1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-wbt.h" 46 47 #ifdef CONFIG_DEBUG_FS 48 struct dentry *blk_debugfs_root; 49 #endif 50 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 56 57 DEFINE_IDA(blk_queue_ida); 58 59 /* 60 * For the allocated request tables 61 */ 62 struct kmem_cache *request_cachep; 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 unsigned long flags; 82 83 spin_lock_irqsave(q->queue_lock, flags); 84 queue_flag_set(flag, q); 85 spin_unlock_irqrestore(q->queue_lock, flags); 86 } 87 EXPORT_SYMBOL(blk_queue_flag_set); 88 89 /** 90 * blk_queue_flag_clear - atomically clear a queue flag 91 * @flag: flag to be cleared 92 * @q: request queue 93 */ 94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(q->queue_lock, flags); 99 queue_flag_clear(flag, q); 100 spin_unlock_irqrestore(q->queue_lock, flags); 101 } 102 EXPORT_SYMBOL(blk_queue_flag_clear); 103 104 /** 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag 106 * @flag: flag to be set 107 * @q: request queue 108 * 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 110 * the flag was already set. 111 */ 112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 113 { 114 unsigned long flags; 115 bool res; 116 117 spin_lock_irqsave(q->queue_lock, flags); 118 res = queue_flag_test_and_set(flag, q); 119 spin_unlock_irqrestore(q->queue_lock, flags); 120 121 return res; 122 } 123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 124 125 /** 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag 127 * @flag: flag to be cleared 128 * @q: request queue 129 * 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 131 * the flag was set. 132 */ 133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) 134 { 135 unsigned long flags; 136 bool res; 137 138 spin_lock_irqsave(q->queue_lock, flags); 139 res = queue_flag_test_and_clear(flag, q); 140 spin_unlock_irqrestore(q->queue_lock, flags); 141 142 return res; 143 } 144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear); 145 146 static void blk_clear_congested(struct request_list *rl, int sync) 147 { 148 #ifdef CONFIG_CGROUP_WRITEBACK 149 clear_wb_congested(rl->blkg->wb_congested, sync); 150 #else 151 /* 152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 153 * flip its congestion state for events on other blkcgs. 154 */ 155 if (rl == &rl->q->root_rl) 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 157 #endif 158 } 159 160 static void blk_set_congested(struct request_list *rl, int sync) 161 { 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 set_wb_congested(rl->blkg->wb_congested, sync); 164 #else 165 /* see blk_clear_congested() */ 166 if (rl == &rl->q->root_rl) 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 168 #endif 169 } 170 171 void blk_queue_congestion_threshold(struct request_queue *q) 172 { 173 int nr; 174 175 nr = q->nr_requests - (q->nr_requests / 8) + 1; 176 if (nr > q->nr_requests) 177 nr = q->nr_requests; 178 q->nr_congestion_on = nr; 179 180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 181 if (nr < 1) 182 nr = 1; 183 q->nr_congestion_off = nr; 184 } 185 186 void blk_rq_init(struct request_queue *q, struct request *rq) 187 { 188 memset(rq, 0, sizeof(*rq)); 189 190 INIT_LIST_HEAD(&rq->queuelist); 191 INIT_LIST_HEAD(&rq->timeout_list); 192 rq->cpu = -1; 193 rq->q = q; 194 rq->__sector = (sector_t) -1; 195 INIT_HLIST_NODE(&rq->hash); 196 RB_CLEAR_NODE(&rq->rb_node); 197 rq->tag = -1; 198 rq->internal_tag = -1; 199 rq->start_time_ns = ktime_get_ns(); 200 rq->part = NULL; 201 } 202 EXPORT_SYMBOL(blk_rq_init); 203 204 static const struct { 205 int errno; 206 const char *name; 207 } blk_errors[] = { 208 [BLK_STS_OK] = { 0, "" }, 209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 220 221 /* device mapper special case, should not leak out: */ 222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 223 224 /* everything else not covered above: */ 225 [BLK_STS_IOERR] = { -EIO, "I/O" }, 226 }; 227 228 blk_status_t errno_to_blk_status(int errno) 229 { 230 int i; 231 232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 233 if (blk_errors[i].errno == errno) 234 return (__force blk_status_t)i; 235 } 236 237 return BLK_STS_IOERR; 238 } 239 EXPORT_SYMBOL_GPL(errno_to_blk_status); 240 241 int blk_status_to_errno(blk_status_t status) 242 { 243 int idx = (__force int)status; 244 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 246 return -EIO; 247 return blk_errors[idx].errno; 248 } 249 EXPORT_SYMBOL_GPL(blk_status_to_errno); 250 251 static void print_req_error(struct request *req, blk_status_t status) 252 { 253 int idx = (__force int)status; 254 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 256 return; 257 258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 259 __func__, blk_errors[idx].name, req->rq_disk ? 260 req->rq_disk->disk_name : "?", 261 (unsigned long long)blk_rq_pos(req)); 262 } 263 264 static void req_bio_endio(struct request *rq, struct bio *bio, 265 unsigned int nbytes, blk_status_t error) 266 { 267 if (error) 268 bio->bi_status = error; 269 270 if (unlikely(rq->rq_flags & RQF_QUIET)) 271 bio_set_flag(bio, BIO_QUIET); 272 273 bio_advance(bio, nbytes); 274 275 /* don't actually finish bio if it's part of flush sequence */ 276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 277 bio_endio(bio); 278 } 279 280 void blk_dump_rq_flags(struct request *rq, char *msg) 281 { 282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 283 rq->rq_disk ? rq->rq_disk->disk_name : "?", 284 (unsigned long long) rq->cmd_flags); 285 286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 287 (unsigned long long)blk_rq_pos(rq), 288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 289 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 290 rq->bio, rq->biotail, blk_rq_bytes(rq)); 291 } 292 EXPORT_SYMBOL(blk_dump_rq_flags); 293 294 static void blk_delay_work(struct work_struct *work) 295 { 296 struct request_queue *q; 297 298 q = container_of(work, struct request_queue, delay_work.work); 299 spin_lock_irq(q->queue_lock); 300 __blk_run_queue(q); 301 spin_unlock_irq(q->queue_lock); 302 } 303 304 /** 305 * blk_delay_queue - restart queueing after defined interval 306 * @q: The &struct request_queue in question 307 * @msecs: Delay in msecs 308 * 309 * Description: 310 * Sometimes queueing needs to be postponed for a little while, to allow 311 * resources to come back. This function will make sure that queueing is 312 * restarted around the specified time. 313 */ 314 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 315 { 316 lockdep_assert_held(q->queue_lock); 317 WARN_ON_ONCE(q->mq_ops); 318 319 if (likely(!blk_queue_dead(q))) 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 321 msecs_to_jiffies(msecs)); 322 } 323 EXPORT_SYMBOL(blk_delay_queue); 324 325 /** 326 * blk_start_queue_async - asynchronously restart a previously stopped queue 327 * @q: The &struct request_queue in question 328 * 329 * Description: 330 * blk_start_queue_async() will clear the stop flag on the queue, and 331 * ensure that the request_fn for the queue is run from an async 332 * context. 333 **/ 334 void blk_start_queue_async(struct request_queue *q) 335 { 336 lockdep_assert_held(q->queue_lock); 337 WARN_ON_ONCE(q->mq_ops); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 blk_run_queue_async(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue_async); 343 344 /** 345 * blk_start_queue - restart a previously stopped queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * blk_start_queue() will clear the stop flag on the queue, and call 350 * the request_fn for the queue if it was in a stopped state when 351 * entered. Also see blk_stop_queue(). 352 **/ 353 void blk_start_queue(struct request_queue *q) 354 { 355 lockdep_assert_held(q->queue_lock); 356 WARN_ON_ONCE(q->mq_ops); 357 358 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 359 __blk_run_queue(q); 360 } 361 EXPORT_SYMBOL(blk_start_queue); 362 363 /** 364 * blk_stop_queue - stop a queue 365 * @q: The &struct request_queue in question 366 * 367 * Description: 368 * The Linux block layer assumes that a block driver will consume all 369 * entries on the request queue when the request_fn strategy is called. 370 * Often this will not happen, because of hardware limitations (queue 371 * depth settings). If a device driver gets a 'queue full' response, 372 * or if it simply chooses not to queue more I/O at one point, it can 373 * call this function to prevent the request_fn from being called until 374 * the driver has signalled it's ready to go again. This happens by calling 375 * blk_start_queue() to restart queue operations. 376 **/ 377 void blk_stop_queue(struct request_queue *q) 378 { 379 lockdep_assert_held(q->queue_lock); 380 WARN_ON_ONCE(q->mq_ops); 381 382 cancel_delayed_work(&q->delay_work); 383 queue_flag_set(QUEUE_FLAG_STOPPED, q); 384 } 385 EXPORT_SYMBOL(blk_stop_queue); 386 387 /** 388 * blk_sync_queue - cancel any pending callbacks on a queue 389 * @q: the queue 390 * 391 * Description: 392 * The block layer may perform asynchronous callback activity 393 * on a queue, such as calling the unplug function after a timeout. 394 * A block device may call blk_sync_queue to ensure that any 395 * such activity is cancelled, thus allowing it to release resources 396 * that the callbacks might use. The caller must already have made sure 397 * that its ->make_request_fn will not re-add plugging prior to calling 398 * this function. 399 * 400 * This function does not cancel any asynchronous activity arising 401 * out of elevator or throttling code. That would require elevator_exit() 402 * and blkcg_exit_queue() to be called with queue lock initialized. 403 * 404 */ 405 void blk_sync_queue(struct request_queue *q) 406 { 407 del_timer_sync(&q->timeout); 408 cancel_work_sync(&q->timeout_work); 409 410 if (q->mq_ops) { 411 struct blk_mq_hw_ctx *hctx; 412 int i; 413 414 cancel_delayed_work_sync(&q->requeue_work); 415 queue_for_each_hw_ctx(q, hctx, i) 416 cancel_delayed_work_sync(&hctx->run_work); 417 } else { 418 cancel_delayed_work_sync(&q->delay_work); 419 } 420 } 421 EXPORT_SYMBOL(blk_sync_queue); 422 423 /** 424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 425 * @q: request queue pointer 426 * 427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 428 * set and 1 if the flag was already set. 429 */ 430 int blk_set_preempt_only(struct request_queue *q) 431 { 432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 433 } 434 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 435 436 void blk_clear_preempt_only(struct request_queue *q) 437 { 438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 439 wake_up_all(&q->mq_freeze_wq); 440 } 441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 442 443 /** 444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 445 * @q: The queue to run 446 * 447 * Description: 448 * Invoke request handling on a queue if there are any pending requests. 449 * May be used to restart request handling after a request has completed. 450 * This variant runs the queue whether or not the queue has been 451 * stopped. Must be called with the queue lock held and interrupts 452 * disabled. See also @blk_run_queue. 453 */ 454 inline void __blk_run_queue_uncond(struct request_queue *q) 455 { 456 lockdep_assert_held(q->queue_lock); 457 WARN_ON_ONCE(q->mq_ops); 458 459 if (unlikely(blk_queue_dead(q))) 460 return; 461 462 /* 463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 464 * the queue lock internally. As a result multiple threads may be 465 * running such a request function concurrently. Keep track of the 466 * number of active request_fn invocations such that blk_drain_queue() 467 * can wait until all these request_fn calls have finished. 468 */ 469 q->request_fn_active++; 470 q->request_fn(q); 471 q->request_fn_active--; 472 } 473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 474 475 /** 476 * __blk_run_queue - run a single device queue 477 * @q: The queue to run 478 * 479 * Description: 480 * See @blk_run_queue. 481 */ 482 void __blk_run_queue(struct request_queue *q) 483 { 484 lockdep_assert_held(q->queue_lock); 485 WARN_ON_ONCE(q->mq_ops); 486 487 if (unlikely(blk_queue_stopped(q))) 488 return; 489 490 __blk_run_queue_uncond(q); 491 } 492 EXPORT_SYMBOL(__blk_run_queue); 493 494 /** 495 * blk_run_queue_async - run a single device queue in workqueue context 496 * @q: The queue to run 497 * 498 * Description: 499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 500 * of us. 501 * 502 * Note: 503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 504 * has canceled q->delay_work, callers must hold the queue lock to avoid 505 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 506 */ 507 void blk_run_queue_async(struct request_queue *q) 508 { 509 lockdep_assert_held(q->queue_lock); 510 WARN_ON_ONCE(q->mq_ops); 511 512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 514 } 515 EXPORT_SYMBOL(blk_run_queue_async); 516 517 /** 518 * blk_run_queue - run a single device queue 519 * @q: The queue to run 520 * 521 * Description: 522 * Invoke request handling on this queue, if it has pending work to do. 523 * May be used to restart queueing when a request has completed. 524 */ 525 void blk_run_queue(struct request_queue *q) 526 { 527 unsigned long flags; 528 529 WARN_ON_ONCE(q->mq_ops); 530 531 spin_lock_irqsave(q->queue_lock, flags); 532 __blk_run_queue(q); 533 spin_unlock_irqrestore(q->queue_lock, flags); 534 } 535 EXPORT_SYMBOL(blk_run_queue); 536 537 void blk_put_queue(struct request_queue *q) 538 { 539 kobject_put(&q->kobj); 540 } 541 EXPORT_SYMBOL(blk_put_queue); 542 543 /** 544 * __blk_drain_queue - drain requests from request_queue 545 * @q: queue to drain 546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 547 * 548 * Drain requests from @q. If @drain_all is set, all requests are drained. 549 * If not, only ELVPRIV requests are drained. The caller is responsible 550 * for ensuring that no new requests which need to be drained are queued. 551 */ 552 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 553 __releases(q->queue_lock) 554 __acquires(q->queue_lock) 555 { 556 int i; 557 558 lockdep_assert_held(q->queue_lock); 559 WARN_ON_ONCE(q->mq_ops); 560 561 while (true) { 562 bool drain = false; 563 564 /* 565 * The caller might be trying to drain @q before its 566 * elevator is initialized. 