xref: /openbmc/linux/block/blk-core.c (revision 384740dc)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/blktrace_api.h>
30 #include <linux/fault-inject.h>
31 
32 #include "blk.h"
33 
34 static int __make_request(struct request_queue *q, struct bio *bio);
35 
36 /*
37  * For the allocated request tables
38  */
39 static struct kmem_cache *request_cachep;
40 
41 /*
42  * For queue allocation
43  */
44 struct kmem_cache *blk_requestq_cachep;
45 
46 /*
47  * Controlling structure to kblockd
48  */
49 static struct workqueue_struct *kblockd_workqueue;
50 
51 static void drive_stat_acct(struct request *rq, int new_io)
52 {
53 	struct hd_struct *part;
54 	int rw = rq_data_dir(rq);
55 	int cpu;
56 
57 	if (!blk_fs_request(rq) || !rq->rq_disk)
58 		return;
59 
60 	cpu = part_stat_lock();
61 	part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
62 
63 	if (!new_io)
64 		part_stat_inc(cpu, part, merges[rw]);
65 	else {
66 		part_round_stats(cpu, part);
67 		part_inc_in_flight(part);
68 	}
69 
70 	part_stat_unlock();
71 }
72 
73 void blk_queue_congestion_threshold(struct request_queue *q)
74 {
75 	int nr;
76 
77 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 	if (nr > q->nr_requests)
79 		nr = q->nr_requests;
80 	q->nr_congestion_on = nr;
81 
82 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 	if (nr < 1)
84 		nr = 1;
85 	q->nr_congestion_off = nr;
86 }
87 
88 /**
89  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90  * @bdev:	device
91  *
92  * Locates the passed device's request queue and returns the address of its
93  * backing_dev_info
94  *
95  * Will return NULL if the request queue cannot be located.
96  */
97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98 {
99 	struct backing_dev_info *ret = NULL;
100 	struct request_queue *q = bdev_get_queue(bdev);
101 
102 	if (q)
103 		ret = &q->backing_dev_info;
104 	return ret;
105 }
106 EXPORT_SYMBOL(blk_get_backing_dev_info);
107 
108 void blk_rq_init(struct request_queue *q, struct request *rq)
109 {
110 	memset(rq, 0, sizeof(*rq));
111 
112 	INIT_LIST_HEAD(&rq->queuelist);
113 	INIT_LIST_HEAD(&rq->timeout_list);
114 	rq->cpu = -1;
115 	rq->q = q;
116 	rq->sector = rq->hard_sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->cmd = rq->__cmd;
120 	rq->tag = -1;
121 	rq->ref_count = 1;
122 }
123 EXPORT_SYMBOL(blk_rq_init);
124 
125 static void req_bio_endio(struct request *rq, struct bio *bio,
126 			  unsigned int nbytes, int error)
127 {
128 	struct request_queue *q = rq->q;
129 
130 	if (&q->bar_rq != rq) {
131 		if (error)
132 			clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 		else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 			error = -EIO;
135 
136 		if (unlikely(nbytes > bio->bi_size)) {
137 			printk(KERN_ERR "%s: want %u bytes done, %u left\n",
138 			       __func__, nbytes, bio->bi_size);
139 			nbytes = bio->bi_size;
140 		}
141 
142 		bio->bi_size -= nbytes;
143 		bio->bi_sector += (nbytes >> 9);
144 
145 		if (bio_integrity(bio))
146 			bio_integrity_advance(bio, nbytes);
147 
148 		if (bio->bi_size == 0)
149 			bio_endio(bio, error);
150 	} else {
151 
152 		/*
153 		 * Okay, this is the barrier request in progress, just
154 		 * record the error;
155 		 */
156 		if (error && !q->orderr)
157 			q->orderr = error;
158 	}
159 }
160 
161 void blk_dump_rq_flags(struct request *rq, char *msg)
162 {
163 	int bit;
164 
165 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
166 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 		rq->cmd_flags);
168 
169 	printk(KERN_INFO "  sector %llu, nr/cnr %lu/%u\n",
170 						(unsigned long long)rq->sector,
171 						rq->nr_sectors,
172 						rq->current_nr_sectors);
173 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 						rq->bio, rq->biotail,
175 						rq->buffer, rq->data,
176 						rq->data_len);
177 
178 	if (blk_pc_request(rq)) {
179 		printk(KERN_INFO "  cdb: ");
180 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
181 			printk("%02x ", rq->cmd[bit]);
182 		printk("\n");
183 	}
184 }
185 EXPORT_SYMBOL(blk_dump_rq_flags);
186 
187 /*
188  * "plug" the device if there are no outstanding requests: this will
189  * force the transfer to start only after we have put all the requests
190  * on the list.
