just allocate it upfront.  This may fail and block
2323 	 * layer knows how to live with it.
2324 	 */
2325 	create_io_context(GFP_ATOMIC, q->node);
2326 
2327 	if (!blkcg_bio_issue_check(q, bio))
2328 		return false;
2329 
2330 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2331 		trace_block_bio_queue(q, bio);
2332 		/* Now that enqueuing has been traced, we need to trace
2333 		 * completion as well.
2334 		 */
2335 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2336 	}
2337 	return true;
2338 
2339 not_supported:
2340 	status = BLK_STS_NOTSUPP;
2341 end_io:
2342 	bio->bi_status = status;
2343 	bio_endio(bio);
2344 	return false;
2345 }
2346 
2347 /**
2348  * generic_make_request - hand a buffer to its device driver for I/O
2349  * @bio:  The bio describing the location in memory and on the device.
2350  *
2351  * generic_make_request() is used to make I/O requests of block
2352  * devices. It is passed a &struct bio, which describes the I/O that needs
2353  * to be done.
2354  *
2355  * generic_make_request() does not return any status.  The
2356  * success/failure status of the request, along with notification of
2357  * completion, is delivered asynchronously through the bio->bi_end_io
2358  * function described (one day) else where.
2359  *
2360  * The caller of generic_make_request must make sure that bi_io_vec
2361  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2362  * set to describe the device address, and the
2363  * bi_end_io and optionally bi_private are set to describe how
2364  * completion notification should be signaled.
2365  *
2366  * generic_make_request and the drivers it calls may use bi_next if this
2367  * bio happens to be merged with someone else, and may resubmit the bio to
2368  * a lower device by calling into generic_make_request recursively, which
2369  * means the bio should NOT be touched after the call to ->make_request_fn.
2370  */
2371 blk_qc_t generic_make_request(struct bio *bio)
2372 {
2373 	/*
2374 	 * bio_list_on_stack[0] contains bios submitted by the current
2375 	 * make_request_fn.
2376 	 * bio_list_on_stack[1] contains bios that were submitted before
2377 	 * the current make_request_fn, but that haven't been processed
2378 	 * yet.
2379 	 */
2380 	struct bio_list bio_list_on_stack[2];
2381 	blk_mq_req_flags_t flags = 0;
2382 	struct request_queue *q = bio->bi_disk->queue;
2383 	blk_qc_t ret = BLK_QC_T_NONE;
2384 
2385 	if (bio->bi_opf & REQ_NOWAIT)
2386 		flags = BLK_MQ_REQ_NOWAIT;
2387 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2388 		blk_queue_enter_live(q);
2389 	else if (blk_queue_enter(q, flags) < 0) {
2390 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2391 			bio_wouldblock_error(bio);
2392 		else
2393 			bio_io_error(bio);
2394 		return ret;
2395 	}
2396 
2397 	if (!generic_make_request_checks(bio))
2398 		goto out;
2399 
2400 	/*
2401 	 * We only want one ->make_request_fn to be active at a time, else
2402 	 * stack usage with stacked devices could be a problem.  So use
2403 	 * current->bio_list to keep a list of requests submited by a
2404 	 * make_request_fn function.  current->bio_list is also used as a
2405 	 * flag to say if generic_make_request is currently active in this
2406 	 * task or not.  If it is NULL, then no make_request is active.  If
2407 	 * it is non-NULL, then a make_request is active, and new requests
2408 	 * should be added at the tail
2409 	 */
2410 	if (current->bio_list) {
2411 		bio_list_add(&current->bio_list[0], bio);
2412 		goto out;
2413 	}
2414 
2415 	/* following loop may be a bit non-obvious, and so deserves some
2416 	 * explanation.
2417 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2418 	 * ensure that) so we have a list with a single bio.
2419 	 * We pretend that we have just taken it off a longer list, so
2420 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2421 	 * thus initialising the bio_list of new bios to be
2422 	 * added.  ->make_request() may indeed add some more bios
2423 	 * through a recursive call to generic_make_request.  If it
2424 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2425 	 * from the top.  In this case we really did just take the bio
2426 	 * of the top of the list (no pretending) and so remove it from
2427 	 * bio_list, and call into ->make_request() again.
2428 	 */
2429 	BUG_ON(bio->bi_next);
2430 	bio_list_init(&bio_list_on_stack[0]);
2431 	current->bio_list = bio_list_on_stack;
2432 	do {
2433 		bool enter_succeeded = true;
2434 
2435 		if (unlikely(q != bio->bi_disk->queue)) {
2436 			if (q)
2437 				blk_queue_exit(q);
2438 			q = bio->bi_disk->queue;
2439 			flags = 0;
2440 			if (bio->bi_opf & REQ_NOWAIT)
2441 				flags = BLK_MQ_REQ_NOWAIT;
2442 			if (blk_queue_enter(q, flags) < 0) {
2443 				enter_succeeded = false;
2444 				q = NULL;
2445 			}
2446 		}
2447 
2448 		if (enter_succeeded) {
2449 			struct bio_list lower, same;
2450 
2451 			/* Create a fresh bio_list for all subordinate requests */
2452 			bio_list_on_stack[1] = bio_list_on_stack[0];
2453 			bio_list_init(&bio_list_on_stack[0]);
2454 			ret = q->make_request_fn(q, bio);
2455 
2456 			/* sort new bios into those for a lower level
2457 			 * and those for the same level
2458 			 */
2459 			bio_list_init(&lower);
2460 			bio_list_init(&same);
2461 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2462 				if (q == bio->bi_disk->queue)
2463 					bio_list_add(&same, bio);
2464 				else
2465 					bio_list_add(&lower, bio);
2466 			/* now assemble so we handle the lowest level first */
2467 			bio_list_merge(&bio_list_on_stack[0], &lower);
2468 			bio_list_merge(&bio_list_on_stack[0], &same);
2469 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2470 		} else {
2471 			if (unlikely(!blk_queue_dying(q) &&
2472 					(bio->bi_opf & REQ_NOWAIT)))
2473 				bio_wouldblock_error(bio);
2474 			else
2475 				bio_io_error(bio);
2476 		}
2477 		bio = bio_list_pop(&bio_list_on_stack[0]);
2478 	} while (bio);
2479 	current->bio_list = NULL; /* deactivate */
2480 
2481 out:
2482 	if (q)
2483 		blk_queue_exit(q);
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL(generic_make_request);
2487 
2488 /**
2489  * direct_make_request - hand a buffer directly to its device driver for I/O
2490  * @bio:  The bio describing the location in memory and on the device.
2491  *
2492  * This function behaves like generic_make_request(), but does not protect
2493  * against recursion.  Must only be used if the called driver is known
2494  * to not call generic_make_request (or direct_make_request) again from
2495  * its make_request function.  (Calling direct_make_request again from
2496  * a workqueue is perfectly fine as that doesn't recurse).
