1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/string.h> 25 #include <linux/init.h> 26 #include <linux/completion.h> 27 #include <linux/slab.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/fault-inject.h> 32 #include <linux/list_sort.h> 33 #include <linux/delay.h> 34 #include <linux/ratelimit.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/blk-cgroup.h> 37 #include <linux/debugfs.h> 38 #include <linux/bpf.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/block.h> 42 43 #include "blk.h" 44 #include "blk-mq.h" 45 #include "blk-mq-sched.h" 46 #include "blk-pm.h" 47 #include "blk-rq-qos.h" 48 49 #ifdef CONFIG_DEBUG_FS 50 struct dentry *blk_debugfs_root; 51 #endif 52 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 58 59 DEFINE_IDA(blk_queue_ida); 60 61 /* 62 * For queue allocation 63 */ 64 struct kmem_cache *blk_requestq_cachep; 65 66 /* 67 * Controlling structure to kblockd 68 */ 69 static struct workqueue_struct *kblockd_workqueue; 70 71 /** 72 * blk_queue_flag_set - atomically set a queue flag 73 * @flag: flag to be set 74 * @q: request queue 75 */ 76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 77 { 78 set_bit(flag, &q->queue_flags); 79 } 80 EXPORT_SYMBOL(blk_queue_flag_set); 81 82 /** 83 * blk_queue_flag_clear - atomically clear a queue flag 84 * @flag: flag to be cleared 85 * @q: request queue 86 */ 87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 88 { 89 clear_bit(flag, &q->queue_flags); 90 } 91 EXPORT_SYMBOL(blk_queue_flag_clear); 92 93 /** 94 * blk_queue_flag_test_and_set - atomically test and set a queue flag 95 * @flag: flag to be set 96 * @q: request queue 97 * 98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 99 * the flag was already set. 100 */ 101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 102 { 103 return test_and_set_bit(flag, &q->queue_flags); 104 } 105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 106 107 void blk_rq_init(struct request_queue *q, struct request *rq) 108 { 109 memset(rq, 0, sizeof(*rq)); 110 111 INIT_LIST_HEAD(&rq->queuelist); 112 rq->q = q; 113 rq->__sector = (sector_t) -1; 114 INIT_HLIST_NODE(&rq->hash); 115 RB_CLEAR_NODE(&rq->rb_node); 116 rq->tag = -1; 117 rq->internal_tag = -1; 118 rq->start_time_ns = ktime_get_ns(); 119 rq->part = NULL; 120 refcount_set(&rq->ref, 1); 121 } 122 EXPORT_SYMBOL(blk_rq_init); 123 124 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 125 static const char *const blk_op_name[] = { 126 REQ_OP_NAME(READ), 127 REQ_OP_NAME(WRITE), 128 REQ_OP_NAME(FLUSH), 129 REQ_OP_NAME(DISCARD), 130 REQ_OP_NAME(SECURE_ERASE), 131 REQ_OP_NAME(ZONE_RESET), 132 REQ_OP_NAME(WRITE_SAME), 133 REQ_OP_NAME(WRITE_ZEROES), 134 REQ_OP_NAME(SCSI_IN), 135 REQ_OP_NAME(SCSI_OUT), 136 REQ_OP_NAME(DRV_IN), 137 REQ_OP_NAME(DRV_OUT), 138 }; 139 #undef REQ_OP_NAME 140 141 /** 142 * blk_op_str - Return string XXX in the REQ_OP_XXX. 143 * @op: REQ_OP_XXX. 144 * 145 * Description: Centralize block layer function to convert REQ_OP_XXX into 146 * string format. Useful in the debugging and tracing bio or request. For 147 * invalid REQ_OP_XXX it returns string "UNKNOWN". 148 */ 149 inline const char *blk_op_str(unsigned int op) 150 { 151 const char *op_str = "UNKNOWN"; 152 153 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 154 op_str = blk_op_name[op]; 155 156 return op_str; 157 } 158 EXPORT_SYMBOL_GPL(blk_op_str); 159 160 static const struct { 161 int errno; 162 const char *name; 163 } blk_errors[] = { 164 [BLK_STS_OK] = { 0, "" }, 165 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 166 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 167 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 168 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 169 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 170 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 171 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 172 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 173 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 174 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 175 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 176 177 /* device mapper special case, should not leak out: */ 178 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 179 180 /* everything else not covered above: */ 181 [BLK_STS_IOERR] = { -EIO, "I/O" }, 182 }; 183 184 blk_status_t errno_to_blk_status(int errno) 185 { 186 int i; 187 188 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 189 if (blk_errors[i].errno == errno) 190 return (__force blk_status_t)i; 191 } 192 193 return BLK_STS_IOERR; 194 } 195 EXPORT_SYMBOL_GPL(errno_to_blk_status); 196 197 int blk_status_to_errno(blk_status_t status) 198 { 199 int idx = (__force int)status; 200 201 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 202 return -EIO; 203 return blk_errors[idx].errno; 204 } 205 EXPORT_SYMBOL_GPL(blk_status_to_errno); 206 207 static void print_req_error(struct request *req, blk_status_t status, 208 const char *caller) 209 { 210 int idx = (__force int)status; 211 212 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 213 return; 214 215 printk_ratelimited(KERN_ERR 216 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 217 "phys_seg %u prio class %u\n", 218 caller, blk_errors[idx].name, 219 req->rq_disk ? req->rq_disk->disk_name : "?", 220 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 221 req->cmd_flags & ~REQ_OP_MASK, 222 req->nr_phys_segments, 223 IOPRIO_PRIO_CLASS(req->ioprio)); 224 } 225 226 static void req_bio_endio(struct request *rq, struct bio *bio, 227 unsigned int nbytes, blk_status_t error) 228 { 229 if (error) 230 bio->bi_status = error; 231 232 if (unlikely(rq->rq_flags & RQF_QUIET)) 233 bio_set_flag(bio, BIO_QUIET); 234 235 bio_advance(bio, nbytes); 236 237 /* don't actually finish bio if it's part of flush sequence */ 238 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 239 bio_endio(bio); 240 } 241 242 void blk_dump_rq_flags(struct request *rq, char *msg) 243 { 244 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 245 rq->rq_disk ? rq->rq_disk->disk_name : "?", 246 (unsigned long long) rq->cmd_flags); 247 248 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 249 (unsigned long long)blk_rq_pos(rq), 250 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 251 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 252 rq->bio, rq->biotail, blk_rq_bytes(rq)); 253 } 254 EXPORT_SYMBOL(blk_dump_rq_flags); 255 256 /** 257 * blk_sync_queue - cancel any pending callbacks on a queue 258 * @q: the queue 259 * 260 * Description: 261 * The block layer may perform asynchronous callback activity 262 * on a queue, such as calling the unplug function after a timeout. 