191  *
192  * This is called with interrupts off and no requests on the queue and
193  * with the queue lock held.
194  */
195 void blk_plug_device(struct request_queue *q)
196 {
197 	WARN_ON(!irqs_disabled());
198 
199 	/*
200 	 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 	 * which will restart the queueing
202 	 */
203 	if (blk_queue_stopped(q))
204 		return;
205 
206 	if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
207 		mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
208 		blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 	}
210 }
211 EXPORT_SYMBOL(blk_plug_device);
212 
213 /**
214  * blk_plug_device_unlocked - plug a device without queue lock held
215  * @q:    The &struct request_queue to plug
216  *
217  * Description:
218  *   Like @blk_plug_device(), but grabs the queue lock and disables
219  *   interrupts.
220  **/
221 void blk_plug_device_unlocked(struct request_queue *q)
222 {
223 	unsigned long flags;
224 
225 	spin_lock_irqsave(q->queue_lock, flags);
226 	blk_plug_device(q);
227 	spin_unlock_irqrestore(q->queue_lock, flags);
228 }
229 EXPORT_SYMBOL(blk_plug_device_unlocked);
230 
231 /*
232  * remove the queue from the plugged list, if present. called with
233  * queue lock held and interrupts disabled.
234  */
235 int blk_remove_plug(struct request_queue *q)
236 {
237 	WARN_ON(!irqs_disabled());
238 
239 	if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
240 		return 0;
241 
242 	del_timer(&q->unplug_timer);
243 	return 1;
244 }
245 EXPORT_SYMBOL(blk_remove_plug);
246 
247 /*
248  * remove the plug and let it rip..
249  */
250 void __generic_unplug_device(struct request_queue *q)
251 {
252 	if (unlikely(blk_queue_stopped(q)))
253 		return;
254 
255 	if (!blk_remove_plug(q))
256 		return;
257 
258 	q->request_fn(q);
259 }
260 EXPORT_SYMBOL(__generic_unplug_device);
261 
262 /**
263  * generic_unplug_device - fire a request queue
264  * @q:    The &struct request_queue in question
265  *
266  * Description:
267  *   Linux uses plugging to build bigger requests queues before letting
268  *   the device have at them. If a queue is plugged, the I/O scheduler
269  *   is still adding and merging requests on the queue. Once the queue
270  *   gets unplugged, the request_fn defined for the queue is invoked and
271  *   transfers started.
272  **/
273 void generic_unplug_device(struct request_queue *q)
274 {
275 	if (blk_queue_plugged(q)) {
276 		spin_lock_irq(q->queue_lock);
277 		__generic_unplug_device(q);
278 		spin_unlock_irq(q->queue_lock);
279 	}
280 }
281 EXPORT_SYMBOL(generic_unplug_device);
282 
283 static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 				   struct page *page)
285 {
286 	struct request_queue *q = bdi->unplug_io_data;
287 
288 	blk_unplug(q);
289 }
290 
291 void blk_unplug_work(struct work_struct *work)
292 {
293 	struct request_queue *q =
294 		container_of(work, struct request_queue, unplug_work);
295 
296 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 				q->rq.count[READ] + q->rq.count[WRITE]);
298 
299 	q->unplug_fn(q);
300 }
301 
302 void blk_unplug_timeout(unsigned long data)
303 {
304 	struct request_queue *q = (struct request_queue *)data;
305 
306 	blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 				q->rq.count[READ] + q->rq.count[WRITE]);
308 
309 	kblockd_schedule_work(q, &q->unplug_work);
310 }
311 
312 void blk_unplug(struct request_queue *q)
313 {
314 	/*
315 	 * devices don't necessarily have an ->unplug_fn defined
316 	 */
317 	if (q->unplug_fn) {
318 		blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 					q->rq.count[READ] + q->rq.count[WRITE]);
320 
321 		q->unplug_fn(q);
322 	}
323 }
324 EXPORT_SYMBOL(blk_unplug);
325 
326 static void blk_invoke_request_fn(struct request_queue *q)
327 {
328 	/*
329 	 * one level of recursion is ok and is much faster than kicking
330 	 * the unplug handling
331 	 */
332 	if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
333 		q->request_fn(q);
334 		queue_flag_clear(QUEUE_FLAG_REENTER, q);
335 	} else {
336 		queue_flag_set(QUEUE_FLAG_PLUGGED, q);
337 		kblockd_schedule_work(q, &q->unplug_work);
338 	}
339 }
340 
341 /**
342  * blk_start_queue - restart a previously stopped queue
343  * @q:    The &struct request_queue in question
344  *
345  * Description:
346  *   blk_start_queue() will clear the stop flag on the queue, and call
347  *   the request_fn for the queue if it was in a stopped state when
348  *   entered. Also see blk_stop_queue(). Queue lock must be held.
