xref: /openbmc/linux/block/blk-core.c (revision 4f3db074)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 	int nr;
69 
70 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 	if (nr > q->nr_requests)
72 		nr = q->nr_requests;
73 	q->nr_congestion_on = nr;
74 
75 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 	if (nr < 1)
77 		nr = 1;
78 	q->nr_congestion_off = nr;
79 }
80 
81 /**
82  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83  * @bdev:	device
84  *
85  * Locates the passed device's request queue and returns the address of its
86  * backing_dev_info.  This function can only be called if @bdev is opened
87  * and the return value is never NULL.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct request_queue *q = bdev_get_queue(bdev);
92 
93 	return &q->backing_dev_info;
94 }
95 EXPORT_SYMBOL(blk_get_backing_dev_info);
96 
97 void blk_rq_init(struct request_queue *q, struct request *rq)
98 {
99 	memset(rq, 0, sizeof(*rq));
100 
101 	INIT_LIST_HEAD(&rq->queuelist);
102 	INIT_LIST_HEAD(&rq->timeout_list);
103 	rq->cpu = -1;
104 	rq->q = q;
105 	rq->__sector = (sector_t) -1;
106 	INIT_HLIST_NODE(&rq->hash);
107 	RB_CLEAR_NODE(&rq->rb_node);
108 	rq->cmd = rq->__cmd;
109 	rq->cmd_len = BLK_MAX_CDB;
110 	rq->tag = -1;
111 	rq->start_time = jiffies;
112 	set_start_time_ns(rq);
113 	rq->part = NULL;
114 }
115 EXPORT_SYMBOL(blk_rq_init);
116 
117 static void req_bio_endio(struct request *rq, struct bio *bio,
118 			  unsigned int nbytes, int error)
119 {
120 	if (error)
121 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
122 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
123 		error = -EIO;
124 
125 	if (unlikely(rq->cmd_flags & REQ_QUIET))
126 		set_bit(BIO_QUIET, &bio->bi_flags);
127 
128 	bio_advance(bio, nbytes);
129 
130 	/* don't actually finish bio if it's part of flush sequence */
131 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
132 		bio_endio(bio, error);
133 }
134 
135 void blk_dump_rq_flags(struct request *rq, char *msg)
136 {
137 	int bit;
138 
139 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
140 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
141 		(unsigned long long) rq->cmd_flags);
142 
143 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
144 	       (unsigned long long)blk_rq_pos(rq),
145 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
146 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
147 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
148 
149 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
150 		printk(KERN_INFO "  cdb: ");
151 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
152 			printk("%02x ", rq->cmd[bit]);
153 		printk("\n");
154 	}
155 }
156 EXPORT_SYMBOL(blk_dump_rq_flags);
157 
158 static void blk_delay_work(struct work_struct *work)
159 {
160 	struct request_queue *q;
161 
162 	q = container_of(work, struct request_queue, delay_work.work);
163 	spin_lock_irq(q->queue_lock);
164 	__blk_run_queue(q);
165 	spin_unlock_irq(q->queue_lock);
166 }
167 
168 /**
169  * blk_delay_queue - restart queueing after defined interval
170  * @q:		The &struct request_queue in question
171  * @msecs:	Delay in msecs
172  *
173  * Description:
174  *   Sometimes queueing needs to be postponed for a little while, to allow
175  *   resources to come back. This function will make sure that queueing is
176  *   restarted around the specified time. Queue lock must be held.
177  */
178 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
179 {
180 	if (likely(!blk_queue_dead(q)))
181 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
182 				   msecs_to_jiffies(msecs));
183 }
184 EXPORT_SYMBOL(blk_delay_queue);
185 
186 /**
187  * blk_start_queue - restart a previously stopped queue
188  * @q:    The &struct request_queue in question
189  *
190  * Description:
191  *   blk_start_queue() will clear the stop flag on the queue, and call
192  *   the request_fn for the queue if it was in a stopped state when
193  *   entered. Also see blk_stop_queue(). Queue lock must be held.
194  **/
195 void blk_start_queue(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
200 	__blk_run_queue(q);
201 }
202 EXPORT_SYMBOL(blk_start_queue);
203 
204 /**
205  * blk_stop_queue - stop a queue
206  * @q:    The &struct request_queue in question
207  *
208  * Description:
209  *   The Linux block layer assumes that a block driver will consume all
210  *   entries on the request queue when the request_fn strategy is called.
211  *   Often this will not happen, because of hardware limitations (queue
212  *   depth settings). If a device driver gets a 'queue full' response,
213  *   or if it simply chooses not to queue more I/O at one point, it can
214  *   call this function to prevent the request_fn from being called until
215  *   the driver has signalled it's ready to go again. This happens by calling
216  *   blk_start_queue() to restart queue operations. Queue lock must be held.
217  **/
218 void blk_stop_queue(struct request_queue *q)
219 {
220 	cancel_delayed_work(&q->delay_work);
221 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
222 }
223 EXPORT_SYMBOL(blk_stop_queue);
224 
225 /**
226  * blk_sync_queue - cancel any pending callbacks on a queue
227  * @q: the queue
228  *
229  * Description:
230  *     The block layer may perform asynchronous callback activity
231  *     on a queue, such as calling the unplug function after a timeout.
232  *     A block device may call blk_sync_queue to ensure that any
233  *     such activity is cancelled, thus allowing it to release resources
234  *     that the callbacks might use. The caller must already have made sure
235  *     that its ->make_request_fn will not re-add plugging prior to calling
236  *     this function.
237  *
238  *     This function does not cancel any asynchronous activity arising
239  *     out of elevator or throttling code. That would require elevator_exit()
240  *     and blkcg_exit_queue() to be called with queue lock initialized.
241  *
242  */
243 void blk_sync_queue(struct request_queue *q)
244 {
245 	del_timer_sync(&q->timeout);
246 
247 	if (q->mq_ops) {
248 		struct blk_mq_hw_ctx *hctx;
249 		int i;
250 
251 		queue_for_each_hw_ctx(q, hctx, i) {
252 			cancel_delayed_work_sync(&hctx->run_work);
253 			cancel_delayed_work_sync(&hctx->delay_work);
254 		}
255 	} else {
256 		cancel_delayed_work_sync(&q->delay_work);
257 	}
258 }
259 EXPORT_SYMBOL(blk_sync_queue);
260 
261 /**
262  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
263  * @q:	The queue to run
264  *
265  * Description:
266  *    Invoke request handling on a queue if there are any pending requests.
267  *    May be used to restart request handling after a request has completed.
268  *    This variant runs the queue whether or not the queue has been
269  *    stopped. Must be called with the queue lock held and interrupts
270  *    disabled. See also @blk_run_queue.
271  */
272 inline void __blk_run_queue_uncond(struct request_queue *q)
273 {
274 	if (unlikely(blk_queue_dead(q)))
275 		return;
276 
277 	/*
278 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
279 	 * the queue lock internally. As a result multiple threads may be
280 	 * running such a request function concurrently. Keep track of the
281 	 * number of active request_fn invocations such that blk_drain_queue()
282 	 * can wait until all these request_fn calls have finished.
283 	 */
284 	q->request_fn_active++;
285 	q->request_fn(q);
286 	q->request_fn_active--;
287 }
288 
289 /**
290  * __blk_run_queue - run a single device queue
291  * @q:	The queue to run
292  *
293  * Description:
294  *    See @blk_run_queue. This variant must be called with the queue lock
295  *    held and interrupts disabled.
296  */
297 void __blk_run_queue(struct request_queue *q)
298 {
299 	if (unlikely(blk_queue_stopped(q)))
300 		return;
301 
302 	__blk_run_queue_uncond(q);
303 }
304 EXPORT_SYMBOL(__blk_run_queue);
305 
306 /**
307  * blk_run_queue_async - run a single device queue in workqueue context
308  * @q:	The queue to run
309  *
310  * Description:
311  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
312  *    of us. The caller must hold the queue lock.
313  */
314 void blk_run_queue_async(struct request_queue *q)
315 {
316 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
317 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
318 }
319 EXPORT_SYMBOL(blk_run_queue_async);
320 
321 /**
322  * blk_run_queue - run a single device queue
323  * @q: The queue to run
324  *
325  * Description:
326  *    Invoke request handling on this queue, if it has pending work to do.
327  *    May be used to restart queueing when a request has completed.
328  */
329 void blk_run_queue(struct request_queue *q)
330 {
331 	unsigned long flags;
332 
333 	spin_lock_irqsave(q->queue_lock, flags);
334 	__blk_run_queue(q);
335 	spin_unlock_irqrestore(q->queue_lock, flags);
336 }
337 EXPORT_SYMBOL(blk_run_queue);
338 
339 void blk_put_queue(struct request_queue *q)
340 {
341 	kobject_put(&q->kobj);
342 }
343 EXPORT_SYMBOL(blk_put_queue);
344 
345 /**
346  * __blk_drain_queue - drain requests from request_queue
347  * @q: queue to drain
348  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
349  *
350  * Drain requests from @q.  If @drain_all is set, all requests are drained.
351  * If not, only ELVPRIV requests are drained.  The caller is responsible
352  * for ensuring that no new requests which need to be drained are queued.
353  */
354 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
355 	__releases(q->queue_lock)
356 	__acquires(q->queue_lock)
357 {
358 	int i;
359 
360 	lockdep_assert_held(q->queue_lock);
361 
362 	while (true) {
363 		bool drain = false;
364 
365 		/*
366 		 * The caller might be trying to drain @q before its
367 		 * elevator is initialized.
368 		 */
369 		if (q->elevator)
370 			elv_drain_elevator(q);
371 
372 		blkcg_drain_queue(q);
373 
374 		/*
375 		 * This function might be called on a queue which failed
376 		 * driver init after queue creation or is not yet fully
377 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
378 		 * in such cases.  Kick queue iff dispatch queue has
379 		 * something on it and @q has request_fn set.
380 		 */
381 		if (!list_empty(&q->queue_head) && q->request_fn)
382 			__blk_run_queue(q);
383 
384 		drain |= q->nr_rqs_elvpriv;
385 		drain |= q->request_fn_active;
386 
387 		/*
388 		 * Unfortunately, requests are queued at and tracked from
389 		 * multiple places and there's no single counter which can
390 		 * be drained.  Check all the queues and counters.
391 		 */
392 		if (drain_all) {
393 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
394 			drain |= !list_empty(&q->queue_head);
395 			for (i = 0; i < 2; i++) {
396 				drain |= q->nr_rqs[i];
397 				drain |= q->in_flight[i];
398 				if (fq)
399 				    drain |= !list_empty(&fq->flush_queue[i]);
400 			}
401 		}
402 
403 		if (!drain)
404 			break;
405 
406 		spin_unlock_irq(q->queue_lock);
407 
408 		msleep(10);
409 
410 		spin_lock_irq(q->queue_lock);
411 	}
412 
413 	/*
414 	 * With queue marked dead, any woken up waiter will fail the
415 	 * allocation path, so the wakeup chaining is lost and we're
416 	 * left with hung waiters. We need to wake up those waiters.
417 	 */
418 	if (q->request_fn) {
419 		struct request_list *rl;
420 
421 		blk_queue_for_each_rl(rl, q)
422 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 				wake_up_all(&rl->wait[i]);
424 	}
425 }
426 
427 /**
428  * blk_queue_bypass_start - enter queue bypass mode
429  * @q: queue of interest
430  *
431  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
432  * function makes @q enter bypass mode and drains all requests which were
433  * throttled or issued before.  On return, it's guaranteed that no request
434  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
435  * inside queue or RCU read lock.
436  */
437 void blk_queue_bypass_start(struct request_queue *q)
438 {
439 	spin_lock_irq(q->queue_lock);
440 	q->bypass_depth++;
441 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
442 	spin_unlock_irq(q->queue_lock);
443 
444 	/*
445 	 * Queues start drained.  Skip actual draining till init is
446 	 * complete.  This avoids lenghty delays during queue init which
447 	 * can happen many times during boot.
448 	 */
449 	if (blk_queue_init_done(q)) {
450 		spin_lock_irq(q->queue_lock);
451 		__blk_drain_queue(q, false);
452 		spin_unlock_irq(q->queue_lock);
453 
454 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
455 		synchronize_rcu();
456 	}
457 }
458 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
459 
460 /**
461  * blk_queue_bypass_end - leave queue bypass mode
462  * @q: queue of interest
463  *
464  * Leave bypass mode and restore the normal queueing behavior.
465  */
466 void blk_queue_bypass_end(struct request_queue *q)
467 {
468 	spin_lock_irq(q->queue_lock);
469 	if (!--q->bypass_depth)
470 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
471 	WARN_ON_ONCE(q->bypass_depth < 0);
472 	spin_unlock_irq(q->queue_lock);
473 }
474 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
475 
476 void blk_set_queue_dying(struct request_queue *q)
477 {
478 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
479 
480 	if (q->mq_ops)
481 		blk_mq_wake_waiters(q);
482 	else {
483 		struct request_list *rl;
484 
485 		blk_queue_for_each_rl(rl, q) {
486 			if (rl->rq_pool) {
487 				wake_up(&rl->wait[BLK_RW_SYNC]);
488 				wake_up(&rl->wait[BLK_RW_ASYNC]);
489 			}
490 		}
491 	}
492 }
493 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
494 
495 /**
496  * blk_cleanup_queue - shutdown a request queue
497  * @q: request queue to shutdown
498  *
499  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
500  * put it.  All future requests will be failed immediately with -ENODEV.