567 */ 568 if (q->elevator) 569 elv_drain_elevator(q); 570 571 blkcg_drain_queue(q); 572 573 /* 574 * This function might be called on a queue which failed 575 * driver init after queue creation or is not yet fully 576 * active yet. Some drivers (e.g. fd and loop) get unhappy 577 * in such cases. Kick queue iff dispatch queue has 578 * something on it and @q has request_fn set. 579 */ 580 if (!list_empty(&q->queue_head) && q->request_fn) 581 __blk_run_queue(q); 582 583 drain |= q->nr_rqs_elvpriv; 584 drain |= q->request_fn_active; 585 586 /* 587 * Unfortunately, requests are queued at and tracked from 588 * multiple places and there's no single counter which can 589 * be drained. Check all the queues and counters. 590 */ 591 if (drain_all) { 592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 593 drain |= !list_empty(&q->queue_head); 594 for (i = 0; i < 2; i++) { 595 drain |= q->nr_rqs[i]; 596 drain |= q->in_flight[i]; 597 if (fq) 598 drain |= !list_empty(&fq->flush_queue[i]); 599 } 600 } 601 602 if (!drain) 603 break; 604 605 spin_unlock_irq(q->queue_lock); 606 607 msleep(10); 608 609 spin_lock_irq(q->queue_lock); 610 } 611 612 /* 613 * With queue marked dead, any woken up waiter will fail the 614 * allocation path, so the wakeup chaining is lost and we're 615 * left with hung waiters. We need to wake up those waiters. 616 */ 617 if (q->request_fn) { 618 struct request_list *rl; 619 620 blk_queue_for_each_rl(rl, q) 621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 622 wake_up_all(&rl->wait[i]); 623 } 624 } 625 626 void blk_drain_queue(struct request_queue *q) 627 { 628 spin_lock_irq(q->queue_lock); 629 __blk_drain_queue(q, true); 630 spin_unlock_irq(q->queue_lock); 631 } 632 633 /** 634 * blk_queue_bypass_start - enter queue bypass mode 635 * @q: queue of interest 636 * 637 * In bypass mode, only the dispatch FIFO queue of @q is used. This 638 * function makes @q enter bypass mode and drains all requests which were 639 * throttled or issued before. On return, it's guaranteed that no request 640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 641 * inside queue or RCU read lock. 642 */ 643 void blk_queue_bypass_start(struct request_queue *q) 644 { 645 WARN_ON_ONCE(q->mq_ops); 646 647 spin_lock_irq(q->queue_lock); 648 q->bypass_depth++; 649 queue_flag_set(QUEUE_FLAG_BYPASS, q); 650 spin_unlock_irq(q->queue_lock); 651 652 /* 653 * Queues start drained. Skip actual draining till init is 654 * complete. This avoids lenghty delays during queue init which 655 * can happen many times during boot. 656 */ 657 if (blk_queue_init_done(q)) { 658 spin_lock_irq(q->queue_lock); 659 __blk_drain_queue(q, false); 660 spin_unlock_irq(q->queue_lock); 661 662 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 663 synchronize_rcu(); 664 } 665 } 666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 667 668 /** 669 * blk_queue_bypass_end - leave queue bypass mode 670 * @q: queue of interest 671 * 672 * Leave bypass mode and restore the normal queueing behavior. 673 * 674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 675 * this function is called for both blk-sq and blk-mq queues. 676 */ 677 void blk_queue_bypass_end(struct request_queue *q) 678 { 679 spin_lock_irq(q->queue_lock); 680 if (!--q->bypass_depth) 681 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 682 WARN_ON_ONCE(q->bypass_depth < 0); 683 spin_unlock_irq(q->queue_lock); 684 } 685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 686 687 void blk_set_queue_dying(struct request_queue *q) 688 { 689 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 690 691 /* 692 * When queue DYING flag is set, we need to block new req 693 * entering queue, so we call blk_freeze_queue_start() to 694 * prevent I/O from crossing blk_queue_enter(). 695 */ 696 blk_freeze_queue_start(q); 697 698 if (q->mq_ops) 699 blk_mq_wake_waiters(q); 700 else { 701 struct request_list *rl; 702 703 spin_lock_irq(q->queue_lock); 704 blk_queue_for_each_rl(rl, q) { 705 if (rl->rq_pool) { 706 wake_up_all(&rl->wait[BLK_RW_SYNC]); 707 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 708 } 709 } 710 spin_unlock_irq(q->queue_lock); 711 } 712 713 /* Make blk_queue_enter() reexamine the DYING flag. */ 714 wake_up_all(&q->mq_freeze_wq); 715 } 716 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 717 718 /** 719 * blk_cleanup_queue - shutdown a request queue 720 * @q: request queue to shutdown 721 * 722 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 723 * put it. All future requests will be failed immediately with -ENODEV. 724 */ 725 void blk_cleanup_queue(struct request_queue *q) 726 { 727 spinlock_t *lock = q->queue_lock; 728 729 /* mark @q DYING, no new request or merges will be allowed afterwards */ 730 mutex_lock(&q->sysfs_lock); 731 blk_set_queue_dying(q); 732 spin_lock_irq(lock); 733 734 /* 735 * A dying queue is permanently in bypass mode till released. Note 736 * that, unlike blk_queue_bypass_start(), we aren't performing 737 * synchronize_rcu() after entering bypass mode to avoid the delay 738 * as some drivers create and destroy a lot of queues while 739 * probing. This is still safe because blk_release_queue() will be 740 * called only after the queue refcnt drops to zero and nothing, 741 * RCU or not, would be traversing the queue by then. 742 */ 743 q->bypass_depth++; 744 queue_flag_set(QUEUE_FLAG_BYPASS, q); 745 746 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 747 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 748 queue_flag_set(QUEUE_FLAG_DYING, q); 749 spin_unlock_irq(lock); 750 mutex_unlock(&q->sysfs_lock); 751 752 /* 753 * Drain all requests queued before DYING marking. Set DEAD flag to 754 * prevent that q->request_fn() gets invoked after draining finished. 755 */ 756 blk_freeze_queue(q); 757 spin_lock_irq(lock); 758 queue_flag_set(QUEUE_FLAG_DEAD, q); 759 spin_unlock_irq(lock); 760 761 /* 762 * make sure all in-progress dispatch are completed because 763 * blk_freeze_queue() can only complete all requests, and 764 * dispatch may still be in-progress since we dispatch requests 765 * from more than one contexts 766 */ 767 if (q->mq_ops) 768 blk_mq_quiesce_queue(q); 769 770 /* for synchronous bio-based driver finish in-flight integrity i/o */ 771 blk_flush_integrity(); 772 773 /* @q won't process any more request, flush async actions */ 774 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 775 blk_sync_queue(q); 776 777 /* 778 * I/O scheduler exit is only safe after the sysfs scheduler attribute 779 * has been removed. 780 */ 781 WARN_ON_ONCE(q->kobj.state_in_sysfs); 782 783 /* 784 * Since the I/O scheduler exit code may access cgroup information, 785 * perform I/O scheduler exit before disassociating from the block 786 * cgroup controller. 787 */ 788 if (q->elevator) { 789 ioc_clear_queue(q); 790 elevator_exit(q, q->elevator); 791 q->elevator = NULL; 792 } 793 794 /* 795 * Remove all references to @q from the block cgroup controller before 796 * restoring @q->queue_lock to avoid that restoring this pointer causes 797 * e.g. blkcg_print_blkgs() to crash. 798 */ 799 blkcg_exit_queue(q); 800 801 /* 802 * Since the cgroup code may dereference the @q->backing_dev_info 803 * pointer, only decrease its reference count after having removed the 804 * association with the block cgroup controller. 805 */ 806 bdi_put(q->backing_dev_info); 807 808 if (q->mq_ops) 809 blk_mq_free_queue(q); 810 percpu_ref_exit(&q->q_usage_counter); 811 812 spin_lock_irq(lock); 813 if (q->queue_lock != &q->__queue_lock) 814 q->queue_lock = &q->__queue_lock; 815 spin_unlock_irq(lock); 816 817 /* @q is and will stay empty, shutdown and put */ 818 blk_put_queue(q); 819 } 820 EXPORT_SYMBOL(blk_cleanup_queue); 821 822 /* Allocate memory local to the request queue */ 823 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 824 { 825 struct request_queue *q = data; 826 827 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 828 } 829 830 static void free_request_simple(void *element, void *data) 831 { 832 kmem_cache_free(request_cachep, element); 833 } 834 835 static void *alloc_request_size(gfp_t gfp_mask, void *data) 836 { 837 struct request_queue *q = data; 838 struct request *rq; 839 840 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 841 q->node); 842 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 843 kfree(rq); 844 rq = NULL; 845 } 846 return rq; 847 } 848 849 static void free_request_size(void *element, void *data) 850 { 851 struct request_queue *q = data; 852 853 if (q->exit_rq_fn) 854 q->exit_rq_fn(q, element); 855 kfree(element); 856 } 857 858 int blk_init_rl(struct request_list *rl, struct request_queue *q, 859 gfp_t gfp_mask) 860 { 861 if (unlikely(rl->rq_pool) || q->mq_ops) 862 return 0; 863 864 rl->q = q; 865 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 866 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 867 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 868 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 869 870 if (q->cmd_size) { 871 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 872 alloc_request_size, free_request_size, 873 q, gfp_mask, q->node); 874 } else { 875 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 876 alloc_request_simple, free_request_simple, 877 q, gfp_mask, q->node); 878 } 879 if (!rl->rq_pool) 880 return -ENOMEM; 881 882 if (rl != &q->root_rl) 883 WARN_ON_ONCE(!blk_get_queue(q)); 884 885 return 0; 886 } 887 888 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 889 { 890 if (rl->rq_pool) { 891 mempool_destroy(rl->rq_pool); 892 if (rl != &q->root_rl) 893 blk_put_queue(q); 894 } 895 } 896 897 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 898 { 899 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL); 900 } 901 EXPORT_SYMBOL(blk_alloc_queue); 902 903 /** 904 * blk_queue_enter() - try to increase q->q_usage_counter 905 * @q: request queue pointer 906 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 907 */ 908 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 909 { 910 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 911 912 while (true) { 913 bool success = false; 914 915 rcu_read_lock(); 916 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 917 /* 918 * The code that sets the PREEMPT_ONLY flag is 919 * responsible for ensuring that that flag is globally 920 * visible before the queue is unfrozen. 921 */ 922 if (preempt || !blk_queue_preempt_only(q)) { 923 success = true; 924 } else { 925 percpu_ref_put(&q->q_usage_counter); 926 } 927 } 928 rcu_read_unlock(); 929 930 if (success) 931 return 0; 932 933 if (flags & BLK_MQ_REQ_NOWAIT) 934 return -EBUSY; 935 936 /* 937 * read pair of barrier in blk_freeze_queue_start(), 938 * we need to order reading __PERCPU_REF_DEAD flag of 939 * .q_usage_counter and reading .mq_freeze_depth or 940 * queue dying flag, otherwise the following wait may 941 * never return if the two reads are reordered. 942 */ 943 smp_rmb(); 944 945 wait_event(q->mq_freeze_wq, 946 (atomic_read(&q->mq_freeze_depth) == 0 && 947 (preempt || !blk_queue_preempt_only(q))) || 948 blk_queue_dying(q)); 949 if (blk_queue_dying(q)) 950 return -ENODEV; 951 } 952 } 953 954 void blk_queue_exit(struct request_queue *q) 955 { 956 percpu_ref_put(&q->q_usage_counter); 957 } 958 959 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 960 { 961 struct request_queue *q = 962 container_of(ref, struct request_queue, q_usage_counter); 963 964 wake_up_all(&q->mq_freeze_wq); 965 } 966 967 static void blk_rq_timed_out_timer(struct timer_list *t) 968 { 969 struct request_queue *q = from_timer(q, t, timeout); 970 971 kblockd_schedule_work(&q->timeout_work); 972 } 973 974 /** 975 * blk_alloc_queue_node - allocate a request queue 976 * @gfp_mask: memory allocation flags 977 * @node_id: NUMA node to allocate memory from 978 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g. 979 * serialize calls to the legacy .request_fn() callback. Ignored for 980 * blk-mq request queues. 981 * 982 * Note: pass the queue lock as the third argument to this function instead of 983 * setting the queue lock pointer explicitly to avoid triggering a sporadic 984 * crash in the blkcg code. This function namely calls blkcg_init_queue() and 985 * the queue lock pointer must be set before blkcg_init_queue() is called. 986 */ 987 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 988 spinlock_t *lock) 989 { 990 struct request_queue *q; 991 int ret; 992 993 q = kmem_cache_alloc_node(blk_requestq_cachep, 994 gfp_mask | __GFP_ZERO, node_id); 995 if (!q) 996 return NULL; 997 998 INIT_LIST_HEAD(&q->queue_head); 999 q->last_merge = NULL; 1000 q->end_sector = 0; 1001 q->boundary_rq = NULL; 1002 1003 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 1004 if (q->id < 0) 1005 goto fail_q; 1006 1007 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 1008 if (ret) 1009 goto fail_id; 1010 1011 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 1012 if (!q->backing_dev_info) 1013 goto fail_split; 1014 1015 q->stats = blk_alloc_queue_stats(); 1016 if (!q->stats) 1017 goto fail_stats; 1018 1019 q->backing_dev_info->ra_pages = 1020 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 1021 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 1022 q->backing_dev_info->name = "block"; 1023 q->node = node_id; 1024 1025 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 1026 laptop_mode_timer_fn, 0); 1027 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 1028 INIT_WORK(&q->timeout_work, NULL); 1029 INIT_LIST_HEAD(&q->queue_head); 1030 INIT_LIST_HEAD(&q->timeout_list); 1031 INIT_LIST_HEAD(&q->icq_list); 1032 #ifdef CONFIG_BLK_CGROUP 1033 INIT_LIST_HEAD(&q->blkg_list); 1034 #endif 1035 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 1036 1037 kobject_init(&q->kobj, &blk_queue_ktype); 1038 1039 #ifdef CONFIG_BLK_DEV_IO_TRACE 1040 mutex_init(&q->blk_trace_mutex); 1041 #endif 1042 mutex_init(&q->sysfs_lock); 1043 spin_lock_init(&q->__queue_lock); 1044 1045 if (!q->mq_ops) 1046 q->queue_lock = lock ? : &q->__queue_lock; 1047 1048 /* 1049 * A queue starts its life with bypass turned on to avoid 1050 * unnecessary bypass on/off overhead and nasty surprises during 1051 * init. The initial bypass will be finished when the queue is 1052 * registered by blk_register_queue(). 1053 */ 1054 q->bypass_depth = 1; 1055 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q); 1056 1057 init_waitqueue_head(&q->mq_freeze_wq); 1058 1059 /* 1060 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1061 * See blk_register_queue() for details. 