1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep = NULL; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 void blk_queue_congestion_threshold(struct request_queue *q) 67 { 68 int nr; 69 70 nr = q->nr_requests - (q->nr_requests / 8) + 1; 71 if (nr > q->nr_requests) 72 nr = q->nr_requests; 73 q->nr_congestion_on = nr; 74 75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 76 if (nr < 1) 77 nr = 1; 78 q->nr_congestion_off = nr; 79 } 80 81 /** 82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 83 * @bdev: device 84 * 85 * Locates the passed device's request queue and returns the address of its 86 * backing_dev_info. This function can only be called if @bdev is opened 87 * and the return value is never NULL. 88 */ 89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 90 { 91 struct request_queue *q = bdev_get_queue(bdev); 92 93 return &q->backing_dev_info; 94 } 95 EXPORT_SYMBOL(blk_get_backing_dev_info); 96 97 void blk_rq_init(struct request_queue *q, struct request *rq) 98 { 99 memset(rq, 0, sizeof(*rq)); 100 101 INIT_LIST_HEAD(&rq->queuelist); 102 INIT_LIST_HEAD(&rq->timeout_list); 103 rq->cpu = -1; 104 rq->q = q; 105 rq->__sector = (sector_t) -1; 106 INIT_HLIST_NODE(&rq->hash); 107 RB_CLEAR_NODE(&rq->rb_node); 108 rq->cmd = rq->__cmd; 109 rq->cmd_len = BLK_MAX_CDB; 110 rq->tag = -1; 111 rq->start_time = jiffies; 112 set_start_time_ns(rq); 113 rq->part = NULL; 114 } 115 EXPORT_SYMBOL(blk_rq_init); 116 117 static void req_bio_endio(struct request *rq, struct bio *bio, 118 unsigned int nbytes, int error) 119 { 120 if (error) 121 clear_bit(BIO_UPTODATE, &bio->bi_flags); 122 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 123 error = -EIO; 124 125 if (unlikely(rq->cmd_flags & REQ_QUIET)) 126 set_bit(BIO_QUIET, &bio->bi_flags); 127 128 bio_advance(bio, nbytes); 129 130 /* don't actually finish bio if it's part of flush sequence */ 131 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 132 bio_endio(bio, error); 133 } 134 135 void blk_dump_rq_flags(struct request *rq, char *msg) 136 { 137 int bit; 138 139 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 140 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 141 (unsigned long long) rq->cmd_flags); 142 143 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 144 (unsigned long long)blk_rq_pos(rq), 145 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 146 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 147 rq->bio, rq->biotail, blk_rq_bytes(rq)); 148 149 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 150 printk(KERN_INFO " cdb: "); 151 for (bit = 0; bit < BLK_MAX_CDB; bit++) 152 printk("%02x ", rq->cmd[bit]); 153 printk("\n"); 154 } 155 } 156 EXPORT_SYMBOL(blk_dump_rq_flags); 157 158 static void blk_delay_work(struct work_struct *work) 159 { 160 struct request_queue *q; 161 162 q = container_of(work, struct request_queue, delay_work.work); 163 spin_lock_irq(q->queue_lock); 164 __blk_run_queue(q); 165 spin_unlock_irq(q->queue_lock); 166 } 167 168 /** 169 * blk_delay_queue - restart queueing after defined interval 170 * @q: The &struct request_queue in question 171 * @msecs: Delay in msecs 172 * 173 * Description: 174 * Sometimes queueing needs to be postponed for a little while, to allow 175 * resources to come back. This function will make sure that queueing is 176 * restarted around the specified time. Queue lock must be held. 177 */ 178 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 179 { 180 if (likely(!blk_queue_dead(q))) 181 queue_delayed_work(kblockd_workqueue, &q->delay_work, 182 msecs_to_jiffies(msecs)); 183 } 184 EXPORT_SYMBOL(blk_delay_queue); 185 186 /** 187 * blk_start_queue - restart a previously stopped queue 188 * @q: The &struct request_queue in question 189 * 190 * Description: 191 * blk_start_queue() will clear the stop flag on the queue, and call 192 * the request_fn for the queue if it was in a stopped state when 193 * entered. Also see blk_stop_queue(). Queue lock must be held. 194 **/ 195 void blk_start_queue(struct request_queue *q) 196 { 197 WARN_ON(!irqs_disabled()); 198 199 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 200 __blk_run_queue(q); 201 } 202 EXPORT_SYMBOL(blk_start_queue); 203 204 /** 205 * blk_stop_queue - stop a queue 206 * @q: The &struct request_queue in question 207 * 208 * Description: 209 * The Linux block layer assumes that a block driver will consume all 210 * entries on the request queue when the request_fn strategy is called. 211 * Often this will not happen, because of hardware limitations (queue 212 * depth settings). If a device driver gets a 'queue full' response, 213 * or if it simply chooses not to queue more I/O at one point, it can 214 * call this function to prevent the request_fn from being called until 215 * the driver has signalled it's ready to go again. This happens by calling 216 * blk_start_queue() to restart queue operations. Queue lock must be held. 217 **/ 218 void blk_stop_queue(struct request_queue *q) 219 { 220 cancel_delayed_work(&q->delay_work); 221 queue_flag_set(QUEUE_FLAG_STOPPED, q); 222 } 223 EXPORT_SYMBOL(blk_stop_queue); 224 225 /** 226 * blk_sync_queue - cancel any pending callbacks on a queue 227 * @q: the queue 228 * 229 * Description: 230 * The block layer may perform asynchronous callback activity 231 * on a queue, such as calling the unplug function after a timeout. 232 * A block device may call blk_sync_queue to ensure that any 233 * such activity is cancelled, thus allowing it to release resources 234 * that the callbacks might use. The caller must already have made sure 235 * that its ->make_request_fn will not re-add plugging prior to calling 236 * this function. 237 * 238 * This function does not cancel any asynchronous activity arising 239 * out of elevator or throttling code. That would require elevator_exit() 240 * and blkcg_exit_queue() to be called with queue lock initialized. 241 * 242 */ 243 void blk_sync_queue(struct request_queue *q) 244 { 245 del_timer_sync(&q->timeout); 246 247 if (q->mq_ops) { 248 struct blk_mq_hw_ctx *hctx; 249 int i; 250 251 queue_for_each_hw_ctx(q, hctx, i) { 252 cancel_delayed_work_sync(&hctx->run_work); 253 cancel_delayed_work_sync(&hctx->delay_work); 254 } 255 } else { 256 cancel_delayed_work_sync(&q->delay_work); 257 } 258 } 259 EXPORT_SYMBOL(blk_sync_queue); 260 261 /** 262 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 263 * @q: The queue to run 264 * 265 * Description: 266 * Invoke request handling on a queue if there are any pending requests. 267 * May be used to restart request handling after a request has completed. 268 * This variant runs the queue whether or not the queue has been 269 * stopped. Must be called with the queue lock held and interrupts 270 * disabled. See also @blk_run_queue. 271 */ 272 inline void __blk_run_queue_uncond(struct request_queue *q) 273 { 274 if (unlikely(blk_queue_dead(q))) 275 return; 276 277 /* 278 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 279 * the queue lock internally. As a result multiple threads may be 280 * running such a request function concurrently. Keep track of the 281 * number of active request_fn invocations such that blk_drain_queue() 282 * can wait until all these request_fn calls have finished. 283 */ 284 q->request_fn_active++; 285 q->request_fn(q); 286 q->request_fn_active--; 287 } 288 289 /** 290 * __blk_run_queue - run a single device queue 291 * @q: The queue to run 292 * 293 * Description: 294 * See @blk_run_queue. This variant must be called with the queue lock 295 * held and interrupts disabled. 296 */ 297 void __blk_run_queue(struct request_queue *q) 298 { 299 if (unlikely(blk_queue_stopped(q))) 300 return; 301 302 __blk_run_queue_uncond(q); 303 } 304 EXPORT_SYMBOL(__blk_run_queue); 305 306 /** 307 * blk_run_queue_async - run a single device queue in workqueue context 308 * @q: The queue to run 309 * 310 * Description: 311 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 312 * of us. The caller must hold the queue lock. 313 */ 314 void blk_run_queue_async(struct request_queue *q) 315 { 316 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 317 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 318 } 319 EXPORT_SYMBOL(blk_run_queue_async); 320 321 /** 322 * blk_run_queue - run a single device queue 323 * @q: The queue to run 324 * 325 * Description: 326 * Invoke request handling on this queue, if it has pending work to do. 327 * May be used to restart queueing when a request has completed. 328 */ 329 void blk_run_queue(struct request_queue *q) 330 { 331 unsigned long flags; 332 333 spin_lock_irqsave(q->queue_lock, flags); 334 __blk_run_queue(q); 335 spin_unlock_irqrestore(q->queue_lock, flags); 336 } 337 EXPORT_SYMBOL(blk_run_queue); 338 339 void blk_put_queue(struct request_queue *q) 340 { 341 kobject_put(&q->kobj); 342 } 343 EXPORT_SYMBOL(blk_put_queue); 344 345 /** 346 * __blk_drain_queue - drain requests from request_queue 347 * @q: queue to drain 348 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 349 * 350 * Drain requests from @q. If @drain_all is set, all requests are drained. 351 * If not, only ELVPRIV requests are drained. The caller is responsible 352 * for ensuring that no new requests which need to be drained are queued. 353 */ 354 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 355 __releases(q->queue_lock) 356 __acquires(q->queue_lock) 357 { 358 int i; 359 360 lockdep_assert_held(q->queue_lock); 361 362 while (true) { 363 bool drain = false; 364 365 /* 366 * The caller might be trying to drain @q before its 367 * elevator is initialized. 368 */ 369 if (q->elevator) 370 elv_drain_elevator(q); 371 372 blkcg_drain_queue(q); 373 374 /* 375 * This function might be called on a queue which failed 376 * driver init after queue creation or is not yet fully 377 * active yet. Some drivers (e.g. fd and loop) get unhappy 378 * in such cases. Kick queue iff dispatch queue has 379 * something on it and @q has request_fn set. 380 */ 381 if (!list_empty(&q->queue_head) && q->request_fn) 382 __blk_run_queue(q); 383 384 drain |= q->nr_rqs_elvpriv; 385 drain |= q->request_fn_active; 386 387 /* 388 * Unfortunately, requests are queued at and tracked from 389 * multiple places and there's no single counter which can 390 * be drained. Check all the queues and counters. 391 */ 392 if (drain_all) { 393 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 394 drain |= !list_empty(&q->queue_head); 395 for (i = 0; i < 2; i++) { 396 drain |= q->nr_rqs[i]; 397 drain |= q->in_flight[i]; 398 if (fq) 399 drain |= !list_empty(&fq->flush_queue[i]); 400 } 401 } 402 403 if (!drain) 404 break; 405 406 spin_unlock_irq(q->queue_lock); 407 408 msleep(10); 409 410 spin_lock_irq(q->queue_lock); 411 } 412 413 /* 414 * With queue marked dead, any woken up waiter will fail the 415 * allocation path, so the wakeup chaining is lost and we're 416 * left with hung waiters. We need to wake up those waiters. 417 */ 418 if (q->request_fn) { 419 struct request_list *rl; 420 421 blk_queue_for_each_rl(rl, q) 422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 423 wake_up_all(&rl->wait[i]); 424 } 425 } 426 427 /** 428 * blk_queue_bypass_start - enter queue bypass mode 429 * @q: queue of interest 430 * 431 * In bypass mode, only the dispatch FIFO queue of @q is used. This 432 * function makes @q enter bypass mode and drains all requests which were 433 * throttled or issued before. On return, it's guaranteed that no request 434 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 435 * inside queue or RCU read lock. 436 */ 437 void blk_queue_bypass_start(struct request_queue *q) 438 { 439 spin_lock_irq(q->queue_lock); 440 q->bypass_depth++; 441 queue_flag_set(QUEUE_FLAG_BYPASS, q); 442 spin_unlock_irq(q->queue_lock); 443 444 /* 445 * Queues start drained. Skip actual draining till init is 446 * complete. This avoids lenghty delays during queue init which 447 * can happen many times during boot. 448 */ 449 if (blk_queue_init_done(q)) { 450 spin_lock_irq(q->queue_lock); 451 __blk_drain_queue(q, false); 452 spin_unlock_irq(q->queue_lock); 453 454 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 455 synchronize_rcu(); 456 } 457 } 458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 459 460 /** 461 * blk_queue_bypass_end - leave queue bypass mode 462 * @q: queue of interest 463 * 464 * Leave bypass mode and restore the normal queueing behavior. 465 */ 466 void blk_queue_bypass_end(struct request_queue *q) 467 { 468 spin_lock_irq(q->queue_lock); 469 if (!