349  **/
350 void blk_start_queue(struct request_queue *q)
351 {
352 	WARN_ON(!irqs_disabled());
353 
354 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
355 	blk_invoke_request_fn(q);
356 }
357 EXPORT_SYMBOL(blk_start_queue);
358 
359 /**
360  * blk_stop_queue - stop a queue
361  * @q:    The &struct request_queue in question
362  *
363  * Description:
364  *   The Linux block layer assumes that a block driver will consume all
365  *   entries on the request queue when the request_fn strategy is called.
366  *   Often this will not happen, because of hardware limitations (queue
367  *   depth settings). If a device driver gets a 'queue full' response,
368  *   or if it simply chooses not to queue more I/O at one point, it can
369  *   call this function to prevent the request_fn from being called until
370  *   the driver has signalled it's ready to go again. This happens by calling
371  *   blk_start_queue() to restart queue operations. Queue lock must be held.
372  **/
373 void blk_stop_queue(struct request_queue *q)
374 {
375 	blk_remove_plug(q);
376 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
377 }
378 EXPORT_SYMBOL(blk_stop_queue);
379 
380 /**
381  * blk_sync_queue - cancel any pending callbacks on a queue
382  * @q: the queue
383  *
384  * Description:
385  *     The block layer may perform asynchronous callback activity
386  *     on a queue, such as calling the unplug function after a timeout.
387  *     A block device may call blk_sync_queue to ensure that any
388  *     such activity is cancelled, thus allowing it to release resources
389  *     that the callbacks might use. The caller must already have made sure
390  *     that its ->make_request_fn will not re-add plugging prior to calling
391  *     this function.
392  *
393  */
394 void blk_sync_queue(struct request_queue *q)
395 {
396 	del_timer_sync(&q->unplug_timer);
397 	kblockd_flush_work(&q->unplug_work);
398 }
399 EXPORT_SYMBOL(blk_sync_queue);
400 
401 /**
402  * blk_run_queue - run a single device queue
403  * @q:	The queue to run
404  */
405 void __blk_run_queue(struct request_queue *q)
406 {
407 	blk_remove_plug(q);
408 
409 	/*
410 	 * Only recurse once to avoid overrunning the stack, let the unplug
411 	 * handling reinvoke the handler shortly if we already got there.
412 	 */
413 	if (!elv_queue_empty(q))
414 		blk_invoke_request_fn(q);
415 }
416 EXPORT_SYMBOL(__blk_run_queue);
417 
418 /**
419  * blk_run_queue - run a single device queue
420  * @q: The queue to run
421  */
422 void blk_run_queue(struct request_queue *q)
423 {
424 	unsigned long flags;
425 
426 	spin_lock_irqsave(q->queue_lock, flags);
427 	__blk_run_queue(q);
428 	spin_unlock_irqrestore(q->queue_lock, flags);
429 }
430 EXPORT_SYMBOL(blk_run_queue);
431 
432 void blk_put_queue(struct request_queue *q)
433 {
434 	kobject_put(&q->kobj);
435 }
436 
437 void blk_cleanup_queue(struct request_queue *q)
438 {
439 	/*
440 	 * We know we have process context here, so we can be a little
441 	 * cautious and ensure that pending block actions on this device
442 	 * are done before moving on. Going into this function, we should
443 	 * not have processes doing IO to this device.