1062 */ 1063 if (percpu_ref_init(&q->q_usage_counter, 1064 blk_queue_usage_counter_release, 1065 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1066 goto fail_bdi; 1067 1068 if (blkcg_init_queue(q)) 1069 goto fail_ref; 1070 1071 return q; 1072 1073 fail_ref: 1074 percpu_ref_exit(&q->q_usage_counter); 1075 fail_bdi: 1076 blk_free_queue_stats(q->stats); 1077 fail_stats: 1078 bdi_put(q->backing_dev_info); 1079 fail_split: 1080 bioset_exit(&q->bio_split); 1081 fail_id: 1082 ida_simple_remove(&blk_queue_ida, q->id); 1083 fail_q: 1084 kmem_cache_free(blk_requestq_cachep, q); 1085 return NULL; 1086 } 1087 EXPORT_SYMBOL(blk_alloc_queue_node); 1088 1089 /** 1090 * blk_init_queue - prepare a request queue for use with a block device 1091 * @rfn: The function to be called to process requests that have been 1092 * placed on the queue. 1093 * @lock: Request queue spin lock 1094 * 1095 * Description: 1096 * If a block device wishes to use the standard request handling procedures, 1097 * which sorts requests and coalesces adjacent requests, then it must 1098 * call blk_init_queue(). The function @rfn will be called when there 1099 * are requests on the queue that need to be processed. If the device 1100 * supports plugging, then @rfn may not be called immediately when requests 1101 * are available on the queue, but may be called at some time later instead. 1102 * Plugged queues are generally unplugged when a buffer belonging to one 1103 * of the requests on the queue is needed, or due to memory pressure. 1104 * 1105 * @rfn is not required, or even expected, to remove all requests off the 1106 * queue, but only as many as it can handle at a time. If it does leave 1107 * requests on the queue, it is responsible for arranging that the requests 1108 * get dealt with eventually. 1109 * 1110 * The queue spin lock must be held while manipulating the requests on the 1111 * request queue; this lock will be taken also from interrupt context, so irq 1112 * disabling is needed for it. 1113 * 1114 * Function returns a pointer to the initialized request queue, or %NULL if 1115 * it didn't succeed. 1116 * 1117 * Note: 1118 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1119 * when the block device is deactivated (such as at module unload). 1120 **/ 1121 1122 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1123 { 1124 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1125 } 1126 EXPORT_SYMBOL(blk_init_queue); 1127 1128 struct request_queue * 1129 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1130 { 1131 struct request_queue *q; 1132 1133 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock); 1134 if (!q) 1135 return NULL; 1136 1137 q->request_fn = rfn; 1138 if (blk_init_allocated_queue(q) < 0) { 1139 blk_cleanup_queue(q); 1140 return NULL; 1141 } 1142 1143 return q; 1144 } 1145 EXPORT_SYMBOL(blk_init_queue_node); 1146 1147 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1148 1149 1150 int blk_init_allocated_queue(struct request_queue *q) 1151 { 1152 WARN_ON_ONCE(q->mq_ops); 1153 1154 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1155 if (!q->fq) 1156 return -ENOMEM; 1157 1158 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1159 goto out_free_flush_queue; 1160 1161 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1162 goto out_exit_flush_rq; 1163 1164 INIT_WORK(&q->timeout_work, blk_timeout_work); 1165 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1166 1167 /* 1168 * This also sets hw/phys segments, boundary and size 1169 */ 1170 blk_queue_make_request(q, blk_queue_bio); 1171 1172 q->sg_reserved_size = INT_MAX; 1173 1174 if (elevator_init(q)) 1175 goto out_exit_flush_rq; 1176 return 0; 1177 1178 out_exit_flush_rq: 1179 if (q->exit_rq_fn) 1180 q->exit_rq_fn(q, q->fq->flush_rq); 1181 out_free_flush_queue: 1182 blk_free_flush_queue(q->fq); 1183 return -ENOMEM; 1184 } 1185 EXPORT_SYMBOL(blk_init_allocated_queue); 1186 1187 bool blk_get_queue(struct request_queue *q) 1188 { 1189 if (likely(!blk_queue_dying(q))) { 1190 __blk_get_queue(q); 1191 return true; 1192 } 1193 1194 return false; 1195 } 1196 EXPORT_SYMBOL(blk_get_queue); 1197 1198 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1199 { 1200 if (rq->rq_flags & RQF_ELVPRIV) { 1201 elv_put_request(rl->q, rq); 1202 if (rq->elv.icq) 1203 put_io_context(rq->elv.icq->ioc); 1204 } 1205 1206 mempool_free(rq, rl->rq_pool); 1207 } 1208 1209 /* 1210 * ioc_batching returns true if the ioc is a valid batching request and 1211 * should be given priority access to a request. 1212 */ 1213 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1214 { 1215 if (!ioc) 1216 return 0; 1217 1218 /* 1219 * Make sure the process is able to allocate at least 1 request 1220 * even if the batch times out, otherwise we could theoretically 1221 * lose wakeups. 1222 */ 1223 return ioc->nr_batch_requests == q->nr_batching || 1224 (ioc->nr_batch_requests > 0 1225 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1226 } 1227 1228 /* 1229 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1230 * will cause the process to be a "batcher" on all queues in the system. This 1231 * is the behaviour we want though - once it gets a wakeup it should be given 1232 * a nice run. 1233 */ 1234 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1235 { 1236 if (!ioc || ioc_batching(q, ioc)) 1237 return; 1238 1239 ioc->nr_batch_requests = q->nr_batching; 1240 ioc->last_waited = jiffies; 1241 } 1242 1243 static void __freed_request(struct request_list *rl, int sync) 1244 { 1245 struct request_queue *q = rl->q; 1246 1247 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1248 blk_clear_congested(rl, sync); 1249 1250 if (rl->count[sync] + 1 <= q->nr_requests) { 1251 if (waitqueue_active(&rl->wait[sync])) 1252 wake_up(&rl->wait[sync]); 1253 1254 blk_clear_rl_full(rl, sync); 1255 } 1256 } 1257 1258 /* 1259 * A request has just been released. Account for it, update the full and 1260 * congestion status, wake up any waiters. Called under q->queue_lock. 1261 */ 1262 static void freed_request(struct request_list *rl, bool sync, 1263 req_flags_t rq_flags) 1264 { 1265 struct request_queue *q = rl->q; 1266 1267 q->nr_rqs[sync]--; 1268 rl->count[sync]--; 1269 if (rq_flags & RQF_ELVPRIV) 1270 q->nr_rqs_elvpriv--; 1271 1272 __freed_request(rl, sync); 1273 1274 if (unlikely(rl->starved[sync ^ 1])) 1275 __freed_request(rl, sync ^ 1); 1276 } 1277 1278 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1279 { 1280 struct request_list *rl; 1281 int on_thresh, off_thresh; 1282 1283 WARN_ON_ONCE(q->mq_ops); 1284 1285 spin_lock_irq(q->queue_lock); 1286 q->nr_requests = nr; 1287 blk_queue_congestion_threshold(q); 1288 on_thresh = queue_congestion_on_threshold(q); 1289 off_thresh = queue_congestion_off_threshold(q); 1290 1291 blk_queue_for_each_rl(rl, q) { 1292 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1293 blk_set_congested(rl, BLK_RW_SYNC); 1294 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1295 blk_clear_congested(rl, BLK_RW_SYNC); 1296 1297 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1298 blk_set_congested(rl, BLK_RW_ASYNC); 1299 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1300 blk_clear_congested(rl, BLK_RW_ASYNC); 1301 1302 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1303 blk_set_rl_full(rl, BLK_RW_SYNC); 1304 } else { 1305 blk_clear_rl_full(rl, BLK_RW_SYNC); 1306 wake_up(&rl->wait[BLK_RW_SYNC]); 1307 } 1308 1309 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1310 blk_set_rl_full(rl, BLK_RW_ASYNC); 1311 } else { 1312 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1313 wake_up(&rl->wait[BLK_RW_ASYNC]); 1314 } 1315 } 1316 1317 spin_unlock_irq(q->queue_lock); 1318 return 0; 1319 } 1320 1321 /** 1322 * __get_request - get a free request 1323 * @rl: request list to allocate from 1324 * @op: operation and flags 1325 * @bio: bio to allocate request for (can be %NULL) 1326 * @flags: BLQ_MQ_REQ_* flags 1327 * @gfp_mask: allocator flags 1328 * 1329 * Get a free request from @q. This function may fail under memory 1330 * pressure or if @q is dead. 1331 * 1332 * Must be called with @q->queue_lock held and, 1333 * Returns ERR_PTR on failure, with @q->queue_lock held. 1334 * Returns request pointer on success, with @q->queue_lock *not held*. 1335 */ 1336 static struct request *__get_request(struct request_list *rl, unsigned int op, 1337 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask) 1338 { 1339 struct request_queue *q = rl->q; 1340 struct request *rq; 1341 struct elevator_type *et = q->elevator->type; 1342 struct io_context *ioc = rq_ioc(bio); 1343 struct io_cq *icq = NULL; 1344 const bool is_sync = op_is_sync(op); 1345 int may_queue; 1346 req_flags_t rq_flags = RQF_ALLOCED; 1347 1348 lockdep_assert_held(q->queue_lock); 1349 1350 if (unlikely(blk_queue_dying(q))) 1351 return ERR_PTR(-ENODEV); 1352 1353 may_queue = elv_may_queue(q, op); 1354 if (may_queue == ELV_MQUEUE_NO) 1355 goto rq_starved; 1356 1357 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1358 if (rl->count[is_sync]+1 >= q->nr_requests) { 1359 /* 1360 * The queue will fill after this allocation, so set 1361 * it as full, and mark this process as "batching". 1362 * This process will be allowed to complete a batch of 1363 * requests, others will be blocked. 1364 */ 1365 if (!blk_rl_full(rl, is_sync)) { 1366 ioc_set_batching(q, ioc); 1367 blk_set_rl_full(rl, is_sync); 1368 } else { 1369 if (may_queue != ELV_MQUEUE_MUST 1370 && !ioc_batching(q, ioc)) { 1371 /* 1372 * The queue is full and the allocating 1373 * process is not a "batcher", and not 1374 * exempted by the IO scheduler 1375 */ 1376 return ERR_PTR(-ENOMEM); 1377 } 1378 } 1379 } 1380 blk_set_congested(rl, is_sync); 1381 } 1382 1383 /* 1384 * Only allow batching queuers to allocate up to 50% over the defined 1385 * limit of requests, otherwise we could have thousands of requests 1386 * allocated with any setting of ->nr_requests 1387 */ 1388 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1389 return ERR_PTR(-ENOMEM); 1390 1391 q->nr_rqs[is_sync]++; 1392 rl->count[is_sync]++; 1393 rl->starved[is_sync] = 0; 1394 1395 /* 1396 * Decide whether the new request will be managed by elevator. If 1397 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1398 * prevent the current elevator from being destroyed until the new 1399 * request is freed. This guarantees icq's won't be destroyed and 1400 * makes creating new ones safe. 1401 * 1402 * Flush requests do not use the elevator so skip initialization. 1403 * This allows a request to share the flush and elevator data. 1404 * 1405 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1406 * it will be created after releasing queue_lock. 1407 */ 1408 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1409 rq_flags |= RQF_ELVPRIV; 1410 q->nr_rqs_elvpriv++; 1411 if (et->icq_cache && ioc) 1412 icq = ioc_lookup_icq(ioc, q); 1413 } 1414 1415 if (blk_queue_io_stat(q)) 1416 rq_flags |= RQF_IO_STAT; 1417 spin_unlock_irq(q->queue_lock); 1418 1419 /* allocate and init request */ 1420 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1421 if (!rq) 1422 goto fail_alloc; 1423 1424 blk_rq_init(q, rq); 1425 blk_rq_set_rl(rq, rl); 1426 rq->cmd_flags = op; 1427 rq->rq_flags = rq_flags; 1428 if (flags & BLK_MQ_REQ_PREEMPT) 1429 rq->rq_flags |= RQF_PREEMPT; 1430 1431 /* init elvpriv */ 1432 if (rq_flags & RQF_ELVPRIV) { 1433 if (unlikely(et->icq_cache && !icq)) { 1434 if (ioc) 1435 icq = ioc_create_icq(ioc, q, gfp_mask); 1436 if (!icq) 1437 goto fail_elvpriv; 1438 } 1439 1440 rq->elv.icq = icq; 1441 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1442 goto fail_elvpriv; 1443 1444 /* @rq->elv.icq holds io_context until @rq is freed */ 1445 if (icq) 1446 get_io_context(icq->ioc); 1447 } 1448 out: 1449 /* 1450 * ioc may be NULL here, and ioc_batching will be false. That's 1451 * OK, if the queue is under the request limit then requests need 1452 * not count toward the nr_batch_requests limit. There will always 1453 * be some limit enforced by BLK_BATCH_TIME. 1454 */ 1455 if (ioc_batching(q, ioc)) 1456 ioc->nr_batch_requests--; 1457 1458 trace_block_getrq(q, bio, op); 1459 return rq; 1460 1461 fail_elvpriv: 1462 /* 1463 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1464 * and may fail indefinitely under memory pressure and thus 1465 * shouldn't stall IO. Treat this request as !elvpriv. This will 1466 * disturb iosched and blkcg but weird is bettern than dead. 1467 */ 1468 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1469 __func__, dev_name(q->backing_dev_info->dev)); 1470 1471 rq->rq_flags &= ~RQF_ELVPRIV; 1472 rq->elv.icq = NULL; 1473 1474 spin_lock_irq(q->queue_lock); 1475 q->nr_rqs_elvpriv--; 1476 spin_unlock_irq(q->queue_lock); 1477 goto out; 1478 1479 fail_alloc: 1480 /* 1481 * Allocation failed presumably due to memory. Undo anything we 1482 * might have messed up. 1483 * 1484 * Allocating task should really be put onto the front of the wait 1485 * queue, but this is pretty rare. 1486 */ 1487 spin_lock_irq(q->queue_lock); 1488 freed_request(rl, is_sync, rq_flags); 1489 1490 /* 1491 * in the very unlikely event that allocation failed and no 1492 * requests for this direction was pending, mark us starved so that 1493 * freeing of a request in the other direction will notice 1494 * us. another possible fix would be to split the rq mempool into 1495 * READ and WRITE 1496 */ 1497 rq_starved: 1498 if (unlikely(rl->count[is_sync] == 0)) 1499 rl->starved[is_sync] = 1; 1500 return ERR_PTR(-ENOMEM); 1501 } 1502 1503 /** 1504 * get_request - get a free request 1505 * @q: request_queue to allocate request from 1506 * @op: operation and flags 1507 * @bio: bio to allocate request for (can be %NULL) 1508 * @flags: BLK_MQ_REQ_* flags. 1509 * @gfp: allocator flags 1510 * 1511 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags, 1512 * this function keeps retrying under memory pressure and fails iff @q is dead. 1513 * 1514 * Must be called with @q->queue_lock held and, 1515 * Returns ERR_PTR on failure, with @q->queue_lock held. 1516 * Returns request pointer on success, with @q->queue_lock *not held*. 