xref: /openbmc/linux/block/blk-core.c (revision 41797f75)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35 
36 #include "blk.h"
37 
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 
42 DEFINE_IDA(blk_queue_ida);
43 
44 /*
45  * For the allocated request tables
46  */
47 static struct kmem_cache *request_cachep;
48 
49 /*
50  * For queue allocation
51  */
52 struct kmem_cache *blk_requestq_cachep;
53 
54 /*
55  * Controlling structure to kblockd
56  */
57 static struct workqueue_struct *kblockd_workqueue;
58 
59 static void drive_stat_acct(struct request *rq, int new_io)
60 {
61 	struct hd_struct *part;
62 	int rw = rq_data_dir(rq);
63 	int cpu;
64 
65 	if (!blk_do_io_stat(rq))
66 		return;
67 
68 	cpu = part_stat_lock();
69 
70 	if (!new_io) {
71 		part = rq->part;
72 		part_stat_inc(cpu, part, merges[rw]);
73 	} else {
74 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
75 		if (!hd_struct_try_get(part)) {
76 			/*
77 			 * The partition is already being removed,
78 			 * the request will be accounted on the disk only
79 			 *
80 			 * We take a reference on disk->part0 although that
81 			 * partition will never be deleted, so we can treat
82 			 * it as any other partition.
83 			 */
84 			part = &rq->rq_disk->part0;
85 			hd_struct_get(part);
86 		}
87 		part_round_stats(cpu, part);
88 		part_inc_in_flight(part, rw);
89 		rq->part = part;
90 	}
91 
92 	part_stat_unlock();
93 }
94 
95 void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 	int nr;
98 
99 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 	if (nr > q->nr_requests)
101 		nr = q->nr_requests;
102 	q->nr_congestion_on = nr;
103 
104 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 	if (nr < 1)
106 		nr = 1;
107 	q->nr_congestion_off = nr;
108 }
109 
110 /**
111  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112  * @bdev:	device
113  *
114  * Locates the passed device's request queue and returns the address of its
115  * backing_dev_info
116  *
117  * Will return NULL if the request queue cannot be located.
118  */
119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 	struct backing_dev_info *ret = NULL;
122 	struct request_queue *q = bdev_get_queue(bdev);
123 
124 	if (q)
125 		ret = &q->backing_dev_info;
126 	return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129 
130 void blk_rq_init(struct request_queue *q, struct request *rq)
131 {
132 	memset(rq, 0, sizeof(*rq));
133 
134 	INIT_LIST_HEAD(&rq->queuelist);
135 	INIT_LIST_HEAD(&rq->timeout_list);
136 	rq->cpu = -1;
137 	rq->q = q;
138 	rq->__sector = (sector_t) -1;
139 	INIT_HLIST_NODE(&rq->hash);
140 	RB_CLEAR_NODE(&rq->rb_node);
141 	rq->cmd = rq->__cmd;
142 	rq->cmd_len = BLK_MAX_CDB;
143 	rq->tag = -1;
144 	rq->ref_count = 1;
145 	rq->start_time = jiffies;
146 	set_start_time_ns(rq);
147 	rq->part = NULL;
148 }
149 EXPORT_SYMBOL(blk_rq_init);
150 
151 static void req_bio_endio(struct request *rq, struct bio *bio,
152 			  unsigned int nbytes, int error)
153 {
154 	if (error)
155 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 		error = -EIO;
158 
159 	if (unlikely(nbytes > bio->bi_size)) {
160 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 		       __func__, nbytes, bio->bi_size);
162 		nbytes = bio->bi_size;
163 	}
164 
165 	if (unlikely(rq->cmd_flags & REQ_QUIET))
166 		set_bit(BIO_QUIET, &bio->bi_flags);
167 
168 	bio->bi_size -= nbytes;
169 	bio->bi_sector += (nbytes >> 9);
170 
171 	if (bio_integrity(bio))
172 		bio_integrity_advance(bio, nbytes);
173 
174 	/* don't actually finish bio if it's part of flush sequence */
175 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 		bio_endio(bio, error);
177 }
178 
179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 	int bit;
182 
183 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 		rq->cmd_flags);
186 
187 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
188 	       (unsigned long long)blk_rq_pos(rq),
189 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
190 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
191 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192 
193 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
194 		printk(KERN_INFO "  cdb: ");
195 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
196 			printk("%02x ", rq->cmd[bit]);
197 		printk("\n");
198 	}
199 }
200 EXPORT_SYMBOL(blk_dump_rq_flags);
201 
202 static void blk_delay_work(struct work_struct *work)
203 {
204 	struct request_queue *q;
205 
206 	q = container_of(work, struct request_queue, delay_work.work);
207 	spin_lock_irq(q->queue_lock);
208 	__blk_run_queue(q);
209 	spin_unlock_irq(q->queue_lock);
210 }
211 
212 /**
213  * blk_delay_queue - restart queueing after defined interval
214  * @q:		The &struct request_queue in question
215  * @msecs:	Delay in msecs
216  *
217  * Description:
218  *   Sometimes queueing needs to be postponed for a little while, to allow
219  *   resources to come back. This function will make sure that queueing is
220  *   restarted around the specified time.
221  */
222 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 {
224 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 				msecs_to_jiffies(msecs));
226 }
227 EXPORT_SYMBOL(blk_delay_queue);
228 
229 /**
230  * blk_start_queue - restart a previously stopped queue
231  * @q:    The &struct request_queue in question
232  *
233  * Description:
234  *   blk_start_queue() will clear the stop flag on the queue, and call
235  *   the request_fn for the queue if it was in a stopped state when
236  *   entered. Also see blk_stop_queue(). Queue lock must be held.
237  **/
238 void blk_start_queue(struct request_queue *q)
239 {
240 	WARN_ON(!irqs_disabled());
241 
242 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
243 	__blk_run_queue(q);
244 }
245 EXPORT_SYMBOL(blk_start_queue);
246 
247 /**
248  * blk_stop_queue - stop a queue
249  * @q:    The &struct request_queue in question
250  *
251  * Description:
252  *   The Linux block layer assumes that a block driver will consume all
253  *   entries on the request queue when the request_fn strategy is called.
254  *   Often this will not happen, because of hardware limitations (queue
255  *   depth settings). If a device driver gets a 'queue full' response,
256  *   or if it simply chooses not to queue more I/O at one point, it can
257  *   call this function to prevent the request_fn from being called until
258  *   the driver has signalled it's ready to go again. This happens by calling
259  *   blk_start_queue() to restart queue operations. Queue lock must be held.
260  **/
261 void blk_stop_queue(struct request_queue *q)
262 {
263 	__cancel_delayed_work(&q->delay_work);
264 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 }
266 EXPORT_SYMBOL(blk_stop_queue);
267 
268 /**
269  * blk_sync_queue - cancel any pending callbacks on a queue
270  * @q: the queue
271  *
272  * Description:
273  *     The block layer may perform asynchronous callback activity
274  *     on a queue, such as calling the unplug function after a timeout.
275  *     A block device may call blk_sync_queue to ensure that any
276  *     such activity is cancelled, thus allowing it to release resources
277  *     that the callbacks might use. The caller must already have made sure
278  *     that its ->make_request_fn will not re-add plugging prior to calling
279  *     this function.
280  *
281  *     This function does not cancel any asynchronous activity arising
282  *     out of elevator or throttling code. That would require elevaotor_exit()
283  *     and blk_throtl_exit() to be called with queue lock initialized.
284  *
285  */
286 void blk_sync_queue(struct request_queue *q)
287 {
288 	del_timer_sync(&q->timeout);
289 	cancel_delayed_work_sync(&q->delay_work);
290 }
291 EXPORT_SYMBOL(blk_sync_queue);
292 
293 /**
294  * __blk_run_queue - run a single device queue
295  * @q:	The queue to run
296  *
297  * Description:
298  *    See @blk_run_queue. This variant must be called with the queue lock
299  *    held and interrupts disabled.
300  */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 	if (unlikely(blk_queue_stopped(q)))
304 		return;
305 
306 	q->request_fn(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309 
310 /**
311  * blk_run_queue_async - run a single device queue in workqueue context
312  * @q:	The queue to run
313  *
314  * Description:
315  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316  *    of us.
317  */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 	if (likely(!blk_queue_stopped(q))) {
321 		__cancel_delayed_work(&q->delay_work);
322 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 	}
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326 
327 /**
328  * blk_run_queue - run a single device queue
329  * @q: The queue to run
330  *
331  * Description:
332  *    Invoke request handling on this queue, if it has pending work to do.
333  *    May be used to restart queueing when a request has completed.
334  */
335 void blk_run_queue(struct request_queue *q)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(q->queue_lock, flags);
340 	__blk_run_queue(q);
341 	spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344 
345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
351 /**
352  * blk_drain_queue - drain requests from request_queue
353  * @q: queue to drain
354  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355  *
356  * Drain requests from @q.  If @drain_all is set, all requests are drained.
357  * If not, only ELVPRIV requests are drained.  The caller is responsible
358  * for ensuring that no new requests which need to be drained are queued.
359  */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 	while (true) {
363 		bool drain = false;
364 		int i;
365 
366 		spin_lock_irq(q->queue_lock);
367 
368 		elv_drain_elevator(q);
369 		if (drain_all)
370 			blk_throtl_drain(q);
371 
372 		/*
373 		 * This function might be called on a queue which failed
374 		 * driver init after queue creation.  Some drivers
375 		 * (e.g. fd) get unhappy in such cases.  Kick queue iff
376 		 * dispatch queue has something on it.
377 		 */
378 		if (!list_empty(&q->queue_head))
379 			__blk_run_queue(q);
380 
381 		drain |= q->rq.elvpriv;
382 
383 		/*
384 		 * Unfortunately, requests are queued at and tracked from
385 		 * multiple places and there's no single counter which can
386 		 * be drained.  Check all the queues and counters.
387 		 */
388 		if (drain_all) {
389 			drain |= !list_empty(&q->queue_head);
390 			for (i = 0; i < 2; i++) {
391 				drain |= q->rq.count[i];
392 				drain |= q->in_flight[i];
393 				drain |= !list_empty(&q->flush_queue[i]);
394 			}
395 		}
396 
397 		spin_unlock_irq(q->queue_lock);
398 
399 		if (!drain)
400 			break;
401 		msleep(10);
402 	}
403 }
404 
405 /**
406  * blk_cleanup_queue - shutdown a request queue
407  * @q: request queue to shutdown
408  *
409  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
410  * future requests will be failed immediately with -ENODEV.
411  */
412 void blk_cleanup_queue(struct request_queue *q)
413 {
414 	spinlock_t *lock = q->queue_lock;
415 
416 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
417 	mutex_lock(&q->sysfs_lock);
418 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
419 
420 	spin_lock_irq(lock);
421 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
422 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
423 	queue_flag_set(QUEUE_FLAG_DEAD, q);
424 
425 	if (q->queue_lock != &q->__queue_lock)
426 		q->queue_lock = &q->__queue_lock;
427 
428 	spin_unlock_irq(lock);
429 	mutex_unlock(&q->sysfs_lock);
430 
431 	/*
432 	 * Drain all requests queued before DEAD marking.  The caller might
433 	 * be trying to tear down @q before its elevator is initialized, in
434 	 * which case we don't want to call into draining.
