1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-pm.h" 46 #include "blk-rq-qos.h" 47 48 #ifdef CONFIG_DEBUG_FS 49 struct dentry *blk_debugfs_root; 50 #endif 51 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 57 58 DEFINE_IDA(blk_queue_ida); 59 60 /* 61 * For the allocated request tables 62 */ 63 struct kmem_cache *request_cachep; 64 65 /* 66 * For queue allocation 67 */ 68 struct kmem_cache *blk_requestq_cachep; 69 70 /* 71 * Controlling structure to kblockd 72 */ 73 static struct workqueue_struct *kblockd_workqueue; 74 75 /** 76 * blk_queue_flag_set - atomically set a queue flag 77 * @flag: flag to be set 78 * @q: request queue 79 */ 80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 81 { 82 unsigned long flags; 83 84 spin_lock_irqsave(q->queue_lock, flags); 85 queue_flag_set(flag, q); 86 spin_unlock_irqrestore(q->queue_lock, flags); 87 } 88 EXPORT_SYMBOL(blk_queue_flag_set); 89 90 /** 91 * blk_queue_flag_clear - atomically clear a queue flag 92 * @flag: flag to be cleared 93 * @q: request queue 94 */ 95 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 96 { 97 unsigned long flags; 98 99 spin_lock_irqsave(q->queue_lock, flags); 100 queue_flag_clear(flag, q); 101 spin_unlock_irqrestore(q->queue_lock, flags); 102 } 103 EXPORT_SYMBOL(blk_queue_flag_clear); 104 105 /** 106 * blk_queue_flag_test_and_set - atomically test and set a queue flag 107 * @flag: flag to be set 108 * @q: request queue 109 * 110 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 111 * the flag was already set. 112 */ 113 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 114 { 115 unsigned long flags; 116 bool res; 117 118 spin_lock_irqsave(q->queue_lock, flags); 119 res = queue_flag_test_and_set(flag, q); 120 spin_unlock_irqrestore(q->queue_lock, flags); 121 122 return res; 123 } 124 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 125 126 /** 127 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag 128 * @flag: flag to be cleared 129 * @q: request queue 130 * 131 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 132 * the flag was set. 133 */ 134 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) 135 { 136 unsigned long flags; 137 bool res; 138 139 spin_lock_irqsave(q->queue_lock, flags); 140 res = queue_flag_test_and_clear(flag, q); 141 spin_unlock_irqrestore(q->queue_lock, flags); 142 143 return res; 144 } 145 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear); 146 147 static void blk_clear_congested(struct request_list *rl, int sync) 148 { 149 #ifdef CONFIG_CGROUP_WRITEBACK 150 clear_wb_congested(rl->blkg->wb_congested, sync); 151 #else 152 /* 153 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 154 * flip its congestion state for events on other blkcgs. 155 */ 156 if (rl == &rl->q->root_rl) 157 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 158 #endif 159 } 160 161 static void blk_set_congested(struct request_list *rl, int sync) 162 { 163 #ifdef CONFIG_CGROUP_WRITEBACK 164 set_wb_congested(rl->blkg->wb_congested, sync); 165 #else 166 /* see blk_clear_congested() */ 167 if (rl == &rl->q->root_rl) 168 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 169 #endif 170 } 171 172 void blk_queue_congestion_threshold(struct request_queue *q) 173 { 174 int nr; 175 176 nr = q->nr_requests - (q->nr_requests / 8) + 1; 177 if (nr > q->nr_requests) 178 nr = q->nr_requests; 179 q->nr_congestion_on = nr; 180 181 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 182 if (nr < 1) 183 nr = 1; 184 q->nr_congestion_off = nr; 185 } 186 187 void blk_rq_init(struct request_queue *q, struct request *rq) 188 { 189 memset(rq, 0, sizeof(*rq)); 190 191 INIT_LIST_HEAD(&rq->queuelist); 192 INIT_LIST_HEAD(&rq->timeout_list); 193 rq->cpu = -1; 194 rq->q = q; 195 rq->__sector = (sector_t) -1; 196 INIT_HLIST_NODE(&rq->hash); 197 RB_CLEAR_NODE(&rq->rb_node); 198 rq->tag = -1; 199 rq->internal_tag = -1; 200 rq->start_time_ns = ktime_get_ns(); 201 rq->part = NULL; 202 } 203 EXPORT_SYMBOL(blk_rq_init); 204 205 static const struct { 206 int errno; 207 const char *name; 208 } blk_errors[] = { 209 [BLK_STS_OK] = { 0, "" }, 210 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 211 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 212 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 213 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 214 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 215 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 216 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 217 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 218 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 219 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 220 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 221 222 /* device mapper special case, should not leak out: */ 223 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 224 225 /* everything else not covered above: */ 226 [BLK_STS_IOERR] = { -EIO, "I/O" }, 227 }; 228 229 blk_status_t errno_to_blk_status(int errno) 230 { 231 int i; 232 233 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 234 if (blk_errors[i].errno == errno) 235 return (__force blk_status_t)i; 236 } 237 238 return BLK_STS_IOERR; 239 } 240 EXPORT_SYMBOL_GPL(errno_to_blk_status); 241 242 int blk_status_to_errno(blk_status_t status) 243 { 244 int idx = (__force int)status; 245 246 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 247 return -EIO; 248 return blk_errors[idx].errno; 249 } 250 EXPORT_SYMBOL_GPL(blk_status_to_errno); 251 252 static void print_req_error(struct request *req, blk_status_t status) 253 { 254 int idx = (__force int)status; 255 256 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 257 return; 258 259 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 260 __func__, blk_errors[idx].name, req->rq_disk ? 261 req->rq_disk->disk_name : "?", 262 (unsigned long long)blk_rq_pos(req)); 263 } 264 265 static void req_bio_endio(struct request *rq, struct bio *bio, 266 unsigned int nbytes, blk_status_t error) 267 { 268 if (error) 269 bio->bi_status = error; 270 271 if (unlikely(rq->rq_flags & RQF_QUIET)) 272 bio_set_flag(bio, BIO_QUIET); 273 274 bio_advance(bio, nbytes); 275 276 /* don't actually finish bio if it's part of flush sequence */ 277 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 278 bio_endio(bio); 279 } 280 281 void blk_dump_rq_flags(struct request *rq, char *msg) 282 { 283 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 284 rq->rq_disk ? rq->rq_disk->disk_name : "?", 285 (unsigned long long) rq->cmd_flags); 286 287 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 288 (unsigned long long)blk_rq_pos(rq), 289 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 290 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 291 rq->bio, rq->biotail, blk_rq_bytes(rq)); 292 } 293 EXPORT_SYMBOL(blk_dump_rq_flags); 294 295 static void blk_delay_work(struct work_struct *work) 296 { 297 struct request_queue *q; 298 299 q = container_of(work, struct request_queue, delay_work.work); 300 spin_lock_irq(q->queue_lock); 301 __blk_run_queue(q); 302 spin_unlock_irq(q->queue_lock); 303 } 304 305 /** 306 * blk_delay_queue - restart queueing after defined interval 307 * @q: The &struct request_queue in question 308 * @msecs: Delay in msecs 309 * 310 * Description: 311 * Sometimes queueing needs to be postponed for a little while, to allow 312 * resources to come back. This function will make sure that queueing is 313 * restarted around the specified time. 314 */ 315 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 316 { 317 lockdep_assert_held(q->queue_lock); 318 WARN_ON_ONCE(q->mq_ops); 319 320 if (likely(!blk_queue_dead(q))) 321 queue_delayed_work(kblockd_workqueue, &q->delay_work, 322 msecs_to_jiffies(msecs)); 323 } 324 EXPORT_SYMBOL(blk_delay_queue); 325 326 /** 327 * blk_start_queue_async - asynchronously restart a previously stopped queue 328 * @q: The &struct request_queue in question 329 * 330 * Description: 331 * blk_start_queue_async() will clear the stop flag on the queue, and 332 * ensure that the request_fn for the queue is run from an async 333 * context. 334 **/ 335 void blk_start_queue_async(struct request_queue *q) 336 { 337 lockdep_assert_held(q->queue_lock); 338 WARN_ON_ONCE(q->mq_ops); 339 340 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 341 blk_run_queue_async(q); 342 } 343 EXPORT_SYMBOL(blk_start_queue_async); 344 345 /** 346 * blk_start_queue - restart a previously stopped queue 347 * @q: The &struct request_queue in question 348 * 349 * Description: 350 * blk_start_queue() will clear the stop flag on the queue, and call 351 * the request_fn for the queue if it was in a stopped state when 352 * entered. Also see blk_stop_queue(). 353 **/ 354 void blk_start_queue(struct request_queue *q) 355 { 356 lockdep_assert_held(q->queue_lock); 357 WARN_ON_ONCE(q->mq_ops); 358 359 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 360 __blk_run_queue(q); 361 } 362 EXPORT_SYMBOL(blk_start_queue); 363 364 /** 365 * blk_stop_queue - stop a queue 366 * @q: The &struct request_queue in question 367 * 368 * Description: 369 * The Linux block layer assumes that a block driver will consume all 370 * entries on the request queue when the request_fn strategy is called. 371 * Often this will not happen, because of hardware limitations (queue 372 * depth settings). If a device driver gets a 'queue full' response, 373 * or if it simply chooses not to queue more I/O at one point, it can 374 * call this function to prevent the request_fn from being called until 375 * the driver has signalled it's ready to go again. This happens by calling 376 * blk_start_queue() to restart queue operations. 377 **/ 378 void blk_stop_queue(struct request_queue *q) 379 { 380 lockdep_assert_held(q->queue_lock); 381 WARN_ON_ONCE(q->mq_ops); 382 383 cancel_delayed_work(&q->delay_work); 384 queue_flag_set(QUEUE_FLAG_STOPPED, q); 385 } 386 EXPORT_SYMBOL(blk_stop_queue); 387 388 /** 389 * blk_sync_queue - cancel any pending callbacks on a queue 390 * @q: the queue 391 * 392 * Description: 393 * The block layer may perform asynchronous callback activity 394 * on a queue, such as calling the unplug function after a timeout. 395 * A block device may call blk_sync_queue to ensure that any 396 * such activity is cancelled, thus allowing it to release resources 397 * that the callbacks might use. The caller must already have made sure 398 * that its ->make_request_fn will not re-add plugging prior to calling 399 * this function. 400 * 401 * This function does not cancel any asynchronous activity arising 402 * out of elevator or throttling code. That would require elevator_exit() 403 * and blkcg_exit_queue() to be called with queue lock initialized. 404 * 405 */ 406 void blk_sync_queue(struct request_queue *q) 407 { 408 del_timer_sync(&q->timeout); 409 cancel_work_sync(&q->timeout_work); 410 411 if (q->mq_ops) { 412 struct blk_mq_hw_ctx *hctx; 413 int i; 414 415 cancel_delayed_work_sync(&q->requeue_work); 416 queue_for_each_hw_ctx(q, hctx, i) 417 cancel_delayed_work_sync(&hctx->run_work); 418 } else { 419 cancel_delayed_work_sync(&q->delay_work); 420 } 421 } 422 EXPORT_SYMBOL(blk_sync_queue); 423 424 /** 425 * blk_set_pm_only - increment pm_only counter 426 * @q: request queue pointer 427 */ 428 void blk_set_pm_only(struct request_queue *q) 429 { 430 atomic_inc(&q->pm_only); 431 } 432 EXPORT_SYMBOL_GPL(blk_set_pm_only); 433 434 void blk_clear_pm_only(struct request_queue *q) 435 { 436 int pm_only; 437 438 pm_only = atomic_dec_return(&q->pm_only); 439 WARN_ON_ONCE(pm_only < 0); 440 if (pm_only == 0) 441 wake_up_all(&q->mq_freeze_wq); 442 } 443 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 444 445 /** 446 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 447 * @q: The queue to run 448 * 449 * Description: 450 * Invoke request handling on a queue if there are any pending requests. 451 * May be used to restart request handling after a request has completed. 452 * This variant runs the queue whether or not the queue has been 453 * stopped. Must be called with the queue lock held and interrupts 454 * disabled. See also @blk_run_queue. 455 */ 456 inline void __blk_run_queue_uncond(struct request_queue *q) 457 { 458 lockdep_assert_held(q->queue_lock); 459 WARN_ON_ONCE(q->mq_ops); 460 461 if (unlikely(blk_queue_dead(q))) 462 return; 463 464 /* 465 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 466 * the queue lock internally. As a result multiple threads may be 467 * running such a request function concurrently. Keep track of the 468 * number of active request_fn invocations such that blk_drain_queue() 469 * can wait until all these request_fn calls have finished. 470 */ 471 q->request_fn_active++; 472 q->request_fn(q); 473 q->request_fn_active--; 474 } 475 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 476 477 /** 478 * __blk_run_queue - run a single device queue 479 * @q: The queue to run 480 * 481 * Description: 482 * See @blk_run_queue. 483 */ 484 void __blk_run_queue(struct request_queue *q) 485 { 486 lockdep_assert_held(q->queue_lock); 487 WARN_ON_ONCE(q->mq_ops); 488 489 if (unlikely(blk_queue_stopped(q))) 490 return; 491 492 __blk_run_queue_uncond(q); 493 } 494 EXPORT_SYMBOL(__blk_run_queue); 495 496 /** 497 * blk_run_queue_async - run a single device queue in workqueue context 498 * @q: The queue to run 499 * 500 * Description: 501 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 502 * of us. 503 * 504 * Note: 505 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 506 * has canceled q->delay_work, callers must hold the queue lock to avoid 507 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 508 */ 509 void blk_run_queue_async(struct request_queue *q) 510 { 511 lockdep_assert_held(q->queue_lock); 512 WARN_ON_ONCE(q->mq_ops); 513 514 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 515 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 516 } 517 EXPORT_SYMBOL(blk_run_queue_async); 518 519 /** 520 * blk_run_queue - run a single device queue 521 * @q: The queue to run 522 * 523 * Description: 524 * Invoke request handling on this queue, if it has pending work to do. 525 * May be used to restart queueing when a request has completed. 