1517 */ 1518 static struct request *get_request(struct request_queue *q, unsigned int op, 1519 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp) 1520 { 1521 const bool is_sync = op_is_sync(op); 1522 DEFINE_WAIT(wait); 1523 struct request_list *rl; 1524 struct request *rq; 1525 1526 lockdep_assert_held(q->queue_lock); 1527 WARN_ON_ONCE(q->mq_ops); 1528 1529 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1530 retry: 1531 rq = __get_request(rl, op, bio, flags, gfp); 1532 if (!IS_ERR(rq)) 1533 return rq; 1534 1535 if (op & REQ_NOWAIT) { 1536 blk_put_rl(rl); 1537 return ERR_PTR(-EAGAIN); 1538 } 1539 1540 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1541 blk_put_rl(rl); 1542 return rq; 1543 } 1544 1545 /* wait on @rl and retry */ 1546 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1547 TASK_UNINTERRUPTIBLE); 1548 1549 trace_block_sleeprq(q, bio, op); 1550 1551 spin_unlock_irq(q->queue_lock); 1552 io_schedule(); 1553 1554 /* 1555 * After sleeping, we become a "batching" process and will be able 1556 * to allocate at least one request, and up to a big batch of them 1557 * for a small period time. See ioc_batching, ioc_set_batching 1558 */ 1559 ioc_set_batching(q, current->io_context); 1560 1561 spin_lock_irq(q->queue_lock); 1562 finish_wait(&rl->wait[is_sync], &wait); 1563 1564 goto retry; 1565 } 1566 1567 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1568 static struct request *blk_old_get_request(struct request_queue *q, 1569 unsigned int op, blk_mq_req_flags_t flags) 1570 { 1571 struct request *rq; 1572 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO; 1573 int ret = 0; 1574 1575 WARN_ON_ONCE(q->mq_ops); 1576 1577 /* create ioc upfront */ 1578 create_io_context(gfp_mask, q->node); 1579 1580 ret = blk_queue_enter(q, flags); 1581 if (ret) 1582 return ERR_PTR(ret); 1583 spin_lock_irq(q->queue_lock); 1584 rq = get_request(q, op, NULL, flags, gfp_mask); 1585 if (IS_ERR(rq)) { 1586 spin_unlock_irq(q->queue_lock); 1587 blk_queue_exit(q); 1588 return rq; 1589 } 1590 1591 /* q->queue_lock is unlocked at this point */ 1592 rq->__data_len = 0; 1593 rq->__sector = (sector_t) -1; 1594 rq->bio = rq->biotail = NULL; 1595 return rq; 1596 } 1597 1598 /** 1599 * blk_get_request - allocate a request 1600 * @q: request queue to allocate a request for 1601 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1602 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1603 */ 1604 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1605 blk_mq_req_flags_t flags) 1606 { 1607 struct request *req; 1608 1609 WARN_ON_ONCE(op & REQ_NOWAIT); 1610 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1611 1612 if (q->mq_ops) { 1613 req = blk_mq_alloc_request(q, op, flags); 1614 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1615 q->mq_ops->initialize_rq_fn(req); 1616 } else { 1617 req = blk_old_get_request(q, op, flags); 1618 if (!IS_ERR(req) && q->initialize_rq_fn) 1619 q->initialize_rq_fn(req); 1620 } 1621 1622 return req; 1623 } 1624 EXPORT_SYMBOL(blk_get_request); 1625 1626 /** 1627 * blk_requeue_request - put a request back on queue 1628 * @q: request queue where request should be inserted 1629 * @rq: request to be inserted 1630 * 1631 * Description: 1632 * Drivers often keep queueing requests until the hardware cannot accept 1633 * more, when that condition happens we need to put the request back 1634 * on the queue. Must be called with queue lock held. 1635 */ 1636 void blk_requeue_request(struct request_queue *q, struct request *rq) 1637 { 1638 lockdep_assert_held(q->queue_lock); 1639 WARN_ON_ONCE(q->mq_ops); 1640 1641 blk_delete_timer(rq); 1642 blk_clear_rq_complete(rq); 1643 trace_block_rq_requeue(q, rq); 1644 wbt_requeue(q->rq_wb, rq); 1645 1646 if (rq->rq_flags & RQF_QUEUED) 1647 blk_queue_end_tag(q, rq); 1648 1649 BUG_ON(blk_queued_rq(rq)); 1650 1651 elv_requeue_request(q, rq); 1652 } 1653 EXPORT_SYMBOL(blk_requeue_request); 1654 1655 static void add_acct_request(struct request_queue *q, struct request *rq, 1656 int where) 1657 { 1658 blk_account_io_start(rq, true); 1659 __elv_add_request(q, rq, where); 1660 } 1661 1662 static void part_round_stats_single(struct request_queue *q, int cpu, 1663 struct hd_struct *part, unsigned long now, 1664 unsigned int inflight) 1665 { 1666 if (inflight) { 1667 __part_stat_add(cpu, part, time_in_queue, 1668 inflight * (now - part->stamp)); 1669 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1670 } 1671 part->stamp = now; 1672 } 1673 1674 /** 1675 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1676 * @q: target block queue 1677 * @cpu: cpu number for stats access 1678 * @part: target partition 1679 * 1680 * The average IO queue length and utilisation statistics are maintained 1681 * by observing the current state of the queue length and the amount of 1682 * time it has been in this state for. 1683 * 1684 * Normally, that accounting is done on IO completion, but that can result 1685 * in more than a second's worth of IO being accounted for within any one 1686 * second, leading to >100% utilisation. To deal with that, we call this 1687 * function to do a round-off before returning the results when reading 1688 * /proc/diskstats. This accounts immediately for all queue usage up to 1689 * the current jiffies and restarts the counters again. 1690 */ 1691 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1692 { 1693 struct hd_struct *part2 = NULL; 1694 unsigned long now = jiffies; 1695 unsigned int inflight[2]; 1696 int stats = 0; 1697 1698 if (part->stamp != now) 1699 stats |= 1; 1700 1701 if (part->partno) { 1702 part2 = &part_to_disk(part)->part0; 1703 if (part2->stamp != now) 1704 stats |= 2; 1705 } 1706 1707 if (!stats) 1708 return; 1709 1710 part_in_flight(q, part, inflight); 1711 1712 if (stats & 2) 1713 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1714 if (stats & 1) 1715 part_round_stats_single(q, cpu, part, now, inflight[0]); 1716 } 1717 EXPORT_SYMBOL_GPL(part_round_stats); 1718 1719 #ifdef CONFIG_PM 1720 static void blk_pm_put_request(struct request *rq) 1721 { 1722 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1723 pm_runtime_mark_last_busy(rq->q->dev); 1724 } 1725 #else 1726 static inline void blk_pm_put_request(struct request *rq) {} 1727 #endif 1728 1729 void __blk_put_request(struct request_queue *q, struct request *req) 1730 { 1731 req_flags_t rq_flags = req->rq_flags; 1732 1733 if (unlikely(!q)) 1734 return; 1735 1736 if (q->mq_ops) { 1737 blk_mq_free_request(req); 1738 return; 1739 } 1740 1741 lockdep_assert_held(q->queue_lock); 1742 1743 blk_req_zone_write_unlock(req); 1744 blk_pm_put_request(req); 1745 1746 elv_completed_request(q, req); 1747 1748 /* this is a bio leak */ 1749 WARN_ON(req->bio != NULL); 1750 1751 wbt_done(q->rq_wb, req); 1752 1753 /* 1754 * Request may not have originated from ll_rw_blk. if not, 1755 * it didn't come out of our reserved rq pools 1756 */ 1757 if (rq_flags & RQF_ALLOCED) { 1758 struct request_list *rl = blk_rq_rl(req); 1759 bool sync = op_is_sync(req->cmd_flags); 1760 1761 BUG_ON(!list_empty(&req->queuelist)); 1762 BUG_ON(ELV_ON_HASH(req)); 1763 1764 blk_free_request(rl, req); 1765 freed_request(rl, sync, rq_flags); 1766 blk_put_rl(rl); 1767 blk_queue_exit(q); 1768 } 1769 } 1770 EXPORT_SYMBOL_GPL(__blk_put_request); 1771 1772 void blk_put_request(struct request *req) 1773 { 1774 struct request_queue *q = req->q; 1775 1776 if (q->mq_ops) 1777 blk_mq_free_request(req); 1778 else { 1779 unsigned long flags; 1780 1781 spin_lock_irqsave(q->queue_lock, flags); 1782 __blk_put_request(q, req); 1783 spin_unlock_irqrestore(q->queue_lock, flags); 1784 } 1785 } 1786 EXPORT_SYMBOL(blk_put_request); 1787 1788 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1789 struct bio *bio) 1790 { 1791 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1792 1793 if (!ll_back_merge_fn(q, req, bio)) 1794 return false; 1795 1796 trace_block_bio_backmerge(q, req, bio); 1797 1798 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1799 blk_rq_set_mixed_merge(req); 1800 1801 req->biotail->bi_next = bio; 1802 req->biotail = bio; 1803 req->__data_len += bio->bi_iter.bi_size; 1804 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1805 1806 blk_account_io_start(req, false); 1807 return true; 1808 } 1809 1810 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1811 struct bio *bio) 1812 { 1813 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1814 1815 if (!ll_front_merge_fn(q, req, bio)) 1816 return false; 1817 1818 trace_block_bio_frontmerge(q, req, bio); 1819 1820 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1821 blk_rq_set_mixed_merge(req); 1822 1823 bio->bi_next = req->bio; 1824 req->bio = bio; 1825 1826 req->__sector = bio->bi_iter.bi_sector; 1827 req->__data_len += bio->bi_iter.bi_size; 1828 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1829 1830 blk_account_io_start(req, false); 1831 return true; 1832 } 1833 1834 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1835 struct bio *bio) 1836 { 1837 unsigned short segments = blk_rq_nr_discard_segments(req); 1838 1839 if (segments >= queue_max_discard_segments(q)) 1840 goto no_merge; 1841 if (blk_rq_sectors(req) + bio_sectors(bio) > 1842 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1843 goto no_merge; 1844 1845 req->biotail->bi_next = bio; 1846 req->biotail = bio; 1847 req->__data_len += bio->bi_iter.bi_size; 1848 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1849 req->nr_phys_segments = segments + 1; 1850 1851 blk_account_io_start(req, false); 1852 return true; 1853 no_merge: 1854 req_set_nomerge(q, req); 1855 return false; 1856 } 1857 1858 /** 1859 * blk_attempt_plug_merge - try to merge with %current's plugged list 1860 * @q: request_queue new bio is being queued at 1861 * @bio: new bio being queued 1862 * @request_count: out parameter for number of traversed plugged requests 1863 * @same_queue_rq: pointer to &struct request that gets filled in when 1864 * another request associated with @q is found on the plug list 1865 * (optional, may be %NULL) 1866 * 1867 * Determine whether @bio being queued on @q can be merged with a request 1868 * on %current's plugged list. Returns %true if merge was successful, 1869 * otherwise %false. 1870 * 1871 * Plugging coalesces IOs from the same issuer for the same purpose without 1872 * going through @q->queue_lock. As such it's more of an issuing mechanism 1873 * than scheduling, and the request, while may have elvpriv data, is not 1874 * added on the elevator at this point. In addition, we don't have 1875 * reliable access to the elevator outside queue lock. Only check basic 1876 * merging parameters without querying the elevator. 1877 * 1878 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1879 */ 1880 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1881 unsigned int *request_count, 1882 struct request **same_queue_rq) 1883 { 1884 struct blk_plug *plug; 1885 struct request *rq; 1886 struct list_head *plug_list; 1887 1888 plug = current->plug; 1889 if (!plug) 1890 return false; 1891 *request_count = 0; 1892 1893 if (q->mq_ops) 1894 plug_list = &plug->mq_list; 1895 else 1896 plug_list = &plug->list; 1897 1898 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1899 bool merged = false; 1900 1901 if (rq->q == q) { 1902 (*request_count)++; 1903 /* 1904 * Only blk-mq multiple hardware queues case checks the 1905 * rq in the same queue, there should be only one such 1906 * rq in a queue 1907 **/ 1908 if (same_queue_rq) 1909 *same_queue_rq = rq; 1910 } 1911 1912 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1913 continue; 1914 1915 switch (blk_try_merge(rq, bio)) { 1916 case ELEVATOR_BACK_MERGE: 1917 merged = bio_attempt_back_merge(q, rq, bio); 1918 break; 1919 case ELEVATOR_FRONT_MERGE: 1920 merged = bio_attempt_front_merge(q, rq, bio); 1921 break; 1922 case ELEVATOR_DISCARD_MERGE: 1923 merged = bio_attempt_discard_merge(q, rq, bio); 1924 break; 1925 default: 1926 break; 1927 } 1928 1929 if (merged) 1930 return true; 1931 } 1932 1933 return false; 1934 } 1935 1936 unsigned int blk_plug_queued_count(struct request_queue *q) 1937 { 1938 struct blk_plug *plug; 1939 struct request *rq; 1940 struct list_head *plug_list; 1941 unsigned int ret = 0; 1942 1943 plug = current->plug; 1944 if (!plug) 1945 goto out; 1946 1947 if (q->mq_ops) 1948 plug_list = &plug->mq_list; 1949 else 1950 plug_list = &plug->list; 1951 1952 list_for_each_entry(rq, plug_list, queuelist) { 1953 if (rq->q == q) 1954 ret++; 1955 } 1956 out: 1957 return ret; 1958 } 1959 1960 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1961 { 1962 struct io_context *ioc = rq_ioc(bio); 1963 1964 if (bio->bi_opf & REQ_RAHEAD) 1965 req->cmd_flags |= REQ_FAILFAST_MASK; 1966 1967 req->__sector = bio->bi_iter.bi_sector; 1968 if (ioprio_valid(bio_prio(bio))) 1969 req->ioprio = bio_prio(bio); 1970 else if (ioc) 1971 req->ioprio = ioc->ioprio; 1972 else 1973 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1974 req->write_hint = bio->bi_write_hint; 1975 blk_rq_bio_prep(req->q, req, bio); 1976 } 1977 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1978 1979 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1980 { 1981 struct blk_plug *plug; 1982 int where = ELEVATOR_INSERT_SORT; 1983 struct request *req, *free; 1984 unsigned int request_count = 0; 1985 unsigned int wb_acct; 1986 1987 /* 1988 * low level driver can indicate that it wants pages above a 1989 * certain limit bounced to low memory (ie for highmem, or even 1990 * ISA dma in theory) 1991 */ 1992 blk_queue_bounce(q, &bio); 1993 1994 blk_queue_split(q, &bio); 1995 1996 if (!bio_integrity_prep(bio)) 1997 return BLK_QC_T_NONE; 1998 1999 if (op_is_flush(bio->bi_opf)) { 2000 spin_lock_irq(q->queue_lock); 2001 where = ELEVATOR_INSERT_FLUSH; 2002 goto get_rq; 2003 } 2004 2005 /* 2006 * Check if we can merge with the plugged list before grabbing 2007 * any locks. 2008 */ 2009 if (!blk_queue_nomerges(q)) { 2010 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 2011 return BLK_QC_T_NONE; 2012 } else 2013 request_count = blk_plug_queued_count(q); 2014 2015 spin_lock_irq(q->queue_lock); 2016 2017 switch (elv_merge(q, &req, bio)) { 2018 case ELEVATOR_BACK_MERGE: 2019 if (!bio_attempt_back_merge(q, req, bio)) 2020 break; 2021 elv_bio_merged(q, req, bio); 2022 free = attempt_back_merge(q, req); 2023 if (free) 2024 __blk_put_request(q, free); 2025 else 2026 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 2027 goto out_unlock; 2028 case ELEVATOR_FRONT_MERGE: 2029 if (!bio_attempt_front_merge(q, req, bio)) 2030 break; 2031 elv_bio_merged(q, req, bio); 2032 free = attempt_front_merge(q, req); 2033 if (free) 2034 __blk_put_request(q, free); 2035 else 2036 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 2037 goto out_unlock; 2038 default: 2039 break; 2040 } 2041 2042 get_rq: 2043 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 2044 2045 /* 2046 * Grab a free request. This is might sleep but can not fail. 2047 * Returns with the queue unlocked. 