435 	 */
436 	if (q->elevator)
437 		blk_drain_queue(q, true);
438 
439 	/* @q won't process any more request, flush async actions */
440 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
441 	blk_sync_queue(q);
442 
443 	/* @q is and will stay empty, shutdown and put */
444 	blk_put_queue(q);
445 }
446 EXPORT_SYMBOL(blk_cleanup_queue);
447 
448 static int blk_init_free_list(struct request_queue *q)
449 {
450 	struct request_list *rl = &q->rq;
451 
452 	if (unlikely(rl->rq_pool))
453 		return 0;
454 
455 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
456 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
457 	rl->elvpriv = 0;
458 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
459 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
460 
461 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
462 				mempool_free_slab, request_cachep, q->node);
463 
464 	if (!rl->rq_pool)
465 		return -ENOMEM;
466 
467 	return 0;
468 }
469 
470 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
471 {
472 	return blk_alloc_queue_node(gfp_mask, -1);
473 }
474 EXPORT_SYMBOL(blk_alloc_queue);
475 
476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 	struct request_queue *q;
479 	int err;
480 
481 	q = kmem_cache_alloc_node(blk_requestq_cachep,
482 				gfp_mask | __GFP_ZERO, node_id);
483 	if (!q)
484 		return NULL;
485 
486 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
487 	if (q->id < 0)
488 		goto fail_q;
489 
490 	q->backing_dev_info.ra_pages =
491 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
492 	q->backing_dev_info.state = 0;
493 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
494 	q->backing_dev_info.name = "block";
495 	q->node = node_id;
496 
497 	err = bdi_init(&q->backing_dev_info);
498 	if (err)
499 		goto fail_id;
500 
501 	if (blk_throtl_init(q))
502 		goto fail_id;
503 
504 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
505 		    laptop_mode_timer_fn, (unsigned long) q);
506 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
507 	INIT_LIST_HEAD(&q->timeout_list);
508 	INIT_LIST_HEAD(&q->icq_list);
509 	INIT_LIST_HEAD(&q->flush_queue[0]);
510 	INIT_LIST_HEAD(&q->flush_queue[1]);
511 	INIT_LIST_HEAD(&q->flush_data_in_flight);
512 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
513 
514 	kobject_init(&q->kobj, &blk_queue_ktype);
515 
516 	mutex_init(&q->sysfs_lock);
517 	spin_lock_init(&q->__queue_lock);
518 
519 	/*
520 	 * By default initialize queue_lock to internal lock and driver can
521 	 * override it later if need be.
522 	 */
523 	q->queue_lock = &q->__queue_lock;
524 
525 	return q;
526 
527 fail_id:
528 	ida_simple_remove(&blk_queue_ida, q->id);
529 fail_q:
530 	kmem_cache_free(blk_requestq_cachep, q);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(blk_alloc_queue_node);
534 
535 /**
536  * blk_init_queue  - prepare a request queue for use with a block device
537  * @rfn:  The function to be called to process requests that have been
538  *        placed on the queue.
539  * @lock: Request queue spin lock
540  *
541  * Description:
542  *    If a block device wishes to use the standard request handling procedures,
543  *    which sorts requests and coalesces adjacent requests, then it must
544  *    call blk_init_queue().  The function @rfn will be called when there
545  *    are requests on the queue that need to be processed.  If the device
546  *    supports plugging, then @rfn may not be called immediately when requests
547  *    are available on the queue, but may be called at some time later instead.
548  *    Plugged queues are generally unplugged when a buffer belonging to one
549  *    of the requests on the queue is needed, or due to memory pressure.
550  *
551  *    @rfn is not required, or even expected, to remove all requests off the
552  *    queue, but only as many as it can handle at a time.  If it does leave
553  *    requests on the queue, it is responsible for arranging that the requests
554  *    get dealt with eventually.
555  *
556  *    The queue spin lock must be held while manipulating the requests on the
557  *    request queue; this lock will be taken also from interrupt context, so irq
558  *    disabling is needed for it.
559  *
560  *    Function returns a pointer to the initialized request queue, or %NULL if
561  *    it didn't succeed.
562  *
563  * Note:
564  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
565  *    when the block device is deactivated (such as at module unload).
566  **/
567 
568 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
569 {
570 	return blk_init_queue_node(rfn, lock, -1);
571 }
572 EXPORT_SYMBOL(blk_init_queue);
573 
574 struct request_queue *
575 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
576 {
577 	struct request_queue *uninit_q, *q;
578 
579 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
580 	if (!uninit_q)
581 		return NULL;
582 
583 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
584 	if (!q)
585 		blk_cleanup_queue(uninit_q);
586 
587 	return q;
588 }
589 EXPORT_SYMBOL(blk_init_queue_node);
590 
591 struct request_queue *
592 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
593 			 spinlock_t *lock)
594 {
595 	if (!q)
596 		return NULL;
597 
598 	if (blk_init_free_list(q))
599 		return NULL;
600 
601 	q->request_fn		= rfn;
602 	q->prep_rq_fn		= NULL;
603 	q->unprep_rq_fn		= NULL;
604 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
605 
606 	/* Override internal queue lock with supplied lock pointer */
607 	if (lock)
608 		q->queue_lock		= lock;
609 
610 	/*
611 	 * This also sets hw/phys segments, boundary and size
612 	 */
613 	blk_queue_make_request(q, blk_queue_bio);
614 
615 	q->sg_reserved_size = INT_MAX;
616 
617 	/*
618 	 * all done
619 	 */
620 	if (!elevator_init(q, NULL)) {
621 		blk_queue_congestion_threshold(q);
622 		return q;
623 	}
624 
625 	return NULL;
626 }
627 EXPORT_SYMBOL(blk_init_allocated_queue);
628 
629 bool blk_get_queue(struct request_queue *q)
630 {
631 	if (likely(!blk_queue_dead(q))) {
632 		__blk_get_queue(q);
633 		return true;
634 	}
635 
636 	return false;
637 }
638 EXPORT_SYMBOL(blk_get_queue);
639 
640 static inline void blk_free_request(struct request_queue *q, struct request *rq)
641 {
642 	if (rq->cmd_flags & REQ_ELVPRIV) {
643 		elv_put_request(q, rq);
644 		if (rq->elv.icq)
645 			put_io_context(rq->elv.icq->ioc);
646 	}
647 
648 	mempool_free(rq, q->rq.rq_pool);
649 }
650 
651 static struct request *
652 blk_alloc_request(struct request_queue *q, struct io_cq *icq,
653 		  unsigned int flags, gfp_t gfp_mask)
654 {
655 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656 
657 	if (!rq)
658 		return NULL;
659 
660 	blk_rq_init(q, rq);
661 
662 	rq->cmd_flags = flags | REQ_ALLOCED;
663 
664 	if (flags & REQ_ELVPRIV) {
665 		rq->elv.icq = icq;
666 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
667 			mempool_free(rq, q->rq.rq_pool);
668 			return NULL;
669 		}
670 		/* @rq->elv.icq holds on to io_context until @rq is freed */
671 		if (icq)
672 			get_io_context(icq->ioc);
673 	}
674 
675 	return rq;
676 }
677 
678 /*
679  * ioc_batching returns true if the ioc is a valid batching request and
680  * should be given priority access to a request.
681  */
682 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
683 {
684 	if (!ioc)
685 		return 0;
686 
687 	/*
688 	 * Make sure the process is able to allocate at least 1 request
689 	 * even if the batch times out, otherwise we could theoretically
690 	 * lose wakeups.
691 	 */
692 	return ioc->nr_batch_requests == q->nr_batching ||
693 		(ioc->nr_batch_requests > 0
694 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
695 }
696 
697 /*
698  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
699  * will cause the process to be a "batcher" on all queues in the system. This
700  * is the behaviour we want though - once it gets a wakeup it should be given
701  * a nice run.
702  */
703 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
704 {
705 	if (!ioc || ioc_batching(q, ioc))
706 		return;
707 
708 	ioc->nr_batch_requests = q->nr_batching;
709 	ioc->last_waited = jiffies;
710 }
711 
712 static void __freed_request(struct request_queue *q, int sync)
713 {
714 	struct request_list *rl = &q->rq;
715 
716 	if (rl->count[sync] < queue_congestion_off_threshold(q))
717 		blk_clear_queue_congested(q, sync);
718 
719 	if (rl->count[sync] + 1 <= q->nr_requests) {
720 		if (waitqueue_active(&rl->wait[sync]))
721 			wake_up(&rl->wait[sync]);
722 
723 		blk_clear_queue_full(q, sync);
724 	}
725 }
726 
727 /*
728  * A request has just been released.  Account for it, update the full and
729  * congestion status, wake up any waiters.   Called under q->queue_lock.
730  */
731 static void freed_request(struct request_queue *q, unsigned int flags)
732 {
733 	struct request_list *rl = &q->rq;
734 	int sync = rw_is_sync(flags);
735 
736 	rl->count[sync]--;
737 	if (flags & REQ_ELVPRIV)
738 		rl->elvpriv--;
739 
740 	__freed_request(q, sync);
741 
742 	if (unlikely(rl->starved[sync ^ 1]))
743 		__freed_request(q, sync ^ 1);
744 }
745 
746 /*
747  * Determine if elevator data should be initialized when allocating the
748  * request associated with @bio.
749  */
750 static bool blk_rq_should_init_elevator(struct bio *bio)
751 {
752 	if (!bio)
753 		return true;
754 
755 	/*
756 	 * Flush requests do not use the elevator so skip initialization.
757 	 * This allows a request to share the flush and elevator data.
758 	 */
759 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
760 		return false;
761 
762 	return true;
763 }
764 
765 /**
766  * get_request - get a free request
767  * @q: request_queue to allocate request from
768  * @rw_flags: RW and SYNC flags
769  * @bio: bio to allocate request for (can be %NULL)
770  * @gfp_mask: allocation mask
771  *
772  * Get a free request from @q.  This function may fail under memory
773  * pressure or if @q is dead.
774  *
775  * Must be callled with @q->queue_lock held and,
776  * Returns %NULL on failure, with @q->queue_lock held.
777  * Returns !%NULL on success, with @q->queue_lock *not held*.
778  */
779 static struct request *get_request(struct request_queue *q, int rw_flags,
780 				   struct bio *bio, gfp_t gfp_mask)
781 {
782 	struct request *rq = NULL;
783 	struct request_list *rl = &q->rq;
784 	struct elevator_type *et;
785 	struct io_context *ioc;
786 	struct io_cq *icq = NULL;
787 	const bool is_sync = rw_is_sync(rw_flags) != 0;
788 	bool retried = false;
789 	int may_queue;
790 retry:
791 	et = q->elevator->type;
792 	ioc = current->io_context;
793 
794 	if (unlikely(blk_queue_dead(q)))
795 		return NULL;
796 
797 	may_queue = elv_may_queue(q, rw_flags);
798 	if (may_queue == ELV_MQUEUE_NO)
799 		goto rq_starved;
800 
801 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
802 		if (rl->count[is_sync]+1 >= q->nr_requests) {
803 			/*
804 			 * We want ioc to record batching state.  If it's
805 			 * not already there, creating a new one requires
806 			 * dropping queue_lock, which in turn requires
807 			 * retesting conditions to avoid queue hang.