501  */
502 void blk_cleanup_queue(struct request_queue *q)
503 {
504 	spinlock_t *lock = q->queue_lock;
505 
506 	/* mark @q DYING, no new request or merges will be allowed afterwards */
507 	mutex_lock(&q->sysfs_lock);
508 	blk_set_queue_dying(q);
509 	spin_lock_irq(lock);
510 
511 	/*
512 	 * A dying queue is permanently in bypass mode till released.  Note
513 	 * that, unlike blk_queue_bypass_start(), we aren't performing
514 	 * synchronize_rcu() after entering bypass mode to avoid the delay
515 	 * as some drivers create and destroy a lot of queues while
516 	 * probing.  This is still safe because blk_release_queue() will be
517 	 * called only after the queue refcnt drops to zero and nothing,
518 	 * RCU or not, would be traversing the queue by then.
519 	 */
520 	q->bypass_depth++;
521 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
522 
523 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
524 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
525 	queue_flag_set(QUEUE_FLAG_DYING, q);
526 	spin_unlock_irq(lock);
527 	mutex_unlock(&q->sysfs_lock);
528 
529 	/*
530 	 * Drain all requests queued before DYING marking. Set DEAD flag to
531 	 * prevent that q->request_fn() gets invoked after draining finished.
532 	 */
533 	if (q->mq_ops) {
534 		blk_mq_freeze_queue(q);
535 		spin_lock_irq(lock);
536 	} else {
537 		spin_lock_irq(lock);
538 		__blk_drain_queue(q, true);
539 	}
540 	queue_flag_set(QUEUE_FLAG_DEAD, q);
541 	spin_unlock_irq(lock);
542 
543 	/* @q won't process any more request, flush async actions */
544 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
545 	blk_sync_queue(q);
546 
547 	if (q->mq_ops)
548 		blk_mq_free_queue(q);
549 
550 	spin_lock_irq(lock);
551 	if (q->queue_lock != &q->__queue_lock)
552 		q->queue_lock = &q->__queue_lock;
553 	spin_unlock_irq(lock);
554 
555 	/* @q is and will stay empty, shutdown and put */
556 	blk_put_queue(q);
557 }
558 EXPORT_SYMBOL(blk_cleanup_queue);
559 
560 /* Allocate memory local to the request queue */
561 static void *alloc_request_struct(gfp_t gfp_mask, void *data)
562 {
563 	int nid = (int)(long)data;
564 	return kmem_cache_alloc_node(request_cachep, gfp_mask, nid);
565 }
566 
567 static void free_request_struct(void *element, void *unused)
568 {
569 	kmem_cache_free(request_cachep, element);
570 }
571 
572 int blk_init_rl(struct request_list *rl, struct request_queue *q,
573 		gfp_t gfp_mask)
574 {
575 	if (unlikely(rl->rq_pool))
576 		return 0;
577 
578 	rl->q = q;
579 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
580 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
581 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
582 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
583 
584 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, alloc_request_struct,
585 					  free_request_struct,
586 					  (void *)(long)q->node, gfp_mask,
587 					  q->node);
588 	if (!rl->rq_pool)
589 		return -ENOMEM;
590 
591 	return 0;
592 }
593 
594 void blk_exit_rl(struct request_list *rl)
595 {
596 	if (rl->rq_pool)
597 		mempool_destroy(rl->rq_pool);
598 }
599 
600 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
601 {
602 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
603 }
604 EXPORT_SYMBOL(blk_alloc_queue);
605 
606 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
607 {
608 	struct request_queue *q;
609 	int err;
610 
611 	q = kmem_cache_alloc_node(blk_requestq_cachep,
612 				gfp_mask | __GFP_ZERO, node_id);
613 	if (!q)
614 		return NULL;
615 
616 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
617 	if (q->id < 0)
618 		goto fail_q;
619 
620 	q->backing_dev_info.ra_pages =
621 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
622 	q->backing_dev_info.state = 0;
623 	q->backing_dev_info.capabilities = 0;
624 	q->backing_dev_info.name = "block";
625 	q->node = node_id;
626 
627 	err = bdi_init(&q->backing_dev_info);
628 	if (err)
629 		goto fail_id;
630 
631 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
632 		    laptop_mode_timer_fn, (unsigned long) q);
633 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
634 	INIT_LIST_HEAD(&q->queue_head);
635 	INIT_LIST_HEAD(&q->timeout_list);
636 	INIT_LIST_HEAD(&q->icq_list);
637 #ifdef CONFIG_BLK_CGROUP
638 	INIT_LIST_HEAD(&q->blkg_list);
639 #endif
640 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
641 
642 	kobject_init(&q->kobj, &blk_queue_ktype);
643 
644 	mutex_init(&q->sysfs_lock);
645 	spin_lock_init(&q->__queue_lock);
646 
647 	/*
648 	 * By default initialize queue_lock to internal lock and driver can
649 	 * override it later if need be.
650 	 */
651 	q->queue_lock = &q->__queue_lock;
652 
653 	/*
654 	 * A queue starts its life with bypass turned on to avoid
655 	 * unnecessary bypass on/off overhead and nasty surprises during
656 	 * init.  The initial bypass will be finished when the queue is
657 	 * registered by blk_register_queue().
658 	 */
659 	q->bypass_depth = 1;
660 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
661 
662 	init_waitqueue_head(&q->mq_freeze_wq);
663 
664 	if (blkcg_init_queue(q))
665 		goto fail_bdi;
666 
667 	return q;
668 
669 fail_bdi:
670 	bdi_destroy(&q->backing_dev_info);
671 fail_id:
672 	ida_simple_remove(&blk_queue_ida, q->id);
673 fail_q:
674 	kmem_cache_free(blk_requestq_cachep, q);
675 	return NULL;
676 }
677 EXPORT_SYMBOL(blk_alloc_queue_node);
678 
679 /**
680  * blk_init_queue  - prepare a request queue for use with a block device
681  * @rfn:  The function to be called to process requests that have been
682  *        placed on the queue.
683  * @lock: Request queue spin lock
684  *
685  * Description:
686  *    If a block device wishes to use the standard request handling procedures,
687  *    which sorts requests and coalesces adjacent requests, then it must
688  *    call blk_init_queue().  The function @rfn will be called when there
689  *    are requests on the queue that need to be processed.  If the device
690  *    supports plugging, then @rfn may not be called immediately when requests
691  *    are available on the queue, but may be called at some time later instead.
692  *    Plugged queues are generally unplugged when a buffer belonging to one
693  *    of the requests on the queue is needed, or due to memory pressure.
694  *
695  *    @rfn is not required, or even expected, to remove all requests off the
696  *    queue, but only as many as it can handle at a time.  If it does leave
697  *    requests on the queue, it is responsible for arranging that the requests
698  *    get dealt with eventually.
699  *
700  *    The queue spin lock must be held while manipulating the requests on the
701  *    request queue; this lock will be taken also from interrupt context, so irq
702  *    disabling is needed for it.
703  *
704  *    Function returns a pointer to the initialized request queue, or %NULL if
705  *    it didn't succeed.
706  *
707  * Note:
708  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
709  *    when the block device is deactivated (such as at module unload).
710  **/
711 
712 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
713 {
714 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
715 }
716 EXPORT_SYMBOL(blk_init_queue);
717 
718 struct request_queue *
719 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
720 {
721 	struct request_queue *uninit_q, *q;
722 
723 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
724 	if (!uninit_q)
725 		return NULL;
726 
727 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
728 	if (!q)
729 		blk_cleanup_queue(uninit_q);
730 
731 	return q;
732 }
733 EXPORT_SYMBOL(blk_init_queue_node);
734 
735 struct request_queue *
736 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
737 			 spinlock_t *lock)
738 {
739 	if (!q)
740 		return NULL;
741 
742 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, 0);
743 	if (!q->fq)
744 		return NULL;
745 
746 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
747 		goto fail;
748 
749 	q->request_fn		= rfn;
750 	q->prep_rq_fn		= NULL;
751 	q->unprep_rq_fn		= NULL;
752 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
753 
754 	/* Override internal queue lock with supplied lock pointer */
755 	if (lock)
756 		q->queue_lock		= lock;
757 
758 	/*
759 	 * This also sets hw/phys segments, boundary and size
760 	 */
761 	blk_queue_make_request(q, blk_queue_bio);
762 
763 	q->sg_reserved_size = INT_MAX;
764 
765 	/* Protect q->elevator from elevator_change */
766 	mutex_lock(&q->sysfs_lock);
767 
768 	/* init elevator */
769 	if (elevator_init(q, NULL)) {
770 		mutex_unlock(&q->sysfs_lock);
771 		goto fail;
772 	}
773 
774 	mutex_unlock(&q->sysfs_lock);
775 
776 	return q;
777 
778 fail:
779 	blk_free_flush_queue(q->fq);
780 	return NULL;
781 }
782 EXPORT_SYMBOL(blk_init_allocated_queue);
783 
784 bool blk_get_queue(struct request_queue *q)
785 {
786 	if (likely(!blk_queue_dying(q))) {
787 		__blk_get_queue(q);
788 		return true;
789 	}
790 
791 	return false;
792 }
793 EXPORT_SYMBOL(blk_get_queue);
794 
795 static inline void blk_free_request(struct request_list *rl, struct request *rq)
796 {
797 	if (rq->cmd_flags & REQ_ELVPRIV) {
798 		elv_put_request(rl->q, rq);
799 		if (rq->elv.icq)
800 			put_io_context(rq->elv.icq->ioc);
801 	}
802 
803 	mempool_free(rq, rl->rq_pool);
804 }
805 
806 /*
807  * ioc_batching returns true if the ioc is a valid batching request and
808  * should be given priority access to a request.
809  */
810 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
811 {
812 	if (!ioc)
813 		return 0;
814 
815 	/*
816 	 * Make sure the process is able to allocate at least 1 request
817 	 * even if the batch times out, otherwise we could theoretically
818 	 * lose wakeups.
819 	 */
820 	return ioc->nr_batch_requests == q->nr_batching ||
821 		(ioc->nr_batch_requests > 0
822 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
823 }
824 
825 /*
826  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
827  * will cause the process to be a "batcher" on all queues in the system. This
828  * is the behaviour we want though - once it gets a wakeup it should be given
829  * a nice run.
830  */
831 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
832 {
833 	if (!ioc || ioc_batching(q, ioc))
834 		return;
835 
836 	ioc->nr_batch_requests = q->nr_batching;
837 	ioc->last_waited = jiffies;
838 }
839 
840 static void __freed_request(struct request_list *rl, int sync)
841 {
842 	struct request_queue *q = rl->q;
843 
844 	/*
845 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
846 	 * blkcg anyway, just use root blkcg state.
847 	 */
848 	if (rl == &q->root_rl &&
849 	    rl->count[sync] < queue_congestion_off_threshold(q))
850 		blk_clear_queue_congested(q, sync);
851 
852 	if (rl->count[sync] + 1 <= q->nr_requests) {
853 		if (waitqueue_active(&rl->wait[sync]))
854 			wake_up(&rl->wait[sync]);
855 
856 		blk_clear_rl_full(rl, sync);
857 	}
858 }
859 
860 /*
861  * A request has just been released.  Account for it, update the full and
862  * congestion status, wake up any waiters.   Called under q->queue_lock.
863  */
864 static void freed_request(struct request_list *rl, unsigned int flags)
865 {
866 	struct request_queue *q = rl->q;
867 	int sync = rw_is_sync(flags);
868 
869 	q->nr_rqs[sync]--;
870 	rl->count[sync]--;
871 	if (flags & REQ_ELVPRIV)
872 		q->nr_rqs_elvpriv--;
873 
874 	__freed_request(rl, sync);
875 
876 	if (unlikely(rl->starved[sync ^ 1]))
877 		__freed_request(rl, sync ^ 1);
878 }
879 
880 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
881 {
882 	struct request_list *rl;
883 
884 	spin_lock_irq(q->queue_lock);
885 	q->nr_requests = nr;
886 	blk_queue_congestion_threshold(q);
887 
888 	/* congestion isn't cgroup aware and follows root blkcg for now */
889 	rl = &q->root_rl;
890 
891 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
892 		blk_set_queue_congested(q, BLK_RW_SYNC);
893 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
894 		blk_clear_queue_congested(q, BLK_RW_SYNC);
895 
896 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
897 		blk_set_queue_congested(q, BLK_RW_ASYNC);
898 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
899 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
900 
901 	blk_queue_for_each_rl(rl, q) {
902 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
903 			blk_set_rl_full(rl, BLK_RW_SYNC);
904 		} else {
905 			blk_clear_rl_full(rl, BLK_RW_SYNC);
906 			wake_up(&rl->wait[BLK_RW_SYNC]);
907 		}
908 
909 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
910 			blk_set_rl_full(rl, BLK_RW_ASYNC);
911 		} else {
912 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
913 			wake_up(&rl->wait[BLK_RW_ASYNC]);
914 		}
915 	}
916 
917 	spin_unlock_irq(q->queue_lock);
918 	return 0;
919 }
920 
921 /*
922  * Determine if elevator data should be initialized when allocating the
923  * request associated with @bio.