444 	 */
445 	blk_sync_queue(q);
446 
447 	mutex_lock(&q->sysfs_lock);
448 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
449 	mutex_unlock(&q->sysfs_lock);
450 
451 	if (q->elevator)
452 		elevator_exit(q->elevator);
453 
454 	blk_put_queue(q);
455 }
456 EXPORT_SYMBOL(blk_cleanup_queue);
457 
458 static int blk_init_free_list(struct request_queue *q)
459 {
460 	struct request_list *rl = &q->rq;
461 
462 	rl->count[READ] = rl->count[WRITE] = 0;
463 	rl->starved[READ] = rl->starved[WRITE] = 0;
464 	rl->elvpriv = 0;
465 	init_waitqueue_head(&rl->wait[READ]);
466 	init_waitqueue_head(&rl->wait[WRITE]);
467 
468 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
469 				mempool_free_slab, request_cachep, q->node);
470 
471 	if (!rl->rq_pool)
472 		return -ENOMEM;
473 
474 	return 0;
475 }
476 
477 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
478 {
479 	return blk_alloc_queue_node(gfp_mask, -1);
480 }
481 EXPORT_SYMBOL(blk_alloc_queue);
482 
483 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
484 {
485 	struct request_queue *q;
486 	int err;
487 
488 	q = kmem_cache_alloc_node(blk_requestq_cachep,
489 				gfp_mask | __GFP_ZERO, node_id);
490 	if (!q)
491 		return NULL;
492 
493 	q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
494 	q->backing_dev_info.unplug_io_data = q;
495 	err = bdi_init(&q->backing_dev_info);
496 	if (err) {
497 		kmem_cache_free(blk_requestq_cachep, q);
498 		return NULL;
499 	}
500 
501 	init_timer(&q->unplug_timer);
502 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
503 	INIT_LIST_HEAD(&q->timeout_list);
504 
505 	kobject_init(&q->kobj, &blk_queue_ktype);
506 
507 	mutex_init(&q->sysfs_lock);
508 	spin_lock_init(&q->__queue_lock);
509 
510 	return q;
511 }
512 EXPORT_SYMBOL(blk_alloc_queue_node);
513 
514 /**
515  * blk_init_queue  - prepare a request queue for use with a block device
516  * @rfn:  The function to be called to process requests that have been
517  *        placed on the queue.
518  * @lock: Request queue spin lock
519  *
520  * Description:
521  *    If a block device wishes to use the standard request handling procedures,
522  *    which sorts requests and coalesces adjacent requests, then it must
523  *    call blk_init_queue().  The function @rfn will be called when there
524  *    are requests on the queue that need to be processed.  If the device
525  *    supports plugging, then @rfn may not be called immediately when requests
526  *    are available on the queue, but may be called at some time later instead.
527  *    Plugged queues are generally unplugged when a buffer belonging to one
528  *    of the requests on the queue is needed, or due to memory pressure.
529  *
530  *    @rfn is not required, or even expected, to remove all requests off the
531  *    queue, but only as many as it can handle at a time.  If it does leave
532  *    requests on the queue, it is responsible for arranging that the requests
533  *    get dealt with eventually.
534  *
535  *    The queue spin lock must be held while manipulating the requests on the
536  *    request queue; this lock will be taken also from interrupt context, so irq
537  *    disabling is needed for it.
538  *
539  *    Function returns a pointer to the initialized request queue, or %NULL if
540  *    it didn't succeed.
541  *
542  * Note:
543  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
544  *    when the block device is deactivated (such as at module unload).