263 * A block device may call blk_sync_queue to ensure that any 264 * such activity is cancelled, thus allowing it to release resources 265 * that the callbacks might use. The caller must already have made sure 266 * that its ->make_request_fn will not re-add plugging prior to calling 267 * this function. 268 * 269 * This function does not cancel any asynchronous activity arising 270 * out of elevator or throttling code. That would require elevator_exit() 271 * and blkcg_exit_queue() to be called with queue lock initialized. 272 * 273 */ 274 void blk_sync_queue(struct request_queue *q) 275 { 276 del_timer_sync(&q->timeout); 277 cancel_work_sync(&q->timeout_work); 278 } 279 EXPORT_SYMBOL(blk_sync_queue); 280 281 /** 282 * blk_set_pm_only - increment pm_only counter 283 * @q: request queue pointer 284 */ 285 void blk_set_pm_only(struct request_queue *q) 286 { 287 atomic_inc(&q->pm_only); 288 } 289 EXPORT_SYMBOL_GPL(blk_set_pm_only); 290 291 void blk_clear_pm_only(struct request_queue *q) 292 { 293 int pm_only; 294 295 pm_only = atomic_dec_return(&q->pm_only); 296 WARN_ON_ONCE(pm_only < 0); 297 if (pm_only == 0) 298 wake_up_all(&q->mq_freeze_wq); 299 } 300 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 301 302 void blk_put_queue(struct request_queue *q) 303 { 304 kobject_put(&q->kobj); 305 } 306 EXPORT_SYMBOL(blk_put_queue); 307 308 void blk_set_queue_dying(struct request_queue *q) 309 { 310 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 311 312 /* 313 * When queue DYING flag is set, we need to block new req 314 * entering queue, so we call blk_freeze_queue_start() to 315 * prevent I/O from crossing blk_queue_enter(). 316 */ 317 blk_freeze_queue_start(q); 318 319 if (queue_is_mq(q)) 320 blk_mq_wake_waiters(q); 321 322 /* Make blk_queue_enter() reexamine the DYING flag. */ 323 wake_up_all(&q->mq_freeze_wq); 324 } 325 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 326 327 /** 328 * blk_cleanup_queue - shutdown a request queue 329 * @q: request queue to shutdown 330 * 331 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 332 * put it. All future requests will be failed immediately with -ENODEV. 333 */ 334 void blk_cleanup_queue(struct request_queue *q) 335 { 336 /* mark @q DYING, no new request or merges will be allowed afterwards */ 337 mutex_lock(&q->sysfs_lock); 338 blk_set_queue_dying(q); 339 340 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 341 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 342 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 343 mutex_unlock(&q->sysfs_lock); 344 345 /* 346 * Drain all requests queued before DYING marking. Set DEAD flag to 347 * prevent that q->request_fn() gets invoked after draining finished. 348 */ 349 blk_freeze_queue(q); 350 351 rq_qos_exit(q); 352 353 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 354 355 /* for synchronous bio-based driver finish in-flight integrity i/o */ 356 blk_flush_integrity(); 357 358 /* @q won't process any more request, flush async actions */ 359 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 360 blk_sync_queue(q); 361 362 if (queue_is_mq(q)) 363 blk_mq_exit_queue(q); 364 365 /* 366 * In theory, request pool of sched_tags belongs to request queue. 367 * However, the current implementation requires tag_set for freeing 368 * requests, so free the pool now. 369 * 370 * Queue has become frozen, there can't be any in-queue requests, so 371 * it is safe to free requests now. 372 */ 373 mutex_lock(&q->sysfs_lock); 374 if (q->elevator) 375 blk_mq_sched_free_requests(q); 376 mutex_unlock(&q->sysfs_lock); 377 378 percpu_ref_exit(&q->q_usage_counter); 379 380 /* @q is and will stay empty, shutdown and put */ 381 blk_put_queue(q); 382 } 383 EXPORT_SYMBOL(blk_cleanup_queue); 384 385 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 386 { 387 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 388 } 389 EXPORT_SYMBOL(blk_alloc_queue); 390 391 /** 392 * blk_queue_enter() - try to increase q->q_usage_counter 393 * @q: request queue pointer 394 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 395 */ 396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 397 { 398 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 399 400 while (true) { 401 bool success = false; 402 403 rcu_read_lock(); 404 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 405 /* 406 * The code that increments the pm_only counter is 407 * responsible for ensuring that that counter is 408 * globally visible before the queue is unfrozen. 409 */ 410 if (pm || !blk_queue_pm_only(q)) { 411 success = true; 412 } else { 413 percpu_ref_put(&q->q_usage_counter); 414 } 415 } 416 rcu_read_unlock(); 417 418 if (success) 419 return 0; 420 421 if (flags & BLK_MQ_REQ_NOWAIT) 422 return -EBUSY; 423 424 /* 425 * read pair of barrier in blk_freeze_queue_start(), 426 * we need to order reading __PERCPU_REF_DEAD flag of 427 * .q_usage_counter and reading .mq_freeze_depth or 428 * queue dying flag, otherwise the following wait may 429 * never return if the two reads are reordered. 430 */ 431 smp_rmb(); 432 433 wait_event(q->mq_freeze_wq, 434 (!q->mq_freeze_depth && 435 (pm || (blk_pm_request_resume(q), 436 !blk_queue_pm_only(q)))) || 437 blk_queue_dying(q)); 438 if (blk_queue_dying(q)) 439 return -ENODEV; 440 } 441 } 442 443 void blk_queue_exit(struct request_queue *q) 444 { 445 percpu_ref_put(&q->q_usage_counter); 446 } 447 448 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 449 { 450 struct request_queue *q = 451 container_of(ref, struct request_queue, q_usage_counter); 452 453 wake_up_all(&q->mq_freeze_wq); 454 } 455 456 static void blk_rq_timed_out_timer(struct timer_list *t) 457 { 458 struct request_queue *q = from_timer(q, t, timeout); 459 460 kblockd_schedule_work(&q->timeout_work); 461 } 462 463 static void blk_timeout_work(struct work_struct *work) 464 { 465 } 466 467 /** 468 * blk_alloc_queue_node - allocate a request queue 469 * @gfp_mask: memory allocation flags 470 * @node_id: NUMA node to allocate memory from 471 */ 472 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 473 { 474 struct request_queue *q; 475 int ret; 476 477 q = kmem_cache_alloc_node(blk_requestq_cachep, 478 gfp_mask | __GFP_ZERO, node_id); 479 if (!q) 480 return NULL; 481 482 INIT_LIST_HEAD(&q->queue_head); 483 q->last_merge = NULL; 484 485 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 