xref: /openbmc/linux/block/blk-core.c (revision 44c2cd80)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 
71 /*
72  * Controlling structure to kblockd
73  */
74 static struct workqueue_struct *kblockd_workqueue;
75 
76 /**
77  * blk_queue_flag_set - atomically set a queue flag
78  * @flag: flag to be set
79  * @q: request queue
80  */
81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
82 {
83 	set_bit(flag, &q->queue_flags);
84 }
85 EXPORT_SYMBOL(blk_queue_flag_set);
86 
87 /**
88  * blk_queue_flag_clear - atomically clear a queue flag
89  * @flag: flag to be cleared
90  * @q: request queue
91  */
92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
93 {
94 	clear_bit(flag, &q->queue_flags);
95 }
96 EXPORT_SYMBOL(blk_queue_flag_clear);
97 
98 /**
99  * blk_queue_flag_test_and_set - atomically test and set a queue flag
100  * @flag: flag to be set
101  * @q: request queue
102  *
103  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
104  * the flag was already set.
105  */
106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
107 {
108 	return test_and_set_bit(flag, &q->queue_flags);
109 }
110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
111 
112 void blk_rq_init(struct request_queue *q, struct request *rq)
113 {
114 	memset(rq, 0, sizeof(*rq));
115 
116 	INIT_LIST_HEAD(&rq->queuelist);
117 	rq->q = q;
118 	rq->__sector = (sector_t) -1;
119 	INIT_HLIST_NODE(&rq->hash);
120 	RB_CLEAR_NODE(&rq->rb_node);
121 	rq->tag = BLK_MQ_NO_TAG;
122 	rq->internal_tag = BLK_MQ_NO_TAG;
123 	rq->start_time_ns = ktime_get_ns();
124 	rq->part = NULL;
125 	refcount_set(&rq->ref, 1);
126 	blk_crypto_rq_set_defaults(rq);
127 }
128 EXPORT_SYMBOL(blk_rq_init);
129 
130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
131 static const char *const blk_op_name[] = {
132 	REQ_OP_NAME(READ),
133 	REQ_OP_NAME(WRITE),
134 	REQ_OP_NAME(FLUSH),
135 	REQ_OP_NAME(DISCARD),
136 	REQ_OP_NAME(SECURE_ERASE),
137 	REQ_OP_NAME(ZONE_RESET),
138 	REQ_OP_NAME(ZONE_RESET_ALL),
139 	REQ_OP_NAME(ZONE_OPEN),
140 	REQ_OP_NAME(ZONE_CLOSE),
141 	REQ_OP_NAME(ZONE_FINISH),
142 	REQ_OP_NAME(ZONE_APPEND),
143 	REQ_OP_NAME(WRITE_SAME),
144 	REQ_OP_NAME(WRITE_ZEROES),
145 	REQ_OP_NAME(SCSI_IN),
146 	REQ_OP_NAME(SCSI_OUT),
147 	REQ_OP_NAME(DRV_IN),
148 	REQ_OP_NAME(DRV_OUT),
149 };
150 #undef REQ_OP_NAME
151 
152 /**
153  * blk_op_str - Return string XXX in the REQ_OP_XXX.
154  * @op: REQ_OP_XXX.
155  *
156  * Description: Centralize block layer function to convert REQ_OP_XXX into
157  * string format. Useful in the debugging and tracing bio or request. For
158  * invalid REQ_OP_XXX it returns string "UNKNOWN".
159  */
160 inline const char *blk_op_str(unsigned int op)
161 {
162 	const char *op_str = "UNKNOWN";
163 
164 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
165 		op_str = blk_op_name[op];
166 
167 	return op_str;
168 }
169 EXPORT_SYMBOL_GPL(blk_op_str);
170 
171 static const struct {
172 	int		errno;
173 	const char	*name;
174 } blk_errors[] = {
175 	[BLK_STS_OK]		= { 0,		"" },
176 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
177 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
178 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
179 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
180 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
181 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
182 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
183 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
184 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
185 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
186 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
187 
188 	/* device mapper special case, should not leak out: */
189 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
190 
191 	/* zone device specific errors */
192 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
193 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
194 
195 	/* everything else not covered above: */
196 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
197 };
198 
199 blk_status_t errno_to_blk_status(int errno)
200 {
201 	int i;
202 
203 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
204 		if (blk_errors[i].errno == errno)
205 			return (__force blk_status_t)i;
206 	}
207 
208 	return BLK_STS_IOERR;
209 }
210 EXPORT_SYMBOL_GPL(errno_to_blk_status);
211 
212 int blk_status_to_errno(blk_status_t status)
213 {
214 	int idx = (__force int)status;
215 
216 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
217 		return -EIO;
218 	return blk_errors[idx].errno;
219 }
220 EXPORT_SYMBOL_GPL(blk_status_to_errno);
221 
222 static void print_req_error(struct request *req, blk_status_t status,
223 		const char *caller)
224 {
225 	int idx = (__force int)status;
226 
227 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
228 		return;
229 
230 	printk_ratelimited(KERN_ERR
231 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
232 		"phys_seg %u prio class %u\n",
233 		caller, blk_errors[idx].name,
234 		req->rq_disk ? req->rq_disk->disk_name : "?",
235 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
236 		req->cmd_flags & ~REQ_OP_MASK,
237 		req->nr_phys_segments,
238 		IOPRIO_PRIO_CLASS(req->ioprio));
239 }
240 
241 static void req_bio_endio(struct request *rq, struct bio *bio,
242 			  unsigned int nbytes, blk_status_t error)
243 {
244 	if (error)
245 		bio->bi_status = error;
246 
247 	if (unlikely(rq->rq_flags & RQF_QUIET))
248 		bio_set_flag(bio, BIO_QUIET);
249 
250 	bio_advance(bio, nbytes);
251 
252 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
253 		/*
254 		 * Partial zone append completions cannot be supported as the
255 		 * BIO fragments may end up not being written sequentially.
256 		 */
257 		if (bio->bi_iter.bi_size)
258 			bio->bi_status = BLK_STS_IOERR;
259 		else
260 			bio->bi_iter.bi_sector = rq->__sector;
261 	}
262 
263 	/* don't actually finish bio if it's part of flush sequence */
264 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
265 		bio_endio(bio);
266 }
267 
268 void blk_dump_rq_flags(struct request *rq, char *msg)
269 {
270 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
271 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
272 		(unsigned long long) rq->cmd_flags);
273 
274 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
275 	       (unsigned long long)blk_rq_pos(rq),
276 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
277 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
278 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
279 }
280 EXPORT_SYMBOL(blk_dump_rq_flags);
281 
282 /**
283  * blk_sync_queue - cancel any pending callbacks on a queue
284  * @q: the queue
285  *
286  * Description:
287  *     The block layer may perform asynchronous callback activity
288  *     on a queue, such as calling the unplug function after a timeout.