526 */ 527 void blk_run_queue(struct request_queue *q) 528 { 529 unsigned long flags; 530 531 WARN_ON_ONCE(q->mq_ops); 532 533 spin_lock_irqsave(q->queue_lock, flags); 534 __blk_run_queue(q); 535 spin_unlock_irqrestore(q->queue_lock, flags); 536 } 537 EXPORT_SYMBOL(blk_run_queue); 538 539 void blk_put_queue(struct request_queue *q) 540 { 541 kobject_put(&q->kobj); 542 } 543 EXPORT_SYMBOL(blk_put_queue); 544 545 /** 546 * __blk_drain_queue - drain requests from request_queue 547 * @q: queue to drain 548 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 549 * 550 * Drain requests from @q. If @drain_all is set, all requests are drained. 551 * If not, only ELVPRIV requests are drained. The caller is responsible 552 * for ensuring that no new requests which need to be drained are queued. 553 */ 554 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 555 __releases(q->queue_lock) 556 __acquires(q->queue_lock) 557 { 558 int i; 559 560 lockdep_assert_held(q->queue_lock); 561 WARN_ON_ONCE(q->mq_ops); 562 563 while (true) { 564 bool drain = false; 565 566 /* 567 * The caller might be trying to drain @q before its 568 * elevator is initialized. 569 */ 570 if (q->elevator) 571 elv_drain_elevator(q); 572 573 blkcg_drain_queue(q); 574 575 /* 576 * This function might be called on a queue which failed 577 * driver init after queue creation or is not yet fully 578 * active yet. Some drivers (e.g. fd and loop) get unhappy 579 * in such cases. Kick queue iff dispatch queue has 580 * something on it and @q has request_fn set. 581 */ 582 if (!list_empty(&q->queue_head) && q->request_fn) 583 __blk_run_queue(q); 584 585 drain |= q->nr_rqs_elvpriv; 586 drain |= q->request_fn_active; 587 588 /* 589 * Unfortunately, requests are queued at and tracked from 590 * multiple places and there's no single counter which can 591 * be drained. Check all the queues and counters. 592 */ 593 if (drain_all) { 594 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 595 drain |= !list_empty(&q->queue_head); 596 for (i = 0; i < 2; i++) { 597 drain |= q->nr_rqs[i]; 598 drain |= q->in_flight[i]; 599 if (fq) 600 drain |= !list_empty(&fq->flush_queue[i]); 601 } 602 } 603 604 if (!drain) 605 break; 606 607 spin_unlock_irq(q->queue_lock); 608 609 msleep(10); 610 611 spin_lock_irq(q->queue_lock); 612 } 613 614 /* 615 * With queue marked dead, any woken up waiter will fail the 616 * allocation path, so the wakeup chaining is lost and we're 617 * left with hung waiters. We need to wake up those waiters. 618 */ 619 if (q->request_fn) { 620 struct request_list *rl; 621 622 blk_queue_for_each_rl(rl, q) 623 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 624 wake_up_all(&rl->wait[i]); 625 } 626 } 627 628 void blk_drain_queue(struct request_queue *q) 629 { 630 spin_lock_irq(q->queue_lock); 631 __blk_drain_queue(q, true); 632 spin_unlock_irq(q->queue_lock); 633 } 634 635 /** 636 * blk_queue_bypass_start - enter queue bypass mode 637 * @q: queue of interest 638 * 639 * In bypass mode, only the dispatch FIFO queue of @q is used. This 640 * function makes @q enter bypass mode and drains all requests which were 641 * throttled or issued before. On return, it's guaranteed that no request 642 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 643 * inside queue or RCU read lock. 644 */ 645 void blk_queue_bypass_start(struct request_queue *q) 646 { 647 WARN_ON_ONCE(q->mq_ops); 648 649 spin_lock_irq(q->queue_lock); 650 q->bypass_depth++; 651 queue_flag_set(QUEUE_FLAG_BYPASS, q); 652 spin_unlock_irq(q->queue_lock); 653 654 /* 655 * Queues start drained. Skip actual draining till init is 656 * complete. This avoids lenghty delays during queue init which 657 * can happen many times during boot. 658 */ 659 if (blk_queue_init_done(q)) { 660 spin_lock_irq(q->queue_lock); 661 __blk_drain_queue(q, false); 662 spin_unlock_irq(q->queue_lock); 663 664 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 665 synchronize_rcu(); 666 } 667 } 668 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 669 670 /** 671 * blk_queue_bypass_end - leave queue bypass mode 672 * @q: queue of interest 673 * 674 * Leave bypass mode and restore the normal queueing behavior. 675 * 676 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 677 * this function is called for both blk-sq and blk-mq queues. 678 */ 679 void blk_queue_bypass_end(struct request_queue *q) 680 { 681 spin_lock_irq(q->queue_lock); 682 if (!--q->bypass_depth) 683 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 684 WARN_ON_ONCE(q->bypass_depth < 0); 685 spin_unlock_irq(q->queue_lock); 686 } 687 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 688 689 void blk_set_queue_dying(struct request_queue *q) 690 { 691 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 692 693 /* 694 * When queue DYING flag is set, we need to block new req 695 * entering queue, so we call blk_freeze_queue_start() to 696 * prevent I/O from crossing blk_queue_enter(). 697 */ 698 blk_freeze_queue_start(q); 699 700 if (q->mq_ops) 701 blk_mq_wake_waiters(q); 702 else { 703 struct request_list *rl; 704 705 spin_lock_irq(q->queue_lock); 706 blk_queue_for_each_rl(rl, q) { 707 if (rl->rq_pool) { 708 wake_up_all(&rl->wait[BLK_RW_SYNC]); 709 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 710 } 711 } 712 spin_unlock_irq(q->queue_lock); 713 } 714 715 /* Make blk_queue_enter() reexamine the DYING flag. */ 716 wake_up_all(&q->mq_freeze_wq); 717 } 718 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 719 720 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ 721 void blk_exit_queue(struct request_queue *q) 722 { 723 /* 724 * Since the I/O scheduler exit code may access cgroup information, 725 * perform I/O scheduler exit before disassociating from the block 726 * cgroup controller. 727 */ 728 if (q->elevator) { 729 ioc_clear_queue(q); 730 elevator_exit(q, q->elevator); 731 q->elevator = NULL; 732 } 733 734 /* 735 * Remove all references to @q from the block cgroup controller before 736 * restoring @q->queue_lock to avoid that restoring this pointer causes 737 * e.g. blkcg_print_blkgs() to crash. 738 */ 739 blkcg_exit_queue(q); 740 741 /* 742 * Since the cgroup code may dereference the @q->backing_dev_info 743 * pointer, only decrease its reference count after having removed the 744 * association with the block cgroup controller. 745 */ 746 bdi_put(q->backing_dev_info); 747 } 748 749 /** 750 * blk_cleanup_queue - shutdown a request queue 751 * @q: request queue to shutdown 752 * 753 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 754 * put it. All future requests will be failed immediately with -ENODEV. 755 */ 756 void blk_cleanup_queue(struct request_queue *q) 757 { 758 spinlock_t *lock = q->queue_lock; 759 760 /* mark @q DYING, no new request or merges will be allowed afterwards */ 761 mutex_lock(&q->sysfs_lock); 762 blk_set_queue_dying(q); 763 spin_lock_irq(lock); 764 765 /* 766 * A dying queue is permanently in bypass mode till released. Note 767 * that, unlike blk_queue_bypass_start(), we aren't performing 768 * synchronize_rcu() after entering bypass mode to avoid the delay 769 * as some drivers create and destroy a lot of queues while 770 * probing. This is still safe because blk_release_queue() will be 771 * called only after the queue refcnt drops to zero and nothing, 772 * RCU or not, would be traversing the queue by then. 773 */ 774 q->bypass_depth++; 775 queue_flag_set(QUEUE_FLAG_BYPASS, q); 776 777 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 778 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 779 queue_flag_set(QUEUE_FLAG_DYING, q); 780 spin_unlock_irq(lock); 781 mutex_unlock(&q->sysfs_lock); 782 783 /* 784 * Drain all requests queued before DYING marking. Set DEAD flag to 785 * prevent that q->request_fn() gets invoked after draining finished. 786 */ 787 blk_freeze_queue(q); 788 789 rq_qos_exit(q); 790 791 spin_lock_irq(lock); 792 queue_flag_set(QUEUE_FLAG_DEAD, q); 793 spin_unlock_irq(lock); 794 795 /* 796 * make sure all in-progress dispatch are completed because 797 * blk_freeze_queue() can only complete all requests, and 798 * dispatch may still be in-progress since we dispatch requests 799 * from more than one contexts. 800 * 801 * We rely on driver to deal with the race in case that queue 802 * initialization isn't done. 803 */ 804 if (q->mq_ops && blk_queue_init_done(q)) 805 blk_mq_quiesce_queue(q); 806 807 /* for synchronous bio-based driver finish in-flight integrity i/o */ 808 blk_flush_integrity(); 809 810 /* @q won't process any more request, flush async actions */ 811 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 812 blk_sync_queue(q); 813 814 /* 815 * I/O scheduler exit is only safe after the sysfs scheduler attribute 816 * has been removed. 817 */ 818 WARN_ON_ONCE(q->kobj.state_in_sysfs); 819 820 blk_exit_queue(q); 821 822 if (q->mq_ops) 823 blk_mq_free_queue(q); 824 percpu_ref_exit(&q->q_usage_counter); 825 826 spin_lock_irq(lock); 827 if (q->queue_lock != &q->__queue_lock) 828 q->queue_lock = &q->__queue_lock; 829 spin_unlock_irq(lock); 830 831 /* @q is and will stay empty, shutdown and put */ 832 blk_put_queue(q); 833 } 834 EXPORT_SYMBOL(blk_cleanup_queue); 835 836 /* Allocate memory local to the request queue */ 837 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 838 { 839 struct request_queue *q = data; 840 841 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 842 } 843 844 static void free_request_simple(void *element, void *data) 845 { 846 kmem_cache_free(request_cachep, element); 847 } 848 849 static void *alloc_request_size(gfp_t gfp_mask, void *data) 850 { 851 struct request_queue *q = data; 852 struct request *rq; 853 854 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 855 q->node); 856 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 857 kfree(rq); 858 rq = NULL; 859 } 860 return rq; 861 } 862 863 static void free_request_size(void *element, void *data) 864 { 865 struct request_queue *q = data; 866 867 if (q->exit_rq_fn) 868 q->exit_rq_fn(q, element); 869 kfree(element); 870 } 871 872 int blk_init_rl(struct request_list *rl, struct request_queue *q, 873 gfp_t gfp_mask) 874 { 875 if (unlikely(rl->rq_pool) || q->mq_ops) 876 return 0; 877 878 rl->q = q; 879 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 880 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 881 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 882 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 883 884 if (q->cmd_size) { 885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 886 alloc_request_size, free_request_size, 887 q, gfp_mask, q->node); 888 } else { 889 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 890 alloc_request_simple, free_request_simple, 891 q, gfp_mask, q->node); 892 } 893 if (!rl->rq_pool) 894 return -ENOMEM; 895 896 if (rl != &q->root_rl) 897 WARN_ON_ONCE(!blk_get_queue(q)); 898 899 return 0; 900 } 901 902 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 903 { 904 if (rl->rq_pool) { 905 mempool_destroy(rl->rq_pool); 906 if (rl != &q->root_rl) 907 blk_put_queue(q); 908 } 909 } 910 911 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 912 { 913 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL); 914 } 915 EXPORT_SYMBOL(blk_alloc_queue); 916 917 /** 918 * blk_queue_enter() - try to increase q->q_usage_counter 919 * @q: request queue pointer 920 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 921 */ 922 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 923 { 924 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 925 926 while (true) { 927 bool success = false; 928 929 rcu_read_lock(); 930 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 931 /* 932 * The code that increments the pm_only counter is 933 * responsible for ensuring that that counter is 934 * globally visible before the queue is unfrozen. 935 */ 936 if (pm || !blk_queue_pm_only(q)) { 937 success = true; 938 } else { 939 percpu_ref_put(&q->q_usage_counter); 940 } 941 } 942 rcu_read_unlock(); 943 944 if (success) 945 return 0; 946 947 if (flags & BLK_MQ_REQ_NOWAIT) 948 return -EBUSY; 949 950 /* 951 * read pair of barrier in blk_freeze_queue_start(), 952 * we need to order reading __PERCPU_REF_DEAD flag of 953 * .q_usage_counter and reading .mq_freeze_depth or 954 * queue dying flag, otherwise the following wait may 955 * never return if the two reads are reordered. 956 */ 957 smp_rmb(); 958 959 wait_event(q->mq_freeze_wq, 960 (atomic_read(&q->mq_freeze_depth) == 0 && 961 (pm || (blk_pm_request_resume(q), 962 !blk_queue_pm_only(q)))) || 963 blk_queue_dying(q)); 964 if (blk_queue_dying(q)) 965 return -ENODEV; 966 } 967 } 968 969 void blk_queue_exit(struct request_queue *q) 970 { 971 percpu_ref_put(&q->q_usage_counter); 972 } 973 974 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 975 { 976 struct request_queue *q = 977 container_of(ref, struct request_queue, q_usage_counter); 978 979 wake_up_all(&q->mq_freeze_wq); 980 } 981 982 static void blk_rq_timed_out_timer(struct timer_list *t) 983 { 984 struct request_queue *q = from_timer(q, t, timeout); 985 986 kblockd_schedule_work(&q->timeout_work); 987 } 988 989 /** 990 * blk_alloc_queue_node - allocate a request queue 991 * @gfp_mask: memory allocation flags 992 * @node_id: NUMA node to allocate memory from 993 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g. 994 * serialize calls to the legacy .request_fn() callback. Ignored for 995 * blk-mq request queues. 