2048 */ 2049 blk_queue_enter_live(q); 2050 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO); 2051 if (IS_ERR(req)) { 2052 blk_queue_exit(q); 2053 __wbt_done(q->rq_wb, wb_acct); 2054 if (PTR_ERR(req) == -ENOMEM) 2055 bio->bi_status = BLK_STS_RESOURCE; 2056 else 2057 bio->bi_status = BLK_STS_IOERR; 2058 bio_endio(bio); 2059 goto out_unlock; 2060 } 2061 2062 wbt_track(req, wb_acct); 2063 2064 /* 2065 * After dropping the lock and possibly sleeping here, our request 2066 * may now be mergeable after it had proven unmergeable (above). 2067 * We don't worry about that case for efficiency. It won't happen 2068 * often, and the elevators are able to handle it. 2069 */ 2070 blk_init_request_from_bio(req, bio); 2071 2072 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 2073 req->cpu = raw_smp_processor_id(); 2074 2075 plug = current->plug; 2076 if (plug) { 2077 /* 2078 * If this is the first request added after a plug, fire 2079 * of a plug trace. 2080 * 2081 * @request_count may become stale because of schedule 2082 * out, so check plug list again. 2083 */ 2084 if (!request_count || list_empty(&plug->list)) 2085 trace_block_plug(q); 2086 else { 2087 struct request *last = list_entry_rq(plug->list.prev); 2088 if (request_count >= BLK_MAX_REQUEST_COUNT || 2089 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2090 blk_flush_plug_list(plug, false); 2091 trace_block_plug(q); 2092 } 2093 } 2094 list_add_tail(&req->queuelist, &plug->list); 2095 blk_account_io_start(req, true); 2096 } else { 2097 spin_lock_irq(q->queue_lock); 2098 add_acct_request(q, req, where); 2099 __blk_run_queue(q); 2100 out_unlock: 2101 spin_unlock_irq(q->queue_lock); 2102 } 2103 2104 return BLK_QC_T_NONE; 2105 } 2106 2107 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 2108 { 2109 char b[BDEVNAME_SIZE]; 2110 2111 printk(KERN_INFO "attempt to access beyond end of device\n"); 2112 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2113 bio_devname(bio, b), bio->bi_opf, 2114 (unsigned long long)bio_end_sector(bio), 2115 (long long)maxsector); 2116 } 2117 2118 #ifdef CONFIG_FAIL_MAKE_REQUEST 2119 2120 static DECLARE_FAULT_ATTR(fail_make_request); 2121 2122 static int __init setup_fail_make_request(char *str) 2123 { 2124 return setup_fault_attr(&fail_make_request, str); 2125 } 2126 __setup("fail_make_request=", setup_fail_make_request); 2127 2128 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2129 { 2130 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2131 } 2132 2133 static int __init fail_make_request_debugfs(void) 2134 { 2135 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2136 NULL, &fail_make_request); 2137 2138 return PTR_ERR_OR_ZERO(dir); 2139 } 2140 2141 late_initcall(fail_make_request_debugfs); 2142 2143 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2144 2145 static inline bool should_fail_request(struct hd_struct *part, 2146 unsigned int bytes) 2147 { 2148 return false; 2149 } 2150 2151 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2152 2153 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2154 { 2155 if (part->policy && op_is_write(bio_op(bio))) { 2156 char b[BDEVNAME_SIZE]; 2157 2158 printk(KERN_ERR 2159 "generic_make_request: Trying to write " 2160 "to read-only block-device %s (partno %d)\n", 2161 bio_devname(bio, b), part->partno); 2162 return true; 2163 } 2164 2165 return false; 2166 } 2167 2168 static noinline int should_fail_bio(struct bio *bio) 2169 { 2170 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2171 return -EIO; 2172 return 0; 2173 } 2174 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2175 2176 /* 2177 * Check whether this bio extends beyond the end of the device or partition. 2178 * This may well happen - the kernel calls bread() without checking the size of 2179 * the device, e.g., when mounting a file system. 2180 */ 2181 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 2182 { 2183 unsigned int nr_sectors = bio_sectors(bio); 2184 2185 if (nr_sectors && maxsector && 2186 (nr_sectors > maxsector || 2187 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 2188 handle_bad_sector(bio, maxsector); 2189 return -EIO; 2190 } 2191 return 0; 2192 } 2193 2194 /* 2195 * Remap block n of partition p to block n+start(p) of the disk. 2196 */ 2197 static inline int blk_partition_remap(struct bio *bio) 2198 { 2199 struct hd_struct *p; 2200 int ret = -EIO; 2201 2202 rcu_read_lock(); 2203 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2204 if (unlikely(!p)) 2205 goto out; 2206 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 2207 goto out; 2208 if (unlikely(bio_check_ro(bio, p))) 2209 goto out; 2210 2211 /* 2212 * Zone reset does not include bi_size so bio_sectors() is always 0. 2213 * Include a test for the reset op code and perform the remap if needed. 2214 */ 2215 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 2216 if (bio_check_eod(bio, part_nr_sects_read(p))) 2217 goto out; 2218 bio->bi_iter.bi_sector += p->start_sect; 2219 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2220 bio->bi_iter.bi_sector - p->start_sect); 2221 } 2222 bio->bi_partno = 0; 2223 ret = 0; 2224 out: 2225 rcu_read_unlock(); 2226 return ret; 2227 } 2228 2229 static noinline_for_stack bool 2230 generic_make_request_checks(struct bio *bio) 2231 { 2232 struct request_queue *q; 2233 int nr_sectors = bio_sectors(bio); 2234 blk_status_t status = BLK_STS_IOERR; 2235 char b[BDEVNAME_SIZE]; 2236 2237 might_sleep(); 2238 2239 q = bio->bi_disk->queue; 2240 if (unlikely(!q)) { 2241 printk(KERN_ERR 2242 "generic_make_request: Trying to access " 2243 "nonexistent block-device %s (%Lu)\n", 2244 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2245 goto end_io; 2246 } 2247 2248 /* 2249 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2250 * if queue is not a request based queue. 2251 */ 2252 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2253 goto not_supported; 2254 2255 if (should_fail_bio(bio)) 2256 goto end_io; 2257 2258 if (bio->bi_partno) { 2259 if (unlikely(blk_partition_remap(bio))) 2260 goto end_io; 2261 } else { 2262 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2263 goto end_io; 2264 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 2265 goto end_io; 2266 } 2267 2268 /* 2269 * Filter flush bio's early so that make_request based 2270 * drivers without flush support don't have to worry 2271 * about them. 2272 */ 2273 if (op_is_flush(bio->bi_opf) && 2274 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2275 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2276 if (!nr_sectors) { 2277 status = BLK_STS_OK; 2278 goto end_io; 2279 } 2280 } 2281 2282 switch (bio_op(bio)) { 2283 case REQ_OP_DISCARD: 2284 if (!blk_queue_discard(q)) 2285 goto not_supported; 2286 break; 2287 case REQ_OP_SECURE_ERASE: 2288 if (!blk_queue_secure_erase(q)) 2289 goto not_supported; 2290 break; 2291 case REQ_OP_WRITE_SAME: 2292 if (!q->limits.max_write_same_sectors) 2293 goto not_supported; 2294 break; 2295 case REQ_OP_ZONE_REPORT: 2296 case REQ_OP_ZONE_RESET: 2297 if (!blk_queue_is_zoned(q)) 2298 goto not_supported; 2299 break; 2300 case REQ_OP_WRITE_ZEROES: 2301 if (!q->limits.max_write_zeroes_sectors) 2302 goto not_supported; 2303 break; 2304 default: 2305 break; 2306 } 2307 2308 /* 2309 * Various block parts want %current->io_context and lazy ioc 2310 * allocation ends up trading a lot of pain for a small amount of 2311 * memory. Just allocate it upfront. This may fail and block 2312 * layer knows how to live with it. 2313 */ 2314 create_io_context(GFP_ATOMIC, q->node); 2315 2316 if (!blkcg_bio_issue_check(q, bio)) 2317 return false; 2318 2319 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2320 trace_block_bio_queue(q, bio); 2321 /* Now that enqueuing has been traced, we need to trace 2322 * completion as well. 2323 */ 2324 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2325 } 2326 return true; 2327 2328 not_supported: 2329 status = BLK_STS_NOTSUPP; 2330 end_io: 2331 bio->bi_status = status; 2332 bio_endio(bio); 2333 return false; 2334 } 2335 2336 /** 2337 * generic_make_request - hand a buffer to its device driver for I/O 2338 * @bio: The bio describing the location in memory and on the device. 2339 * 2340 * generic_make_request() is used to make I/O requests of block 2341 * devices. It is passed a &struct bio, which describes the I/O that needs 2342 * to be done. 2343 * 2344 * generic_make_request() does not return any status. The 2345 * success/failure status of the request, along with notification of 2346 * completion, is delivered asynchronously through the bio->bi_end_io 2347 * function described (one day) else where. 2348 * 2349 * The caller of generic_make_request must make sure that bi_io_vec 2350 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2351 * set to describe the device address, and the 2352 * bi_end_io and optionally bi_private are set to describe how 2353 * completion notification should be signaled. 2354 * 2355 * generic_make_request and the drivers it calls may use bi_next if this 2356 * bio happens to be merged with someone else, and may resubmit the bio to 2357 * a lower device by calling into generic_make_request recursively, which 2358 * means the bio should NOT be touched after the call to ->make_request_fn. 2359 */ 2360 blk_qc_t generic_make_request(struct bio *bio) 2361 { 2362 /* 2363 * bio_list_on_stack[0] contains bios submitted by the current 2364 * make_request_fn. 2365 * bio_list_on_stack[1] contains bios that were submitted before 2366 * the current make_request_fn, but that haven't been processed 2367 * yet. 2368 */ 2369 struct bio_list bio_list_on_stack[2]; 2370 blk_mq_req_flags_t flags = 0; 2371 struct request_queue *q = bio->bi_disk->queue; 2372 blk_qc_t ret = BLK_QC_T_NONE; 2373 2374 if (bio->bi_opf & REQ_NOWAIT) 2375 flags = BLK_MQ_REQ_NOWAIT; 2376 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 2377 blk_queue_enter_live(q); 2378 else if (blk_queue_enter(q, flags) < 0) { 2379 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 2380 bio_wouldblock_error(bio); 2381 else 2382 bio_io_error(bio); 2383 return ret; 2384 } 2385 2386 if (!generic_make_request_checks(bio)) 2387 goto out; 2388 2389 /* 2390 * We only want one ->make_request_fn to be active at a time, else 2391 * stack usage with stacked devices could be a problem. So use 2392 * current->bio_list to keep a list of requests submited by a 2393 * make_request_fn function. current->bio_list is also used as a 2394 * flag to say if generic_make_request is currently active in this 2395 * task or not. If it is NULL, then no make_request is active. If 2396 * it is non-NULL, then a make_request is active, and new requests 2397 * should be added at the tail 2398 */ 2399 if (current->bio_list) { 2400 bio_list_add(¤t->bio_list[0], bio); 2401 goto out; 2402 } 2403 2404 /* following loop may be a bit non-obvious, and so deserves some 2405 * explanation. 2406 * Before entering the loop, bio->bi_next is NULL (as all callers 2407 * ensure that) so we have a list with a single bio. 2408 * We pretend that we have just taken it off a longer list, so 2409 * we assign bio_list to a pointer to the bio_list_on_stack, 2410 * thus initialising the bio_list of new bios to be 2411 * added. ->make_request() may indeed add some more bios 2412 * through a recursive call to generic_make_request. If it 2413 * did, we find a non-NULL value in bio_list and re-enter the loop 2414 * from the top. In this case we really did just take the bio 2415 * of the top of the list (no pretending) and so remove it from 2416 * bio_list, and call into ->make_request() again. 2417 */ 2418 BUG_ON(bio->bi_next); 2419 bio_list_init(&bio_list_on_stack[0]); 2420 current->bio_list = bio_list_on_stack; 2421 do { 2422 bool enter_succeeded = true; 2423 2424 if (unlikely(q != bio->bi_disk->queue)) { 2425 if (q) 2426 blk_queue_exit(q); 2427 q = bio->bi_disk->queue; 2428 flags = 0; 2429 if (bio->bi_opf & REQ_NOWAIT) 2430 flags = BLK_MQ_REQ_NOWAIT; 2431 if (blk_queue_enter(q, flags) < 0) { 2432 enter_succeeded = false; 2433 q = NULL; 2434 } 2435 } 2436 2437 if (enter_succeeded) { 2438 struct bio_list lower, same; 2439 2440 /* Create a fresh bio_list for all subordinate requests */ 2441 bio_list_on_stack[1] = bio_list_on_stack[0]; 2442 bio_list_init(&bio_list_on_stack[0]); 2443 ret = q->make_request_fn(q, bio); 2444 2445 /* sort new bios into those for a lower level 2446 * and those for the same level 2447 */ 2448 bio_list_init(&lower); 2449 bio_list_init(&same); 2450 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2451 if (q == bio->bi_disk->queue) 2452 bio_list_add(&same, bio); 2453 else 2454 bio_list_add(&lower, bio); 2455 /* now assemble so we handle the lowest level first */ 2456 bio_list_merge(&bio_list_on_stack[0], &lower); 2457 bio_list_merge(&bio_list_on_stack[0], &same); 2458 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2459 } else { 2460 if (unlikely(!blk_queue_dying(q) && 2461 (bio->bi_opf & REQ_NOWAIT))) 2462 bio_wouldblock_error(bio); 2463 else 2464 bio_io_error(bio); 2465 } 2466 bio = bio_list_pop(&bio_list_on_stack[0]); 2467 } while (bio); 2468 current->bio_list = NULL; /* deactivate */ 2469 2470 out: 2471 if (q) 2472 blk_queue_exit(q); 2473 return ret; 2474 } 2475 EXPORT_SYMBOL(generic_make_request); 2476 2477 /** 2478 * direct_make_request - hand a buffer directly to its device driver for I/O 2479 * @bio: The bio describing the location in memory and on the device. 2480 * 2481 * This function behaves like generic_make_request(), but does not protect 2482 * against recursion. Must only be used if the called driver is known 2483 * to not call generic_make_request (or direct_make_request) again from 2484 * its make_request function. (Calling direct_make_request again from 2485 * a workqueue is perfectly fine as that doesn't recurse). 