2497  */
2498 blk_qc_t direct_make_request(struct bio *bio)
2499 {
2500 	struct request_queue *q = bio->bi_disk->queue;
2501 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2502 	blk_qc_t ret;
2503 
2504 	if (!generic_make_request_checks(bio))
2505 		return BLK_QC_T_NONE;
2506 
2507 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2508 		if (nowait && !blk_queue_dying(q))
2509 			bio->bi_status = BLK_STS_AGAIN;
2510 		else
2511 			bio->bi_status = BLK_STS_IOERR;
2512 		bio_endio(bio);
2513 		return BLK_QC_T_NONE;
2514 	}
2515 
2516 	ret = q->make_request_fn(q, bio);
2517 	blk_queue_exit(q);
2518 	return ret;
2519 }
2520 EXPORT_SYMBOL_GPL(direct_make_request);
2521 
2522 /**
2523  * submit_bio - submit a bio to the block device layer for I/O
2524  * @bio: The &struct bio which describes the I/O
2525  *
2526  * submit_bio() is very similar in purpose to generic_make_request(), and
2527  * uses that function to do most of the work. Both are fairly rough
2528  * interfaces; @bio must be presetup and ready for I/O.
2529  *
2530  */
2531 blk_qc_t submit_bio(struct bio *bio)
2532 {
2533 	/*
2534 	 * If it's a regular read/write or a barrier with data attached,
2535 	 * go through the normal accounting stuff before submission.
2536 	 */
2537 	if (bio_has_data(bio)) {
2538 		unsigned int count;
2539 
2540 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2541 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2542 		else
2543 			count = bio_sectors(bio);
2544 
2545 		if (op_is_write(bio_op(bio))) {
2546 			count_vm_events(PGPGOUT, count);
2547 		} else {
2548 			task_io_account_read(bio->bi_iter.bi_size);
2549 			count_vm_events(PGPGIN, count);
2550 		}
2551 
2552 		if (unlikely(block_dump)) {
2553 			char b[BDEVNAME_SIZE];
2554 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2555 			current->comm, task_pid_nr(current),
2556 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2557 				(unsigned long long)bio->bi_iter.bi_sector,
2558 				bio_devname(bio, b), count);
2559 		}
2560 	}
2561 
2562 	return generic_make_request(bio);
2563 }
2564 EXPORT_SYMBOL(submit_bio);
2565 
2566 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2567 {
2568 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2569 		return false;
2570 
2571 	if (current->plug)
2572 		blk_flush_plug_list(current->plug, false);
2573 	return q->poll_fn(q, cookie);
2574 }
2575 EXPORT_SYMBOL_GPL(blk_poll);
2576 
2577 /**
2578  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2579  *                              for new the queue limits
2580  * @q:  the queue
2581  * @rq: the request being checked
2582  *
2583  * Description:
2584  *    @rq may have been made based on weaker limitations of upper-level queues
2585  *    in request stacking drivers, and it may violate the limitation of @q.
2586  *    Since the block layer and the underlying device driver trust @rq
2587  *    after it is inserted to @q, it should be checked against @q before
2588  *    the insertion using this generic function.
2589  *
2590  *    Request stacking drivers like request-based dm may change the queue
2591  *    limits when retrying requests on other queues. Those requests need
2592  *    to be checked against the new queue limits again during dispatch.
2593  */
2594 static int blk_cloned_rq_check_limits(struct request_queue *q,
2595 				      struct request *rq)
2596 {
2597 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2598 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2599 		return -EIO;
2600 	}
2601 
2602 	/*
2603 	 * queue's settings related to segment counting like q->bounce_pfn
2604 	 * may differ from that of other stacking queues.
2605 	 * Recalculate it to check the request correctly on this queue's
2606 	 * limitation.
2607 	 */
2608 	blk_recalc_rq_segments(rq);
2609 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2610 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2611 		return -EIO;
2612 	}
2613 
2614 	return 0;
2615 }
2616 
2617 /**
2618  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2619  * @q:  the queue to submit the request
2620  * @rq: the request being queued
2621  */
2622 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2623 {
2624 	unsigned long flags;
2625 	int where = ELEVATOR_INSERT_BACK;
2626 
2627 	if (blk_cloned_rq_check_limits(q, rq))
2628 		return BLK_STS_IOERR;
2629 
2630 	if (rq->rq_disk &&
2631 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2632 		return BLK_STS_IOERR;
2633 
2634 	if (q->mq_ops) {
2635 		if (blk_queue_io_stat(q))
2636 			blk_account_io_start(rq, true);
2637 		/*
2638 		 * Since we have a scheduler attached on the top device,
2639 		 * bypass a potential scheduler on the bottom device for
2640 		 * insert.
2641 		 */
2642 		return blk_mq_request_issue_directly(rq);
2643 	}
2644 
2645 	spin_lock_irqsave(q->queue_lock, flags);
2646 	if (unlikely(blk_queue_dying(q))) {
2647 		spin_unlock_irqrestore(q->queue_lock, flags);
2648 		return BLK_STS_IOERR;
2649 	}
2650 
2651 	/*
2652 	 * Submitting request must be dequeued before calling this function
2653 	 * because it will be linked to another request_queue
2654 	 */
2655 	BUG_ON(blk_queued_rq(rq));
2656 
2657 	if (op_is_flush(rq->cmd_flags))
2658 		where = ELEVATOR_INSERT_FLUSH;
2659 
2660 	add_acct_request(q, rq, where);
2661 	if (where == ELEVATOR_INSERT_FLUSH)
2662 		__blk_run_queue(q);
2663 	spin_unlock_irqrestore(q->queue_lock, flags);
2664 
2665 	return BLK_STS_OK;
2666 }
2667 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2668 
2669 /**
2670  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2671  * @rq: request to examine
2672  *
2673  * Description:
2674  *     A request could be merge of IOs which require different failure
2675  *     handling.  This function determines the number of bytes which
2676  *     can be failed from the beginning of the request without
2677  *     crossing into area which need to be retried further.
2678  *
2679  * Return:
2680  *     The number of bytes to fail.
2681  */
2682 unsigned int blk_rq_err_bytes(const struct request *rq)
2683 {
2684 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2685 	unsigned int bytes = 0;
2686 	struct bio *bio;
2687 
2688 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2689 		return blk_rq_bytes(rq);
2690 
2691 	/*
2692 	 * Currently the only 'mixing' which can happen is between
2693 	 * different fastfail types.  We can safely fail portions
2694 	 * which have all the failfast bits that the first one has -
2695 	 * the ones which are at least as eager to fail as the first
2696 	 * one.