486 if (q->id < 0) 487 goto fail_q; 488 489 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 490 if (ret) 491 goto fail_id; 492 493 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 494 if (!q->backing_dev_info) 495 goto fail_split; 496 497 q->stats = blk_alloc_queue_stats(); 498 if (!q->stats) 499 goto fail_stats; 500 501 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 502 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 503 q->backing_dev_info->name = "block"; 504 q->node = node_id; 505 506 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 507 laptop_mode_timer_fn, 0); 508 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 509 INIT_WORK(&q->timeout_work, blk_timeout_work); 510 INIT_LIST_HEAD(&q->icq_list); 511 #ifdef CONFIG_BLK_CGROUP 512 INIT_LIST_HEAD(&q->blkg_list); 513 #endif 514 515 kobject_init(&q->kobj, &blk_queue_ktype); 516 517 #ifdef CONFIG_BLK_DEV_IO_TRACE 518 mutex_init(&q->blk_trace_mutex); 519 #endif 520 mutex_init(&q->sysfs_lock); 521 spin_lock_init(&q->queue_lock); 522 523 init_waitqueue_head(&q->mq_freeze_wq); 524 mutex_init(&q->mq_freeze_lock); 525 526 /* 527 * Init percpu_ref in atomic mode so that it's faster to shutdown. 528 * See blk_register_queue() for details. 529 */ 530 if (percpu_ref_init(&q->q_usage_counter, 531 blk_queue_usage_counter_release, 532 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 533 goto fail_bdi; 534 535 if (blkcg_init_queue(q)) 536 goto fail_ref; 537 538 return q; 539 540 fail_ref: 541 percpu_ref_exit(&q->q_usage_counter); 542 fail_bdi: 543 blk_free_queue_stats(q->stats); 544 fail_stats: 545 bdi_put(q->backing_dev_info); 546 fail_split: 547 bioset_exit(&q->bio_split); 548 fail_id: 549 ida_simple_remove(&blk_queue_ida, q->id); 550 fail_q: 551 kmem_cache_free(blk_requestq_cachep, q); 552 return NULL; 553 } 554 EXPORT_SYMBOL(blk_alloc_queue_node); 555 556 bool blk_get_queue(struct request_queue *q) 557 { 558 if (likely(!blk_queue_dying(q))) { 559 __blk_get_queue(q); 560 return true; 561 } 562 563 return false; 564 } 565 EXPORT_SYMBOL(blk_get_queue); 566 567 /** 568 * blk_get_request - allocate a request 569 * @q: request queue to allocate a request for 570 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 571 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 572 */ 573 struct request *blk_get_request(struct request_queue *q, unsigned int op, 574 blk_mq_req_flags_t flags) 575 { 576 struct request *req; 577 578 WARN_ON_ONCE(op & REQ_NOWAIT); 579 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 580 581 req = blk_mq_alloc_request(q, op, flags); 582 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 583 q->mq_ops->initialize_rq_fn(req); 584 585 return req; 586 } 587 EXPORT_SYMBOL(blk_get_request); 588 589 void blk_put_request(struct request *req) 590 { 591 blk_mq_free_request(req); 592 } 593 EXPORT_SYMBOL(blk_put_request); 594 595 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 596 unsigned int nr_segs) 597 { 598 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 599 600 if (!ll_back_merge_fn(req, bio, nr_segs)) 601 return false; 602 603 trace_block_bio_backmerge(req->q, req, bio); 604 605 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 606 blk_rq_set_mixed_merge(req); 607 608 req->biotail->bi_next = bio; 609 req->biotail = bio; 610 req->__data_len += bio->bi_iter.bi_size; 611 612 blk_account_io_start(req, false); 613 return true; 614 } 615 616 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 617 unsigned int nr_segs) 618 { 619 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 620 621 if (!ll_front_merge_fn(req, bio, nr_segs)) 622 return false; 623 624 trace_block_bio_frontmerge(req->q, req, bio); 625 626 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 627 blk_rq_set_mixed_merge(req); 628 629 bio->bi_next = req->bio; 630 req->bio = bio; 631 632 req->__sector = bio->bi_iter.bi_sector; 633 req->__data_len += bio->bi_iter.bi_size; 634 635 blk_account_io_start(req, false); 636 return true; 637 } 638 639 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 640 struct bio *bio) 641 { 642 unsigned short segments = blk_rq_nr_discard_segments(req); 643 644 if (segments >= queue_max_discard_segments(q)) 645 goto no_merge; 646 if (blk_rq_sectors(req) + bio_sectors(bio) > 647 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 648 goto no_merge; 649 650 req->biotail->bi_next = bio; 651 req->biotail = bio; 652 req->__data_len += bio->bi_iter.bi_size; 653 req->nr_phys_segments = segments + 1; 654 655 blk_account_io_start(req, false); 656 return true; 657 no_merge: 658 req_set_nomerge(q, req); 659 return false; 660 } 661 662 /** 663 * blk_attempt_plug_merge - try to merge with %current's plugged list 664 * @q: request_queue new bio is being queued at 665 * @bio: new bio being queued 666 * @nr_segs: number of segments in @bio 667 * @same_queue_rq: pointer to &struct request that gets filled in when 668 * another request associated with @q is found on the plug list 669 * (optional, may be %NULL) 670 * 671 * Determine whether @bio being queued on @q can be merged with a request 672 * on %current's plugged list. Returns %true if merge was successful, 673 * otherwise %false. 674 * 675 * Plugging coalesces IOs from the same issuer for the same purpose without 676 * going through @q->queue_lock. As such it's more of an issuing mechanism 677 * than scheduling, and the request, while may have elvpriv data, is not 678 * added on the elevator at this point. In addition, we don't have 679 * reliable access to the elevator outside queue lock. Only check basic 680 * merging parameters without querying the elevator. 681 * 682 * Caller must ensure !blk_queue_nomerges(q) beforehand. 