2486 */ 2487 blk_qc_t direct_make_request(struct bio *bio) 2488 { 2489 struct request_queue *q = bio->bi_disk->queue; 2490 bool nowait = bio->bi_opf & REQ_NOWAIT; 2491 blk_qc_t ret; 2492 2493 if (!generic_make_request_checks(bio)) 2494 return BLK_QC_T_NONE; 2495 2496 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2497 if (nowait && !blk_queue_dying(q)) 2498 bio->bi_status = BLK_STS_AGAIN; 2499 else 2500 bio->bi_status = BLK_STS_IOERR; 2501 bio_endio(bio); 2502 return BLK_QC_T_NONE; 2503 } 2504 2505 ret = q->make_request_fn(q, bio); 2506 blk_queue_exit(q); 2507 return ret; 2508 } 2509 EXPORT_SYMBOL_GPL(direct_make_request); 2510 2511 /** 2512 * submit_bio - submit a bio to the block device layer for I/O 2513 * @bio: The &struct bio which describes the I/O 2514 * 2515 * submit_bio() is very similar in purpose to generic_make_request(), and 2516 * uses that function to do most of the work. Both are fairly rough 2517 * interfaces; @bio must be presetup and ready for I/O. 2518 * 2519 */ 2520 blk_qc_t submit_bio(struct bio *bio) 2521 { 2522 /* 2523 * If it's a regular read/write or a barrier with data attached, 2524 * go through the normal accounting stuff before submission. 2525 */ 2526 if (bio_has_data(bio)) { 2527 unsigned int count; 2528 2529 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2530 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2531 else 2532 count = bio_sectors(bio); 2533 2534 if (op_is_write(bio_op(bio))) { 2535 count_vm_events(PGPGOUT, count); 2536 } else { 2537 task_io_account_read(bio->bi_iter.bi_size); 2538 count_vm_events(PGPGIN, count); 2539 } 2540 2541 if (unlikely(block_dump)) { 2542 char b[BDEVNAME_SIZE]; 2543 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2544 current->comm, task_pid_nr(current), 2545 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2546 (unsigned long long)bio->bi_iter.bi_sector, 2547 bio_devname(bio, b), count); 2548 } 2549 } 2550 2551 return generic_make_request(bio); 2552 } 2553 EXPORT_SYMBOL(submit_bio); 2554 2555 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2556 { 2557 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2558 return false; 2559 2560 if (current->plug) 2561 blk_flush_plug_list(current->plug, false); 2562 return q->poll_fn(q, cookie); 2563 } 2564 EXPORT_SYMBOL_GPL(blk_poll); 2565 2566 /** 2567 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2568 * for new the queue limits 2569 * @q: the queue 2570 * @rq: the request being checked 2571 * 2572 * Description: 2573 * @rq may have been made based on weaker limitations of upper-level queues 2574 * in request stacking drivers, and it may violate the limitation of @q. 2575 * Since the block layer and the underlying device driver trust @rq 2576 * after it is inserted to @q, it should be checked against @q before 2577 * the insertion using this generic function. 2578 * 2579 * Request stacking drivers like request-based dm may change the queue 2580 * limits when retrying requests on other queues. Those requests need 2581 * to be checked against the new queue limits again during dispatch. 2582 */ 2583 static int blk_cloned_rq_check_limits(struct request_queue *q, 2584 struct request *rq) 2585 { 2586 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2587 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2588 return -EIO; 2589 } 2590 2591 /* 2592 * queue's settings related to segment counting like q->bounce_pfn 2593 * may differ from that of other stacking queues. 2594 * Recalculate it to check the request correctly on this queue's 2595 * limitation. 2596 */ 2597 blk_recalc_rq_segments(rq); 2598 if (rq->nr_phys_segments > queue_max_segments(q)) { 2599 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2600 return -EIO; 2601 } 2602 2603 return 0; 2604 } 2605 2606 /** 2607 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2608 * @q: the queue to submit the request 2609 * @rq: the request being queued 2610 */ 2611 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2612 { 2613 unsigned long flags; 2614 int where = ELEVATOR_INSERT_BACK; 2615 2616 if (blk_cloned_rq_check_limits(q, rq)) 2617 return BLK_STS_IOERR; 2618 2619 if (rq->rq_disk && 2620 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2621 return BLK_STS_IOERR; 2622 2623 if (q->mq_ops) { 2624 if (blk_queue_io_stat(q)) 2625 blk_account_io_start(rq, true); 2626 /* 2627 * Since we have a scheduler attached on the top device, 2628 * bypass a potential scheduler on the bottom device for 2629 * insert. 2630 */ 2631 return blk_mq_request_issue_directly(rq); 2632 } 2633 2634 spin_lock_irqsave(q->queue_lock, flags); 2635 if (unlikely(blk_queue_dying(q))) { 2636 spin_unlock_irqrestore(q->queue_lock, flags); 2637 return BLK_STS_IOERR; 2638 } 2639 2640 /* 2641 * Submitting request must be dequeued before calling this function 2642 * because it will be linked to another request_queue 2643 */ 2644 BUG_ON(blk_queued_rq(rq)); 2645 2646 if (op_is_flush(rq->cmd_flags)) 2647 where = ELEVATOR_INSERT_FLUSH; 2648 2649 add_acct_request(q, rq, where); 2650 if (where == ELEVATOR_INSERT_FLUSH) 2651 __blk_run_queue(q); 2652 spin_unlock_irqrestore(q->queue_lock, flags); 2653 2654 return BLK_STS_OK; 2655 } 2656 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2657 2658 /** 2659 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2660 * @rq: request to examine 2661 * 2662 * Description: 2663 * A request could be merge of IOs which require different failure 2664 * handling. This function determines the number of bytes which 2665 * can be failed from the beginning of the request without 2666 * crossing into area which need to be retried further. 2667 * 2668 * Return: 2669 * The number of bytes to fail. 2670 */ 2671 unsigned int blk_rq_err_bytes(const struct request *rq) 2672 { 2673 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2674 unsigned int bytes = 0; 2675 struct bio *bio; 2676 2677 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2678 return blk_rq_bytes(rq); 2679 2680 /* 2681 * Currently the only 'mixing' which can happen is between 2682 * different fastfail types. We can safely fail portions 2683 * which have all the failfast bits that the first one has - 2684 * the ones which are at least as eager to fail as the first 2685 * one. 2686 */ 2687 for (bio = rq->bio; bio; bio = bio->bi_next) { 2688 if ((bio->bi_opf & ff) != ff) 2689 break; 2690 bytes += bio->bi_iter.bi_size; 2691 } 2692 2693 /* this could lead to infinite loop */ 2694 BUG_ON(blk_rq_bytes(rq) && !bytes); 2695 return bytes; 2696 } 2697 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2698 2699 void blk_account_io_completion(struct request *req, unsigned int bytes) 2700 { 2701 if (blk_do_io_stat(req)) { 2702 const int rw = rq_data_dir(req); 2703 struct hd_struct *part; 2704 int cpu; 2705 2706 cpu = part_stat_lock(); 2707 part = req->part; 2708 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2709 part_stat_unlock(); 2710 } 2711 } 2712 2713 void blk_account_io_done(struct request *req, u64 now) 2714 { 2715 /* 2716 * Account IO completion. flush_rq isn't accounted as a 2717 * normal IO on queueing nor completion. Accounting the 2718 * containing request is enough. 2719 */ 2720 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2721 unsigned long duration; 2722 const int rw = rq_data_dir(req); 2723 struct hd_struct *part; 2724 int cpu; 2725 2726 duration = nsecs_to_jiffies(now - req->start_time_ns); 2727 cpu = part_stat_lock(); 2728 part = req->part; 2729 2730 part_stat_inc(cpu, part, ios[rw]); 2731 part_stat_add(cpu, part, ticks[rw], duration); 2732 part_round_stats(req->q, cpu, part); 2733 part_dec_in_flight(req->q, part, rw); 2734 2735 hd_struct_put(part); 2736 part_stat_unlock(); 2737 } 2738 } 2739 2740 #ifdef CONFIG_PM 2741 /* 2742 * Don't process normal requests when queue is suspended 2743 * or in the process of suspending/resuming 2744 */ 2745 static bool blk_pm_allow_request(struct request *rq) 2746 { 2747 switch (rq->q->rpm_status) { 2748 case RPM_RESUMING: 2749 case RPM_SUSPENDING: 2750 return rq->rq_flags & RQF_PM; 2751 case RPM_SUSPENDED: 2752 return false; 2753 } 2754 2755 return true; 2756 } 2757 #else 2758 static bool blk_pm_allow_request(struct request *rq) 2759 { 2760 return true; 2761 } 2762 #endif 2763 2764 void blk_account_io_start(struct request *rq, bool new_io) 2765 { 2766 struct hd_struct *part; 2767 int rw = rq_data_dir(rq); 2768 int cpu; 2769 2770 if (!blk_do_io_stat(rq)) 2771 return; 2772 2773 cpu = part_stat_lock(); 2774 2775 if (!new_io) { 2776 part = rq->part; 2777 part_stat_inc(cpu, part, merges[rw]); 2778 } else { 2779 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2780 if (!hd_struct_try_get(part)) { 2781 /* 2782 * The partition is already being removed, 2783 * the request will be accounted on the disk only 2784 * 2785 * We take a reference on disk->part0 although that 2786 * partition will never be deleted, so we can treat 2787 * it as any other partition. 2788 */ 2789 part = &rq->rq_disk->part0; 2790 hd_struct_get(part); 2791 } 2792 part_round_stats(rq->q, cpu, part); 2793 part_inc_in_flight(rq->q, part, rw); 2794 rq->part = part; 2795 } 2796 2797 part_stat_unlock(); 2798 } 2799 2800 static struct request *elv_next_request(struct request_queue *q) 2801 { 2802 struct request *rq; 2803 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2804 2805 WARN_ON_ONCE(q->mq_ops); 2806 2807 while (1) { 2808 list_for_each_entry(rq, &q->queue_head, queuelist) { 2809 if (blk_pm_allow_request(rq)) 2810 return rq; 2811 2812 if (rq->rq_flags & RQF_SOFTBARRIER) 2813 break; 2814 } 2815 2816 /* 2817 * Flush request is running and flush request isn't queueable 2818 * in the drive, we can hold the queue till flush request is 2819 * finished. Even we don't do this, driver can't dispatch next 2820 * requests and will requeue them. And this can improve 2821 * throughput too. For example, we have request flush1, write1, 2822 * flush 2. flush1 is dispatched, then queue is hold, write1 2823 * isn't inserted to queue. After flush1 is finished, flush2 2824 * will be dispatched. Since disk cache is already clean, 2825 * flush2 will be finished very soon, so looks like flush2 is 2826 * folded to flush1. 2827 * Since the queue is hold, a flag is set to indicate the queue 2828 * should be restarted later. Please see flush_end_io() for 2829 * details. 2830 */ 2831 if (fq->flush_pending_idx != fq->flush_running_idx && 2832 !queue_flush_queueable(q)) { 2833 fq->flush_queue_delayed = 1; 2834 return NULL; 2835 } 2836 if (unlikely(blk_queue_bypass(q)) || 2837 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2838 return NULL; 2839 } 2840 } 2841 2842 /** 2843 * blk_peek_request - peek at the top of a request queue 2844 * @q: request queue to peek at 2845 * 2846 * Description: 2847 * Return the request at the top of @q. The returned request 2848 * should be started using blk_start_request() before LLD starts 2849 * processing it. 2850 * 2851 * Return: 2852 * Pointer to the request at the top of @q if available. Null 2853 * otherwise. 2854 */ 2855 struct request *blk_peek_request(struct request_queue *q) 2856 { 2857 struct request *rq; 2858 int ret; 2859 2860 lockdep_assert_held(q->queue_lock); 2861 WARN_ON_ONCE(q->mq_ops); 2862 2863 while ((rq = elv_next_request(q)) != NULL) { 2864 if (!(rq->rq_flags & RQF_STARTED)) { 2865 /* 2866 * This is the first time the device driver 2867 * sees this request (possibly after 2868 * requeueing). Notify IO scheduler. 2869 */ 2870 if (rq->rq_flags & RQF_SORTED) 2871 elv_activate_rq(q, rq); 2872 2873 /* 2874 * just mark as started even if we don't start 2875 * it, a request that has been delayed should 2876 * not be passed by new incoming requests 2877 */ 2878 rq->rq_flags |= RQF_STARTED; 2879 trace_block_rq_issue(q, rq); 2880 } 2881 2882 if (!q->boundary_rq || q->boundary_rq == rq) { 2883 q->end_sector = rq_end_sector(rq); 2884 q->boundary_rq = NULL; 2885 } 2886 2887 if (rq->rq_flags & RQF_DONTPREP) 2888 break; 2889 2890 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2891 /* 2892 * make sure space for the drain appears we 2893 * know we can do this because max_hw_segments 2894 * has been adjusted to be one fewer than the 2895 * device can handle 2896 */ 2897 rq->nr_phys_segments++; 2898 } 2899 2900 if (!q->prep_rq_fn) 2901 break; 2902 2903 ret = q->prep_rq_fn(q, rq); 2904 if (ret == BLKPREP_OK) { 2905 break; 2906 } else if (ret == BLKPREP_DEFER) { 2907 /* 2908 * the request may have been (partially) prepped. 2909 * we need to keep this request in the front to 2910 * avoid resource deadlock. RQF_STARTED will 2911 * prevent other fs requests from passing this one. 2912 */ 2913 if (q->dma_drain_size && blk_rq_bytes(rq) && 2914 !(rq->rq_flags & RQF_DONTPREP)) { 2915 /* 2916 * remove the space for the drain we added 2917 * so that we don't add it again 2918 */ 2919 --rq->nr_phys_segments; 2920 } 2921 2922 rq = NULL; 2923 break; 2924 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2925 rq->rq_flags |= RQF_QUIET; 2926 /* 2927 * Mark this request as started so we don't trigger 2928 * any debug logic in the end I/O path. 2929 */ 2930 blk_start_request(rq); 2931 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2932 BLK_STS_TARGET : BLK_STS_IOERR); 2933 } else { 2934 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2935 break; 2936 } 2937 } 2938 2939 return rq; 2940 } 2941 EXPORT_SYMBOL(blk_peek_request); 2942 2943 static void blk_dequeue_request(struct request *rq) 2944 { 2945 struct request_queue *q = rq->q; 2946 2947 BUG_ON(list_empty(&rq->queuelist)); 2948 BUG_ON(ELV_ON_HASH(rq)); 2949 2950 list_del_init(&rq->queuelist); 2951 2952 /* 2953 * the time frame between a request being removed from the lists 2954 * and to it is freed is accounted as io that is in progress at 2955 * the driver side. 2956 */ 2957 if (blk_account_rq(rq)) 2958 q->in_flight[rq_is_sync(rq)]++; 2959 } 2960 2961 /** 2962 * blk_start_request - start request processing on the driver 2963 * @req: request to dequeue 2964 * 2965 * Description: 2966 * Dequeue @req and start timeout timer on it. This hands off the 2967 * request to the driver. 2968 */ 2969 void blk_start_request(struct request *req) 2970 { 2971 lockdep_assert_held(req->q->queue_lock); 2972 WARN_ON_ONCE(req->q->mq_ops); 2973 2974 blk_dequeue_request(req); 2975 2976 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2977 req->io_start_time_ns = ktime_get_ns(); 2978 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2979 req->throtl_size = blk_rq_sectors(req); 2980 #endif 2981 req->rq_flags |= RQF_STATS; 2982 wbt_issue(req->q->rq_wb, req); 2983 } 2984 2985 BUG_ON(blk_rq_is_complete(req)); 2986 blk_add_timer(req); 2987 } 2988 EXPORT_SYMBOL(blk_start_request); 2989 2990 /** 2991 * blk_fetch_request - fetch a request from a request queue 2992 * @q: request queue to fetch a request from 2993 * 2994 * Description: 2995 * Return the request at the top of @q. The request is started on 2996 * return and LLD can start processing it immediately. 