924  */
925 static bool blk_rq_should_init_elevator(struct bio *bio)
926 {
927 	if (!bio)
928 		return true;
929 
930 	/*
931 	 * Flush requests do not use the elevator so skip initialization.
932 	 * This allows a request to share the flush and elevator data.
933 	 */
934 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
935 		return false;
936 
937 	return true;
938 }
939 
940 /**
941  * rq_ioc - determine io_context for request allocation
942  * @bio: request being allocated is for this bio (can be %NULL)
943  *
944  * Determine io_context to use for request allocation for @bio.  May return
945  * %NULL if %current->io_context doesn't exist.
946  */
947 static struct io_context *rq_ioc(struct bio *bio)
948 {
949 #ifdef CONFIG_BLK_CGROUP
950 	if (bio && bio->bi_ioc)
951 		return bio->bi_ioc;
952 #endif
953 	return current->io_context;
954 }
955 
956 /**
957  * __get_request - get a free request
958  * @rl: request list to allocate from
959  * @rw_flags: RW and SYNC flags
960  * @bio: bio to allocate request for (can be %NULL)
961  * @gfp_mask: allocation mask
962  *
963  * Get a free request from @q.  This function may fail under memory
964  * pressure or if @q is dead.
965  *
966  * Must be called with @q->queue_lock held and,
967  * Returns ERR_PTR on failure, with @q->queue_lock held.
968  * Returns request pointer on success, with @q->queue_lock *not held*.
969  */
970 static struct request *__get_request(struct request_list *rl, int rw_flags,
971 				     struct bio *bio, gfp_t gfp_mask)
972 {
973 	struct request_queue *q = rl->q;
974 	struct request *rq;
975 	struct elevator_type *et = q->elevator->type;
976 	struct io_context *ioc = rq_ioc(bio);
977 	struct io_cq *icq = NULL;
978 	const bool is_sync = rw_is_sync(rw_flags) != 0;
979 	int may_queue;
980 
981 	if (unlikely(blk_queue_dying(q)))
982 		return ERR_PTR(-ENODEV);
983 
984 	may_queue = elv_may_queue(q, rw_flags);
985 	if (may_queue == ELV_MQUEUE_NO)
986 		goto rq_starved;
987 
988 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
989 		if (rl->count[is_sync]+1 >= q->nr_requests) {
990 			/*
991 			 * The queue will fill after this allocation, so set
992 			 * it as full, and mark this process as "batching".
993 			 * This process will be allowed to complete a batch of
994 			 * requests, others will be blocked.
995 			 */
996 			if (!blk_rl_full(rl, is_sync)) {
997 				ioc_set_batching(q, ioc);
998 				blk_set_rl_full(rl, is_sync);
999 			} else {
1000 				if (may_queue != ELV_MQUEUE_MUST
1001 						&& !ioc_batching(q, ioc)) {
1002 					/*
1003 					 * The queue is full and the allocating
1004 					 * process is not a "batcher", and not
1005 					 * exempted by the IO scheduler
1006 					 */
1007 					return ERR_PTR(-ENOMEM);
1008 				}
1009 			}
1010 		}
1011 		/*
1012 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
1013 		 * root blkcg anyway, just use root blkcg state.
1014 		 */
1015 		if (rl == &q->root_rl)
1016 			blk_set_queue_congested(q, is_sync);
1017 	}
1018 
1019 	/*
1020 	 * Only allow batching queuers to allocate up to 50% over the defined
1021 	 * limit of requests, otherwise we could have thousands of requests
1022 	 * allocated with any setting of ->nr_requests
1023 	 */
1024 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1025 		return ERR_PTR(-ENOMEM);
1026 
1027 	q->nr_rqs[is_sync]++;
1028 	rl->count[is_sync]++;
1029 	rl->starved[is_sync] = 0;
1030 
1031 	/*
1032 	 * Decide whether the new request will be managed by elevator.  If
1033 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1034 	 * prevent the current elevator from being destroyed until the new
1035 	 * request is freed.  This guarantees icq's won't be destroyed and
1036 	 * makes creating new ones safe.
1037 	 *
1038 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1039 	 * it will be created after releasing queue_lock.
1040 	 */
1041 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1042 		rw_flags |= REQ_ELVPRIV;
1043 		q->nr_rqs_elvpriv++;
1044 		if (et->icq_cache && ioc)
1045 			icq = ioc_lookup_icq(ioc, q);
1046 	}
1047 
1048 	if (blk_queue_io_stat(q))
1049 		rw_flags |= REQ_IO_STAT;
1050 	spin_unlock_irq(q->queue_lock);
1051 
1052 	/* allocate and init request */
1053 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1054 	if (!rq)
1055 		goto fail_alloc;
1056 
1057 	blk_rq_init(q, rq);
1058 	blk_rq_set_rl(rq, rl);
1059 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1060 
1061 	/* init elvpriv */
1062 	if (rw_flags & REQ_ELVPRIV) {
1063 		if (unlikely(et->icq_cache && !icq)) {
1064 			if (ioc)
1065 				icq = ioc_create_icq(ioc, q, gfp_mask);
1066 			if (!icq)
1067 				goto fail_elvpriv;
1068 		}
1069 
1070 		rq->elv.icq = icq;
1071 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1072 			goto fail_elvpriv;
1073 
1074 		/* @rq->elv.icq holds io_context until @rq is freed */
1075 		if (icq)
1076 			get_io_context(icq->ioc);
1077 	}
1078 out:
1079 	/*
1080 	 * ioc may be NULL here, and ioc_batching will be false. That's
1081 	 * OK, if the queue is under the request limit then requests need
1082 	 * not count toward the nr_batch_requests limit. There will always
1083 	 * be some limit enforced by BLK_BATCH_TIME.
1084 	 */
1085 	if (ioc_batching(q, ioc))
1086 		ioc->nr_batch_requests--;
1087 
1088 	trace_block_getrq(q, bio, rw_flags & 1);
1089 	return rq;
1090 
1091 fail_elvpriv:
1092 	/*
1093 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1094 	 * and may fail indefinitely under memory pressure and thus
1095 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1096 	 * disturb iosched and blkcg but weird is bettern than dead.
1097 	 */
1098 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1099 			   __func__, dev_name(q->backing_dev_info.dev));
1100 
1101 	rq->cmd_flags &= ~REQ_ELVPRIV;
1102 	rq->elv.icq = NULL;
1103 
1104 	spin_lock_irq(q->queue_lock);
1105 	q->nr_rqs_elvpriv--;
1106 	spin_unlock_irq(q->queue_lock);
1107 	goto out;
1108 
1109 fail_alloc:
1110 	/*
1111 	 * Allocation failed presumably due to memory. Undo anything we
1112 	 * might have messed up.
1113 	 *
1114 	 * Allocating task should really be put onto the front of the wait
1115 	 * queue, but this is pretty rare.
1116 	 */
1117 	spin_lock_irq(q->queue_lock);
1118 	freed_request(rl, rw_flags);
1119 
1120 	/*
1121 	 * in the very unlikely event that allocation failed and no
1122 	 * requests for this direction was pending, mark us starved so that
1123 	 * freeing of a request in the other direction will notice
1124 	 * us. another possible fix would be to split the rq mempool into
1125 	 * READ and WRITE
1126 	 */
1127 rq_starved:
1128 	if (unlikely(rl->count[is_sync] == 0))
1129 		rl->starved[is_sync] = 1;
1130 	return ERR_PTR(-ENOMEM);
1131 }
1132 
1133 /**
1134  * get_request - get a free request
1135  * @q: request_queue to allocate request from
1136  * @rw_flags: RW and SYNC flags
1137  * @bio: bio to allocate request for (can be %NULL)
1138  * @gfp_mask: allocation mask
1139  *
1140  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1141  * function keeps retrying under memory pressure and fails iff @q is dead.
1142  *
1143  * Must be called with @q->queue_lock held and,
1144  * Returns ERR_PTR on failure, with @q->queue_lock held.
1145  * Returns request pointer on success, with @q->queue_lock *not held*.
1146  */
1147 static struct request *get_request(struct request_queue *q, int rw_flags,
1148 				   struct bio *bio, gfp_t gfp_mask)
1149 {
1150 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1151 	DEFINE_WAIT(wait);
1152 	struct request_list *rl;
1153 	struct request *rq;
1154 
1155 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1156 retry:
1157 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1158 	if (!IS_ERR(rq))
1159 		return rq;
1160 
1161 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1162 		blk_put_rl(rl);
1163 		return rq;
1164 	}
1165 
1166 	/* wait on @rl and retry */
1167 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1168 				  TASK_UNINTERRUPTIBLE);
1169 
1170 	trace_block_sleeprq(q, bio, rw_flags & 1);
1171 
1172 	spin_unlock_irq(q->queue_lock);
1173 	io_schedule();
1174 
1175 	/*
1176 	 * After sleeping, we become a "batching" process and will be able
1177 	 * to allocate at least one request, and up to a big batch of them
1178 	 * for a small period time.  See ioc_batching, ioc_set_batching
1179 	 */
1180 	ioc_set_batching(q, current->io_context);
1181 
1182 	spin_lock_irq(q->queue_lock);
1183 	finish_wait(&rl->wait[is_sync], &wait);
1184 
1185 	goto retry;
1186 }
1187 
1188 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1189 		gfp_t gfp_mask)
1190 {
1191 	struct request *rq;
1192 
1193 	BUG_ON(rw != READ && rw != WRITE);
1194 
1195 	/* create ioc upfront */
1196 	create_io_context(gfp_mask, q->node);
1197 
1198 	spin_lock_irq(q->queue_lock);
1199 	rq = get_request(q, rw, NULL, gfp_mask);
1200 	if (IS_ERR(rq))
1201 		spin_unlock_irq(q->queue_lock);
1202 	/* q->queue_lock is unlocked at this point */
1203 
1204 	return rq;
1205 }
1206 
1207 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1208 {
1209 	if (q->mq_ops)
1210 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1211 	else
1212 		return blk_old_get_request(q, rw, gfp_mask);
1213 }
1214 EXPORT_SYMBOL(blk_get_request);
1215 
1216 /**
1217  * blk_make_request - given a bio, allocate a corresponding struct request.
1218  * @q: target request queue
1219  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1220  *        It may be a chained-bio properly constructed by block/bio layer.
1221  * @gfp_mask: gfp flags to be used for memory allocation
1222  *
1223  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1224  * type commands. Where the struct request needs to be farther initialized by
1225  * the caller. It is passed a &struct bio, which describes the memory info of
1226  * the I/O transfer.
1227  *
1228  * The caller of blk_make_request must make sure that bi_io_vec
1229  * are set to describe the memory buffers. That bio_data_dir() will return
1230  * the needed direction of the request. (And all bio's in the passed bio-chain
1231  * are properly set accordingly)
1232  *
1233  * If called under none-sleepable conditions, mapped bio buffers must not
1234  * need bouncing, by calling the appropriate masked or flagged allocator,
1235  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1236  * BUG.
1237  *
1238  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1239  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1240  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1241  * completion of a bio that hasn't been submitted yet, thus resulting in a
1242  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1243  * of bio_alloc(), as that avoids the mempool deadlock.
1244  * If possible a big IO should be split into smaller parts when allocation
1245  * fails. Partial allocation should not be an error, or you risk a live-lock.
1246  */
1247 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1248 				 gfp_t gfp_mask)
1249 {
1250 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1251 
1252 	if (IS_ERR(rq))
1253 		return rq;
1254 
1255 	blk_rq_set_block_pc(rq);
1256 
1257 	for_each_bio(bio) {
1258 		struct bio *bounce_bio = bio;
1259 		int ret;
1260 
1261 		blk_queue_bounce(q, &bounce_bio);
1262 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1263 		if (unlikely(ret)) {
1264 			blk_put_request(rq);
1265 			return ERR_PTR(ret);
1266 		}
1267 	}
1268 
1269 	return rq;
1270 }
1271 EXPORT_SYMBOL(blk_make_request);
1272 
1273 /**
1274  * blk_rq_set_block_pc - initialize a request to type BLOCK_PC
1275  * @rq:		request to be initialized
1276  *
1277  */
1278 void blk_rq_set_block_pc(struct request *rq)
1279 {
1280 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1281 	rq->__data_len = 0;
1282 	rq->__sector = (sector_t) -1;
1283 	rq->bio = rq->biotail = NULL;
1284 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1285 }
1286 EXPORT_SYMBOL(blk_rq_set_block_pc);
1287 
1288 /**
1289  * blk_requeue_request - put a request back on queue
1290  * @q:		request queue where request should be inserted
1291  * @rq:		request to be inserted
1292  *
1293  * Description:
1294  *    Drivers often keep queueing requests until the hardware cannot accept
1295  *    more, when that condition happens we need to put the request back
1296  *    on the queue. Must be called with queue lock held.