--q->bypass_depth) 470 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 471 WARN_ON_ONCE(q->bypass_depth < 0); 472 spin_unlock_irq(q->queue_lock); 473 } 474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 475 476 void blk_set_queue_dying(struct request_queue *q) 477 { 478 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 479 480 if (q->mq_ops) 481 blk_mq_wake_waiters(q); 482 else { 483 struct request_list *rl; 484 485 blk_queue_for_each_rl(rl, q) { 486 if (rl->rq_pool) { 487 wake_up(&rl->wait[BLK_RW_SYNC]); 488 wake_up(&rl->wait[BLK_RW_ASYNC]); 489 } 490 } 491 } 492 } 493 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 494 495 /** 496 * blk_cleanup_queue - shutdown a request queue 497 * @q: request queue to shutdown 498 * 499 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 500 * put it. All future requests will be failed immediately with -ENODEV. 501 */ 502 void blk_cleanup_queue(struct request_queue *q) 503 { 504 spinlock_t *lock = q->queue_lock; 505 506 /* mark @q DYING, no new request or merges will be allowed afterwards */ 507 mutex_lock(&q->sysfs_lock); 508 blk_set_queue_dying(q); 509 spin_lock_irq(lock); 510 511 /* 512 * A dying queue is permanently in bypass mode till released. Note 513 * that, unlike blk_queue_bypass_start(), we aren't performing 514 * synchronize_rcu() after entering bypass mode to avoid the delay 515 * as some drivers create and destroy a lot of queues while 516 * probing. This is still safe because blk_release_queue() will be 517 * called only after the queue refcnt drops to zero and nothing, 518 * RCU or not, would be traversing the queue by then. 519 */ 520 q->bypass_depth++; 521 queue_flag_set(QUEUE_FLAG_BYPASS, q); 522 523 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 524 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 525 queue_flag_set(QUEUE_FLAG_DYING, q); 526 spin_unlock_irq(lock); 527 mutex_unlock(&q->sysfs_lock); 528 529 /* 530 * Drain all requests queued before DYING marking. Set DEAD flag to 531 * prevent that q->request_fn() gets invoked after draining finished. 532 */ 533 if (q->mq_ops) { 534 blk_mq_freeze_queue(q); 535 spin_lock_irq(lock); 536 } else { 537 spin_lock_irq(lock); 538 __blk_drain_queue(q, true); 539 } 540 queue_flag_set(QUEUE_FLAG_DEAD, q); 541 spin_unlock_irq(lock); 542 543 /* @q won't process any more request, flush async actions */ 544 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 545 blk_sync_queue(q); 546 547 if (q->mq_ops) 548 blk_mq_free_queue(q); 549 550 spin_lock_irq(lock); 551 if (q->queue_lock != &q->__queue_lock) 552 q->queue_lock = &q->__queue_lock; 553 spin_unlock_irq(lock); 554 555 /* @q is and will stay empty, shutdown and put */ 556 blk_put_queue(q); 557 } 558 EXPORT_SYMBOL(blk_cleanup_queue); 559 560 /* Allocate memory local to the request queue */ 561 static void *alloc_request_struct(gfp_t gfp_mask, void *data) 562 { 563 int nid = (int)(long)data; 564 return kmem_cache_alloc_node(request_cachep, gfp_mask, nid); 565 } 566 567 static void free_request_struct(void *element, void *unused) 568 { 569 kmem_cache_free(request_cachep, element); 570 } 571 572 int blk_init_rl(struct request_list *rl, struct request_queue *q, 573 gfp_t gfp_mask) 574 { 575 if (unlikely(rl->rq_pool)) 576 return 0; 577 578 rl->q = q; 579 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 580 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 581 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 582 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 583 584 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct, 585 free_request_struct, 586 (void *)(long)q->node, gfp_mask, 587 q->node); 588 if (!rl->rq_pool) 589 return -ENOMEM; 590 591 return 0; 592 } 593 594 void blk_exit_rl(struct request_list *rl) 595 { 596 if (rl->rq_pool) 597 mempool_destroy(rl->rq_pool); 598 } 599 600 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 601 { 602 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 603 } 604 EXPORT_SYMBOL(blk_alloc_queue); 605 606 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 607 { 608 struct request_queue *q; 609 int err; 610 611 q = kmem_cache_alloc_node(blk_requestq_cachep, 612 gfp_mask | __GFP_ZERO, node_id); 613 if (!q) 614 return NULL; 615 616 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 617 if (q->id < 0) 618 goto fail_q; 619 620 q->backing_dev_info.ra_pages = 621 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 622 q->backing_dev_info.state = 0; 623 q->backing_dev_info.capabilities = 0; 624 q->backing_dev_info.name = "block"; 625 q->node = node_id; 626 627 err = bdi_init(&q->backing_dev_info); 628 if (err) 629 goto fail_id; 630 631 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 632 laptop_mode_timer_fn, (unsigned long) q); 633 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 634 INIT_LIST_HEAD(&q->queue_head); 635 INIT_LIST_HEAD(&q->timeout_list); 636 INIT_LIST_HEAD(&q->icq_list); 637 #ifdef CONFIG_BLK_CGROUP 638 INIT_LIST_HEAD(&q->blkg_list); 639 #endif 640 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 641 642 kobject_init(&q->kobj, &blk_queue_ktype); 643 644 mutex_init(&q->sysfs_lock); 645 spin_lock_init(&q->__queue_lock); 646 647 /* 648 * By default initialize queue_lock to internal lock and driver can 649 * override it later if need be. 650 */ 651 q->queue_lock = &q->__queue_lock; 652 653 /* 654 * A queue starts its life with bypass turned on to avoid 655 * unnecessary bypass on/off overhead and nasty surprises during 656 * init. The initial bypass will be finished when the queue is 657 * registered by blk_register_queue(). 658 */ 659 q->bypass_depth = 1; 660 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 661 662 init_waitqueue_head(&q->mq_freeze_wq); 663 664 if (blkcg_init_queue(q)) 665 goto fail_bdi; 666 667 return q; 668 669 fail_bdi: 670 bdi_destroy(&q->backing_dev_info); 671 fail_id: 672 ida_simple_remove(&blk_queue_ida, q->id); 673 fail_q: 674 kmem_cache_free(blk_requestq_cachep, q); 675 return NULL; 676 } 677 EXPORT_SYMBOL(blk_alloc_queue_node); 678 679 /** 680 * blk_init_queue - prepare a request queue for use with a block device 681 * @rfn: The function to be called to process requests that have been 682 * placed on the queue. 683 * @lock: Request queue spin lock 684 * 685 * Description: 686 * If a block device wishes to use the standard request handling procedures, 687 * which sorts requests and coalesces adjacent requests, then it must 688 * call blk_init_queue(). The function @rfn will be called when there 689 * are requests on the queue that need to be processed. If the device 690 * supports plugging, then @rfn may not be called immediately when requests 691 * are available on the queue, but may be called at some time later instead. 692 * Plugged queues are generally unplugged when a buffer belonging to one 693 * of the requests on the queue is needed, or due to memory pressure. 694 * 695 * @rfn is not required, or even expected, to remove all requests off the 696 * queue, but only as many as it can handle at a time. If it does leave 697 * requests on the queue, it is responsible for arranging that the requests 698 * get dealt with eventually. 699 * 700 * The queue spin lock must be held while manipulating the requests on the 701 * request queue; this lock will be taken also from interrupt context, so irq 702 * disabling is needed for it. 703 * 704 * Function returns a pointer to the initialized request queue, or %NULL if 705 * it didn't succeed. 706 * 707 * Note: 708 * blk_init_queue() must be paired with a blk_cleanup_queue() call 709 * when the block device is deactivated (such as at module unload). 710 **/ 711 712 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 713 { 714 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 715 } 716 EXPORT_SYMBOL(blk_init_queue); 717 718 struct request_queue * 719 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 720 { 721 struct request_queue *uninit_q, *q; 722 723 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 724 if (!uninit_q) 725 return NULL; 726 727 q = blk_init_allocated_queue(uninit_q, rfn, lock); 728 if (!q) 729 blk_cleanup_queue(uninit_q); 730 731 return q; 732 } 733 EXPORT_SYMBOL(blk_init_queue_node); 734 735 struct request_queue * 736 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 737 spinlock_t *lock) 738 { 739 if (!q) 740 return NULL; 741 742 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0); 743 if (!q->fq) 744 return NULL; 745 746 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 747 goto fail; 748 749 q->request_fn = rfn; 750 q->prep_rq_fn = NULL; 751 q->unprep_rq_fn = NULL; 752 q->queue_flags |= QUEUE_FLAG_DEFAULT; 753 754 /* Override internal queue lock with supplied lock pointer */ 755 if (lock) 756 q->queue_lock = lock; 757 758 /* 759 * This also sets hw/phys segments, boundary and size 760 */ 761 blk_queue_make_request(q, blk_queue_bio); 762 763 q->sg_reserved_size = INT_MAX; 764 765 /* Protect q->elevator from elevator_change */ 766 mutex_lock(&q->sysfs_lock); 767 768 /* init elevator */ 769 if (elevator_init(q, NULL)) { 770 mutex_unlock(&q->sysfs_lock); 771 goto fail; 772 } 773 774 mutex_unlock(&q->sysfs_lock); 775 776 return q; 777 778 fail: 779 blk_free_flush_queue(q->fq); 780 return NULL; 781 } 782 EXPORT_SYMBOL(blk_init_allocated_queue); 783 784 bool blk_get_queue(struct request_queue *q) 785 { 786 if (likely(!blk_queue_dying(q))) { 787 __blk_get_queue(q); 788 return true; 789 } 790 791 return false; 792 } 793 EXPORT_SYMBOL(blk_get_queue); 794 795 static inline void blk_free_request(struct request_list *rl, struct request *rq) 796 { 797 if (rq->cmd_flags & REQ_ELVPRIV) { 798 elv_put_request(rl->q, rq); 799 if (rq->elv.icq) 800 put_io_context(rq->elv.icq->ioc); 801 } 802 803 mempool_free(rq, rl->rq_pool); 804 } 805 806 /* 807 * ioc_batching returns true if the ioc is a valid batching request and 808 * should be given priority access to a request. 809 */ 810 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 811 { 812 if (!ioc) 813 return 0; 814 815 /* 816 * Make sure the process is able to allocate at least 1 request 817 * even if the batch times out, otherwise we could theoretically 818 * lose wakeups. 819 */ 820 return ioc->nr_batch_requests == q->nr_batching || 821 (ioc->nr_batch_requests > 0 822 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 823 } 824 825 /* 826 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 827 * will cause the process to be a "batcher" on all queues in the system. This 828 * is the behaviour we want though - once it gets a wakeup it should be given 829 * a nice run. 830 */ 831 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 832 { 833 if (!ioc || ioc_batching(q, ioc)) 834 return; 835 836 ioc->nr_batch_requests = q->nr_batching; 837 ioc->last_waited = jiffies; 838 } 839 840 static void __freed_request(struct request_list *rl, int sync) 841 { 842 struct request_queue *q = rl->q; 843 844 /* 845 * bdi isn't aware of blkcg yet. As all async IOs end up root 846 * blkcg anyway, just use root blkcg state. 847 */ 848 if (rl == &q->root_rl && 849 rl->count[sync] < queue_congestion_off_threshold(q)) 850 blk_clear_queue_congested(q, sync); 851 852 if (rl->count[sync] + 1 <= q->nr_requests) { 853 if (waitqueue_active(&rl->wait[sync])) 854 wake_up(&rl->wait[sync]); 855 856 blk_clear_rl_full(rl, sync); 857 } 858 } 859 860 /* 861 * A request has just been released. Account for it, update the full and 862 * congestion status, wake up any waiters. Called under q->queue_lock. 863 */ 864 static void freed_request(struct request_list *rl, unsigned int flags) 865 { 866 struct request_queue *q = rl->q; 867 int sync = rw_is_sync(flags); 868 869 q->nr_rqs[sync]--; 870 rl->count[sync]--; 871 if (flags & REQ_ELVPRIV) 872 q->nr_rqs_elvpriv--; 873 874 __freed_request(rl, sync); 875 876 if (unlikely(rl->starved[sync ^ 1])) 877 __freed_request(rl, sync ^ 1); 878 } 879 880 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 881 { 882 struct request_list *rl; 883 884 spin_lock_irq(q->queue_lock); 885 q->nr_requests = nr; 886 blk_queue_congestion_threshold(q); 887 888 /* congestion isn't cgroup aware and follows root blkcg for now */ 889 rl = &q->root_rl; 890 891 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) 892 blk_set_queue_congested(q, BLK_RW_SYNC); 893 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) 894 blk_clear_queue_congested(q, BLK_RW_SYNC); 895 896 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) 897 blk_set_queue_congested(q, BLK_RW_ASYNC); 898 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) 899 blk_clear_queue_congested(q, BLK_RW_ASYNC); 900 901 blk_queue_for_each_rl(rl, q) { 902 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 903 blk_set_rl_full(rl, BLK_RW_SYNC); 904 } else { 905 blk_clear_rl_full(rl, BLK_RW_SYNC); 906 wake_up(&rl->wait[BLK_RW_SYNC]); 907 } 908 909 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 910 blk_set_rl_full(rl, BLK_RW_ASYNC); 911 } else { 912 blk_clear_rl_full(rl, BLK_RW_ASYNC); 913 wake_up(&rl->wait[BLK_RW_ASYNC]); 914 } 915 } 916 917 spin_unlock_irq(q->queue_lock); 918 return 0; 919 } 920 921 /* 922 * Determine if elevator data should be initialized when allocating the 923 * request associated with @bio. 924 */ 925 static bool blk_rq_should_init_elevator(struct bio *bio) 926 { 927 if (!bio) 928 return true; 929 930 /* 931 * Flush requests do not use the elevator so skip initialization. 