996 * 997 * Note: pass the queue lock as the third argument to this function instead of 998 * setting the queue lock pointer explicitly to avoid triggering a sporadic 999 * crash in the blkcg code. This function namely calls blkcg_init_queue() and 1000 * the queue lock pointer must be set before blkcg_init_queue() is called. 1001 */ 1002 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 1003 spinlock_t *lock) 1004 { 1005 struct request_queue *q; 1006 int ret; 1007 1008 q = kmem_cache_alloc_node(blk_requestq_cachep, 1009 gfp_mask | __GFP_ZERO, node_id); 1010 if (!q) 1011 return NULL; 1012 1013 INIT_LIST_HEAD(&q->queue_head); 1014 q->last_merge = NULL; 1015 q->end_sector = 0; 1016 q->boundary_rq = NULL; 1017 1018 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 1019 if (q->id < 0) 1020 goto fail_q; 1021 1022 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 1023 if (ret) 1024 goto fail_id; 1025 1026 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 1027 if (!q->backing_dev_info) 1028 goto fail_split; 1029 1030 q->stats = blk_alloc_queue_stats(); 1031 if (!q->stats) 1032 goto fail_stats; 1033 1034 q->backing_dev_info->ra_pages = 1035 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 1036 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 1037 q->backing_dev_info->name = "block"; 1038 q->node = node_id; 1039 1040 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 1041 laptop_mode_timer_fn, 0); 1042 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 1043 INIT_WORK(&q->timeout_work, NULL); 1044 INIT_LIST_HEAD(&q->timeout_list); 1045 INIT_LIST_HEAD(&q->icq_list); 1046 #ifdef CONFIG_BLK_CGROUP 1047 INIT_LIST_HEAD(&q->blkg_list); 1048 #endif 1049 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 1050 1051 kobject_init(&q->kobj, &blk_queue_ktype); 1052 1053 #ifdef CONFIG_BLK_DEV_IO_TRACE 1054 mutex_init(&q->blk_trace_mutex); 1055 #endif 1056 mutex_init(&q->sysfs_lock); 1057 spin_lock_init(&q->__queue_lock); 1058 1059 q->queue_lock = lock ? : &q->__queue_lock; 1060 1061 /* 1062 * A queue starts its life with bypass turned on to avoid 1063 * unnecessary bypass on/off overhead and nasty surprises during 1064 * init. The initial bypass will be finished when the queue is 1065 * registered by blk_register_queue(). 1066 */ 1067 q->bypass_depth = 1; 1068 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q); 1069 1070 init_waitqueue_head(&q->mq_freeze_wq); 1071 1072 /* 1073 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1074 * See blk_register_queue() for details. 1075 */ 1076 if (percpu_ref_init(&q->q_usage_counter, 1077 blk_queue_usage_counter_release, 1078 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1079 goto fail_bdi; 1080 1081 if (blkcg_init_queue(q)) 1082 goto fail_ref; 1083 1084 return q; 1085 1086 fail_ref: 1087 percpu_ref_exit(&q->q_usage_counter); 1088 fail_bdi: 1089 blk_free_queue_stats(q->stats); 1090 fail_stats: 1091 bdi_put(q->backing_dev_info); 1092 fail_split: 1093 bioset_exit(&q->bio_split); 1094 fail_id: 1095 ida_simple_remove(&blk_queue_ida, q->id); 1096 fail_q: 1097 kmem_cache_free(blk_requestq_cachep, q); 1098 return NULL; 1099 } 1100 EXPORT_SYMBOL(blk_alloc_queue_node); 1101 1102 /** 1103 * blk_init_queue - prepare a request queue for use with a block device 1104 * @rfn: The function to be called to process requests that have been 1105 * placed on the queue. 1106 * @lock: Request queue spin lock 1107 * 1108 * Description: 1109 * If a block device wishes to use the standard request handling procedures, 1110 * which sorts requests and coalesces adjacent requests, then it must 1111 * call blk_init_queue(). The function @rfn will be called when there 1112 * are requests on the queue that need to be processed. If the device 1113 * supports plugging, then @rfn may not be called immediately when requests 1114 * are available on the queue, but may be called at some time later instead. 1115 * Plugged queues are generally unplugged when a buffer belonging to one 1116 * of the requests on the queue is needed, or due to memory pressure. 1117 * 1118 * @rfn is not required, or even expected, to remove all requests off the 1119 * queue, but only as many as it can handle at a time. If it does leave 1120 * requests on the queue, it is responsible for arranging that the requests 1121 * get dealt with eventually. 1122 * 1123 * The queue spin lock must be held while manipulating the requests on the 1124 * request queue; this lock will be taken also from interrupt context, so irq 1125 * disabling is needed for it. 1126 * 1127 * Function returns a pointer to the initialized request queue, or %NULL if 1128 * it didn't succeed. 1129 * 1130 * Note: 1131 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1132 * when the block device is deactivated (such as at module unload). 1133 **/ 1134 1135 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1136 { 1137 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1138 } 1139 EXPORT_SYMBOL(blk_init_queue); 1140 1141 struct request_queue * 1142 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1143 { 1144 struct request_queue *q; 1145 1146 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock); 1147 if (!q) 1148 return NULL; 1149 1150 q->request_fn = rfn; 1151 if (blk_init_allocated_queue(q) < 0) { 1152 blk_cleanup_queue(q); 1153 return NULL; 1154 } 1155 1156 return q; 1157 } 1158 EXPORT_SYMBOL(blk_init_queue_node); 1159 1160 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1161 1162 1163 int blk_init_allocated_queue(struct request_queue *q) 1164 { 1165 WARN_ON_ONCE(q->mq_ops); 1166 1167 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size, GFP_KERNEL); 1168 if (!q->fq) 1169 return -ENOMEM; 1170 1171 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1172 goto out_free_flush_queue; 1173 1174 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1175 goto out_exit_flush_rq; 1176 1177 INIT_WORK(&q->timeout_work, blk_timeout_work); 1178 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1179 1180 /* 1181 * This also sets hw/phys segments, boundary and size 1182 */ 1183 blk_queue_make_request(q, blk_queue_bio); 1184 1185 q->sg_reserved_size = INT_MAX; 1186 1187 if (elevator_init(q)) 1188 goto out_exit_flush_rq; 1189 return 0; 1190 1191 out_exit_flush_rq: 1192 if (q->exit_rq_fn) 1193 q->exit_rq_fn(q, q->fq->flush_rq); 1194 out_free_flush_queue: 1195 blk_free_flush_queue(q->fq); 1196 q->fq = NULL; 1197 return -ENOMEM; 1198 } 1199 EXPORT_SYMBOL(blk_init_allocated_queue); 1200 1201 bool blk_get_queue(struct request_queue *q) 1202 { 1203 if (likely(!blk_queue_dying(q))) { 1204 __blk_get_queue(q); 1205 return true; 1206 } 1207 1208 return false; 1209 } 1210 EXPORT_SYMBOL(blk_get_queue); 1211 1212 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1213 { 1214 if (rq->rq_flags & RQF_ELVPRIV) { 1215 elv_put_request(rl->q, rq); 1216 if (rq->elv.icq) 1217 put_io_context(rq->elv.icq->ioc); 1218 } 1219 1220 mempool_free(rq, rl->rq_pool); 1221 } 1222 1223 /* 1224 * ioc_batching returns true if the ioc is a valid batching request and 1225 * should be given priority access to a request. 1226 */ 1227 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1228 { 1229 if (!ioc) 1230 return 0; 1231 1232 /* 1233 * Make sure the process is able to allocate at least 1 request 1234 * even if the batch times out, otherwise we could theoretically 1235 * lose wakeups. 1236 */ 1237 return ioc->nr_batch_requests == q->nr_batching || 1238 (ioc->nr_batch_requests > 0 1239 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1240 } 1241 1242 /* 1243 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1244 * will cause the process to be a "batcher" on all queues in the system. This 1245 * is the behaviour we want though - once it gets a wakeup it should be given 1246 * a nice run. 1247 */ 1248 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1249 { 1250 if (!ioc || ioc_batching(q, ioc)) 1251 return; 1252 1253 ioc->nr_batch_requests = q->nr_batching; 1254 ioc->last_waited = jiffies; 1255 } 1256 1257 static void __freed_request(struct request_list *rl, int sync) 1258 { 1259 struct request_queue *q = rl->q; 1260 1261 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1262 blk_clear_congested(rl, sync); 1263 1264 if (rl->count[sync] + 1 <= q->nr_requests) { 1265 if (waitqueue_active(&rl->wait[sync])) 1266 wake_up(&rl->wait[sync]); 1267 1268 blk_clear_rl_full(rl, sync); 1269 } 1270 } 1271 1272 /* 1273 * A request has just been released. Account for it, update the full and 1274 * congestion status, wake up any waiters. Called under q->queue_lock. 1275 */ 1276 static void freed_request(struct request_list *rl, bool sync, 1277 req_flags_t rq_flags) 1278 { 1279 struct request_queue *q = rl->q; 1280 1281 q->nr_rqs[sync]--; 1282 rl->count[sync]--; 1283 if (rq_flags & RQF_ELVPRIV) 1284 q->nr_rqs_elvpriv--; 1285 1286 __freed_request(rl, sync); 1287 1288 if (unlikely(rl->starved[sync ^ 1])) 1289 __freed_request(rl, sync ^ 1); 1290 } 1291 1292 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1293 { 1294 struct request_list *rl; 1295 int on_thresh, off_thresh; 1296 1297 WARN_ON_ONCE(q->mq_ops); 1298 1299 spin_lock_irq(q->queue_lock); 1300 q->nr_requests = nr; 1301 blk_queue_congestion_threshold(q); 1302 on_thresh = queue_congestion_on_threshold(q); 1303 off_thresh = queue_congestion_off_threshold(q); 1304 1305 blk_queue_for_each_rl(rl, q) { 1306 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1307 blk_set_congested(rl, BLK_RW_SYNC); 1308 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1309 blk_clear_congested(rl, BLK_RW_SYNC); 1310 1311 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1312 blk_set_congested(rl, BLK_RW_ASYNC); 1313 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1314 blk_clear_congested(rl, BLK_RW_ASYNC); 1315 1316 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1317 blk_set_rl_full(rl, BLK_RW_SYNC); 1318 } else { 1319 blk_clear_rl_full(rl, BLK_RW_SYNC); 1320 wake_up(&rl->wait[BLK_RW_SYNC]); 1321 } 1322 1323 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1324 blk_set_rl_full(rl, BLK_RW_ASYNC); 1325 } else { 1326 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1327 wake_up(&rl->wait[BLK_RW_ASYNC]); 1328 } 1329 } 1330 1331 spin_unlock_irq(q->queue_lock); 1332 return 0; 1333 } 1334 1335 /** 1336 * __get_request - get a free request 1337 * @rl: request list to allocate from 1338 * @op: operation and flags 1339 * @bio: bio to allocate request for (can be %NULL) 1340 * @flags: BLQ_MQ_REQ_* flags 1341 * @gfp_mask: allocator flags 1342 * 1343 * Get a free request from @q. This function may fail under memory 1344 * pressure or if @q is dead. 1345 * 1346 * Must be called with @q->queue_lock held and, 1347 * Returns ERR_PTR on failure, with @q->queue_lock held. 1348 * Returns request pointer on success, with @q->queue_lock *not held*. 1349 */ 1350 static struct request *__get_request(struct request_list *rl, unsigned int op, 1351 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask) 1352 { 1353 struct request_queue *q = rl->q; 1354 struct request *rq; 1355 struct elevator_type *et = q->elevator->type; 1356 struct io_context *ioc = rq_ioc(bio); 1357 struct io_cq *icq = NULL; 1358 const bool is_sync = op_is_sync(op); 1359 int may_queue; 1360 req_flags_t rq_flags = RQF_ALLOCED; 1361 1362 lockdep_assert_held(q->queue_lock); 1363 1364 if (unlikely(blk_queue_dying(q))) 1365 return ERR_PTR(-ENODEV); 1366 1367 may_queue = elv_may_queue(q, op); 1368 if (may_queue == ELV_MQUEUE_NO) 1369 goto rq_starved; 1370 1371 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1372 if (rl->count[is_sync]+1 >= q->nr_requests) { 1373 /* 1374 * The queue will fill after this allocation, so set 1375 * it as full, and mark this process as "batching". 1376 * This process will be allowed to complete a batch of 1377 * requests, others will be blocked. 1378 */ 1379 if (!blk_rl_full(rl, is_sync)) { 1380 ioc_set_batching(q, ioc); 1381 blk_set_rl_full(rl, is_sync); 1382 } else { 1383 if (may_queue != ELV_MQUEUE_MUST 1384 && !ioc_batching(q, ioc)) { 1385 /* 1386 * The queue is full and the allocating 1387 * process is not a "batcher", and not 1388 * exempted by the IO scheduler 1389 */ 1390 return ERR_PTR(-ENOMEM); 1391 } 1392 } 1393 } 1394 blk_set_congested(rl, is_sync); 1395 } 1396 1397 /* 1398 * Only allow batching queuers to allocate up to 50% over the defined 1399 * limit of requests, otherwise we could have thousands of requests 1400 * allocated with any setting of ->nr_requests 1401 */ 1402 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1403 return ERR_PTR(-ENOMEM); 1404 1405 q->nr_rqs[is_sync]++; 1406 rl->count[is_sync]++; 1407 rl->starved[is_sync] = 0; 1408 1409 /* 1410 * Decide whether the new request will be managed by elevator. If 1411 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1412 * prevent the current elevator from being destroyed until the new 1413 * request is freed. This guarantees icq's won't be destroyed and 1414 * makes creating new ones safe. 1415 * 1416 * Flush requests do not use the elevator so skip initialization. 