289  *     A block device may call blk_sync_queue to ensure that any
290  *     such activity is cancelled, thus allowing it to release resources
291  *     that the callbacks might use. The caller must already have made sure
292  *     that its ->submit_bio will not re-add plugging prior to calling
293  *     this function.
294  *
295  *     This function does not cancel any asynchronous activity arising
296  *     out of elevator or throttling code. That would require elevator_exit()
297  *     and blkcg_exit_queue() to be called with queue lock initialized.
298  *
299  */
300 void blk_sync_queue(struct request_queue *q)
301 {
302 	del_timer_sync(&q->timeout);
303 	cancel_work_sync(&q->timeout_work);
304 }
305 EXPORT_SYMBOL(blk_sync_queue);
306 
307 /**
308  * blk_set_pm_only - increment pm_only counter
309  * @q: request queue pointer
310  */
311 void blk_set_pm_only(struct request_queue *q)
312 {
313 	atomic_inc(&q->pm_only);
314 }
315 EXPORT_SYMBOL_GPL(blk_set_pm_only);
316 
317 void blk_clear_pm_only(struct request_queue *q)
318 {
319 	int pm_only;
320 
321 	pm_only = atomic_dec_return(&q->pm_only);
322 	WARN_ON_ONCE(pm_only < 0);
323 	if (pm_only == 0)
324 		wake_up_all(&q->mq_freeze_wq);
325 }
326 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
327 
328 /**
329  * blk_put_queue - decrement the request_queue refcount
330  * @q: the request_queue structure to decrement the refcount for
331  *
332  * Decrements the refcount of the request_queue kobject. When this reaches 0
333  * we'll have blk_release_queue() called.
334  *
335  * Context: Any context, but the last reference must not be dropped from
336  *          atomic context.
337  */
338 void blk_put_queue(struct request_queue *q)
339 {
340 	kobject_put(&q->kobj);
341 }
342 EXPORT_SYMBOL(blk_put_queue);
343 
344 void blk_set_queue_dying(struct request_queue *q)
345 {
346 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
347 
348 	/*
349 	 * When queue DYING flag is set, we need to block new req
350 	 * entering queue, so we call blk_freeze_queue_start() to
351 	 * prevent I/O from crossing blk_queue_enter().
352 	 */
353 	blk_freeze_queue_start(q);
354 
355 	if (queue_is_mq(q))
356 		blk_mq_wake_waiters(q);
357 
358 	/* Make blk_queue_enter() reexamine the DYING flag. */
359 	wake_up_all(&q->mq_freeze_wq);
360 }
361 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
362 
363 /**
364  * blk_cleanup_queue - shutdown a request queue
365  * @q: request queue to shutdown
366  *
367  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
368  * put it.  All future requests will be failed immediately with -ENODEV.
369  *
370  * Context: can sleep
371  */
372 void blk_cleanup_queue(struct request_queue *q)
373 {
374 	/* cannot be called from atomic context */
375 	might_sleep();
376 
377 	WARN_ON_ONCE(blk_queue_registered(q));
378 
379 	/* mark @q DYING, no new request or merges will be allowed afterwards */
380 	blk_set_queue_dying(q);
381 
382 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
383 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
384 
385 	/*
386 	 * Drain all requests queued before DYING marking. Set DEAD flag to
387 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
388 	 * after draining finished.
389 	 */
390 	blk_freeze_queue(q);
391 
392 	rq_qos_exit(q);
393 
394 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
395 
396 	/* for synchronous bio-based driver finish in-flight integrity i/o */
397 	blk_flush_integrity();
398 
399 	/* @q won't process any more request, flush async actions */
400 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
401 	blk_sync_queue(q);
402 
403 	if (queue_is_mq(q))
404 		blk_mq_exit_queue(q);
405 
406 	/*
407 	 * In theory, request pool of sched_tags belongs to request queue.
408 	 * However, the current implementation requires tag_set for freeing
409 	 * requests, so free the pool now.
410 	 *
411 	 * Queue has become frozen, there can't be any in-queue requests, so
412 	 * it is safe to free requests now.
413 	 */
414 	mutex_lock(&q->sysfs_lock);
415 	if (q->elevator)
416 		blk_mq_sched_free_requests(q);
417 	mutex_unlock(&q->sysfs_lock);
418 
419 	percpu_ref_exit(&q->q_usage_counter);
420 
421 	/* @q is and will stay empty, shutdown and put */
422 	blk_put_queue(q);
423 }
424 EXPORT_SYMBOL(blk_cleanup_queue);
425 
426 /**
427  * blk_queue_enter() - try to increase q->q_usage_counter
428  * @q: request queue pointer
429  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
430  */
431 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
432 {
433 	const bool pm = flags & BLK_MQ_REQ_PM;
434 
435 	while (true) {
436 		bool success = false;
437 
438 		rcu_read_lock();
439 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
440 			/*
441 			 * The code that increments the pm_only counter is
442 			 * responsible for ensuring that that counter is
443 			 * globally visible before the queue is unfrozen.
444 			 */
445 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
446 			    !blk_queue_pm_only(q)) {
447 				success = true;
448 			} else {
449 				percpu_ref_put(&q->q_usage_counter);
450 			}
451 		}
452 		rcu_read_unlock();
453 
454 		if (success)
455 			return 0;
456 
457 		if (flags & BLK_MQ_REQ_NOWAIT)
458 			return -EBUSY;
459 
460 		/*
461 		 * read pair of barrier in blk_freeze_queue_start(),
462 		 * we need to order reading __PERCPU_REF_DEAD flag of
463 		 * .q_usage_counter and reading .mq_freeze_depth or
464 		 * queue dying flag, otherwise the following wait may
465 		 * never return if the two reads are reordered.