932 * This allows a request to share the flush and elevator data. 933 */ 934 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 935 return false; 936 937 return true; 938 } 939 940 /** 941 * rq_ioc - determine io_context for request allocation 942 * @bio: request being allocated is for this bio (can be %NULL) 943 * 944 * Determine io_context to use for request allocation for @bio. May return 945 * %NULL if %current->io_context doesn't exist. 946 */ 947 static struct io_context *rq_ioc(struct bio *bio) 948 { 949 #ifdef CONFIG_BLK_CGROUP 950 if (bio && bio->bi_ioc) 951 return bio->bi_ioc; 952 #endif 953 return current->io_context; 954 } 955 956 /** 957 * __get_request - get a free request 958 * @rl: request list to allocate from 959 * @rw_flags: RW and SYNC flags 960 * @bio: bio to allocate request for (can be %NULL) 961 * @gfp_mask: allocation mask 962 * 963 * Get a free request from @q. This function may fail under memory 964 * pressure or if @q is dead. 965 * 966 * Must be called with @q->queue_lock held and, 967 * Returns ERR_PTR on failure, with @q->queue_lock held. 968 * Returns request pointer on success, with @q->queue_lock *not held*. 969 */ 970 static struct request *__get_request(struct request_list *rl, int rw_flags, 971 struct bio *bio, gfp_t gfp_mask) 972 { 973 struct request_queue *q = rl->q; 974 struct request *rq; 975 struct elevator_type *et = q->elevator->type; 976 struct io_context *ioc = rq_ioc(bio); 977 struct io_cq *icq = NULL; 978 const bool is_sync = rw_is_sync(rw_flags) != 0; 979 int may_queue; 980 981 if (unlikely(blk_queue_dying(q))) 982 return ERR_PTR(-ENODEV); 983 984 may_queue = elv_may_queue(q, rw_flags); 985 if (may_queue == ELV_MQUEUE_NO) 986 goto rq_starved; 987 988 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 989 if (rl->count[is_sync]+1 >= q->nr_requests) { 990 /* 991 * The queue will fill after this allocation, so set 992 * it as full, and mark this process as "batching". 993 * This process will be allowed to complete a batch of 994 * requests, others will be blocked. 995 */ 996 if (!blk_rl_full(rl, is_sync)) { 997 ioc_set_batching(q, ioc); 998 blk_set_rl_full(rl, is_sync); 999 } else { 1000 if (may_queue != ELV_MQUEUE_MUST 1001 && !ioc_batching(q, ioc)) { 1002 /* 1003 * The queue is full and the allocating 1004 * process is not a "batcher", and not 1005 * exempted by the IO scheduler 1006 */ 1007 return ERR_PTR(-ENOMEM); 1008 } 1009 } 1010 } 1011 /* 1012 * bdi isn't aware of blkcg yet. As all async IOs end up 1013 * root blkcg anyway, just use root blkcg state. 1014 */ 1015 if (rl == &q->root_rl) 1016 blk_set_queue_congested(q, is_sync); 1017 } 1018 1019 /* 1020 * Only allow batching queuers to allocate up to 50% over the defined 1021 * limit of requests, otherwise we could have thousands of requests 1022 * allocated with any setting of ->nr_requests 1023 */ 1024 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1025 return ERR_PTR(-ENOMEM); 1026 1027 q->nr_rqs[is_sync]++; 1028 rl->count[is_sync]++; 1029 rl->starved[is_sync] = 0; 1030 1031 /* 1032 * Decide whether the new request will be managed by elevator. If 1033 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1034 * prevent the current elevator from being destroyed until the new 1035 * request is freed. This guarantees icq's won't be destroyed and 1036 * makes creating new ones safe. 1037 * 1038 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1039 * it will be created after releasing queue_lock. 1040 */ 1041 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1042 rw_flags |= REQ_ELVPRIV; 1043 q->nr_rqs_elvpriv++; 1044 if (et->icq_cache && ioc) 1045 icq = ioc_lookup_icq(ioc, q); 1046 } 1047 1048 if (blk_queue_io_stat(q)) 1049 rw_flags |= REQ_IO_STAT; 1050 spin_unlock_irq(q->queue_lock); 1051 1052 /* allocate and init request */ 1053 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1054 if (!rq) 1055 goto fail_alloc; 1056 1057 blk_rq_init(q, rq); 1058 blk_rq_set_rl(rq, rl); 1059 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1060 1061 /* init elvpriv */ 1062 if (rw_flags & REQ_ELVPRIV) { 1063 if (unlikely(et->icq_cache && !icq)) { 1064 if (ioc) 1065 icq = ioc_create_icq(ioc, q, gfp_mask); 1066 if (!icq) 1067 goto fail_elvpriv; 1068 } 1069 1070 rq->elv.icq = icq; 1071 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1072 goto fail_elvpriv; 1073 1074 /* @rq->elv.icq holds io_context until @rq is freed */ 1075 if (icq) 1076 get_io_context(icq->ioc); 1077 } 1078 out: 1079 /* 1080 * ioc may be NULL here, and ioc_batching will be false. That's 1081 * OK, if the queue is under the request limit then requests need 1082 * not count toward the nr_batch_requests limit. There will always 1083 * be some limit enforced by BLK_BATCH_TIME. 1084 */ 1085 if (ioc_batching(q, ioc)) 1086 ioc->nr_batch_requests--; 1087 1088 trace_block_getrq(q, bio, rw_flags & 1); 1089 return rq; 1090 1091 fail_elvpriv: 1092 /* 1093 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1094 * and may fail indefinitely under memory pressure and thus 1095 * shouldn't stall IO. Treat this request as !elvpriv. This will 1096 * disturb iosched and blkcg but weird is bettern than dead. 1097 */ 1098 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1099 __func__, dev_name(q->backing_dev_info.dev)); 1100 1101 rq->cmd_flags &= ~REQ_ELVPRIV; 1102 rq->elv.icq = NULL; 1103 1104 spin_lock_irq(q->queue_lock); 1105 q->nr_rqs_elvpriv--; 1106 spin_unlock_irq(q->queue_lock); 1107 goto out; 1108 1109 fail_alloc: 1110 /* 1111 * Allocation failed presumably due to memory. Undo anything we 1112 * might have messed up. 1113 * 1114 * Allocating task should really be put onto the front of the wait 1115 * queue, but this is pretty rare. 1116 */ 1117 spin_lock_irq(q->queue_lock); 1118 freed_request(rl, rw_flags); 1119 1120 /* 1121 * in the very unlikely event that allocation failed and no 1122 * requests for this direction was pending, mark us starved so that 1123 * freeing of a request in the other direction will notice 1124 * us. another possible fix would be to split the rq mempool into 1125 * READ and WRITE 1126 */ 1127 rq_starved: 1128 if (unlikely(rl->count[is_sync] == 0)) 1129 rl->starved[is_sync] = 1; 1130 return ERR_PTR(-ENOMEM); 1131 } 1132 1133 /** 1134 * get_request - get a free request 1135 * @q: request_queue to allocate request from 1136 * @rw_flags: RW and SYNC flags 1137 * @bio: bio to allocate request for (can be %NULL) 1138 * @gfp_mask: allocation mask 1139 * 1140 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1141 * function keeps retrying under memory pressure and fails iff @q is dead. 1142 * 1143 * Must be called with @q->queue_lock held and, 1144 * Returns ERR_PTR on failure, with @q->queue_lock held. 1145 * Returns request pointer on success, with @q->queue_lock *not held*. 1146 */ 1147 static struct request *get_request(struct request_queue *q, int rw_flags, 1148 struct bio *bio, gfp_t gfp_mask) 1149 { 1150 const bool is_sync = rw_is_sync(rw_flags) != 0; 1151 DEFINE_WAIT(wait); 1152 struct request_list *rl; 1153 struct request *rq; 1154 1155 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1156 retry: 1157 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1158 if (!IS_ERR(rq)) 1159 return rq; 1160 1161 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1162 blk_put_rl(rl); 1163 return rq; 1164 } 1165 1166 /* wait on @rl and retry */ 1167 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1168 TASK_UNINTERRUPTIBLE); 1169 1170 trace_block_sleeprq(q, bio, rw_flags & 1); 1171 1172 spin_unlock_irq(q->queue_lock); 1173 io_schedule(); 1174 1175 /* 1176 * After sleeping, we become a "batching" process and will be able 1177 * to allocate at least one request, and up to a big batch of them 1178 * for a small period time. See ioc_batching, ioc_set_batching 1179 */ 1180 ioc_set_batching(q, current->io_context); 1181 1182 spin_lock_irq(q->queue_lock); 1183 finish_wait(&rl->wait[is_sync], &wait); 1184 1185 goto retry; 1186 } 1187 1188 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1189 gfp_t gfp_mask) 1190 { 1191 struct request *rq; 1192 1193 BUG_ON(rw != READ && rw != WRITE); 1194 1195 /* create ioc upfront */ 1196 create_io_context(gfp_mask, q->node); 1197 1198 spin_lock_irq(q->queue_lock); 1199 rq = get_request(q, rw, NULL, gfp_mask); 1200 if (IS_ERR(rq)) 1201 spin_unlock_irq(q->queue_lock); 1202 /* q->queue_lock is unlocked at this point */ 1203 1204 return rq; 1205 } 1206 1207 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1208 { 1209 if (q->mq_ops) 1210 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1211 else 1212 return blk_old_get_request(q, rw, gfp_mask); 1213 } 1214 EXPORT_SYMBOL(blk_get_request); 1215 1216 /** 1217 * blk_make_request - given a bio, allocate a corresponding struct request. 1218 * @q: target request queue 1219 * @bio: The bio describing the memory mappings that will be submitted for IO. 1220 * It may be a chained-bio properly constructed by block/bio layer. 1221 * @gfp_mask: gfp flags to be used for memory allocation 1222 * 1223 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1224 * type commands. Where the struct request needs to be farther initialized by 1225 * the caller. It is passed a &struct bio, which describes the memory info of 1226 * the I/O transfer. 1227 * 1228 * The caller of blk_make_request must make sure that bi_io_vec 1229 * are set to describe the memory buffers. That bio_data_dir() will return 1230 * the needed direction of the request. (And all bio's in the passed bio-chain 1231 * are properly set accordingly) 1232 * 1233 * If called under none-sleepable conditions, mapped bio buffers must not 1234 * need bouncing, by calling the appropriate masked or flagged allocator, 1235 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1236 * BUG. 1237 * 1238 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1239 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1240 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1241 * completion of a bio that hasn't been submitted yet, thus resulting in a 1242 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1243 * of bio_alloc(), as that avoids the mempool deadlock. 