683 */ 684 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 685 unsigned int nr_segs, struct request **same_queue_rq) 686 { 687 struct blk_plug *plug; 688 struct request *rq; 689 struct list_head *plug_list; 690 691 plug = blk_mq_plug(q, bio); 692 if (!plug) 693 return false; 694 695 plug_list = &plug->mq_list; 696 697 list_for_each_entry_reverse(rq, plug_list, queuelist) { 698 bool merged = false; 699 700 if (rq->q == q && same_queue_rq) { 701 /* 702 * Only blk-mq multiple hardware queues case checks the 703 * rq in the same queue, there should be only one such 704 * rq in a queue 705 **/ 706 *same_queue_rq = rq; 707 } 708 709 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 710 continue; 711 712 switch (blk_try_merge(rq, bio)) { 713 case ELEVATOR_BACK_MERGE: 714 merged = bio_attempt_back_merge(rq, bio, nr_segs); 715 break; 716 case ELEVATOR_FRONT_MERGE: 717 merged = bio_attempt_front_merge(rq, bio, nr_segs); 718 break; 719 case ELEVATOR_DISCARD_MERGE: 720 merged = bio_attempt_discard_merge(q, rq, bio); 721 break; 722 default: 723 break; 724 } 725 726 if (merged) 727 return true; 728 } 729 730 return false; 731 } 732 733 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 734 { 735 char b[BDEVNAME_SIZE]; 736 737 printk(KERN_INFO "attempt to access beyond end of device\n"); 738 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 739 bio_devname(bio, b), bio->bi_opf, 740 (unsigned long long)bio_end_sector(bio), 741 (long long)maxsector); 742 } 743 744 #ifdef CONFIG_FAIL_MAKE_REQUEST 745 746 static DECLARE_FAULT_ATTR(fail_make_request); 747 748 static int __init setup_fail_make_request(char *str) 749 { 750 return setup_fault_attr(&fail_make_request, str); 751 } 752 __setup("fail_make_request=", setup_fail_make_request); 753 754 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 755 { 756 return part->make_it_fail && should_fail(&fail_make_request, bytes); 757 } 758 759 static int __init fail_make_request_debugfs(void) 760 { 761 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 762 NULL, &fail_make_request); 763 764 return PTR_ERR_OR_ZERO(dir); 765 } 766 767 late_initcall(fail_make_request_debugfs); 768 769 #else /* CONFIG_FAIL_MAKE_REQUEST */ 770 771 static inline bool should_fail_request(struct hd_struct *part, 772 unsigned int bytes) 773 { 774 return false; 775 } 776 777 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 778 779 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 780 { 781 const int op = bio_op(bio); 782 783 if (part->policy && op_is_write(op)) { 784 char b[BDEVNAME_SIZE]; 785 786 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 787 return false; 788 789 WARN_ONCE(1, 790 "generic_make_request: Trying to write " 791 "to read-only block-device %s (partno %d)\n", 792 bio_devname(bio, b), part->partno); 793 /* Older lvm-tools actually trigger this */ 794 return false; 795 } 796 797 return false; 798 } 799 800 static noinline int should_fail_bio(struct bio *bio) 801 { 802 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 803 return -EIO; 804 return 0; 805 } 806 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 807 808 /* 809 * Check whether this bio extends beyond the end of the device or partition. 810 * This may well happen - the kernel calls bread() without checking the size of 811 * the device, e.g., when mounting a file system. 812 */ 813 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 814 { 815 unsigned int nr_sectors = bio_sectors(bio); 816 817 if (nr_sectors && maxsector && 818 (nr_sectors > maxsector || 819 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 820 handle_bad_sector(bio, maxsector); 821 return -EIO; 822 } 823 return 0; 824 } 825 826 /* 827 * Remap block n of partition p to block n+start(p) of the disk. 828 */ 829 static inline int blk_partition_remap(struct bio *bio) 830 { 831 struct hd_struct *p; 832 int ret = -EIO; 833 834 rcu_read_lock(); 835 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 836 if (unlikely(!p)) 837 goto out; 838 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 839 goto out; 840 if (unlikely(bio_check_ro(bio, p))) 841 goto out; 842 843 /* 844 * Zone reset does not include bi_size so bio_sectors() is always 0. 845 * Include a test for the reset op code and perform the remap if needed. 846 */ 847 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 848 if (bio_check_eod(bio, part_nr_sects_read(p))) 849 goto out; 850 bio->bi_iter.bi_sector += p->start_sect; 851 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 852 bio->bi_iter.bi_sector - p->start_sect); 853 } 854 bio->bi_partno = 0; 855 ret = 0; 856 out: 857 rcu_read_unlock(); 858 return ret; 859 } 860 861 static noinline_for_stack bool 862 generic_make_request_checks(struct bio *bio) 863 { 864 struct request_queue *q; 865 int nr_sectors = bio_sectors(bio); 866 blk_status_t status = BLK_STS_IOERR; 867 char b[BDEVNAME_SIZE]; 868 869 might_sleep(); 870 871 q = bio->bi_disk->queue; 872 if (unlikely(!q)) { 873 printk(KERN_ERR 874 "generic_make_request: Trying to access " 875 "nonexistent block-device %s (%Lu)\n", 876 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 877 goto end_io; 878 } 879 880 /* 881 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 882 * if queue is not a request based queue. 883 */ 884 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 885 goto not_supported; 886 887 if (should_fail_bio(bio)) 888 goto end_io; 889 890 if (bio->bi_partno) { 891 if (unlikely(blk_partition_remap(bio))) 892 goto end_io; 893 } else { 894 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 895 goto end_io; 896 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 897 goto end_io; 898 } 899 900 /* 901 * Filter flush bio's early so that make_request based 902 * drivers without flush support don't have to worry 903 * about them. 904 */ 905 if (op_is_flush(bio->bi_opf) && 906 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 907 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 908 if (!nr_sectors) { 909 status = BLK_STS_OK; 910 goto end_io; 911 } 912 } 913 914 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 915 bio->bi_opf &= ~REQ_HIPRI; 916 917 switch (bio_op(bio)) { 918 case REQ_OP_DISCARD: 919 if (!blk_queue_discard(q)) 920 goto not_supported; 921 break; 922 case REQ_OP_SECURE_ERASE: 923 if (!blk_queue_secure_erase(q)) 924 goto not_supported; 925 break; 926 case REQ_OP_WRITE_SAME: 927 if (!q->limits.max_write_same_sectors) 928 goto not_supported; 929 break; 930 case REQ_OP_ZONE_RESET: 931 if (!blk_queue_is_zoned(q)) 932 goto not_supported; 933 break; 934 case REQ_OP_WRITE_ZEROES: 935 if (!q->limits.max_write_zeroes_sectors) 936 goto not_supported; 937 break; 938 default: 939 break; 940 } 941 942 /* 943 * Various block parts want %current->io_context and lazy ioc 944 * allocation ends up trading a lot of pain for a small amount of 945 * memory. Just allocate it upfront. This may fail and block 946 * layer knows how to live with it. 947 */ 948 create_io_context(GFP_ATOMIC, q->node); 949 950 if (!blkcg_bio_issue_check(q, bio)) 951 return false; 952 953 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 954 trace_block_bio_queue(q, bio); 955 /* Now that enqueuing has been traced, we need to trace 956 * completion as well. 957 */ 958 bio_set_flag(bio, BIO_TRACE_COMPLETION); 959 } 960 return true; 961 962 not_supported: 963 status = BLK_STS_NOTSUPP; 964 end_io: 965 bio->bi_status = status; 966 bio_endio(bio); 967 return false; 968 } 969 970 /** 971 * generic_make_request - hand a buffer to its device driver for I/O 972 * @bio: The bio describing the location in memory and on the device. 