xref: /openbmc/linux/block/blk-core.c (revision 505b0877)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 
62 DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 	memset(rq, 0, sizeof(*rq));
113 
114 	INIT_LIST_HEAD(&rq->queuelist);
115 	rq->q = q;
116 	rq->__sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->tag = BLK_MQ_NO_TAG;
120 	rq->internal_tag = BLK_MQ_NO_TAG;
121 	rq->start_time_ns = ktime_get_ns();
122 	rq->part = NULL;
123 	refcount_set(&rq->ref, 1);
124 	blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127 
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 	REQ_OP_NAME(READ),
131 	REQ_OP_NAME(WRITE),
132 	REQ_OP_NAME(FLUSH),
133 	REQ_OP_NAME(DISCARD),
134 	REQ_OP_NAME(SECURE_ERASE),
135 	REQ_OP_NAME(ZONE_RESET),
136 	REQ_OP_NAME(ZONE_RESET_ALL),
137 	REQ_OP_NAME(ZONE_OPEN),
138 	REQ_OP_NAME(ZONE_CLOSE),
139 	REQ_OP_NAME(ZONE_FINISH),
140 	REQ_OP_NAME(ZONE_APPEND),
141 	REQ_OP_NAME(WRITE_SAME),
142 	REQ_OP_NAME(WRITE_ZEROES),
143 	REQ_OP_NAME(SCSI_IN),
144 	REQ_OP_NAME(SCSI_OUT),
145 	REQ_OP_NAME(DRV_IN),
146 	REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149 
150 /**
151  * blk_op_str - Return string XXX in the REQ_OP_XXX.
152  * @op: REQ_OP_XXX.
153  *
154  * Description: Centralize block layer function to convert REQ_OP_XXX into
155  * string format. Useful in the debugging and tracing bio or request. For
156  * invalid REQ_OP_XXX it returns string "UNKNOWN".
157  */
158 inline const char *blk_op_str(unsigned int op)
159 {
160 	const char *op_str = "UNKNOWN";
161 
162 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 		op_str = blk_op_name[op];
164 
165 	return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168 
169 static const struct {
170 	int		errno;
171 	const char	*name;
172 } blk_errors[] = {
173 	[BLK_STS_OK]		= { 0,		"" },
174 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185 
186 	/* device mapper special case, should not leak out: */
187 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188 
189 	/* zone device specific errors */
190 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
191 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
192 
193 	/* everything else not covered above: */
194 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
195 };
196 
197 blk_status_t errno_to_blk_status(int errno)
198 {
199 	int i;
200 
201 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
202 		if (blk_errors[i].errno == errno)
203 			return (__force blk_status_t)i;
204 	}
205 
206 	return BLK_STS_IOERR;
207 }
208 EXPORT_SYMBOL_GPL(errno_to_blk_status);
209 
210 int blk_status_to_errno(blk_status_t status)
211 {
212 	int idx = (__force int)status;
213 
214 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
215 		return -EIO;
216 	return blk_errors[idx].errno;
217 }
218 EXPORT_SYMBOL_GPL(blk_status_to_errno);
219 
220 static void print_req_error(struct request *req, blk_status_t status,
221 		const char *caller)
222 {
223 	int idx = (__force int)status;
224 
225 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
226 		return;
227 
228 	printk_ratelimited(KERN_ERR
229 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
230 		"phys_seg %u prio class %u\n",
231 		caller, blk_errors[idx].name,
232 		req->rq_disk ? req->rq_disk->disk_name : "?",
233 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
234 		req->cmd_flags & ~REQ_OP_MASK,
235 		req->nr_phys_segments,
236 		IOPRIO_PRIO_CLASS(req->ioprio));
237 }
238 
239 static void req_bio_endio(struct request *rq, struct bio *bio,
240 			  unsigned int nbytes, blk_status_t error)
241 {
242 	if (error)
243 		bio->bi_status = error;
244 
245 	if (unlikely(rq->rq_flags & RQF_QUIET))
246 		bio_set_flag(bio, BIO_QUIET);
247 
248 	bio_advance(bio, nbytes);
249 
250 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
251 		/*
252 		 * Partial zone append completions cannot be supported as the
253 		 * BIO fragments may end up not being written sequentially.
254 		 */
255 		if (bio->bi_iter.bi_size)
256 			bio->bi_status = BLK_STS_IOERR;
257 		else
258 			bio->bi_iter.bi_sector = rq->__sector;
259 	}
260 
261 	/* don't actually finish bio if it's part of flush sequence */
262 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
263 		bio_endio(bio);
264 }
265 
266 void blk_dump_rq_flags(struct request *rq, char *msg)
267 {
268 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
269 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
270 		(unsigned long long) rq->cmd_flags);
271 
272 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
273 	       (unsigned long long)blk_rq_pos(rq),
274 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
275 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
276 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
277 }
278 EXPORT_SYMBOL(blk_dump_rq_flags);
279 
280 /**
281  * blk_sync_queue - cancel any pending callbacks on a queue
282  * @q: the queue
283  *
284  * Description:
285  *     The block layer may perform asynchronous callback activity
286  *     on a queue, such as calling the unplug function after a timeout.
287  *     A block device may call blk_sync_queue to ensure that any
288  *     such activity is cancelled, thus allowing it to release resources
289  *     that the callbacks might use. The caller must already have made sure
290  *     that its ->submit_bio will not re-add plugging prior to calling
291  *     this function.
292  *
293  *     This function does not cancel any asynchronous activity arising
294  *     out of elevator or throttling code. That would require elevator_exit()
295  *     and blkcg_exit_queue() to be called with queue lock initialized.
296  *
297  */
298 void blk_sync_queue(struct request_queue *q)
299 {
300 	del_timer_sync(&q->timeout);
301 	cancel_work_sync(&q->timeout_work);
302 }
303 EXPORT_SYMBOL(blk_sync_queue);
304 
305 /**
306  * blk_set_pm_only - increment pm_only counter
307  * @q: request queue pointer
308  */
309 void blk_set_pm_only(struct request_queue *q)
310 {
311 	atomic_inc(&q->pm_only);
312 }
313 EXPORT_SYMBOL_GPL(blk_set_pm_only);
314 
315 void blk_clear_pm_only(struct request_queue *q)
316 {
317 	int pm_only;
318 
319 	pm_only = atomic_dec_return(&q->pm_only);
320 	WARN_ON_ONCE(pm_only < 0);
321 	if (pm_only == 0)
322 		wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
325 
326 /**
327  * blk_put_queue - decrement the request_queue refcount
328  * @q: the request_queue structure to decrement the refcount for
329  *
330  * Decrements the refcount of the request_queue kobject. When this reaches 0
331  * we'll have blk_release_queue() called.