545  **/
546 
547 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
548 {
549 	return blk_init_queue_node(rfn, lock, -1);
550 }
551 EXPORT_SYMBOL(blk_init_queue);
552 
553 struct request_queue *
554 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
555 {
556 	struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
557 
558 	if (!q)
559 		return NULL;
560 
561 	q->node = node_id;
562 	if (blk_init_free_list(q)) {
563 		kmem_cache_free(blk_requestq_cachep, q);
564 		return NULL;
565 	}
566 
567 	/*
568 	 * if caller didn't supply a lock, they get per-queue locking with
569 	 * our embedded lock
570 	 */
571 	if (!lock)
572 		lock = &q->__queue_lock;
573 
574 	q->request_fn		= rfn;
575 	q->prep_rq_fn		= NULL;
576 	q->unplug_fn		= generic_unplug_device;
577 	q->queue_flags		= (1 << QUEUE_FLAG_CLUSTER |
578 				   1 << QUEUE_FLAG_STACKABLE);
579 	q->queue_lock		= lock;
580 
581 	blk_queue_segment_boundary(q, 0xffffffff);
582 
583 	blk_queue_make_request(q, __make_request);
584 	blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
585 
586 	blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
587 	blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
588 
589 	q->sg_reserved_size = INT_MAX;
590 
591 	blk_set_cmd_filter_defaults(&q->cmd_filter);
592 
593 	/*
594 	 * all done
595 	 */
596 	if (!elevator_init(q, NULL)) {
597 		blk_queue_congestion_threshold(q);
598 		return q;
599 	}
600 
601 	blk_put_queue(q);
602 	return NULL;
603 }
604 EXPORT_SYMBOL(blk_init_queue_node);
605 
606 int blk_get_queue(struct request_queue *q)
607 {
608 	if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
609 		kobject_get(&q->kobj);
610 		return 0;
611 	}
612 
613 	return 1;
614 }
615 
616 static inline void blk_free_request(struct request_queue *q, struct request *rq)
617 {
618 	if (rq->cmd_flags & REQ_ELVPRIV)
619 		elv_put_request(q, rq);
620 	mempool_free(rq, q->rq.rq_pool);
621 }
622 
623 static struct request *
624 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
625 {
626 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
627 
628 	if (!rq)
629 		return NULL;
630 
631 	blk_rq_init(q, rq);
632 
633 	rq->cmd_flags = rw | REQ_ALLOCED;
634 
635 	if (priv) {
636 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
637 			mempool_free(rq, q->rq.rq_pool);
638 			return NULL;
639 		}
640 		rq->cmd_flags |= REQ_ELVPRIV;
641 	}
642 
643 	return rq;
644 }
645 
646 /*
647  * ioc_batching returns true if the ioc is a valid batching request and
648  * should be given priority access to a request.
649  */
650 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
651 {
652 	if (!ioc)
653 		return 0;
654 
655 	/*
656 	 * Make sure the process is able to allocate at least 1 request
657 	 * even if the batch times out, otherwise we could theoretically
658 	 * lose wakeups.
659 	 */
660 	return ioc->nr_batch_requests == q->nr_batching ||
661 		(ioc->nr_batch_requests > 0
662 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
663 }
664 
665 /*
666  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
667  * will cause the process to be a "batcher" on all queues in the system. This
668  * is the behaviour we want though - once it gets a wakeup it should be given
669  * a nice run.
670  */
671 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
672 {
673 	if (!ioc || ioc_batching(q, ioc))
674 		return;
675 
676 	ioc->nr_batch_requests = q->nr_batching;
677 	ioc->last_waited = jiffies;
678 }
679 
680 static void __freed_request(struct request_queue *q, int rw)
681 {
682 	struct request_list *rl = &q->rq;
683 
684 	if (rl->count[rw] < queue_congestion_off_threshold(q))
685 		blk_clear_queue_congested(q, rw);
686 
687 	if (rl->count[rw] + 1 <= q->nr_requests) {
688 		if (waitqueue_active(&rl->wait[rw]))
689 			wake_up(&rl->wait[rw]);
690 
691 		blk_clear_queue_full(q, rw);
692 	}
693 }
694 
695 /*
696  * A request has just been released.  Account for it, update the full and
697  * congestion status, wake up any waiters.   Called under q->queue_lock.