973 * 974 * generic_make_request() is used to make I/O requests of block 975 * devices. It is passed a &struct bio, which describes the I/O that needs 976 * to be done. 977 * 978 * generic_make_request() does not return any status. The 979 * success/failure status of the request, along with notification of 980 * completion, is delivered asynchronously through the bio->bi_end_io 981 * function described (one day) else where. 982 * 983 * The caller of generic_make_request must make sure that bi_io_vec 984 * are set to describe the memory buffer, and that bi_dev and bi_sector are 985 * set to describe the device address, and the 986 * bi_end_io and optionally bi_private are set to describe how 987 * completion notification should be signaled. 988 * 989 * generic_make_request and the drivers it calls may use bi_next if this 990 * bio happens to be merged with someone else, and may resubmit the bio to 991 * a lower device by calling into generic_make_request recursively, which 992 * means the bio should NOT be touched after the call to ->make_request_fn. 993 */ 994 blk_qc_t generic_make_request(struct bio *bio) 995 { 996 /* 997 * bio_list_on_stack[0] contains bios submitted by the current 998 * make_request_fn. 999 * bio_list_on_stack[1] contains bios that were submitted before 1000 * the current make_request_fn, but that haven't been processed 1001 * yet. 1002 */ 1003 struct bio_list bio_list_on_stack[2]; 1004 blk_qc_t ret = BLK_QC_T_NONE; 1005 1006 if (!generic_make_request_checks(bio)) 1007 goto out; 1008 1009 /* 1010 * We only want one ->make_request_fn to be active at a time, else 1011 * stack usage with stacked devices could be a problem. So use 1012 * current->bio_list to keep a list of requests submited by a 1013 * make_request_fn function. current->bio_list is also used as a 1014 * flag to say if generic_make_request is currently active in this 1015 * task or not. If it is NULL, then no make_request is active. If 1016 * it is non-NULL, then a make_request is active, and new requests 1017 * should be added at the tail 1018 */ 1019 if (current->bio_list) { 1020 bio_list_add(¤t->bio_list[0], bio); 1021 goto out; 1022 } 1023 1024 /* following loop may be a bit non-obvious, and so deserves some 1025 * explanation. 1026 * Before entering the loop, bio->bi_next is NULL (as all callers 1027 * ensure that) so we have a list with a single bio. 1028 * We pretend that we have just taken it off a longer list, so 1029 * we assign bio_list to a pointer to the bio_list_on_stack, 1030 * thus initialising the bio_list of new bios to be 1031 * added. ->make_request() may indeed add some more bios 1032 * through a recursive call to generic_make_request. If it 1033 * did, we find a non-NULL value in bio_list and re-enter the loop 1034 * from the top. In this case we really did just take the bio 1035 * of the top of the list (no pretending) and so remove it from 1036 * bio_list, and call into ->make_request() again. 1037 */ 1038 BUG_ON(bio->bi_next); 1039 bio_list_init(&bio_list_on_stack[0]); 1040 current->bio_list = bio_list_on_stack; 1041 do { 1042 struct request_queue *q = bio->bi_disk->queue; 1043 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 1044 BLK_MQ_REQ_NOWAIT : 0; 1045 1046 if (likely(blk_queue_enter(q, flags) == 0)) { 1047 struct bio_list lower, same; 1048 1049 /* Create a fresh bio_list for all subordinate requests */ 1050 bio_list_on_stack[1] = bio_list_on_stack[0]; 1051 bio_list_init(&bio_list_on_stack[0]); 1052 ret = q->make_request_fn(q, bio); 1053 1054 blk_queue_exit(q); 1055 1056 /* sort new bios into those for a lower level 1057 * and those for the same level 1058 */ 1059 bio_list_init(&lower); 1060 bio_list_init(&same); 1061 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1062 if (q == bio->bi_disk->queue) 1063 bio_list_add(&same, bio); 1064 else 1065 bio_list_add(&lower, bio); 1066 /* now assemble so we handle the lowest level first */ 1067 bio_list_merge(&bio_list_on_stack[0], &lower); 1068 bio_list_merge(&bio_list_on_stack[0], &same); 1069 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1070 } else { 1071 if (unlikely(!blk_queue_dying(q) && 1072 (bio->bi_opf & REQ_NOWAIT))) 1073 bio_wouldblock_error(bio); 1074 else 1075 bio_io_error(bio); 1076 } 1077 bio = bio_list_pop(&bio_list_on_stack[0]); 1078 } while (bio); 1079 current->bio_list = NULL; /* deactivate */ 1080 1081 out: 1082 return ret; 1083 } 1084 EXPORT_SYMBOL(generic_make_request); 1085 1086 /** 1087 * direct_make_request - hand a buffer directly to its device driver for I/O 1088 * @bio: The bio describing the location in memory and on the device. 1089 * 1090 * This function behaves like generic_make_request(), but does not protect 1091 * against recursion. Must only be used if the called driver is known 1092 * to not call generic_make_request (or direct_make_request) again from 1093 * its make_request function. (Calling direct_make_request again from 1094 * a workqueue is perfectly fine as that doesn't recurse). 1095 */ 1096 blk_qc_t direct_make_request(struct bio *bio) 1097 { 1098 struct request_queue *q = bio->bi_disk->queue; 1099 bool nowait = bio->bi_opf & REQ_NOWAIT; 1100 blk_qc_t ret; 1101 1102 if (!generic_make_request_checks(bio)) 1103 return BLK_QC_T_NONE; 1104 1105 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1106 if (nowait && !blk_queue_dying(q)) 1107 bio->bi_status = BLK_STS_AGAIN; 1108 else 1109 bio->bi_status = BLK_STS_IOERR; 1110 bio_endio(bio); 1111 return BLK_QC_T_NONE; 1112 } 1113 1114 ret = q->make_request_fn(q, bio); 1115 blk_queue_exit(q); 1116 return ret; 1117 } 1118 EXPORT_SYMBOL_GPL(direct_make_request); 1119 1120 /** 1121 * submit_bio - submit a bio to the block device layer for I/O 1122 * @bio: The &struct bio which describes the I/O 1123 * 1124 * submit_bio() is very similar in purpose to generic_make_request(), and 1125 * uses that function to do most of the work. Both are fairly rough 1126 * interfaces; @bio must be presetup and ready for I/O. 1127 * 1128 */ 1129 blk_qc_t submit_bio(struct bio *bio) 1130 { 1131 if (blkcg_punt_bio_submit(bio)) 1132 return BLK_QC_T_NONE; 1133 1134 /* 1135 * If it's a regular read/write or a barrier with data attached, 1136 * go through the normal accounting stuff before submission. 