466 		 */
467 		smp_rmb();
468 
469 		wait_event(q->mq_freeze_wq,
470 			   (!q->mq_freeze_depth &&
471 			    blk_pm_resume_queue(pm, q)) ||
472 			   blk_queue_dying(q));
473 		if (blk_queue_dying(q))
474 			return -ENODEV;
475 	}
476 }
477 
478 static inline int bio_queue_enter(struct bio *bio)
479 {
480 	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
481 	bool nowait = bio->bi_opf & REQ_NOWAIT;
482 	int ret;
483 
484 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
485 	if (unlikely(ret)) {
486 		if (nowait && !blk_queue_dying(q))
487 			bio_wouldblock_error(bio);
488 		else
489 			bio_io_error(bio);
490 	}
491 
492 	return ret;
493 }
494 
495 void blk_queue_exit(struct request_queue *q)
496 {
497 	percpu_ref_put(&q->q_usage_counter);
498 }
499 
500 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
501 {
502 	struct request_queue *q =
503 		container_of(ref, struct request_queue, q_usage_counter);
504 
505 	wake_up_all(&q->mq_freeze_wq);
506 }
507 
508 static void blk_rq_timed_out_timer(struct timer_list *t)
509 {
510 	struct request_queue *q = from_timer(q, t, timeout);
511 
512 	kblockd_schedule_work(&q->timeout_work);
513 }
514 
515 static void blk_timeout_work(struct work_struct *work)
516 {
517 }
518 
519 struct request_queue *blk_alloc_queue(int node_id)
520 {
521 	struct request_queue *q;
522 	int ret;
523 
524 	q = kmem_cache_alloc_node(blk_requestq_cachep,
525 				GFP_KERNEL | __GFP_ZERO, node_id);
526 	if (!q)
527 		return NULL;
528 
529 	q->last_merge = NULL;
530 
531 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
532 	if (q->id < 0)
533 		goto fail_q;
534 
535 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
536 	if (ret)
537 		goto fail_id;
538 
539 	q->backing_dev_info = bdi_alloc(node_id);
540 	if (!q->backing_dev_info)
541 		goto fail_split;
542 
543 	q->stats = blk_alloc_queue_stats();
544 	if (!q->stats)
545 		goto fail_stats;
546 
547 	q->node = node_id;
548 
549 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
550 
551 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
552 		    laptop_mode_timer_fn, 0);
553 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
554 	INIT_WORK(&q->timeout_work, blk_timeout_work);
555 	INIT_LIST_HEAD(&q->icq_list);
556 #ifdef CONFIG_BLK_CGROUP
557 	INIT_LIST_HEAD(&q->blkg_list);
558 #endif
559 
560 	kobject_init(&q->kobj, &blk_queue_ktype);
561 
562 	mutex_init(&q->debugfs_mutex);
563 	mutex_init(&q->sysfs_lock);
564 	mutex_init(&q->sysfs_dir_lock);
565 	spin_lock_init(&q->queue_lock);
566 
567 	init_waitqueue_head(&q->mq_freeze_wq);
568 	mutex_init(&q->mq_freeze_lock);
569 
570 	/*
571 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
572 	 * See blk_register_queue() for details.
573 	 */
574 	if (percpu_ref_init(&q->q_usage_counter,
575 				blk_queue_usage_counter_release,
576 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
577 		goto fail_bdi;
578 
579 	if (blkcg_init_queue(q))
580 		goto fail_ref;
581 
582 	blk_queue_dma_alignment(q, 511);
583 	blk_set_default_limits(&q->limits);
584 	q->nr_requests = BLKDEV_MAX_RQ;
585 
586 	return q;
587 
588 fail_ref:
589 	percpu_ref_exit(&q->q_usage_counter);
590 fail_bdi:
591 	blk_free_queue_stats(q->stats);
592 fail_stats:
593 	bdi_put(q->backing_dev_info);
594 fail_split:
595 	bioset_exit(&q->bio_split);
596 fail_id:
597 	ida_simple_remove(&blk_queue_ida, q->id);
598 fail_q:
599 	kmem_cache_free(blk_requestq_cachep, q);
600 	return NULL;
601 }
602 
603 /**
604  * blk_get_queue - increment the request_queue refcount
605  * @q: the request_queue structure to increment the refcount for
606  *
607  * Increment the refcount of the request_queue kobject.
608  *
609  * Context: Any context.
610  */
611 bool blk_get_queue(struct request_queue *q)
612 {
613 	if (likely(!blk_queue_dying(q))) {
614 		__blk_get_queue(q);
615 		return true;
616 	}
617 
618 	return false;
619 }
620 EXPORT_SYMBOL(blk_get_queue);
621 
622 /**
623  * blk_get_request - allocate a request
624  * @q: request queue to allocate a request for
625  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
627  */
628 struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 				blk_mq_req_flags_t flags)
630 {
631 	struct request *req;
632 
633 	WARN_ON_ONCE(op & REQ_NOWAIT);
634 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
635 
636 	req = blk_mq_alloc_request(q, op, flags);
637 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 		q->mq_ops->initialize_rq_fn(req);
639 
640 	return req;
641 }
642 EXPORT_SYMBOL(blk_get_request);
643 
644 void blk_put_request(struct request *req)
645 {
646 	blk_mq_free_request(req);
647 }
648 EXPORT_SYMBOL(blk_put_request);
649 
650 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
651 {
652 	char b[BDEVNAME_SIZE];
653 
654 	pr_info_ratelimited("attempt to access beyond end of device\n"
655 			    "%s: rw=%d, want=%llu, limit=%llu\n",
656 			    bio_devname(bio, b), bio->bi_opf,
657 			    bio_end_sector(bio), maxsector);
658 }
659 
660 #ifdef CONFIG_FAIL_MAKE_REQUEST
661 
662 static DECLARE_FAULT_ATTR(fail_make_request);
663 
664 static int __init setup_fail_make_request(char *str)
665 {
666 	return setup_fault_attr(&fail_make_request, str);
667 }
668 __setup("fail_make_request=", setup_fail_make_request);
669 
670 static bool should_fail_request(struct block_device *part, unsigned int bytes)
671 {
672 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
673 }
674 
675 static int __init fail_make_request_debugfs(void)
676 {
677 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 						NULL, &fail_make_request);
679 
680 	return PTR_ERR_OR_ZERO(dir);
681 }
682 
683 late_initcall(fail_make_request_debugfs);
684 
685 #else /* CONFIG_FAIL_MAKE_REQUEST */
686 
687 static inline bool should_fail_request(struct block_device *part,
688 					unsigned int bytes)
689 {
690 	return false;
691 }
692 
693 #endif /* CONFIG_FAIL_MAKE_REQUEST */
694 
695 static inline bool bio_check_ro(struct bio *bio)
696 {
697 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
698 		char b[BDEVNAME_SIZE];
699 
700 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
701 			return false;
702 
703 		WARN_ONCE(1,
704 		       "Trying to write to read-only block-device %s (partno %d)\n",
705 			bio_devname(bio, b), bio->bi_bdev->bd_partno);
706 		/* Older lvm-tools actually trigger this */
707 		return false;
708 	}
709 
710 	return false;
711 }
712 
713 static noinline int should_fail_bio(struct bio *bio)
714 {
715 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
716 		return -EIO;
717 	return 0;
718 }
719 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
720 
721 /*
722  * Check whether this bio extends beyond the end of the device or partition.
723  * This may well happen - the kernel calls bread() without checking the size of
724  * the device, e.g., when mounting a file system.