2697 	 */
2698 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2699 		if ((bio->bi_opf & ff) != ff)
2700 			break;
2701 		bytes += bio->bi_iter.bi_size;
2702 	}
2703 
2704 	/* this could lead to infinite loop */
2705 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2706 	return bytes;
2707 }
2708 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2709 
2710 void blk_account_io_completion(struct request *req, unsigned int bytes)
2711 {
2712 	if (blk_do_io_stat(req)) {
2713 		const int sgrp = op_stat_group(req_op(req));
2714 		struct hd_struct *part;
2715 		int cpu;
2716 
2717 		cpu = part_stat_lock();
2718 		part = req->part;
2719 		part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2720 		part_stat_unlock();
2721 	}
2722 }
2723 
2724 void blk_account_io_done(struct request *req, u64 now)
2725 {
2726 	/*
2727 	 * Account IO completion.  flush_rq isn't accounted as a
2728 	 * normal IO on queueing nor completion.  Accounting the
2729 	 * containing request is enough.
2730 	 */
2731 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2732 		unsigned long duration;
2733 		const int sgrp = op_stat_group(req_op(req));
2734 		struct hd_struct *part;
2735 		int cpu;
2736 
2737 		duration = nsecs_to_jiffies(now - req->start_time_ns);
2738 		cpu = part_stat_lock();
2739 		part = req->part;
2740 
2741 		part_stat_inc(cpu, part, ios[sgrp]);
2742 		part_stat_add(cpu, part, ticks[sgrp], duration);
2743 		part_round_stats(req->q, cpu, part);
2744 		part_dec_in_flight(req->q, part, rq_data_dir(req));
2745 
2746 		hd_struct_put(part);
2747 		part_stat_unlock();
2748 	}
2749 }
2750 
2751 #ifdef CONFIG_PM
2752 /*
2753  * Don't process normal requests when queue is suspended
2754  * or in the process of suspending/resuming
2755  */
2756 static bool blk_pm_allow_request(struct request *rq)
2757 {
2758 	switch (rq->q->rpm_status) {
2759 	case RPM_RESUMING:
2760 	case RPM_SUSPENDING:
2761 		return rq->rq_flags & RQF_PM;
2762 	case RPM_SUSPENDED:
2763 		return false;
2764 	default:
2765 		return true;
2766 	}
2767 }
2768 #else
2769 static bool blk_pm_allow_request(struct request *rq)
2770 {
2771 	return true;
2772 }
2773 #endif
2774 
2775 void blk_account_io_start(struct request *rq, bool new_io)
2776 {
2777 	struct hd_struct *part;
2778 	int rw = rq_data_dir(rq);
2779 	int cpu;
2780 
2781 	if (!blk_do_io_stat(rq))
2782 		return;
2783 
2784 	cpu = part_stat_lock();
2785 
2786 	if (!new_io) {
2787 		part = rq->part;
2788 		part_stat_inc(cpu, part, merges[rw]);
2789 	} else {
2790 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2791 		if (!hd_struct_try_get(part)) {
2792 			/*
2793 			 * The partition is already being removed,
2794 			 * the request will be accounted on the disk only
2795 			 *
2796 			 * We take a reference on disk->part0 although that
2797 			 * partition will never be deleted, so we can treat
2798 			 * it as any other partition.
2799 			 */
2800 			part = &rq->rq_disk->part0;
2801 			hd_struct_get(part);
2802 		}
2803 		part_round_stats(rq->q, cpu, part);
2804 		part_inc_in_flight(rq->q, part, rw);
2805 		rq->part = part;
2806 	}
2807 
2808 	part_stat_unlock();
2809 }
2810 
2811 static struct request *elv_next_request(struct request_queue *q)
2812 {
2813 	struct request *rq;
2814 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2815 
2816 	WARN_ON_ONCE(q->mq_ops);
2817 
2818 	while (1) {
2819 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2820 			if (blk_pm_allow_request(rq))
2821 				return rq;
2822 
2823 			if (rq->rq_flags & RQF_SOFTBARRIER)
2824 				break;
2825 		}
2826 
2827 		/*
2828 		 * Flush request is running and flush request isn't queueable
2829 		 * in the drive, we can hold the queue till flush request is
2830 		 * finished. Even we don't do this, driver can't dispatch next
2831 		 * requests and will requeue them. And this can improve
2832 		 * throughput too. For example, we have request flush1, write1,
2833 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2834 		 * isn't inserted to queue. After flush1 is finished, flush2
2835 		 * will be dispatched. Since disk cache is already clean,
2836 		 * flush2 will be finished very soon, so looks like flush2 is
2837 		 * folded to flush1.
2838 		 * Since the queue is hold, a flag is set to indicate the queue
2839 		 * should be restarted later. Please see flush_end_io() for
2840 		 * details.
2841 		 */
2842 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2843 				!queue_flush_queueable(q)) {
2844 			fq->flush_queue_delayed = 1;
2845 			return NULL;
2846 		}
2847 		if (unlikely(blk_queue_bypass(q)) ||
2848 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2849 			return NULL;
2850 	}
2851 }
2852 
2853 /**
2854  * blk_peek_request - peek at the top of a request queue
2855  * @q: request queue to peek at
2856  *
2857  * Description:
2858  *     Return the request at the top of @q.  The returned request
2859  *     should be started using blk_start_request() before LLD starts
2860  *     processing it.
2861  *
2862  * Return:
2863  *     Pointer to the request at the top of @q if available.  Null
2864  *     otherwise.
2865  */
2866 struct request *blk_peek_request(struct request_queue *q)
2867 {
2868 	struct request *rq;
2869 	int ret;
2870 
2871 	lockdep_assert_held(q->queue_lock);
2872 	WARN_ON_ONCE(q->mq_ops);
2873 
2874 	while ((rq = elv_next_request(q)) != NULL) {
2875 		if (!(rq->rq_flags & RQF_STARTED)) {
2876 			/*
2877 			 * This is the first time the device driver
2878 			 * sees this request (possibly after
2879 			 * requeueing).  Notify IO scheduler.
2880 			 */
2881 			if (rq->rq_flags & RQF_SORTED)
2882 				elv_activate_rq(q, rq);
2883 
2884 			/*
2885 			 * just mark as started even if we don't start
2886 			 * it, a request that has been delayed should
2887 			 * not be passed by new incoming requests
2888 			 */
2889 			rq->rq_flags |= RQF_STARTED;
2890 			trace_block_rq_issue(q, rq);
2891 		}
2892 
2893 		if (!q->boundary_rq || q->boundary_rq == rq) {
2894 			q->end_sector = rq_end_sector(rq);
2895 			q->boundary_rq = NULL;
2896 		}
2897 
2898 		if (rq->rq_flags & RQF_DONTPREP)
2899 			break;
2900 
2901 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2902 			/*
2903 			 * make sure space for the drain appears we
2904 			 * know we can do this because max_hw_segments
2905 			 * has been adjusted to be one fewer than the
2906 			 * device can handle
2907 			 */
2908 			rq->nr_phys_segments++;
2909 		}
2910 
2911 		if (!q->prep_rq_fn)
2912 			break;
2913 
2914 		ret = q->prep_rq_fn(q, rq);
2915 		if (ret == BLKPREP_OK) {
2916 			break;
2917 		} else if (ret == BLKPREP_DEFER) {
2918 			/*
2919 			 * the request may have been (partially) prepped.