1297  */
1298 void blk_requeue_request(struct request_queue *q, struct request *rq)
1299 {
1300 	blk_delete_timer(rq);
1301 	blk_clear_rq_complete(rq);
1302 	trace_block_rq_requeue(q, rq);
1303 
1304 	if (rq->cmd_flags & REQ_QUEUED)
1305 		blk_queue_end_tag(q, rq);
1306 
1307 	BUG_ON(blk_queued_rq(rq));
1308 
1309 	elv_requeue_request(q, rq);
1310 }
1311 EXPORT_SYMBOL(blk_requeue_request);
1312 
1313 static void add_acct_request(struct request_queue *q, struct request *rq,
1314 			     int where)
1315 {
1316 	blk_account_io_start(rq, true);
1317 	__elv_add_request(q, rq, where);
1318 }
1319 
1320 static void part_round_stats_single(int cpu, struct hd_struct *part,
1321 				    unsigned long now)
1322 {
1323 	int inflight;
1324 
1325 	if (now == part->stamp)
1326 		return;
1327 
1328 	inflight = part_in_flight(part);
1329 	if (inflight) {
1330 		__part_stat_add(cpu, part, time_in_queue,
1331 				inflight * (now - part->stamp));
1332 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1333 	}
1334 	part->stamp = now;
1335 }
1336 
1337 /**
1338  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1339  * @cpu: cpu number for stats access
1340  * @part: target partition
1341  *
1342  * The average IO queue length and utilisation statistics are maintained
1343  * by observing the current state of the queue length and the amount of
1344  * time it has been in this state for.
1345  *
1346  * Normally, that accounting is done on IO completion, but that can result
1347  * in more than a second's worth of IO being accounted for within any one
1348  * second, leading to >100% utilisation.  To deal with that, we call this
1349  * function to do a round-off before returning the results when reading
1350  * /proc/diskstats.  This accounts immediately for all queue usage up to
1351  * the current jiffies and restarts the counters again.
1352  */
1353 void part_round_stats(int cpu, struct hd_struct *part)
1354 {
1355 	unsigned long now = jiffies;
1356 
1357 	if (part->partno)
1358 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1359 	part_round_stats_single(cpu, part, now);
1360 }
1361 EXPORT_SYMBOL_GPL(part_round_stats);
1362 
1363 #ifdef CONFIG_PM
1364 static void blk_pm_put_request(struct request *rq)
1365 {
1366 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1367 		pm_runtime_mark_last_busy(rq->q->dev);
1368 }
1369 #else
1370 static inline void blk_pm_put_request(struct request *rq) {}
1371 #endif
1372 
1373 /*
1374  * queue lock must be held
1375  */
1376 void __blk_put_request(struct request_queue *q, struct request *req)
1377 {
1378 	if (unlikely(!q))
1379 		return;
1380 
1381 	if (q->mq_ops) {
1382 		blk_mq_free_request(req);
1383 		return;
1384 	}
1385 
1386 	blk_pm_put_request(req);
1387 
1388 	elv_completed_request(q, req);
1389 
1390 	/* this is a bio leak */
1391 	WARN_ON(req->bio != NULL);
1392 
1393 	/*
1394 	 * Request may not have originated from ll_rw_blk. if not,
1395 	 * it didn't come out of our reserved rq pools
1396 	 */
1397 	if (req->cmd_flags & REQ_ALLOCED) {
1398 		unsigned int flags = req->cmd_flags;
1399 		struct request_list *rl = blk_rq_rl(req);
1400 
1401 		BUG_ON(!list_empty(&req->queuelist));
1402 		BUG_ON(ELV_ON_HASH(req));
1403 
1404 		blk_free_request(rl, req);
1405 		freed_request(rl, flags);
1406 		blk_put_rl(rl);
1407 	}
1408 }
1409 EXPORT_SYMBOL_GPL(__blk_put_request);
1410 
1411 void blk_put_request(struct request *req)
1412 {
1413 	struct request_queue *q = req->q;
1414 
1415 	if (q->mq_ops)
1416 		blk_mq_free_request(req);
1417 	else {
1418 		unsigned long flags;
1419 
1420 		spin_lock_irqsave(q->queue_lock, flags);
1421 		__blk_put_request(q, req);
1422 		spin_unlock_irqrestore(q->queue_lock, flags);
1423 	}
1424 }
1425 EXPORT_SYMBOL(blk_put_request);
1426 
1427 /**
1428  * blk_add_request_payload - add a payload to a request
1429  * @rq: request to update
1430  * @page: page backing the payload
1431  * @len: length of the payload.
1432  *
1433  * This allows to later add a payload to an already submitted request by
1434  * a block driver.  The driver needs to take care of freeing the payload
1435  * itself.
1436  *
1437  * Note that this is a quite horrible hack and nothing but handling of
1438  * discard requests should ever use it.
1439  */
1440 void blk_add_request_payload(struct request *rq, struct page *page,
1441 		unsigned int len)
1442 {
1443 	struct bio *bio = rq->bio;
1444 
1445 	bio->bi_io_vec->bv_page = page;
1446 	bio->bi_io_vec->bv_offset = 0;
1447 	bio->bi_io_vec->bv_len = len;
1448 
1449 	bio->bi_iter.bi_size = len;
1450 	bio->bi_vcnt = 1;
1451 	bio->bi_phys_segments = 1;
1452 
1453 	rq->__data_len = rq->resid_len = len;
1454 	rq->nr_phys_segments = 1;
1455 }
1456 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1457 
1458 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1459 			    struct bio *bio)
1460 {
1461 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1462 
1463 	if (!ll_back_merge_fn(q, req, bio))
1464 		return false;
1465 
1466 	trace_block_bio_backmerge(q, req, bio);
1467 
1468 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1469 		blk_rq_set_mixed_merge(req);
1470 
1471 	req->biotail->bi_next = bio;
1472 	req->biotail = bio;
1473 	req->__data_len += bio->bi_iter.bi_size;
1474 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1475 
1476 	blk_account_io_start(req, false);
1477 	return true;
1478 }
1479 
1480 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1481 			     struct bio *bio)
1482 {
1483 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1484 
1485 	if (!ll_front_merge_fn(q, req, bio))
1486 		return false;
1487 
1488 	trace_block_bio_frontmerge(q, req, bio);
1489 
1490 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1491 		blk_rq_set_mixed_merge(req);
1492 
1493 	bio->bi_next = req->bio;
1494 	req->bio = bio;
1495 
1496 	req->__sector = bio->bi_iter.bi_sector;
1497 	req->__data_len += bio->bi_iter.bi_size;
1498 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1499 
1500 	blk_account_io_start(req, false);
1501 	return true;
1502 }
1503 
1504 /**
1505  * blk_attempt_plug_merge - try to merge with %current's plugged list
1506  * @q: request_queue new bio is being queued at
1507  * @bio: new bio being queued
1508  * @request_count: out parameter for number of traversed plugged requests
1509  *
1510  * Determine whether @bio being queued on @q can be merged with a request
1511  * on %current's plugged list.  Returns %true if merge was successful,
1512  * otherwise %false.
1513  *
1514  * Plugging coalesces IOs from the same issuer for the same purpose without
1515  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1516  * than scheduling, and the request, while may have elvpriv data, is not
1517  * added on the elevator at this point.  In addition, we don't have
1518  * reliable access to the elevator outside queue lock.  Only check basic
1519  * merging parameters without querying the elevator.
1520  *
1521  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1522  */
1523 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1524 			    unsigned int *request_count)
1525 {
1526 	struct blk_plug *plug;
1527 	struct request *rq;
1528 	bool ret = false;
1529 	struct list_head *plug_list;
1530 
1531 	plug = current->plug;
1532 	if (!plug)
1533 		goto out;
1534 	*request_count = 0;
1535 
1536 	if (q->mq_ops)
1537 		plug_list = &plug->mq_list;
1538 	else
1539 		plug_list = &plug->list;
1540 
1541 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1542 		int el_ret;
1543 
1544 		if (rq->q == q)
1545 			(*request_count)++;
1546 
1547 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1548 			continue;
1549 
1550 		el_ret = blk_try_merge(rq, bio);
1551 		if (el_ret == ELEVATOR_BACK_MERGE) {
1552 			ret = bio_attempt_back_merge(q, rq, bio);
1553 			if (ret)
1554 				break;
1555 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1556 			ret = bio_attempt_front_merge(q, rq, bio);
1557 			if (ret)
1558 				break;
1559 		}
1560 	}
1561 out:
1562 	return ret;
1563 }
1564 
1565 void init_request_from_bio(struct request *req, struct bio *bio)
1566 {
1567 	req->cmd_type = REQ_TYPE_FS;
1568 
1569 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1570 	if (bio->bi_rw & REQ_RAHEAD)
1571 		req->cmd_flags |= REQ_FAILFAST_MASK;
1572 
1573 	req->errors = 0;
1574 	req->__sector = bio->bi_iter.bi_sector;
1575 	req->ioprio = bio_prio(bio);
1576 	blk_rq_bio_prep(req->q, req, bio);
1577 }
1578 
1579 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1580 {
1581 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1582 	struct blk_plug *plug;
1583 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1584 	struct request *req;
1585 	unsigned int request_count = 0;
1586 
1587 	/*
1588 	 * low level driver can indicate that it wants pages above a
1589 	 * certain limit bounced to low memory (ie for highmem, or even
1590 	 * ISA dma in theory)
1591 	 */
1592 	blk_queue_bounce(q, &bio);
1593 
1594 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1595 		bio_endio(bio, -EIO);
1596 		return;
1597 	}
1598 
1599 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1600 		spin_lock_irq(q->queue_lock);
1601 		where = ELEVATOR_INSERT_FLUSH;
1602 		goto get_rq;
1603 	}
1604 
1605 	/*
1606 	 * Check if we can merge with the plugged list before grabbing
1607 	 * any locks.
1608 	 */
1609 	if (!blk_queue_nomerges(q) &&
1610 	    blk_attempt_plug_merge(q, bio, &request_count))
1611 		return;
1612 
1613 	spin_lock_irq(q->queue_lock);
1614 
1615 	el_ret = elv_merge(q, &req, bio);
1616 	if (el_ret == ELEVATOR_BACK_MERGE) {
1617 		if (bio_attempt_back_merge(q, req, bio)) {
1618 			elv_bio_merged(q, req, bio);
1619 			if (!attempt_back_merge(q, req))
1620 				elv_merged_request(q, req, el_ret);
1621 			goto out_unlock;
1622 		}
1623 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1624 		if (bio_attempt_front_merge(q, req, bio)) {
1625 			elv_bio_merged(q, req, bio);
1626 			if (!attempt_front_merge(q, req))
1627 				elv_merged_request(q, req, el_ret);
1628 			goto out_unlock;
1629 		}
1630 	}
1631 
1632 get_rq:
1633 	/*
1634 	 * This sync check and mask will be re-done in init_request_from_bio(),
1635 	 * but we need to set it earlier to expose the sync flag to the
1636 	 * rq allocator and io schedulers.
1637 	 */
1638 	rw_flags = bio_data_dir(bio);
1639 	if (sync)
1640 		rw_flags |= REQ_SYNC;
1641 
1642 	/*
1643 	 * Grab a free request. This is might sleep but can not fail.
1644 	 * Returns with the queue unlocked.
1645 	 */
1646 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1647 	if (IS_ERR(req)) {
1648 		bio_endio(bio, PTR_ERR(req));	/* @q is dead */
1649 		goto out_unlock;
1650 	}
1651 
1652 	/*
1653 	 * After dropping the lock and possibly sleeping here, our request
1654 	 * may now be mergeable after it had proven unmergeable (above).
1655 	 * We don't worry about that case for efficiency. It won't happen
1656 	 * often, and the elevators are able to handle it.
1657 	 */
1658 	init_request_from_bio(req, bio);
1659 
1660 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1661 		req->cpu = raw_smp_processor_id();
1662 
1663 	plug = current->plug;
1664 	if (plug) {
1665 		/*
1666 		 * If this is the first request added after a plug, fire
1667 		 * of a plug trace.