1244 * If possible a big IO should be split into smaller parts when allocation 1245 * fails. Partial allocation should not be an error, or you risk a live-lock. 1246 */ 1247 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1248 gfp_t gfp_mask) 1249 { 1250 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1251 1252 if (IS_ERR(rq)) 1253 return rq; 1254 1255 blk_rq_set_block_pc(rq); 1256 1257 for_each_bio(bio) { 1258 struct bio *bounce_bio = bio; 1259 int ret; 1260 1261 blk_queue_bounce(q, &bounce_bio); 1262 ret = blk_rq_append_bio(q, rq, bounce_bio); 1263 if (unlikely(ret)) { 1264 blk_put_request(rq); 1265 return ERR_PTR(ret); 1266 } 1267 } 1268 1269 return rq; 1270 } 1271 EXPORT_SYMBOL(blk_make_request); 1272 1273 /** 1274 * blk_rq_set_block_pc - initialize a request to type BLOCK_PC 1275 * @rq: request to be initialized 1276 * 1277 */ 1278 void blk_rq_set_block_pc(struct request *rq) 1279 { 1280 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1281 rq->__data_len = 0; 1282 rq->__sector = (sector_t) -1; 1283 rq->bio = rq->biotail = NULL; 1284 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1285 } 1286 EXPORT_SYMBOL(blk_rq_set_block_pc); 1287 1288 /** 1289 * blk_requeue_request - put a request back on queue 1290 * @q: request queue where request should be inserted 1291 * @rq: request to be inserted 1292 * 1293 * Description: 1294 * Drivers often keep queueing requests until the hardware cannot accept 1295 * more, when that condition happens we need to put the request back 1296 * on the queue. Must be called with queue lock held. 1297 */ 1298 void blk_requeue_request(struct request_queue *q, struct request *rq) 1299 { 1300 blk_delete_timer(rq); 1301 blk_clear_rq_complete(rq); 1302 trace_block_rq_requeue(q, rq); 1303 1304 if (rq->cmd_flags & REQ_QUEUED) 1305 blk_queue_end_tag(q, rq); 1306 1307 BUG_ON(blk_queued_rq(rq)); 1308 1309 elv_requeue_request(q, rq); 1310 } 1311 EXPORT_SYMBOL(blk_requeue_request); 1312 1313 static void add_acct_request(struct request_queue *q, struct request *rq, 1314 int where) 1315 { 1316 blk_account_io_start(rq, true); 1317 __elv_add_request(q, rq, where); 1318 } 1319 1320 static void part_round_stats_single(int cpu, struct hd_struct *part, 1321 unsigned long now) 1322 { 1323 int inflight; 1324 1325 if (now == part->stamp) 1326 return; 1327 1328 inflight = part_in_flight(part); 1329 if (inflight) { 1330 __part_stat_add(cpu, part, time_in_queue, 1331 inflight * (now - part->stamp)); 1332 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1333 } 1334 part->stamp = now; 1335 } 1336 1337 /** 1338 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1339 * @cpu: cpu number for stats access 1340 * @part: target partition 1341 * 1342 * The average IO queue length and utilisation statistics are maintained 1343 * by observing the current state of the queue length and the amount of 1344 * time it has been in this state for. 1345 * 1346 * Normally, that accounting is done on IO completion, but that can result 1347 * in more than a second's worth of IO being accounted for within any one 1348 * second, leading to >100% utilisation. To deal with that, we call this 1349 * function to do a round-off before returning the results when reading 1350 * /proc/diskstats. This accounts immediately for all queue usage up to 1351 * the current jiffies and restarts the counters again. 1352 */ 1353 void part_round_stats(int cpu, struct hd_struct *part) 1354 { 1355 unsigned long now = jiffies; 1356 1357 if (part->partno) 1358 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1359 part_round_stats_single(cpu, part, now); 1360 } 1361 EXPORT_SYMBOL_GPL(part_round_stats); 1362 1363 #ifdef CONFIG_PM 1364 static void blk_pm_put_request(struct request *rq) 1365 { 1366 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1367 pm_runtime_mark_last_busy(rq->q->dev); 1368 } 1369 #else 1370 static inline void blk_pm_put_request(struct request *rq) {} 1371 #endif 1372 1373 /* 1374 * queue lock must be held 1375 */ 1376 void __blk_put_request(struct request_queue *q, struct request *req) 1377 { 1378 if (unlikely(!q)) 1379 return; 1380 1381 if (q->mq_ops) { 1382 blk_mq_free_request(req); 1383 return; 1384 } 1385 1386 blk_pm_put_request(req); 1387 1388 elv_completed_request(q, req); 1389 1390 /* this is a bio leak */ 1391 WARN_ON(req->bio != NULL); 1392 1393 /* 1394 * Request may not have originated from ll_rw_blk. if not, 1395 * it didn't come out of our reserved rq pools 1396 */ 1397 if (req->cmd_flags & REQ_ALLOCED) { 1398 unsigned int flags = req->cmd_flags; 1399 struct request_list *rl = blk_rq_rl(req); 1400 1401 BUG_ON(!list_empty(&req->queuelist)); 1402 BUG_ON(ELV_ON_HASH(req)); 1403 1404 blk_free_request(rl, req); 1405 freed_request(rl, flags); 1406 blk_put_rl(rl); 1407 } 1408 } 1409 EXPORT_SYMBOL_GPL(__blk_put_request); 1410 1411 void blk_put_request(struct request *req) 1412 { 1413 struct request_queue *q = req->q; 1414 1415 if (q->mq_ops) 1416 blk_mq_free_request(req); 1417 else { 1418 unsigned long flags; 1419 1420 spin_lock_irqsave(q->queue_lock, flags); 1421 __blk_put_request(q, req); 1422 spin_unlock_irqrestore(q->queue_lock, flags); 1423 } 1424 } 1425 EXPORT_SYMBOL(blk_put_request); 1426 1427 /** 1428 * blk_add_request_payload - add a payload to a request 1429 * @rq: request to update 1430 * @page: page backing the payload 1431 * @len: length of the payload. 1432 * 1433 * This allows to later add a payload to an already submitted request by 1434 * a block driver. The driver needs to take care of freeing the payload 1435 * itself. 1436 * 1437 * Note that this is a quite horrible hack and nothing but handling of 1438 * discard requests should ever use it. 1439 */ 1440 void blk_add_request_payload(struct request *rq, struct page *page, 1441 unsigned int len) 1442 { 1443 struct bio *bio = rq->bio; 1444 1445 bio->bi_io_vec->bv_page = page; 1446 bio->bi_io_vec->bv_offset = 0; 1447 bio->bi_io_vec->bv_len = len; 1448 1449 bio->bi_iter.bi_size = len; 1450 bio->bi_vcnt = 1; 1451 bio->bi_phys_segments = 1; 1452 1453 rq->__data_len = rq->resid_len = len; 1454 rq->nr_phys_segments = 1; 1455 } 1456 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1457 1458 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1459 struct bio *bio) 1460 { 1461 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1462 1463 if (!ll_back_merge_fn(q, req, bio)) 1464 return false; 1465 1466 trace_block_bio_backmerge(q, req, bio); 1467 1468 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1469 blk_rq_set_mixed_merge(req); 1470 1471 req->biotail->bi_next = bio; 1472 req->biotail = bio; 1473 req->__data_len += bio->bi_iter.bi_size; 1474 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1475 1476 blk_account_io_start(req, false); 1477 return true; 1478 } 1479 1480 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1481 struct bio *bio) 1482 { 1483 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1484 1485 if (!ll_front_merge_fn(q, req, bio)) 1486 return false; 1487 1488 trace_block_bio_frontmerge(q, req, bio); 1489 1490 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1491 blk_rq_set_mixed_merge(req); 1492 1493 bio->bi_next = req->bio; 1494 req->bio = bio; 1495 1496 req->__sector = bio->bi_iter.bi_sector; 1497 req->__data_len += bio->bi_iter.bi_size; 1498 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1499 1500 blk_account_io_start(req, false); 1501 return true; 1502 } 1503 1504 /** 1505 * blk_attempt_plug_merge - try to merge with %current's plugged list 1506 * @q: request_queue new bio is being queued at 1507 * @bio: new bio being queued 1508 * @request_count: out parameter for number of traversed plugged requests 1509 * 1510 * Determine whether @bio being queued on @q can be merged with a request 1511 * on %current's plugged list. Returns %true if merge was successful, 1512 * otherwise %false. 1513 * 1514 * Plugging coalesces IOs from the same issuer for the same purpose without 1515 * going through @q->queue_lock. As such it's more of an issuing mechanism 1516 * than scheduling, and the request, while may have elvpriv data, is not 1517 * added on the elevator at this point. In addition, we don't have 1518 * reliable access to the elevator outside queue lock. Only check basic 1519 * merging parameters without querying the elevator. 1520 * 1521 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1522 */ 1523 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1524 unsigned int *request_count) 1525 { 1526 struct blk_plug *plug; 1527 struct request *rq; 1528 bool ret = false; 1529 struct list_head *plug_list; 1530 1531 plug = current->plug; 1532 if (!plug) 1533 goto out; 1534 *request_count = 0; 1535 1536 if (q->mq_ops) 1537 plug_list = &plug->mq_list; 1538 else 1539 plug_list = &plug->list; 1540 1541 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1542 int el_ret; 1543 1544 if (rq->q == q) 1545 (*request_count)++; 1546 1547 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1548 continue; 1549 1550 el_ret = blk_try_merge(rq, bio); 1551 if (el_ret == ELEVATOR_BACK_MERGE) { 1552 ret = bio_attempt_back_merge(q, rq, bio); 1553 if (ret) 1554 break; 1555 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1556 ret = bio_attempt_front_merge(q, rq, bio); 1557 if (ret) 1558 break; 1559 } 1560 } 1561 out: 1562 return ret; 1563 } 1564 1565 void init_request_from_bio(struct request *req, struct bio *bio) 1566 { 1567 req->cmd_type = REQ_TYPE_FS; 1568 1569 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1570 if (bio->bi_rw & REQ_RAHEAD) 1571 req->cmd_flags |= REQ_FAILFAST_MASK; 1572 1573 req->errors = 0; 1574 req->__sector = bio->bi_iter.bi_sector; 1575 req->ioprio = bio_prio(bio); 1576 blk_rq_bio_prep(req->q, req, bio); 1577 } 1578 1579 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1580 { 1581 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1582 struct blk_plug *plug; 1583 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1584 struct request *req; 1585 unsigned int request_count = 0; 1586 1587 /* 1588 * low level driver can indicate that it wants pages above a 1589 * certain limit bounced to low memory (ie for highmem, or even 1590 * ISA dma in theory) 1591 */ 1592 blk_queue_bounce(q, &bio); 1593 1594 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1595 bio_endio(bio, -EIO); 1596 return; 1597 } 1598 1599 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1600 spin_lock_irq(q->queue_lock); 1601 where = ELEVATOR_INSERT_FLUSH; 1602 goto get_rq; 1603 } 1604 1605 /* 1606 * Check if we can merge with the plugged list before grabbing 1607 * any locks. 1608 */ 1609 if (!blk_queue_nomerges(q) && 1610 blk_attempt_plug_merge(q, bio, &request_count)) 1611 return; 1612 1613 spin_lock_irq(q->queue_lock); 1614 1615 el_ret = elv_merge(q, &req, bio); 1616 if (el_ret == ELEVATOR_BACK_MERGE) { 1617 if (bio_attempt_back_merge(q, req, bio)) { 1618 elv_bio_merged(q, req, bio); 1619 if (!attempt_back_merge(q, req)) 1620 elv_merged_request(q, req, el_ret); 1621 goto out_unlock; 1622 } 1623 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1624 if (bio_attempt_front_merge(q, req, bio)) { 1625 elv_bio_merged(q, req, bio); 1626 if (!attempt_front_merge(q, req)) 1627 elv_merged_request(q, req, el_ret); 1628 goto out_unlock; 1629 } 1630 } 1631 1632 get_rq: 1633 /* 1634 * This sync check and mask will be re-done in init_request_from_bio(), 1635 * but we need to set it earlier to expose the sync flag to the 1636 * rq allocator and io schedulers. 1637 */ 1638 rw_flags = bio_data_dir(bio); 1639 if (sync) 1640 rw_flags |= REQ_SYNC; 1641 1642 /* 1643 * Grab a free request. This is might sleep but can not fail. 1644 * Returns with the queue unlocked. 1645 */ 1646 req = get_request(q, rw_flags, bio, GFP_NOIO); 1647 if (IS_ERR(req)) { 1648 bio_endio(bio, PTR_ERR(req)); /* @q is dead */ 1649 goto out_unlock; 1650 } 1651 1652 /* 1653 * After dropping the lock and possibly sleeping here, our request 1654 * may now be mergeable after it had proven unmergeable (above). 1655 * We don't worry about that case for efficiency. It won't happen 1656 * often, and the elevators are able to handle it. 1657 */ 1658 init_request_from_bio(req, bio); 1659 1660 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1661 req->cpu = raw_smp_processor_id(); 1662 1663 plug = current->plug; 1664 if (plug) { 1665 /* 1666 * If this is the first request added after a plug, fire 1667 * of a plug trace. 1668 */ 1669 if (!request_count) 1670 trace_block_plug(q); 1671 else { 1672 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1673 blk_flush_plug_list(plug, false); 1674 trace_block_plug(q); 1675 } 1676 } 1677 list_add_tail(&req->queuelist, &plug->list); 1678 blk_account_io_start(req, true); 1679 } else { 1680 spin_lock_irq(q->queue_lock); 1681 add_acct_request(q, req, where); 1682 __blk_run_queue(q); 1683 out_unlock: 1684 spin_unlock_irq(q->queue_lock); 1685 } 1686 } 1687 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1688 1689 /* 1690 * If bio->bi_dev is a partition, remap the location 1691 */ 1692 static inline void blk_partition_remap(struct bio *bio) 1693 { 1694 struct block_device *bdev = bio->bi_bdev; 1695 1696 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1697 struct hd_struct *p = bdev->bd_part; 1698 1699 bio->bi_iter.bi_sector += p->start_sect; 1700 bio->bi_bdev = bdev->bd_contains; 1701 1702 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1703 bdev->bd_dev, 1704 bio->bi_iter.bi_sector - p->start_sect); 1705 } 1706 } 1707 1708 static void handle_bad_sector(struct bio *bio) 1709 { 1710 char b[BDEVNAME_SIZE]; 1711 1712 printk(KERN_INFO "attempt to access beyond end of device\n"); 1713 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1714 bdevname(bio->bi_bdev, b), 1715 bio->bi_rw, 1716 (unsigned long long)bio_end_sector(bio), 1717 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1718 1719 set_bit(BIO_EOF, &bio->bi_flags); 1720 } 1721 1722 #ifdef CONFIG_FAIL_MAKE_REQUEST 1723 1724 static DECLARE_FAULT_ATTR(fail_make_request); 1725 1726 static int __init setup_fail_make_request(char *str) 1727 { 1728 return setup_fault_attr(&fail_make_request, str); 1729 } 1730 __setup("fail_make_request=", setup_fail_make_request); 1731 1732 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1733 { 1734 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1735 } 1736 1737 static int __init fail_make_request_debugfs(void) 1738 { 1739 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1740 NULL, &fail_make_request); 1741 1742 return PTR_ERR_OR_ZERO(dir); 1743 } 1744 1745 late_initcall(fail_make_request_debugfs); 1746 1747 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1748 1749 static inline bool should_fail_request(struct hd_struct *part, 1750 unsigned int bytes) 1751 { 1752 return false; 1753 } 1754 1755 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1756 1757 /* 1758 * Check whether this bio extends beyond the end of the device. 