2920 			 * we need to keep this request in the front to
2921 			 * avoid resource deadlock.  RQF_STARTED will
2922 			 * prevent other fs requests from passing this one.
2923 			 */
2924 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2925 			    !(rq->rq_flags & RQF_DONTPREP)) {
2926 				/*
2927 				 * remove the space for the drain we added
2928 				 * so that we don't add it again
2929 				 */
2930 				--rq->nr_phys_segments;
2931 			}
2932 
2933 			rq = NULL;
2934 			break;
2935 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2936 			rq->rq_flags |= RQF_QUIET;
2937 			/*
2938 			 * Mark this request as started so we don't trigger
2939 			 * any debug logic in the end I/O path.
2940 			 */
2941 			blk_start_request(rq);
2942 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2943 					BLK_STS_TARGET : BLK_STS_IOERR);
2944 		} else {
2945 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2946 			break;
2947 		}
2948 	}
2949 
2950 	return rq;
2951 }
2952 EXPORT_SYMBOL(blk_peek_request);
2953 
2954 static void blk_dequeue_request(struct request *rq)
2955 {
2956 	struct request_queue *q = rq->q;
2957 
2958 	BUG_ON(list_empty(&rq->queuelist));
2959 	BUG_ON(ELV_ON_HASH(rq));
2960 
2961 	list_del_init(&rq->queuelist);
2962 
2963 	/*
2964 	 * the time frame between a request being removed from the lists
2965 	 * and to it is freed is accounted as io that is in progress at
2966 	 * the driver side.
2967 	 */
2968 	if (blk_account_rq(rq))
2969 		q->in_flight[rq_is_sync(rq)]++;
2970 }
2971 
2972 /**
2973  * blk_start_request - start request processing on the driver
2974  * @req: request to dequeue
2975  *
2976  * Description:
2977  *     Dequeue @req and start timeout timer on it.  This hands off the
2978  *     request to the driver.
2979  */
2980 void blk_start_request(struct request *req)
2981 {
2982 	lockdep_assert_held(req->q->queue_lock);
2983 	WARN_ON_ONCE(req->q->mq_ops);
2984 
2985 	blk_dequeue_request(req);
2986 
2987 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2988 		req->io_start_time_ns = ktime_get_ns();
2989 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2990 		req->throtl_size = blk_rq_sectors(req);
2991 #endif
2992 		req->rq_flags |= RQF_STATS;
2993 		rq_qos_issue(req->q, req);
2994 	}
2995 
2996 	BUG_ON(blk_rq_is_complete(req));
2997 	blk_add_timer(req);
2998 }
2999 EXPORT_SYMBOL(blk_start_request);
3000 
3001 /**
3002  * blk_fetch_request - fetch a request from a request queue
3003  * @q: request queue to fetch a request from
3004  *
3005  * Description:
3006  *     Return the request at the top of @q.  The request is started on
3007  *     return and LLD can start processing it immediately.
3008  *
3009  * Return:
3010  *     Pointer to the request at the top of @q if available.  Null
3011  *     otherwise.
3012  */
3013 struct request *blk_fetch_request(struct request_queue *q)
3014 {
3015 	struct request *rq;
3016 
3017 	lockdep_assert_held(q->queue_lock);
3018 	WARN_ON_ONCE(q->mq_ops);
3019 
3020 	rq = blk_peek_request(q);
3021 	if (rq)
3022 		blk_start_request(rq);
3023 	return rq;
3024 }
3025 EXPORT_SYMBOL(blk_fetch_request);
3026 
3027 /*
3028  * Steal bios from a request and add them to a bio list.
3029  * The request must not have been partially completed before.
3030  */
3031 void blk_steal_bios(struct bio_list *list, struct request *rq)
3032 {
3033 	if (rq->bio) {
3034 		if (list->tail)
3035 			list->tail->bi_next = rq->bio;
3036 		else
3037 			list->head = rq->bio;
3038 		list->tail = rq->biotail;
3039 
3040 		rq->bio = NULL;
3041 		rq->biotail = NULL;
3042 	}
3043 
3044 	rq->__data_len = 0;
3045 }
3046 EXPORT_SYMBOL_GPL(blk_steal_bios);
3047 
3048 /**
3049  * blk_update_request - Special helper function for request stacking drivers
3050  * @req:      the request being processed
3051  * @error:    block status code
3052  * @nr_bytes: number of bytes to complete @req
3053  *
3054  * Description:
3055  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3056  *     the request structure even if @req doesn't have leftover.
3057  *     If @req has leftover, sets it up for the next range of segments.
3058  *
3059  *     This special helper function is only for request stacking drivers
3060  *     (e.g. request-based dm) so that they can handle partial completion.
3061  *     Actual device drivers should use blk_end_request instead.
3062  *
3063  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3064  *     %false return from this function.
3065  *
3066  * Note:
3067  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3068  *	blk_rq_bytes() and in blk_update_request().
3069  *
3070  * Return:
3071  *     %false - this request doesn't have any more data
3072  *     %true  - this request has more data
3073  **/
3074 bool blk_update_request(struct request *req, blk_status_t error,
3075 		unsigned int nr_bytes)
3076 {
3077 	int total_bytes;
3078 
3079 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3080 
3081 	if (!req->bio)
3082 		return false;
3083 
3084 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3085 		     !(req->rq_flags & RQF_QUIET)))
3086 		print_req_error(req, error);
3087 
3088 	blk_account_io_completion(req, nr_bytes);
3089 
3090 	total_bytes = 0;
3091 	while (req->bio) {
3092 		struct bio *bio = req->bio;
3093 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3094 
3095 		if (bio_bytes == bio->bi_iter.bi_size)
3096 			req->bio = bio->bi_next;
3097 
3098 		/* Completion has already been traced */
3099 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3100 		req_bio_endio(req, bio, bio_bytes, error);
3101 
3102 		total_bytes += bio_bytes;
3103 		nr_bytes -= bio_bytes;
3104 
3105 		if (!nr_bytes)
3106 			break;
3107 	}
3108 
3109 	/*
3110 	 * completely done
3111 	 */
3112 	if (!req->bio) {
3113 		/*
3114 		 * Reset counters so that the request stacking driver
3115 		 * can find how many bytes remain in the request
3116 		 * later.
3117 		 */
3118 		req->__data_len = 0;
3119 		return false;
3120 	}
3121 
3122 	req->__data_len -= total_bytes;
3123 
3124 	/* update sector only for requests with clear definition of sector */
3125 	if (!blk_rq_is_passthrough(req))
3126 		req->__sector += total_bytes >> 9;
3127 
3128 	/* mixed attributes always follow the first bio */
3129 	if (req->rq_flags & RQF_MIXED_MERGE) {
3130 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3131 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3132 	}
3133 
3134 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3135 		/*
3136 		 * If total number of sectors is less than the first segment
3137 		 * size, something has gone terribly wrong.