808 			 */
809 			if (!ioc && !retried) {
810 				spin_unlock_irq(q->queue_lock);
811 				create_io_context(current, gfp_mask, q->node);
812 				spin_lock_irq(q->queue_lock);
813 				retried = true;
814 				goto retry;
815 			}
816 
817 			/*
818 			 * The queue will fill after this allocation, so set
819 			 * it as full, and mark this process as "batching".
820 			 * This process will be allowed to complete a batch of
821 			 * requests, others will be blocked.
822 			 */
823 			if (!blk_queue_full(q, is_sync)) {
824 				ioc_set_batching(q, ioc);
825 				blk_set_queue_full(q, is_sync);
826 			} else {
827 				if (may_queue != ELV_MQUEUE_MUST
828 						&& !ioc_batching(q, ioc)) {
829 					/*
830 					 * The queue is full and the allocating
831 					 * process is not a "batcher", and not
832 					 * exempted by the IO scheduler
833 					 */
834 					goto out;
835 				}
836 			}
837 		}
838 		blk_set_queue_congested(q, is_sync);
839 	}
840 
841 	/*
842 	 * Only allow batching queuers to allocate up to 50% over the defined
843 	 * limit of requests, otherwise we could have thousands of requests
844 	 * allocated with any setting of ->nr_requests
845 	 */
846 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
847 		goto out;
848 
849 	rl->count[is_sync]++;
850 	rl->starved[is_sync] = 0;
851 
852 	/*
853 	 * Decide whether the new request will be managed by elevator.  If
854 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
855 	 * prevent the current elevator from being destroyed until the new
856 	 * request is freed.  This guarantees icq's won't be destroyed and
857 	 * makes creating new ones safe.
858 	 *
859 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
860 	 * it will be created after releasing queue_lock.
861 	 */
862 	if (blk_rq_should_init_elevator(bio) &&
863 	    !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
864 		rw_flags |= REQ_ELVPRIV;
865 		rl->elvpriv++;
866 		if (et->icq_cache && ioc)
867 			icq = ioc_lookup_icq(ioc, q);
868 	}
869 
870 	if (blk_queue_io_stat(q))
871 		rw_flags |= REQ_IO_STAT;
872 	spin_unlock_irq(q->queue_lock);
873 
874 	/* create icq if missing */
875 	if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
876 		icq = ioc_create_icq(q, gfp_mask);
877 		if (!icq)
878 			goto fail_icq;
879 	}
880 
881 	rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
882 
883 fail_icq:
884 	if (unlikely(!rq)) {
885 		/*
886 		 * Allocation failed presumably due to memory. Undo anything
887 		 * we might have messed up.
888 		 *
889 		 * Allocating task should really be put onto the front of the
890 		 * wait queue, but this is pretty rare.
891 		 */
892 		spin_lock_irq(q->queue_lock);
893 		freed_request(q, rw_flags);
894 
895 		/*
896 		 * in the very unlikely event that allocation failed and no
897 		 * requests for this direction was pending, mark us starved
898 		 * so that freeing of a request in the other direction will
899 		 * notice us. another possible fix would be to split the
900 		 * rq mempool into READ and WRITE
901 		 */
902 rq_starved:
903 		if (unlikely(rl->count[is_sync] == 0))
904 			rl->starved[is_sync] = 1;
905 
906 		goto out;
907 	}
908 
909 	/*
910 	 * ioc may be NULL here, and ioc_batching will be false. That's
911 	 * OK, if the queue is under the request limit then requests need
912 	 * not count toward the nr_batch_requests limit. There will always
913 	 * be some limit enforced by BLK_BATCH_TIME.
914 	 */
915 	if (ioc_batching(q, ioc))
916 		ioc->nr_batch_requests--;
917 
918 	trace_block_getrq(q, bio, rw_flags & 1);
919 out:
920 	return rq;
921 }
922 
923 /**
924  * get_request_wait - get a free request with retry
925  * @q: request_queue to allocate request from
926  * @rw_flags: RW and SYNC flags
927  * @bio: bio to allocate request for (can be %NULL)
928  *
929  * Get a free request from @q.  This function keeps retrying under memory
930  * pressure and fails iff @q is dead.
931  *
932  * Must be callled with @q->queue_lock held and,
933  * Returns %NULL on failure, with @q->queue_lock held.
934  * Returns !%NULL on success, with @q->queue_lock *not held*.
935  */
936 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
937 					struct bio *bio)
938 {
939 	const bool is_sync = rw_is_sync(rw_flags) != 0;
940 	struct request *rq;
941 
942 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
943 	while (!rq) {
944 		DEFINE_WAIT(wait);
945 		struct request_list *rl = &q->rq;
946 
947 		if (unlikely(blk_queue_dead(q)))
948 			return NULL;
949 
950 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
951 				TASK_UNINTERRUPTIBLE);
952 
953 		trace_block_sleeprq(q, bio, rw_flags & 1);
954 
955 		spin_unlock_irq(q->queue_lock);
956 		io_schedule();
957 
958 		/*
959 		 * After sleeping, we become a "batching" process and
960 		 * will be able to allocate at least one request, and
961 		 * up to a big batch of them for a small period time.
962 		 * See ioc_batching, ioc_set_batching
963 		 */
964 		create_io_context(current, GFP_NOIO, q->node);
965 		ioc_set_batching(q, current->io_context);
966 
967 		spin_lock_irq(q->queue_lock);
968 		finish_wait(&rl->wait[is_sync], &wait);
969 
970 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
971 	};
972 
973 	return rq;
974 }
975 
976 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
977 {
978 	struct request *rq;
979 
980 	BUG_ON(rw != READ && rw != WRITE);
981 
982 	spin_lock_irq(q->queue_lock);
983 	if (gfp_mask & __GFP_WAIT)
984 		rq = get_request_wait(q, rw, NULL);
985 	else
986 		rq = get_request(q, rw, NULL, gfp_mask);
987 	if (!rq)
988 		spin_unlock_irq(q->queue_lock);
989 	/* q->queue_lock is unlocked at this point */
990 
991 	return rq;
992 }
993 EXPORT_SYMBOL(blk_get_request);
994 
995 /**
996  * blk_make_request - given a bio, allocate a corresponding struct request.
997  * @q: target request queue
998  * @bio:  The bio describing the memory mappings that will be submitted for IO.
999  *        It may be a chained-bio properly constructed by block/bio layer.
1000  * @gfp_mask: gfp flags to be used for memory allocation
1001  *
1002  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1003  * type commands. Where the struct request needs to be farther initialized by
1004  * the caller. It is passed a &struct bio, which describes the memory info of
1005  * the I/O transfer.
1006  *
1007  * The caller of blk_make_request must make sure that bi_io_vec
1008  * are set to describe the memory buffers. That bio_data_dir() will return
1009  * the needed direction of the request. (And all bio's in the passed bio-chain
1010  * are properly set accordingly)
1011  *
1012  * If called under none-sleepable conditions, mapped bio buffers must not
1013  * need bouncing, by calling the appropriate masked or flagged allocator,
1014  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1015  * BUG.
1016  *
1017  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1018  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1019  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1020  * completion of a bio that hasn't been submitted yet, thus resulting in a
1021  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1022  * of bio_alloc(), as that avoids the mempool deadlock.
1023  * If possible a big IO should be split into smaller parts when allocation
1024  * fails. Partial allocation should not be an error, or you risk a live-lock.
1025  */
1026 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1027 				 gfp_t gfp_mask)
1028 {
1029 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1030 
1031 	if (unlikely(!rq))
1032 		return ERR_PTR(-ENOMEM);
1033 
1034 	for_each_bio(bio) {
1035 		struct bio *bounce_bio = bio;
1036 		int ret;
1037 
1038 		blk_queue_bounce(q, &bounce_bio);
1039 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1040 		if (unlikely(ret)) {
1041 			blk_put_request(rq);
1042 			return ERR_PTR(ret);
1043 		}
1044 	}
1045 
1046 	return rq;
1047 }
1048 EXPORT_SYMBOL(blk_make_request);
1049 
1050 /**
1051  * blk_requeue_request - put a request back on queue
1052  * @q:		request queue where request should be inserted
1053  * @rq:		request to be inserted
1054  *
1055  * Description:
1056  *    Drivers often keep queueing requests until the hardware cannot accept
1057  *    more, when that condition happens we need to put the request back
1058  *    on the queue. Must be called with queue lock held.
1059  */
1060 void blk_requeue_request(struct request_queue *q, struct request *rq)
1061 {
1062 	blk_delete_timer(rq);
1063 	blk_clear_rq_complete(rq);
1064 	trace_block_rq_requeue(q, rq);
1065 
1066 	if (blk_rq_tagged(rq))
1067 		blk_queue_end_tag(q, rq);
1068 
1069 	BUG_ON(blk_queued_rq(rq));
1070 
1071 	elv_requeue_request(q, rq);
1072 }
1073 EXPORT_SYMBOL(blk_requeue_request);
1074 
1075 static void add_acct_request(struct request_queue *q, struct request *rq,
1076 			     int where)
1077 {
1078 	drive_stat_acct(rq, 1);
1079 	__elv_add_request(q, rq, where);
1080 }
1081 
1082 static void part_round_stats_single(int cpu, struct hd_struct *part,
1083 				    unsigned long now)
1084 {
1085 	if (now == part->stamp)
1086 		return;
1087 
1088 	if (part_in_flight(part)) {
1089 		__part_stat_add(cpu, part, time_in_queue,
1090 				part_in_flight(part) * (now - part->stamp));
1091 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1092 	}
1093 	part->stamp = now;
1094 }
1095 
1096 /**
1097  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1098  * @cpu: cpu number for stats access
1099  * @part: target partition
1100  *
1101  * The average IO queue length and utilisation statistics are maintained
1102  * by observing the current state of the queue length and the amount of
1103  * time it has been in this state for.
1104  *
1105  * Normally, that accounting is done on IO completion, but that can result
1106  * in more than a second's worth of IO being accounted for within any one
1107  * second, leading to >100% utilisation.  To deal with that, we call this
1108  * function to do a round-off before returning the results when reading
1109  * /proc/diskstats.  This accounts immediately for all queue usage up to
1110  * the current jiffies and restarts the counters again.