1759 */ 1760 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1761 { 1762 sector_t maxsector; 1763 1764 if (!nr_sectors) 1765 return 0; 1766 1767 /* Test device or partition size, when known. */ 1768 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1769 if (maxsector) { 1770 sector_t sector = bio->bi_iter.bi_sector; 1771 1772 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1773 /* 1774 * This may well happen - the kernel calls bread() 1775 * without checking the size of the device, e.g., when 1776 * mounting a device. 1777 */ 1778 handle_bad_sector(bio); 1779 return 1; 1780 } 1781 } 1782 1783 return 0; 1784 } 1785 1786 static noinline_for_stack bool 1787 generic_make_request_checks(struct bio *bio) 1788 { 1789 struct request_queue *q; 1790 int nr_sectors = bio_sectors(bio); 1791 int err = -EIO; 1792 char b[BDEVNAME_SIZE]; 1793 struct hd_struct *part; 1794 1795 might_sleep(); 1796 1797 if (bio_check_eod(bio, nr_sectors)) 1798 goto end_io; 1799 1800 q = bdev_get_queue(bio->bi_bdev); 1801 if (unlikely(!q)) { 1802 printk(KERN_ERR 1803 "generic_make_request: Trying to access " 1804 "nonexistent block-device %s (%Lu)\n", 1805 bdevname(bio->bi_bdev, b), 1806 (long long) bio->bi_iter.bi_sector); 1807 goto end_io; 1808 } 1809 1810 if (likely(bio_is_rw(bio) && 1811 nr_sectors > queue_max_hw_sectors(q))) { 1812 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1813 bdevname(bio->bi_bdev, b), 1814 bio_sectors(bio), 1815 queue_max_hw_sectors(q)); 1816 goto end_io; 1817 } 1818 1819 part = bio->bi_bdev->bd_part; 1820 if (should_fail_request(part, bio->bi_iter.bi_size) || 1821 should_fail_request(&part_to_disk(part)->part0, 1822 bio->bi_iter.bi_size)) 1823 goto end_io; 1824 1825 /* 1826 * If this device has partitions, remap block n 1827 * of partition p to block n+start(p) of the disk. 1828 */ 1829 blk_partition_remap(bio); 1830 1831 if (bio_check_eod(bio, nr_sectors)) 1832 goto end_io; 1833 1834 /* 1835 * Filter flush bio's early so that make_request based 1836 * drivers without flush support don't have to worry 1837 * about them. 1838 */ 1839 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1840 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1841 if (!nr_sectors) { 1842 err = 0; 1843 goto end_io; 1844 } 1845 } 1846 1847 if ((bio->bi_rw & REQ_DISCARD) && 1848 (!blk_queue_discard(q) || 1849 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1850 err = -EOPNOTSUPP; 1851 goto end_io; 1852 } 1853 1854 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1855 err = -EOPNOTSUPP; 1856 goto end_io; 1857 } 1858 1859 /* 1860 * Various block parts want %current->io_context and lazy ioc 1861 * allocation ends up trading a lot of pain for a small amount of 1862 * memory. Just allocate it upfront. This may fail and block 1863 * layer knows how to live with it. 1864 */ 1865 create_io_context(GFP_ATOMIC, q->node); 1866 1867 if (blk_throtl_bio(q, bio)) 1868 return false; /* throttled, will be resubmitted later */ 1869 1870 trace_block_bio_queue(q, bio); 1871 return true; 1872 1873 end_io: 1874 bio_endio(bio, err); 1875 return false; 1876 } 1877 1878 /** 1879 * generic_make_request - hand a buffer to its device driver for I/O 1880 * @bio: The bio describing the location in memory and on the device. 1881 * 1882 * generic_make_request() is used to make I/O requests of block 1883 * devices. It is passed a &struct bio, which describes the I/O that needs 1884 * to be done. 1885 * 1886 * generic_make_request() does not return any status. The 1887 * success/failure status of the request, along with notification of 1888 * completion, is delivered asynchronously through the bio->bi_end_io 1889 * function described (one day) else where. 1890 * 1891 * The caller of generic_make_request must make sure that bi_io_vec 1892 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1893 * set to describe the device address, and the 1894 * bi_end_io and optionally bi_private are set to describe how 1895 * completion notification should be signaled. 1896 * 1897 * generic_make_request and the drivers it calls may use bi_next if this 1898 * bio happens to be merged with someone else, and may resubmit the bio to 1899 * a lower device by calling into generic_make_request recursively, which 1900 * means the bio should NOT be touched after the call to ->make_request_fn. 1901 */ 1902 void generic_make_request(struct bio *bio) 1903 { 1904 struct bio_list bio_list_on_stack; 1905 1906 if (!generic_make_request_checks(bio)) 1907 return; 1908 1909 /* 1910 * We only want one ->make_request_fn to be active at a time, else 1911 * stack usage with stacked devices could be a problem. So use 1912 * current->bio_list to keep a list of requests submited by a 1913 * make_request_fn function. current->bio_list is also used as a 1914 * flag to say if generic_make_request is currently active in this 1915 * task or not. If it is NULL, then no make_request is active. If 1916 * it is non-NULL, then a make_request is active, and new requests 1917 * should be added at the tail 1918 */ 1919 if (current->bio_list) { 1920 bio_list_add(current->bio_list, bio); 1921 return; 1922 } 1923 1924 /* following loop may be a bit non-obvious, and so deserves some 1925 * explanation. 1926 * Before entering the loop, bio->bi_next is NULL (as all callers 1927 * ensure that) so we have a list with a single bio. 1928 * We pretend that we have just taken it off a longer list, so 1929 * we assign bio_list to a pointer to the bio_list_on_stack, 1930 * thus initialising the bio_list of new bios to be 1931 * added. ->make_request() may indeed add some more bios 1932 * through a recursive call to generic_make_request. If it 1933 * did, we find a non-NULL value in bio_list and re-enter the loop 1934 * from the top. In this case we really did just take the bio 1935 * of the top of the list (no pretending) and so remove it from 1936 * bio_list, and call into ->make_request() again. 1937 */ 1938 BUG_ON(bio->bi_next); 1939 bio_list_init(&bio_list_on_stack); 1940 current->bio_list = &bio_list_on_stack; 1941 do { 1942 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1943 1944 q->make_request_fn(q, bio); 1945 1946 bio = bio_list_pop(current->bio_list); 1947 } while (bio); 1948 current->bio_list = NULL; /* deactivate */ 1949 } 1950 EXPORT_SYMBOL(generic_make_request); 1951 1952 /** 1953 * submit_bio - submit a bio to the block device layer for I/O 1954 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1955 * @bio: The &struct bio which describes the I/O 1956 * 1957 * submit_bio() is very similar in purpose to generic_make_request(), and 1958 * uses that function to do most of the work. Both are fairly rough 1959 * interfaces; @bio must be presetup and ready for I/O. 1960 * 1961 */ 1962 void submit_bio(int rw, struct bio *bio) 1963 { 1964 bio->bi_rw |= rw; 1965 1966 /* 1967 * If it's a regular read/write or a barrier with data attached, 1968 * go through the normal accounting stuff before submission. 1969 */ 1970 if (bio_has_data(bio)) { 1971 unsigned int count; 1972 1973 if (unlikely(rw & REQ_WRITE_SAME)) 1974 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1975 else 1976 count = bio_sectors(bio); 1977 1978 if (rw & WRITE) { 1979 count_vm_events(PGPGOUT, count); 1980 } else { 1981 task_io_account_read(bio->bi_iter.bi_size); 1982 count_vm_events(PGPGIN, count); 1983 } 1984 1985 if (unlikely(block_dump)) { 1986 char b[BDEVNAME_SIZE]; 1987 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1988 current->comm, task_pid_nr(current), 1989 (rw & WRITE) ? "WRITE" : "READ", 1990 (unsigned long long)bio->bi_iter.bi_sector, 1991 bdevname(bio->bi_bdev, b), 1992 count); 1993 } 1994 } 1995 1996 generic_make_request(bio); 1997 } 1998 EXPORT_SYMBOL(submit_bio); 1999 2000 /** 2001 * blk_rq_check_limits - Helper function to check a request for the queue limit 2002 * @q: the queue 2003 * @rq: the request being checked 2004 * 2005 * Description: 2006 * @rq may have been made based on weaker limitations of upper-level queues 2007 * in request stacking drivers, and it may violate the limitation of @q. 2008 * Since the block layer and the underlying device driver trust @rq 2009 * after it is inserted to @q, it should be checked against @q before 2010 * the insertion using this generic function. 2011 * 2012 * This function should also be useful for request stacking drivers 2013 * in some cases below, so export this function. 2014 * Request stacking drivers like request-based dm may change the queue 2015 * limits while requests are in the queue (e.g. dm's table swapping). 2016 * Such request stacking drivers should check those requests against 2017 * the new queue limits again when they dispatch those requests, 2018 * although such checkings are also done against the old queue limits 2019 * when submitting requests. 2020 */ 2021 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 2022 { 2023 if (!rq_mergeable(rq)) 2024 return 0; 2025 2026 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 2027 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2028 return -EIO; 2029 } 2030 2031 /* 2032 * queue's settings related to segment counting like q->bounce_pfn 2033 * may differ from that of other stacking queues. 2034 * Recalculate it to check the request correctly on this queue's 2035 * limitation. 2036 */ 2037 blk_recalc_rq_segments(rq); 2038 if (rq->nr_phys_segments > queue_max_segments(q)) { 2039 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2040 return -EIO; 2041 } 2042 2043 return 0; 2044 } 2045 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 2046 2047 /** 2048 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2049 * @q: the queue to submit the request 2050 * @rq: the request being queued 2051 */ 2052 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2053 { 2054 unsigned long flags; 2055 int where = ELEVATOR_INSERT_BACK; 2056 2057 if (blk_rq_check_limits(q, rq)) 2058 return -EIO; 2059 2060 if (rq->rq_disk && 2061 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2062 return -EIO; 2063 2064 if (q->mq_ops) { 2065 if (blk_queue_io_stat(q)) 2066 blk_account_io_start(rq, true); 2067 blk_mq_insert_request(rq, false, true, true); 2068 return 0; 2069 } 2070 2071 spin_lock_irqsave(q->queue_lock, flags); 2072 if (unlikely(blk_queue_dying(q))) { 2073 spin_unlock_irqrestore(q->queue_lock, flags); 2074 return -ENODEV; 2075 } 2076 2077 /* 2078 * Submitting request must be dequeued before calling this function 2079 * because it will be linked to another request_queue 2080 */ 2081 BUG_ON(blk_queued_rq(rq)); 2082 2083 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2084 where = ELEVATOR_INSERT_FLUSH; 2085 2086 add_acct_request(q, rq, where); 2087 if (where == ELEVATOR_INSERT_FLUSH) 2088 __blk_run_queue(q); 2089 spin_unlock_irqrestore(q->queue_lock, flags); 2090 2091 return 0; 2092 } 2093 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2094 2095 /** 2096 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2097 * @rq: request to examine 2098 * 2099 * Description: 2100 * A request could be merge of IOs which require different failure 2101 * handling. This function determines the number of bytes which 2102 * can be failed from the beginning of the request without 2103 * crossing into area which need to be retried further. 