3138 		 */
3139 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3140 			blk_dump_rq_flags(req, "request botched");
3141 			req->__data_len = blk_rq_cur_bytes(req);
3142 		}
3143 
3144 		/* recalculate the number of segments */
3145 		blk_recalc_rq_segments(req);
3146 	}
3147 
3148 	return true;
3149 }
3150 EXPORT_SYMBOL_GPL(blk_update_request);
3151 
3152 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3153 				    unsigned int nr_bytes,
3154 				    unsigned int bidi_bytes)
3155 {
3156 	if (blk_update_request(rq, error, nr_bytes))
3157 		return true;
3158 
3159 	/* Bidi request must be completed as a whole */
3160 	if (unlikely(blk_bidi_rq(rq)) &&
3161 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3162 		return true;
3163 
3164 	if (blk_queue_add_random(rq->q))
3165 		add_disk_randomness(rq->rq_disk);
3166 
3167 	return false;
3168 }
3169 
3170 /**
3171  * blk_unprep_request - unprepare a request
3172  * @req:	the request
3173  *
3174  * This function makes a request ready for complete resubmission (or
3175  * completion).  It happens only after all error handling is complete,
3176  * so represents the appropriate moment to deallocate any resources
3177  * that were allocated to the request in the prep_rq_fn.  The queue
3178  * lock is held when calling this.
3179  */
3180 void blk_unprep_request(struct request *req)
3181 {
3182 	struct request_queue *q = req->q;
3183 
3184 	req->rq_flags &= ~RQF_DONTPREP;
3185 	if (q->unprep_rq_fn)
3186 		q->unprep_rq_fn(q, req);
3187 }
3188 EXPORT_SYMBOL_GPL(blk_unprep_request);
3189 
3190 void blk_finish_request(struct request *req, blk_status_t error)
3191 {
3192 	struct request_queue *q = req->q;
3193 	u64 now = ktime_get_ns();
3194 
3195 	lockdep_assert_held(req->q->queue_lock);
3196 	WARN_ON_ONCE(q->mq_ops);
3197 
3198 	if (req->rq_flags & RQF_STATS)
3199 		blk_stat_add(req, now);
3200 
3201 	if (req->rq_flags & RQF_QUEUED)
3202 		blk_queue_end_tag(q, req);
3203 
3204 	BUG_ON(blk_queued_rq(req));
3205 
3206 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3207 		laptop_io_completion(req->q->backing_dev_info);
3208 
3209 	blk_delete_timer(req);
3210 
3211 	if (req->rq_flags & RQF_DONTPREP)
3212 		blk_unprep_request(req);
3213 
3214 	blk_account_io_done(req, now);
3215 
3216 	if (req->end_io) {
3217 		rq_qos_done(q, req);
3218 		req->end_io(req, error);
3219 	} else {
3220 		if (blk_bidi_rq(req))
3221 			__blk_put_request(req->next_rq->q, req->next_rq);
3222 
3223 		__blk_put_request(q, req);
3224 	}
3225 }
3226 EXPORT_SYMBOL(blk_finish_request);
3227 
3228 /**
3229  * blk_end_bidi_request - Complete a bidi request
3230  * @rq:         the request to complete
3231  * @error:      block status code
3232  * @nr_bytes:   number of bytes to complete @rq
3233  * @bidi_bytes: number of bytes to complete @rq->next_rq
3234  *
3235  * Description:
3236  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3237  *     Drivers that supports bidi can safely call this member for any
3238  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3239  *     just ignored.
3240  *
3241  * Return:
3242  *     %false - we are done with this request
3243  *     %true  - still buffers pending for this request
3244  **/
3245 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3246 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3247 {
3248 	struct request_queue *q = rq->q;
3249 	unsigned long flags;
3250 
3251 	WARN_ON_ONCE(q->mq_ops);
3252 
3253 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3254 		return true;
3255 
3256 	spin_lock_irqsave(q->queue_lock, flags);
3257 	blk_finish_request(rq, error);
3258 	spin_unlock_irqrestore(q->queue_lock, flags);
3259 
3260 	return false;
3261 }
3262 
3263 /**
3264  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3265  * @rq:         the request to complete
3266  * @error:      block status code
3267  * @nr_bytes:   number of bytes to complete @rq
3268  * @bidi_bytes: number of bytes to complete @rq->next_rq
3269  *
3270  * Description:
3271  *     Identical to blk_end_bidi_request() except that queue lock is
3272  *     assumed to be locked on entry and remains so on return.
3273  *
3274  * Return:
3275  *     %false - we are done with this request
3276  *     %true  - still buffers pending for this request
3277  **/
3278 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3279 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3280 {
3281 	lockdep_assert_held(rq->q->queue_lock);
3282 	WARN_ON_ONCE(rq->q->mq_ops);
3283 
3284 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3285 		return true;
3286 
3287 	blk_finish_request(rq, error);
3288 
3289 	return false;
3290 }
3291 
3292 /**
3293  * blk_end_request - Helper function for drivers to complete the request.
3294  * @rq:       the request being processed
3295  * @error:    block status code
3296  * @nr_bytes: number of bytes to complete
3297  *
3298  * Description:
3299  *     Ends I/O on a number of bytes attached to @rq.
3300  *     If @rq has leftover, sets it up for the next range of segments.
3301  *
3302  * Return:
3303  *     %false - we are done with this request
3304  *     %true  - still buffers pending for this request
3305  **/
3306 bool blk_end_request(struct request *rq, blk_status_t error,
3307 		unsigned int nr_bytes)
3308 {
3309 	WARN_ON_ONCE(rq->q->mq_ops);
3310 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3311 }
3312 EXPORT_SYMBOL(blk_end_request);
3313 
3314 /**
3315  * blk_end_request_all - Helper function for drives to finish the request.
3316  * @rq: the request to finish
3317  * @error: block status code
3318  *
3319  * Description:
3320  *     Completely finish @rq.
3321  */
3322 void blk_end_request_all(struct request *rq, blk_status_t error)
3323 {
3324 	bool pending;
3325 	unsigned int bidi_bytes = 0;
3326 
3327 	if (unlikely(blk_bidi_rq(rq)))
3328 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3329 
3330 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3331 	BUG_ON(pending);
3332 }
3333 EXPORT_SYMBOL(blk_end_request_all);
3334 
3335 /**
3336  * __blk_end_request - Helper function for drivers to complete the request.
3337  * @rq:       the request being processed
3338  * @error:    block status code
3339  * @nr_bytes: number of bytes to complete
3340  *
3341  * Description:
3342  *     Must be called with queue lock held unlike blk_end_request().