698  */
699 static void freed_request(struct request_queue *q, int rw, int priv)
700 {
701 	struct request_list *rl = &q->rq;
702 
703 	rl->count[rw]--;
704 	if (priv)
705 		rl->elvpriv--;
706 
707 	__freed_request(q, rw);
708 
709 	if (unlikely(rl->starved[rw ^ 1]))
710 		__freed_request(q, rw ^ 1);
711 }
712 
713 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
714 /*
715  * Get a free request, queue_lock must be held.
716  * Returns NULL on failure, with queue_lock held.
717  * Returns !NULL on success, with queue_lock *not held*.
718  */
719 static struct request *get_request(struct request_queue *q, int rw_flags,
720 				   struct bio *bio, gfp_t gfp_mask)
721 {
722 	struct request *rq = NULL;
723 	struct request_list *rl = &q->rq;
724 	struct io_context *ioc = NULL;
725 	const int rw = rw_flags & 0x01;
726 	int may_queue, priv;
727 
728 	may_queue = elv_may_queue(q, rw_flags);
729 	if (may_queue == ELV_MQUEUE_NO)
730 		goto rq_starved;
731 
732 	if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
733 		if (rl->count[rw]+1 >= q->nr_requests) {
734 			ioc = current_io_context(GFP_ATOMIC, q->node);
735 			/*
736 			 * The queue will fill after this allocation, so set
737 			 * it as full, and mark this process as "batching".
738 			 * This process will be allowed to complete a batch of
739 			 * requests, others will be blocked.
740 			 */
741 			if (!blk_queue_full(q, rw)) {
742 				ioc_set_batching(q, ioc);
743 				blk_set_queue_full(q, rw);
744 			} else {
745 				if (may_queue != ELV_MQUEUE_MUST
746 						&& !ioc_batching(q, ioc)) {
747 					/*
748 					 * The queue is full and the allocating
749 					 * process is not a "batcher", and not
750 					 * exempted by the IO scheduler
751 					 */
752 					goto out;
753 				}
754 			}
755 		}
756 		blk_set_queue_congested(q, rw);
757 	}
758 
759 	/*
760 	 * Only allow batching queuers to allocate up to 50% over the defined
761 	 * limit of requests, otherwise we could have thousands of requests
762 	 * allocated with any setting of ->nr_requests
763 	 */
764 	if (rl->count[rw] >= (3 * q->nr_requests / 2))
765 		goto out;
766 
767 	rl->count[rw]++;
768 	rl->starved[rw] = 0;
769 
770 	priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
771 	if (priv)
772 		rl->elvpriv++;
773 
774 	spin_unlock_irq(q->queue_lock);
775 
776 	rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
777 	if (unlikely(!rq)) {
778 		/*
779 		 * Allocation failed presumably due to memory. Undo anything
780 		 * we might have messed up.
781 		 *
782 		 * Allocating task should really be put onto the front of the
783 		 * wait queue, but this is pretty rare.
784 		 */
785 		spin_lock_irq(q->queue_lock);
786 		freed_request(q, rw, priv);
787 
788 		/*
789 		 * in the very unlikely event that allocation failed and no
790 		 * requests for this direction was pending, mark us starved
791 		 * so that freeing of a request in the other direction will
792 		 * notice us. another possible fix would be to split the
793 		 * rq mempool into READ and WRITE
794 		 */
795 rq_starved:
796 		if (unlikely(rl->count[rw] == 0))
797 			rl->starved[rw] = 1;
798 
799 		goto out;
800 	}
801 
802 	/*
803 	 * ioc may be NULL here, and ioc_batching will be false. That's
804 	 * OK, if the queue is under the request limit then requests need
805 	 * not count toward the nr_batch_requests limit. There will always
806 	 * be some limit enforced by BLK_BATCH_TIME.
807 	 */
808 	if (ioc_batching(q, ioc))
809 		ioc->nr_batch_requests--;
810 
811 	blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
812 out:
813 	return rq;
814 }
815 
816 /*
817  * No available requests for this queue, unplug the device and wait for some
818  * requests to become available.
819  *
820  * Called with q->queue_lock held, and returns with it unlocked.