1111  */
1112 void part_round_stats(int cpu, struct hd_struct *part)
1113 {
1114 	unsigned long now = jiffies;
1115 
1116 	if (part->partno)
1117 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1118 	part_round_stats_single(cpu, part, now);
1119 }
1120 EXPORT_SYMBOL_GPL(part_round_stats);
1121 
1122 /*
1123  * queue lock must be held
1124  */
1125 void __blk_put_request(struct request_queue *q, struct request *req)
1126 {
1127 	if (unlikely(!q))
1128 		return;
1129 	if (unlikely(--req->ref_count))
1130 		return;
1131 
1132 	elv_completed_request(q, req);
1133 
1134 	/* this is a bio leak */
1135 	WARN_ON(req->bio != NULL);
1136 
1137 	/*
1138 	 * Request may not have originated from ll_rw_blk. if not,
1139 	 * it didn't come out of our reserved rq pools
1140 	 */
1141 	if (req->cmd_flags & REQ_ALLOCED) {
1142 		unsigned int flags = req->cmd_flags;
1143 
1144 		BUG_ON(!list_empty(&req->queuelist));
1145 		BUG_ON(!hlist_unhashed(&req->hash));
1146 
1147 		blk_free_request(q, req);
1148 		freed_request(q, flags);
1149 	}
1150 }
1151 EXPORT_SYMBOL_GPL(__blk_put_request);
1152 
1153 void blk_put_request(struct request *req)
1154 {
1155 	unsigned long flags;
1156 	struct request_queue *q = req->q;
1157 
1158 	spin_lock_irqsave(q->queue_lock, flags);
1159 	__blk_put_request(q, req);
1160 	spin_unlock_irqrestore(q->queue_lock, flags);
1161 }
1162 EXPORT_SYMBOL(blk_put_request);
1163 
1164 /**
1165  * blk_add_request_payload - add a payload to a request
1166  * @rq: request to update
1167  * @page: page backing the payload
1168  * @len: length of the payload.
1169  *
1170  * This allows to later add a payload to an already submitted request by
1171  * a block driver.  The driver needs to take care of freeing the payload
1172  * itself.
1173  *
1174  * Note that this is a quite horrible hack and nothing but handling of
1175  * discard requests should ever use it.
1176  */
1177 void blk_add_request_payload(struct request *rq, struct page *page,
1178 		unsigned int len)
1179 {
1180 	struct bio *bio = rq->bio;
1181 
1182 	bio->bi_io_vec->bv_page = page;
1183 	bio->bi_io_vec->bv_offset = 0;
1184 	bio->bi_io_vec->bv_len = len;
1185 
1186 	bio->bi_size = len;
1187 	bio->bi_vcnt = 1;
1188 	bio->bi_phys_segments = 1;
1189 
1190 	rq->__data_len = rq->resid_len = len;
1191 	rq->nr_phys_segments = 1;
1192 	rq->buffer = bio_data(bio);
1193 }
1194 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1195 
1196 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1197 				   struct bio *bio)
1198 {
1199 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1200 
1201 	if (!ll_back_merge_fn(q, req, bio))
1202 		return false;
1203 
1204 	trace_block_bio_backmerge(q, bio);
1205 
1206 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1207 		blk_rq_set_mixed_merge(req);
1208 
1209 	req->biotail->bi_next = bio;
1210 	req->biotail = bio;
1211 	req->__data_len += bio->bi_size;
1212 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1213 
1214 	drive_stat_acct(req, 0);
1215 	return true;
1216 }
1217 
1218 static bool bio_attempt_front_merge(struct request_queue *q,
1219 				    struct request *req, struct bio *bio)
1220 {
1221 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1222 
1223 	if (!ll_front_merge_fn(q, req, bio))
1224 		return false;
1225 
1226 	trace_block_bio_frontmerge(q, bio);
1227 
1228 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1229 		blk_rq_set_mixed_merge(req);
1230 
1231 	bio->bi_next = req->bio;
1232 	req->bio = bio;
1233 
1234 	/*
1235 	 * may not be valid. if the low level driver said
1236 	 * it didn't need a bounce buffer then it better
1237 	 * not touch req->buffer either...
1238 	 */
1239 	req->buffer = bio_data(bio);
1240 	req->__sector = bio->bi_sector;
1241 	req->__data_len += bio->bi_size;
1242 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1243 
1244 	drive_stat_acct(req, 0);
1245 	return true;
1246 }
1247 
1248 /**
1249  * attempt_plug_merge - try to merge with %current's plugged list
1250  * @q: request_queue new bio is being queued at
1251  * @bio: new bio being queued
1252  * @request_count: out parameter for number of traversed plugged requests
1253  *
1254  * Determine whether @bio being queued on @q can be merged with a request
1255  * on %current's plugged list.  Returns %true if merge was successful,
1256  * otherwise %false.
1257  *
1258  * Plugging coalesces IOs from the same issuer for the same purpose without
1259  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1260  * than scheduling, and the request, while may have elvpriv data, is not
1261  * added on the elevator at this point.  In addition, we don't have
1262  * reliable access to the elevator outside queue lock.  Only check basic
1263  * merging parameters without querying the elevator.
1264  */
1265 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1266 			       unsigned int *request_count)
1267 {
1268 	struct blk_plug *plug;
1269 	struct request *rq;
1270 	bool ret = false;
1271 
1272 	plug = current->plug;
1273 	if (!plug)
1274 		goto out;
1275 	*request_count = 0;
1276 
1277 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1278 		int el_ret;
1279 
1280 		if (rq->q == q)
1281 			(*request_count)++;
1282 
1283 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1284 			continue;
1285 
1286 		el_ret = blk_try_merge(rq, bio);
1287 		if (el_ret == ELEVATOR_BACK_MERGE) {
1288 			ret = bio_attempt_back_merge(q, rq, bio);
1289 			if (ret)
1290 				break;
1291 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1292 			ret = bio_attempt_front_merge(q, rq, bio);
1293 			if (ret)
1294 				break;
1295 		}
1296 	}
1297 out:
1298 	return ret;
1299 }
1300 
1301 void init_request_from_bio(struct request *req, struct bio *bio)
1302 {
1303 	req->cmd_type = REQ_TYPE_FS;
1304 
1305 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1306 	if (bio->bi_rw & REQ_RAHEAD)
1307 		req->cmd_flags |= REQ_FAILFAST_MASK;
1308 
1309 	req->errors = 0;
1310 	req->__sector = bio->bi_sector;
1311 	req->ioprio = bio_prio(bio);
1312 	blk_rq_bio_prep(req->q, req, bio);
1313 }
1314 
1315 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1316 {
1317 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1318 	struct blk_plug *plug;
1319 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1320 	struct request *req;
1321 	unsigned int request_count = 0;
1322 
1323 	/*
1324 	 * low level driver can indicate that it wants pages above a
1325 	 * certain limit bounced to low memory (ie for highmem, or even
1326 	 * ISA dma in theory)
1327 	 */
1328 	blk_queue_bounce(q, &bio);
1329 
1330 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1331 		spin_lock_irq(q->queue_lock);
1332 		where = ELEVATOR_INSERT_FLUSH;
1333 		goto get_rq;
1334 	}
1335 
1336 	/*
1337 	 * Check if we can merge with the plugged list before grabbing
1338 	 * any locks.
1339 	 */
1340 	if (attempt_plug_merge(q, bio, &request_count))
1341 		return;
1342 
1343 	spin_lock_irq(q->queue_lock);
1344 
1345 	el_ret = elv_merge(q, &req, bio);
1346 	if (el_ret == ELEVATOR_BACK_MERGE) {
1347 		if (bio_attempt_back_merge(q, req, bio)) {
1348 			elv_bio_merged(q, req, bio);
1349 			if (!attempt_back_merge(q, req))
1350 				elv_merged_request(q, req, el_ret);
1351 			goto out_unlock;
1352 		}
1353 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1354 		if (bio_attempt_front_merge(q, req, bio)) {
1355 			elv_bio_merged(q, req, bio);
1356 			if (!attempt_front_merge(q, req))
1357 				elv_merged_request(q, req, el_ret);
1358 			goto out_unlock;
1359 		}
1360 	}
1361 
1362 get_rq:
1363 	/*
1364 	 * This sync check and mask will be re-done in init_request_from_bio(),
1365 	 * but we need to set it earlier to expose the sync flag to the
1366 	 * rq allocator and io schedulers.
1367 	 */
1368 	rw_flags = bio_data_dir(bio);
1369 	if (sync)
1370 		rw_flags |= REQ_SYNC;
1371 
1372 	/*
1373 	 * Grab a free request. This is might sleep but can not fail.
1374 	 * Returns with the queue unlocked.
1375 	 */
1376 	req = get_request_wait(q, rw_flags, bio);
1377 	if (unlikely(!req)) {
1378 		bio_endio(bio, -ENODEV);	/* @q is dead */
1379 		goto out_unlock;
1380 	}
1381 
1382 	/*
1383 	 * After dropping the lock and possibly sleeping here, our request
1384 	 * may now be mergeable after it had proven unmergeable (above).
1385 	 * We don't worry about that case for efficiency. It won't happen
1386 	 * often, and the elevators are able to handle it.
1387 	 */
1388 	init_request_from_bio(req, bio);
1389 
1390 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1391 		req->cpu = raw_smp_processor_id();
1392 
1393 	plug = current->plug;
1394 	if (plug) {
1395 		/*
1396 		 * If this is the first request added after a plug, fire
1397 		 * of a plug trace. If others have been added before, check
1398 		 * if we have multiple devices in this plug. If so, make a
1399 		 * note to sort the list before dispatch.
1400 		 */
1401 		if (list_empty(&plug->list))
1402 			trace_block_plug(q);
1403 		else {
1404 			if (!plug->should_sort) {
1405 				struct request *__rq;
1406 
1407 				__rq = list_entry_rq(plug->list.prev);
1408 				if (__rq->q != q)
1409 					plug->should_sort = 1;
1410 			}
1411 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1412 				blk_flush_plug_list(plug, false);
1413 				trace_block_plug(q);
1414 			}
1415 		}
1416 		list_add_tail(&req->queuelist, &plug->list);
1417 		drive_stat_acct(req, 1);
1418 	} else {
1419 		spin_lock_irq(q->queue_lock);
1420 		add_acct_request(q, req, where);
1421 		__blk_run_queue(q);
1422 out_unlock:
1423 		spin_unlock_irq(q->queue_lock);
1424 	}
1425 }
1426 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1427 
1428 /*
1429  * If bio->bi_dev is a partition, remap the location
1430  */
1431 static inline void blk_partition_remap(struct bio *bio)
1432 {
1433 	struct block_device *bdev = bio->bi_bdev;
1434 
1435 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1436 		struct hd_struct *p = bdev->bd_part;
1437 
1438 		bio->bi_sector += p->start_sect;
1439 		bio->bi_bdev = bdev->bd_contains;
1440 
1441 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1442 				      bdev->bd_dev,
1443 				      bio->bi_sector - p->start_sect);
1444 	}
1445 }
1446 
1447 static void handle_bad_sector(struct bio *bio)
1448 {
1449 	char b[BDEVNAME_SIZE];
1450 
1451 	printk(KERN_INFO "attempt to access beyond end of device\n");
1452 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1453 			bdevname(bio->bi_bdev, b),
1454 			bio->bi_rw,
1455 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1456 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1457 
1458 	set_bit(BIO_EOF, &bio->bi_flags);
1459 }
1460 
1461 #ifdef CONFIG_FAIL_MAKE_REQUEST
1462 
1463 static DECLARE_FAULT_ATTR(fail_make_request);
1464 
1465 static int __init setup_fail_make_request(char *str)
1466 {
1467 	return setup_fault_attr(&fail_make_request, str);
1468 }
1469 __setup("fail_make_request=", setup_fail_make_request);
1470 
1471 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1472 {
1473 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1474 }
1475 
1476 static int __init fail_make_request_debugfs(void)
1477 {
1478 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1479 						NULL, &fail_make_request);
1480 
1481 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1482 }
1483 
1484 late_initcall(fail_make_request_debugfs);
1485 
1486 #else /* CONFIG_FAIL_MAKE_REQUEST */
1487 
1488 static inline bool should_fail_request(struct hd_struct *part,
1489 					unsigned int bytes)
1490 {
1491 	return false;
1492 }
1493 
1494 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1495 
1496 /*
1497  * Check whether this bio extends beyond the end of the device.