3343  *
3344  * Return:
3345  *     %false - we are done with this request
3346  *     %true  - still buffers pending for this request
3347  **/
3348 bool __blk_end_request(struct request *rq, blk_status_t error,
3349 		unsigned int nr_bytes)
3350 {
3351 	lockdep_assert_held(rq->q->queue_lock);
3352 	WARN_ON_ONCE(rq->q->mq_ops);
3353 
3354 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3355 }
3356 EXPORT_SYMBOL(__blk_end_request);
3357 
3358 /**
3359  * __blk_end_request_all - Helper function for drives to finish the request.
3360  * @rq: the request to finish
3361  * @error:    block status code
3362  *
3363  * Description:
3364  *     Completely finish @rq.  Must be called with queue lock held.
3365  */
3366 void __blk_end_request_all(struct request *rq, blk_status_t error)
3367 {
3368 	bool pending;
3369 	unsigned int bidi_bytes = 0;
3370 
3371 	lockdep_assert_held(rq->q->queue_lock);
3372 	WARN_ON_ONCE(rq->q->mq_ops);
3373 
3374 	if (unlikely(blk_bidi_rq(rq)))
3375 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3376 
3377 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3378 	BUG_ON(pending);
3379 }
3380 EXPORT_SYMBOL(__blk_end_request_all);
3381 
3382 /**
3383  * __blk_end_request_cur - Helper function to finish the current request chunk.
3384  * @rq: the request to finish the current chunk for
3385  * @error:    block status code
3386  *
3387  * Description:
3388  *     Complete the current consecutively mapped chunk from @rq.  Must
3389  *     be called with queue lock held.
3390  *
3391  * Return:
3392  *     %false - we are done with this request
3393  *     %true  - still buffers pending for this request
3394  */
3395 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3396 {
3397 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3398 }
3399 EXPORT_SYMBOL(__blk_end_request_cur);
3400 
3401 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3402 		     struct bio *bio)
3403 {
3404 	if (bio_has_data(bio))
3405 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3406 	else if (bio_op(bio) == REQ_OP_DISCARD)
3407 		rq->nr_phys_segments = 1;
3408 
3409 	rq->__data_len = bio->bi_iter.bi_size;
3410 	rq->bio = rq->biotail = bio;
3411 
3412 	if (bio->bi_disk)
3413 		rq->rq_disk = bio->bi_disk;
3414 }
3415 
3416 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3417 /**
3418  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3419  * @rq: the request to be flushed
3420  *
3421  * Description:
3422  *     Flush all pages in @rq.
3423  */
3424 void rq_flush_dcache_pages(struct request *rq)
3425 {
3426 	struct req_iterator iter;
3427 	struct bio_vec bvec;
3428 
3429 	rq_for_each_segment(bvec, rq, iter)
3430 		flush_dcache_page(bvec.bv_page);
3431 }
3432 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3433 #endif
3434 
3435 /**
3436  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3437  * @q : the queue of the device being checked
3438  *
3439  * Description:
3440  *    Check if underlying low-level drivers of a device are busy.
3441  *    If the drivers want to export their busy state, they must set own
3442  *    exporting function using blk_queue_lld_busy() first.
3443  *
3444  *    Basically, this function is used only by request stacking drivers
3445  *    to stop dispatching requests to underlying devices when underlying
3446  *    devices are busy.  This behavior helps more I/O merging on the queue
3447  *    of the request stacking driver and prevents I/O throughput regression
3448  *    on burst I/O load.
3449  *
3450  * Return:
3451  *    0 - Not busy (The request stacking driver should dispatch request)
3452  *    1 - Busy (The request stacking driver should stop dispatching request)
3453  */
3454 int blk_lld_busy(struct request_queue *q)
3455 {
3456 	if (q->lld_busy_fn)
3457 		return q->lld_busy_fn(q);
3458 
3459 	return 0;
3460 }
3461 EXPORT_SYMBOL_GPL(blk_lld_busy);
3462 
3463 /**
3464  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3465  * @rq: the clone request to be cleaned up
3466  *
3467  * Description:
3468  *     Free all bios in @rq for a cloned request.
3469  */
3470 void blk_rq_unprep_clone(struct request *rq)
3471 {
3472 	struct bio *bio;
3473 
3474 	while ((bio = rq->bio) != NULL) {
3475 		rq->bio = bio->bi_next;
3476 
3477 		bio_put(bio);
3478 	}
3479 }
3480 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3481 
3482 /*
3483  * Copy attributes of the original request to the clone request.
3484  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3485  */
3486 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3487 {
3488 	dst->cpu = src->cpu;
3489 	dst->__sector = blk_rq_pos(src);
3490 	dst->__data_len = blk_rq_bytes(src);
3491 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3492 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3493 		dst->special_vec = src->special_vec;
3494 	}
3495 	dst->nr_phys_segments = src->nr_phys_segments;
3496 	dst->ioprio = src->ioprio;
3497 	dst->extra_len = src->extra_len;
3498 }
3499 
3500 /**
3501  * blk_rq_prep_clone - Helper function to setup clone request
3502  * @rq: the request to be setup
3503  * @rq_src: original request to be cloned
3504  * @bs: bio_set that bios for clone are allocated from
3505  * @gfp_mask: memory allocation mask for bio
3506  * @bio_ctr: setup function to be called for each clone bio.
3507  *           Returns %0 for success, non %0 for failure.
3508  * @data: private data to be passed to @bio_ctr
3509  *
3510  * Description:
3511  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3512  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3513  *     are not copied, and copying such parts is the caller's responsibility.
3514  *     Also, pages which the original bios are pointing to are not copied
3515  *     and the cloned bios just point same pages.
3516  *     So cloned bios must be completed before original bios, which means
3517  *     the caller must complete @rq before @rq_src.
3518  */
3519 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3520 		      struct bio_set *bs, gfp_t gfp_mask,
3521 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3522 		      void *data)
3523 {
3524 	struct bio *bio, *bio_src;
3525 
3526 	if (!bs)
3527 		bs = &fs_bio_set;
3528 
3529 	__rq_for_each_bio(bio_src, rq_src) {
3530 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3531 		if (!bio)
3532 			goto free_and_out;
3533 
3534 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3535 			goto free_and_out;
3536 
3537 		if (rq->bio) {
3538 			rq->biotail->bi_next = bio;
3539 			rq->biotail = bio;
3540 		} else
3541 			rq->bio = rq->biotail = bio;
3542 	}
3543 
3544 	__blk_rq_prep_clone(rq, rq_src);
3545 
3546 	return 0;
3547 
3548 free_and_out:
3549 	if (bio)
3550 		bio_put(bio);
3551 	blk_rq_unprep_clone(rq);
3552 
3553 	return -ENOMEM;
3554 }
3555 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3556 
3557 int kblockd_schedule_work(struct work_struct *work)
3558 {
3559 	return queue_work(kblockd_workqueue, work);
3560 }
3561 EXPORT_SYMBOL(kblockd_schedule_work);
3562 
3563 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3564 {
3565 	return queue_work_on(cpu, kblockd_workqueue, work);
3566 }
3567 EXPORT_SYMBOL(kblockd_schedule_work_on);
3568 
3569 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3570 				unsigned long delay)
3571 {
3572 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3573 }
3574 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3575 
3576 /**
3577  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3578  * @plug:	The &struct blk_plug that needs to be initialized
3579  *
3580  * Description:
3581  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3582  *   pending I/O should the task end up blocking between blk_start_plug() and
3583  *   blk_finish_plug(). This is important from a performance perspective, but
3584  *   also ensures that we don't deadlock. For instance, if the task is blocking
3585  *   for a memory allocation, memory reclaim could end up wanting to free a
3586  *   page belonging to that request that is currently residing in our private
3587  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3588  *   this kind of deadlock.