821  */
822 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
823 					struct bio *bio)
824 {
825 	const int rw = rw_flags & 0x01;
826 	struct request *rq;
827 
828 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
829 	while (!rq) {
830 		DEFINE_WAIT(wait);
831 		struct io_context *ioc;
832 		struct request_list *rl = &q->rq;
833 
834 		prepare_to_wait_exclusive(&rl->wait[rw], &wait,
835 				TASK_UNINTERRUPTIBLE);
836 
837 		blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
838 
839 		__generic_unplug_device(q);
840 		spin_unlock_irq(q->queue_lock);
841 		io_schedule();
842 
843 		/*
844 		 * After sleeping, we become a "batching" process and
845 		 * will be able to allocate at least one request, and
846 		 * up to a big batch of them for a small period time.
847 		 * See ioc_batching, ioc_set_batching
848 		 */
849 		ioc = current_io_context(GFP_NOIO, q->node);
850 		ioc_set_batching(q, ioc);
851 
852 		spin_lock_irq(q->queue_lock);
853 		finish_wait(&rl->wait[rw], &wait);
854 
855 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
856 	};
857 
858 	return rq;
859 }
860 
861 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
862 {
863 	struct request *rq;
864 
865 	BUG_ON(rw != READ && rw != WRITE);
866 
867 	spin_lock_irq(q->queue_lock);
868 	if (gfp_mask & __GFP_WAIT) {
869 		rq = get_request_wait(q, rw, NULL);
870 	} else {
871 		rq = get_request(q, rw, NULL, gfp_mask);
872 		if (!rq)
873 			spin_unlock_irq(q->queue_lock);
874 	}
875 	/* q->queue_lock is unlocked at this point */
876 
877 	return rq;
878 }
879 EXPORT_SYMBOL(blk_get_request);
880 
881 /**
882  * blk_start_queueing - initiate dispatch of requests to device
883  * @q:		request queue to kick into gear
884  *
885  * This is basically a helper to remove the need to know whether a queue
886  * is plugged or not if someone just wants to initiate dispatch of requests
887  * for this queue.
888  *
889  * The queue lock must be held with interrupts disabled.
890  */
891 void blk_start_queueing(struct request_queue *q)
892 {
893 	if (!blk_queue_plugged(q)) {
894 		if (unlikely(blk_queue_stopped(q)))
895 			return;
896 		q->request_fn(q);
897 	} else
898 		__generic_unplug_device(q);
899 }
900 EXPORT_SYMBOL(blk_start_queueing);
901 
902 /**
903  * blk_requeue_request - put a request back on queue
904  * @q:		request queue where request should be inserted
905  * @rq:		request to be inserted
906  *
907  * Description:
908  *    Drivers often keep queueing requests until the hardware cannot accept
909  *    more, when that condition happens we need to put the request back
910  *    on the queue. Must be called with queue lock held.
911  */
912 void blk_requeue_request(struct request_queue *q, struct request *rq)
913 {
914 	blk_delete_timer(rq);
915 	blk_clear_rq_complete(rq);
916 	blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
917 
918 	if (blk_rq_tagged(rq))
919 		blk_queue_end_tag(q, rq);
920 
921 	elv_requeue_request(q, rq);
922 }
923 EXPORT_SYMBOL(blk_requeue_request);
924 
925 /**
926  * blk_insert_request - insert a special request into a request queue
927  * @q:		request queue where request should be inserted
928  * @rq:		request to be inserted
929  * @at_head:	insert request at head or tail of queue
930  * @data:	private data
931  *
932  * Description:
933  *    Many block devices need to execute commands asynchronously, so they don't
934  *    block the whole kernel from preemption during request execution.  This is
935  *    accomplished normally by inserting aritficial requests tagged as
936  *    REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
937  *    be scheduled for actual execution by the request queue.
938  *
939  *    We have the option of inserting the head or the tail of the queue.
940  *    Typically we use the tail for new ioctls and so forth.  We use the head
941  *    of the queue for things like a QUEUE_FULL message from a device, or a
942  *    host that is unable to accept a particular command.