1137 */ 1138 if (bio_has_data(bio)) { 1139 unsigned int count; 1140 1141 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1142 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1143 else 1144 count = bio_sectors(bio); 1145 1146 if (op_is_write(bio_op(bio))) { 1147 count_vm_events(PGPGOUT, count); 1148 } else { 1149 task_io_account_read(bio->bi_iter.bi_size); 1150 count_vm_events(PGPGIN, count); 1151 } 1152 1153 if (unlikely(block_dump)) { 1154 char b[BDEVNAME_SIZE]; 1155 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1156 current->comm, task_pid_nr(current), 1157 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1158 (unsigned long long)bio->bi_iter.bi_sector, 1159 bio_devname(bio, b), count); 1160 } 1161 } 1162 1163 return generic_make_request(bio); 1164 } 1165 EXPORT_SYMBOL(submit_bio); 1166 1167 /** 1168 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1169 * for new the queue limits 1170 * @q: the queue 1171 * @rq: the request being checked 1172 * 1173 * Description: 1174 * @rq may have been made based on weaker limitations of upper-level queues 1175 * in request stacking drivers, and it may violate the limitation of @q. 1176 * Since the block layer and the underlying device driver trust @rq 1177 * after it is inserted to @q, it should be checked against @q before 1178 * the insertion using this generic function. 1179 * 1180 * Request stacking drivers like request-based dm may change the queue 1181 * limits when retrying requests on other queues. Those requests need 1182 * to be checked against the new queue limits again during dispatch. 1183 */ 1184 static int blk_cloned_rq_check_limits(struct request_queue *q, 1185 struct request *rq) 1186 { 1187 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1188 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1189 __func__, blk_rq_sectors(rq), 1190 blk_queue_get_max_sectors(q, req_op(rq))); 1191 return -EIO; 1192 } 1193 1194 /* 1195 * queue's settings related to segment counting like q->bounce_pfn 1196 * may differ from that of other stacking queues. 1197 * Recalculate it to check the request correctly on this queue's 1198 * limitation. 1199 */ 1200 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1201 if (rq->nr_phys_segments > queue_max_segments(q)) { 1202 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1203 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1204 return -EIO; 1205 } 1206 1207 return 0; 1208 } 1209 1210 /** 1211 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1212 * @q: the queue to submit the request 1213 * @rq: the request being queued 1214 */ 1215 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1216 { 1217 if (blk_cloned_rq_check_limits(q, rq)) 1218 return BLK_STS_IOERR; 1219 1220 if (rq->rq_disk && 1221 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1222 return BLK_STS_IOERR; 1223 1224 if (blk_queue_io_stat(q)) 1225 blk_account_io_start(rq, true); 1226 1227 /* 1228 * Since we have a scheduler attached on the top device, 1229 * bypass a potential scheduler on the bottom device for 1230 * insert. 1231 */ 1232 return blk_mq_request_issue_directly(rq, true); 1233 } 1234 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1235 1236 /** 1237 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1238 * @rq: request to examine 1239 * 1240 * Description: 1241 * A request could be merge of IOs which require different failure 1242 * handling. This function determines the number of bytes which 1243 * can be failed from the beginning of the request without 1244 * crossing into area which need to be retried further. 1245 * 1246 * Return: 1247 * The number of bytes to fail. 1248 */ 1249 unsigned int blk_rq_err_bytes(const struct request *rq) 1250 { 1251 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1252 unsigned int bytes = 0; 1253 struct bio *bio; 1254 1255 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1256 return blk_rq_bytes(rq); 1257 1258 /* 1259 * Currently the only 'mixing' which can happen is between 1260 * different fastfail types. We can safely fail portions 1261 * which have all the failfast bits that the first one has - 1262 * the ones which are at least as eager to fail as the first 1263 * one. 1264 */ 1265 for (bio = rq->bio; bio; bio = bio->bi_next) { 1266 if ((bio->bi_opf & ff) != ff) 1267 break; 1268 bytes += bio->bi_iter.bi_size; 1269 } 1270 1271 /* this could lead to infinite loop */ 1272 BUG_ON(blk_rq_bytes(rq) && !bytes); 1273 return bytes; 1274 } 1275 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1276 1277 void blk_account_io_completion(struct request *req, unsigned int bytes) 1278 { 1279 if (blk_do_io_stat(req)) { 1280 const int sgrp = op_stat_group(req_op(req)); 1281 struct hd_struct *part; 1282 1283 part_stat_lock(); 1284 part = req->part; 1285 part_stat_add(part, sectors[sgrp], bytes >> 9); 1286 part_stat_unlock(); 1287 } 1288 } 1289 1290 void blk_account_io_done(struct request *req, u64 now) 1291 { 1292 /* 1293 * Account IO completion. flush_rq isn't accounted as a 1294 * normal IO on queueing nor completion. Accounting the 1295 * containing request is enough. 1296 */ 1297 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 1298 const int sgrp = op_stat_group(req_op(req)); 1299 struct hd_struct *part; 1300 1301 part_stat_lock(); 1302 part = req->part; 1303 1304 update_io_ticks(part, jiffies); 1305 part_stat_inc(part, ios[sgrp]); 1306 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1307 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1308 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1309 1310 hd_struct_put(part); 1311 part_stat_unlock(); 1312 } 1313 } 1314 1315 void blk_account_io_start(struct request *rq, bool new_io) 1316 { 1317 struct hd_struct *part; 1318 int rw = rq_data_dir(rq); 1319 1320 if (!blk_do_io_stat(rq)) 1321 return; 1322 1323 part_stat_lock(); 1324 1325 if (!new_io) { 1326 part = rq->part; 1327 part_stat_inc(part, merges[rw]); 1328 } else { 1329 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1330 if (!hd_struct_try_get(part)) { 1331 /* 1332 * The partition is already being removed, 1333 * the request will be accounted on the disk only 1334 * 1335 * We take a reference on disk->part0 although that 1336 * partition will never be deleted, so we can treat 1337 * it as any other partition. 1338 */ 1339 part = &rq->rq_disk->part0; 1340 hd_struct_get(part); 1341 } 1342 part_inc_in_flight(rq->q, part, rw); 1343 rq->part = part; 1344 } 1345 1346 update_io_ticks(part, jiffies); 1347 1348 part_stat_unlock(); 1349 } 1350 1351 /* 1352 * Steal bios from a request and add them to a bio list. 1353 * The request must not have been partially completed before. 