332  *
333  * Context: Any context, but the last reference must not be dropped from
334  *          atomic context.
335  */
336 void blk_put_queue(struct request_queue *q)
337 {
338 	kobject_put(&q->kobj);
339 }
340 EXPORT_SYMBOL(blk_put_queue);
341 
342 void blk_set_queue_dying(struct request_queue *q)
343 {
344 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
345 
346 	/*
347 	 * When queue DYING flag is set, we need to block new req
348 	 * entering queue, so we call blk_freeze_queue_start() to
349 	 * prevent I/O from crossing blk_queue_enter().
350 	 */
351 	blk_freeze_queue_start(q);
352 
353 	if (queue_is_mq(q))
354 		blk_mq_wake_waiters(q);
355 
356 	/* Make blk_queue_enter() reexamine the DYING flag. */
357 	wake_up_all(&q->mq_freeze_wq);
358 }
359 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
360 
361 /**
362  * blk_cleanup_queue - shutdown a request queue
363  * @q: request queue to shutdown
364  *
365  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
366  * put it.  All future requests will be failed immediately with -ENODEV.
367  *
368  * Context: can sleep
369  */
370 void blk_cleanup_queue(struct request_queue *q)
371 {
372 	/* cannot be called from atomic context */
373 	might_sleep();
374 
375 	WARN_ON_ONCE(blk_queue_registered(q));
376 
377 	/* mark @q DYING, no new request or merges will be allowed afterwards */
378 	blk_set_queue_dying(q);
379 
380 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
381 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
382 
383 	/*
384 	 * Drain all requests queued before DYING marking. Set DEAD flag to
385 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
386 	 * after draining finished.
387 	 */
388 	blk_freeze_queue(q);
389 
390 	rq_qos_exit(q);
391 
392 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
393 
394 	/* for synchronous bio-based driver finish in-flight integrity i/o */
395 	blk_flush_integrity();
396 
397 	/* @q won't process any more request, flush async actions */
398 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
399 	blk_sync_queue(q);
400 
401 	if (queue_is_mq(q))
402 		blk_mq_exit_queue(q);
403 
404 	/*
405 	 * In theory, request pool of sched_tags belongs to request queue.
406 	 * However, the current implementation requires tag_set for freeing
407 	 * requests, so free the pool now.
408 	 *
409 	 * Queue has become frozen, there can't be any in-queue requests, so
410 	 * it is safe to free requests now.
411 	 */
412 	mutex_lock(&q->sysfs_lock);
413 	if (q->elevator)
414 		blk_mq_sched_free_requests(q);
415 	mutex_unlock(&q->sysfs_lock);
416 
417 	percpu_ref_exit(&q->q_usage_counter);
418 
419 	/* @q is and will stay empty, shutdown and put */
420 	blk_put_queue(q);
421 }
422 EXPORT_SYMBOL(blk_cleanup_queue);
423 
424 /**
425  * blk_queue_enter() - try to increase q->q_usage_counter
426  * @q: request queue pointer
427  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
428  */
429 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
430 {
431 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
432 
433 	while (true) {
434 		bool success = false;
435 
436 		rcu_read_lock();
437 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
438 			/*
439 			 * The code that increments the pm_only counter is
440 			 * responsible for ensuring that that counter is
441 			 * globally visible before the queue is unfrozen.
442 			 */
443 			if (pm || !blk_queue_pm_only(q)) {
444 				success = true;
445 			} else {
446 				percpu_ref_put(&q->q_usage_counter);
447 			}
448 		}
449 		rcu_read_unlock();
450 
451 		if (success)
452 			return 0;
453 
454 		if (flags & BLK_MQ_REQ_NOWAIT)
455 			return -EBUSY;
456 
457 		/*
458 		 * read pair of barrier in blk_freeze_queue_start(),
459 		 * we need to order reading __PERCPU_REF_DEAD flag of
460 		 * .q_usage_counter and reading .mq_freeze_depth or
461 		 * queue dying flag, otherwise the following wait may
462 		 * never return if the two reads are reordered.
463 		 */
464 		smp_rmb();
465 
466 		wait_event(q->mq_freeze_wq,
467 			   (!q->mq_freeze_depth &&
468 			    (pm || (blk_pm_request_resume(q),
469 				    !blk_queue_pm_only(q)))) ||
470 			   blk_queue_dying(q));
471 		if (blk_queue_dying(q))
472 			return -ENODEV;
473 	}
474 }
475 
476 static inline int bio_queue_enter(struct bio *bio)
477 {
478 	struct request_queue *q = bio->bi_disk->queue;
479 	bool nowait = bio->bi_opf & REQ_NOWAIT;
480 	int ret;
481 
482 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
483 	if (unlikely(ret)) {
484 		if (nowait && !blk_queue_dying(q))
485 			bio_wouldblock_error(bio);
486 		else
487 			bio_io_error(bio);
488 	}
489 
490 	return ret;
491 }
492 
493 void blk_queue_exit(struct request_queue *q)
494 {
495 	percpu_ref_put(&q->q_usage_counter);
496 }
497 
498 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
499 {
500 	struct request_queue *q =
501 		container_of(ref, struct request_queue, q_usage_counter);
502 
503 	wake_up_all(&q->mq_freeze_wq);
504 }
505 
506 static void blk_rq_timed_out_timer(struct timer_list *t)
507 {
508 	struct request_queue *q = from_timer(q, t, timeout);
509 
510 	kblockd_schedule_work(&q->timeout_work);
511 }
512 
513 static void blk_timeout_work(struct work_struct *work)
514 {
515 }
516 
517 struct request_queue *blk_alloc_queue(int node_id)
518 {
519 	struct request_queue *q;
520 	int ret;
521 
522 	q = kmem_cache_alloc_node(blk_requestq_cachep,
523 				GFP_KERNEL | __GFP_ZERO, node_id);
524 	if (!q)
525 		return NULL;
526 
527 	q->last_merge = NULL;
528 
529 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
530 	if (q->id < 0)
531 		goto fail_q;
532 
533 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
534 	if (ret)
535 		goto fail_id;
536 
537 	q->backing_dev_info = bdi_alloc(node_id);
538 	if (!q->backing_dev_info)
539 		goto fail_split;
540 
541 	q->stats = blk_alloc_queue_stats();
542 	if (!q->stats)
543 		goto fail_stats;
544 
545 	q->node = node_id;
546 
547 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
548 
549 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
550 		    laptop_mode_timer_fn, 0);
551 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
552 	INIT_WORK(&q->timeout_work, blk_timeout_work);
553 	INIT_LIST_HEAD(&q->icq_list);
554 #ifdef CONFIG_BLK_CGROUP
555 	INIT_LIST_HEAD(&q->blkg_list);
556 #endif
557 
558 	kobject_init(&q->kobj, &blk_queue_ktype);
559 
560 	mutex_init(&q->debugfs_mutex);
561 	mutex_init(&q->sysfs_lock);
562 	mutex_init(&q->sysfs_dir_lock);
563 	spin_lock_init(&q->queue_lock);
564 
565 	init_waitqueue_head(&q->mq_freeze_wq);
566 	mutex_init(&q->mq_freeze_lock);
567 
568 	/*
569 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
570 	 * See blk_register_queue() for details.