1668 		 */
1669 		if (!request_count)
1670 			trace_block_plug(q);
1671 		else {
1672 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1673 				blk_flush_plug_list(plug, false);
1674 				trace_block_plug(q);
1675 			}
1676 		}
1677 		list_add_tail(&req->queuelist, &plug->list);
1678 		blk_account_io_start(req, true);
1679 	} else {
1680 		spin_lock_irq(q->queue_lock);
1681 		add_acct_request(q, req, where);
1682 		__blk_run_queue(q);
1683 out_unlock:
1684 		spin_unlock_irq(q->queue_lock);
1685 	}
1686 }
1687 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1688 
1689 /*
1690  * If bio->bi_dev is a partition, remap the location
1691  */
1692 static inline void blk_partition_remap(struct bio *bio)
1693 {
1694 	struct block_device *bdev = bio->bi_bdev;
1695 
1696 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1697 		struct hd_struct *p = bdev->bd_part;
1698 
1699 		bio->bi_iter.bi_sector += p->start_sect;
1700 		bio->bi_bdev = bdev->bd_contains;
1701 
1702 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1703 				      bdev->bd_dev,
1704 				      bio->bi_iter.bi_sector - p->start_sect);
1705 	}
1706 }
1707 
1708 static void handle_bad_sector(struct bio *bio)
1709 {
1710 	char b[BDEVNAME_SIZE];
1711 
1712 	printk(KERN_INFO "attempt to access beyond end of device\n");
1713 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1714 			bdevname(bio->bi_bdev, b),
1715 			bio->bi_rw,
1716 			(unsigned long long)bio_end_sector(bio),
1717 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1718 
1719 	set_bit(BIO_EOF, &bio->bi_flags);
1720 }
1721 
1722 #ifdef CONFIG_FAIL_MAKE_REQUEST
1723 
1724 static DECLARE_FAULT_ATTR(fail_make_request);
1725 
1726 static int __init setup_fail_make_request(char *str)
1727 {
1728 	return setup_fault_attr(&fail_make_request, str);
1729 }
1730 __setup("fail_make_request=", setup_fail_make_request);
1731 
1732 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1733 {
1734 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1735 }
1736 
1737 static int __init fail_make_request_debugfs(void)
1738 {
1739 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1740 						NULL, &fail_make_request);
1741 
1742 	return PTR_ERR_OR_ZERO(dir);
1743 }
1744 
1745 late_initcall(fail_make_request_debugfs);
1746 
1747 #else /* CONFIG_FAIL_MAKE_REQUEST */
1748 
1749 static inline bool should_fail_request(struct hd_struct *part,
1750 					unsigned int bytes)
1751 {
1752 	return false;
1753 }
1754 
1755 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1756 
1757 /*
1758  * Check whether this bio extends beyond the end of the device.
1759  */
1760 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1761 {
1762 	sector_t maxsector;
1763 
1764 	if (!nr_sectors)
1765 		return 0;
1766 
1767 	/* Test device or partition size, when known. */
1768 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1769 	if (maxsector) {
1770 		sector_t sector = bio->bi_iter.bi_sector;
1771 
1772 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1773 			/*
1774 			 * This may well happen - the kernel calls bread()
1775 			 * without checking the size of the device, e.g., when
1776 			 * mounting a device.
1777 			 */
1778 			handle_bad_sector(bio);
1779 			return 1;
1780 		}
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 static noinline_for_stack bool
1787 generic_make_request_checks(struct bio *bio)
1788 {
1789 	struct request_queue *q;
1790 	int nr_sectors = bio_sectors(bio);
1791 	int err = -EIO;
1792 	char b[BDEVNAME_SIZE];
1793 	struct hd_struct *part;
1794 
1795 	might_sleep();
1796 
1797 	if (bio_check_eod(bio, nr_sectors))
1798 		goto end_io;
1799 
1800 	q = bdev_get_queue(bio->bi_bdev);
1801 	if (unlikely(!q)) {
1802 		printk(KERN_ERR
1803 		       "generic_make_request: Trying to access "
1804 			"nonexistent block-device %s (%Lu)\n",
1805 			bdevname(bio->bi_bdev, b),
1806 			(long long) bio->bi_iter.bi_sector);
1807 		goto end_io;
1808 	}
1809 
1810 	if (likely(bio_is_rw(bio) &&
1811 		   nr_sectors > queue_max_hw_sectors(q))) {
1812 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1813 		       bdevname(bio->bi_bdev, b),
1814 		       bio_sectors(bio),
1815 		       queue_max_hw_sectors(q));
1816 		goto end_io;
1817 	}
1818 
1819 	part = bio->bi_bdev->bd_part;
1820 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1821 	    should_fail_request(&part_to_disk(part)->part0,
1822 				bio->bi_iter.bi_size))
1823 		goto end_io;
1824 
1825 	/*
1826 	 * If this device has partitions, remap block n
1827 	 * of partition p to block n+start(p) of the disk.
1828 	 */
1829 	blk_partition_remap(bio);
1830 
1831 	if (bio_check_eod(bio, nr_sectors))
1832 		goto end_io;
1833 
1834 	/*
1835 	 * Filter flush bio's early so that make_request based
1836 	 * drivers without flush support don't have to worry
1837 	 * about them.
1838 	 */
1839 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1840 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1841 		if (!nr_sectors) {
1842 			err = 0;
1843 			goto end_io;
1844 		}
1845 	}
1846 
1847 	if ((bio->bi_rw & REQ_DISCARD) &&
1848 	    (!blk_queue_discard(q) ||
1849 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1850 		err = -EOPNOTSUPP;
1851 		goto end_io;
1852 	}
1853 
1854 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1855 		err = -EOPNOTSUPP;
1856 		goto end_io;
1857 	}
1858 
1859 	/*
1860 	 * Various block parts want %current->io_context and lazy ioc
1861 	 * allocation ends up trading a lot of pain for a small amount of
1862 	 * memory.  Just allocate it upfront.  This may fail and block
1863 	 * layer knows how to live with it.
1864 	 */
1865 	create_io_context(GFP_ATOMIC, q->node);
1866 
1867 	if (blk_throtl_bio(q, bio))
1868 		return false;	/* throttled, will be resubmitted later */
1869 
1870 	trace_block_bio_queue(q, bio);
1871 	return true;
1872 
1873 end_io:
1874 	bio_endio(bio, err);
1875 	return false;
1876 }
1877 
1878 /**
1879  * generic_make_request - hand a buffer to its device driver for I/O
1880  * @bio:  The bio describing the location in memory and on the device.
1881  *
1882  * generic_make_request() is used to make I/O requests of block
1883  * devices. It is passed a &struct bio, which describes the I/O that needs
1884  * to be done.
1885  *
1886  * generic_make_request() does not return any status.  The
1887  * success/failure status of the request, along with notification of
1888  * completion, is delivered asynchronously through the bio->bi_end_io
1889  * function described (one day) else where.
1890  *
1891  * The caller of generic_make_request must make sure that bi_io_vec
1892  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1893  * set to describe the device address, and the
1894  * bi_end_io and optionally bi_private are set to describe how
1895  * completion notification should be signaled.
1896  *
1897  * generic_make_request and the drivers it calls may use bi_next if this
1898  * bio happens to be merged with someone else, and may resubmit the bio to
1899  * a lower device by calling into generic_make_request recursively, which
1900  * means the bio should NOT be touched after the call to ->make_request_fn.
1901  */
1902 void generic_make_request(struct bio *bio)
1903 {
1904 	struct bio_list bio_list_on_stack;
1905 
1906 	if (!generic_make_request_checks(bio))
1907 		return;
1908 
1909 	/*
1910 	 * We only want one ->make_request_fn to be active at a time, else
1911 	 * stack usage with stacked devices could be a problem.  So use
1912 	 * current->bio_list to keep a list of requests submited by a
1913 	 * make_request_fn function.  current->bio_list is also used as a
1914 	 * flag to say if generic_make_request is currently active in this
1915 	 * task or not.  If it is NULL, then no make_request is active.  If
1916 	 * it is non-NULL, then a make_request is active, and new requests
1917 	 * should be added at the tail
1918 	 */
1919 	if (current->bio_list) {
1920 		bio_list_add(current->bio_list, bio);
1921 		return;
1922 	}
1923 
1924 	/* following loop may be a bit non-obvious, and so deserves some
1925 	 * explanation.
1926 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1927 	 * ensure that) so we have a list with a single bio.
1928 	 * We pretend that we have just taken it off a longer list, so
1929 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1930 	 * thus initialising the bio_list of new bios to be
1931 	 * added.  ->make_request() may indeed add some more bios
1932 	 * through a recursive call to generic_make_request.  If it
1933 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1934 	 * from the top.  In this case we really did just take the bio
1935 	 * of the top of the list (no pretending) and so remove it from
1936 	 * bio_list, and call into ->make_request() again.
1937 	 */
1938 	BUG_ON(bio->bi_next);
1939 	bio_list_init(&bio_list_on_stack);
1940 	current->bio_list = &bio_list_on_stack;
1941 	do {
1942 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1943 
1944 		q->make_request_fn(q, bio);
1945 
1946 		bio = bio_list_pop(current->bio_list);
1947 	} while (bio);
1948 	current->bio_list = NULL; /* deactivate */
1949 }
1950 EXPORT_SYMBOL(generic_make_request);
1951 
1952 /**
1953  * submit_bio - submit a bio to the block device layer for I/O
1954  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1955  * @bio: The &struct bio which describes the I/O
1956  *
1957  * submit_bio() is very similar in purpose to generic_make_request(), and
1958  * uses that function to do most of the work. Both are fairly rough
1959  * interfaces; @bio must be presetup and ready for I/O.
1960  *
1961  */
1962 void submit_bio(int rw, struct bio *bio)
1963 {
1964 	bio->bi_rw |= rw;
1965 
1966 	/*
1967 	 * If it's a regular read/write or a barrier with data attached,
1968 	 * go through the normal accounting stuff before submission.
1969 	 */
1970 	if (bio_has_data(bio)) {
1971 		unsigned int count;
1972 
1973 		if (unlikely(rw & REQ_WRITE_SAME))
1974 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1975 		else
1976 			count = bio_sectors(bio);
1977 
1978 		if (rw & WRITE) {
1979 			count_vm_events(PGPGOUT, count);
1980 		} else {
1981 			task_io_account_read(bio->bi_iter.bi_size);
1982 			count_vm_events(PGPGIN, count);
1983 		}
1984 
1985 		if (unlikely(block_dump)) {
1986 			char b[BDEVNAME_SIZE];
1987 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1988 			current->comm, task_pid_nr(current),
1989 				(rw & WRITE) ? "WRITE" : "READ",
1990 				(unsigned long long)bio->bi_iter.bi_sector,
1991 				bdevname(bio->bi_bdev, b),
1992 				count);
1993 		}
1994 	}
1995 
1996 	generic_make_request(bio);
1997 }
1998 EXPORT_SYMBOL(submit_bio);
1999 
2000 /**
2001  * blk_rq_check_limits - Helper function to check a request for the queue limit
2002  * @q:  the queue
2003  * @rq: the request being checked
2004  *
2005  * Description:
2006  *    @rq may have been made based on weaker limitations of upper-level queues
2007  *    in request stacking drivers, and it may violate the limitation of @q.
2008  *    Since the block layer and the underlying device driver trust @rq
2009  *    after it is inserted to @q, it should be checked against @q before
2010  *    the insertion using this generic function.
2011  *
2012  *    This function should also be useful for request stacking drivers
2013  *    in some cases below, so export this function.
2014  *    Request stacking drivers like request-based dm may change the queue
2015  *    limits while requests are in the queue (e.g. dm's table swapping).
2016  *    Such request stacking drivers should check those requests against
2017  *    the new queue limits again when they dispatch those requests,
2018  *    although such checkings are also done against the old queue limits
2019  *    when submitting requests.
2020  */
2021 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
2022 {
2023 	if (!rq_mergeable(rq))
2024 		return 0;
2025 
2026 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
2027 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2028 		return -EIO;
2029 	}
2030 
2031 	/*
2032 	 * queue's settings related to segment counting like q->bounce_pfn
2033 	 * may differ from that of other stacking queues.
2034 	 * Recalculate it to check the request correctly on this queue's
2035 	 * limitation.
2036 	 */
2037 	blk_recalc_rq_segments(rq);
2038 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2039 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2040 		return -EIO;
2041 	}
2042 
2043 	return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2046 
2047 /**
2048  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2049  * @q:  the queue to submit the request
2050  * @rq: the request being queued
2051  */
2052 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2053 {
2054 	unsigned long flags;
2055 	int where = ELEVATOR_INSERT_BACK;
2056 
2057 	if (blk_rq_check_limits(q, rq))
2058 		return -EIO;
2059 
2060 	if (rq->rq_disk &&
2061 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2062 		return -EIO;
2063 
2064 	if (q->mq_ops) {
2065 		if (blk_queue_io_stat(q))
2066 			blk_account_io_start(rq, true);
2067 		blk_mq_insert_request(rq, false, true, true);
2068 		return 0;
2069 	}
2070 
2071 	spin_lock_irqsave(q->queue_lock, flags);
2072 	if (unlikely(blk_queue_dying(q))) {
2073 		spin_unlock_irqrestore(q->queue_lock, flags);
2074 		return -ENODEV;
2075 	}
2076 
2077 	/*
2078 	 * Submitting request must be dequeued before calling this function
2079 	 * because it will be linked to another request_queue
2080 	 */
2081 	BUG_ON(blk_queued_rq(rq));
2082 
2083 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2084 		where = ELEVATOR_INSERT_FLUSH;
2085 
2086 	add_acct_request(q, rq, where);
2087 	if (where == ELEVATOR_INSERT_FLUSH)
2088 		__blk_run_queue(q);
2089 	spin_unlock_irqrestore(q->queue_lock, flags);
2090 
2091 	return 0;
2092 }
2093 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2094 
2095 /**
2096  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2097  * @rq: request to examine
2098  *
2099  * Description:
2100  *     A request could be merge of IOs which require different failure
2101  *     handling.  This function determines the number of bytes which
2102  *     can be failed from the beginning of the request without
2103  *     crossing into area which need to be retried further.
2104  *
2105  * Return:
2106  *     The number of bytes to fail.
2107  *
2108  * Context:
2109  *     queue_lock must be held.