1417 * This allows a request to share the flush and elevator data. 1418 * 1419 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1420 * it will be created after releasing queue_lock. 1421 */ 1422 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1423 rq_flags |= RQF_ELVPRIV; 1424 q->nr_rqs_elvpriv++; 1425 if (et->icq_cache && ioc) 1426 icq = ioc_lookup_icq(ioc, q); 1427 } 1428 1429 if (blk_queue_io_stat(q)) 1430 rq_flags |= RQF_IO_STAT; 1431 spin_unlock_irq(q->queue_lock); 1432 1433 /* allocate and init request */ 1434 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1435 if (!rq) 1436 goto fail_alloc; 1437 1438 blk_rq_init(q, rq); 1439 blk_rq_set_rl(rq, rl); 1440 rq->cmd_flags = op; 1441 rq->rq_flags = rq_flags; 1442 if (flags & BLK_MQ_REQ_PREEMPT) 1443 rq->rq_flags |= RQF_PREEMPT; 1444 1445 /* init elvpriv */ 1446 if (rq_flags & RQF_ELVPRIV) { 1447 if (unlikely(et->icq_cache && !icq)) { 1448 if (ioc) 1449 icq = ioc_create_icq(ioc, q, gfp_mask); 1450 if (!icq) 1451 goto fail_elvpriv; 1452 } 1453 1454 rq->elv.icq = icq; 1455 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1456 goto fail_elvpriv; 1457 1458 /* @rq->elv.icq holds io_context until @rq is freed */ 1459 if (icq) 1460 get_io_context(icq->ioc); 1461 } 1462 out: 1463 /* 1464 * ioc may be NULL here, and ioc_batching will be false. That's 1465 * OK, if the queue is under the request limit then requests need 1466 * not count toward the nr_batch_requests limit. There will always 1467 * be some limit enforced by BLK_BATCH_TIME. 1468 */ 1469 if (ioc_batching(q, ioc)) 1470 ioc->nr_batch_requests--; 1471 1472 trace_block_getrq(q, bio, op); 1473 return rq; 1474 1475 fail_elvpriv: 1476 /* 1477 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1478 * and may fail indefinitely under memory pressure and thus 1479 * shouldn't stall IO. Treat this request as !elvpriv. This will 1480 * disturb iosched and blkcg but weird is bettern than dead. 1481 */ 1482 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1483 __func__, dev_name(q->backing_dev_info->dev)); 1484 1485 rq->rq_flags &= ~RQF_ELVPRIV; 1486 rq->elv.icq = NULL; 1487 1488 spin_lock_irq(q->queue_lock); 1489 q->nr_rqs_elvpriv--; 1490 spin_unlock_irq(q->queue_lock); 1491 goto out; 1492 1493 fail_alloc: 1494 /* 1495 * Allocation failed presumably due to memory. Undo anything we 1496 * might have messed up. 1497 * 1498 * Allocating task should really be put onto the front of the wait 1499 * queue, but this is pretty rare. 1500 */ 1501 spin_lock_irq(q->queue_lock); 1502 freed_request(rl, is_sync, rq_flags); 1503 1504 /* 1505 * in the very unlikely event that allocation failed and no 1506 * requests for this direction was pending, mark us starved so that 1507 * freeing of a request in the other direction will notice 1508 * us. another possible fix would be to split the rq mempool into 1509 * READ and WRITE 1510 */ 1511 rq_starved: 1512 if (unlikely(rl->count[is_sync] == 0)) 1513 rl->starved[is_sync] = 1; 1514 return ERR_PTR(-ENOMEM); 1515 } 1516 1517 /** 1518 * get_request - get a free request 1519 * @q: request_queue to allocate request from 1520 * @op: operation and flags 1521 * @bio: bio to allocate request for (can be %NULL) 1522 * @flags: BLK_MQ_REQ_* flags. 1523 * @gfp: allocator flags 1524 * 1525 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags, 1526 * this function keeps retrying under memory pressure and fails iff @q is dead. 1527 * 1528 * Must be called with @q->queue_lock held and, 1529 * Returns ERR_PTR on failure, with @q->queue_lock held. 1530 * Returns request pointer on success, with @q->queue_lock *not held*. 1531 */ 1532 static struct request *get_request(struct request_queue *q, unsigned int op, 1533 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp) 1534 { 1535 const bool is_sync = op_is_sync(op); 1536 DEFINE_WAIT(wait); 1537 struct request_list *rl; 1538 struct request *rq; 1539 1540 lockdep_assert_held(q->queue_lock); 1541 WARN_ON_ONCE(q->mq_ops); 1542 1543 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1544 retry: 1545 rq = __get_request(rl, op, bio, flags, gfp); 1546 if (!IS_ERR(rq)) 1547 return rq; 1548 1549 if (op & REQ_NOWAIT) { 1550 blk_put_rl(rl); 1551 return ERR_PTR(-EAGAIN); 1552 } 1553 1554 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1555 blk_put_rl(rl); 1556 return rq; 1557 } 1558 1559 /* wait on @rl and retry */ 1560 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1561 TASK_UNINTERRUPTIBLE); 1562 1563 trace_block_sleeprq(q, bio, op); 1564 1565 spin_unlock_irq(q->queue_lock); 1566 io_schedule(); 1567 1568 /* 1569 * After sleeping, we become a "batching" process and will be able 1570 * to allocate at least one request, and up to a big batch of them 1571 * for a small period time. See ioc_batching, ioc_set_batching 1572 */ 1573 ioc_set_batching(q, current->io_context); 1574 1575 spin_lock_irq(q->queue_lock); 1576 finish_wait(&rl->wait[is_sync], &wait); 1577 1578 goto retry; 1579 } 1580 1581 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1582 static struct request *blk_old_get_request(struct request_queue *q, 1583 unsigned int op, blk_mq_req_flags_t flags) 1584 { 1585 struct request *rq; 1586 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO; 1587 int ret = 0; 1588 1589 WARN_ON_ONCE(q->mq_ops); 1590 1591 /* create ioc upfront */ 1592 create_io_context(gfp_mask, q->node); 1593 1594 ret = blk_queue_enter(q, flags); 1595 if (ret) 1596 return ERR_PTR(ret); 1597 spin_lock_irq(q->queue_lock); 1598 rq = get_request(q, op, NULL, flags, gfp_mask); 1599 if (IS_ERR(rq)) { 1600 spin_unlock_irq(q->queue_lock); 1601 blk_queue_exit(q); 1602 return rq; 1603 } 1604 1605 /* q->queue_lock is unlocked at this point */ 1606 rq->__data_len = 0; 1607 rq->__sector = (sector_t) -1; 1608 rq->bio = rq->biotail = NULL; 1609 return rq; 1610 } 1611 1612 /** 1613 * blk_get_request - allocate a request 1614 * @q: request queue to allocate a request for 1615 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1616 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1617 */ 1618 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1619 blk_mq_req_flags_t flags) 1620 { 1621 struct request *req; 1622 1623 WARN_ON_ONCE(op & REQ_NOWAIT); 1624 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1625 1626 if (q->mq_ops) { 1627 req = blk_mq_alloc_request(q, op, flags); 1628 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1629 q->mq_ops->initialize_rq_fn(req); 1630 } else { 1631 req = blk_old_get_request(q, op, flags); 1632 if (!IS_ERR(req) && q->initialize_rq_fn) 1633 q->initialize_rq_fn(req); 1634 } 1635 1636 return req; 1637 } 1638 EXPORT_SYMBOL(blk_get_request); 1639 1640 /** 1641 * blk_requeue_request - put a request back on queue 1642 * @q: request queue where request should be inserted 1643 * @rq: request to be inserted 1644 * 1645 * Description: 1646 * Drivers often keep queueing requests until the hardware cannot accept 1647 * more, when that condition happens we need to put the request back 1648 * on the queue. Must be called with queue lock held. 1649 */ 1650 void blk_requeue_request(struct request_queue *q, struct request *rq) 1651 { 1652 lockdep_assert_held(q->queue_lock); 1653 WARN_ON_ONCE(q->mq_ops); 1654 1655 blk_delete_timer(rq); 1656 blk_clear_rq_complete(rq); 1657 trace_block_rq_requeue(q, rq); 1658 rq_qos_requeue(q, rq); 1659 1660 if (rq->rq_flags & RQF_QUEUED) 1661 blk_queue_end_tag(q, rq); 1662 1663 BUG_ON(blk_queued_rq(rq)); 1664 1665 elv_requeue_request(q, rq); 1666 } 1667 EXPORT_SYMBOL(blk_requeue_request); 1668 1669 static void add_acct_request(struct request_queue *q, struct request *rq, 1670 int where) 1671 { 1672 blk_account_io_start(rq, true); 1673 __elv_add_request(q, rq, where); 1674 } 1675 1676 static void part_round_stats_single(struct request_queue *q, int cpu, 1677 struct hd_struct *part, unsigned long now, 1678 unsigned int inflight) 1679 { 1680 if (inflight) { 1681 __part_stat_add(cpu, part, time_in_queue, 1682 inflight * (now - part->stamp)); 1683 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1684 } 1685 part->stamp = now; 1686 } 1687 1688 /** 1689 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1690 * @q: target block queue 1691 * @cpu: cpu number for stats access 1692 * @part: target partition 1693 * 1694 * The average IO queue length and utilisation statistics are maintained 1695 * by observing the current state of the queue length and the amount of 1696 * time it has been in this state for. 1697 * 1698 * Normally, that accounting is done on IO completion, but that can result 1699 * in more than a second's worth of IO being accounted for within any one 1700 * second, leading to >100% utilisation. To deal with that, we call this 1701 * function to do a round-off before returning the results when reading 1702 * /proc/diskstats. This accounts immediately for all queue usage up to 1703 * the current jiffies and restarts the counters again. 1704 */ 1705 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1706 { 1707 struct hd_struct *part2 = NULL; 1708 unsigned long now = jiffies; 1709 unsigned int inflight[2]; 1710 int stats = 0; 1711 1712 if (part->stamp != now) 1713 stats |= 1; 1714 1715 if (part->partno) { 1716 part2 = &part_to_disk(part)->part0; 1717 if (part2->stamp != now) 1718 stats |= 2; 1719 } 1720 1721 if (!stats) 1722 return; 1723 1724 part_in_flight(q, part, inflight); 1725 1726 if (stats & 2) 1727 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1728 if (stats & 1) 1729 part_round_stats_single(q, cpu, part, now, inflight[0]); 1730 } 1731 EXPORT_SYMBOL_GPL(part_round_stats); 1732 1733 void __blk_put_request(struct request_queue *q, struct request *req) 1734 { 1735 req_flags_t rq_flags = req->rq_flags; 1736 1737 if (unlikely(!q)) 1738 return; 1739 1740 if (q->mq_ops) { 1741 blk_mq_free_request(req); 1742 return; 1743 } 1744 1745 lockdep_assert_held(q->queue_lock); 1746 1747 blk_req_zone_write_unlock(req); 1748 blk_pm_put_request(req); 1749 blk_pm_mark_last_busy(req); 1750 1751 elv_completed_request(q, req); 1752 1753 /* this is a bio leak */ 1754 WARN_ON(req->bio != NULL); 1755 1756 rq_qos_done(q, req); 1757 1758 /* 1759 * Request may not have originated from ll_rw_blk. if not, 1760 * it didn't come out of our reserved rq pools 1761 */ 1762 if (rq_flags & RQF_ALLOCED) { 1763 struct request_list *rl = blk_rq_rl(req); 1764 bool sync = op_is_sync(req->cmd_flags); 1765 1766 BUG_ON(!list_empty(&req->queuelist)); 1767 BUG_ON(ELV_ON_HASH(req)); 1768 1769 blk_free_request(rl, req); 1770 freed_request(rl, sync, rq_flags); 1771 blk_put_rl(rl); 1772 blk_queue_exit(q); 1773 } 1774 } 1775 EXPORT_SYMBOL_GPL(__blk_put_request); 1776 1777 void blk_put_request(struct request *req) 1778 { 1779 struct request_queue *q = req->q; 1780 1781 if (q->mq_ops) 1782 blk_mq_free_request(req); 1783 else { 1784 unsigned long flags; 1785 1786 spin_lock_irqsave(q->queue_lock, flags); 1787 __blk_put_request(q, req); 1788 spin_unlock_irqrestore(q->queue_lock, flags); 1789 } 1790 } 1791 EXPORT_SYMBOL(blk_put_request); 1792 1793 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1794 struct bio *bio) 1795 { 1796 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1797 1798 if (!ll_back_merge_fn(q, req, bio)) 1799 return false; 1800 1801 trace_block_bio_backmerge(q, req, bio); 1802 1803 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1804 blk_rq_set_mixed_merge(req); 1805 1806 req->biotail->bi_next = bio; 1807 req->biotail = bio; 1808 req->__data_len += bio->bi_iter.bi_size; 1809 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1810 1811 blk_account_io_start(req, false); 1812 return true; 1813 } 1814 1815 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1816 struct bio *bio) 1817 { 1818 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1819 1820 if (!ll_front_merge_fn(q, req, bio)) 1821 return false; 1822 1823 trace_block_bio_frontmerge(q, req, bio); 1824 1825 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1826 blk_rq_set_mixed_merge(req); 1827 1828 bio->bi_next = req->bio; 1829 req->bio = bio; 1830 1831 req->__sector = bio->bi_iter.bi_sector; 1832 req->__data_len += bio->bi_iter.bi_size; 1833 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1834 1835 blk_account_io_start(req, false); 1836 return true; 1837 } 1838 1839 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1840 struct bio *bio) 1841 { 1842 unsigned short segments = blk_rq_nr_discard_segments(req); 1843 1844 if (segments >= queue_max_discard_segments(q)) 1845 goto no_merge; 1846 if (blk_rq_sectors(req) + bio_sectors(bio) > 1847 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1848 goto no_merge; 1849 1850 req->biotail->bi_next = bio; 1851 req->biotail = bio; 1852 req->__data_len += bio->bi_iter.bi_size; 1853 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1854 req->nr_phys_segments = segments + 1; 1855 1856 blk_account_io_start(req, false); 1857 return true; 1858 no_merge: 1859 req_set_nomerge(q, req); 1860 return false; 1861 } 1862 1863 /** 1864 * blk_attempt_plug_merge - try to merge with %current's plugged list 1865 * @q: request_queue new bio is being queued at 1866 * @bio: new bio being queued 1867 * @request_count: out parameter for number of traversed plugged requests 1868 * @same_queue_rq: pointer to &struct request that gets filled in when 1869 * another request associated with @q is found on the plug list 1870 * (optional, may be %NULL) 1871 * 1872 * Determine whether @bio being queued on @q can be merged with a request 1873 * on %current's plugged list. Returns %true if merge was successful, 1874 * otherwise %false. 1875 * 1876 * Plugging coalesces IOs from the same issuer for the same purpose without 1877 * going through @q->queue_lock. As such it's more of an issuing mechanism 1878 * than scheduling, and the request, while may have elvpriv data, is not 1879 * added on the elevator at this point. In addition, we don't have 1880 * reliable access to the elevator outside queue lock. Only check basic 1881 * merging parameters without querying the elevator. 