571 	 */
572 	if (percpu_ref_init(&q->q_usage_counter,
573 				blk_queue_usage_counter_release,
574 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
575 		goto fail_bdi;
576 
577 	if (blkcg_init_queue(q))
578 		goto fail_ref;
579 
580 	blk_queue_dma_alignment(q, 511);
581 	blk_set_default_limits(&q->limits);
582 	q->nr_requests = BLKDEV_MAX_RQ;
583 
584 	return q;
585 
586 fail_ref:
587 	percpu_ref_exit(&q->q_usage_counter);
588 fail_bdi:
589 	blk_free_queue_stats(q->stats);
590 fail_stats:
591 	bdi_put(q->backing_dev_info);
592 fail_split:
593 	bioset_exit(&q->bio_split);
594 fail_id:
595 	ida_simple_remove(&blk_queue_ida, q->id);
596 fail_q:
597 	kmem_cache_free(blk_requestq_cachep, q);
598 	return NULL;
599 }
600 EXPORT_SYMBOL(blk_alloc_queue);
601 
602 /**
603  * blk_get_queue - increment the request_queue refcount
604  * @q: the request_queue structure to increment the refcount for
605  *
606  * Increment the refcount of the request_queue kobject.
607  *
608  * Context: Any context.
609  */
610 bool blk_get_queue(struct request_queue *q)
611 {
612 	if (likely(!blk_queue_dying(q))) {
613 		__blk_get_queue(q);
614 		return true;
615 	}
616 
617 	return false;
618 }
619 EXPORT_SYMBOL(blk_get_queue);
620 
621 /**
622  * blk_get_request - allocate a request
623  * @q: request queue to allocate a request for
624  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
625  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
626  */
627 struct request *blk_get_request(struct request_queue *q, unsigned int op,
628 				blk_mq_req_flags_t flags)
629 {
630 	struct request *req;
631 
632 	WARN_ON_ONCE(op & REQ_NOWAIT);
633 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
634 
635 	req = blk_mq_alloc_request(q, op, flags);
636 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
637 		q->mq_ops->initialize_rq_fn(req);
638 
639 	return req;
640 }
641 EXPORT_SYMBOL(blk_get_request);
642 
643 void blk_put_request(struct request *req)
644 {
645 	blk_mq_free_request(req);
646 }
647 EXPORT_SYMBOL(blk_put_request);
648 
649 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
650 {
651 	char b[BDEVNAME_SIZE];
652 
653 	pr_info_ratelimited("attempt to access beyond end of device\n"
654 			    "%s: rw=%d, want=%llu, limit=%llu\n",
655 			    bio_devname(bio, b), bio->bi_opf,
656 			    bio_end_sector(bio), maxsector);
657 }
658 
659 #ifdef CONFIG_FAIL_MAKE_REQUEST
660 
661 static DECLARE_FAULT_ATTR(fail_make_request);
662 
663 static int __init setup_fail_make_request(char *str)
664 {
665 	return setup_fault_attr(&fail_make_request, str);
666 }
667 __setup("fail_make_request=", setup_fail_make_request);
668 
669 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
670 {
671 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
672 }
673 
674 static int __init fail_make_request_debugfs(void)
675 {
676 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
677 						NULL, &fail_make_request);
678 
679 	return PTR_ERR_OR_ZERO(dir);
680 }
681 
682 late_initcall(fail_make_request_debugfs);
683 
684 #else /* CONFIG_FAIL_MAKE_REQUEST */
685 
686 static inline bool should_fail_request(struct hd_struct *part,
687 					unsigned int bytes)
688 {
689 	return false;
690 }
691 
692 #endif /* CONFIG_FAIL_MAKE_REQUEST */
693 
694 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
695 {
696 	const int op = bio_op(bio);
697 
698 	if (part->policy && op_is_write(op)) {
699 		char b[BDEVNAME_SIZE];
700 
701 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
702 			return false;
703 
704 		WARN_ONCE(1,
705 		       "Trying to write to read-only block-device %s (partno %d)\n",
706 			bio_devname(bio, b), part->partno);
707 		/* Older lvm-tools actually trigger this */
708 		return false;
709 	}
710 
711 	return false;
712 }
713 
714 static noinline int should_fail_bio(struct bio *bio)
715 {
716 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
717 		return -EIO;
718 	return 0;
719 }
720 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
721 
722 /*
723  * Check whether this bio extends beyond the end of the device or partition.
724  * This may well happen - the kernel calls bread() without checking the size of
725  * the device, e.g., when mounting a file system.
726  */
727 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
728 {
729 	unsigned int nr_sectors = bio_sectors(bio);
730 
731 	if (nr_sectors && maxsector &&
732 	    (nr_sectors > maxsector ||
733 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
734 		handle_bad_sector(bio, maxsector);
735 		return -EIO;
736 	}
737 	return 0;
738 }
739 
740 /*
741  * Remap block n of partition p to block n+start(p) of the disk.
742  */
743 static inline int blk_partition_remap(struct bio *bio)
744 {
745 	struct hd_struct *p;
746 	int ret = -EIO;
747 
748 	rcu_read_lock();
749 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
750 	if (unlikely(!p))
751 		goto out;
752 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
753 		goto out;
754 	if (unlikely(bio_check_ro(bio, p)))
755 		goto out;
756 
757 	if (bio_sectors(bio)) {
758 		if (bio_check_eod(bio, part_nr_sects_read(p)))
759 			goto out;
760 		bio->bi_iter.bi_sector += p->start_sect;
761 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
762 				      bio->bi_iter.bi_sector - p->start_sect);
763 	}
764 	bio->bi_partno = 0;
765 	ret = 0;
766 out:
767 	rcu_read_unlock();
768 	return ret;
769 }
770 
771 /*
772  * Check write append to a zoned block device.