2110  */
2111 unsigned int blk_rq_err_bytes(const struct request *rq)
2112 {
2113 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2114 	unsigned int bytes = 0;
2115 	struct bio *bio;
2116 
2117 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2118 		return blk_rq_bytes(rq);
2119 
2120 	/*
2121 	 * Currently the only 'mixing' which can happen is between
2122 	 * different fastfail types.  We can safely fail portions
2123 	 * which have all the failfast bits that the first one has -
2124 	 * the ones which are at least as eager to fail as the first
2125 	 * one.
2126 	 */
2127 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2128 		if ((bio->bi_rw & ff) != ff)
2129 			break;
2130 		bytes += bio->bi_iter.bi_size;
2131 	}
2132 
2133 	/* this could lead to infinite loop */
2134 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2135 	return bytes;
2136 }
2137 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2138 
2139 void blk_account_io_completion(struct request *req, unsigned int bytes)
2140 {
2141 	if (blk_do_io_stat(req)) {
2142 		const int rw = rq_data_dir(req);
2143 		struct hd_struct *part;
2144 		int cpu;
2145 
2146 		cpu = part_stat_lock();
2147 		part = req->part;
2148 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2149 		part_stat_unlock();
2150 	}
2151 }
2152 
2153 void blk_account_io_done(struct request *req)
2154 {
2155 	/*
2156 	 * Account IO completion.  flush_rq isn't accounted as a
2157 	 * normal IO on queueing nor completion.  Accounting the
2158 	 * containing request is enough.
2159 	 */
2160 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2161 		unsigned long duration = jiffies - req->start_time;
2162 		const int rw = rq_data_dir(req);
2163 		struct hd_struct *part;
2164 		int cpu;
2165 
2166 		cpu = part_stat_lock();
2167 		part = req->part;
2168 
2169 		part_stat_inc(cpu, part, ios[rw]);
2170 		part_stat_add(cpu, part, ticks[rw], duration);
2171 		part_round_stats(cpu, part);
2172 		part_dec_in_flight(part, rw);
2173 
2174 		hd_struct_put(part);
2175 		part_stat_unlock();
2176 	}
2177 }
2178 
2179 #ifdef CONFIG_PM
2180 /*
2181  * Don't process normal requests when queue is suspended
2182  * or in the process of suspending/resuming
2183  */
2184 static struct request *blk_pm_peek_request(struct request_queue *q,
2185 					   struct request *rq)
2186 {
2187 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2188 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2189 		return NULL;
2190 	else
2191 		return rq;
2192 }
2193 #else
2194 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2195 						  struct request *rq)
2196 {
2197 	return rq;
2198 }
2199 #endif
2200 
2201 void blk_account_io_start(struct request *rq, bool new_io)
2202 {
2203 	struct hd_struct *part;
2204 	int rw = rq_data_dir(rq);
2205 	int cpu;
2206 
2207 	if (!blk_do_io_stat(rq))
2208 		return;
2209 
2210 	cpu = part_stat_lock();
2211 
2212 	if (!new_io) {
2213 		part = rq->part;
2214 		part_stat_inc(cpu, part, merges[rw]);
2215 	} else {
2216 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2217 		if (!hd_struct_try_get(part)) {
2218 			/*
2219 			 * The partition is already being removed,
2220 			 * the request will be accounted on the disk only
2221 			 *
2222 			 * We take a reference on disk->part0 although that
2223 			 * partition will never be deleted, so we can treat
2224 			 * it as any other partition.
2225 			 */
2226 			part = &rq->rq_disk->part0;
2227 			hd_struct_get(part);
2228 		}
2229 		part_round_stats(cpu, part);
2230 		part_inc_in_flight(part, rw);
2231 		rq->part = part;
2232 	}
2233 
2234 	part_stat_unlock();
2235 }
2236 
2237 /**
2238  * blk_peek_request - peek at the top of a request queue
2239  * @q: request queue to peek at
2240  *
2241  * Description:
2242  *     Return the request at the top of @q.  The returned request
2243  *     should be started using blk_start_request() before LLD starts
2244  *     processing it.
2245  *
2246  * Return:
2247  *     Pointer to the request at the top of @q if available.  Null
2248  *     otherwise.
2249  *
2250  * Context:
2251  *     queue_lock must be held.
2252  */
2253 struct request *blk_peek_request(struct request_queue *q)
2254 {
2255 	struct request *rq;
2256 	int ret;
2257 
2258 	while ((rq = __elv_next_request(q)) != NULL) {
2259 
2260 		rq = blk_pm_peek_request(q, rq);
2261 		if (!rq)
2262 			break;
2263 
2264 		if (!(rq->cmd_flags & REQ_STARTED)) {
2265 			/*
2266 			 * This is the first time the device driver
2267 			 * sees this request (possibly after
2268 			 * requeueing).  Notify IO scheduler.
2269 			 */
2270 			if (rq->cmd_flags & REQ_SORTED)
2271 				elv_activate_rq(q, rq);
2272 
2273 			/*
2274 			 * just mark as started even if we don't start
2275 			 * it, a request that has been delayed should
2276 			 * not be passed by new incoming requests
2277 			 */
2278 			rq->cmd_flags |= REQ_STARTED;
2279 			trace_block_rq_issue(q, rq);
2280 		}
2281 
2282 		if (!q->boundary_rq || q->boundary_rq == rq) {
2283 			q->end_sector = rq_end_sector(rq);
2284 			q->boundary_rq = NULL;
2285 		}
2286 
2287 		if (rq->cmd_flags & REQ_DONTPREP)
2288 			break;
2289 
2290 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2291 			/*
2292 			 * make sure space for the drain appears we
2293 			 * know we can do this because max_hw_segments
2294 			 * has been adjusted to be one fewer than the
2295 			 * device can handle
2296 			 */
2297 			rq->nr_phys_segments++;
2298 		}
2299 
2300 		if (!q->prep_rq_fn)
2301 			break;
2302 
2303 		ret = q->prep_rq_fn(q, rq);
2304 		if (ret == BLKPREP_OK) {
2305 			break;
2306 		} else if (ret == BLKPREP_DEFER) {
2307 			/*
2308 			 * the request may have been (partially) prepped.
2309 			 * we need to keep this request in the front to
2310 			 * avoid resource deadlock.  REQ_STARTED will
2311 			 * prevent other fs requests from passing this one.
2312 			 */
2313 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2314 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2315 				/*
2316 				 * remove the space for the drain we added
2317 				 * so that we don't add it again
2318 				 */
2319 				--rq->nr_phys_segments;
2320 			}
2321 
2322 			rq = NULL;
2323 			break;
2324 		} else if (ret == BLKPREP_KILL) {
2325 			rq->cmd_flags |= REQ_QUIET;
2326 			/*
2327 			 * Mark this request as started so we don't trigger
2328 			 * any debug logic in the end I/O path.
2329 			 */
2330 			blk_start_request(rq);
2331 			__blk_end_request_all(rq, -EIO);
2332 		} else {
2333 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2334 			break;
2335 		}
2336 	}
2337 
2338 	return rq;
2339 }
2340 EXPORT_SYMBOL(blk_peek_request);
2341 
2342 void blk_dequeue_request(struct request *rq)
2343 {
2344 	struct request_queue *q = rq->q;
2345 
2346 	BUG_ON(list_empty(&rq->queuelist));
2347 	BUG_ON(ELV_ON_HASH(rq));
2348 
2349 	list_del_init(&rq->queuelist);
2350 
2351 	/*
2352 	 * the time frame between a request being removed from the lists
2353 	 * and to it is freed is accounted as io that is in progress at
2354 	 * the driver side.
2355 	 */
2356 	if (blk_account_rq(rq)) {
2357 		q->in_flight[rq_is_sync(rq)]++;
2358 		set_io_start_time_ns(rq);
2359 	}
2360 }
2361 
2362 /**
2363  * blk_start_request - start request processing on the driver
2364  * @req: request to dequeue
2365  *
2366  * Description:
2367  *     Dequeue @req and start timeout timer on it.  This hands off the
2368  *     request to the driver.
2369  *
2370  *     Block internal functions which don't want to start timer should
2371  *     call blk_dequeue_request().
2372  *
2373  * Context:
2374  *     queue_lock must be held.
2375  */
2376 void blk_start_request(struct request *req)
2377 {
2378 	blk_dequeue_request(req);
2379 
2380 	/*
2381 	 * We are now handing the request to the hardware, initialize
2382 	 * resid_len to full count and add the timeout handler.
2383 	 */
2384 	req->resid_len = blk_rq_bytes(req);
2385 	if (unlikely(blk_bidi_rq(req)))
2386 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2387 
2388 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2389 	blk_add_timer(req);
2390 }
2391 EXPORT_SYMBOL(blk_start_request);
2392 
2393 /**
2394  * blk_fetch_request - fetch a request from a request queue
2395  * @q: request queue to fetch a request from
2396  *
2397  * Description:
2398  *     Return the request at the top of @q.  The request is started on
2399  *     return and LLD can start processing it immediately.
2400  *
2401  * Return:
2402  *     Pointer to the request at the top of @q if available.  Null
2403  *     otherwise.
2404  *
2405  * Context:
2406  *     queue_lock must be held.
2407  */
2408 struct request *blk_fetch_request(struct request_queue *q)
2409 {
2410 	struct request *rq;
2411 
2412 	rq = blk_peek_request(q);
2413 	if (rq)
2414 		blk_start_request(rq);
2415 	return rq;
2416 }
2417 EXPORT_SYMBOL(blk_fetch_request);
2418 
2419 /**
2420  * blk_update_request - Special helper function for request stacking drivers
2421  * @req:      the request being processed
2422  * @error:    %0 for success, < %0 for error
2423  * @nr_bytes: number of bytes to complete @req
2424  *
2425  * Description:
2426  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2427  *     the request structure even if @req doesn't have leftover.
2428  *     If @req has leftover, sets it up for the next range of segments.
2429  *
2430  *     This special helper function is only for request stacking drivers
2431  *     (e.g. request-based dm) so that they can handle partial completion.
2432  *     Actual device drivers should use blk_end_request instead.
2433  *
2434  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2435  *     %false return from this function.
2436  *
2437  * Return:
2438  *     %false - this request doesn't have any more data
2439  *     %true  - this request has more data
2440  **/
2441 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2442 {
2443 	int total_bytes;
2444 
2445 	trace_block_rq_complete(req->q, req, nr_bytes);
2446 
2447 	if (!req->bio)
2448 		return false;
2449 
2450 	/*
2451 	 * For fs requests, rq is just carrier of independent bio's
2452 	 * and each partial completion should be handled separately.
2453 	 * Reset per-request error on each partial completion.
2454 	 *
2455 	 * TODO: tj: This is too subtle.  It would be better to let
2456 	 * low level drivers do what they see fit.
2457 	 */
2458 	if (req->cmd_type == REQ_TYPE_FS)
2459 		req->errors = 0;
2460 
2461 	if (error && req->cmd_type == REQ_TYPE_FS &&
2462 	    !(req->cmd_flags & REQ_QUIET)) {
2463 		char *error_type;
2464 
2465 		switch (error) {
2466 		case -ENOLINK:
2467 			error_type = "recoverable transport";
2468 			break;
2469 		case -EREMOTEIO:
2470 			error_type = "critical target";
2471 			break;
2472 		case -EBADE:
2473 			error_type = "critical nexus";
2474 			break;
2475 		case -ETIMEDOUT:
2476 			error_type = "timeout";
2477 			break;
2478 		case -ENOSPC:
2479 			error_type = "critical space allocation";
2480 			break;
2481 		case -ENODATA:
2482 			error_type = "critical medium";
2483 			break;
2484 		case -EIO:
2485 		default:
2486 			error_type = "I/O";
2487 			break;
2488 		}
2489 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2490 				   __func__, error_type, req->rq_disk ?
2491 				   req->rq_disk->disk_name : "?",
2492 				   (unsigned long long)blk_rq_pos(req));
2493 
2494 	}
2495 
2496 	blk_account_io_completion(req, nr_bytes);
2497 
2498 	total_bytes = 0;
2499 	while (req->bio) {
2500 		struct bio *bio = req->bio;
2501 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2502 
2503 		if (bio_bytes == bio->bi_iter.bi_size)
2504 			req->bio = bio->bi_next;
2505 
2506 		req_bio_endio(req, bio, bio_bytes, error);
2507 
2508 		total_bytes += bio_bytes;
2509 		nr_bytes -= bio_bytes;
2510 
2511 		if (!nr_bytes)
2512 			break;
2513 	}
2514 
2515 	/*
2516 	 * completely done
2517 	 */
2518 	if (!req->bio) {
2519 		/*
2520 		 * Reset counters so that the request stacking driver
2521 		 * can find how many bytes remain in the request
2522 		 * later.
2523 		 */
2524 		req->__data_len = 0;
2525 		return false;
2526 	}
2527 
2528 	req->__data_len -= total_bytes;
2529 
2530 	/* update sector only for requests with clear definition of sector */
2531 	if (req->cmd_type == REQ_TYPE_FS)
2532 		req->__sector += total_bytes >> 9;
2533 
2534 	/* mixed attributes always follow the first bio */
2535 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2536 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2537 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2538 	}
2539 
2540 	/*
2541 	 * If total number of sectors is less than the first segment
2542 	 * size, something has gone terribly wrong.