1882 * 1883 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1884 */ 1885 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1886 unsigned int *request_count, 1887 struct request **same_queue_rq) 1888 { 1889 struct blk_plug *plug; 1890 struct request *rq; 1891 struct list_head *plug_list; 1892 1893 plug = current->plug; 1894 if (!plug) 1895 return false; 1896 *request_count = 0; 1897 1898 if (q->mq_ops) 1899 plug_list = &plug->mq_list; 1900 else 1901 plug_list = &plug->list; 1902 1903 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1904 bool merged = false; 1905 1906 if (rq->q == q) { 1907 (*request_count)++; 1908 /* 1909 * Only blk-mq multiple hardware queues case checks the 1910 * rq in the same queue, there should be only one such 1911 * rq in a queue 1912 **/ 1913 if (same_queue_rq) 1914 *same_queue_rq = rq; 1915 } 1916 1917 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1918 continue; 1919 1920 switch (blk_try_merge(rq, bio)) { 1921 case ELEVATOR_BACK_MERGE: 1922 merged = bio_attempt_back_merge(q, rq, bio); 1923 break; 1924 case ELEVATOR_FRONT_MERGE: 1925 merged = bio_attempt_front_merge(q, rq, bio); 1926 break; 1927 case ELEVATOR_DISCARD_MERGE: 1928 merged = bio_attempt_discard_merge(q, rq, bio); 1929 break; 1930 default: 1931 break; 1932 } 1933 1934 if (merged) 1935 return true; 1936 } 1937 1938 return false; 1939 } 1940 1941 unsigned int blk_plug_queued_count(struct request_queue *q) 1942 { 1943 struct blk_plug *plug; 1944 struct request *rq; 1945 struct list_head *plug_list; 1946 unsigned int ret = 0; 1947 1948 plug = current->plug; 1949 if (!plug) 1950 goto out; 1951 1952 if (q->mq_ops) 1953 plug_list = &plug->mq_list; 1954 else 1955 plug_list = &plug->list; 1956 1957 list_for_each_entry(rq, plug_list, queuelist) { 1958 if (rq->q == q) 1959 ret++; 1960 } 1961 out: 1962 return ret; 1963 } 1964 1965 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1966 { 1967 struct io_context *ioc = rq_ioc(bio); 1968 1969 if (bio->bi_opf & REQ_RAHEAD) 1970 req->cmd_flags |= REQ_FAILFAST_MASK; 1971 1972 req->__sector = bio->bi_iter.bi_sector; 1973 if (ioprio_valid(bio_prio(bio))) 1974 req->ioprio = bio_prio(bio); 1975 else if (ioc) 1976 req->ioprio = ioc->ioprio; 1977 else 1978 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1979 req->write_hint = bio->bi_write_hint; 1980 blk_rq_bio_prep(req->q, req, bio); 1981 } 1982 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1983 1984 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1985 { 1986 struct blk_plug *plug; 1987 int where = ELEVATOR_INSERT_SORT; 1988 struct request *req, *free; 1989 unsigned int request_count = 0; 1990 1991 /* 1992 * low level driver can indicate that it wants pages above a 1993 * certain limit bounced to low memory (ie for highmem, or even 1994 * ISA dma in theory) 1995 */ 1996 blk_queue_bounce(q, &bio); 1997 1998 blk_queue_split(q, &bio); 1999 2000 if (!bio_integrity_prep(bio)) 2001 return BLK_QC_T_NONE; 2002 2003 if (op_is_flush(bio->bi_opf)) { 2004 spin_lock_irq(q->queue_lock); 2005 where = ELEVATOR_INSERT_FLUSH; 2006 goto get_rq; 2007 } 2008 2009 /* 2010 * Check if we can merge with the plugged list before grabbing 2011 * any locks. 2012 */ 2013 if (!blk_queue_nomerges(q)) { 2014 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 2015 return BLK_QC_T_NONE; 2016 } else 2017 request_count = blk_plug_queued_count(q); 2018 2019 spin_lock_irq(q->queue_lock); 2020 2021 switch (elv_merge(q, &req, bio)) { 2022 case ELEVATOR_BACK_MERGE: 2023 if (!bio_attempt_back_merge(q, req, bio)) 2024 break; 2025 elv_bio_merged(q, req, bio); 2026 free = attempt_back_merge(q, req); 2027 if (free) 2028 __blk_put_request(q, free); 2029 else 2030 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 2031 goto out_unlock; 2032 case ELEVATOR_FRONT_MERGE: 2033 if (!bio_attempt_front_merge(q, req, bio)) 2034 break; 2035 elv_bio_merged(q, req, bio); 2036 free = attempt_front_merge(q, req); 2037 if (free) 2038 __blk_put_request(q, free); 2039 else 2040 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 2041 goto out_unlock; 2042 default: 2043 break; 2044 } 2045 2046 get_rq: 2047 rq_qos_throttle(q, bio, q->queue_lock); 2048 2049 /* 2050 * Grab a free request. This is might sleep but can not fail. 2051 * Returns with the queue unlocked. 2052 */ 2053 blk_queue_enter_live(q); 2054 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO); 2055 if (IS_ERR(req)) { 2056 blk_queue_exit(q); 2057 rq_qos_cleanup(q, bio); 2058 if (PTR_ERR(req) == -ENOMEM) 2059 bio->bi_status = BLK_STS_RESOURCE; 2060 else 2061 bio->bi_status = BLK_STS_IOERR; 2062 bio_endio(bio); 2063 goto out_unlock; 2064 } 2065 2066 rq_qos_track(q, req, bio); 2067 2068 /* 2069 * After dropping the lock and possibly sleeping here, our request 2070 * may now be mergeable after it had proven unmergeable (above). 2071 * We don't worry about that case for efficiency. It won't happen 2072 * often, and the elevators are able to handle it. 2073 */ 2074 blk_init_request_from_bio(req, bio); 2075 2076 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 2077 req->cpu = raw_smp_processor_id(); 2078 2079 plug = current->plug; 2080 if (plug) { 2081 /* 2082 * If this is the first request added after a plug, fire 2083 * of a plug trace. 2084 * 2085 * @request_count may become stale because of schedule 2086 * out, so check plug list again. 2087 */ 2088 if (!request_count || list_empty(&plug->list)) 2089 trace_block_plug(q); 2090 else { 2091 struct request *last = list_entry_rq(plug->list.prev); 2092 if (request_count >= BLK_MAX_REQUEST_COUNT || 2093 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2094 blk_flush_plug_list(plug, false); 2095 trace_block_plug(q); 2096 } 2097 } 2098 list_add_tail(&req->queuelist, &plug->list); 2099 blk_account_io_start(req, true); 2100 } else { 2101 spin_lock_irq(q->queue_lock); 2102 add_acct_request(q, req, where); 2103 __blk_run_queue(q); 2104 out_unlock: 2105 spin_unlock_irq(q->queue_lock); 2106 } 2107 2108 return BLK_QC_T_NONE; 2109 } 2110 2111 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 2112 { 2113 char b[BDEVNAME_SIZE]; 2114 2115 printk(KERN_INFO "attempt to access beyond end of device\n"); 2116 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2117 bio_devname(bio, b), bio->bi_opf, 2118 (unsigned long long)bio_end_sector(bio), 2119 (long long)maxsector); 2120 } 2121 2122 #ifdef CONFIG_FAIL_MAKE_REQUEST 2123 2124 static DECLARE_FAULT_ATTR(fail_make_request); 2125 2126 static int __init setup_fail_make_request(char *str) 2127 { 2128 return setup_fault_attr(&fail_make_request, str); 2129 } 2130 __setup("fail_make_request=", setup_fail_make_request); 2131 2132 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2133 { 2134 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2135 } 2136 2137 static int __init fail_make_request_debugfs(void) 2138 { 2139 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2140 NULL, &fail_make_request); 2141 2142 return PTR_ERR_OR_ZERO(dir); 2143 } 2144 2145 late_initcall(fail_make_request_debugfs); 2146 2147 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2148 2149 static inline bool should_fail_request(struct hd_struct *part, 2150 unsigned int bytes) 2151 { 2152 return false; 2153 } 2154 2155 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2156 2157 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2158 { 2159 const int op = bio_op(bio); 2160 2161 if (part->policy && op_is_write(op)) { 2162 char b[BDEVNAME_SIZE]; 2163 2164 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 2165 return false; 2166 2167 WARN_ONCE(1, 2168 "generic_make_request: Trying to write " 2169 "to read-only block-device %s (partno %d)\n", 2170 bio_devname(bio, b), part->partno); 2171 /* Older lvm-tools actually trigger this */ 2172 return false; 2173 } 2174 2175 return false; 2176 } 2177 2178 static noinline int should_fail_bio(struct bio *bio) 2179 { 2180 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2181 return -EIO; 2182 return 0; 2183 } 2184 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2185 2186 /* 2187 * Check whether this bio extends beyond the end of the device or partition. 2188 * This may well happen - the kernel calls bread() without checking the size of 2189 * the device, e.g., when mounting a file system. 2190 */ 2191 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 2192 { 2193 unsigned int nr_sectors = bio_sectors(bio); 2194 2195 if (nr_sectors && maxsector && 2196 (nr_sectors > maxsector || 2197 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 2198 handle_bad_sector(bio, maxsector); 2199 return -EIO; 2200 } 2201 return 0; 2202 } 2203 2204 /* 2205 * Remap block n of partition p to block n+start(p) of the disk. 2206 */ 2207 static inline int blk_partition_remap(struct bio *bio) 2208 { 2209 struct hd_struct *p; 2210 int ret = -EIO; 2211 2212 rcu_read_lock(); 2213 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2214 if (unlikely(!p)) 2215 goto out; 2216 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 2217 goto out; 2218 if (unlikely(bio_check_ro(bio, p))) 2219 goto out; 2220 2221 /* 2222 * Zone reset does not include bi_size so bio_sectors() is always 0. 2223 * Include a test for the reset op code and perform the remap if needed. 2224 */ 2225 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 2226 if (bio_check_eod(bio, part_nr_sects_read(p))) 2227 goto out; 2228 bio->bi_iter.bi_sector += p->start_sect; 2229 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2230 bio->bi_iter.bi_sector - p->start_sect); 2231 } 2232 bio->bi_partno = 0; 2233 ret = 0; 2234 out: 2235 rcu_read_unlock(); 2236 return ret; 2237 } 2238 2239 static noinline_for_stack bool 2240 generic_make_request_checks(struct bio *bio) 2241 { 2242 struct request_queue *q; 2243 int nr_sectors = bio_sectors(bio); 2244 blk_status_t status = BLK_STS_IOERR; 2245 char b[BDEVNAME_SIZE]; 2246 2247 might_sleep(); 2248 2249 q = bio->bi_disk->queue; 2250 if (unlikely(!q)) { 2251 printk(KERN_ERR 2252 "generic_make_request: Trying to access " 2253 "nonexistent block-device %s (%Lu)\n", 2254 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2255 goto end_io; 2256 } 2257 2258 /* 2259 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2260 * if queue is not a request based queue. 2261 */ 2262 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2263 goto not_supported; 2264 2265 if (should_fail_bio(bio)) 2266 goto end_io; 2267 2268 if (bio->bi_partno) { 2269 if (unlikely(blk_partition_remap(bio))) 2270 goto end_io; 2271 } else { 2272 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2273 goto end_io; 2274 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 2275 goto end_io; 2276 } 2277 2278 /* 2279 * Filter flush bio's early so that make_request based 2280 * drivers without flush support don't have to worry 2281 * about them. 2282 */ 2283 if (op_is_flush(bio->bi_opf) && 2284 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2285 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2286 if (!nr_sectors) { 2287 status = BLK_STS_OK; 2288 goto end_io; 2289 } 2290 } 2291 2292 switch (bio_op(bio)) { 2293 case REQ_OP_DISCARD: 2294 if (!blk_queue_discard(q)) 2295 goto not_supported; 2296 break; 2297 case REQ_OP_SECURE_ERASE: 2298 if (!blk_queue_secure_erase(q)) 2299 goto not_supported; 2300 break; 2301 case REQ_OP_WRITE_SAME: 2302 if (!q->limits.max_write_same_sectors) 2303 goto not_supported; 2304 break; 2305 case REQ_OP_ZONE_RESET: 2306 if (!blk_queue_is_zoned(q)) 2307 goto not_supported; 2308 break; 2309 case REQ_OP_WRITE_ZEROES: 2310 if (!q->limits.max_write_zeroes_sectors) 2311 goto not_supported; 2312 break; 2313 default: 2314 break; 2315 } 2316 2317 /* 2318 * Various block parts want %current->io_context and lazy ioc 2319 * allocation ends up trading a lot of pain for a small amount of 2320 * memory. Just allocate it upfront. This may fail and block 2321 * layer knows how to live with it. 2322 */ 2323 create_io_context(GFP_ATOMIC, q->node); 2324 2325 if (!blkcg_bio_issue_check(q, bio)) 2326 return false; 2327 2328 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2329 trace_block_bio_queue(q, bio); 2330 /* Now that enqueuing has been traced, we need to trace 2331 * completion as well. 2332 */ 2333 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2334 } 2335 return true; 2336 2337 not_supported: 2338 status = BLK_STS_NOTSUPP; 2339 end_io: 2340 bio->bi_status = status; 2341 bio_endio(bio); 2342 return false; 2343 } 2344 2345 /** 2346 * generic_make_request - hand a buffer to its device driver for I/O 2347 * @bio: The bio describing the location in memory and on the device. 2348 * 2349 * generic_make_request() is used to make I/O requests of block 2350 * devices. It is passed a &struct bio, which describes the I/O that needs 2351 * to be done. 2352 * 2353 * generic_make_request() does not return any status. The 2354 * success/failure status of the request, along with notification of 2355 * completion, is delivered asynchronously through the bio->bi_end_io 2356 * function described (one day) else where. 2357 * 2358 * The caller of generic_make_request must make sure that bi_io_vec 2359 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2360 * set to describe the device address, and the 2361 * bi_end_io and optionally bi_private are set to describe how 2362 * completion notification should be signaled. 