725  */
726 static inline int bio_check_eod(struct bio *bio)
727 {
728 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
729 	unsigned int nr_sectors = bio_sectors(bio);
730 
731 	if (nr_sectors && maxsector &&
732 	    (nr_sectors > maxsector ||
733 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
734 		handle_bad_sector(bio, maxsector);
735 		return -EIO;
736 	}
737 	return 0;
738 }
739 
740 /*
741  * Remap block n of partition p to block n+start(p) of the disk.
742  */
743 static int blk_partition_remap(struct bio *bio)
744 {
745 	struct block_device *p = bio->bi_bdev;
746 
747 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
748 		return -EIO;
749 	if (bio_sectors(bio)) {
750 		bio->bi_iter.bi_sector += p->bd_start_sect;
751 		trace_block_bio_remap(bio, p->bd_dev,
752 				      bio->bi_iter.bi_sector -
753 				      p->bd_start_sect);
754 	}
755 	bio_set_flag(bio, BIO_REMAPPED);
756 	return 0;
757 }
758 
759 /*
760  * Check write append to a zoned block device.
761  */
762 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
763 						 struct bio *bio)
764 {
765 	sector_t pos = bio->bi_iter.bi_sector;
766 	int nr_sectors = bio_sectors(bio);
767 
768 	/* Only applicable to zoned block devices */
769 	if (!blk_queue_is_zoned(q))
770 		return BLK_STS_NOTSUPP;
771 
772 	/* The bio sector must point to the start of a sequential zone */
773 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
774 	    !blk_queue_zone_is_seq(q, pos))
775 		return BLK_STS_IOERR;
776 
777 	/*
778 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
779 	 * split and could result in non-contiguous sectors being written in
780 	 * different zones.
781 	 */
782 	if (nr_sectors > q->limits.chunk_sectors)
783 		return BLK_STS_IOERR;
784 
785 	/* Make sure the BIO is small enough and will not get split */
786 	if (nr_sectors > q->limits.max_zone_append_sectors)
787 		return BLK_STS_IOERR;
788 
789 	bio->bi_opf |= REQ_NOMERGE;
790 
791 	return BLK_STS_OK;
792 }
793 
794 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
795 {
796 	struct block_device *bdev = bio->bi_bdev;
797 	struct request_queue *q = bdev->bd_disk->queue;
798 	blk_status_t status = BLK_STS_IOERR;
799 	struct blk_plug *plug;
800 
801 	might_sleep();
802 
803 	plug = blk_mq_plug(q, bio);
804 	if (plug && plug->nowait)
805 		bio->bi_opf |= REQ_NOWAIT;
806 
807 	/*
808 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
809 	 * if queue does not support NOWAIT.
810 	 */
811 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
812 		goto not_supported;
813 
814 	if (should_fail_bio(bio))
815 		goto end_io;
816 	if (unlikely(bio_check_ro(bio)))
817 		goto end_io;
818 	if (!bio_flagged(bio, BIO_REMAPPED)) {
819 		if (unlikely(bio_check_eod(bio)))
820 			goto end_io;
821 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
822 			goto end_io;
823 	}
824 
825 	/*
826 	 * Filter flush bio's early so that bio based drivers without flush
827 	 * support don't have to worry about them.
828 	 */
829 	if (op_is_flush(bio->bi_opf) &&
830 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
831 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
832 		if (!bio_sectors(bio)) {
833 			status = BLK_STS_OK;
834 			goto end_io;
835 		}
836 	}
837 
838 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
839 		bio->bi_opf &= ~REQ_HIPRI;
840 
841 	switch (bio_op(bio)) {
842 	case REQ_OP_DISCARD:
843 		if (!blk_queue_discard(q))
844 			goto not_supported;
845 		break;
846 	case REQ_OP_SECURE_ERASE:
847 		if (!blk_queue_secure_erase(q))
848 			goto not_supported;
849 		break;
850 	case REQ_OP_WRITE_SAME:
851 		if (!q->limits.max_write_same_sectors)
852 			goto not_supported;
853 		break;
854 	case REQ_OP_ZONE_APPEND:
855 		status = blk_check_zone_append(q, bio);
856 		if (status != BLK_STS_OK)
857 			goto end_io;
858 		break;
859 	case REQ_OP_ZONE_RESET:
860 	case REQ_OP_ZONE_OPEN:
861 	case REQ_OP_ZONE_CLOSE:
862 	case REQ_OP_ZONE_FINISH:
863 		if (!blk_queue_is_zoned(q))
864 			goto not_supported;
865 		break;
866 	case REQ_OP_ZONE_RESET_ALL:
867 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
868 			goto not_supported;
869 		break;
870 	case REQ_OP_WRITE_ZEROES:
871 		if (!q->limits.max_write_zeroes_sectors)
872 			goto not_supported;
873 		break;
874 	default:
875 		break;
876 	}
877 
878 	/*
879 	 * Various block parts want %current->io_context, so allocate it up
880 	 * front rather than dealing with lots of pain to allocate it only
881 	 * where needed. This may fail and the block layer knows how to live
882 	 * with it.
883 	 */
884 	if (unlikely(!current->io_context))
885 		create_task_io_context(current, GFP_ATOMIC, q->node);
886 
887 	if (blk_throtl_bio(bio)) {
888 		blkcg_bio_issue_init(bio);
889 		return false;
890 	}
891 
892 	blk_cgroup_bio_start(bio);
893 	blkcg_bio_issue_init(bio);
894 
895 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
896 		trace_block_bio_queue(bio);
897 		/* Now that enqueuing has been traced, we need to trace
898 		 * completion as well.
899 		 */
900 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
901 	}
902 	return true;
903 
904 not_supported:
905 	status = BLK_STS_NOTSUPP;
906 end_io:
907 	bio->bi_status = status;
908 	bio_endio(bio);
909 	return false;
910 }
911 
912 static blk_qc_t __submit_bio(struct bio *bio)
913 {
914 	struct gendisk *disk = bio->bi_bdev->bd_disk;
915 	blk_qc_t ret = BLK_QC_T_NONE;
916 
917 	if (blk_crypto_bio_prep(&bio)) {
918 		if (!disk->fops->submit_bio)
919 			return blk_mq_submit_bio(bio);
920 		ret = disk->fops->submit_bio(bio);
921 	}
922 	blk_queue_exit(disk->queue);
923 	return ret;
924 }
925 
926 /*
927  * The loop in this function may be a bit non-obvious, and so deserves some
928  * explanation:
929  *
930  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
931  *    that), so we have a list with a single bio.
932  *  - We pretend that we have just taken it off a longer list, so we assign
933  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
934  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
935  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
936  *    non-NULL value in bio_list and re-enter the loop from the top.
937  *  - In this case we really did just take the bio of the top of the list (no
938  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
939  *    again.