1498  */
1499 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1500 {
1501 	sector_t maxsector;
1502 
1503 	if (!nr_sectors)
1504 		return 0;
1505 
1506 	/* Test device or partition size, when known. */
1507 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1508 	if (maxsector) {
1509 		sector_t sector = bio->bi_sector;
1510 
1511 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1512 			/*
1513 			 * This may well happen - the kernel calls bread()
1514 			 * without checking the size of the device, e.g., when
1515 			 * mounting a device.
1516 			 */
1517 			handle_bad_sector(bio);
1518 			return 1;
1519 		}
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 static noinline_for_stack bool
1526 generic_make_request_checks(struct bio *bio)
1527 {
1528 	struct request_queue *q;
1529 	int nr_sectors = bio_sectors(bio);
1530 	int err = -EIO;
1531 	char b[BDEVNAME_SIZE];
1532 	struct hd_struct *part;
1533 
1534 	might_sleep();
1535 
1536 	if (bio_check_eod(bio, nr_sectors))
1537 		goto end_io;
1538 
1539 	q = bdev_get_queue(bio->bi_bdev);
1540 	if (unlikely(!q)) {
1541 		printk(KERN_ERR
1542 		       "generic_make_request: Trying to access "
1543 			"nonexistent block-device %s (%Lu)\n",
1544 			bdevname(bio->bi_bdev, b),
1545 			(long long) bio->bi_sector);
1546 		goto end_io;
1547 	}
1548 
1549 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1550 		     nr_sectors > queue_max_hw_sectors(q))) {
1551 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1552 		       bdevname(bio->bi_bdev, b),
1553 		       bio_sectors(bio),
1554 		       queue_max_hw_sectors(q));
1555 		goto end_io;
1556 	}
1557 
1558 	part = bio->bi_bdev->bd_part;
1559 	if (should_fail_request(part, bio->bi_size) ||
1560 	    should_fail_request(&part_to_disk(part)->part0,
1561 				bio->bi_size))
1562 		goto end_io;
1563 
1564 	/*
1565 	 * If this device has partitions, remap block n
1566 	 * of partition p to block n+start(p) of the disk.
1567 	 */
1568 	blk_partition_remap(bio);
1569 
1570 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1571 		goto end_io;
1572 
1573 	if (bio_check_eod(bio, nr_sectors))
1574 		goto end_io;
1575 
1576 	/*
1577 	 * Filter flush bio's early so that make_request based
1578 	 * drivers without flush support don't have to worry
1579 	 * about them.
1580 	 */
1581 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1582 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1583 		if (!nr_sectors) {
1584 			err = 0;
1585 			goto end_io;
1586 		}
1587 	}
1588 
1589 	if ((bio->bi_rw & REQ_DISCARD) &&
1590 	    (!blk_queue_discard(q) ||
1591 	     ((bio->bi_rw & REQ_SECURE) &&
1592 	      !blk_queue_secdiscard(q)))) {
1593 		err = -EOPNOTSUPP;
1594 		goto end_io;
1595 	}
1596 
1597 	if (blk_throtl_bio(q, bio))
1598 		return false;	/* throttled, will be resubmitted later */
1599 
1600 	trace_block_bio_queue(q, bio);
1601 	return true;
1602 
1603 end_io:
1604 	bio_endio(bio, err);
1605 	return false;
1606 }
1607 
1608 /**
1609  * generic_make_request - hand a buffer to its device driver for I/O
1610  * @bio:  The bio describing the location in memory and on the device.
1611  *
1612  * generic_make_request() is used to make I/O requests of block
1613  * devices. It is passed a &struct bio, which describes the I/O that needs
1614  * to be done.
1615  *
1616  * generic_make_request() does not return any status.  The
1617  * success/failure status of the request, along with notification of
1618  * completion, is delivered asynchronously through the bio->bi_end_io
1619  * function described (one day) else where.
1620  *
1621  * The caller of generic_make_request must make sure that bi_io_vec
1622  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1623  * set to describe the device address, and the
1624  * bi_end_io and optionally bi_private are set to describe how
1625  * completion notification should be signaled.
1626  *
1627  * generic_make_request and the drivers it calls may use bi_next if this
1628  * bio happens to be merged with someone else, and may resubmit the bio to
1629  * a lower device by calling into generic_make_request recursively, which
1630  * means the bio should NOT be touched after the call to ->make_request_fn.
1631  */
1632 void generic_make_request(struct bio *bio)
1633 {
1634 	struct bio_list bio_list_on_stack;
1635 
1636 	if (!generic_make_request_checks(bio))
1637 		return;
1638 
1639 	/*
1640 	 * We only want one ->make_request_fn to be active at a time, else
1641 	 * stack usage with stacked devices could be a problem.  So use
1642 	 * current->bio_list to keep a list of requests submited by a
1643 	 * make_request_fn function.  current->bio_list is also used as a
1644 	 * flag to say if generic_make_request is currently active in this
1645 	 * task or not.  If it is NULL, then no make_request is active.  If
1646 	 * it is non-NULL, then a make_request is active, and new requests
1647 	 * should be added at the tail
1648 	 */
1649 	if (current->bio_list) {
1650 		bio_list_add(current->bio_list, bio);
1651 		return;
1652 	}
1653 
1654 	/* following loop may be a bit non-obvious, and so deserves some
1655 	 * explanation.
1656 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1657 	 * ensure that) so we have a list with a single bio.
1658 	 * We pretend that we have just taken it off a longer list, so
1659 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1660 	 * thus initialising the bio_list of new bios to be
1661 	 * added.  ->make_request() may indeed add some more bios
1662 	 * through a recursive call to generic_make_request.  If it
1663 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1664 	 * from the top.  In this case we really did just take the bio
1665 	 * of the top of the list (no pretending) and so remove it from
1666 	 * bio_list, and call into ->make_request() again.
1667 	 */
1668 	BUG_ON(bio->bi_next);
1669 	bio_list_init(&bio_list_on_stack);
1670 	current->bio_list = &bio_list_on_stack;
1671 	do {
1672 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1673 
1674 		q->make_request_fn(q, bio);
1675 
1676 		bio = bio_list_pop(current->bio_list);
1677 	} while (bio);
1678 	current->bio_list = NULL; /* deactivate */
1679 }
1680 EXPORT_SYMBOL(generic_make_request);
1681 
1682 /**
1683  * submit_bio - submit a bio to the block device layer for I/O
1684  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1685  * @bio: The &struct bio which describes the I/O
1686  *
1687  * submit_bio() is very similar in purpose to generic_make_request(), and
1688  * uses that function to do most of the work. Both are fairly rough
1689  * interfaces; @bio must be presetup and ready for I/O.
1690  *
1691  */
1692 void submit_bio(int rw, struct bio *bio)
1693 {
1694 	int count = bio_sectors(bio);
1695 
1696 	bio->bi_rw |= rw;
1697 
1698 	/*
1699 	 * If it's a regular read/write or a barrier with data attached,
1700 	 * go through the normal accounting stuff before submission.
1701 	 */
1702 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1703 		if (rw & WRITE) {
1704 			count_vm_events(PGPGOUT, count);
1705 		} else {
1706 			task_io_account_read(bio->bi_size);
1707 			count_vm_events(PGPGIN, count);
1708 		}
1709 
1710 		if (unlikely(block_dump)) {
1711 			char b[BDEVNAME_SIZE];
1712 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1713 			current->comm, task_pid_nr(current),
1714 				(rw & WRITE) ? "WRITE" : "READ",
1715 				(unsigned long long)bio->bi_sector,
1716 				bdevname(bio->bi_bdev, b),
1717 				count);
1718 		}
1719 	}
1720 
1721 	generic_make_request(bio);
1722 }
1723 EXPORT_SYMBOL(submit_bio);
1724 
1725 /**
1726  * blk_rq_check_limits - Helper function to check a request for the queue limit
1727  * @q:  the queue
1728  * @rq: the request being checked
1729  *
1730  * Description:
1731  *    @rq may have been made based on weaker limitations of upper-level queues
1732  *    in request stacking drivers, and it may violate the limitation of @q.
1733  *    Since the block layer and the underlying device driver trust @rq
1734  *    after it is inserted to @q, it should be checked against @q before
1735  *    the insertion using this generic function.
1736  *
1737  *    This function should also be useful for request stacking drivers
1738  *    in some cases below, so export this function.
1739  *    Request stacking drivers like request-based dm may change the queue
1740  *    limits while requests are in the queue (e.g. dm's table swapping).
1741  *    Such request stacking drivers should check those requests agaist
1742  *    the new queue limits again when they dispatch those requests,
1743  *    although such checkings are also done against the old queue limits
1744  *    when submitting requests.
1745  */
1746 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1747 {
1748 	if (rq->cmd_flags & REQ_DISCARD)
1749 		return 0;
1750 
1751 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1752 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1753 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1754 		return -EIO;
1755 	}
1756 
1757 	/*
1758 	 * queue's settings related to segment counting like q->bounce_pfn
1759 	 * may differ from that of other stacking queues.
1760 	 * Recalculate it to check the request correctly on this queue's
1761 	 * limitation.
1762 	 */
1763 	blk_recalc_rq_segments(rq);
1764 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1765 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1766 		return -EIO;
1767 	}
1768 
1769 	return 0;
1770 }
1771 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1772 
1773 /**
1774  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1775  * @q:  the queue to submit the request
1776  * @rq: the request being queued
1777  */
1778 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1779 {
1780 	unsigned long flags;
1781 	int where = ELEVATOR_INSERT_BACK;
1782 
1783 	if (blk_rq_check_limits(q, rq))
1784 		return -EIO;
1785 
1786 	if (rq->rq_disk &&
1787 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1788 		return -EIO;
1789 
1790 	spin_lock_irqsave(q->queue_lock, flags);
1791 	if (unlikely(blk_queue_dead(q))) {
1792 		spin_unlock_irqrestore(q->queue_lock, flags);
1793 		return -ENODEV;
1794 	}
1795 
1796 	/*
1797 	 * Submitting request must be dequeued before calling this function
1798 	 * because it will be linked to another request_queue
1799 	 */
1800 	BUG_ON(blk_queued_rq(rq));
1801 
1802 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1803 		where = ELEVATOR_INSERT_FLUSH;
1804 
1805 	add_acct_request(q, rq, where);
1806 	if (where == ELEVATOR_INSERT_FLUSH)
1807 		__blk_run_queue(q);
1808 	spin_unlock_irqrestore(q->queue_lock, flags);
1809 
1810 	return 0;
1811 }
1812 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1813 
1814 /**
1815  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1816  * @rq: request to examine
1817  *
1818  * Description:
1819  *     A request could be merge of IOs which require different failure
1820  *     handling.  This function determines the number of bytes which
1821  *     can be failed from the beginning of the request without
1822  *     crossing into area which need to be retried further.
1823  *
1824  * Return:
1825  *     The number of bytes to fail.