2363 * 2364 * generic_make_request and the drivers it calls may use bi_next if this 2365 * bio happens to be merged with someone else, and may resubmit the bio to 2366 * a lower device by calling into generic_make_request recursively, which 2367 * means the bio should NOT be touched after the call to ->make_request_fn. 2368 */ 2369 blk_qc_t generic_make_request(struct bio *bio) 2370 { 2371 /* 2372 * bio_list_on_stack[0] contains bios submitted by the current 2373 * make_request_fn. 2374 * bio_list_on_stack[1] contains bios that were submitted before 2375 * the current make_request_fn, but that haven't been processed 2376 * yet. 2377 */ 2378 struct bio_list bio_list_on_stack[2]; 2379 blk_mq_req_flags_t flags = 0; 2380 struct request_queue *q = bio->bi_disk->queue; 2381 blk_qc_t ret = BLK_QC_T_NONE; 2382 2383 if (bio->bi_opf & REQ_NOWAIT) 2384 flags = BLK_MQ_REQ_NOWAIT; 2385 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 2386 blk_queue_enter_live(q); 2387 else if (blk_queue_enter(q, flags) < 0) { 2388 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 2389 bio_wouldblock_error(bio); 2390 else 2391 bio_io_error(bio); 2392 return ret; 2393 } 2394 2395 if (!generic_make_request_checks(bio)) 2396 goto out; 2397 2398 /* 2399 * We only want one ->make_request_fn to be active at a time, else 2400 * stack usage with stacked devices could be a problem. So use 2401 * current->bio_list to keep a list of requests submited by a 2402 * make_request_fn function. current->bio_list is also used as a 2403 * flag to say if generic_make_request is currently active in this 2404 * task or not. If it is NULL, then no make_request is active. If 2405 * it is non-NULL, then a make_request is active, and new requests 2406 * should be added at the tail 2407 */ 2408 if (current->bio_list) { 2409 bio_list_add(¤t->bio_list[0], bio); 2410 goto out; 2411 } 2412 2413 /* following loop may be a bit non-obvious, and so deserves some 2414 * explanation. 2415 * Before entering the loop, bio->bi_next is NULL (as all callers 2416 * ensure that) so we have a list with a single bio. 2417 * We pretend that we have just taken it off a longer list, so 2418 * we assign bio_list to a pointer to the bio_list_on_stack, 2419 * thus initialising the bio_list of new bios to be 2420 * added. ->make_request() may indeed add some more bios 2421 * through a recursive call to generic_make_request. If it 2422 * did, we find a non-NULL value in bio_list and re-enter the loop 2423 * from the top. In this case we really did just take the bio 2424 * of the top of the list (no pretending) and so remove it from 2425 * bio_list, and call into ->make_request() again. 2426 */ 2427 BUG_ON(bio->bi_next); 2428 bio_list_init(&bio_list_on_stack[0]); 2429 current->bio_list = bio_list_on_stack; 2430 do { 2431 bool enter_succeeded = true; 2432 2433 if (unlikely(q != bio->bi_disk->queue)) { 2434 if (q) 2435 blk_queue_exit(q); 2436 q = bio->bi_disk->queue; 2437 flags = 0; 2438 if (bio->bi_opf & REQ_NOWAIT) 2439 flags = BLK_MQ_REQ_NOWAIT; 2440 if (blk_queue_enter(q, flags) < 0) { 2441 enter_succeeded = false; 2442 q = NULL; 2443 } 2444 } 2445 2446 if (enter_succeeded) { 2447 struct bio_list lower, same; 2448 2449 /* Create a fresh bio_list for all subordinate requests */ 2450 bio_list_on_stack[1] = bio_list_on_stack[0]; 2451 bio_list_init(&bio_list_on_stack[0]); 2452 ret = q->make_request_fn(q, bio); 2453 2454 /* sort new bios into those for a lower level 2455 * and those for the same level 2456 */ 2457 bio_list_init(&lower); 2458 bio_list_init(&same); 2459 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2460 if (q == bio->bi_disk->queue) 2461 bio_list_add(&same, bio); 2462 else 2463 bio_list_add(&lower, bio); 2464 /* now assemble so we handle the lowest level first */ 2465 bio_list_merge(&bio_list_on_stack[0], &lower); 2466 bio_list_merge(&bio_list_on_stack[0], &same); 2467 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2468 } else { 2469 if (unlikely(!blk_queue_dying(q) && 2470 (bio->bi_opf & REQ_NOWAIT))) 2471 bio_wouldblock_error(bio); 2472 else 2473 bio_io_error(bio); 2474 } 2475 bio = bio_list_pop(&bio_list_on_stack[0]); 2476 } while (bio); 2477 current->bio_list = NULL; /* deactivate */ 2478 2479 out: 2480 if (q) 2481 blk_queue_exit(q); 2482 return ret; 2483 } 2484 EXPORT_SYMBOL(generic_make_request); 2485 2486 /** 2487 * direct_make_request - hand a buffer directly to its device driver for I/O 2488 * @bio: The bio describing the location in memory and on the device. 2489 * 2490 * This function behaves like generic_make_request(), but does not protect 2491 * against recursion. Must only be used if the called driver is known 2492 * to not call generic_make_request (or direct_make_request) again from 2493 * its make_request function. (Calling direct_make_request again from 2494 * a workqueue is perfectly fine as that doesn't recurse). 2495 */ 2496 blk_qc_t direct_make_request(struct bio *bio) 2497 { 2498 struct request_queue *q = bio->bi_disk->queue; 2499 bool nowait = bio->bi_opf & REQ_NOWAIT; 2500 blk_qc_t ret; 2501 2502 if (!generic_make_request_checks(bio)) 2503 return BLK_QC_T_NONE; 2504 2505 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2506 if (nowait && !blk_queue_dying(q)) 2507 bio->bi_status = BLK_STS_AGAIN; 2508 else 2509 bio->bi_status = BLK_STS_IOERR; 2510 bio_endio(bio); 2511 return BLK_QC_T_NONE; 2512 } 2513 2514 ret = q->make_request_fn(q, bio); 2515 blk_queue_exit(q); 2516 return ret; 2517 } 2518 EXPORT_SYMBOL_GPL(direct_make_request); 2519 2520 /** 2521 * submit_bio - submit a bio to the block device layer for I/O 2522 * @bio: The &struct bio which describes the I/O 2523 * 2524 * submit_bio() is very similar in purpose to generic_make_request(), and 2525 * uses that function to do most of the work. Both are fairly rough 2526 * interfaces; @bio must be presetup and ready for I/O. 2527 * 2528 */ 2529 blk_qc_t submit_bio(struct bio *bio) 2530 { 2531 /* 2532 * If it's a regular read/write or a barrier with data attached, 2533 * go through the normal accounting stuff before submission. 2534 */ 2535 if (bio_has_data(bio)) { 2536 unsigned int count; 2537 2538 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2539 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2540 else 2541 count = bio_sectors(bio); 2542 2543 if (op_is_write(bio_op(bio))) { 2544 count_vm_events(PGPGOUT, count); 2545 } else { 2546 task_io_account_read(bio->bi_iter.bi_size); 2547 count_vm_events(PGPGIN, count); 2548 } 2549 2550 if (unlikely(block_dump)) { 2551 char b[BDEVNAME_SIZE]; 2552 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2553 current->comm, task_pid_nr(current), 2554 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2555 (unsigned long long)bio->bi_iter.bi_sector, 2556 bio_devname(bio, b), count); 2557 } 2558 } 2559 2560 return generic_make_request(bio); 2561 } 2562 EXPORT_SYMBOL(submit_bio); 2563 2564 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2565 { 2566 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2567 return false; 2568 2569 if (current->plug) 2570 blk_flush_plug_list(current->plug, false); 2571 return q->poll_fn(q, cookie); 2572 } 2573 EXPORT_SYMBOL_GPL(blk_poll); 2574 2575 /** 2576 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2577 * for new the queue limits 2578 * @q: the queue 2579 * @rq: the request being checked 2580 * 2581 * Description: 2582 * @rq may have been made based on weaker limitations of upper-level queues 2583 * in request stacking drivers, and it may violate the limitation of @q. 2584 * Since the block layer and the underlying device driver trust @rq 2585 * after it is inserted to @q, it should be checked against @q before 2586 * the insertion using this generic function. 2587 * 2588 * Request stacking drivers like request-based dm may change the queue 2589 * limits when retrying requests on other queues. Those requests need 2590 * to be checked against the new queue limits again during dispatch. 2591 */ 2592 static int blk_cloned_rq_check_limits(struct request_queue *q, 2593 struct request *rq) 2594 { 2595 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2596 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2597 return -EIO; 2598 } 2599 2600 /* 2601 * queue's settings related to segment counting like q->bounce_pfn 2602 * may differ from that of other stacking queues. 2603 * Recalculate it to check the request correctly on this queue's 2604 * limitation. 2605 */ 2606 blk_recalc_rq_segments(rq); 2607 if (rq->nr_phys_segments > queue_max_segments(q)) { 2608 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2609 return -EIO; 2610 } 2611 2612 return 0; 2613 } 2614 2615 /** 2616 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2617 * @q: the queue to submit the request 2618 * @rq: the request being queued 2619 */ 2620 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2621 { 2622 unsigned long flags; 2623 int where = ELEVATOR_INSERT_BACK; 2624 2625 if (blk_cloned_rq_check_limits(q, rq)) 2626 return BLK_STS_IOERR; 2627 2628 if (rq->rq_disk && 2629 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2630 return BLK_STS_IOERR; 2631 2632 if (q->mq_ops) { 2633 if (blk_queue_io_stat(q)) 2634 blk_account_io_start(rq, true); 2635 /* 2636 * Since we have a scheduler attached on the top device, 2637 * bypass a potential scheduler on the bottom device for 2638 * insert. 2639 */ 2640 return blk_mq_request_issue_directly(rq); 2641 } 2642 2643 spin_lock_irqsave(q->queue_lock, flags); 2644 if (unlikely(blk_queue_dying(q))) { 2645 spin_unlock_irqrestore(q->queue_lock, flags); 2646 return BLK_STS_IOERR; 2647 } 2648 2649 /* 2650 * Submitting request must be dequeued before calling this function 2651 * because it will be linked to another request_queue 2652 */ 2653 BUG_ON(blk_queued_rq(rq)); 2654 2655 if (op_is_flush(rq->cmd_flags)) 2656 where = ELEVATOR_INSERT_FLUSH; 2657 2658 add_acct_request(q, rq, where); 2659 if (where == ELEVATOR_INSERT_FLUSH) 2660 __blk_run_queue(q); 2661 spin_unlock_irqrestore(q->queue_lock, flags); 2662 2663 return BLK_STS_OK; 2664 } 2665 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2666 2667 /** 2668 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2669 * @rq: request to examine 2670 * 2671 * Description: 2672 * A request could be merge of IOs which require different failure 2673 * handling. This function determines the number of bytes which 2674 * can be failed from the beginning of the request without 2675 * crossing into area which need to be retried further. 2676 * 2677 * Return: 2678 * The number of bytes to fail. 2679 */ 2680 unsigned int blk_rq_err_bytes(const struct request *rq) 2681 { 2682 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2683 unsigned int bytes = 0; 2684 struct bio *bio; 2685 2686 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2687 return blk_rq_bytes(rq); 2688 2689 /* 2690 * Currently the only 'mixing' which can happen is between 2691 * different fastfail types. We can safely fail portions 2692 * which have all the failfast bits that the first one has - 2693 * the ones which are at least as eager to fail as the first 2694 * one. 2695 */ 2696 for (bio = rq->bio; bio; bio = bio->bi_next) { 2697 if ((bio->bi_opf & ff) != ff) 2698 break; 2699 bytes += bio->bi_iter.bi_size; 2700 } 2701 2702 /* this could lead to infinite loop */ 2703 BUG_ON(blk_rq_bytes(rq) && !bytes); 2704 return bytes; 2705 } 2706 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2707 2708 void blk_account_io_completion(struct request *req, unsigned int bytes) 2709 { 2710 if (blk_do_io_stat(req)) { 2711 const int sgrp = op_stat_group(req_op(req)); 2712 struct hd_struct *part; 2713 int cpu; 2714 2715 cpu = part_stat_lock(); 2716 part = req->part; 2717 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9); 2718 part_stat_unlock(); 2719 } 2720 } 2721 2722 void blk_account_io_done(struct request *req, u64 now) 2723 { 2724 /* 2725 * Account IO completion. flush_rq isn't accounted as a 2726 * normal IO on queueing nor completion. Accounting the 2727 * containing request is enough. 2728 */ 2729 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2730 const int sgrp = op_stat_group(req_op(req)); 2731 struct hd_struct *part; 2732 int cpu; 2733 2734 cpu = part_stat_lock(); 2735 part = req->part; 2736 2737 part_stat_inc(cpu, part, ios[sgrp]); 2738 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns); 2739 part_round_stats(req->q, cpu, part); 2740 part_dec_in_flight(req->q, part, rq_data_dir(req)); 2741 2742 hd_struct_put(part); 2743 part_stat_unlock(); 2744 } 2745 } 2746 2747 void blk_account_io_start(struct request *rq, bool new_io) 2748 { 2749 struct hd_struct *part; 2750 int rw = rq_data_dir(rq); 2751 int cpu; 2752 2753 if (!blk_do_io_stat(rq)) 2754 return; 2755 2756 cpu = part_stat_lock(); 2757 2758 if (!new_io) { 2759 part = rq->part; 2760 part_stat_inc(cpu, part, merges[rw]); 2761 } else { 2762 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2763 if (!hd_struct_try_get(part)) { 2764 /* 2765 * The partition is already being removed, 2766 * the request will be accounted on the disk only 2767 * 2768 * We take a reference on disk->part0 although that 2769 * partition will never be deleted, so we can treat 2770 * it as any other partition. 2771 */ 2772 part = &rq->rq_disk->part0; 2773 hd_struct_get(part); 2774 } 2775 part_round_stats(rq->q, cpu, part); 2776 part_inc_in_flight(rq->q, part, rw); 2777 rq->part = part; 2778 } 2779 2780 part_stat_unlock(); 2781 } 2782 2783 static struct request *elv_next_request(struct request_queue *q) 2784 { 2785 struct request *rq; 2786 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2787 2788 WARN_ON_ONCE(q->mq_ops); 2789 2790 while (1) { 2791 list_for_each_entry(rq, &q->queue_head, queuelist) { 2792 #ifdef CONFIG_PM 2793 /* 2794 * If a request gets queued in state RPM_SUSPENDED 2795 * then that's a kernel bug. 2796 */ 2797 WARN_ON_ONCE(q->rpm_status == RPM_SUSPENDED); 2798 #endif 2799 return rq; 2800 } 2801 2802 /* 2803 * Flush request is running and flush request isn't queueable 2804 * in the drive, we can hold the queue till flush request is 2805 * finished. Even we don't do this, driver can't dispatch next 2806 * requests and will requeue them. And this can improve 2807 * throughput too. For example, we have request flush1, write1, 2808 * flush 2. flush1 is dispatched, then queue is hold, write1 2809 * isn't inserted to queue. After flush1 is finished, flush2 2810 * will be dispatched. Since disk cache is already clean, 2811 * flush2 will be finished very soon, so looks like flush2 is 2812 * folded to flush1. 