940  *
941  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
942  * bio_list_on_stack[1] contains bios that were submitted before the current
943  *	->submit_bio_bio, but that haven't been processed yet.
944  */
945 static blk_qc_t __submit_bio_noacct(struct bio *bio)
946 {
947 	struct bio_list bio_list_on_stack[2];
948 	blk_qc_t ret = BLK_QC_T_NONE;
949 
950 	BUG_ON(bio->bi_next);
951 
952 	bio_list_init(&bio_list_on_stack[0]);
953 	current->bio_list = bio_list_on_stack;
954 
955 	do {
956 		struct request_queue *q = bio->bi_bdev->bd_disk->queue;
957 		struct bio_list lower, same;
958 
959 		if (unlikely(bio_queue_enter(bio) != 0))
960 			continue;
961 
962 		/*
963 		 * Create a fresh bio_list for all subordinate requests.
964 		 */
965 		bio_list_on_stack[1] = bio_list_on_stack[0];
966 		bio_list_init(&bio_list_on_stack[0]);
967 
968 		ret = __submit_bio(bio);
969 
970 		/*
971 		 * Sort new bios into those for a lower level and those for the
972 		 * same level.
973 		 */
974 		bio_list_init(&lower);
975 		bio_list_init(&same);
976 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
977 			if (q == bio->bi_bdev->bd_disk->queue)
978 				bio_list_add(&same, bio);
979 			else
980 				bio_list_add(&lower, bio);
981 
982 		/*
983 		 * Now assemble so we handle the lowest level first.
984 		 */
985 		bio_list_merge(&bio_list_on_stack[0], &lower);
986 		bio_list_merge(&bio_list_on_stack[0], &same);
987 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
988 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
989 
990 	current->bio_list = NULL;
991 	return ret;
992 }
993 
994 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
995 {
996 	struct bio_list bio_list[2] = { };
997 	blk_qc_t ret = BLK_QC_T_NONE;
998 
999 	current->bio_list = bio_list;
1000 
1001 	do {
1002 		struct gendisk *disk = bio->bi_bdev->bd_disk;
1003 
1004 		if (unlikely(bio_queue_enter(bio) != 0))
1005 			continue;
1006 
1007 		if (!blk_crypto_bio_prep(&bio)) {
1008 			blk_queue_exit(disk->queue);
1009 			ret = BLK_QC_T_NONE;
1010 			continue;
1011 		}
1012 
1013 		ret = blk_mq_submit_bio(bio);
1014 	} while ((bio = bio_list_pop(&bio_list[0])));
1015 
1016 	current->bio_list = NULL;
1017 	return ret;
1018 }
1019 
1020 /**
1021  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1022  * @bio:  The bio describing the location in memory and on the device.
1023  *
1024  * This is a version of submit_bio() that shall only be used for I/O that is
1025  * resubmitted to lower level drivers by stacking block drivers.  All file
1026  * systems and other upper level users of the block layer should use
1027  * submit_bio() instead.
1028  */
1029 blk_qc_t submit_bio_noacct(struct bio *bio)
1030 {
1031 	if (!submit_bio_checks(bio))
1032 		return BLK_QC_T_NONE;
1033 
1034 	/*
1035 	 * We only want one ->submit_bio to be active at a time, else stack
1036 	 * usage with stacked devices could be a problem.  Use current->bio_list
1037 	 * to collect a list of requests submited by a ->submit_bio method while
1038 	 * it is active, and then process them after it returned.
1039 	 */
1040 	if (current->bio_list) {
1041 		bio_list_add(&current->bio_list[0], bio);
1042 		return BLK_QC_T_NONE;
1043 	}
1044 
1045 	if (!bio->bi_bdev->bd_disk->fops->submit_bio)
1046 		return __submit_bio_noacct_mq(bio);
1047 	return __submit_bio_noacct(bio);
1048 }
1049 EXPORT_SYMBOL(submit_bio_noacct);
1050 
1051 /**
1052  * submit_bio - submit a bio to the block device layer for I/O
1053  * @bio: The &struct bio which describes the I/O
1054  *
1055  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1056  * fully set up &struct bio that describes the I/O that needs to be done.  The
1057  * bio will be send to the device described by the bi_bdev field.
1058  *
1059  * The success/failure status of the request, along with notification of
1060  * completion, is delivered asynchronously through the ->bi_end_io() callback
1061  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1062  * been called.
1063  */
1064 blk_qc_t submit_bio(struct bio *bio)
1065 {
1066 	if (blkcg_punt_bio_submit(bio))
1067 		return BLK_QC_T_NONE;
1068 
1069 	/*
1070 	 * If it's a regular read/write or a barrier with data attached,
1071 	 * go through the normal accounting stuff before submission.
1072 	 */
1073 	if (bio_has_data(bio)) {
1074 		unsigned int count;
1075 
1076 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1077 			count = queue_logical_block_size(
1078 					bio->bi_bdev->bd_disk->queue) >> 9;
1079 		else
1080 			count = bio_sectors(bio);
1081 
1082 		if (op_is_write(bio_op(bio))) {
1083 			count_vm_events(PGPGOUT, count);
1084 		} else {
1085 			task_io_account_read(bio->bi_iter.bi_size);
1086 			count_vm_events(PGPGIN, count);
1087 		}
1088 	}
1089 
1090 	/*
1091 	 * If we're reading data that is part of the userspace workingset, count
1092 	 * submission time as memory stall.  When the device is congested, or
1093 	 * the submitting cgroup IO-throttled, submission can be a significant
1094 	 * part of overall IO time.
1095 	 */
1096 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1097 	    bio_flagged(bio, BIO_WORKINGSET))) {
1098 		unsigned long pflags;
1099 		blk_qc_t ret;
1100 
1101 		psi_memstall_enter(&pflags);
1102 		ret = submit_bio_noacct(bio);
1103 		psi_memstall_leave(&pflags);
1104 
1105 		return ret;
1106 	}
1107 
1108 	return submit_bio_noacct(bio);
1109 }
1110 EXPORT_SYMBOL(submit_bio);
1111 
1112 /**
1113  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1114  *                              for the new queue limits
1115  * @q:  the queue
1116  * @rq: the request being checked
1117  *
1118  * Description:
1119  *    @rq may have been made based on weaker limitations of upper-level queues
1120  *    in request stacking drivers, and it may violate the limitation of @q.
1121  *    Since the block layer and the underlying device driver trust @rq
1122  *    after it is inserted to @q, it should be checked against @q before
1123  *    the insertion using this generic function.
1124  *
1125  *    Request stacking drivers like request-based dm may change the queue
1126  *    limits when retrying requests on other queues. Those requests need
1127  *    to be checked against the new queue limits again during dispatch.