2543 	 */
2544 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2545 		blk_dump_rq_flags(req, "request botched");
2546 		req->__data_len = blk_rq_cur_bytes(req);
2547 	}
2548 
2549 	/* recalculate the number of segments */
2550 	blk_recalc_rq_segments(req);
2551 
2552 	return true;
2553 }
2554 EXPORT_SYMBOL_GPL(blk_update_request);
2555 
2556 static bool blk_update_bidi_request(struct request *rq, int error,
2557 				    unsigned int nr_bytes,
2558 				    unsigned int bidi_bytes)
2559 {
2560 	if (blk_update_request(rq, error, nr_bytes))
2561 		return true;
2562 
2563 	/* Bidi request must be completed as a whole */
2564 	if (unlikely(blk_bidi_rq(rq)) &&
2565 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2566 		return true;
2567 
2568 	if (blk_queue_add_random(rq->q))
2569 		add_disk_randomness(rq->rq_disk);
2570 
2571 	return false;
2572 }
2573 
2574 /**
2575  * blk_unprep_request - unprepare a request
2576  * @req:	the request
2577  *
2578  * This function makes a request ready for complete resubmission (or
2579  * completion).  It happens only after all error handling is complete,
2580  * so represents the appropriate moment to deallocate any resources
2581  * that were allocated to the request in the prep_rq_fn.  The queue
2582  * lock is held when calling this.
2583  */
2584 void blk_unprep_request(struct request *req)
2585 {
2586 	struct request_queue *q = req->q;
2587 
2588 	req->cmd_flags &= ~REQ_DONTPREP;
2589 	if (q->unprep_rq_fn)
2590 		q->unprep_rq_fn(q, req);
2591 }
2592 EXPORT_SYMBOL_GPL(blk_unprep_request);
2593 
2594 /*
2595  * queue lock must be held
2596  */
2597 void blk_finish_request(struct request *req, int error)
2598 {
2599 	if (req->cmd_flags & REQ_QUEUED)
2600 		blk_queue_end_tag(req->q, req);
2601 
2602 	BUG_ON(blk_queued_rq(req));
2603 
2604 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2605 		laptop_io_completion(&req->q->backing_dev_info);
2606 
2607 	blk_delete_timer(req);
2608 
2609 	if (req->cmd_flags & REQ_DONTPREP)
2610 		blk_unprep_request(req);
2611 
2612 	blk_account_io_done(req);
2613 
2614 	if (req->end_io)
2615 		req->end_io(req, error);
2616 	else {
2617 		if (blk_bidi_rq(req))
2618 			__blk_put_request(req->next_rq->q, req->next_rq);
2619 
2620 		__blk_put_request(req->q, req);
2621 	}
2622 }
2623 EXPORT_SYMBOL(blk_finish_request);
2624 
2625 /**
2626  * blk_end_bidi_request - Complete a bidi request
2627  * @rq:         the request to complete
2628  * @error:      %0 for success, < %0 for error
2629  * @nr_bytes:   number of bytes to complete @rq
2630  * @bidi_bytes: number of bytes to complete @rq->next_rq
2631  *
2632  * Description:
2633  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2634  *     Drivers that supports bidi can safely call this member for any
2635  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2636  *     just ignored.
2637  *
2638  * Return:
2639  *     %false - we are done with this request
2640  *     %true  - still buffers pending for this request
2641  **/
2642 static bool blk_end_bidi_request(struct request *rq, int error,
2643 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2644 {
2645 	struct request_queue *q = rq->q;
2646 	unsigned long flags;
2647 
2648 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2649 		return true;
2650 
2651 	spin_lock_irqsave(q->queue_lock, flags);
2652 	blk_finish_request(rq, error);
2653 	spin_unlock_irqrestore(q->queue_lock, flags);
2654 
2655 	return false;
2656 }
2657 
2658 /**
2659  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2660  * @rq:         the request to complete
2661  * @error:      %0 for success, < %0 for error
2662  * @nr_bytes:   number of bytes to complete @rq
2663  * @bidi_bytes: number of bytes to complete @rq->next_rq
2664  *
2665  * Description:
2666  *     Identical to blk_end_bidi_request() except that queue lock is
2667  *     assumed to be locked on entry and remains so on return.
2668  *
2669  * Return:
2670  *     %false - we are done with this request
2671  *     %true  - still buffers pending for this request
2672  **/
2673 bool __blk_end_bidi_request(struct request *rq, int error,
2674 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2675 {
2676 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2677 		return true;
2678 
2679 	blk_finish_request(rq, error);
2680 
2681 	return false;
2682 }
2683 
2684 /**
2685  * blk_end_request - Helper function for drivers to complete the request.
2686  * @rq:       the request being processed
2687  * @error:    %0 for success, < %0 for error
2688  * @nr_bytes: number of bytes to complete
2689  *
2690  * Description:
2691  *     Ends I/O on a number of bytes attached to @rq.
2692  *     If @rq has leftover, sets it up for the next range of segments.
2693  *
2694  * Return:
2695  *     %false - we are done with this request
2696  *     %true  - still buffers pending for this request
2697  **/
2698 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2699 {
2700 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2701 }
2702 EXPORT_SYMBOL(blk_end_request);
2703 
2704 /**
2705  * blk_end_request_all - Helper function for drives to finish the request.
2706  * @rq: the request to finish
2707  * @error: %0 for success, < %0 for error
2708  *
2709  * Description:
2710  *     Completely finish @rq.
2711  */
2712 void blk_end_request_all(struct request *rq, int error)
2713 {
2714 	bool pending;
2715 	unsigned int bidi_bytes = 0;
2716 
2717 	if (unlikely(blk_bidi_rq(rq)))
2718 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2719 
2720 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2721 	BUG_ON(pending);
2722 }
2723 EXPORT_SYMBOL(blk_end_request_all);
2724 
2725 /**
2726  * blk_end_request_cur - Helper function to finish the current request chunk.
2727  * @rq: the request to finish the current chunk for
2728  * @error: %0 for success, < %0 for error
2729  *
2730  * Description:
2731  *     Complete the current consecutively mapped chunk from @rq.
2732  *
2733  * Return:
2734  *     %false - we are done with this request
2735  *     %true  - still buffers pending for this request
2736  */
2737 bool blk_end_request_cur(struct request *rq, int error)
2738 {
2739 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2740 }
2741 EXPORT_SYMBOL(blk_end_request_cur);
2742 
2743 /**
2744  * blk_end_request_err - Finish a request till the next failure boundary.
2745  * @rq: the request to finish till the next failure boundary for
2746  * @error: must be negative errno
2747  *
2748  * Description:
2749  *     Complete @rq till the next failure boundary.
2750  *
2751  * Return:
2752  *     %false - we are done with this request
2753  *     %true  - still buffers pending for this request
2754  */
2755 bool blk_end_request_err(struct request *rq, int error)
2756 {
2757 	WARN_ON(error >= 0);
2758 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2759 }
2760 EXPORT_SYMBOL_GPL(blk_end_request_err);
2761 
2762 /**
2763  * __blk_end_request - Helper function for drivers to complete the request.
2764  * @rq:       the request being processed
2765  * @error:    %0 for success, < %0 for error
2766  * @nr_bytes: number of bytes to complete
2767  *
2768  * Description:
2769  *     Must be called with queue lock held unlike blk_end_request().
2770  *
2771  * Return:
2772  *     %false - we are done with this request
2773  *     %true  - still buffers pending for this request
2774  **/
2775 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2776 {
2777 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2778 }
2779 EXPORT_SYMBOL(__blk_end_request);
2780 
2781 /**
2782  * __blk_end_request_all - Helper function for drives to finish the request.
2783  * @rq: the request to finish
2784  * @error: %0 for success, < %0 for error
2785  *
2786  * Description:
2787  *     Completely finish @rq.  Must be called with queue lock held.
2788  */
2789 void __blk_end_request_all(struct request *rq, int error)
2790 {
2791 	bool pending;
2792 	unsigned int bidi_bytes = 0;
2793 
2794 	if (unlikely(blk_bidi_rq(rq)))
2795 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2796 
2797 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2798 	BUG_ON(pending);
2799 }
2800 EXPORT_SYMBOL(__blk_end_request_all);
2801 
2802 /**
2803  * __blk_end_request_cur - Helper function to finish the current request chunk.
2804  * @rq: the request to finish the current chunk for
2805  * @error: %0 for success, < %0 for error
2806  *
2807  * Description:
2808  *     Complete the current consecutively mapped chunk from @rq.  Must
2809  *     be called with queue lock held.
2810  *
2811  * Return:
2812  *     %false - we are done with this request
2813  *     %true  - still buffers pending for this request
2814  */
2815 bool __blk_end_request_cur(struct request *rq, int error)
2816 {
2817 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2818 }
2819 EXPORT_SYMBOL(__blk_end_request_cur);
2820 
2821 /**
2822  * __blk_end_request_err - Finish a request till the next failure boundary.
2823  * @rq: the request to finish till the next failure boundary for
2824  * @error: must be negative errno
2825  *
2826  * Description:
2827  *     Complete @rq till the next failure boundary.  Must be called
2828  *     with queue lock held.
2829  *
2830  * Return:
2831  *     %false - we are done with this request
2832  *     %true  - still buffers pending for this request
2833  */
2834 bool __blk_end_request_err(struct request *rq, int error)
2835 {
2836 	WARN_ON(error >= 0);
2837 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2838 }
2839 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2840 
2841 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2842 		     struct bio *bio)
2843 {
2844 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2845 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2846 
2847 	if (bio_has_data(bio))
2848 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2849 
2850 	rq->__data_len = bio->bi_iter.bi_size;
2851 	rq->bio = rq->biotail = bio;
2852 
2853 	if (bio->bi_bdev)
2854 		rq->rq_disk = bio->bi_bdev->bd_disk;
2855 }
2856 
2857 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2858 /**
2859  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2860  * @rq: the request to be flushed
2861  *
2862  * Description:
2863  *     Flush all pages in @rq.
2864  */
2865 void rq_flush_dcache_pages(struct request *rq)
2866 {
2867 	struct req_iterator iter;
2868 	struct bio_vec bvec;
2869 
2870 	rq_for_each_segment(bvec, rq, iter)
2871 		flush_dcache_page(bvec.bv_page);
2872 }
2873 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2874 #endif
2875 
2876 /**
2877  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2878  * @q : the queue of the device being checked
2879  *
2880  * Description:
2881  *    Check if underlying low-level drivers of a device are busy.
2882  *    If the drivers want to export their busy state, they must set own
2883  *    exporting function using blk_queue_lld_busy() first.
2884  *
2885  *    Basically, this function is used only by request stacking drivers
2886  *    to stop dispatching requests to underlying devices when underlying
2887  *    devices are busy.  This behavior helps more I/O merging on the queue
2888  *    of the request stacking driver and prevents I/O throughput regression
2889  *    on burst I/O load.
2890  *
2891  * Return:
2892  *    0 - Not busy (The request stacking driver should dispatch request)
2893  *    1 - Busy (The request stacking driver should stop dispatching request)
2894  */
2895 int blk_lld_busy(struct request_queue *q)
2896 {
2897 	if (q->lld_busy_fn)
2898 		return q->lld_busy_fn(q);
2899 
2900 	return 0;
2901 }
2902 EXPORT_SYMBOL_GPL(blk_lld_busy);
2903 
2904 /**
2905  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2906  * @rq: the clone request to be cleaned up
2907  *
2908  * Description:
2909  *     Free all bios in @rq for a cloned request.
2910  */
2911 void blk_rq_unprep_clone(struct request *rq)
2912 {
2913 	struct bio *bio;
2914 
2915 	while ((bio = rq->bio) != NULL) {
2916 		rq->bio = bio->bi_next;
2917 
2918 		bio_put(bio);
2919 	}
2920 }
2921 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2922 
2923 /*
2924  * Copy attributes of the original request to the clone request.
2925  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2926  */
2927 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2928 {
2929 	dst->cpu = src->cpu;
2930 	dst->cmd_flags |= (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2931 	dst->cmd_type = src->cmd_type;
2932 	dst->__sector = blk_rq_pos(src);
2933 	dst->__data_len = blk_rq_bytes(src);
2934 	dst->nr_phys_segments = src->nr_phys_segments;
2935 	dst->ioprio = src->ioprio;
2936 	dst->extra_len = src->extra_len;
2937 }
2938 
2939 /**
2940  * blk_rq_prep_clone - Helper function to setup clone request
2941  * @rq: the request to be setup
2942  * @rq_src: original request to be cloned
2943  * @bs: bio_set that bios for clone are allocated from
2944  * @gfp_mask: memory allocation mask for bio
2945  * @bio_ctr: setup function to be called for each clone bio.
2946  *           Returns %0 for success, non %0 for failure.
2947  * @data: private data to be passed to @bio_ctr
2948  *
2949  * Description:
2950  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2951  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2952  *     are not copied, and copying such parts is the caller's responsibility.
2953  *     Also, pages which the original bios are pointing to are not copied
2954  *     and the cloned bios just point same pages.