2997 * 2998 * Return: 2999 * Pointer to the request at the top of @q if available. Null 3000 * otherwise. 3001 */ 3002 struct request *blk_fetch_request(struct request_queue *q) 3003 { 3004 struct request *rq; 3005 3006 lockdep_assert_held(q->queue_lock); 3007 WARN_ON_ONCE(q->mq_ops); 3008 3009 rq = blk_peek_request(q); 3010 if (rq) 3011 blk_start_request(rq); 3012 return rq; 3013 } 3014 EXPORT_SYMBOL(blk_fetch_request); 3015 3016 /* 3017 * Steal bios from a request and add them to a bio list. 3018 * The request must not have been partially completed before. 3019 */ 3020 void blk_steal_bios(struct bio_list *list, struct request *rq) 3021 { 3022 if (rq->bio) { 3023 if (list->tail) 3024 list->tail->bi_next = rq->bio; 3025 else 3026 list->head = rq->bio; 3027 list->tail = rq->biotail; 3028 3029 rq->bio = NULL; 3030 rq->biotail = NULL; 3031 } 3032 3033 rq->__data_len = 0; 3034 } 3035 EXPORT_SYMBOL_GPL(blk_steal_bios); 3036 3037 /** 3038 * blk_update_request - Special helper function for request stacking drivers 3039 * @req: the request being processed 3040 * @error: block status code 3041 * @nr_bytes: number of bytes to complete @req 3042 * 3043 * Description: 3044 * Ends I/O on a number of bytes attached to @req, but doesn't complete 3045 * the request structure even if @req doesn't have leftover. 3046 * If @req has leftover, sets it up for the next range of segments. 3047 * 3048 * This special helper function is only for request stacking drivers 3049 * (e.g. request-based dm) so that they can handle partial completion. 3050 * Actual device drivers should use blk_end_request instead. 3051 * 3052 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 3053 * %false return from this function. 3054 * 3055 * Return: 3056 * %false - this request doesn't have any more data 3057 * %true - this request has more data 3058 **/ 3059 bool blk_update_request(struct request *req, blk_status_t error, 3060 unsigned int nr_bytes) 3061 { 3062 int total_bytes; 3063 3064 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 3065 3066 if (!req->bio) 3067 return false; 3068 3069 if (unlikely(error && !blk_rq_is_passthrough(req) && 3070 !(req->rq_flags & RQF_QUIET))) 3071 print_req_error(req, error); 3072 3073 blk_account_io_completion(req, nr_bytes); 3074 3075 total_bytes = 0; 3076 while (req->bio) { 3077 struct bio *bio = req->bio; 3078 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 3079 3080 if (bio_bytes == bio->bi_iter.bi_size) 3081 req->bio = bio->bi_next; 3082 3083 /* Completion has already been traced */ 3084 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 3085 req_bio_endio(req, bio, bio_bytes, error); 3086 3087 total_bytes += bio_bytes; 3088 nr_bytes -= bio_bytes; 3089 3090 if (!nr_bytes) 3091 break; 3092 } 3093 3094 /* 3095 * completely done 3096 */ 3097 if (!req->bio) { 3098 /* 3099 * Reset counters so that the request stacking driver 3100 * can find how many bytes remain in the request 3101 * later. 3102 */ 3103 req->__data_len = 0; 3104 return false; 3105 } 3106 3107 req->__data_len -= total_bytes; 3108 3109 /* update sector only for requests with clear definition of sector */ 3110 if (!blk_rq_is_passthrough(req)) 3111 req->__sector += total_bytes >> 9; 3112 3113 /* mixed attributes always follow the first bio */ 3114 if (req->rq_flags & RQF_MIXED_MERGE) { 3115 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3116 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3117 } 3118 3119 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3120 /* 3121 * If total number of sectors is less than the first segment 3122 * size, something has gone terribly wrong. 3123 */ 3124 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3125 blk_dump_rq_flags(req, "request botched"); 3126 req->__data_len = blk_rq_cur_bytes(req); 3127 } 3128 3129 /* recalculate the number of segments */ 3130 blk_recalc_rq_segments(req); 3131 } 3132 3133 return true; 3134 } 3135 EXPORT_SYMBOL_GPL(blk_update_request); 3136 3137 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3138 unsigned int nr_bytes, 3139 unsigned int bidi_bytes) 3140 { 3141 if (blk_update_request(rq, error, nr_bytes)) 3142 return true; 3143 3144 /* Bidi request must be completed as a whole */ 3145 if (unlikely(blk_bidi_rq(rq)) && 3146 blk_update_request(rq->next_rq, error, bidi_bytes)) 3147 return true; 3148 3149 if (blk_queue_add_random(rq->q)) 3150 add_disk_randomness(rq->rq_disk); 3151 3152 return false; 3153 } 3154 3155 /** 3156 * blk_unprep_request - unprepare a request 3157 * @req: the request 3158 * 3159 * This function makes a request ready for complete resubmission (or 3160 * completion). It happens only after all error handling is complete, 3161 * so represents the appropriate moment to deallocate any resources 3162 * that were allocated to the request in the prep_rq_fn. The queue 3163 * lock is held when calling this. 3164 */ 3165 void blk_unprep_request(struct request *req) 3166 { 3167 struct request_queue *q = req->q; 3168 3169 req->rq_flags &= ~RQF_DONTPREP; 3170 if (q->unprep_rq_fn) 3171 q->unprep_rq_fn(q, req); 3172 } 3173 EXPORT_SYMBOL_GPL(blk_unprep_request); 3174 3175 void blk_finish_request(struct request *req, blk_status_t error) 3176 { 3177 struct request_queue *q = req->q; 3178 u64 now = ktime_get_ns(); 3179 3180 lockdep_assert_held(req->q->queue_lock); 3181 WARN_ON_ONCE(q->mq_ops); 3182 3183 if (req->rq_flags & RQF_STATS) 3184 blk_stat_add(req, now); 3185 3186 if (req->rq_flags & RQF_QUEUED) 3187 blk_queue_end_tag(q, req); 3188 3189 BUG_ON(blk_queued_rq(req)); 3190 3191 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3192 laptop_io_completion(req->q->backing_dev_info); 3193 3194 blk_delete_timer(req); 3195 3196 if (req->rq_flags & RQF_DONTPREP) 3197 blk_unprep_request(req); 3198 3199 blk_account_io_done(req, now); 3200 3201 if (req->end_io) { 3202 wbt_done(req->q->rq_wb, req); 3203 req->end_io(req, error); 3204 } else { 3205 if (blk_bidi_rq(req)) 3206 __blk_put_request(req->next_rq->q, req->next_rq); 3207 3208 __blk_put_request(q, req); 3209 } 3210 } 3211 EXPORT_SYMBOL(blk_finish_request); 3212 3213 /** 3214 * blk_end_bidi_request - Complete a bidi request 3215 * @rq: the request to complete 3216 * @error: block status code 3217 * @nr_bytes: number of bytes to complete @rq 3218 * @bidi_bytes: number of bytes to complete @rq->next_rq 3219 * 3220 * Description: 3221 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3222 * Drivers that supports bidi can safely call this member for any 3223 * type of request, bidi or uni. In the later case @bidi_bytes is 3224 * just ignored. 3225 * 3226 * Return: 3227 * %false - we are done with this request 3228 * %true - still buffers pending for this request 3229 **/ 3230 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3231 unsigned int nr_bytes, unsigned int bidi_bytes) 3232 { 3233 struct request_queue *q = rq->q; 3234 unsigned long flags; 3235 3236 WARN_ON_ONCE(q->mq_ops); 3237 3238 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3239 return true; 3240 3241 spin_lock_irqsave(q->queue_lock, flags); 3242 blk_finish_request(rq, error); 3243 spin_unlock_irqrestore(q->queue_lock, flags); 3244 3245 return false; 3246 } 3247 3248 /** 3249 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3250 * @rq: the request to complete 3251 * @error: block status code 3252 * @nr_bytes: number of bytes to complete @rq 3253 * @bidi_bytes: number of bytes to complete @rq->next_rq 3254 * 3255 * Description: 3256 * Identical to blk_end_bidi_request() except that queue lock is 3257 * assumed to be locked on entry and remains so on return. 3258 * 3259 * Return: 3260 * %false - we are done with this request 3261 * %true - still buffers pending for this request 3262 **/ 3263 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3264 unsigned int nr_bytes, unsigned int bidi_bytes) 3265 { 3266 lockdep_assert_held(rq->q->queue_lock); 3267 WARN_ON_ONCE(rq->q->mq_ops); 3268 3269 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3270 return true; 3271 3272 blk_finish_request(rq, error); 3273 3274 return false; 3275 } 3276 3277 /** 3278 * blk_end_request - Helper function for drivers to complete the request. 3279 * @rq: the request being processed 3280 * @error: block status code 3281 * @nr_bytes: number of bytes to complete 3282 * 3283 * Description: 3284 * Ends I/O on a number of bytes attached to @rq. 3285 * If @rq has leftover, sets it up for the next range of segments. 3286 * 3287 * Return: 3288 * %false - we are done with this request 3289 * %true - still buffers pending for this request 3290 **/ 3291 bool blk_end_request(struct request *rq, blk_status_t error, 3292 unsigned int nr_bytes) 3293 { 3294 WARN_ON_ONCE(rq->q->mq_ops); 3295 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3296 } 3297 EXPORT_SYMBOL(blk_end_request); 3298 3299 /** 3300 * blk_end_request_all - Helper function for drives to finish the request. 3301 * @rq: the request to finish 3302 * @error: block status code 3303 * 3304 * Description: 3305 * Completely finish @rq. 3306 */ 3307 void blk_end_request_all(struct request *rq, blk_status_t error) 3308 { 3309 bool pending; 3310 unsigned int bidi_bytes = 0; 3311 3312 if (unlikely(blk_bidi_rq(rq))) 3313 bidi_bytes = blk_rq_bytes(rq->next_rq); 3314 3315 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3316 BUG_ON(pending); 3317 } 3318 EXPORT_SYMBOL(blk_end_request_all); 3319 3320 /** 3321 * __blk_end_request - Helper function for drivers to complete the request. 3322 * @rq: the request being processed 3323 * @error: block status code 3324 * @nr_bytes: number of bytes to complete 3325 * 3326 * Description: 3327 * Must be called with queue lock held unlike blk_end_request(). 3328 * 3329 * Return: 3330 * %false - we are done with this request 3331 * %true - still buffers pending for this request 3332 **/ 3333 bool __blk_end_request(struct request *rq, blk_status_t error, 3334 unsigned int nr_bytes) 3335 { 3336 lockdep_assert_held(rq->q->queue_lock); 3337 WARN_ON_ONCE(rq->q->mq_ops); 3338 3339 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3340 } 3341 EXPORT_SYMBOL(__blk_end_request); 3342 3343 /** 3344 * __blk_end_request_all - Helper function for drives to finish the request. 3345 * @rq: the request to finish 3346 * @error: block status code 3347 * 3348 * Description: 3349 * Completely finish @rq. Must be called with queue lock held. 3350 */ 3351 void __blk_end_request_all(struct request *rq, blk_status_t error) 3352 { 3353 bool pending; 3354 unsigned int bidi_bytes = 0; 3355 3356 lockdep_assert_held(rq->q->queue_lock); 3357 WARN_ON_ONCE(rq->q->mq_ops); 3358 3359 if (unlikely(blk_bidi_rq(rq))) 3360 bidi_bytes = blk_rq_bytes(rq->next_rq); 3361 3362 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3363 BUG_ON(pending); 3364 } 3365 EXPORT_SYMBOL(__blk_end_request_all); 3366 3367 /** 3368 * __blk_end_request_cur - Helper function to finish the current request chunk. 3369 * @rq: the request to finish the current chunk for 3370 * @error: block status code 3371 * 3372 * Description: 3373 * Complete the current consecutively mapped chunk from @rq. Must 3374 * be called with queue lock held. 3375 * 3376 * Return: 3377 * %false - we are done with this request 3378 * %true - still buffers pending for this request 3379 */ 3380 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3381 { 3382 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3383 } 3384 EXPORT_SYMBOL(__blk_end_request_cur); 3385 3386 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3387 struct bio *bio) 3388 { 3389 if (bio_has_data(bio)) 3390 rq->nr_phys_segments = bio_phys_segments(q, bio); 3391 else if (bio_op(bio) == REQ_OP_DISCARD) 3392 rq->nr_phys_segments = 1; 3393 3394 rq->__data_len = bio->bi_iter.bi_size; 3395 rq->bio = rq->biotail = bio; 3396 3397 if (bio->bi_disk) 3398 rq->rq_disk = bio->bi_disk; 3399 } 3400 3401 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3402 /** 3403 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3404 * @rq: the request to be flushed 3405 * 3406 * Description: 3407 * Flush all pages in @rq. 3408 */ 3409 void rq_flush_dcache_pages(struct request *rq) 3410 { 3411 struct req_iterator iter; 3412 struct bio_vec bvec; 3413 3414 rq_for_each_segment(bvec, rq, iter) 3415 flush_dcache_page(bvec.bv_page); 3416 } 3417 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3418 #endif 3419 3420 /** 3421 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3422 * @q : the queue of the device being checked 3423 * 3424 * Description: 3425 * Check if underlying low-level drivers of a device are busy. 3426 * If the drivers want to export their busy state, they must set own 3427 * exporting function using blk_queue_lld_busy() first. 3428 * 3429 * Basically, this function is used only by request stacking drivers 3430 * to stop dispatching requests to underlying devices when underlying 3431 * devices are busy. This behavior helps more I/O merging on the queue 3432 * of the request stacking driver and prevents I/O throughput regression 3433 * on burst I/O load. 3434 * 3435 * Return: 3436 * 0 - Not busy (The request stacking driver should dispatch request) 3437 * 1 - Busy (The request stacking driver should stop dispatching request) 3438 */ 3439 int blk_lld_busy(struct request_queue *q) 3440 { 3441 if (q->lld_busy_fn) 3442 return q->lld_busy_fn(q); 3443 3444 return 0; 3445 } 3446 EXPORT_SYMBOL_GPL(blk_lld_busy); 3447 3448 /** 3449 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3450 * @rq: the clone request to be cleaned up 3451 * 3452 * Description: 3453 * Free all bios in @rq for a cloned request. 3454 */ 3455 void blk_rq_unprep_clone(struct request *rq) 3456 { 3457 struct bio *bio; 3458 3459 while ((bio = rq->bio) != NULL) { 3460 rq->bio = bio->bi_next; 3461 3462 bio_put(bio); 3463 } 3464 } 3465 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3466 3467 /* 3468 * Copy attributes of the original request to the clone request. 3469 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3470 */ 3471 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3472 { 3473 dst->cpu = src->cpu; 3474 dst->__sector = blk_rq_pos(src); 3475 dst->__data_len = blk_rq_bytes(src); 3476 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3477 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 3478 dst->special_vec = src->special_vec; 3479 } 3480 dst->nr_phys_segments = src->nr_phys_segments; 3481 dst->ioprio = src->ioprio; 3482 dst->extra_len = src->extra_len; 3483 } 3484 3485 /** 3486 * blk_rq_prep_clone - Helper function to setup clone request 3487 * @rq: the request to be setup 3488 * @rq_src: original request to be cloned 3489 * @bs: bio_set that bios for clone are allocated from 3490 * @gfp_mask: memory allocation mask for bio 3491 * @bio_ctr: setup function to be called for each clone bio. 3492 * Returns %0 for success, non %0 for failure. 