1354 */ 1355 void blk_steal_bios(struct bio_list *list, struct request *rq) 1356 { 1357 if (rq->bio) { 1358 if (list->tail) 1359 list->tail->bi_next = rq->bio; 1360 else 1361 list->head = rq->bio; 1362 list->tail = rq->biotail; 1363 1364 rq->bio = NULL; 1365 rq->biotail = NULL; 1366 } 1367 1368 rq->__data_len = 0; 1369 } 1370 EXPORT_SYMBOL_GPL(blk_steal_bios); 1371 1372 /** 1373 * blk_update_request - Special helper function for request stacking drivers 1374 * @req: the request being processed 1375 * @error: block status code 1376 * @nr_bytes: number of bytes to complete @req 1377 * 1378 * Description: 1379 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1380 * the request structure even if @req doesn't have leftover. 1381 * If @req has leftover, sets it up for the next range of segments. 1382 * 1383 * This special helper function is only for request stacking drivers 1384 * (e.g. request-based dm) so that they can handle partial completion. 1385 * Actual device drivers should use blk_mq_end_request instead. 1386 * 1387 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1388 * %false return from this function. 1389 * 1390 * Note: 1391 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1392 * blk_rq_bytes() and in blk_update_request(). 1393 * 1394 * Return: 1395 * %false - this request doesn't have any more data 1396 * %true - this request has more data 1397 **/ 1398 bool blk_update_request(struct request *req, blk_status_t error, 1399 unsigned int nr_bytes) 1400 { 1401 int total_bytes; 1402 1403 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1404 1405 if (!req->bio) 1406 return false; 1407 1408 if (unlikely(error && !blk_rq_is_passthrough(req) && 1409 !(req->rq_flags & RQF_QUIET))) 1410 print_req_error(req, error, __func__); 1411 1412 blk_account_io_completion(req, nr_bytes); 1413 1414 total_bytes = 0; 1415 while (req->bio) { 1416 struct bio *bio = req->bio; 1417 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1418 1419 if (bio_bytes == bio->bi_iter.bi_size) 1420 req->bio = bio->bi_next; 1421 1422 /* Completion has already been traced */ 1423 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1424 req_bio_endio(req, bio, bio_bytes, error); 1425 1426 total_bytes += bio_bytes; 1427 nr_bytes -= bio_bytes; 1428 1429 if (!nr_bytes) 1430 break; 1431 } 1432 1433 /* 1434 * completely done 1435 */ 1436 if (!req->bio) { 1437 /* 1438 * Reset counters so that the request stacking driver 1439 * can find how many bytes remain in the request 1440 * later. 1441 */ 1442 req->__data_len = 0; 1443 return false; 1444 } 1445 1446 req->__data_len -= total_bytes; 1447 1448 /* update sector only for requests with clear definition of sector */ 1449 if (!blk_rq_is_passthrough(req)) 1450 req->__sector += total_bytes >> 9; 1451 1452 /* mixed attributes always follow the first bio */ 1453 if (req->rq_flags & RQF_MIXED_MERGE) { 1454 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1455 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1456 } 1457 1458 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1459 /* 1460 * If total number of sectors is less than the first segment 1461 * size, something has gone terribly wrong. 1462 */ 1463 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1464 blk_dump_rq_flags(req, "request botched"); 1465 req->__data_len = blk_rq_cur_bytes(req); 1466 } 1467 1468 /* recalculate the number of segments */ 1469 req->nr_phys_segments = blk_recalc_rq_segments(req); 1470 } 1471 1472 return true; 1473 } 1474 EXPORT_SYMBOL_GPL(blk_update_request); 1475 1476 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1477 /** 1478 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1479 * @rq: the request to be flushed 1480 * 1481 * Description: 1482 * Flush all pages in @rq. 1483 */ 1484 void rq_flush_dcache_pages(struct request *rq) 1485 { 1486 struct req_iterator iter; 1487 struct bio_vec bvec; 1488 1489 rq_for_each_segment(bvec, rq, iter) 1490 flush_dcache_page(bvec.bv_page); 1491 } 1492 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1493 #endif 1494 1495 /** 1496 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1497 * @q : the queue of the device being checked 1498 * 1499 * Description: 1500 * Check if underlying low-level drivers of a device are busy. 1501 * If the drivers want to export their busy state, they must set own 1502 * exporting function using blk_queue_lld_busy() first. 1503 * 1504 * Basically, this function is used only by request stacking drivers 1505 * to stop dispatching requests to underlying devices when underlying 1506 * devices are busy. This behavior helps more I/O merging on the queue 1507 * of the request stacking driver and prevents I/O throughput regression 1508 * on burst I/O load. 1509 * 1510 * Return: 1511 * 0 - Not busy (The request stacking driver should dispatch request) 1512 * 1 - Busy (The request stacking driver should stop dispatching request) 1513 */ 1514 int blk_lld_busy(struct request_queue *q) 1515 { 1516 if (queue_is_mq(q) && q->mq_ops->busy) 1517 return q->mq_ops->busy(q); 1518 1519 return 0; 1520 } 1521 EXPORT_SYMBOL_GPL(blk_lld_busy); 1522 1523 /** 1524 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1525 * @rq: the clone request to be cleaned up 1526 * 1527 * Description: 1528 * Free all bios in @rq for a cloned request. 1529 */ 1530 void blk_rq_unprep_clone(struct request *rq) 1531 { 1532 struct bio *bio; 1533 1534 while ((bio = rq->bio) != NULL) { 1535 rq->bio = bio->bi_next; 1536 1537 bio_put(bio); 1538 } 1539 } 1540 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1541 1542 /* 1543 * Copy attributes of the original request to the clone request. 1544 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1545 */ 1546 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1547 { 1548 dst->__sector = blk_rq_pos(src); 1549 dst->__data_len = blk_rq_bytes(src); 1550 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1551 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1552 dst->special_vec = src->special_vec; 1553 } 1554 dst->nr_phys_segments = src->nr_phys_segments; 1555 dst->ioprio = src->ioprio; 1556 dst->extra_len = src->extra_len; 1557 } 1558 1559 /** 1560 * blk_rq_prep_clone - Helper function to setup clone request 1561 * @rq: the request to be setup 1562 * @rq_src: original request to be cloned 1563 * @bs: bio_set that bios for clone are allocated from 1564 * @gfp_mask: memory allocation mask for bio 1565 * @bio_ctr: setup function to be called for each clone bio. 1566 * Returns %0 for success, non %0 for failure. 