3589  */
3590 void blk_start_plug(struct blk_plug *plug)
3591 {
3592 	struct task_struct *tsk = current;
3593 
3594 	/*
3595 	 * If this is a nested plug, don't actually assign it.
3596 	 */
3597 	if (tsk->plug)
3598 		return;
3599 
3600 	INIT_LIST_HEAD(&plug->list);
3601 	INIT_LIST_HEAD(&plug->mq_list);
3602 	INIT_LIST_HEAD(&plug->cb_list);
3603 	/*
3604 	 * Store ordering should not be needed here, since a potential
3605 	 * preempt will imply a full memory barrier
3606 	 */
3607 	tsk->plug = plug;
3608 }
3609 EXPORT_SYMBOL(blk_start_plug);
3610 
3611 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3612 {
3613 	struct request *rqa = container_of(a, struct request, queuelist);
3614 	struct request *rqb = container_of(b, struct request, queuelist);
3615 
3616 	return !(rqa->q < rqb->q ||
3617 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3618 }
3619 
3620 /*
3621  * If 'from_schedule' is true, then postpone the dispatch of requests
3622  * until a safe kblockd context. We due this to avoid accidental big
3623  * additional stack usage in driver dispatch, in places where the originally
3624  * plugger did not intend it.
3625  */
3626 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3627 			    bool from_schedule)
3628 	__releases(q->queue_lock)
3629 {
3630 	lockdep_assert_held(q->queue_lock);
3631 
3632 	trace_block_unplug(q, depth, !from_schedule);
3633 
3634 	if (from_schedule)
3635 		blk_run_queue_async(q);
3636 	else
3637 		__blk_run_queue(q);
3638 	spin_unlock_irq(q->queue_lock);
3639 }
3640 
3641 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3642 {
3643 	LIST_HEAD(callbacks);
3644 
3645 	while (!list_empty(&plug->cb_list)) {
3646 		list_splice_init(&plug->cb_list, &callbacks);
3647 
3648 		while (!list_empty(&callbacks)) {
3649 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3650 							  struct blk_plug_cb,
3651 							  list);
3652 			list_del(&cb->list);
3653 			cb->callback(cb, from_schedule);
3654 		}
3655 	}
3656 }
3657 
3658 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3659 				      int size)
3660 {
3661 	struct blk_plug *plug = current->plug;
3662 	struct blk_plug_cb *cb;
3663 
3664 	if (!plug)
3665 		return NULL;
3666 
3667 	list_for_each_entry(cb, &plug->cb_list, list)
3668 		if (cb->callback == unplug && cb->data == data)
3669 			return cb;
3670 
3671 	/* Not currently on the callback list */
3672 	BUG_ON(size < sizeof(*cb));
3673 	cb = kzalloc(size, GFP_ATOMIC);
3674 	if (cb) {
3675 		cb->data = data;
3676 		cb->callback = unplug;
3677 		list_add(&cb->list, &plug->cb_list);
3678 	}
3679 	return cb;
3680 }
3681 EXPORT_SYMBOL(blk_check_plugged);
3682 
3683 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3684 {
3685 	struct request_queue *q;
3686 	struct request *rq;
3687 	LIST_HEAD(list);
3688 	unsigned int depth;
3689 
3690 	flush_plug_callbacks(plug, from_schedule);
3691 
3692 	if (!list_empty(&plug->mq_list))
3693 		blk_mq_flush_plug_list(plug, from_schedule);
3694 
3695 	if (list_empty(&plug->list))
3696 		return;
3697 
3698 	list_splice_init(&plug->list, &list);
3699 
3700 	list_sort(NULL, &list, plug_rq_cmp);
3701 
3702 	q = NULL;
3703 	depth = 0;
3704 
3705 	while (!list_empty(&list)) {
3706 		rq = list_entry_rq(list.next);
3707 		list_del_init(&rq->queuelist);
3708 		BUG_ON(!rq->q);
3709 		if (rq->q != q) {
3710 			/*
3711 			 * This drops the queue lock
3712 			 */
3713 			if (q)
3714 				queue_unplugged(q, depth, from_schedule);
3715 			q = rq->q;
3716 			depth = 0;
3717 			spin_lock_irq(q->queue_lock);
3718 		}
3719 
3720 		/*
3721 		 * Short-circuit if @q is dead
3722 		 */
3723 		if (unlikely(blk_queue_dying(q))) {
3724 			__blk_end_request_all(rq, BLK_STS_IOERR);
3725 			continue;
3726 		}
3727 
3728 		/*
3729 		 * rq is already accounted, so use raw insert
3730 		 */
3731 		if (op_is_flush(rq->cmd_flags))
3732 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3733 		else
3734 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3735 
3736 		depth++;
3737 	}
3738 
3739 	/*
3740 	 * This drops the queue lock
3741 	 */
3742 	if (q)
3743 		queue_unplugged(q, depth, from_schedule);
3744 }
3745 
3746 void blk_finish_plug(struct blk_plug *plug)
3747 {
3748 	if (plug != current->plug)
3749 		return;
3750 	blk_flush_plug_list(plug, false);
3751 
3752 	current->plug = NULL;
3753 }
3754 EXPORT_SYMBOL(blk_finish_plug);
3755 
3756 #ifdef CONFIG_PM
3757 /**
3758  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3759  * @q: the queue of the device
3760  * @dev: the device the queue belongs to
3761  *
3762  * Description:
3763  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3764  *    @dev. Drivers that want to take advantage of request-based runtime PM
3765  *    should call this function after @dev has been initialized, and its
3766  *    request queue @q has been allocated, and runtime PM for it can not happen
3767  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3768  *    cases, driver should call this function before any I/O has taken place.
3769  *
3770  *    This function takes care of setting up using auto suspend for the device,
3771  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3772  *    until an updated value is either set by user or by driver. Drivers do
3773  *    not need to touch other autosuspend settings.
3774  *
3775  *    The block layer runtime PM is request based, so only works for drivers
3776  *    that use request as their IO unit instead of those directly use bio's.