2104 * 2105 * Return: 2106 * The number of bytes to fail. 2107 * 2108 * Context: 2109 * queue_lock must be held. 2110 */ 2111 unsigned int blk_rq_err_bytes(const struct request *rq) 2112 { 2113 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2114 unsigned int bytes = 0; 2115 struct bio *bio; 2116 2117 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2118 return blk_rq_bytes(rq); 2119 2120 /* 2121 * Currently the only 'mixing' which can happen is between 2122 * different fastfail types. We can safely fail portions 2123 * which have all the failfast bits that the first one has - 2124 * the ones which are at least as eager to fail as the first 2125 * one. 2126 */ 2127 for (bio = rq->bio; bio; bio = bio->bi_next) { 2128 if ((bio->bi_rw & ff) != ff) 2129 break; 2130 bytes += bio->bi_iter.bi_size; 2131 } 2132 2133 /* this could lead to infinite loop */ 2134 BUG_ON(blk_rq_bytes(rq) && !bytes); 2135 return bytes; 2136 } 2137 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2138 2139 void blk_account_io_completion(struct request *req, unsigned int bytes) 2140 { 2141 if (blk_do_io_stat(req)) { 2142 const int rw = rq_data_dir(req); 2143 struct hd_struct *part; 2144 int cpu; 2145 2146 cpu = part_stat_lock(); 2147 part = req->part; 2148 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2149 part_stat_unlock(); 2150 } 2151 } 2152 2153 void blk_account_io_done(struct request *req) 2154 { 2155 /* 2156 * Account IO completion. flush_rq isn't accounted as a 2157 * normal IO on queueing nor completion. Accounting the 2158 * containing request is enough. 2159 */ 2160 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2161 unsigned long duration = jiffies - req->start_time; 2162 const int rw = rq_data_dir(req); 2163 struct hd_struct *part; 2164 int cpu; 2165 2166 cpu = part_stat_lock(); 2167 part = req->part; 2168 2169 part_stat_inc(cpu, part, ios[rw]); 2170 part_stat_add(cpu, part, ticks[rw], duration); 2171 part_round_stats(cpu, part); 2172 part_dec_in_flight(part, rw); 2173 2174 hd_struct_put(part); 2175 part_stat_unlock(); 2176 } 2177 } 2178 2179 #ifdef CONFIG_PM 2180 /* 2181 * Don't process normal requests when queue is suspended 2182 * or in the process of suspending/resuming 2183 */ 2184 static struct request *blk_pm_peek_request(struct request_queue *q, 2185 struct request *rq) 2186 { 2187 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2188 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2189 return NULL; 2190 else 2191 return rq; 2192 } 2193 #else 2194 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2195 struct request *rq) 2196 { 2197 return rq; 2198 } 2199 #endif 2200 2201 void blk_account_io_start(struct request *rq, bool new_io) 2202 { 2203 struct hd_struct *part; 2204 int rw = rq_data_dir(rq); 2205 int cpu; 2206 2207 if (!blk_do_io_stat(rq)) 2208 return; 2209 2210 cpu = part_stat_lock(); 2211 2212 if (!new_io) { 2213 part = rq->part; 2214 part_stat_inc(cpu, part, merges[rw]); 2215 } else { 2216 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2217 if (!hd_struct_try_get(part)) { 2218 /* 2219 * The partition is already being removed, 2220 * the request will be accounted on the disk only 2221 * 2222 * We take a reference on disk->part0 although that 2223 * partition will never be deleted, so we can treat 2224 * it as any other partition. 2225 */ 2226 part = &rq->rq_disk->part0; 2227 hd_struct_get(part); 2228 } 2229 part_round_stats(cpu, part); 2230 part_inc_in_flight(part, rw); 2231 rq->part = part; 2232 } 2233 2234 part_stat_unlock(); 2235 } 2236 2237 /** 2238 * blk_peek_request - peek at the top of a request queue 2239 * @q: request queue to peek at 2240 * 2241 * Description: 2242 * Return the request at the top of @q. The returned request 2243 * should be started using blk_start_request() before LLD starts 2244 * processing it. 2245 * 2246 * Return: 2247 * Pointer to the request at the top of @q if available. Null 2248 * otherwise. 2249 * 2250 * Context: 2251 * queue_lock must be held. 2252 */ 2253 struct request *blk_peek_request(struct request_queue *q) 2254 { 2255 struct request *rq; 2256 int ret; 2257 2258 while ((rq = __elv_next_request(q)) != NULL) { 2259 2260 rq = blk_pm_peek_request(q, rq); 2261 if (!rq) 2262 break; 2263 2264 if (!(rq->cmd_flags & REQ_STARTED)) { 2265 /* 2266 * This is the first time the device driver 2267 * sees this request (possibly after 2268 * requeueing). Notify IO scheduler. 2269 */ 2270 if (rq->cmd_flags & REQ_SORTED) 2271 elv_activate_rq(q, rq); 2272 2273 /* 2274 * just mark as started even if we don't start 2275 * it, a request that has been delayed should 2276 * not be passed by new incoming requests 2277 */ 2278 rq->cmd_flags |= REQ_STARTED; 2279 trace_block_rq_issue(q, rq); 2280 } 2281 2282 if (!q->boundary_rq || q->boundary_rq == rq) { 2283 q->end_sector = rq_end_sector(rq); 2284 q->boundary_rq = NULL; 2285 } 2286 2287 if (rq->cmd_flags & REQ_DONTPREP) 2288 break; 2289 2290 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2291 /* 2292 * make sure space for the drain appears we 2293 * know we can do this because max_hw_segments 2294 * has been adjusted to be one fewer than the 2295 * device can handle 2296 */ 2297 rq->nr_phys_segments++; 2298 } 2299 2300 if (!q->prep_rq_fn) 2301 break; 2302 2303 ret = q->prep_rq_fn(q, rq); 2304 if (ret == BLKPREP_OK) { 2305 break; 2306 } else if (ret == BLKPREP_DEFER) { 2307 /* 2308 * the request may have been (partially) prepped. 2309 * we need to keep this request in the front to 2310 * avoid resource deadlock. REQ_STARTED will 2311 * prevent other fs requests from passing this one. 2312 */ 2313 if (q->dma_drain_size && blk_rq_bytes(rq) && 2314 !(rq->cmd_flags & REQ_DONTPREP)) { 2315 /* 2316 * remove the space for the drain we added 2317 * so that we don't add it again 2318 */ 2319 --rq->nr_phys_segments; 2320 } 2321 2322 rq = NULL; 2323 break; 2324 } else if (ret == BLKPREP_KILL) { 2325 rq->cmd_flags |= REQ_QUIET; 2326 /* 2327 * Mark this request as started so we don't trigger 2328 * any debug logic in the end I/O path. 2329 */ 2330 blk_start_request(rq); 2331 __blk_end_request_all(rq, -EIO); 2332 } else { 2333 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2334 break; 2335 } 2336 } 2337 2338 return rq; 2339 } 2340 EXPORT_SYMBOL(blk_peek_request); 2341 2342 void blk_dequeue_request(struct request *rq) 2343 { 2344 struct request_queue *q = rq->q; 2345 2346 BUG_ON(list_empty(&rq->queuelist)); 2347 BUG_ON(ELV_ON_HASH(rq)); 2348 2349 list_del_init(&rq->queuelist); 2350 2351 /* 2352 * the time frame between a request being removed from the lists 2353 * and to it is freed is accounted as io that is in progress at 2354 * the driver side. 2355 */ 2356 if (blk_account_rq(rq)) { 2357 q->in_flight[rq_is_sync(rq)]++; 2358 set_io_start_time_ns(rq); 2359 } 2360 } 2361 2362 /** 2363 * blk_start_request - start request processing on the driver 2364 * @req: request to dequeue 2365 * 2366 * Description: 2367 * Dequeue @req and start timeout timer on it. This hands off the 2368 * request to the driver. 2369 * 2370 * Block internal functions which don't want to start timer should 2371 * call blk_dequeue_request(). 2372 * 2373 * Context: 2374 * queue_lock must be held. 2375 */ 2376 void blk_start_request(struct request *req) 2377 { 2378 blk_dequeue_request(req); 2379 2380 /* 2381 * We are now handing the request to the hardware, initialize 2382 * resid_len to full count and add the timeout handler. 2383 */ 2384 req->resid_len = blk_rq_bytes(req); 2385 if (unlikely(blk_bidi_rq(req))) 2386 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2387 2388 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2389 blk_add_timer(req); 2390 } 2391 EXPORT_SYMBOL(blk_start_request); 2392 2393 /** 2394 * blk_fetch_request - fetch a request from a request queue 2395 * @q: request queue to fetch a request from 2396 * 2397 * Description: 2398 * Return the request at the top of @q. The request is started on 2399 * return and LLD can start processing it immediately. 2400 * 2401 * Return: 2402 * Pointer to the request at the top of @q if available. Null 2403 * otherwise. 2404 * 2405 * Context: 2406 * queue_lock must be held. 2407 */ 2408 struct request *blk_fetch_request(struct request_queue *q) 2409 { 2410 struct request *rq; 2411 2412 rq = blk_peek_request(q); 2413 if (rq) 2414 blk_start_request(rq); 2415 return rq; 2416 } 2417 EXPORT_SYMBOL(blk_fetch_request); 2418 2419 /** 2420 * blk_update_request - Special helper function for request stacking drivers 2421 * @req: the request being processed 2422 * @error: %0 for success, < %0 for error 2423 * @nr_bytes: number of bytes to complete @req 2424 * 2425 * Description: 2426 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2427 * the request structure even if @req doesn't have leftover. 2428 * If @req has leftover, sets it up for the next range of segments. 2429 * 2430 * This special helper function is only for request stacking drivers 2431 * (e.g. request-based dm) so that they can handle partial completion. 2432 * Actual device drivers should use blk_end_request instead. 2433 * 2434 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2435 * %false return from this function. 2436 * 2437 * Return: 2438 * %false - this request doesn't have any more data 2439 * %true - this request has more data 2440 **/ 2441 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2442 { 2443 int total_bytes; 2444 2445 trace_block_rq_complete(req->q, req, nr_bytes); 2446 2447 if (!req->bio) 2448 return false; 2449 2450 /* 2451 * For fs requests, rq is just carrier of independent bio's 2452 * and each partial completion should be handled separately. 2453 * Reset per-request error on each partial completion. 2454 * 2455 * TODO: tj: This is too subtle. It would be better to let 2456 * low level drivers do what they see fit. 2457 */ 2458 if (req->cmd_type == REQ_TYPE_FS) 2459 req->errors = 0; 2460 2461 if (error && req->cmd_type == REQ_TYPE_FS && 2462 !(req->cmd_flags & REQ_QUIET)) { 2463 char *error_type; 2464 2465 switch (error) { 2466 case -ENOLINK: 2467 error_type = "recoverable transport"; 2468 break; 2469 case -EREMOTEIO: 2470 error_type = "critical target"; 2471 break; 2472 case -EBADE: 2473 error_type = "critical nexus"; 2474 break; 2475 case -ETIMEDOUT: 2476 error_type = "timeout"; 2477 break; 2478 case -ENOSPC: 2479 error_type = "critical space allocation"; 2480 break; 2481 case -ENODATA: 2482 error_type = "critical medium"; 2483 break; 2484 case -EIO: 2485 default: 2486 error_type = "I/O"; 2487 break; 2488 } 2489 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2490 __func__, error_type, req->rq_disk ? 2491 req->rq_disk->disk_name : "?", 2492 (unsigned long long)blk_rq_pos(req)); 2493 2494 } 2495 2496 blk_account_io_completion(req, nr_bytes); 2497 2498 total_bytes = 0; 2499 while (req->bio) { 2500 struct bio *bio = req->bio; 2501 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2502 2503 if (bio_bytes == bio->bi_iter.bi_size) 2504 req->bio = bio->bi_next; 2505 2506 req_bio_endio(req, bio, bio_bytes, error); 2507 2508 total_bytes += bio_bytes; 2509 nr_bytes -= bio_bytes; 2510 2511 if (!nr_bytes) 2512 break; 2513 } 2514 2515 /* 2516 * completely done 2517 */ 2518 if (!req->bio) { 2519 /* 2520 * Reset counters so that the request stacking driver 2521 * can find how many bytes remain in the request 2522 * later. 2523 */ 2524 req->__data_len = 0; 2525 return false; 2526 } 2527 2528 req->__data_len -= total_bytes; 2529 2530 /* update sector only for requests with clear definition of sector */ 2531 if (req->cmd_type == REQ_TYPE_FS) 2532 req->__sector += total_bytes >> 9; 2533 2534 /* mixed attributes always follow the first bio */ 2535 if (req->cmd_flags & REQ_MIXED_MERGE) { 2536 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2537 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2538 } 2539 2540 /* 2541 * If total number of sectors is less than the first segment 2542 * size, something has gone terribly wrong. 