773  */
774 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
775 						 struct bio *bio)
776 {
777 	sector_t pos = bio->bi_iter.bi_sector;
778 	int nr_sectors = bio_sectors(bio);
779 
780 	/* Only applicable to zoned block devices */
781 	if (!blk_queue_is_zoned(q))
782 		return BLK_STS_NOTSUPP;
783 
784 	/* The bio sector must point to the start of a sequential zone */
785 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
786 	    !blk_queue_zone_is_seq(q, pos))
787 		return BLK_STS_IOERR;
788 
789 	/*
790 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
791 	 * split and could result in non-contiguous sectors being written in
792 	 * different zones.
793 	 */
794 	if (nr_sectors > q->limits.chunk_sectors)
795 		return BLK_STS_IOERR;
796 
797 	/* Make sure the BIO is small enough and will not get split */
798 	if (nr_sectors > q->limits.max_zone_append_sectors)
799 		return BLK_STS_IOERR;
800 
801 	bio->bi_opf |= REQ_NOMERGE;
802 
803 	return BLK_STS_OK;
804 }
805 
806 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
807 {
808 	struct request_queue *q = bio->bi_disk->queue;
809 	blk_status_t status = BLK_STS_IOERR;
810 	struct blk_plug *plug;
811 
812 	might_sleep();
813 
814 	plug = blk_mq_plug(q, bio);
815 	if (plug && plug->nowait)
816 		bio->bi_opf |= REQ_NOWAIT;
817 
818 	/*
819 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
820 	 * if queue does not support NOWAIT.
821 	 */
822 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
823 		goto not_supported;
824 
825 	if (should_fail_bio(bio))
826 		goto end_io;
827 
828 	if (bio->bi_partno) {
829 		if (unlikely(blk_partition_remap(bio)))
830 			goto end_io;
831 	} else {
832 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
833 			goto end_io;
834 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
835 			goto end_io;
836 	}
837 
838 	/*
839 	 * Filter flush bio's early so that bio based drivers without flush
840 	 * support don't have to worry about them.
841 	 */
842 	if (op_is_flush(bio->bi_opf) &&
843 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
844 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
845 		if (!bio_sectors(bio)) {
846 			status = BLK_STS_OK;
847 			goto end_io;
848 		}
849 	}
850 
851 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
852 		bio->bi_opf &= ~REQ_HIPRI;
853 
854 	switch (bio_op(bio)) {
855 	case REQ_OP_DISCARD:
856 		if (!blk_queue_discard(q))
857 			goto not_supported;
858 		break;
859 	case REQ_OP_SECURE_ERASE:
860 		if (!blk_queue_secure_erase(q))
861 			goto not_supported;
862 		break;
863 	case REQ_OP_WRITE_SAME:
864 		if (!q->limits.max_write_same_sectors)
865 			goto not_supported;
866 		break;
867 	case REQ_OP_ZONE_APPEND:
868 		status = blk_check_zone_append(q, bio);
869 		if (status != BLK_STS_OK)
870 			goto end_io;
871 		break;
872 	case REQ_OP_ZONE_RESET:
873 	case REQ_OP_ZONE_OPEN:
874 	case REQ_OP_ZONE_CLOSE:
875 	case REQ_OP_ZONE_FINISH:
876 		if (!blk_queue_is_zoned(q))
877 			goto not_supported;
878 		break;
879 	case REQ_OP_ZONE_RESET_ALL:
880 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
881 			goto not_supported;
882 		break;
883 	case REQ_OP_WRITE_ZEROES:
884 		if (!q->limits.max_write_zeroes_sectors)
885 			goto not_supported;
886 		break;
887 	default:
888 		break;
889 	}
890 
891 	/*
892 	 * Various block parts want %current->io_context, so allocate it up
893 	 * front rather than dealing with lots of pain to allocate it only
894 	 * where needed. This may fail and the block layer knows how to live
895 	 * with it.
896 	 */
897 	if (unlikely(!current->io_context))
898 		create_task_io_context(current, GFP_ATOMIC, q->node);
899 
900 	if (blk_throtl_bio(bio)) {
901 		blkcg_bio_issue_init(bio);
902 		return false;
903 	}
904 
905 	blk_cgroup_bio_start(bio);
906 	blkcg_bio_issue_init(bio);
907 
908 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
909 		trace_block_bio_queue(q, bio);
910 		/* Now that enqueuing has been traced, we need to trace
911 		 * completion as well.
912 		 */
913 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
914 	}
915 	return true;
916 
917 not_supported:
918 	status = BLK_STS_NOTSUPP;
919 end_io:
920 	bio->bi_status = status;
921 	bio_endio(bio);
922 	return false;
923 }
924 
925 static blk_qc_t __submit_bio(struct bio *bio)
926 {
927 	struct gendisk *disk = bio->bi_disk;
928 	blk_qc_t ret = BLK_QC_T_NONE;
929 
930 	if (blk_crypto_bio_prep(&bio)) {
931 		if (!disk->fops->submit_bio)
932 			return blk_mq_submit_bio(bio);
933 		ret = disk->fops->submit_bio(bio);
934 	}
935 	blk_queue_exit(disk->queue);
936 	return ret;
937 }
938 
939 /*
940  * The loop in this function may be a bit non-obvious, and so deserves some
941  * explanation:
942  *
943  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
944  *    that), so we have a list with a single bio.
945  *  - We pretend that we have just taken it off a longer list, so we assign
946  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
947  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
948  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
949  *    non-NULL value in bio_list and re-enter the loop from the top.
950  *  - In this case we really did just take the bio of the top of the list (no
951  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
952  *    again.
953  *
954  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
955  * bio_list_on_stack[1] contains bios that were submitted before the current
956  *	->submit_bio_bio, but that haven't been processed yet.
957  */
958 static blk_qc_t __submit_bio_noacct(struct bio *bio)
959 {
960 	struct bio_list bio_list_on_stack[2];
961 	blk_qc_t ret = BLK_QC_T_NONE;
962 
963 	BUG_ON(bio->bi_next);
964 
965 	bio_list_init(&bio_list_on_stack[0]);
966 	current->bio_list = bio_list_on_stack;
967 
968 	do {
969 		struct request_queue *q = bio->bi_disk->queue;
970 		struct bio_list lower, same;
971 
972 		if (unlikely(bio_queue_enter(bio) != 0))
973 			continue;
974 
975 		/*
976 		 * Create a fresh bio_list for all subordinate requests.
977 		 */
978 		bio_list_on_stack[1] = bio_list_on_stack[0];
979 		bio_list_init(&bio_list_on_stack[0]);
980 
981 		ret = __submit_bio(bio);
982 
983 		/*
984 		 * Sort new bios into those for a lower level and those for the
985 		 * same level.