2813 * Since the queue is hold, a flag is set to indicate the queue 2814 * should be restarted later. Please see flush_end_io() for 2815 * details. 2816 */ 2817 if (fq->flush_pending_idx != fq->flush_running_idx && 2818 !queue_flush_queueable(q)) { 2819 fq->flush_queue_delayed = 1; 2820 return NULL; 2821 } 2822 if (unlikely(blk_queue_bypass(q)) || 2823 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2824 return NULL; 2825 } 2826 } 2827 2828 /** 2829 * blk_peek_request - peek at the top of a request queue 2830 * @q: request queue to peek at 2831 * 2832 * Description: 2833 * Return the request at the top of @q. The returned request 2834 * should be started using blk_start_request() before LLD starts 2835 * processing it. 2836 * 2837 * Return: 2838 * Pointer to the request at the top of @q if available. Null 2839 * otherwise. 2840 */ 2841 struct request *blk_peek_request(struct request_queue *q) 2842 { 2843 struct request *rq; 2844 int ret; 2845 2846 lockdep_assert_held(q->queue_lock); 2847 WARN_ON_ONCE(q->mq_ops); 2848 2849 while ((rq = elv_next_request(q)) != NULL) { 2850 if (!(rq->rq_flags & RQF_STARTED)) { 2851 /* 2852 * This is the first time the device driver 2853 * sees this request (possibly after 2854 * requeueing). Notify IO scheduler. 2855 */ 2856 if (rq->rq_flags & RQF_SORTED) 2857 elv_activate_rq(q, rq); 2858 2859 /* 2860 * just mark as started even if we don't start 2861 * it, a request that has been delayed should 2862 * not be passed by new incoming requests 2863 */ 2864 rq->rq_flags |= RQF_STARTED; 2865 trace_block_rq_issue(q, rq); 2866 } 2867 2868 if (!q->boundary_rq || q->boundary_rq == rq) { 2869 q->end_sector = rq_end_sector(rq); 2870 q->boundary_rq = NULL; 2871 } 2872 2873 if (rq->rq_flags & RQF_DONTPREP) 2874 break; 2875 2876 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2877 /* 2878 * make sure space for the drain appears we 2879 * know we can do this because max_hw_segments 2880 * has been adjusted to be one fewer than the 2881 * device can handle 2882 */ 2883 rq->nr_phys_segments++; 2884 } 2885 2886 if (!q->prep_rq_fn) 2887 break; 2888 2889 ret = q->prep_rq_fn(q, rq); 2890 if (ret == BLKPREP_OK) { 2891 break; 2892 } else if (ret == BLKPREP_DEFER) { 2893 /* 2894 * the request may have been (partially) prepped. 2895 * we need to keep this request in the front to 2896 * avoid resource deadlock. RQF_STARTED will 2897 * prevent other fs requests from passing this one. 2898 */ 2899 if (q->dma_drain_size && blk_rq_bytes(rq) && 2900 !(rq->rq_flags & RQF_DONTPREP)) { 2901 /* 2902 * remove the space for the drain we added 2903 * so that we don't add it again 2904 */ 2905 --rq->nr_phys_segments; 2906 } 2907 2908 rq = NULL; 2909 break; 2910 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2911 rq->rq_flags |= RQF_QUIET; 2912 /* 2913 * Mark this request as started so we don't trigger 2914 * any debug logic in the end I/O path. 2915 */ 2916 blk_start_request(rq); 2917 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2918 BLK_STS_TARGET : BLK_STS_IOERR); 2919 } else { 2920 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2921 break; 2922 } 2923 } 2924 2925 return rq; 2926 } 2927 EXPORT_SYMBOL(blk_peek_request); 2928 2929 static void blk_dequeue_request(struct request *rq) 2930 { 2931 struct request_queue *q = rq->q; 2932 2933 BUG_ON(list_empty(&rq->queuelist)); 2934 BUG_ON(ELV_ON_HASH(rq)); 2935 2936 list_del_init(&rq->queuelist); 2937 2938 /* 2939 * the time frame between a request being removed from the lists 2940 * and to it is freed is accounted as io that is in progress at 2941 * the driver side. 2942 */ 2943 if (blk_account_rq(rq)) 2944 q->in_flight[rq_is_sync(rq)]++; 2945 } 2946 2947 /** 2948 * blk_start_request - start request processing on the driver 2949 * @req: request to dequeue 2950 * 2951 * Description: 2952 * Dequeue @req and start timeout timer on it. This hands off the 2953 * request to the driver. 2954 */ 2955 void blk_start_request(struct request *req) 2956 { 2957 lockdep_assert_held(req->q->queue_lock); 2958 WARN_ON_ONCE(req->q->mq_ops); 2959 2960 blk_dequeue_request(req); 2961 2962 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2963 req->io_start_time_ns = ktime_get_ns(); 2964 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2965 req->throtl_size = blk_rq_sectors(req); 2966 #endif 2967 req->rq_flags |= RQF_STATS; 2968 rq_qos_issue(req->q, req); 2969 } 2970 2971 BUG_ON(blk_rq_is_complete(req)); 2972 blk_add_timer(req); 2973 } 2974 EXPORT_SYMBOL(blk_start_request); 2975 2976 /** 2977 * blk_fetch_request - fetch a request from a request queue 2978 * @q: request queue to fetch a request from 2979 * 2980 * Description: 2981 * Return the request at the top of @q. The request is started on 2982 * return and LLD can start processing it immediately. 2983 * 2984 * Return: 2985 * Pointer to the request at the top of @q if available. Null 2986 * otherwise. 2987 */ 2988 struct request *blk_fetch_request(struct request_queue *q) 2989 { 2990 struct request *rq; 2991 2992 lockdep_assert_held(q->queue_lock); 2993 WARN_ON_ONCE(q->mq_ops); 2994 2995 rq = blk_peek_request(q); 2996 if (rq) 2997 blk_start_request(rq); 2998 return rq; 2999 } 3000 EXPORT_SYMBOL(blk_fetch_request); 3001 3002 /* 3003 * Steal bios from a request and add them to a bio list. 3004 * The request must not have been partially completed before. 3005 */ 3006 void blk_steal_bios(struct bio_list *list, struct request *rq) 3007 { 3008 if (rq->bio) { 3009 if (list->tail) 3010 list->tail->bi_next = rq->bio; 3011 else 3012 list->head = rq->bio; 3013 list->tail = rq->biotail; 3014 3015 rq->bio = NULL; 3016 rq->biotail = NULL; 3017 } 3018 3019 rq->__data_len = 0; 3020 } 3021 EXPORT_SYMBOL_GPL(blk_steal_bios); 3022 3023 /** 3024 * blk_update_request - Special helper function for request stacking drivers 3025 * @req: the request being processed 3026 * @error: block status code 3027 * @nr_bytes: number of bytes to complete @req 3028 * 3029 * Description: 3030 * Ends I/O on a number of bytes attached to @req, but doesn't complete 3031 * the request structure even if @req doesn't have leftover. 3032 * If @req has leftover, sets it up for the next range of segments. 3033 * 3034 * This special helper function is only for request stacking drivers 3035 * (e.g. request-based dm) so that they can handle partial completion. 3036 * Actual device drivers should use blk_end_request instead. 3037 * 3038 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 3039 * %false return from this function. 3040 * 3041 * Note: 3042 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 3043 * blk_rq_bytes() and in blk_update_request(). 3044 * 3045 * Return: 3046 * %false - this request doesn't have any more data 3047 * %true - this request has more data 3048 **/ 3049 bool blk_update_request(struct request *req, blk_status_t error, 3050 unsigned int nr_bytes) 3051 { 3052 int total_bytes; 3053 3054 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 3055 3056 if (!req->bio) 3057 return false; 3058 3059 if (unlikely(error && !blk_rq_is_passthrough(req) && 3060 !(req->rq_flags & RQF_QUIET))) 3061 print_req_error(req, error); 3062 3063 blk_account_io_completion(req, nr_bytes); 3064 3065 total_bytes = 0; 3066 while (req->bio) { 3067 struct bio *bio = req->bio; 3068 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 3069 3070 if (bio_bytes == bio->bi_iter.bi_size) 3071 req->bio = bio->bi_next; 3072 3073 /* Completion has already been traced */ 3074 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 3075 req_bio_endio(req, bio, bio_bytes, error); 3076 3077 total_bytes += bio_bytes; 3078 nr_bytes -= bio_bytes; 3079 3080 if (!nr_bytes) 3081 break; 3082 } 3083 3084 /* 3085 * completely done 3086 */ 3087 if (!req->bio) { 3088 /* 3089 * Reset counters so that the request stacking driver 3090 * can find how many bytes remain in the request 3091 * later. 3092 */ 3093 req->__data_len = 0; 3094 return false; 3095 } 3096 3097 req->__data_len -= total_bytes; 3098 3099 /* update sector only for requests with clear definition of sector */ 3100 if (!blk_rq_is_passthrough(req)) 3101 req->__sector += total_bytes >> 9; 3102 3103 /* mixed attributes always follow the first bio */ 3104 if (req->rq_flags & RQF_MIXED_MERGE) { 3105 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3106 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3107 } 3108 3109 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3110 /* 3111 * If total number of sectors is less than the first segment 3112 * size, something has gone terribly wrong. 3113 */ 3114 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3115 blk_dump_rq_flags(req, "request botched"); 3116 req->__data_len = blk_rq_cur_bytes(req); 3117 } 3118 3119 /* recalculate the number of segments */ 3120 blk_recalc_rq_segments(req); 3121 } 3122 3123 return true; 3124 } 3125 EXPORT_SYMBOL_GPL(blk_update_request); 3126 3127 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3128 unsigned int nr_bytes, 3129 unsigned int bidi_bytes) 3130 { 3131 if (blk_update_request(rq, error, nr_bytes)) 3132 return true; 3133 3134 /* Bidi request must be completed as a whole */ 3135 if (unlikely(blk_bidi_rq(rq)) && 3136 blk_update_request(rq->next_rq, error, bidi_bytes)) 3137 return true; 3138 3139 if (blk_queue_add_random(rq->q)) 3140 add_disk_randomness(rq->rq_disk); 3141 3142 return false; 3143 } 3144 3145 /** 3146 * blk_unprep_request - unprepare a request 3147 * @req: the request 3148 * 3149 * This function makes a request ready for complete resubmission (or 3150 * completion). It happens only after all error handling is complete, 3151 * so represents the appropriate moment to deallocate any resources 3152 * that were allocated to the request in the prep_rq_fn. The queue 3153 * lock is held when calling this. 3154 */ 3155 void blk_unprep_request(struct request *req) 3156 { 3157 struct request_queue *q = req->q; 3158 3159 req->rq_flags &= ~RQF_DONTPREP; 3160 if (q->unprep_rq_fn) 3161 q->unprep_rq_fn(q, req); 3162 } 3163 EXPORT_SYMBOL_GPL(blk_unprep_request); 3164 3165 void blk_finish_request(struct request *req, blk_status_t error) 3166 { 3167 struct request_queue *q = req->q; 3168 u64 now = ktime_get_ns(); 3169 3170 lockdep_assert_held(req->q->queue_lock); 3171 WARN_ON_ONCE(q->mq_ops); 3172 3173 if (req->rq_flags & RQF_STATS) 3174 blk_stat_add(req, now); 3175 3176 if (req->rq_flags & RQF_QUEUED) 3177 blk_queue_end_tag(q, req); 3178 3179 BUG_ON(blk_queued_rq(req)); 3180 3181 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3182 laptop_io_completion(req->q->backing_dev_info); 3183 3184 blk_delete_timer(req); 3185 3186 if (req->rq_flags & RQF_DONTPREP) 3187 blk_unprep_request(req); 3188 3189 blk_account_io_done(req, now); 3190 3191 if (req->end_io) { 3192 rq_qos_done(q, req); 3193 req->end_io(req, error); 3194 } else { 3195 if (blk_bidi_rq(req)) 3196 __blk_put_request(req->next_rq->q, req->next_rq); 3197 3198 __blk_put_request(q, req); 3199 } 3200 } 3201 EXPORT_SYMBOL(blk_finish_request); 3202 3203 /** 3204 * blk_end_bidi_request - Complete a bidi request 3205 * @rq: the request to complete 3206 * @error: block status code 3207 * @nr_bytes: number of bytes to complete @rq 3208 * @bidi_bytes: number of bytes to complete @rq->next_rq 3209 * 3210 * Description: 3211 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3212 * Drivers that supports bidi can safely call this member for any 3213 * type of request, bidi or uni. In the later case @bidi_bytes is 3214 * just ignored. 3215 * 3216 * Return: 3217 * %false - we are done with this request 3218 * %true - still buffers pending for this request 3219 **/ 3220 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3221 unsigned int nr_bytes, unsigned int bidi_bytes) 3222 { 3223 struct request_queue *q = rq->q; 3224 unsigned long flags; 3225 3226 WARN_ON_ONCE(q->mq_ops); 3227 3228 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3229 return true; 3230 3231 spin_lock_irqsave(q->queue_lock, flags); 3232 blk_finish_request(rq, error); 3233 spin_unlock_irqrestore(q->queue_lock, flags); 3234 3235 return false; 3236 } 3237 3238 /** 3239 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3240 * @rq: the request to complete 3241 * @error: block status code 3242 * @nr_bytes: number of bytes to complete @rq 3243 * @bidi_bytes: number of bytes to complete @rq->next_rq 3244 * 3245 * Description: 3246 * Identical to blk_end_bidi_request() except that queue lock is 3247 * assumed to be locked on entry and remains so on return. 3248 * 3249 * Return: 3250 * %false - we are done with this request 3251 * %true - still buffers pending for this request 3252 **/ 3253 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3254 unsigned int nr_bytes, unsigned int bidi_bytes) 3255 { 3256 lockdep_assert_held(rq->q->queue_lock); 3257 WARN_ON_ONCE(rq->q->mq_ops); 3258 3259 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3260 return true; 3261 3262 blk_finish_request(rq, error); 3263 3264 return false; 3265 } 3266 3267 /** 3268 * blk_end_request - Helper function for drivers to complete the request. 3269 * @rq: the request being processed 3270 * @error: block status code 3271 * @nr_bytes: number of bytes to complete 3272 * 3273 * Description: 3274 * Ends I/O on a number of bytes attached to @rq. 3275 * If @rq has leftover, sets it up for the next range of segments. 3276 * 3277 * Return: 3278 * %false - we are done with this request 3279 * %true - still buffers pending for this request 3280 **/ 3281 bool blk_end_request(struct request *rq, blk_status_t error, 3282 unsigned int nr_bytes) 3283 { 3284 WARN_ON_ONCE(rq->q->mq_ops); 3285 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3286 } 3287 EXPORT_SYMBOL(blk_end_request); 3288 3289 /** 3290 * blk_end_request_all - Helper function for drives to finish the request. 