1826  *
1827  * Context:
1828  *     queue_lock must be held.
1829  */
1830 unsigned int blk_rq_err_bytes(const struct request *rq)
1831 {
1832 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1833 	unsigned int bytes = 0;
1834 	struct bio *bio;
1835 
1836 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1837 		return blk_rq_bytes(rq);
1838 
1839 	/*
1840 	 * Currently the only 'mixing' which can happen is between
1841 	 * different fastfail types.  We can safely fail portions
1842 	 * which have all the failfast bits that the first one has -
1843 	 * the ones which are at least as eager to fail as the first
1844 	 * one.
1845 	 */
1846 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1847 		if ((bio->bi_rw & ff) != ff)
1848 			break;
1849 		bytes += bio->bi_size;
1850 	}
1851 
1852 	/* this could lead to infinite loop */
1853 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1854 	return bytes;
1855 }
1856 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1857 
1858 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1859 {
1860 	if (blk_do_io_stat(req)) {
1861 		const int rw = rq_data_dir(req);
1862 		struct hd_struct *part;
1863 		int cpu;
1864 
1865 		cpu = part_stat_lock();
1866 		part = req->part;
1867 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1868 		part_stat_unlock();
1869 	}
1870 }
1871 
1872 static void blk_account_io_done(struct request *req)
1873 {
1874 	/*
1875 	 * Account IO completion.  flush_rq isn't accounted as a
1876 	 * normal IO on queueing nor completion.  Accounting the
1877 	 * containing request is enough.
1878 	 */
1879 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1880 		unsigned long duration = jiffies - req->start_time;
1881 		const int rw = rq_data_dir(req);
1882 		struct hd_struct *part;
1883 		int cpu;
1884 
1885 		cpu = part_stat_lock();
1886 		part = req->part;
1887 
1888 		part_stat_inc(cpu, part, ios[rw]);
1889 		part_stat_add(cpu, part, ticks[rw], duration);
1890 		part_round_stats(cpu, part);
1891 		part_dec_in_flight(part, rw);
1892 
1893 		hd_struct_put(part);
1894 		part_stat_unlock();
1895 	}
1896 }
1897 
1898 /**
1899  * blk_peek_request - peek at the top of a request queue
1900  * @q: request queue to peek at
1901  *
1902  * Description:
1903  *     Return the request at the top of @q.  The returned request
1904  *     should be started using blk_start_request() before LLD starts
1905  *     processing it.
1906  *
1907  * Return:
1908  *     Pointer to the request at the top of @q if available.  Null
1909  *     otherwise.
1910  *
1911  * Context:
1912  *     queue_lock must be held.
1913  */
1914 struct request *blk_peek_request(struct request_queue *q)
1915 {
1916 	struct request *rq;
1917 	int ret;
1918 
1919 	while ((rq = __elv_next_request(q)) != NULL) {
1920 		if (!(rq->cmd_flags & REQ_STARTED)) {
1921 			/*
1922 			 * This is the first time the device driver
1923 			 * sees this request (possibly after
1924 			 * requeueing).  Notify IO scheduler.
1925 			 */
1926 			if (rq->cmd_flags & REQ_SORTED)
1927 				elv_activate_rq(q, rq);
1928 
1929 			/*
1930 			 * just mark as started even if we don't start
1931 			 * it, a request that has been delayed should
1932 			 * not be passed by new incoming requests
1933 			 */
1934 			rq->cmd_flags |= REQ_STARTED;
1935 			trace_block_rq_issue(q, rq);
1936 		}
1937 
1938 		if (!q->boundary_rq || q->boundary_rq == rq) {
1939 			q->end_sector = rq_end_sector(rq);
1940 			q->boundary_rq = NULL;
1941 		}
1942 
1943 		if (rq->cmd_flags & REQ_DONTPREP)
1944 			break;
1945 
1946 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1947 			/*
1948 			 * make sure space for the drain appears we
1949 			 * know we can do this because max_hw_segments
1950 			 * has been adjusted to be one fewer than the
1951 			 * device can handle
1952 			 */
1953 			rq->nr_phys_segments++;
1954 		}
1955 
1956 		if (!q->prep_rq_fn)
1957 			break;
1958 
1959 		ret = q->prep_rq_fn(q, rq);
1960 		if (ret == BLKPREP_OK) {
1961 			break;
1962 		} else if (ret == BLKPREP_DEFER) {
1963 			/*
1964 			 * the request may have been (partially) prepped.
1965 			 * we need to keep this request in the front to
1966 			 * avoid resource deadlock.  REQ_STARTED will
1967 			 * prevent other fs requests from passing this one.
1968 			 */
1969 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1970 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1971 				/*
1972 				 * remove the space for the drain we added
1973 				 * so that we don't add it again
1974 				 */
1975 				--rq->nr_phys_segments;
1976 			}
1977 
1978 			rq = NULL;
1979 			break;
1980 		} else if (ret == BLKPREP_KILL) {
1981 			rq->cmd_flags |= REQ_QUIET;
1982 			/*
1983 			 * Mark this request as started so we don't trigger
1984 			 * any debug logic in the end I/O path.
1985 			 */
1986 			blk_start_request(rq);
1987 			__blk_end_request_all(rq, -EIO);
1988 		} else {
1989 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1990 			break;
1991 		}
1992 	}
1993 
1994 	return rq;
1995 }
1996 EXPORT_SYMBOL(blk_peek_request);
1997 
1998 void blk_dequeue_request(struct request *rq)
1999 {
2000 	struct request_queue *q = rq->q;
2001 
2002 	BUG_ON(list_empty(&rq->queuelist));
2003 	BUG_ON(ELV_ON_HASH(rq));
2004 
2005 	list_del_init(&rq->queuelist);
2006 
2007 	/*
2008 	 * the time frame between a request being removed from the lists
2009 	 * and to it is freed is accounted as io that is in progress at
2010 	 * the driver side.
2011 	 */
2012 	if (blk_account_rq(rq)) {
2013 		q->in_flight[rq_is_sync(rq)]++;
2014 		set_io_start_time_ns(rq);
2015 	}
2016 }
2017 
2018 /**
2019  * blk_start_request - start request processing on the driver
2020  * @req: request to dequeue
2021  *
2022  * Description:
2023  *     Dequeue @req and start timeout timer on it.  This hands off the
2024  *     request to the driver.
2025  *
2026  *     Block internal functions which don't want to start timer should
2027  *     call blk_dequeue_request().
2028  *
2029  * Context:
2030  *     queue_lock must be held.
2031  */
2032 void blk_start_request(struct request *req)
2033 {
2034 	blk_dequeue_request(req);
2035 
2036 	/*
2037 	 * We are now handing the request to the hardware, initialize
2038 	 * resid_len to full count and add the timeout handler.
2039 	 */
2040 	req->resid_len = blk_rq_bytes(req);
2041 	if (unlikely(blk_bidi_rq(req)))
2042 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2043 
2044 	blk_add_timer(req);
2045 }
2046 EXPORT_SYMBOL(blk_start_request);
2047 
2048 /**
2049  * blk_fetch_request - fetch a request from a request queue
2050  * @q: request queue to fetch a request from
2051  *
2052  * Description:
2053  *     Return the request at the top of @q.  The request is started on
2054  *     return and LLD can start processing it immediately.
2055  *
2056  * Return:
2057  *     Pointer to the request at the top of @q if available.  Null
2058  *     otherwise.
2059  *
2060  * Context:
2061  *     queue_lock must be held.
2062  */
2063 struct request *blk_fetch_request(struct request_queue *q)
2064 {
2065 	struct request *rq;
2066 
2067 	rq = blk_peek_request(q);
2068 	if (rq)
2069 		blk_start_request(rq);
2070 	return rq;
2071 }
2072 EXPORT_SYMBOL(blk_fetch_request);
2073 
2074 /**
2075  * blk_update_request - Special helper function for request stacking drivers
2076  * @req:      the request being processed
2077  * @error:    %0 for success, < %0 for error
2078  * @nr_bytes: number of bytes to complete @req
2079  *
2080  * Description:
2081  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2082  *     the request structure even if @req doesn't have leftover.
2083  *     If @req has leftover, sets it up for the next range of segments.
2084  *
2085  *     This special helper function is only for request stacking drivers
2086  *     (e.g. request-based dm) so that they can handle partial completion.
2087  *     Actual device drivers should use blk_end_request instead.
2088  *
2089  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2090  *     %false return from this function.
2091  *
2092  * Return:
2093  *     %false - this request doesn't have any more data
2094  *     %true  - this request has more data
2095  **/
2096 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2097 {
2098 	int total_bytes, bio_nbytes, next_idx = 0;
2099 	struct bio *bio;
2100 
2101 	if (!req->bio)
2102 		return false;
2103 
2104 	trace_block_rq_complete(req->q, req);
2105 
2106 	/*
2107 	 * For fs requests, rq is just carrier of independent bio's
2108 	 * and each partial completion should be handled separately.
2109 	 * Reset per-request error on each partial completion.
2110 	 *
2111 	 * TODO: tj: This is too subtle.  It would be better to let
2112 	 * low level drivers do what they see fit.
2113 	 */
2114 	if (req->cmd_type == REQ_TYPE_FS)
2115 		req->errors = 0;
2116 
2117 	if (error && req->cmd_type == REQ_TYPE_FS &&
2118 	    !(req->cmd_flags & REQ_QUIET)) {
2119 		char *error_type;
2120 
2121 		switch (error) {
2122 		case -ENOLINK:
2123 			error_type = "recoverable transport";
2124 			break;
2125 		case -EREMOTEIO:
2126 			error_type = "critical target";
2127 			break;
2128 		case -EBADE:
2129 			error_type = "critical nexus";
2130 			break;
2131 		case -EIO:
2132 		default:
2133 			error_type = "I/O";
2134 			break;
2135 		}
2136 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2137 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2138 		       (unsigned long long)blk_rq_pos(req));
2139 	}
2140 
2141 	blk_account_io_completion(req, nr_bytes);
2142 
2143 	total_bytes = bio_nbytes = 0;
2144 	while ((bio = req->bio) != NULL) {
2145 		int nbytes;
2146 
2147 		if (nr_bytes >= bio->bi_size) {
2148 			req->bio = bio->bi_next;
2149 			nbytes = bio->bi_size;
2150 			req_bio_endio(req, bio, nbytes, error);
2151 			next_idx = 0;
2152 			bio_nbytes = 0;
2153 		} else {
2154 			int idx = bio->bi_idx + next_idx;
2155 
2156 			if (unlikely(idx >= bio->bi_vcnt)) {
2157 				blk_dump_rq_flags(req, "__end_that");
2158 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2159 				       __func__, idx, bio->bi_vcnt);
2160 				break;
2161 			}
2162 
2163 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2164 			BIO_BUG_ON(nbytes > bio->bi_size);
2165 
2166 			/*
2167 			 * not a complete bvec done
2168 			 */
2169 			if (unlikely(nbytes > nr_bytes)) {
2170 				bio_nbytes += nr_bytes;
2171 				total_bytes += nr_bytes;
2172 				break;
2173 			}
2174 
2175 			/*
2176 			 * advance to the next vector
2177 			 */
2178 			next_idx++;
2179 			bio_nbytes += nbytes;
2180 		}
2181 
2182 		total_bytes += nbytes;
2183 		nr_bytes -= nbytes;
2184 
2185 		bio = req->bio;
2186 		if (bio) {
2187 			/*
2188 			 * end more in this run, or just return 'not-done'
2189 			 */
2190 			if (unlikely(nr_bytes <= 0))
2191 				break;
2192 		}
2193 	}
2194 
2195 	/*
2196 	 * completely done
2197 	 */
2198 	if (!req->bio) {
2199 		/*
2200 		 * Reset counters so that the request stacking driver
2201 		 * can find how many bytes remain in the request
2202 		 * later.