986 		 */
987 		bio_list_init(&lower);
988 		bio_list_init(&same);
989 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
990 			if (q == bio->bi_disk->queue)
991 				bio_list_add(&same, bio);
992 			else
993 				bio_list_add(&lower, bio);
994 
995 		/*
996 		 * Now assemble so we handle the lowest level first.
997 		 */
998 		bio_list_merge(&bio_list_on_stack[0], &lower);
999 		bio_list_merge(&bio_list_on_stack[0], &same);
1000 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1001 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1002 
1003 	current->bio_list = NULL;
1004 	return ret;
1005 }
1006 
1007 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1008 {
1009 	struct bio_list bio_list[2] = { };
1010 	blk_qc_t ret = BLK_QC_T_NONE;
1011 
1012 	current->bio_list = bio_list;
1013 
1014 	do {
1015 		struct gendisk *disk = bio->bi_disk;
1016 
1017 		if (unlikely(bio_queue_enter(bio) != 0))
1018 			continue;
1019 
1020 		if (!blk_crypto_bio_prep(&bio)) {
1021 			blk_queue_exit(disk->queue);
1022 			ret = BLK_QC_T_NONE;
1023 			continue;
1024 		}
1025 
1026 		ret = blk_mq_submit_bio(bio);
1027 	} while ((bio = bio_list_pop(&bio_list[0])));
1028 
1029 	current->bio_list = NULL;
1030 	return ret;
1031 }
1032 
1033 /**
1034  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1035  * @bio:  The bio describing the location in memory and on the device.
1036  *
1037  * This is a version of submit_bio() that shall only be used for I/O that is
1038  * resubmitted to lower level drivers by stacking block drivers.  All file
1039  * systems and other upper level users of the block layer should use
1040  * submit_bio() instead.
1041  */
1042 blk_qc_t submit_bio_noacct(struct bio *bio)
1043 {
1044 	if (!submit_bio_checks(bio))
1045 		return BLK_QC_T_NONE;
1046 
1047 	/*
1048 	 * We only want one ->submit_bio to be active at a time, else stack
1049 	 * usage with stacked devices could be a problem.  Use current->bio_list
1050 	 * to collect a list of requests submited by a ->submit_bio method while
1051 	 * it is active, and then process them after it returned.
1052 	 */
1053 	if (current->bio_list) {
1054 		bio_list_add(&current->bio_list[0], bio);
1055 		return BLK_QC_T_NONE;
1056 	}
1057 
1058 	if (!bio->bi_disk->fops->submit_bio)
1059 		return __submit_bio_noacct_mq(bio);
1060 	return __submit_bio_noacct(bio);
1061 }
1062 EXPORT_SYMBOL(submit_bio_noacct);
1063 
1064 /**
1065  * submit_bio - submit a bio to the block device layer for I/O
1066  * @bio: The &struct bio which describes the I/O
1067  *
1068  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1069  * fully set up &struct bio that describes the I/O that needs to be done.  The
1070  * bio will be send to the device described by the bi_disk and bi_partno fields.
1071  *
1072  * The success/failure status of the request, along with notification of
1073  * completion, is delivered asynchronously through the ->bi_end_io() callback
1074  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1075  * been called.
1076  */
1077 blk_qc_t submit_bio(struct bio *bio)
1078 {
1079 	if (blkcg_punt_bio_submit(bio))
1080 		return BLK_QC_T_NONE;
1081 
1082 	/*
1083 	 * If it's a regular read/write or a barrier with data attached,
1084 	 * go through the normal accounting stuff before submission.
1085 	 */
1086 	if (bio_has_data(bio)) {
1087 		unsigned int count;
1088 
1089 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1090 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1091 		else
1092 			count = bio_sectors(bio);
1093 
1094 		if (op_is_write(bio_op(bio))) {
1095 			count_vm_events(PGPGOUT, count);
1096 		} else {
1097 			task_io_account_read(bio->bi_iter.bi_size);
1098 			count_vm_events(PGPGIN, count);
1099 		}
1100 
1101 		if (unlikely(block_dump)) {
1102 			char b[BDEVNAME_SIZE];
1103 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1104 			current->comm, task_pid_nr(current),
1105 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1106 				(unsigned long long)bio->bi_iter.bi_sector,
1107 				bio_devname(bio, b), count);
1108 		}
1109 	}
1110 
1111 	/*
1112 	 * If we're reading data that is part of the userspace workingset, count
1113 	 * submission time as memory stall.  When the device is congested, or
1114 	 * the submitting cgroup IO-throttled, submission can be a significant
1115 	 * part of overall IO time.
1116 	 */
1117 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1118 	    bio_flagged(bio, BIO_WORKINGSET))) {
1119 		unsigned long pflags;
1120 		blk_qc_t ret;
1121 
1122 		psi_memstall_enter(&pflags);
1123 		ret = submit_bio_noacct(bio);
1124 		psi_memstall_leave(&pflags);
1125 
1126 		return ret;
1127 	}
1128 
1129 	return submit_bio_noacct(bio);
1130 }
1131 EXPORT_SYMBOL(submit_bio);
1132 
1133 /**
1134  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1135  *                              for the new queue limits
1136  * @q:  the queue
1137  * @rq: the request being checked
1138  *
1139  * Description:
1140  *    @rq may have been made based on weaker limitations of upper-level queues
1141  *    in request stacking drivers, and it may violate the limitation of @q.
1142  *    Since the block layer and the underlying device driver trust @rq
1143  *    after it is inserted to @q, it should be checked against @q before
1144  *    the insertion using this generic function.
1145  *
1146  *    Request stacking drivers like request-based dm may change the queue
1147  *    limits when retrying requests on other queues. Those requests need
1148  *    to be checked against the new queue limits again during dispatch.
1149  */
1150 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1151 				      struct request *rq)
1152 {
1153 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1154 
1155 	if (blk_rq_sectors(rq) > max_sectors) {
1156 		/*
1157 		 * SCSI device does not have a good way to return if
1158 		 * Write Same/Zero is actually supported. If a device rejects
1159 		 * a non-read/write command (discard, write same,etc.) the
1160 		 * low-level device driver will set the relevant queue limit to
1161 		 * 0 to prevent blk-lib from issuing more of the offending
1162 		 * operations. Commands queued prior to the queue limit being
1163 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1164 		 * errors being propagated to upper layers.