3291 * @rq: the request to finish 3292 * @error: block status code 3293 * 3294 * Description: 3295 * Completely finish @rq. 3296 */ 3297 void blk_end_request_all(struct request *rq, blk_status_t error) 3298 { 3299 bool pending; 3300 unsigned int bidi_bytes = 0; 3301 3302 if (unlikely(blk_bidi_rq(rq))) 3303 bidi_bytes = blk_rq_bytes(rq->next_rq); 3304 3305 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3306 BUG_ON(pending); 3307 } 3308 EXPORT_SYMBOL(blk_end_request_all); 3309 3310 /** 3311 * __blk_end_request - Helper function for drivers to complete the request. 3312 * @rq: the request being processed 3313 * @error: block status code 3314 * @nr_bytes: number of bytes to complete 3315 * 3316 * Description: 3317 * Must be called with queue lock held unlike blk_end_request(). 3318 * 3319 * Return: 3320 * %false - we are done with this request 3321 * %true - still buffers pending for this request 3322 **/ 3323 bool __blk_end_request(struct request *rq, blk_status_t error, 3324 unsigned int nr_bytes) 3325 { 3326 lockdep_assert_held(rq->q->queue_lock); 3327 WARN_ON_ONCE(rq->q->mq_ops); 3328 3329 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3330 } 3331 EXPORT_SYMBOL(__blk_end_request); 3332 3333 /** 3334 * __blk_end_request_all - Helper function for drives to finish the request. 3335 * @rq: the request to finish 3336 * @error: block status code 3337 * 3338 * Description: 3339 * Completely finish @rq. Must be called with queue lock held. 3340 */ 3341 void __blk_end_request_all(struct request *rq, blk_status_t error) 3342 { 3343 bool pending; 3344 unsigned int bidi_bytes = 0; 3345 3346 lockdep_assert_held(rq->q->queue_lock); 3347 WARN_ON_ONCE(rq->q->mq_ops); 3348 3349 if (unlikely(blk_bidi_rq(rq))) 3350 bidi_bytes = blk_rq_bytes(rq->next_rq); 3351 3352 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3353 BUG_ON(pending); 3354 } 3355 EXPORT_SYMBOL(__blk_end_request_all); 3356 3357 /** 3358 * __blk_end_request_cur - Helper function to finish the current request chunk. 3359 * @rq: the request to finish the current chunk for 3360 * @error: block status code 3361 * 3362 * Description: 3363 * Complete the current consecutively mapped chunk from @rq. Must 3364 * be called with queue lock held. 3365 * 3366 * Return: 3367 * %false - we are done with this request 3368 * %true - still buffers pending for this request 3369 */ 3370 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3371 { 3372 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3373 } 3374 EXPORT_SYMBOL(__blk_end_request_cur); 3375 3376 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3377 struct bio *bio) 3378 { 3379 if (bio_has_data(bio)) 3380 rq->nr_phys_segments = bio_phys_segments(q, bio); 3381 else if (bio_op(bio) == REQ_OP_DISCARD) 3382 rq->nr_phys_segments = 1; 3383 3384 rq->__data_len = bio->bi_iter.bi_size; 3385 rq->bio = rq->biotail = bio; 3386 3387 if (bio->bi_disk) 3388 rq->rq_disk = bio->bi_disk; 3389 } 3390 3391 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3392 /** 3393 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3394 * @rq: the request to be flushed 3395 * 3396 * Description: 3397 * Flush all pages in @rq. 3398 */ 3399 void rq_flush_dcache_pages(struct request *rq) 3400 { 3401 struct req_iterator iter; 3402 struct bio_vec bvec; 3403 3404 rq_for_each_segment(bvec, rq, iter) 3405 flush_dcache_page(bvec.bv_page); 3406 } 3407 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3408 #endif 3409 3410 /** 3411 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3412 * @q : the queue of the device being checked 3413 * 3414 * Description: 3415 * Check if underlying low-level drivers of a device are busy. 3416 * If the drivers want to export their busy state, they must set own 3417 * exporting function using blk_queue_lld_busy() first. 3418 * 3419 * Basically, this function is used only by request stacking drivers 3420 * to stop dispatching requests to underlying devices when underlying 3421 * devices are busy. This behavior helps more I/O merging on the queue 3422 * of the request stacking driver and prevents I/O throughput regression 3423 * on burst I/O load. 3424 * 3425 * Return: 3426 * 0 - Not busy (The request stacking driver should dispatch request) 3427 * 1 - Busy (The request stacking driver should stop dispatching request) 3428 */ 3429 int blk_lld_busy(struct request_queue *q) 3430 { 3431 if (q->lld_busy_fn) 3432 return q->lld_busy_fn(q); 3433 3434 return 0; 3435 } 3436 EXPORT_SYMBOL_GPL(blk_lld_busy); 3437 3438 /** 3439 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3440 * @rq: the clone request to be cleaned up 3441 * 3442 * Description: 3443 * Free all bios in @rq for a cloned request. 3444 */ 3445 void blk_rq_unprep_clone(struct request *rq) 3446 { 3447 struct bio *bio; 3448 3449 while ((bio = rq->bio) != NULL) { 3450 rq->bio = bio->bi_next; 3451 3452 bio_put(bio); 3453 } 3454 } 3455 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3456 3457 /* 3458 * Copy attributes of the original request to the clone request. 3459 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3460 */ 3461 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3462 { 3463 dst->cpu = src->cpu; 3464 dst->__sector = blk_rq_pos(src); 3465 dst->__data_len = blk_rq_bytes(src); 3466 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3467 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 3468 dst->special_vec = src->special_vec; 3469 } 3470 dst->nr_phys_segments = src->nr_phys_segments; 3471 dst->ioprio = src->ioprio; 3472 dst->extra_len = src->extra_len; 3473 } 3474 3475 /** 3476 * blk_rq_prep_clone - Helper function to setup clone request 3477 * @rq: the request to be setup 3478 * @rq_src: original request to be cloned 3479 * @bs: bio_set that bios for clone are allocated from 3480 * @gfp_mask: memory allocation mask for bio 3481 * @bio_ctr: setup function to be called for each clone bio. 3482 * Returns %0 for success, non %0 for failure. 3483 * @data: private data to be passed to @bio_ctr 3484 * 3485 * Description: 3486 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3487 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3488 * are not copied, and copying such parts is the caller's responsibility. 3489 * Also, pages which the original bios are pointing to are not copied 3490 * and the cloned bios just point same pages. 3491 * So cloned bios must be completed before original bios, which means 3492 * the caller must complete @rq before @rq_src. 3493 */ 3494 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3495 struct bio_set *bs, gfp_t gfp_mask, 3496 int (*bio_ctr)(struct bio *, struct bio *, void *), 3497 void *data) 3498 { 3499 struct bio *bio, *bio_src; 3500 3501 if (!bs) 3502 bs = &fs_bio_set; 3503 3504 __rq_for_each_bio(bio_src, rq_src) { 3505 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3506 if (!bio) 3507 goto free_and_out; 3508 3509 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3510 goto free_and_out; 3511 3512 if (rq->bio) { 3513 rq->biotail->bi_next = bio; 3514 rq->biotail = bio; 3515 } else 3516 rq->bio = rq->biotail = bio; 3517 } 3518 3519 __blk_rq_prep_clone(rq, rq_src); 3520 3521 return 0; 3522 3523 free_and_out: 3524 if (bio) 3525 bio_put(bio); 3526 blk_rq_unprep_clone(rq); 3527 3528 return -ENOMEM; 3529 } 3530 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3531 3532 int kblockd_schedule_work(struct work_struct *work) 3533 { 3534 return queue_work(kblockd_workqueue, work); 3535 } 3536 EXPORT_SYMBOL(kblockd_schedule_work); 3537 3538 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3539 { 3540 return queue_work_on(cpu, kblockd_workqueue, work); 3541 } 3542 EXPORT_SYMBOL(kblockd_schedule_work_on); 3543 3544 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3545 unsigned long delay) 3546 { 3547 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3548 } 3549 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3550 3551 /** 3552 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3553 * @plug: The &struct blk_plug that needs to be initialized 3554 * 3555 * Description: 3556 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3557 * pending I/O should the task end up blocking between blk_start_plug() and 3558 * blk_finish_plug(). This is important from a performance perspective, but 3559 * also ensures that we don't deadlock. For instance, if the task is blocking 3560 * for a memory allocation, memory reclaim could end up wanting to free a 3561 * page belonging to that request that is currently residing in our private 3562 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3563 * this kind of deadlock. 3564 */ 3565 void blk_start_plug(struct blk_plug *plug) 3566 { 3567 struct task_struct *tsk = current; 3568 3569 /* 3570 * If this is a nested plug, don't actually assign it. 3571 */ 3572 if (tsk->plug) 3573 return; 3574 3575 INIT_LIST_HEAD(&plug->list); 3576 INIT_LIST_HEAD(&plug->mq_list); 3577 INIT_LIST_HEAD(&plug->cb_list); 3578 /* 3579 * Store ordering should not be needed here, since a potential 3580 * preempt will imply a full memory barrier 3581 */ 3582 tsk->plug = plug; 3583 } 3584 EXPORT_SYMBOL(blk_start_plug); 3585 3586 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3587 { 3588 struct request *rqa = container_of(a, struct request, queuelist); 3589 struct request *rqb = container_of(b, struct request, queuelist); 3590 3591 return !(rqa->q < rqb->q || 3592 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3593 } 3594 3595 /* 3596 * If 'from_schedule' is true, then postpone the dispatch of requests 3597 * until a safe kblockd context. We due this to avoid accidental big 3598 * additional stack usage in driver dispatch, in places where the originally 3599 * plugger did not intend it. 3600 */ 3601 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3602 bool from_schedule) 3603 __releases(q->queue_lock) 3604 { 3605 lockdep_assert_held(q->queue_lock); 3606 3607 trace_block_unplug(q, depth, !from_schedule); 3608 3609 if (from_schedule) 3610 blk_run_queue_async(q); 3611 else 3612 __blk_run_queue(q); 3613 spin_unlock_irq(q->queue_lock); 3614 } 3615 3616 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3617 { 3618 LIST_HEAD(callbacks); 3619 3620 while (!list_empty(&plug->cb_list)) { 3621 list_splice_init(&plug->cb_list, &callbacks); 3622 3623 while (!list_empty(&callbacks)) { 3624 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3625 struct blk_plug_cb, 3626 list); 3627 list_del(&cb->list); 3628 cb->callback(cb, from_schedule); 3629 } 3630 } 3631 } 3632 3633 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3634 int size) 3635 { 3636 struct blk_plug *plug = current->plug; 3637 struct blk_plug_cb *cb; 3638 3639 if (!plug) 3640 return NULL; 3641 3642 list_for_each_entry(cb, &plug->cb_list, list) 3643 if (cb->callback == unplug && cb->data == data) 3644 return cb; 3645 3646 /* Not currently on the callback list */ 3647 BUG_ON(size < sizeof(*cb)); 3648 cb = kzalloc(size, GFP_ATOMIC); 3649 if (cb) { 3650 cb->data = data; 3651 cb->callback = unplug; 3652 list_add(&cb->list, &plug->cb_list); 3653 } 3654 return cb; 3655 } 3656 EXPORT_SYMBOL(blk_check_plugged); 3657 3658 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3659 { 3660 struct request_queue *q; 3661 struct request *rq; 3662 LIST_HEAD(list); 3663 unsigned int depth; 3664 3665 flush_plug_callbacks(plug, from_schedule); 3666 3667 if (!list_empty(&plug->mq_list)) 3668 blk_mq_flush_plug_list(plug, from_schedule); 3669 3670 if (list_empty(&plug->list)) 3671 return; 3672 3673 list_splice_init(&plug->list, &list); 3674 3675 list_sort(NULL, &list, plug_rq_cmp); 3676 3677 q = NULL; 3678 depth = 0; 3679 3680 while (!list_empty(&list)) { 3681 rq = list_entry_rq(list.next); 3682 list_del_init(&rq->queuelist); 3683 BUG_ON(!rq->q); 3684 if (rq->q != q) { 3685 /* 3686 * This drops the queue lock 3687 */ 3688 if (q) 3689 queue_unplugged(q, depth, from_schedule); 3690 q = rq->q; 3691 depth = 0; 3692 spin_lock_irq(q->queue_lock); 3693 } 3694 3695 /* 3696 * Short-circuit if @q is dead 3697 */ 3698 if (unlikely(blk_queue_dying(q))) { 3699 __blk_end_request_all(rq, BLK_STS_IOERR); 3700 continue; 3701 } 3702 3703 /* 3704 * rq is already accounted, so use raw insert 3705 */ 3706 if (op_is_flush(rq->cmd_flags)) 3707 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3708 else 3709 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3710 3711 depth++; 3712 } 3713 3714 /* 3715 * This drops the queue lock 3716 */ 3717 if (q) 3718 queue_unplugged(q, depth, from_schedule); 3719 } 3720 3721 void blk_finish_plug(struct blk_plug *plug) 3722 { 3723 if (plug != current->plug) 3724 return; 3725 blk_flush_plug_list(plug, false); 3726 3727 current->plug = NULL; 3728 } 3729 EXPORT_SYMBOL(blk_finish_plug); 3730 3731 int __init blk_dev_init(void) 3732 { 3733 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3734 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3735 FIELD_SIZEOF(struct request, cmd_flags)); 3736 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3737 FIELD_SIZEOF(struct bio, bi_opf)); 3738 3739 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3740 kblockd_workqueue = alloc_workqueue("kblockd", 3741 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3742 if (!kblockd_workqueue) 3743 panic("Failed to create kblockd\n"); 3744 3745 request_cachep = kmem_cache_create("blkdev_requests", 3746 sizeof(struct request), 0, SLAB_PANIC, NULL); 3747 3748 blk_requestq_cachep = kmem_cache_create("request_queue", 3749 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3750 3751 #ifdef CONFIG_DEBUG_FS 3752 blk_debugfs_root = debugfs_create_dir("block", NULL); 3753 #endif 3754 3755 return 0; 3756 } 3757