1567 * @data: private data to be passed to @bio_ctr 1568 * 1569 * Description: 1570 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1571 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1572 * are not copied, and copying such parts is the caller's responsibility. 1573 * Also, pages which the original bios are pointing to are not copied 1574 * and the cloned bios just point same pages. 1575 * So cloned bios must be completed before original bios, which means 1576 * the caller must complete @rq before @rq_src. 1577 */ 1578 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1579 struct bio_set *bs, gfp_t gfp_mask, 1580 int (*bio_ctr)(struct bio *, struct bio *, void *), 1581 void *data) 1582 { 1583 struct bio *bio, *bio_src; 1584 1585 if (!bs) 1586 bs = &fs_bio_set; 1587 1588 __rq_for_each_bio(bio_src, rq_src) { 1589 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1590 if (!bio) 1591 goto free_and_out; 1592 1593 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1594 goto free_and_out; 1595 1596 if (rq->bio) { 1597 rq->biotail->bi_next = bio; 1598 rq->biotail = bio; 1599 } else 1600 rq->bio = rq->biotail = bio; 1601 } 1602 1603 __blk_rq_prep_clone(rq, rq_src); 1604 1605 return 0; 1606 1607 free_and_out: 1608 if (bio) 1609 bio_put(bio); 1610 blk_rq_unprep_clone(rq); 1611 1612 return -ENOMEM; 1613 } 1614 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1615 1616 int kblockd_schedule_work(struct work_struct *work) 1617 { 1618 return queue_work(kblockd_workqueue, work); 1619 } 1620 EXPORT_SYMBOL(kblockd_schedule_work); 1621 1622 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1623 { 1624 return queue_work_on(cpu, kblockd_workqueue, work); 1625 } 1626 EXPORT_SYMBOL(kblockd_schedule_work_on); 1627 1628 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1629 unsigned long delay) 1630 { 1631 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1632 } 1633 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1634 1635 /** 1636 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1637 * @plug: The &struct blk_plug that needs to be initialized 1638 * 1639 * Description: 1640 * blk_start_plug() indicates to the block layer an intent by the caller 1641 * to submit multiple I/O requests in a batch. The block layer may use 1642 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1643 * is called. However, the block layer may choose to submit requests 1644 * before a call to blk_finish_plug() if the number of queued I/Os 1645 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1646 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1647 * the task schedules (see below). 1648 * 1649 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1650 * pending I/O should the task end up blocking between blk_start_plug() and 1651 * blk_finish_plug(). This is important from a performance perspective, but 1652 * also ensures that we don't deadlock. For instance, if the task is blocking 1653 * for a memory allocation, memory reclaim could end up wanting to free a 1654 * page belonging to that request that is currently residing in our private 1655 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1656 * this kind of deadlock. 1657 */ 1658 void blk_start_plug(struct blk_plug *plug) 1659 { 1660 struct task_struct *tsk = current; 1661 1662 /* 1663 * If this is a nested plug, don't actually assign it. 1664 */ 1665 if (tsk->plug) 1666 return; 1667 1668 INIT_LIST_HEAD(&plug->mq_list); 1669 INIT_LIST_HEAD(&plug->cb_list); 1670 plug->rq_count = 0; 1671 plug->multiple_queues = false; 1672 1673 /* 1674 * Store ordering should not be needed here, since a potential 1675 * preempt will imply a full memory barrier 1676 */ 1677 tsk->plug = plug; 1678 } 1679 EXPORT_SYMBOL(blk_start_plug); 1680 1681 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1682 { 1683 LIST_HEAD(callbacks); 1684 1685 while (!list_empty(&plug->cb_list)) { 1686 list_splice_init(&plug->cb_list, &callbacks); 1687 1688 while (!list_empty(&callbacks)) { 1689 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1690 struct blk_plug_cb, 1691 list); 1692 list_del(&cb->list); 1693 cb->callback(cb, from_schedule); 1694 } 1695 } 1696 } 1697 1698 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1699 int size) 1700 { 1701 struct blk_plug *plug = current->plug; 1702 struct blk_plug_cb *cb; 1703 1704 if (!plug) 1705 return NULL; 1706 1707 list_for_each_entry(cb, &plug->cb_list, list) 1708 if (cb->callback == unplug && cb->data == data) 1709 return cb; 1710 1711 /* Not currently on the callback list */ 1712 BUG_ON(size < sizeof(*cb)); 1713 cb = kzalloc(size, GFP_ATOMIC); 1714 if (cb) { 1715 cb->data = data; 1716 cb->callback = unplug; 1717 list_add(&cb->list, &plug->cb_list); 1718 } 1719 return cb; 1720 } 1721 EXPORT_SYMBOL(blk_check_plugged); 1722 1723 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1724 { 1725 flush_plug_callbacks(plug, from_schedule); 1726 1727 if (!list_empty(&plug->mq_list)) 1728 blk_mq_flush_plug_list(plug, from_schedule); 1729 } 1730 1731 /** 1732 * blk_finish_plug - mark the end of a batch of submitted I/O 1733 * @plug: The &struct blk_plug passed to blk_start_plug() 1734 * 1735 * Description: 1736 * Indicate that a batch of I/O submissions is complete. This function 1737 * must be paired with an initial call to blk_start_plug(). The intent 1738 * is to allow the block layer to optimize I/O submission. See the 1739 * documentation for blk_start_plug() for more information. 1740 */ 1741 void blk_finish_plug(struct blk_plug *plug) 1742 { 1743 if (plug != current->plug) 1744 return; 1745 blk_flush_plug_list(plug, false); 1746 1747 current->plug = NULL; 1748 } 1749 EXPORT_SYMBOL(blk_finish_plug); 1750 1751 int __init blk_dev_init(void) 1752 { 1753 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1754 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1755 FIELD_SIZEOF(struct request, cmd_flags)); 1756 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1757 FIELD_SIZEOF(struct bio, bi_opf)); 1758 1759 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1760 kblockd_workqueue = alloc_workqueue("kblockd", 1761 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1762 if (!kblockd_workqueue) 1763 panic("Failed to create kblockd\n"); 1764 1765 blk_requestq_cachep = kmem_cache_create("request_queue", 1766 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1767 1768 #ifdef CONFIG_DEBUG_FS 1769 blk_debugfs_root = debugfs_create_dir("block", NULL); 1770 #endif 1771 1772 return 0; 1773 } 1774