1165 		 */
1166 		if (max_sectors == 0)
1167 			return BLK_STS_NOTSUPP;
1168 
1169 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1170 			__func__, blk_rq_sectors(rq), max_sectors);
1171 		return BLK_STS_IOERR;
1172 	}
1173 
1174 	/*
1175 	 * queue's settings related to segment counting like q->bounce_pfn
1176 	 * may differ from that of other stacking queues.
1177 	 * Recalculate it to check the request correctly on this queue's
1178 	 * limitation.
1179 	 */
1180 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1181 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1182 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1183 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1184 		return BLK_STS_IOERR;
1185 	}
1186 
1187 	return BLK_STS_OK;
1188 }
1189 
1190 /**
1191  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1192  * @q:  the queue to submit the request
1193  * @rq: the request being queued
1194  */
1195 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1196 {
1197 	blk_status_t ret;
1198 
1199 	ret = blk_cloned_rq_check_limits(q, rq);
1200 	if (ret != BLK_STS_OK)
1201 		return ret;
1202 
1203 	if (rq->rq_disk &&
1204 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1205 		return BLK_STS_IOERR;
1206 
1207 	if (blk_crypto_insert_cloned_request(rq))
1208 		return BLK_STS_IOERR;
1209 
1210 	if (blk_queue_io_stat(q))
1211 		blk_account_io_start(rq);
1212 
1213 	/*
1214 	 * Since we have a scheduler attached on the top device,
1215 	 * bypass a potential scheduler on the bottom device for
1216 	 * insert.
1217 	 */
1218 	return blk_mq_request_issue_directly(rq, true);
1219 }
1220 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1221 
1222 /**
1223  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1224  * @rq: request to examine
1225  *
1226  * Description:
1227  *     A request could be merge of IOs which require different failure
1228  *     handling.  This function determines the number of bytes which
1229  *     can be failed from the beginning of the request without
1230  *     crossing into area which need to be retried further.
1231  *
1232  * Return:
1233  *     The number of bytes to fail.
1234  */
1235 unsigned int blk_rq_err_bytes(const struct request *rq)
1236 {
1237 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1238 	unsigned int bytes = 0;
1239 	struct bio *bio;
1240 
1241 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1242 		return blk_rq_bytes(rq);
1243 
1244 	/*
1245 	 * Currently the only 'mixing' which can happen is between
1246 	 * different fastfail types.  We can safely fail portions
1247 	 * which have all the failfast bits that the first one has -
1248 	 * the ones which are at least as eager to fail as the first
1249 	 * one.
1250 	 */
1251 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1252 		if ((bio->bi_opf & ff) != ff)
1253 			break;
1254 		bytes += bio->bi_iter.bi_size;
1255 	}
1256 
1257 	/* this could lead to infinite loop */
1258 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1259 	return bytes;
1260 }
1261 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1262 
1263 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1264 {
1265 	unsigned long stamp;
1266 again:
1267 	stamp = READ_ONCE(part->stamp);
1268 	if (unlikely(stamp != now)) {
1269 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1270 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1271 	}
1272 	if (part->partno) {
1273 		part = &part_to_disk(part)->part0;
1274 		goto again;
1275 	}
1276 }
1277 
1278 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1279 {
1280 	if (req->part && blk_do_io_stat(req)) {
1281 		const int sgrp = op_stat_group(req_op(req));
1282 		struct hd_struct *part;
1283 
1284 		part_stat_lock();
1285 		part = req->part;
1286 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1287 		part_stat_unlock();
1288 	}
1289 }
1290 
1291 void blk_account_io_done(struct request *req, u64 now)
1292 {
1293 	/*
1294 	 * Account IO completion.  flush_rq isn't accounted as a
1295 	 * normal IO on queueing nor completion.  Accounting the
1296 	 * containing request is enough.
1297 	 */
1298 	if (req->part && blk_do_io_stat(req) &&
1299 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1300 		const int sgrp = op_stat_group(req_op(req));
1301 		struct hd_struct *part;
1302 
1303 		part_stat_lock();
1304 		part = req->part;
1305 
1306 		update_io_ticks(part, jiffies, true);
1307 		part_stat_inc(part, ios[sgrp]);
1308 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1309 		part_stat_unlock();
1310 
1311 		hd_struct_put(part);
1312 	}
1313 }
1314 
1315 void blk_account_io_start(struct request *rq)
1316 {
1317 	if (!blk_do_io_stat(rq))
1318 		return;
1319 
1320 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1321 
1322 	part_stat_lock();
1323 	update_io_ticks(rq->part, jiffies, false);
1324 	part_stat_unlock();
1325 }
1326 
1327 static unsigned long __part_start_io_acct(struct hd_struct *part,
1328 					  unsigned int sectors, unsigned int op)
1329 {
1330 	const int sgrp = op_stat_group(op);
1331 	unsigned long now = READ_ONCE(jiffies);
1332 
1333 	part_stat_lock();
1334 	update_io_ticks(part, now, false);
1335 	part_stat_inc(part, ios[sgrp]);
1336 	part_stat_add(part, sectors[sgrp], sectors);
1337 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1338 	part_stat_unlock();
1339 
1340 	return now;
1341 }
1342 
1343 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part,
1344 				 struct bio *bio)
1345 {
1346 	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1347 
1348 	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1349 }
1350 EXPORT_SYMBOL_GPL(part_start_io_acct);
1351 
1352 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1353 				 unsigned int op)
1354 {
1355 	return __part_start_io_acct(&disk->part0, sectors, op);
1356 }
1357 EXPORT_SYMBOL(disk_start_io_acct);
1358 
1359 static void __part_end_io_acct(struct hd_struct *part, unsigned int op,
1360 			       unsigned long start_time)
1361 {
1362 	const int sgrp = op_stat_group(op);
1363 	unsigned long now = READ_ONCE(jiffies);
1364 	unsigned long duration = now - start_time;
1365 
1366 	part_stat_lock();
1367 	update_io_ticks(part, now, true);
1368 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1369 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1370 	part_stat_unlock();
1371 }
1372 
1373 void part_end_io_acct(struct hd_struct *part, struct bio *bio,
1374 		      unsigned long start_time)
1375 {
1376 	__part_end_io_acct(part, bio_op(bio), start_time);
1377 	hd_struct_put(part);
1378 }
1379 EXPORT_SYMBOL_GPL(part_end_io_acct);
1380 
1381 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1382 		      unsigned long start_time)
1383 {
1384 	__part_end_io_acct(&disk->part0, op, start_time);
1385 }
1386 EXPORT_SYMBOL(disk_end_io_acct);
1387 
1388 /*
1389  * Steal bios from a request and add them to a bio list.
1390  * The request must not have been partially completed before.