1128  */
1129 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1130 				      struct request *rq)
1131 {
1132 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1133 
1134 	if (blk_rq_sectors(rq) > max_sectors) {
1135 		/*
1136 		 * SCSI device does not have a good way to return if
1137 		 * Write Same/Zero is actually supported. If a device rejects
1138 		 * a non-read/write command (discard, write same,etc.) the
1139 		 * low-level device driver will set the relevant queue limit to
1140 		 * 0 to prevent blk-lib from issuing more of the offending
1141 		 * operations. Commands queued prior to the queue limit being
1142 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1143 		 * errors being propagated to upper layers.
1144 		 */
1145 		if (max_sectors == 0)
1146 			return BLK_STS_NOTSUPP;
1147 
1148 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1149 			__func__, blk_rq_sectors(rq), max_sectors);
1150 		return BLK_STS_IOERR;
1151 	}
1152 
1153 	/*
1154 	 * The queue settings related to segment counting may differ from the
1155 	 * original queue.
1156 	 */
1157 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1158 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1159 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1160 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1161 		return BLK_STS_IOERR;
1162 	}
1163 
1164 	return BLK_STS_OK;
1165 }
1166 
1167 /**
1168  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1169  * @q:  the queue to submit the request
1170  * @rq: the request being queued
1171  */
1172 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1173 {
1174 	blk_status_t ret;
1175 
1176 	ret = blk_cloned_rq_check_limits(q, rq);
1177 	if (ret != BLK_STS_OK)
1178 		return ret;
1179 
1180 	if (rq->rq_disk &&
1181 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1182 		return BLK_STS_IOERR;
1183 
1184 	if (blk_crypto_insert_cloned_request(rq))
1185 		return BLK_STS_IOERR;
1186 
1187 	if (blk_queue_io_stat(q))
1188 		blk_account_io_start(rq);
1189 
1190 	/*
1191 	 * Since we have a scheduler attached on the top device,
1192 	 * bypass a potential scheduler on the bottom device for
1193 	 * insert.
1194 	 */
1195 	return blk_mq_request_issue_directly(rq, true);
1196 }
1197 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1198 
1199 /**
1200  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1201  * @rq: request to examine
1202  *
1203  * Description:
1204  *     A request could be merge of IOs which require different failure
1205  *     handling.  This function determines the number of bytes which
1206  *     can be failed from the beginning of the request without
1207  *     crossing into area which need to be retried further.
1208  *
1209  * Return:
1210  *     The number of bytes to fail.
1211  */
1212 unsigned int blk_rq_err_bytes(const struct request *rq)
1213 {
1214 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1215 	unsigned int bytes = 0;
1216 	struct bio *bio;
1217 
1218 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1219 		return blk_rq_bytes(rq);
1220 
1221 	/*
1222 	 * Currently the only 'mixing' which can happen is between
1223 	 * different fastfail types.  We can safely fail portions
1224 	 * which have all the failfast bits that the first one has -
1225 	 * the ones which are at least as eager to fail as the first
1226 	 * one.
1227 	 */
1228 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1229 		if ((bio->bi_opf & ff) != ff)
1230 			break;
1231 		bytes += bio->bi_iter.bi_size;
1232 	}
1233 
1234 	/* this could lead to infinite loop */
1235 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1236 	return bytes;
1237 }
1238 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1239 
1240 static void update_io_ticks(struct block_device *part, unsigned long now,
1241 		bool end)
1242 {
1243 	unsigned long stamp;
1244 again:
1245 	stamp = READ_ONCE(part->bd_stamp);
1246 	if (unlikely(stamp != now)) {
1247 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1248 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1249 	}
1250 	if (part->bd_partno) {
1251 		part = bdev_whole(part);
1252 		goto again;
1253 	}
1254 }
1255 
1256 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1257 {
1258 	if (req->part && blk_do_io_stat(req)) {
1259 		const int sgrp = op_stat_group(req_op(req));
1260 
1261 		part_stat_lock();
1262 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1263 		part_stat_unlock();
1264 	}
1265 }
1266 
1267 void blk_account_io_done(struct request *req, u64 now)
1268 {
1269 	/*
1270 	 * Account IO completion.  flush_rq isn't accounted as a
1271 	 * normal IO on queueing nor completion.  Accounting the
1272 	 * containing request is enough.
1273 	 */
1274 	if (req->part && blk_do_io_stat(req) &&
1275 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1276 		const int sgrp = op_stat_group(req_op(req));
1277 
1278 		part_stat_lock();
1279 		update_io_ticks(req->part, jiffies, true);
1280 		part_stat_inc(req->part, ios[sgrp]);
1281 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1282 		part_stat_unlock();
1283 	}
1284 }
1285 
1286 void blk_account_io_start(struct request *rq)
1287 {
1288 	if (!blk_do_io_stat(rq))
1289 		return;
1290 
1291 	/* passthrough requests can hold bios that do not have ->bi_bdev set */
1292 	if (rq->bio && rq->bio->bi_bdev)
1293 		rq->part = rq->bio->bi_bdev;
1294 	else
1295 		rq->part = rq->rq_disk->part0;
1296 
1297 	part_stat_lock();
1298 	update_io_ticks(rq->part, jiffies, false);
1299 	part_stat_unlock();
1300 }
1301 
1302 static unsigned long __part_start_io_acct(struct block_device *part,
1303 					  unsigned int sectors, unsigned int op)
1304 {
1305 	const int sgrp = op_stat_group(op);
1306 	unsigned long now = READ_ONCE(jiffies);
1307 
1308 	part_stat_lock();
1309 	update_io_ticks(part, now, false);
1310 	part_stat_inc(part, ios[sgrp]);
1311 	part_stat_add(part, sectors[sgrp], sectors);
1312 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1313 	part_stat_unlock();
1314 
1315 	return now;
1316 }
1317 
1318 /**
1319  * bio_start_io_acct - start I/O accounting for bio based drivers
1320  * @bio:	bio to start account for
1321  *
1322  * Returns the start time that should be passed back to bio_end_io_acct().
1323  */
1324 unsigned long bio_start_io_acct(struct bio *bio)
1325 {
1326 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio));
1327 }
1328 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1329 
1330 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1331 				 unsigned int op)
1332 {
1333 	return __part_start_io_acct(disk->part0, sectors, op);
1334 }
1335 EXPORT_SYMBOL(disk_start_io_acct);
1336 
1337 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1338 			       unsigned long start_time)
1339 {
1340 	const int sgrp = op_stat_group(op);
1341 	unsigned long now = READ_ONCE(jiffies);
1342 	unsigned long duration = now - start_time;
1343 
1344 	part_stat_lock();
1345 	update_io_ticks(part, now, true);
1346 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1347 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1348 	part_stat_unlock();
1349 }
1350 
1351 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1352 		struct block_device *orig_bdev)
1353 {
1354 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1355 }
1356 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1357 
1358 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1359 		      unsigned long start_time)
1360 {
1361 	__part_end_io_acct(disk->part0, op, start_time);
1362 }
1363 EXPORT_SYMBOL(disk_end_io_acct);
1364 
1365 /*
1366  * Steal bios from a request and add them to a bio list.