2203 		 */
2204 		req->__data_len = 0;
2205 		return false;
2206 	}
2207 
2208 	/*
2209 	 * if the request wasn't completed, update state
2210 	 */
2211 	if (bio_nbytes) {
2212 		req_bio_endio(req, bio, bio_nbytes, error);
2213 		bio->bi_idx += next_idx;
2214 		bio_iovec(bio)->bv_offset += nr_bytes;
2215 		bio_iovec(bio)->bv_len -= nr_bytes;
2216 	}
2217 
2218 	req->__data_len -= total_bytes;
2219 	req->buffer = bio_data(req->bio);
2220 
2221 	/* update sector only for requests with clear definition of sector */
2222 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2223 		req->__sector += total_bytes >> 9;
2224 
2225 	/* mixed attributes always follow the first bio */
2226 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2227 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2228 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2229 	}
2230 
2231 	/*
2232 	 * If total number of sectors is less than the first segment
2233 	 * size, something has gone terribly wrong.
2234 	 */
2235 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2236 		blk_dump_rq_flags(req, "request botched");
2237 		req->__data_len = blk_rq_cur_bytes(req);
2238 	}
2239 
2240 	/* recalculate the number of segments */
2241 	blk_recalc_rq_segments(req);
2242 
2243 	return true;
2244 }
2245 EXPORT_SYMBOL_GPL(blk_update_request);
2246 
2247 static bool blk_update_bidi_request(struct request *rq, int error,
2248 				    unsigned int nr_bytes,
2249 				    unsigned int bidi_bytes)
2250 {
2251 	if (blk_update_request(rq, error, nr_bytes))
2252 		return true;
2253 
2254 	/* Bidi request must be completed as a whole */
2255 	if (unlikely(blk_bidi_rq(rq)) &&
2256 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2257 		return true;
2258 
2259 	if (blk_queue_add_random(rq->q))
2260 		add_disk_randomness(rq->rq_disk);
2261 
2262 	return false;
2263 }
2264 
2265 /**
2266  * blk_unprep_request - unprepare a request
2267  * @req:	the request
2268  *
2269  * This function makes a request ready for complete resubmission (or
2270  * completion).  It happens only after all error handling is complete,
2271  * so represents the appropriate moment to deallocate any resources
2272  * that were allocated to the request in the prep_rq_fn.  The queue
2273  * lock is held when calling this.
2274  */
2275 void blk_unprep_request(struct request *req)
2276 {
2277 	struct request_queue *q = req->q;
2278 
2279 	req->cmd_flags &= ~REQ_DONTPREP;
2280 	if (q->unprep_rq_fn)
2281 		q->unprep_rq_fn(q, req);
2282 }
2283 EXPORT_SYMBOL_GPL(blk_unprep_request);
2284 
2285 /*
2286  * queue lock must be held
2287  */
2288 static void blk_finish_request(struct request *req, int error)
2289 {
2290 	if (blk_rq_tagged(req))
2291 		blk_queue_end_tag(req->q, req);
2292 
2293 	BUG_ON(blk_queued_rq(req));
2294 
2295 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2296 		laptop_io_completion(&req->q->backing_dev_info);
2297 
2298 	blk_delete_timer(req);
2299 
2300 	if (req->cmd_flags & REQ_DONTPREP)
2301 		blk_unprep_request(req);
2302 
2303 
2304 	blk_account_io_done(req);
2305 
2306 	if (req->end_io)
2307 		req->end_io(req, error);
2308 	else {
2309 		if (blk_bidi_rq(req))
2310 			__blk_put_request(req->next_rq->q, req->next_rq);
2311 
2312 		__blk_put_request(req->q, req);
2313 	}
2314 }
2315 
2316 /**
2317  * blk_end_bidi_request - Complete a bidi request
2318  * @rq:         the request to complete
2319  * @error:      %0 for success, < %0 for error
2320  * @nr_bytes:   number of bytes to complete @rq
2321  * @bidi_bytes: number of bytes to complete @rq->next_rq
2322  *
2323  * Description:
2324  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2325  *     Drivers that supports bidi can safely call this member for any
2326  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2327  *     just ignored.
2328  *
2329  * Return:
2330  *     %false - we are done with this request
2331  *     %true  - still buffers pending for this request
2332  **/
2333 static bool blk_end_bidi_request(struct request *rq, int error,
2334 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2335 {
2336 	struct request_queue *q = rq->q;
2337 	unsigned long flags;
2338 
2339 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2340 		return true;
2341 
2342 	spin_lock_irqsave(q->queue_lock, flags);
2343 	blk_finish_request(rq, error);
2344 	spin_unlock_irqrestore(q->queue_lock, flags);
2345 
2346 	return false;
2347 }
2348 
2349 /**
2350  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2351  * @rq:         the request to complete
2352  * @error:      %0 for success, < %0 for error
2353  * @nr_bytes:   number of bytes to complete @rq
2354  * @bidi_bytes: number of bytes to complete @rq->next_rq
2355  *
2356  * Description:
2357  *     Identical to blk_end_bidi_request() except that queue lock is
2358  *     assumed to be locked on entry and remains so on return.
2359  *
2360  * Return:
2361  *     %false - we are done with this request
2362  *     %true  - still buffers pending for this request
2363  **/
2364 bool __blk_end_bidi_request(struct request *rq, int error,
2365 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2366 {
2367 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2368 		return true;
2369 
2370 	blk_finish_request(rq, error);
2371 
2372 	return false;
2373 }
2374 
2375 /**
2376  * blk_end_request - Helper function for drivers to complete the request.
2377  * @rq:       the request being processed
2378  * @error:    %0 for success, < %0 for error
2379  * @nr_bytes: number of bytes to complete
2380  *
2381  * Description:
2382  *     Ends I/O on a number of bytes attached to @rq.
2383  *     If @rq has leftover, sets it up for the next range of segments.
2384  *
2385  * Return:
2386  *     %false - we are done with this request
2387  *     %true  - still buffers pending for this request
2388  **/
2389 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2390 {
2391 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2392 }
2393 EXPORT_SYMBOL(blk_end_request);
2394 
2395 /**
2396  * blk_end_request_all - Helper function for drives to finish the request.
2397  * @rq: the request to finish
2398  * @error: %0 for success, < %0 for error
2399  *
2400  * Description:
2401  *     Completely finish @rq.
2402  */
2403 void blk_end_request_all(struct request *rq, int error)
2404 {
2405 	bool pending;
2406 	unsigned int bidi_bytes = 0;
2407 
2408 	if (unlikely(blk_bidi_rq(rq)))
2409 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2410 
2411 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2412 	BUG_ON(pending);
2413 }
2414 EXPORT_SYMBOL(blk_end_request_all);
2415 
2416 /**
2417  * blk_end_request_cur - Helper function to finish the current request chunk.
2418  * @rq: the request to finish the current chunk for
2419  * @error: %0 for success, < %0 for error
2420  *
2421  * Description:
2422  *     Complete the current consecutively mapped chunk from @rq.
2423  *
2424  * Return:
2425  *     %false - we are done with this request
2426  *     %true  - still buffers pending for this request
2427  */
2428 bool blk_end_request_cur(struct request *rq, int error)
2429 {
2430 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2431 }
2432 EXPORT_SYMBOL(blk_end_request_cur);
2433 
2434 /**
2435  * blk_end_request_err - Finish a request till the next failure boundary.
2436  * @rq: the request to finish till the next failure boundary for
2437  * @error: must be negative errno
2438  *
2439  * Description:
2440  *     Complete @rq till the next failure boundary.
2441  *
2442  * Return:
2443  *     %false - we are done with this request
2444  *     %true  - still buffers pending for this request
2445  */
2446 bool blk_end_request_err(struct request *rq, int error)
2447 {
2448 	WARN_ON(error >= 0);
2449 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2450 }
2451 EXPORT_SYMBOL_GPL(blk_end_request_err);
2452 
2453 /**
2454  * __blk_end_request - Helper function for drivers to complete the request.
2455  * @rq:       the request being processed
2456  * @error:    %0 for success, < %0 for error
2457  * @nr_bytes: number of bytes to complete
2458  *
2459  * Description:
2460  *     Must be called with queue lock held unlike blk_end_request().
2461  *
2462  * Return:
2463  *     %false - we are done with this request
2464  *     %true  - still buffers pending for this request
2465  **/
2466 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2467 {
2468 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2469 }
2470 EXPORT_SYMBOL(__blk_end_request);
2471 
2472 /**
2473  * __blk_end_request_all - Helper function for drives to finish the request.
2474  * @rq: the request to finish
2475  * @error: %0 for success, < %0 for error
2476  *
2477  * Description:
2478  *     Completely finish @rq.  Must be called with queue lock held.
2479  */
2480 void __blk_end_request_all(struct request *rq, int error)
2481 {
2482 	bool pending;
2483 	unsigned int bidi_bytes = 0;
2484 
2485 	if (unlikely(blk_bidi_rq(rq)))
2486 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2487 
2488 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2489 	BUG_ON(pending);
2490 }
2491 EXPORT_SYMBOL(__blk_end_request_all);
2492 
2493 /**
2494  * __blk_end_request_cur - Helper function to finish the current request chunk.
2495  * @rq: the request to finish the current chunk for
2496  * @error: %0 for success, < %0 for error
2497  *
2498  * Description:
2499  *     Complete the current consecutively mapped chunk from @rq.  Must
2500  *     be called with queue lock held.
2501  *
2502  * Return:
2503  *     %false - we are done with this request
2504  *     %true  - still buffers pending for this request
2505  */
2506 bool __blk_end_request_cur(struct request *rq, int error)
2507 {
2508 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2509 }
2510 EXPORT_SYMBOL(__blk_end_request_cur);
2511 
2512 /**
2513  * __blk_end_request_err - Finish a request till the next failure boundary.
2514  * @rq: the request to finish till the next failure boundary for
2515  * @error: must be negative errno
2516  *
2517  * Description:
2518  *     Complete @rq till the next failure boundary.  Must be called
2519  *     with queue lock held.
2520  *
2521  * Return:
2522  *     %false - we are done with this request
2523  *     %true  - still buffers pending for this request
2524  */
2525 bool __blk_end_request_err(struct request *rq, int error)
2526 {
2527 	WARN_ON(error >= 0);
2528 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2529 }
2530 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2531 
2532 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2533 		     struct bio *bio)
2534 {
2535 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2536 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2537 
2538 	if (bio_has_data(bio)) {
2539 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2540 		rq->buffer = bio_data(bio);
2541 	}
2542 	rq->__data_len = bio->bi_size;
2543 	rq->bio = rq->biotail = bio;
2544 
2545 	if (bio->bi_bdev)
2546 		rq->rq_disk = bio->bi_bdev->bd_disk;
2547 }
2548 
2549 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2550 /**
2551  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2552  * @rq: the request to be flushed
2553  *
2554  * Description:
2555  *     Flush all pages in @rq.