1391  */
1392 void blk_steal_bios(struct bio_list *list, struct request *rq)
1393 {
1394 	if (rq->bio) {
1395 		if (list->tail)
1396 			list->tail->bi_next = rq->bio;
1397 		else
1398 			list->head = rq->bio;
1399 		list->tail = rq->biotail;
1400 
1401 		rq->bio = NULL;
1402 		rq->biotail = NULL;
1403 	}
1404 
1405 	rq->__data_len = 0;
1406 }
1407 EXPORT_SYMBOL_GPL(blk_steal_bios);
1408 
1409 /**
1410  * blk_update_request - Special helper function for request stacking drivers
1411  * @req:      the request being processed
1412  * @error:    block status code
1413  * @nr_bytes: number of bytes to complete @req
1414  *
1415  * Description:
1416  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1417  *     the request structure even if @req doesn't have leftover.
1418  *     If @req has leftover, sets it up for the next range of segments.
1419  *
1420  *     This special helper function is only for request stacking drivers
1421  *     (e.g. request-based dm) so that they can handle partial completion.
1422  *     Actual device drivers should use blk_mq_end_request instead.
1423  *
1424  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1425  *     %false return from this function.
1426  *
1427  * Note:
1428  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1429  *	blk_rq_bytes() and in blk_update_request().
1430  *
1431  * Return:
1432  *     %false - this request doesn't have any more data
1433  *     %true  - this request has more data
1434  **/
1435 bool blk_update_request(struct request *req, blk_status_t error,
1436 		unsigned int nr_bytes)
1437 {
1438 	int total_bytes;
1439 
1440 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1441 
1442 	if (!req->bio)
1443 		return false;
1444 
1445 #ifdef CONFIG_BLK_DEV_INTEGRITY
1446 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1447 	    error == BLK_STS_OK)
1448 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1449 #endif
1450 
1451 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1452 		     !(req->rq_flags & RQF_QUIET)))
1453 		print_req_error(req, error, __func__);
1454 
1455 	blk_account_io_completion(req, nr_bytes);
1456 
1457 	total_bytes = 0;
1458 	while (req->bio) {
1459 		struct bio *bio = req->bio;
1460 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1461 
1462 		if (bio_bytes == bio->bi_iter.bi_size)
1463 			req->bio = bio->bi_next;
1464 
1465 		/* Completion has already been traced */
1466 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1467 		req_bio_endio(req, bio, bio_bytes, error);
1468 
1469 		total_bytes += bio_bytes;
1470 		nr_bytes -= bio_bytes;
1471 
1472 		if (!nr_bytes)
1473 			break;
1474 	}
1475 
1476 	/*
1477 	 * completely done
1478 	 */
1479 	if (!req->bio) {
1480 		/*
1481 		 * Reset counters so that the request stacking driver
1482 		 * can find how many bytes remain in the request
1483 		 * later.
1484 		 */
1485 		req->__data_len = 0;
1486 		return false;
1487 	}
1488 
1489 	req->__data_len -= total_bytes;
1490 
1491 	/* update sector only for requests with clear definition of sector */
1492 	if (!blk_rq_is_passthrough(req))
1493 		req->__sector += total_bytes >> 9;
1494 
1495 	/* mixed attributes always follow the first bio */
1496 	if (req->rq_flags & RQF_MIXED_MERGE) {
1497 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1498 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1499 	}
1500 
1501 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1502 		/*
1503 		 * If total number of sectors is less than the first segment
1504 		 * size, something has gone terribly wrong.
1505 		 */
1506 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1507 			blk_dump_rq_flags(req, "request botched");
1508 			req->__data_len = blk_rq_cur_bytes(req);
1509 		}
1510 
1511 		/* recalculate the number of segments */
1512 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1513 	}
1514 
1515 	return true;
1516 }
1517 EXPORT_SYMBOL_GPL(blk_update_request);
1518 
1519 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1520 /**
1521  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1522  * @rq: the request to be flushed
1523  *
1524  * Description:
1525  *     Flush all pages in @rq.
1526  */
1527 void rq_flush_dcache_pages(struct request *rq)
1528 {
1529 	struct req_iterator iter;
1530 	struct bio_vec bvec;
1531 
1532 	rq_for_each_segment(bvec, rq, iter)
1533 		flush_dcache_page(bvec.bv_page);
1534 }
1535 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1536 #endif
1537 
1538 /**
1539  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1540  * @q : the queue of the device being checked
1541  *
1542  * Description:
1543  *    Check if underlying low-level drivers of a device are busy.
1544  *    If the drivers want to export their busy state, they must set own
1545  *    exporting function using blk_queue_lld_busy() first.
1546  *
1547  *    Basically, this function is used only by request stacking drivers
1548  *    to stop dispatching requests to underlying devices when underlying
1549  *    devices are busy.  This behavior helps more I/O merging on the queue
1550  *    of the request stacking driver and prevents I/O throughput regression
1551  *    on burst I/O load.
1552  *
1553  * Return:
1554  *    0 - Not busy (The request stacking driver should dispatch request)
1555  *    1 - Busy (The request stacking driver should stop dispatching request)
1556  */
1557 int blk_lld_busy(struct request_queue *q)
1558 {
1559 	if (queue_is_mq(q) && q->mq_ops->busy)
1560 		return q->mq_ops->busy(q);
1561 
1562 	return 0;
1563 }
1564 EXPORT_SYMBOL_GPL(blk_lld_busy);
1565 
1566 /**
1567  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1568  * @rq: the clone request to be cleaned up
1569  *
1570  * Description:
1571  *     Free all bios in @rq for a cloned request.
1572  */
1573 void blk_rq_unprep_clone(struct request *rq)
1574 {
1575 	struct bio *bio;
1576 
1577 	while ((bio = rq->bio) != NULL) {
1578 		rq->bio = bio->bi_next;
1579 
1580 		bio_put(bio);
1581 	}
1582 }
1583 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1584 
1585 /**
1586  * blk_rq_prep_clone - Helper function to setup clone request
1587  * @rq: the request to be setup
1588  * @rq_src: original request to be cloned
1589  * @bs: bio_set that bios for clone are allocated from
1590  * @gfp_mask: memory allocation mask for bio
1591  * @bio_ctr: setup function to be called for each clone bio.
1592  *           Returns %0 for success, non %0 for failure.
1593  * @data: private data to be passed to @bio_ctr
1594  *
1595  * Description:
1596  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1597  *     Also, pages which the original bios are pointing to are not copied
1598  *     and the cloned bios just point same pages.
1599  *     So cloned bios must be completed before original bios, which means
1600  *     the caller must complete @rq before @rq_src.