1367  * The request must not have been partially completed before.
1368  */
1369 void blk_steal_bios(struct bio_list *list, struct request *rq)
1370 {
1371 	if (rq->bio) {
1372 		if (list->tail)
1373 			list->tail->bi_next = rq->bio;
1374 		else
1375 			list->head = rq->bio;
1376 		list->tail = rq->biotail;
1377 
1378 		rq->bio = NULL;
1379 		rq->biotail = NULL;
1380 	}
1381 
1382 	rq->__data_len = 0;
1383 }
1384 EXPORT_SYMBOL_GPL(blk_steal_bios);
1385 
1386 /**
1387  * blk_update_request - Complete multiple bytes without completing the request
1388  * @req:      the request being processed
1389  * @error:    block status code
1390  * @nr_bytes: number of bytes to complete for @req
1391  *
1392  * Description:
1393  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1394  *     the request structure even if @req doesn't have leftover.
1395  *     If @req has leftover, sets it up for the next range of segments.
1396  *
1397  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1398  *     %false return from this function.
1399  *
1400  * Note:
1401  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
1402  *      except in the consistency check at the end of this function.
1403  *
1404  * Return:
1405  *     %false - this request doesn't have any more data
1406  *     %true  - this request has more data
1407  **/
1408 bool blk_update_request(struct request *req, blk_status_t error,
1409 		unsigned int nr_bytes)
1410 {
1411 	int total_bytes;
1412 
1413 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1414 
1415 	if (!req->bio)
1416 		return false;
1417 
1418 #ifdef CONFIG_BLK_DEV_INTEGRITY
1419 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1420 	    error == BLK_STS_OK)
1421 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1422 #endif
1423 
1424 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1425 		     !(req->rq_flags & RQF_QUIET)))
1426 		print_req_error(req, error, __func__);
1427 
1428 	blk_account_io_completion(req, nr_bytes);
1429 
1430 	total_bytes = 0;
1431 	while (req->bio) {
1432 		struct bio *bio = req->bio;
1433 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1434 
1435 		if (bio_bytes == bio->bi_iter.bi_size)
1436 			req->bio = bio->bi_next;
1437 
1438 		/* Completion has already been traced */
1439 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1440 		req_bio_endio(req, bio, bio_bytes, error);
1441 
1442 		total_bytes += bio_bytes;
1443 		nr_bytes -= bio_bytes;
1444 
1445 		if (!nr_bytes)
1446 			break;
1447 	}
1448 
1449 	/*
1450 	 * completely done
1451 	 */
1452 	if (!req->bio) {
1453 		/*
1454 		 * Reset counters so that the request stacking driver
1455 		 * can find how many bytes remain in the request
1456 		 * later.
1457 		 */
1458 		req->__data_len = 0;
1459 		return false;
1460 	}
1461 
1462 	req->__data_len -= total_bytes;
1463 
1464 	/* update sector only for requests with clear definition of sector */
1465 	if (!blk_rq_is_passthrough(req))
1466 		req->__sector += total_bytes >> 9;
1467 
1468 	/* mixed attributes always follow the first bio */
1469 	if (req->rq_flags & RQF_MIXED_MERGE) {
1470 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1471 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1472 	}
1473 
1474 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1475 		/*
1476 		 * If total number of sectors is less than the first segment
1477 		 * size, something has gone terribly wrong.
1478 		 */
1479 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1480 			blk_dump_rq_flags(req, "request botched");
1481 			req->__data_len = blk_rq_cur_bytes(req);
1482 		}
1483 
1484 		/* recalculate the number of segments */
1485 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1486 	}
1487 
1488 	return true;
1489 }
1490 EXPORT_SYMBOL_GPL(blk_update_request);
1491 
1492 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1493 /**
1494  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1495  * @rq: the request to be flushed
1496  *
1497  * Description:
1498  *     Flush all pages in @rq.
1499  */
1500 void rq_flush_dcache_pages(struct request *rq)
1501 {
1502 	struct req_iterator iter;
1503 	struct bio_vec bvec;
1504 
1505 	rq_for_each_segment(bvec, rq, iter)
1506 		flush_dcache_page(bvec.bv_page);
1507 }
1508 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1509 #endif
1510 
1511 /**
1512  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1513  * @q : the queue of the device being checked
1514  *
1515  * Description:
1516  *    Check if underlying low-level drivers of a device are busy.
1517  *    If the drivers want to export their busy state, they must set own
1518  *    exporting function using blk_queue_lld_busy() first.
1519  *
1520  *    Basically, this function is used only by request stacking drivers
1521  *    to stop dispatching requests to underlying devices when underlying
1522  *    devices are busy.  This behavior helps more I/O merging on the queue
1523  *    of the request stacking driver and prevents I/O throughput regression
1524  *    on burst I/O load.
1525  *
1526  * Return:
1527  *    0 - Not busy (The request stacking driver should dispatch request)
1528  *    1 - Busy (The request stacking driver should stop dispatching request)
1529  */
1530 int blk_lld_busy(struct request_queue *q)
1531 {
1532 	if (queue_is_mq(q) && q->mq_ops->busy)
1533 		return q->mq_ops->busy(q);
1534 
1535 	return 0;
1536 }
1537 EXPORT_SYMBOL_GPL(blk_lld_busy);
1538 
1539 /**
1540  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1541  * @rq: the clone request to be cleaned up
1542  *
1543  * Description:
1544  *     Free all bios in @rq for a cloned request.
1545  */
1546 void blk_rq_unprep_clone(struct request *rq)
1547 {
1548 	struct bio *bio;
1549 
1550 	while ((bio = rq->bio) != NULL) {
1551 		rq->bio = bio->bi_next;
1552 
1553 		bio_put(bio);
1554 	}
1555 }
1556 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1557 
1558 /**
1559  * blk_rq_prep_clone - Helper function to setup clone request
1560  * @rq: the request to be setup
1561  * @rq_src: original request to be cloned
1562  * @bs: bio_set that bios for clone are allocated from
1563  * @gfp_mask: memory allocation mask for bio
1564  * @bio_ctr: setup function to be called for each clone bio.
1565  *           Returns %0 for success, non %0 for failure.
1566  * @data: private data to be passed to @bio_ctr
1567  *
1568  * Description:
1569  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1570  *     Also, pages which the original bios are pointing to are not copied
1571  *     and the cloned bios just point same pages.