3493 * @data: private data to be passed to @bio_ctr 3494 * 3495 * Description: 3496 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3497 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3498 * are not copied, and copying such parts is the caller's responsibility. 3499 * Also, pages which the original bios are pointing to are not copied 3500 * and the cloned bios just point same pages. 3501 * So cloned bios must be completed before original bios, which means 3502 * the caller must complete @rq before @rq_src. 3503 */ 3504 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3505 struct bio_set *bs, gfp_t gfp_mask, 3506 int (*bio_ctr)(struct bio *, struct bio *, void *), 3507 void *data) 3508 { 3509 struct bio *bio, *bio_src; 3510 3511 if (!bs) 3512 bs = &fs_bio_set; 3513 3514 __rq_for_each_bio(bio_src, rq_src) { 3515 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3516 if (!bio) 3517 goto free_and_out; 3518 3519 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3520 goto free_and_out; 3521 3522 if (rq->bio) { 3523 rq->biotail->bi_next = bio; 3524 rq->biotail = bio; 3525 } else 3526 rq->bio = rq->biotail = bio; 3527 } 3528 3529 __blk_rq_prep_clone(rq, rq_src); 3530 3531 return 0; 3532 3533 free_and_out: 3534 if (bio) 3535 bio_put(bio); 3536 blk_rq_unprep_clone(rq); 3537 3538 return -ENOMEM; 3539 } 3540 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3541 3542 int kblockd_schedule_work(struct work_struct *work) 3543 { 3544 return queue_work(kblockd_workqueue, work); 3545 } 3546 EXPORT_SYMBOL(kblockd_schedule_work); 3547 3548 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3549 { 3550 return queue_work_on(cpu, kblockd_workqueue, work); 3551 } 3552 EXPORT_SYMBOL(kblockd_schedule_work_on); 3553 3554 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3555 unsigned long delay) 3556 { 3557 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3558 } 3559 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3560 3561 /** 3562 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3563 * @plug: The &struct blk_plug that needs to be initialized 3564 * 3565 * Description: 3566 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3567 * pending I/O should the task end up blocking between blk_start_plug() and 3568 * blk_finish_plug(). This is important from a performance perspective, but 3569 * also ensures that we don't deadlock. For instance, if the task is blocking 3570 * for a memory allocation, memory reclaim could end up wanting to free a 3571 * page belonging to that request that is currently residing in our private 3572 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3573 * this kind of deadlock. 3574 */ 3575 void blk_start_plug(struct blk_plug *plug) 3576 { 3577 struct task_struct *tsk = current; 3578 3579 /* 3580 * If this is a nested plug, don't actually assign it. 3581 */ 3582 if (tsk->plug) 3583 return; 3584 3585 INIT_LIST_HEAD(&plug->list); 3586 INIT_LIST_HEAD(&plug->mq_list); 3587 INIT_LIST_HEAD(&plug->cb_list); 3588 /* 3589 * Store ordering should not be needed here, since a potential 3590 * preempt will imply a full memory barrier 3591 */ 3592 tsk->plug = plug; 3593 } 3594 EXPORT_SYMBOL(blk_start_plug); 3595 3596 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3597 { 3598 struct request *rqa = container_of(a, struct request, queuelist); 3599 struct request *rqb = container_of(b, struct request, queuelist); 3600 3601 return !(rqa->q < rqb->q || 3602 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3603 } 3604 3605 /* 3606 * If 'from_schedule' is true, then postpone the dispatch of requests 3607 * until a safe kblockd context. We due this to avoid accidental big 3608 * additional stack usage in driver dispatch, in places where the originally 3609 * plugger did not intend it. 3610 */ 3611 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3612 bool from_schedule) 3613 __releases(q->queue_lock) 3614 { 3615 lockdep_assert_held(q->queue_lock); 3616 3617 trace_block_unplug(q, depth, !from_schedule); 3618 3619 if (from_schedule) 3620 blk_run_queue_async(q); 3621 else 3622 __blk_run_queue(q); 3623 spin_unlock_irq(q->queue_lock); 3624 } 3625 3626 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3627 { 3628 LIST_HEAD(callbacks); 3629 3630 while (!list_empty(&plug->cb_list)) { 3631 list_splice_init(&plug->cb_list, &callbacks); 3632 3633 while (!list_empty(&callbacks)) { 3634 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3635 struct blk_plug_cb, 3636 list); 3637 list_del(&cb->list); 3638 cb->callback(cb, from_schedule); 3639 } 3640 } 3641 } 3642 3643 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3644 int size) 3645 { 3646 struct blk_plug *plug = current->plug; 3647 struct blk_plug_cb *cb; 3648 3649 if (!plug) 3650 return NULL; 3651 3652 list_for_each_entry(cb, &plug->cb_list, list) 3653 if (cb->callback == unplug && cb->data == data) 3654 return cb; 3655 3656 /* Not currently on the callback list */ 3657 BUG_ON(size < sizeof(*cb)); 3658 cb = kzalloc(size, GFP_ATOMIC); 3659 if (cb) { 3660 cb->data = data; 3661 cb->callback = unplug; 3662 list_add(&cb->list, &plug->cb_list); 3663 } 3664 return cb; 3665 } 3666 EXPORT_SYMBOL(blk_check_plugged); 3667 3668 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3669 { 3670 struct request_queue *q; 3671 struct request *rq; 3672 LIST_HEAD(list); 3673 unsigned int depth; 3674 3675 flush_plug_callbacks(plug, from_schedule); 3676 3677 if (!list_empty(&plug->mq_list)) 3678 blk_mq_flush_plug_list(plug, from_schedule); 3679 3680 if (list_empty(&plug->list)) 3681 return; 3682 3683 list_splice_init(&plug->list, &list); 3684 3685 list_sort(NULL, &list, plug_rq_cmp); 3686 3687 q = NULL; 3688 depth = 0; 3689 3690 while (!list_empty(&list)) { 3691 rq = list_entry_rq(list.next); 3692 list_del_init(&rq->queuelist); 3693 BUG_ON(!rq->q); 3694 if (rq->q != q) { 3695 /* 3696 * This drops the queue lock 3697 */ 3698 if (q) 3699 queue_unplugged(q, depth, from_schedule); 3700 q = rq->q; 3701 depth = 0; 3702 spin_lock_irq(q->queue_lock); 3703 } 3704 3705 /* 3706 * Short-circuit if @q is dead 3707 */ 3708 if (unlikely(blk_queue_dying(q))) { 3709 __blk_end_request_all(rq, BLK_STS_IOERR); 3710 continue; 3711 } 3712 3713 /* 3714 * rq is already accounted, so use raw insert 3715 */ 3716 if (op_is_flush(rq->cmd_flags)) 3717 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3718 else 3719 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3720 3721 depth++; 3722 } 3723 3724 /* 3725 * This drops the queue lock 3726 */ 3727 if (q) 3728 queue_unplugged(q, depth, from_schedule); 3729 } 3730 3731 void blk_finish_plug(struct blk_plug *plug) 3732 { 3733 if (plug != current->plug) 3734 return; 3735 blk_flush_plug_list(plug, false); 3736 3737 current->plug = NULL; 3738 } 3739 EXPORT_SYMBOL(blk_finish_plug); 3740 3741 #ifdef CONFIG_PM 3742 /** 3743 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3744 * @q: the queue of the device 3745 * @dev: the device the queue belongs to 3746 * 3747 * Description: 3748 * Initialize runtime-PM-related fields for @q and start auto suspend for 3749 * @dev. Drivers that want to take advantage of request-based runtime PM 3750 * should call this function after @dev has been initialized, and its 3751 * request queue @q has been allocated, and runtime PM for it can not happen 3752 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3753 * cases, driver should call this function before any I/O has taken place. 3754 * 3755 * This function takes care of setting up using auto suspend for the device, 3756 * the autosuspend delay is set to -1 to make runtime suspend impossible 3757 * until an updated value is either set by user or by driver. Drivers do 3758 * not need to touch other autosuspend settings. 3759 * 3760 * The block layer runtime PM is request based, so only works for drivers 3761 * that use request as their IO unit instead of those directly use bio's. 3762 */ 3763 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3764 { 3765 /* not support for RQF_PM and ->rpm_status in blk-mq yet */ 3766 if (q->mq_ops) 3767 return; 3768 3769 q->dev = dev; 3770 q->rpm_status = RPM_ACTIVE; 3771 pm_runtime_set_autosuspend_delay(q->dev, -1); 3772 pm_runtime_use_autosuspend(q->dev); 3773 } 3774 EXPORT_SYMBOL(blk_pm_runtime_init); 3775 3776 /** 3777 * blk_pre_runtime_suspend - Pre runtime suspend check 3778 * @q: the queue of the device 3779 * 3780 * Description: 3781 * This function will check if runtime suspend is allowed for the device 3782 * by examining if there are any requests pending in the queue. If there 3783 * are requests pending, the device can not be runtime suspended; otherwise, 3784 * the queue's status will be updated to SUSPENDING and the driver can 3785 * proceed to suspend the device. 3786 * 3787 * For the not allowed case, we mark last busy for the device so that 3788 * runtime PM core will try to autosuspend it some time later. 3789 * 3790 * This function should be called near the start of the device's 3791 * runtime_suspend callback. 3792 * 3793 * Return: 3794 * 0 - OK to runtime suspend the device 3795 * -EBUSY - Device should not be runtime suspended 3796 */ 3797 int blk_pre_runtime_suspend(struct request_queue *q) 3798 { 3799 int ret = 0; 3800 3801 if (!q->dev) 3802 return ret; 3803 3804 spin_lock_irq(q->queue_lock); 3805 if (q->nr_pending) { 3806 ret = -EBUSY; 3807 pm_runtime_mark_last_busy(q->dev); 3808 } else { 3809 q->rpm_status = RPM_SUSPENDING; 3810 } 3811 spin_unlock_irq(q->queue_lock); 3812 return ret; 3813 } 3814 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3815 3816 /** 3817 * blk_post_runtime_suspend - Post runtime suspend processing 3818 * @q: the queue of the device 3819 * @err: return value of the device's runtime_suspend function 3820 * 3821 * Description: 3822 * Update the queue's runtime status according to the return value of the 3823 * device's runtime suspend function and mark last busy for the device so 3824 * that PM core will try to auto suspend the device at a later time. 3825 * 3826 * This function should be called near the end of the device's 3827 * runtime_suspend callback. 3828 */ 3829 void blk_post_runtime_suspend(struct request_queue *q, int err) 3830 { 3831 if (!q->dev) 3832 return; 3833 3834 spin_lock_irq(q->queue_lock); 3835 if (!err) { 3836 q->rpm_status = RPM_SUSPENDED; 3837 } else { 3838 q->rpm_status = RPM_ACTIVE; 3839 pm_runtime_mark_last_busy(q->dev); 3840 } 3841 spin_unlock_irq(q->queue_lock); 3842 } 3843 EXPORT_SYMBOL(blk_post_runtime_suspend); 3844 3845 /** 3846 * blk_pre_runtime_resume - Pre runtime resume processing 3847 * @q: the queue of the device 3848 * 3849 * Description: 3850 * Update the queue's runtime status to RESUMING in preparation for the 3851 * runtime resume of the device. 3852 * 3853 * This function should be called near the start of the device's 3854 * runtime_resume callback. 3855 */ 3856 void blk_pre_runtime_resume(struct request_queue *q) 3857 { 3858 if (!q->dev) 3859 return; 3860 3861 spin_lock_irq(q->queue_lock); 3862 q->rpm_status = RPM_RESUMING; 3863 spin_unlock_irq(q->queue_lock); 3864 } 3865 EXPORT_SYMBOL(blk_pre_runtime_resume); 3866 3867 /** 3868 * blk_post_runtime_resume - Post runtime resume processing 3869 * @q: the queue of the device 3870 * @err: return value of the device's runtime_resume function 3871 * 3872 * Description: 3873 * Update the queue's runtime status according to the return value of the 3874 * device's runtime_resume function. If it is successfully resumed, process 3875 * the requests that are queued into the device's queue when it is resuming 3876 * and then mark last busy and initiate autosuspend for it. 3877 * 3878 * This function should be called near the end of the device's 3879 * runtime_resume callback. 3880 */ 3881 void blk_post_runtime_resume(struct request_queue *q, int err) 3882 { 3883 if (!q->dev) 3884 return; 3885 3886 spin_lock_irq(q->queue_lock); 3887 if (!err) { 3888 q->rpm_status = RPM_ACTIVE; 3889 __blk_run_queue(q); 3890 pm_runtime_mark_last_busy(q->dev); 3891 pm_request_autosuspend(q->dev); 3892 } else { 3893 q->rpm_status = RPM_SUSPENDED; 3894 } 3895 spin_unlock_irq(q->queue_lock); 3896 } 3897 EXPORT_SYMBOL(blk_post_runtime_resume); 3898 3899 /** 3900 * blk_set_runtime_active - Force runtime status of the queue to be active 3901 * @q: the queue of the device 3902 * 3903 * If the device is left runtime suspended during system suspend the resume 3904 * hook typically resumes the device and corrects runtime status 3905 * accordingly. However, that does not affect the queue runtime PM status 3906 * which is still "suspended". This prevents processing requests from the 3907 * queue. 3908 * 3909 * This function can be used in driver's resume hook to correct queue 3910 * runtime PM status and re-enable peeking requests from the queue. It 3911 * should be called before first request is added to the queue. 3912 */ 3913 void blk_set_runtime_active(struct request_queue *q) 3914 { 3915 spin_lock_irq(q->queue_lock); 3916 q->rpm_status = RPM_ACTIVE; 3917 pm_runtime_mark_last_busy(q->dev); 3918 pm_request_autosuspend(q->dev); 3919 spin_unlock_irq(q->queue_lock); 3920 } 3921 EXPORT_SYMBOL(blk_set_runtime_active); 3922 #endif 3923 3924 int __init blk_dev_init(void) 3925 { 3926 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3927 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3928 FIELD_SIZEOF(struct request, cmd_flags)); 3929 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3930 FIELD_SIZEOF(struct bio, bi_opf)); 3931 3932 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3933 kblockd_workqueue = alloc_workqueue("kblockd", 3934 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3935 if (!kblockd_workqueue) 3936 panic("Failed to create kblockd\n"); 3937 3938 request_cachep = kmem_cache_create("blkdev_requests", 3939 sizeof(struct request), 0, SLAB_PANIC, NULL); 3940 3941 blk_requestq_cachep = kmem_cache_create("request_queue", 3942 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3943 3944 #ifdef CONFIG_DEBUG_FS 3945 blk_debugfs_root = debugfs_create_dir("block", NULL); 3946 #endif 3947 3948 return 0; 3949 } 3950