2556  */
2557 void rq_flush_dcache_pages(struct request *rq)
2558 {
2559 	struct req_iterator iter;
2560 	struct bio_vec *bvec;
2561 
2562 	rq_for_each_segment(bvec, rq, iter)
2563 		flush_dcache_page(bvec->bv_page);
2564 }
2565 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2566 #endif
2567 
2568 /**
2569  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2570  * @q : the queue of the device being checked
2571  *
2572  * Description:
2573  *    Check if underlying low-level drivers of a device are busy.
2574  *    If the drivers want to export their busy state, they must set own
2575  *    exporting function using blk_queue_lld_busy() first.
2576  *
2577  *    Basically, this function is used only by request stacking drivers
2578  *    to stop dispatching requests to underlying devices when underlying
2579  *    devices are busy.  This behavior helps more I/O merging on the queue
2580  *    of the request stacking driver and prevents I/O throughput regression
2581  *    on burst I/O load.
2582  *
2583  * Return:
2584  *    0 - Not busy (The request stacking driver should dispatch request)
2585  *    1 - Busy (The request stacking driver should stop dispatching request)
2586  */
2587 int blk_lld_busy(struct request_queue *q)
2588 {
2589 	if (q->lld_busy_fn)
2590 		return q->lld_busy_fn(q);
2591 
2592 	return 0;
2593 }
2594 EXPORT_SYMBOL_GPL(blk_lld_busy);
2595 
2596 /**
2597  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2598  * @rq: the clone request to be cleaned up
2599  *
2600  * Description:
2601  *     Free all bios in @rq for a cloned request.
2602  */
2603 void blk_rq_unprep_clone(struct request *rq)
2604 {
2605 	struct bio *bio;
2606 
2607 	while ((bio = rq->bio) != NULL) {
2608 		rq->bio = bio->bi_next;
2609 
2610 		bio_put(bio);
2611 	}
2612 }
2613 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2614 
2615 /*
2616  * Copy attributes of the original request to the clone request.
2617  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2618  */
2619 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2620 {
2621 	dst->cpu = src->cpu;
2622 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2623 	dst->cmd_type = src->cmd_type;
2624 	dst->__sector = blk_rq_pos(src);
2625 	dst->__data_len = blk_rq_bytes(src);
2626 	dst->nr_phys_segments = src->nr_phys_segments;
2627 	dst->ioprio = src->ioprio;
2628 	dst->extra_len = src->extra_len;
2629 }
2630 
2631 /**
2632  * blk_rq_prep_clone - Helper function to setup clone request
2633  * @rq: the request to be setup
2634  * @rq_src: original request to be cloned
2635  * @bs: bio_set that bios for clone are allocated from
2636  * @gfp_mask: memory allocation mask for bio
2637  * @bio_ctr: setup function to be called for each clone bio.
2638  *           Returns %0 for success, non %0 for failure.
2639  * @data: private data to be passed to @bio_ctr
2640  *
2641  * Description:
2642  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2643  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2644  *     are not copied, and copying such parts is the caller's responsibility.
2645  *     Also, pages which the original bios are pointing to are not copied
2646  *     and the cloned bios just point same pages.
2647  *     So cloned bios must be completed before original bios, which means
2648  *     the caller must complete @rq before @rq_src.
2649  */
2650 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2651 		      struct bio_set *bs, gfp_t gfp_mask,
2652 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2653 		      void *data)
2654 {
2655 	struct bio *bio, *bio_src;
2656 
2657 	if (!bs)
2658 		bs = fs_bio_set;
2659 
2660 	blk_rq_init(NULL, rq);
2661 
2662 	__rq_for_each_bio(bio_src, rq_src) {
2663 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2664 		if (!bio)
2665 			goto free_and_out;
2666 
2667 		__bio_clone(bio, bio_src);
2668 
2669 		if (bio_integrity(bio_src) &&
2670 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2671 			goto free_and_out;
2672 
2673 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2674 			goto free_and_out;
2675 
2676 		if (rq->bio) {
2677 			rq->biotail->bi_next = bio;
2678 			rq->biotail = bio;
2679 		} else
2680 			rq->bio = rq->biotail = bio;
2681 	}
2682 
2683 	__blk_rq_prep_clone(rq, rq_src);
2684 
2685 	return 0;
2686 
2687 free_and_out:
2688 	if (bio)
2689 		bio_free(bio, bs);
2690 	blk_rq_unprep_clone(rq);
2691 
2692 	return -ENOMEM;
2693 }
2694 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2695 
2696 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2697 {
2698 	return queue_work(kblockd_workqueue, work);
2699 }
2700 EXPORT_SYMBOL(kblockd_schedule_work);
2701 
2702 int kblockd_schedule_delayed_work(struct request_queue *q,
2703 			struct delayed_work *dwork, unsigned long delay)
2704 {
2705 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2706 }
2707 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2708 
2709 #define PLUG_MAGIC	0x91827364
2710 
2711 /**
2712  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2713  * @plug:	The &struct blk_plug that needs to be initialized
2714  *
2715  * Description:
2716  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2717  *   pending I/O should the task end up blocking between blk_start_plug() and
2718  *   blk_finish_plug(). This is important from a performance perspective, but
2719  *   also ensures that we don't deadlock. For instance, if the task is blocking
2720  *   for a memory allocation, memory reclaim could end up wanting to free a
2721  *   page belonging to that request that is currently residing in our private
2722  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2723  *   this kind of deadlock.
2724  */
2725 void blk_start_plug(struct blk_plug *plug)
2726 {
2727 	struct task_struct *tsk = current;
2728 
2729 	plug->magic = PLUG_MAGIC;
2730 	INIT_LIST_HEAD(&plug->list);
2731 	INIT_LIST_HEAD(&plug->cb_list);
2732 	plug->should_sort = 0;
2733 
2734 	/*
2735 	 * If this is a nested plug, don't actually assign it. It will be
2736 	 * flushed on its own.
2737 	 */
2738 	if (!tsk->plug) {
2739 		/*
2740 		 * Store ordering should not be needed here, since a potential
2741 		 * preempt will imply a full memory barrier
2742 		 */
2743 		tsk->plug = plug;
2744 	}
2745 }
2746 EXPORT_SYMBOL(blk_start_plug);
2747 
2748 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2749 {
2750 	struct request *rqa = container_of(a, struct request, queuelist);
2751 	struct request *rqb = container_of(b, struct request, queuelist);
2752 
2753 	return !(rqa->q <= rqb->q);
2754 }
2755 
2756 /*
2757  * If 'from_schedule' is true, then postpone the dispatch of requests
2758  * until a safe kblockd context. We due this to avoid accidental big
2759  * additional stack usage in driver dispatch, in places where the originally
2760  * plugger did not intend it.
2761  */
2762 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2763 			    bool from_schedule)
2764 	__releases(q->queue_lock)
2765 {
2766 	trace_block_unplug(q, depth, !from_schedule);
2767 
2768 	/*
2769 	 * Don't mess with dead queue.
2770 	 */
2771 	if (unlikely(blk_queue_dead(q))) {
2772 		spin_unlock(q->queue_lock);
2773 		return;
2774 	}
2775 
2776 	/*
2777 	 * If we are punting this to kblockd, then we can safely drop
2778 	 * the queue_lock before waking kblockd (which needs to take
2779 	 * this lock).
2780 	 */
2781 	if (from_schedule) {
2782 		spin_unlock(q->queue_lock);
2783 		blk_run_queue_async(q);
2784 	} else {
2785 		__blk_run_queue(q);
2786 		spin_unlock(q->queue_lock);
2787 	}
2788 
2789 }
2790 
2791 static void flush_plug_callbacks(struct blk_plug *plug)
2792 {
2793 	LIST_HEAD(callbacks);
2794 
2795 	if (list_empty(&plug->cb_list))
2796 		return;
2797 
2798 	list_splice_init(&plug->cb_list, &callbacks);
2799 
2800 	while (!list_empty(&callbacks)) {
2801 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2802 							  struct blk_plug_cb,
2803 							  list);
2804 		list_del(&cb->list);
2805 		cb->callback(cb);
2806 	}
2807 }
2808 
2809 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2810 {
2811 	struct request_queue *q;
2812 	unsigned long flags;
2813 	struct request *rq;
2814 	LIST_HEAD(list);
2815 	unsigned int depth;
2816 
2817 	BUG_ON(plug->magic != PLUG_MAGIC);
2818 
2819 	flush_plug_callbacks(plug);
2820 	if (list_empty(&plug->list))
2821 		return;
2822 
2823 	list_splice_init(&plug->list, &list);
2824 
2825 	if (plug->should_sort) {
2826 		list_sort(NULL, &list, plug_rq_cmp);
2827 		plug->should_sort = 0;
2828 	}
2829 
2830 	q = NULL;
2831 	depth = 0;
2832 
2833 	/*
2834 	 * Save and disable interrupts here, to avoid doing it for every
2835 	 * queue lock we have to take.
2836 	 */
2837 	local_irq_save(flags);
2838 	while (!list_empty(&list)) {
2839 		rq = list_entry_rq(list.next);
2840 		list_del_init(&rq->queuelist);
2841 		BUG_ON(!rq->q);
2842 		if (rq->q != q) {
2843 			/*
2844 			 * This drops the queue lock
2845 			 */
2846 			if (q)
2847 				queue_unplugged(q, depth, from_schedule);
2848 			q = rq->q;
2849 			depth = 0;
2850 			spin_lock(q->queue_lock);
2851 		}
2852 
2853 		/*
2854 		 * Short-circuit if @q is dead
2855 		 */
2856 		if (unlikely(blk_queue_dead(q))) {
2857 			__blk_end_request_all(rq, -ENODEV);
2858 			continue;
2859 		}
2860 
2861 		/*
2862 		 * rq is already accounted, so use raw insert
2863 		 */
2864 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2865 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2866 		else
2867 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2868 
2869 		depth++;
2870 	}
2871 
2872 	/*
2873 	 * This drops the queue lock
2874 	 */
2875 	if (q)
2876 		queue_unplugged(q, depth, from_schedule);
2877 
2878 	local_irq_restore(flags);
2879 }
2880 
2881 void blk_finish_plug(struct blk_plug *plug)
2882 {
2883 	blk_flush_plug_list(plug, false);
2884 
2885 	if (plug == current->plug)
2886 		current->plug = NULL;
2887 }
2888 EXPORT_SYMBOL(blk_finish_plug);
2889 
2890 int __init blk_dev_init(void)
2891 {
2892 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2893 			sizeof(((struct request *)0)->cmd_flags));
2894 
2895 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2896 	kblockd_workqueue = alloc_workqueue("kblockd",
2897 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2898 	if (!kblockd_workqueue)
2899 		panic("Failed to create kblockd\n");
2900 
2901 	request_cachep = kmem_cache_create("blkdev_requests",
2902 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2903 
2904 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2905 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2906 
2907 	return 0;
2908 }
2909