1572  *     So cloned bios must be completed before original bios, which means
1573  *     the caller must complete @rq before @rq_src.
1574  */
1575 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1576 		      struct bio_set *bs, gfp_t gfp_mask,
1577 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1578 		      void *data)
1579 {
1580 	struct bio *bio, *bio_src;
1581 
1582 	if (!bs)
1583 		bs = &fs_bio_set;
1584 
1585 	__rq_for_each_bio(bio_src, rq_src) {
1586 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1587 		if (!bio)
1588 			goto free_and_out;
1589 
1590 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1591 			goto free_and_out;
1592 
1593 		if (rq->bio) {
1594 			rq->biotail->bi_next = bio;
1595 			rq->biotail = bio;
1596 		} else {
1597 			rq->bio = rq->biotail = bio;
1598 		}
1599 		bio = NULL;
1600 	}
1601 
1602 	/* Copy attributes of the original request to the clone request. */
1603 	rq->__sector = blk_rq_pos(rq_src);
1604 	rq->__data_len = blk_rq_bytes(rq_src);
1605 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1606 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1607 		rq->special_vec = rq_src->special_vec;
1608 	}
1609 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1610 	rq->ioprio = rq_src->ioprio;
1611 
1612 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1613 		goto free_and_out;
1614 
1615 	return 0;
1616 
1617 free_and_out:
1618 	if (bio)
1619 		bio_put(bio);
1620 	blk_rq_unprep_clone(rq);
1621 
1622 	return -ENOMEM;
1623 }
1624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1625 
1626 int kblockd_schedule_work(struct work_struct *work)
1627 {
1628 	return queue_work(kblockd_workqueue, work);
1629 }
1630 EXPORT_SYMBOL(kblockd_schedule_work);
1631 
1632 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1633 				unsigned long delay)
1634 {
1635 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1636 }
1637 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1638 
1639 /**
1640  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1641  * @plug:	The &struct blk_plug that needs to be initialized
1642  *
1643  * Description:
1644  *   blk_start_plug() indicates to the block layer an intent by the caller
1645  *   to submit multiple I/O requests in a batch.  The block layer may use
1646  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1647  *   is called.  However, the block layer may choose to submit requests
1648  *   before a call to blk_finish_plug() if the number of queued I/Os
1649  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1650  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1651  *   the task schedules (see below).
1652  *
1653  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1654  *   pending I/O should the task end up blocking between blk_start_plug() and
1655  *   blk_finish_plug(). This is important from a performance perspective, but
1656  *   also ensures that we don't deadlock. For instance, if the task is blocking
1657  *   for a memory allocation, memory reclaim could end up wanting to free a
1658  *   page belonging to that request that is currently residing in our private
1659  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1660  *   this kind of deadlock.
1661  */
1662 void blk_start_plug(struct blk_plug *plug)
1663 {
1664 	struct task_struct *tsk = current;
1665 
1666 	/*
1667 	 * If this is a nested plug, don't actually assign it.
1668 	 */
1669 	if (tsk->plug)
1670 		return;
1671 
1672 	INIT_LIST_HEAD(&plug->mq_list);
1673 	INIT_LIST_HEAD(&plug->cb_list);
1674 	plug->rq_count = 0;
1675 	plug->multiple_queues = false;
1676 	plug->nowait = false;
1677 
1678 	/*
1679 	 * Store ordering should not be needed here, since a potential
1680 	 * preempt will imply a full memory barrier
1681 	 */
1682 	tsk->plug = plug;
1683 }
1684 EXPORT_SYMBOL(blk_start_plug);
1685 
1686 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1687 {
1688 	LIST_HEAD(callbacks);
1689 
1690 	while (!list_empty(&plug->cb_list)) {
1691 		list_splice_init(&plug->cb_list, &callbacks);
1692 
1693 		while (!list_empty(&callbacks)) {
1694 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1695 							  struct blk_plug_cb,
1696 							  list);
1697 			list_del(&cb->list);
1698 			cb->callback(cb, from_schedule);
1699 		}
1700 	}
1701 }
1702 
1703 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1704 				      int size)
1705 {
1706 	struct blk_plug *plug = current->plug;
1707 	struct blk_plug_cb *cb;
1708 
1709 	if (!plug)
1710 		return NULL;
1711 
1712 	list_for_each_entry(cb, &plug->cb_list, list)
1713 		if (cb->callback == unplug && cb->data == data)
1714 			return cb;
1715 
1716 	/* Not currently on the callback list */
1717 	BUG_ON(size < sizeof(*cb));
1718 	cb = kzalloc(size, GFP_ATOMIC);
1719 	if (cb) {
1720 		cb->data = data;
1721 		cb->callback = unplug;
1722 		list_add(&cb->list, &plug->cb_list);
1723 	}
1724 	return cb;
1725 }
1726 EXPORT_SYMBOL(blk_check_plugged);
1727 
1728 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1729 {
1730 	flush_plug_callbacks(plug, from_schedule);
1731 
1732 	if (!list_empty(&plug->mq_list))
1733 		blk_mq_flush_plug_list(plug, from_schedule);
1734 }
1735 
1736 /**
1737  * blk_finish_plug - mark the end of a batch of submitted I/O
1738  * @plug:	The &struct blk_plug passed to blk_start_plug()
1739  *
1740  * Description:
1741  * Indicate that a batch of I/O submissions is complete.  This function
1742  * must be paired with an initial call to blk_start_plug().  The intent
1743  * is to allow the block layer to optimize I/O submission.  See the
1744  * documentation for blk_start_plug() for more information.
1745  */
1746 void blk_finish_plug(struct blk_plug *plug)
1747 {
1748 	if (plug != current->plug)
1749 		return;
1750 	blk_flush_plug_list(plug, false);
1751 
1752 	current->plug = NULL;
1753 }
1754 EXPORT_SYMBOL(blk_finish_plug);
1755 
1756 void blk_io_schedule(void)
1757 {
1758 	/* Prevent hang_check timer from firing at us during very long I/O */
1759 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1760 
1761 	if (timeout)
1762 		io_schedule_timeout(timeout);
1763 	else
1764 		io_schedule();
1765 }
1766 EXPORT_SYMBOL_GPL(blk_io_schedule);
1767 
1768 int __init blk_dev_init(void)
1769 {
1770 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1771 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1772 			sizeof_field(struct request, cmd_flags));
1773 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1774 			sizeof_field(struct bio, bi_opf));
1775 
1776 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1777 	kblockd_workqueue = alloc_workqueue("kblockd",
1778 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1779 	if (!kblockd_workqueue)
1780 		panic("Failed to create kblockd\n");
1781 
1782 	blk_requestq_cachep = kmem_cache_create("request_queue",
1783 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1784 
1785 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1786 
1787 	return 0;
1788 }
1789