1601  */
1602 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1603 		      struct bio_set *bs, gfp_t gfp_mask,
1604 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1605 		      void *data)
1606 {
1607 	struct bio *bio, *bio_src;
1608 
1609 	if (!bs)
1610 		bs = &fs_bio_set;
1611 
1612 	__rq_for_each_bio(bio_src, rq_src) {
1613 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1614 		if (!bio)
1615 			goto free_and_out;
1616 
1617 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1618 			goto free_and_out;
1619 
1620 		if (rq->bio) {
1621 			rq->biotail->bi_next = bio;
1622 			rq->biotail = bio;
1623 		} else {
1624 			rq->bio = rq->biotail = bio;
1625 		}
1626 		bio = NULL;
1627 	}
1628 
1629 	/* Copy attributes of the original request to the clone request. */
1630 	rq->__sector = blk_rq_pos(rq_src);
1631 	rq->__data_len = blk_rq_bytes(rq_src);
1632 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1633 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1634 		rq->special_vec = rq_src->special_vec;
1635 	}
1636 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1637 	rq->ioprio = rq_src->ioprio;
1638 
1639 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1640 		goto free_and_out;
1641 
1642 	return 0;
1643 
1644 free_and_out:
1645 	if (bio)
1646 		bio_put(bio);
1647 	blk_rq_unprep_clone(rq);
1648 
1649 	return -ENOMEM;
1650 }
1651 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1652 
1653 int kblockd_schedule_work(struct work_struct *work)
1654 {
1655 	return queue_work(kblockd_workqueue, work);
1656 }
1657 EXPORT_SYMBOL(kblockd_schedule_work);
1658 
1659 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1660 				unsigned long delay)
1661 {
1662 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1663 }
1664 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1665 
1666 /**
1667  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1668  * @plug:	The &struct blk_plug that needs to be initialized
1669  *
1670  * Description:
1671  *   blk_start_plug() indicates to the block layer an intent by the caller
1672  *   to submit multiple I/O requests in a batch.  The block layer may use
1673  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1674  *   is called.  However, the block layer may choose to submit requests
1675  *   before a call to blk_finish_plug() if the number of queued I/Os
1676  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1677  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1678  *   the task schedules (see below).
1679  *
1680  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1681  *   pending I/O should the task end up blocking between blk_start_plug() and
1682  *   blk_finish_plug(). This is important from a performance perspective, but
1683  *   also ensures that we don't deadlock. For instance, if the task is blocking
1684  *   for a memory allocation, memory reclaim could end up wanting to free a
1685  *   page belonging to that request that is currently residing in our private
1686  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1687  *   this kind of deadlock.
1688  */
1689 void blk_start_plug(struct blk_plug *plug)
1690 {
1691 	struct task_struct *tsk = current;
1692 
1693 	/*
1694 	 * If this is a nested plug, don't actually assign it.
1695 	 */
1696 	if (tsk->plug)
1697 		return;
1698 
1699 	INIT_LIST_HEAD(&plug->mq_list);
1700 	INIT_LIST_HEAD(&plug->cb_list);
1701 	plug->rq_count = 0;
1702 	plug->multiple_queues = false;
1703 	plug->nowait = false;
1704 
1705 	/*
1706 	 * Store ordering should not be needed here, since a potential
1707 	 * preempt will imply a full memory barrier
1708 	 */
1709 	tsk->plug = plug;
1710 }
1711 EXPORT_SYMBOL(blk_start_plug);
1712 
1713 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1714 {
1715 	LIST_HEAD(callbacks);
1716 
1717 	while (!list_empty(&plug->cb_list)) {
1718 		list_splice_init(&plug->cb_list, &callbacks);
1719 
1720 		while (!list_empty(&callbacks)) {
1721 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1722 							  struct blk_plug_cb,
1723 							  list);
1724 			list_del(&cb->list);
1725 			cb->callback(cb, from_schedule);
1726 		}
1727 	}
1728 }
1729 
1730 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1731 				      int size)
1732 {
1733 	struct blk_plug *plug = current->plug;
1734 	struct blk_plug_cb *cb;
1735 
1736 	if (!plug)
1737 		return NULL;
1738 
1739 	list_for_each_entry(cb, &plug->cb_list, list)
1740 		if (cb->callback == unplug && cb->data == data)
1741 			return cb;
1742 
1743 	/* Not currently on the callback list */
1744 	BUG_ON(size < sizeof(*cb));
1745 	cb = kzalloc(size, GFP_ATOMIC);
1746 	if (cb) {
1747 		cb->data = data;
1748 		cb->callback = unplug;
1749 		list_add(&cb->list, &plug->cb_list);
1750 	}
1751 	return cb;
1752 }
1753 EXPORT_SYMBOL(blk_check_plugged);
1754 
1755 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1756 {
1757 	flush_plug_callbacks(plug, from_schedule);
1758 
1759 	if (!list_empty(&plug->mq_list))
1760 		blk_mq_flush_plug_list(plug, from_schedule);
1761 }
1762 
1763 /**
1764  * blk_finish_plug - mark the end of a batch of submitted I/O
1765  * @plug:	The &struct blk_plug passed to blk_start_plug()
1766  *
1767  * Description:
1768  * Indicate that a batch of I/O submissions is complete.  This function
1769  * must be paired with an initial call to blk_start_plug().  The intent
1770  * is to allow the block layer to optimize I/O submission.  See the
1771  * documentation for blk_start_plug() for more information.
1772  */
1773 void blk_finish_plug(struct blk_plug *plug)
1774 {
1775 	if (plug != current->plug)
1776 		return;
1777 	blk_flush_plug_list(plug, false);
1778 
1779 	current->plug = NULL;
1780 }
1781 EXPORT_SYMBOL(blk_finish_plug);
1782 
1783 void blk_io_schedule(void)
1784 {
1785 	/* Prevent hang_check timer from firing at us during very long I/O */
1786 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1787 
1788 	if (timeout)
1789 		io_schedule_timeout(timeout);
1790 	else
1791 		io_schedule();
1792 }
1793 EXPORT_SYMBOL_GPL(blk_io_schedule);
1794 
1795 int __init blk_dev_init(void)
1796 {
1797 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1798 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1799 			sizeof_field(struct request, cmd_flags));
1800 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1801 			sizeof_field(struct bio, bi_opf));
1802 
1803 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1804 	kblockd_workqueue = alloc_workqueue("kblockd",
1805 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1806 	if (!kblockd_workqueue)
1807 		panic("Failed to create kblockd\n");
1808 
1809 	blk_requestq_cachep = kmem_cache_create("request_queue",
1810 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1811 
1812 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1813 
1814 	return 0;
1815 }
1816