2955  *     So cloned bios must be completed before original bios, which means
2956  *     the caller must complete @rq before @rq_src.
2957  */
2958 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2959 		      struct bio_set *bs, gfp_t gfp_mask,
2960 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2961 		      void *data)
2962 {
2963 	struct bio *bio, *bio_src;
2964 
2965 	if (!bs)
2966 		bs = fs_bio_set;
2967 
2968 	__rq_for_each_bio(bio_src, rq_src) {
2969 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
2970 		if (!bio)
2971 			goto free_and_out;
2972 
2973 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2974 			goto free_and_out;
2975 
2976 		if (rq->bio) {
2977 			rq->biotail->bi_next = bio;
2978 			rq->biotail = bio;
2979 		} else
2980 			rq->bio = rq->biotail = bio;
2981 	}
2982 
2983 	__blk_rq_prep_clone(rq, rq_src);
2984 
2985 	return 0;
2986 
2987 free_and_out:
2988 	if (bio)
2989 		bio_put(bio);
2990 	blk_rq_unprep_clone(rq);
2991 
2992 	return -ENOMEM;
2993 }
2994 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2995 
2996 int kblockd_schedule_work(struct work_struct *work)
2997 {
2998 	return queue_work(kblockd_workqueue, work);
2999 }
3000 EXPORT_SYMBOL(kblockd_schedule_work);
3001 
3002 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3003 				  unsigned long delay)
3004 {
3005 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3006 }
3007 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3008 
3009 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3010 				     unsigned long delay)
3011 {
3012 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3013 }
3014 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3015 
3016 /**
3017  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3018  * @plug:	The &struct blk_plug that needs to be initialized
3019  *
3020  * Description:
3021  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3022  *   pending I/O should the task end up blocking between blk_start_plug() and
3023  *   blk_finish_plug(). This is important from a performance perspective, but
3024  *   also ensures that we don't deadlock. For instance, if the task is blocking
3025  *   for a memory allocation, memory reclaim could end up wanting to free a
3026  *   page belonging to that request that is currently residing in our private
3027  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3028  *   this kind of deadlock.
3029  */
3030 void blk_start_plug(struct blk_plug *plug)
3031 {
3032 	struct task_struct *tsk = current;
3033 
3034 	INIT_LIST_HEAD(&plug->list);
3035 	INIT_LIST_HEAD(&plug->mq_list);
3036 	INIT_LIST_HEAD(&plug->cb_list);
3037 
3038 	/*
3039 	 * If this is a nested plug, don't actually assign it. It will be
3040 	 * flushed on its own.
3041 	 */
3042 	if (!tsk->plug) {
3043 		/*
3044 		 * Store ordering should not be needed here, since a potential
3045 		 * preempt will imply a full memory barrier
3046 		 */
3047 		tsk->plug = plug;
3048 	}
3049 }
3050 EXPORT_SYMBOL(blk_start_plug);
3051 
3052 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3053 {
3054 	struct request *rqa = container_of(a, struct request, queuelist);
3055 	struct request *rqb = container_of(b, struct request, queuelist);
3056 
3057 	return !(rqa->q < rqb->q ||
3058 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3059 }
3060 
3061 /*
3062  * If 'from_schedule' is true, then postpone the dispatch of requests
3063  * until a safe kblockd context. We due this to avoid accidental big
3064  * additional stack usage in driver dispatch, in places where the originally
3065  * plugger did not intend it.
3066  */
3067 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3068 			    bool from_schedule)
3069 	__releases(q->queue_lock)
3070 {
3071 	trace_block_unplug(q, depth, !from_schedule);
3072 
3073 	if (from_schedule)
3074 		blk_run_queue_async(q);
3075 	else
3076 		__blk_run_queue(q);
3077 	spin_unlock(q->queue_lock);
3078 }
3079 
3080 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3081 {
3082 	LIST_HEAD(callbacks);
3083 
3084 	while (!list_empty(&plug->cb_list)) {
3085 		list_splice_init(&plug->cb_list, &callbacks);
3086 
3087 		while (!list_empty(&callbacks)) {
3088 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3089 							  struct blk_plug_cb,
3090 							  list);
3091 			list_del(&cb->list);
3092 			cb->callback(cb, from_schedule);
3093 		}
3094 	}
3095 }
3096 
3097 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3098 				      int size)
3099 {
3100 	struct blk_plug *plug = current->plug;
3101 	struct blk_plug_cb *cb;
3102 
3103 	if (!plug)
3104 		return NULL;
3105 
3106 	list_for_each_entry(cb, &plug->cb_list, list)
3107 		if (cb->callback == unplug && cb->data == data)
3108 			return cb;
3109 
3110 	/* Not currently on the callback list */
3111 	BUG_ON(size < sizeof(*cb));
3112 	cb = kzalloc(size, GFP_ATOMIC);
3113 	if (cb) {
3114 		cb->data = data;
3115 		cb->callback = unplug;
3116 		list_add(&cb->list, &plug->cb_list);
3117 	}
3118 	return cb;
3119 }
3120 EXPORT_SYMBOL(blk_check_plugged);
3121 
3122 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3123 {
3124 	struct request_queue *q;
3125 	unsigned long flags;
3126 	struct request *rq;
3127 	LIST_HEAD(list);
3128 	unsigned int depth;
3129 
3130 	flush_plug_callbacks(plug, from_schedule);
3131 
3132 	if (!list_empty(&plug->mq_list))
3133 		blk_mq_flush_plug_list(plug, from_schedule);
3134 
3135 	if (list_empty(&plug->list))
3136 		return;
3137 
3138 	list_splice_init(&plug->list, &list);
3139 
3140 	list_sort(NULL, &list, plug_rq_cmp);
3141 
3142 	q = NULL;
3143 	depth = 0;
3144 
3145 	/*
3146 	 * Save and disable interrupts here, to avoid doing it for every
3147 	 * queue lock we have to take.
3148 	 */
3149 	local_irq_save(flags);
3150 	while (!list_empty(&list)) {
3151 		rq = list_entry_rq(list.next);
3152 		list_del_init(&rq->queuelist);
3153 		BUG_ON(!rq->q);
3154 		if (rq->q != q) {
3155 			/*
3156 			 * This drops the queue lock
3157 			 */
3158 			if (q)
3159 				queue_unplugged(q, depth, from_schedule);
3160 			q = rq->q;
3161 			depth = 0;
3162 			spin_lock(q->queue_lock);
3163 		}
3164 
3165 		/*
3166 		 * Short-circuit if @q is dead
3167 		 */
3168 		if (unlikely(blk_queue_dying(q))) {
3169 			__blk_end_request_all(rq, -ENODEV);
3170 			continue;
3171 		}
3172 
3173 		/*
3174 		 * rq is already accounted, so use raw insert
3175 		 */
3176 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3177 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3178 		else
3179 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3180 
3181 		depth++;
3182 	}
3183 
3184 	/*
3185 	 * This drops the queue lock
3186 	 */
3187 	if (q)
3188 		queue_unplugged(q, depth, from_schedule);
3189 
3190 	local_irq_restore(flags);
3191 }
3192 
3193 void blk_finish_plug(struct blk_plug *plug)
3194 {
3195 	blk_flush_plug_list(plug, false);
3196 
3197 	if (plug == current->plug)
3198 		current->plug = NULL;
3199 }
3200 EXPORT_SYMBOL(blk_finish_plug);
3201 
3202 #ifdef CONFIG_PM
3203 /**
3204  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3205  * @q: the queue of the device
3206  * @dev: the device the queue belongs to
3207  *
3208  * Description:
3209  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3210  *    @dev. Drivers that want to take advantage of request-based runtime PM
3211  *    should call this function after @dev has been initialized, and its
3212  *    request queue @q has been allocated, and runtime PM for it can not happen
3213  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3214  *    cases, driver should call this function before any I/O has taken place.
3215  *
3216  *    This function takes care of setting up using auto suspend for the device,
3217  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3218  *    until an updated value is either set by user or by driver. Drivers do
3219  *    not need to touch other autosuspend settings.
3220  *
3221  *    The block layer runtime PM is request based, so only works for drivers
3222  *    that use request as their IO unit instead of those directly use bio's.
3223  */
3224 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3225 {
3226 	q->dev = dev;
3227 	q->rpm_status = RPM_ACTIVE;
3228 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3229 	pm_runtime_use_autosuspend(q->dev);
3230 }
3231 EXPORT_SYMBOL(blk_pm_runtime_init);
3232 
3233 /**
3234  * blk_pre_runtime_suspend - Pre runtime suspend check
3235  * @q: the queue of the device
3236  *
3237  * Description:
3238  *    This function will check if runtime suspend is allowed for the device
3239  *    by examining if there are any requests pending in the queue. If there
3240  *    are requests pending, the device can not be runtime suspended; otherwise,
3241  *    the queue's status will be updated to SUSPENDING and the driver can
3242  *    proceed to suspend the device.
3243  *
3244  *    For the not allowed case, we mark last busy for the device so that
3245  *    runtime PM core will try to autosuspend it some time later.
3246  *
3247  *    This function should be called near the start of the device's
3248  *    runtime_suspend callback.
3249  *
3250  * Return:
3251  *    0		- OK to runtime suspend the device
3252  *    -EBUSY	- Device should not be runtime suspended
3253  */
3254 int blk_pre_runtime_suspend(struct request_queue *q)
3255 {
3256 	int ret = 0;
3257 
3258 	spin_lock_irq(q->queue_lock);
3259 	if (q->nr_pending) {
3260 		ret = -EBUSY;
3261 		pm_runtime_mark_last_busy(q->dev);
3262 	} else {
3263 		q->rpm_status = RPM_SUSPENDING;
3264 	}
3265 	spin_unlock_irq(q->queue_lock);
3266 	return ret;
3267 }
3268 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3269 
3270 /**
3271  * blk_post_runtime_suspend - Post runtime suspend processing
3272  * @q: the queue of the device
3273  * @err: return value of the device's runtime_suspend function
3274  *
3275  * Description:
3276  *    Update the queue's runtime status according to the return value of the
3277  *    device's runtime suspend function and mark last busy for the device so
3278  *    that PM core will try to auto suspend the device at a later time.
3279  *
3280  *    This function should be called near the end of the device's
3281  *    runtime_suspend callback.
3282  */
3283 void blk_post_runtime_suspend(struct request_queue *q, int err)
3284 {
3285 	spin_lock_irq(q->queue_lock);
3286 	if (!err) {
3287 		q->rpm_status = RPM_SUSPENDED;
3288 	} else {
3289 		q->rpm_status = RPM_ACTIVE;
3290 		pm_runtime_mark_last_busy(q->dev);
3291 	}
3292 	spin_unlock_irq(q->queue_lock);
3293 }
3294 EXPORT_SYMBOL(blk_post_runtime_suspend);
3295 
3296 /**
3297  * blk_pre_runtime_resume - Pre runtime resume processing
3298  * @q: the queue of the device
3299  *
3300  * Description:
3301  *    Update the queue's runtime status to RESUMING in preparation for the
3302  *    runtime resume of the device.
3303  *
3304  *    This function should be called near the start of the device's
3305  *    runtime_resume callback.
3306  */
3307 void blk_pre_runtime_resume(struct request_queue *q)
3308 {
3309 	spin_lock_irq(q->queue_lock);
3310 	q->rpm_status = RPM_RESUMING;
3311 	spin_unlock_irq(q->queue_lock);
3312 }
3313 EXPORT_SYMBOL(blk_pre_runtime_resume);
3314 
3315 /**
3316  * blk_post_runtime_resume - Post runtime resume processing
3317  * @q: the queue of the device
3318  * @err: return value of the device's runtime_resume function
3319  *
3320  * Description:
3321  *    Update the queue's runtime status according to the return value of the
3322  *    device's runtime_resume function. If it is successfully resumed, process
3323  *    the requests that are queued into the device's queue when it is resuming
3324  *    and then mark last busy and initiate autosuspend for it.
3325  *
3326  *    This function should be called near the end of the device's
3327  *    runtime_resume callback.
3328  */
3329 void blk_post_runtime_resume(struct request_queue *q, int err)
3330 {
3331 	spin_lock_irq(q->queue_lock);
3332 	if (!err) {
3333 		q->rpm_status = RPM_ACTIVE;
3334 		__blk_run_queue(q);
3335 		pm_runtime_mark_last_busy(q->dev);
3336 		pm_request_autosuspend(q->dev);
3337 	} else {
3338 		q->rpm_status = RPM_SUSPENDED;
3339 	}
3340 	spin_unlock_irq(q->queue_lock);
3341 }
3342 EXPORT_SYMBOL(blk_post_runtime_resume);
3343 #endif
3344 
3345 int __init blk_dev_init(void)
3346 {
3347 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3348 			sizeof(((struct request *)0)->cmd_flags));
3349 
3350 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3351 	kblockd_workqueue = alloc_workqueue("kblockd",
3352 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3353 	if (!kblockd_workqueue)
3354 		panic("Failed to create kblockd\n");
3355 
3356 	request_cachep = kmem_cache_create("blkdev_requests",
3357 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3358 
3359 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3360 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3361 
3362 	return 0;
3363 }
3364