3777  */
3778 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3779 {
3780 	/* Don't enable runtime PM for blk-mq until it is ready */
3781 	if (q->mq_ops) {
3782 		pm_runtime_disable(dev);
3783 		return;
3784 	}
3785 
3786 	q->dev = dev;
3787 	q->rpm_status = RPM_ACTIVE;
3788 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3789 	pm_runtime_use_autosuspend(q->dev);
3790 }
3791 EXPORT_SYMBOL(blk_pm_runtime_init);
3792 
3793 /**
3794  * blk_pre_runtime_suspend - Pre runtime suspend check
3795  * @q: the queue of the device
3796  *
3797  * Description:
3798  *    This function will check if runtime suspend is allowed for the device
3799  *    by examining if there are any requests pending in the queue. If there
3800  *    are requests pending, the device can not be runtime suspended; otherwise,
3801  *    the queue's status will be updated to SUSPENDING and the driver can
3802  *    proceed to suspend the device.
3803  *
3804  *    For the not allowed case, we mark last busy for the device so that
3805  *    runtime PM core will try to autosuspend it some time later.
3806  *
3807  *    This function should be called near the start of the device's
3808  *    runtime_suspend callback.
3809  *
3810  * Return:
3811  *    0		- OK to runtime suspend the device
3812  *    -EBUSY	- Device should not be runtime suspended
3813  */
3814 int blk_pre_runtime_suspend(struct request_queue *q)
3815 {
3816 	int ret = 0;
3817 
3818 	if (!q->dev)
3819 		return ret;
3820 
3821 	spin_lock_irq(q->queue_lock);
3822 	if (q->nr_pending) {
3823 		ret = -EBUSY;
3824 		pm_runtime_mark_last_busy(q->dev);
3825 	} else {
3826 		q->rpm_status = RPM_SUSPENDING;
3827 	}
3828 	spin_unlock_irq(q->queue_lock);
3829 	return ret;
3830 }
3831 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3832 
3833 /**
3834  * blk_post_runtime_suspend - Post runtime suspend processing
3835  * @q: the queue of the device
3836  * @err: return value of the device's runtime_suspend function
3837  *
3838  * Description:
3839  *    Update the queue's runtime status according to the return value of the
3840  *    device's runtime suspend function and mark last busy for the device so
3841  *    that PM core will try to auto suspend the device at a later time.
3842  *
3843  *    This function should be called near the end of the device's
3844  *    runtime_suspend callback.
3845  */
3846 void blk_post_runtime_suspend(struct request_queue *q, int err)
3847 {
3848 	if (!q->dev)
3849 		return;
3850 
3851 	spin_lock_irq(q->queue_lock);
3852 	if (!err) {
3853 		q->rpm_status = RPM_SUSPENDED;
3854 	} else {
3855 		q->rpm_status = RPM_ACTIVE;
3856 		pm_runtime_mark_last_busy(q->dev);
3857 	}
3858 	spin_unlock_irq(q->queue_lock);
3859 }
3860 EXPORT_SYMBOL(blk_post_runtime_suspend);
3861 
3862 /**
3863  * blk_pre_runtime_resume - Pre runtime resume processing
3864  * @q: the queue of the device
3865  *
3866  * Description:
3867  *    Update the queue's runtime status to RESUMING in preparation for the
3868  *    runtime resume of the device.
3869  *
3870  *    This function should be called near the start of the device's
3871  *    runtime_resume callback.
3872  */
3873 void blk_pre_runtime_resume(struct request_queue *q)
3874 {
3875 	if (!q->dev)
3876 		return;
3877 
3878 	spin_lock_irq(q->queue_lock);
3879 	q->rpm_status = RPM_RESUMING;
3880 	spin_unlock_irq(q->queue_lock);
3881 }
3882 EXPORT_SYMBOL(blk_pre_runtime_resume);
3883 
3884 /**
3885  * blk_post_runtime_resume - Post runtime resume processing
3886  * @q: the queue of the device
3887  * @err: return value of the device's runtime_resume function
3888  *
3889  * Description:
3890  *    Update the queue's runtime status according to the return value of the
3891  *    device's runtime_resume function. If it is successfully resumed, process
3892  *    the requests that are queued into the device's queue when it is resuming
3893  *    and then mark last busy and initiate autosuspend for it.
3894  *
3895  *    This function should be called near the end of the device's
3896  *    runtime_resume callback.
3897  */
3898 void blk_post_runtime_resume(struct request_queue *q, int err)
3899 {
3900 	if (!q->dev)
3901 		return;
3902 
3903 	spin_lock_irq(q->queue_lock);
3904 	if (!err) {
3905 		q->rpm_status = RPM_ACTIVE;
3906 		__blk_run_queue(q);
3907 		pm_runtime_mark_last_busy(q->dev);
3908 		pm_request_autosuspend(q->dev);
3909 	} else {
3910 		q->rpm_status = RPM_SUSPENDED;
3911 	}
3912 	spin_unlock_irq(q->queue_lock);
3913 }
3914 EXPORT_SYMBOL(blk_post_runtime_resume);
3915 
3916 /**
3917  * blk_set_runtime_active - Force runtime status of the queue to be active
3918  * @q: the queue of the device
3919  *
3920  * If the device is left runtime suspended during system suspend the resume
3921  * hook typically resumes the device and corrects runtime status
3922  * accordingly. However, that does not affect the queue runtime PM status
3923  * which is still "suspended". This prevents processing requests from the
3924  * queue.
3925  *
3926  * This function can be used in driver's resume hook to correct queue
3927  * runtime PM status and re-enable peeking requests from the queue. It
3928  * should be called before first request is added to the queue.
3929  */
3930 void blk_set_runtime_active(struct request_queue *q)
3931 {
3932 	spin_lock_irq(q->queue_lock);
3933 	q->rpm_status = RPM_ACTIVE;
3934 	pm_runtime_mark_last_busy(q->dev);
3935 	pm_request_autosuspend(q->dev);
3936 	spin_unlock_irq(q->queue_lock);
3937 }
3938 EXPORT_SYMBOL(blk_set_runtime_active);
3939 #endif
3940 
3941 int __init blk_dev_init(void)
3942 {
3943 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3944 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3945 			FIELD_SIZEOF(struct request, cmd_flags));
3946 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3947 			FIELD_SIZEOF(struct bio, bi_opf));
3948 
3949 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3950 	kblockd_workqueue = alloc_workqueue("kblockd",
3951 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3952 	if (!kblockd_workqueue)
3953 		panic("Failed to create kblockd\n");
3954 
3955 	request_cachep = kmem_cache_create("blkdev_requests",
3956 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3957 
3958 	blk_requestq_cachep = kmem_cache_create("request_queue",
3959 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3960 
3961 #ifdef CONFIG_DEBUG_FS
3962 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3963 #endif
3964 
3965 	return 0;
3966 }
3967