2543 */ 2544 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2545 blk_dump_rq_flags(req, "request botched"); 2546 req->__data_len = blk_rq_cur_bytes(req); 2547 } 2548 2549 /* recalculate the number of segments */ 2550 blk_recalc_rq_segments(req); 2551 2552 return true; 2553 } 2554 EXPORT_SYMBOL_GPL(blk_update_request); 2555 2556 static bool blk_update_bidi_request(struct request *rq, int error, 2557 unsigned int nr_bytes, 2558 unsigned int bidi_bytes) 2559 { 2560 if (blk_update_request(rq, error, nr_bytes)) 2561 return true; 2562 2563 /* Bidi request must be completed as a whole */ 2564 if (unlikely(blk_bidi_rq(rq)) && 2565 blk_update_request(rq->next_rq, error, bidi_bytes)) 2566 return true; 2567 2568 if (blk_queue_add_random(rq->q)) 2569 add_disk_randomness(rq->rq_disk); 2570 2571 return false; 2572 } 2573 2574 /** 2575 * blk_unprep_request - unprepare a request 2576 * @req: the request 2577 * 2578 * This function makes a request ready for complete resubmission (or 2579 * completion). It happens only after all error handling is complete, 2580 * so represents the appropriate moment to deallocate any resources 2581 * that were allocated to the request in the prep_rq_fn. The queue 2582 * lock is held when calling this. 2583 */ 2584 void blk_unprep_request(struct request *req) 2585 { 2586 struct request_queue *q = req->q; 2587 2588 req->cmd_flags &= ~REQ_DONTPREP; 2589 if (q->unprep_rq_fn) 2590 q->unprep_rq_fn(q, req); 2591 } 2592 EXPORT_SYMBOL_GPL(blk_unprep_request); 2593 2594 /* 2595 * queue lock must be held 2596 */ 2597 void blk_finish_request(struct request *req, int error) 2598 { 2599 if (req->cmd_flags & REQ_QUEUED) 2600 blk_queue_end_tag(req->q, req); 2601 2602 BUG_ON(blk_queued_rq(req)); 2603 2604 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2605 laptop_io_completion(&req->q->backing_dev_info); 2606 2607 blk_delete_timer(req); 2608 2609 if (req->cmd_flags & REQ_DONTPREP) 2610 blk_unprep_request(req); 2611 2612 blk_account_io_done(req); 2613 2614 if (req->end_io) 2615 req->end_io(req, error); 2616 else { 2617 if (blk_bidi_rq(req)) 2618 __blk_put_request(req->next_rq->q, req->next_rq); 2619 2620 __blk_put_request(req->q, req); 2621 } 2622 } 2623 EXPORT_SYMBOL(blk_finish_request); 2624 2625 /** 2626 * blk_end_bidi_request - Complete a bidi request 2627 * @rq: the request to complete 2628 * @error: %0 for success, < %0 for error 2629 * @nr_bytes: number of bytes to complete @rq 2630 * @bidi_bytes: number of bytes to complete @rq->next_rq 2631 * 2632 * Description: 2633 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2634 * Drivers that supports bidi can safely call this member for any 2635 * type of request, bidi or uni. In the later case @bidi_bytes is 2636 * just ignored. 2637 * 2638 * Return: 2639 * %false - we are done with this request 2640 * %true - still buffers pending for this request 2641 **/ 2642 static bool blk_end_bidi_request(struct request *rq, int error, 2643 unsigned int nr_bytes, unsigned int bidi_bytes) 2644 { 2645 struct request_queue *q = rq->q; 2646 unsigned long flags; 2647 2648 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2649 return true; 2650 2651 spin_lock_irqsave(q->queue_lock, flags); 2652 blk_finish_request(rq, error); 2653 spin_unlock_irqrestore(q->queue_lock, flags); 2654 2655 return false; 2656 } 2657 2658 /** 2659 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2660 * @rq: the request to complete 2661 * @error: %0 for success, < %0 for error 2662 * @nr_bytes: number of bytes to complete @rq 2663 * @bidi_bytes: number of bytes to complete @rq->next_rq 2664 * 2665 * Description: 2666 * Identical to blk_end_bidi_request() except that queue lock is 2667 * assumed to be locked on entry and remains so on return. 2668 * 2669 * Return: 2670 * %false - we are done with this request 2671 * %true - still buffers pending for this request 2672 **/ 2673 bool __blk_end_bidi_request(struct request *rq, int error, 2674 unsigned int nr_bytes, unsigned int bidi_bytes) 2675 { 2676 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2677 return true; 2678 2679 blk_finish_request(rq, error); 2680 2681 return false; 2682 } 2683 2684 /** 2685 * blk_end_request - Helper function for drivers to complete the request. 2686 * @rq: the request being processed 2687 * @error: %0 for success, < %0 for error 2688 * @nr_bytes: number of bytes to complete 2689 * 2690 * Description: 2691 * Ends I/O on a number of bytes attached to @rq. 2692 * If @rq has leftover, sets it up for the next range of segments. 2693 * 2694 * Return: 2695 * %false - we are done with this request 2696 * %true - still buffers pending for this request 2697 **/ 2698 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2699 { 2700 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2701 } 2702 EXPORT_SYMBOL(blk_end_request); 2703 2704 /** 2705 * blk_end_request_all - Helper function for drives to finish the request. 2706 * @rq: the request to finish 2707 * @error: %0 for success, < %0 for error 2708 * 2709 * Description: 2710 * Completely finish @rq. 2711 */ 2712 void blk_end_request_all(struct request *rq, int error) 2713 { 2714 bool pending; 2715 unsigned int bidi_bytes = 0; 2716 2717 if (unlikely(blk_bidi_rq(rq))) 2718 bidi_bytes = blk_rq_bytes(rq->next_rq); 2719 2720 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2721 BUG_ON(pending); 2722 } 2723 EXPORT_SYMBOL(blk_end_request_all); 2724 2725 /** 2726 * blk_end_request_cur - Helper function to finish the current request chunk. 2727 * @rq: the request to finish the current chunk for 2728 * @error: %0 for success, < %0 for error 2729 * 2730 * Description: 2731 * Complete the current consecutively mapped chunk from @rq. 2732 * 2733 * Return: 2734 * %false - we are done with this request 2735 * %true - still buffers pending for this request 2736 */ 2737 bool blk_end_request_cur(struct request *rq, int error) 2738 { 2739 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2740 } 2741 EXPORT_SYMBOL(blk_end_request_cur); 2742 2743 /** 2744 * blk_end_request_err - Finish a request till the next failure boundary. 2745 * @rq: the request to finish till the next failure boundary for 2746 * @error: must be negative errno 2747 * 2748 * Description: 2749 * Complete @rq till the next failure boundary. 2750 * 2751 * Return: 2752 * %false - we are done with this request 2753 * %true - still buffers pending for this request 2754 */ 2755 bool blk_end_request_err(struct request *rq, int error) 2756 { 2757 WARN_ON(error >= 0); 2758 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2759 } 2760 EXPORT_SYMBOL_GPL(blk_end_request_err); 2761 2762 /** 2763 * __blk_end_request - Helper function for drivers to complete the request. 2764 * @rq: the request being processed 2765 * @error: %0 for success, < %0 for error 2766 * @nr_bytes: number of bytes to complete 2767 * 2768 * Description: 2769 * Must be called with queue lock held unlike blk_end_request(). 2770 * 2771 * Return: 2772 * %false - we are done with this request 2773 * %true - still buffers pending for this request 2774 **/ 2775 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2776 { 2777 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2778 } 2779 EXPORT_SYMBOL(__blk_end_request); 2780 2781 /** 2782 * __blk_end_request_all - Helper function for drives to finish the request. 2783 * @rq: the request to finish 2784 * @error: %0 for success, < %0 for error 2785 * 2786 * Description: 2787 * Completely finish @rq. Must be called with queue lock held. 2788 */ 2789 void __blk_end_request_all(struct request *rq, int error) 2790 { 2791 bool pending; 2792 unsigned int bidi_bytes = 0; 2793 2794 if (unlikely(blk_bidi_rq(rq))) 2795 bidi_bytes = blk_rq_bytes(rq->next_rq); 2796 2797 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2798 BUG_ON(pending); 2799 } 2800 EXPORT_SYMBOL(__blk_end_request_all); 2801 2802 /** 2803 * __blk_end_request_cur - Helper function to finish the current request chunk. 2804 * @rq: the request to finish the current chunk for 2805 * @error: %0 for success, < %0 for error 2806 * 2807 * Description: 2808 * Complete the current consecutively mapped chunk from @rq. Must 2809 * be called with queue lock held. 2810 * 2811 * Return: 2812 * %false - we are done with this request 2813 * %true - still buffers pending for this request 2814 */ 2815 bool __blk_end_request_cur(struct request *rq, int error) 2816 { 2817 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2818 } 2819 EXPORT_SYMBOL(__blk_end_request_cur); 2820 2821 /** 2822 * __blk_end_request_err - Finish a request till the next failure boundary. 2823 * @rq: the request to finish till the next failure boundary for 2824 * @error: must be negative errno 2825 * 2826 * Description: 2827 * Complete @rq till the next failure boundary. Must be called 2828 * with queue lock held. 2829 * 2830 * Return: 2831 * %false - we are done with this request 2832 * %true - still buffers pending for this request 2833 */ 2834 bool __blk_end_request_err(struct request *rq, int error) 2835 { 2836 WARN_ON(error >= 0); 2837 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2838 } 2839 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2840 2841 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2842 struct bio *bio) 2843 { 2844 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2845 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2846 2847 if (bio_has_data(bio)) 2848 rq->nr_phys_segments = bio_phys_segments(q, bio); 2849 2850 rq->__data_len = bio->bi_iter.bi_size; 2851 rq->bio = rq->biotail = bio; 2852 2853 if (bio->bi_bdev) 2854 rq->rq_disk = bio->bi_bdev->bd_disk; 2855 } 2856 2857 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2858 /** 2859 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2860 * @rq: the request to be flushed 2861 * 2862 * Description: 2863 * Flush all pages in @rq. 2864 */ 2865 void rq_flush_dcache_pages(struct request *rq) 2866 { 2867 struct req_iterator iter; 2868 struct bio_vec bvec; 2869 2870 rq_for_each_segment(bvec, rq, iter) 2871 flush_dcache_page(bvec.bv_page); 2872 } 2873 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2874 #endif 2875 2876 /** 2877 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2878 * @q : the queue of the device being checked 2879 * 2880 * Description: 2881 * Check if underlying low-level drivers of a device are busy. 2882 * If the drivers want to export their busy state, they must set own 2883 * exporting function using blk_queue_lld_busy() first. 2884 * 2885 * Basically, this function is used only by request stacking drivers 2886 * to stop dispatching requests to underlying devices when underlying 2887 * devices are busy. This behavior helps more I/O merging on the queue 2888 * of the request stacking driver and prevents I/O throughput regression 2889 * on burst I/O load. 2890 * 2891 * Return: 2892 * 0 - Not busy (The request stacking driver should dispatch request) 2893 * 1 - Busy (The request stacking driver should stop dispatching request) 2894 */ 2895 int blk_lld_busy(struct request_queue *q) 2896 { 2897 if (q->lld_busy_fn) 2898 return q->lld_busy_fn(q); 2899 2900 return 0; 2901 } 2902 EXPORT_SYMBOL_GPL(blk_lld_busy); 2903 2904 /** 2905 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2906 * @rq: the clone request to be cleaned up 2907 * 2908 * Description: 2909 * Free all bios in @rq for a cloned request. 2910 */ 2911 void blk_rq_unprep_clone(struct request *rq) 2912 { 2913 struct bio *bio; 2914 2915 while ((bio = rq->bio) != NULL) { 2916 rq->bio = bio->bi_next; 2917 2918 bio_put(bio); 2919 } 2920 } 2921 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2922 2923 /* 2924 * Copy attributes of the original request to the clone request. 2925 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2926 */ 2927 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2928 { 2929 dst->cpu = src->cpu; 2930 dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2931 dst->cmd_type = src->cmd_type; 2932 dst->__sector = blk_rq_pos(src); 2933 dst->__data_len = blk_rq_bytes(src); 2934 dst->nr_phys_segments = src->nr_phys_segments; 2935 dst->ioprio = src->ioprio; 2936 dst->extra_len = src->extra_len; 2937 } 2938 2939 /** 2940 * blk_rq_prep_clone - Helper function to setup clone request 2941 * @rq: the request to be setup 2942 * @rq_src: original request to be cloned 2943 * @bs: bio_set that bios for clone are allocated from 2944 * @gfp_mask: memory allocation mask for bio 2945 * @bio_ctr: setup function to be called for each clone bio. 2946 * Returns %0 for success, non %0 for failure. 2947 * @data: private data to be passed to @bio_ctr 2948 * 2949 * Description: 2950 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2951 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2952 * are not copied, and copying such parts is the caller's responsibility. 2953 * Also, pages which the original bios are pointing to are not copied 2954 * and the cloned bios just point same pages. 2955 * So cloned bios must be completed before original bios, which means 2956 * the caller must complete @rq before @rq_src. 2957 */ 2958 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2959 struct bio_set *bs, gfp_t gfp_mask, 2960 int (*bio_ctr)(struct bio *, struct bio *, void *), 2961 void *data) 2962 { 2963 struct bio *bio, *bio_src; 2964 2965 if (!bs) 2966 bs = fs_bio_set; 2967 2968 __rq_for_each_bio(bio_src, rq_src) { 2969 bio = bio_clone_fast(bio_src, gfp_mask, bs); 2970 if (!bio) 2971 goto free_and_out; 2972 2973 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2974 goto free_and_out; 2975 2976 if (rq->bio) { 2977 rq->biotail->bi_next = bio; 2978 rq->biotail = bio; 2979 } else 2980 rq->bio = rq->biotail = bio; 2981 } 2982 2983 __blk_rq_prep_clone(rq, rq_src); 2984 2985 return 0; 2986 2987 free_and_out: 2988 if (bio) 2989 bio_put(bio); 2990 blk_rq_unprep_clone(rq); 2991 2992 return -ENOMEM; 2993 } 2994 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2995 2996 int kblockd_schedule_work(struct work_struct *work) 2997 { 2998 return queue_work(kblockd_workqueue, work); 2999 } 3000 EXPORT_SYMBOL(kblockd_schedule_work); 3001 3002 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3003 unsigned long delay) 3004 { 3005 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3006 } 3007 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3008 3009 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3010 unsigned long delay) 3011 { 3012 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3013 } 3014 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3015 3016 /** 3017 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3018 * @plug: The &struct blk_plug that needs to be initialized 3019 * 3020 * Description: 3021 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3022 * pending I/O should the task end up blocking between blk_start_plug() and 3023 * blk_finish_plug(). This is important from a performance perspective, but 3024 * also ensures that we don't deadlock. For instance, if the task is blocking 3025 * for a memory allocation, memory reclaim could end up wanting to free a 3026 * page belonging to that request that is currently residing in our private 3027 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3028 * this kind of deadlock. 3029 */ 3030 void blk_start_plug(struct blk_plug *plug) 3031 { 3032 struct task_struct *tsk = current; 3033 3034 INIT_LIST_HEAD(&plug->list); 3035 INIT_LIST_HEAD(&plug->mq_list); 3036 INIT_LIST_HEAD(&plug->cb_list); 3037 3038 /* 3039 * If this is a nested plug, don't actually assign it. It will be 3040 * flushed on its own. 3041 */ 3042 if (!tsk->plug) { 3043 /* 3044 * Store ordering should not be needed here, since a potential 3045 * preempt will imply a full memory barrier 3046 */ 3047 tsk->plug = plug; 3048 } 3049 } 3050 EXPORT_SYMBOL(blk_start_plug); 3051 3052 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3053 { 3054 struct request *rqa = container_of(a, struct request, queuelist); 3055 struct request *rqb = container_of(b, struct request, queuelist); 3056 3057 return !(rqa->q < rqb->q || 3058 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3059 } 3060 3061 /* 3062 * If 'from_schedule' is true, then postpone the dispatch of requests 3063 * until a safe kblockd context. We due this to avoid accidental big 3064 * additional stack usage in driver dispatch, in places where the originally 3065 * plugger did not intend it. 3066 */ 3067 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3068 bool from_schedule) 3069 __releases(q->queue_lock) 3070 { 3071 trace_block_unplug(q, depth, !from_schedule); 3072 3073 if (from_schedule) 3074 blk_run_queue_async(q); 3075 else 3076 __blk_run_queue(q); 3077 spin_unlock(q->queue_lock); 3078 } 3079 3080 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3081 { 3082 LIST_HEAD(callbacks); 3083 3084 while (!list_empty(&plug->cb_list)) { 3085 list_splice_init(&plug->cb_list, &callbacks); 3086 3087 while (!list_empty(&callbacks)) { 3088 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3089 struct blk_plug_cb, 3090 list); 3091 list_del(&cb->list); 3092 cb->callback(cb, from_schedule); 3093 } 3094 } 3095 } 3096 3097 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3098 int size) 3099 { 3100 struct blk_plug *plug = current->plug; 3101 struct blk_plug_cb *cb; 3102 3103 if (!plug) 3104 return NULL; 3105 3106 list_for_each_entry(cb, &plug->cb_list, list) 3107 if (cb->callback == unplug && cb->data == data) 3108 return cb; 3109 3110 /* Not currently on the callback list */ 3111 BUG_ON(size < sizeof(*cb)); 3112 cb = kzalloc(size, GFP_ATOMIC); 3113 if (cb) { 3114 cb->data = data; 3115 cb->callback = unplug; 3116 list_add(&cb->list, &plug->cb_list); 3117 } 3118 return cb; 3119 } 3120 EXPORT_SYMBOL(blk_check_plugged); 3121 3122 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3123 { 3124 struct request_queue *q; 3125 unsigned long flags; 3126 struct request *rq; 3127 LIST_HEAD(list); 3128 unsigned int depth; 3129 3130 flush_plug_callbacks(plug, from_schedule); 3131 3132 if (!list_empty(&plug->mq_list)) 3133 blk_mq_flush_plug_list(plug, from_schedule); 3134 3135 if (list_empty(&plug->list)) 3136 return; 3137 3138 list_splice_init(&plug->list, &list); 3139 3140 list_sort(NULL, &list, plug_rq_cmp); 3141 3142 q = NULL; 3143 depth = 0; 3144 3145 /* 3146 * Save and disable interrupts here, to avoid doing it for every 3147 * queue lock we have to take. 3148 */ 3149 local_irq_save(flags); 3150 while (!list_empty(&list)) { 3151 rq = list_entry_rq(list.next); 3152 list_del_init(&rq->queuelist); 3153 BUG_ON(!rq->q); 3154 if (rq->q != q) { 3155 /* 3156 * This drops the queue lock 3157 */ 3158 if (q) 3159 queue_unplugged(q, depth, from_schedule); 3160 q = rq->q; 3161 depth = 0; 3162 spin_lock(q->queue_lock); 3163 } 3164 3165 /* 3166 * Short-circuit if @q is dead 3167 */ 3168 if (unlikely(blk_queue_dying(q))) { 3169 __blk_end_request_all(rq, -ENODEV); 3170 continue; 3171 } 3172 3173 /* 3174 * rq is already accounted, so use raw insert 3175 */ 3176 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3177 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3178 else 3179 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3180 3181 depth++; 3182 } 3183 3184 /* 3185 * This drops the queue lock 3186 */ 3187 if (q) 3188 queue_unplugged(q, depth, from_schedule); 3189 3190 local_irq_restore(flags); 3191 } 3192 3193 void blk_finish_plug(struct blk_plug *plug) 3194 { 3195 blk_flush_plug_list(plug, false); 3196 3197 if (plug == current->plug) 3198 current->plug = NULL; 3199 } 3200 EXPORT_SYMBOL(blk_finish_plug); 3201 3202 #ifdef CONFIG_PM 3203 /** 3204 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3205 * @q: the queue of the device 3206 * @dev: the device the queue belongs to 3207 * 3208 * Description: 3209 * Initialize runtime-PM-related fields for @q and start auto suspend for 3210 * @dev. Drivers that want to take advantage of request-based runtime PM 3211 * should call this function after @dev has been initialized, and its 3212 * request queue @q has been allocated, and runtime PM for it can not happen 3213 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3214 * cases, driver should call this function before any I/O has taken place. 3215 * 3216 * This function takes care of setting up using auto suspend for the device, 3217 * the autosuspend delay is set to -1 to make runtime suspend impossible 3218 * until an updated value is either set by user or by driver. Drivers do 3219 * not need to touch other autosuspend settings. 3220 * 3221 * The block layer runtime PM is request based, so only works for drivers 3222 * that use request as their IO unit instead of those directly use bio's. 3223 */ 3224 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3225 { 3226 q->dev = dev; 3227 q->rpm_status = RPM_ACTIVE; 3228 pm_runtime_set_autosuspend_delay(q->dev, -1); 3229 pm_runtime_use_autosuspend(q->dev); 3230 } 3231 EXPORT_SYMBOL(blk_pm_runtime_init); 3232 3233 /** 3234 * blk_pre_runtime_suspend - Pre runtime suspend check 3235 * @q: the queue of the device 3236 * 3237 * Description: 3238 * This function will check if runtime suspend is allowed for the device 3239 * by examining if there are any requests pending in the queue. If there 3240 * are requests pending, the device can not be runtime suspended; otherwise, 3241 * the queue's status will be updated to SUSPENDING and the driver can 3242 * proceed to suspend the device. 3243 * 3244 * For the not allowed case, we mark last busy for the device so that 3245 * runtime PM core will try to autosuspend it some time later. 3246 * 3247 * This function should be called near the start of the device's 3248 * runtime_suspend callback. 3249 * 3250 * Return: 3251 * 0 - OK to runtime suspend the device 3252 * -EBUSY - Device should not be runtime suspended 3253 */ 3254 int blk_pre_runtime_suspend(struct request_queue *q) 3255 { 3256 int ret = 0; 3257 3258 spin_lock_irq(q->queue_lock); 3259 if (q->nr_pending) { 3260 ret = -EBUSY; 3261 pm_runtime_mark_last_busy(q->dev); 3262 } else { 3263 q->rpm_status = RPM_SUSPENDING; 3264 } 3265 spin_unlock_irq(q->queue_lock); 3266 return ret; 3267 } 3268 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3269 3270 /** 3271 * blk_post_runtime_suspend - Post runtime suspend processing 3272 * @q: the queue of the device 3273 * @err: return value of the device's runtime_suspend function 3274 * 3275 * Description: 3276 * Update the queue's runtime status according to the return value of the 3277 * device's runtime suspend function and mark last busy for the device so 3278 * that PM core will try to auto suspend the device at a later time. 3279 * 3280 * This function should be called near the end of the device's 3281 * runtime_suspend callback. 3282 */ 3283 void blk_post_runtime_suspend(struct request_queue *q, int err) 3284 { 3285 spin_lock_irq(q->queue_lock); 3286 if (!err) { 3287 q->rpm_status = RPM_SUSPENDED; 3288 } else { 3289 q->rpm_status = RPM_ACTIVE; 3290 pm_runtime_mark_last_busy(q->dev); 3291 } 3292 spin_unlock_irq(q->queue_lock); 3293 } 3294 EXPORT_SYMBOL(blk_post_runtime_suspend); 3295 3296 /** 3297 * blk_pre_runtime_resume - Pre runtime resume processing 3298 * @q: the queue of the device 3299 * 3300 * Description: 3301 * Update the queue's runtime status to RESUMING in preparation for the 3302 * runtime resume of the device. 3303 * 3304 * This function should be called near the start of the device's 3305 * runtime_resume callback. 3306 */ 3307 void blk_pre_runtime_resume(struct request_queue *q) 3308 { 3309 spin_lock_irq(q->queue_lock); 3310 q->rpm_status = RPM_RESUMING; 3311 spin_unlock_irq(q->queue_lock); 3312 } 3313 EXPORT_SYMBOL(blk_pre_runtime_resume); 3314 3315 /** 3316 * blk_post_runtime_resume - Post runtime resume processing 3317 * @q: the queue of the device 3318 * @err: return value of the device's runtime_resume function 3319 * 3320 * Description: 3321 * Update the queue's runtime status according to the return value of the 3322 * device's runtime_resume function. If it is successfully resumed, process 3323 * the requests that are queued into the device's queue when it is resuming 3324 * and then mark last busy and initiate autosuspend for it. 3325 * 3326 * This function should be called near the end of the device's 3327 * runtime_resume callback. 3328 */ 3329 void blk_post_runtime_resume(struct request_queue *q, int err) 3330 { 3331 spin_lock_irq(q->queue_lock); 3332 if (!err) { 3333 q->rpm_status = RPM_ACTIVE; 3334 __blk_run_queue(q); 3335 pm_runtime_mark_last_busy(q->dev); 3336 pm_request_autosuspend(q->dev); 3337 } else { 3338 q->rpm_status = RPM_SUSPENDED; 3339 } 3340 spin_unlock_irq(q->queue_lock); 3341 } 3342 EXPORT_SYMBOL(blk_post_runtime_resume); 3343 #endif 3344 3345 int __init blk_dev_init(void) 3346 { 3347 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3348 sizeof(((struct request *)0)->cmd_flags)); 3349 3350 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3351 kblockd_workqueue = alloc_workqueue("kblockd", 3352 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3353 if (!kblockd_workqueue) 3354 panic("Failed to create kblockd\n"); 3355 3356 request_cachep = kmem_cache_create("blkdev_requests", 3357 sizeof(struct request), 0, SLAB_PANIC, NULL); 3358 3359 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3360 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3361 3362 return 0; 3363 } 3364