943  */
944 void blk_insert_request(struct request_queue *q, struct request *rq,
945 			int at_head, void *data)
946 {
947 	int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
948 	unsigned long flags;
949 
950 	/*
951 	 * tell I/O scheduler that this isn't a regular read/write (ie it
952 	 * must not attempt merges on this) and that it acts as a soft
953 	 * barrier
954 	 */
955 	rq->cmd_type = REQ_TYPE_SPECIAL;
956 	rq->cmd_flags |= REQ_SOFTBARRIER;
957 
958 	rq->special = data;
959 
960 	spin_lock_irqsave(q->queue_lock, flags);
961 
962 	/*
963 	 * If command is tagged, release the tag
964 	 */
965 	if (blk_rq_tagged(rq))
966 		blk_queue_end_tag(q, rq);
967 
968 	drive_stat_acct(rq, 1);
969 	__elv_add_request(q, rq, where, 0);
970 	blk_start_queueing(q);
971 	spin_unlock_irqrestore(q->queue_lock, flags);
972 }
973 EXPORT_SYMBOL(blk_insert_request);
974 
975 /*
976  * add-request adds a request to the linked list.
977  * queue lock is held and interrupts disabled, as we muck with the
978  * request queue list.
979  */
980 static inline void add_request(struct request_queue *q, struct request *req)
981 {
982 	drive_stat_acct(req, 1);
983 
984 	/*
985 	 * elevator indicated where it wants this request to be
986 	 * inserted at elevator_merge time
987 	 */
988 	__elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
989 }
990 
991 static void part_round_stats_single(int cpu, struct hd_struct *part,
992 				    unsigned long now)
993 {
994 	if (now == part->stamp)
995 		return;
996 
997 	if (part->in_flight) {
998 		__part_stat_add(cpu, part, time_in_queue,
999 				part->in_flight * (now - part->stamp));
1000 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1001 	}
1002 	part->stamp = now;
1003 }
1004 
1005 /**
1006  * part_round_stats()	- Round off the performance stats on a struct
1007  * disk_stats.
1008  *
1009  * The average IO queue length and utilisation statistics are maintained
1010  * by observing the current state of the queue length and the amount of
1011  * time it has been in this state for.
1012  *
1013  * Normally, that accounting is done on IO completion, but that can result
1014  * in more than a second's worth of IO being accounted for within any one
1015  * second, leading to >100% utilisation.  To deal with that, we call this
1016  * function to do a round-off before returning the results when reading
1017  * /proc/diskstats.  This accounts immediately for all queue usage up to
1018  * the current jiffies and restarts the counters again.
1019  */
1020 void part_round_stats(int cpu, struct hd_struct *part)
1021 {
1022 	unsigned long now = jiffies;
1023 
1024 	if (part->partno)
1025 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1026 	part_round_stats_single(cpu, part, now);
1027 }
1028 EXPORT_SYMBOL_GPL(part_round_stats);
1029 
1030 /*
1031  * queue lock must be held
1032  */
1033 void __blk_put_request(struct request_queue *q, struct request *req)
1034 {
1035 	if (unlikely(!q))
1036 		return;
1037 	if (unlikely(--req->ref_count))
1038 		return;
1039 
1040 	elv_completed_request(q, req);
1041 
1042 	/*
1043 	 * Request may not have originated from ll_rw_blk. if not,
1044 	 * it didn't come out of our reserved rq pools
1045 	 */
1046 	if (req->cmd_flags & REQ_ALLOCED) {
1047 		int rw = rq_data_dir(req);
1048 		int priv = req->cmd_flags & REQ_ELVPRIV;
1049 
1050 		BUG_ON(!list_empty(&req->queuelist));
1051 		BUG_ON(!hlist_unhashed(&req->hash));
1052 
1053 		blk_free_request(q, req);
1054 		freed_request(q, rw, priv);
1055 	}
1056 }
1057 EXPORT_SYMBOL_GPL(__blk_put_request);
1058 
1059 void blk_put_request(struct request *req)
1060 {
1061 	unsigned long flags;
1062 	struct request_queue *q = req->q;
1063 
1064 	spin_lock_irqsave(q->queue_lock, flags);
1065 	__blk_put_request(q, req);
1066 	spin_unlock_irqrestore(q->queue_lock, flags);
1067 }
1068 EXPORT_SYMBOL(blk_put_request);
1069 
1070 void init_request_from_bio(struct request *req, struct bio *bio)
1071 {
1072 	req->cpu = bio->bi_comp_cpu;
1073 	req->cmd_type = REQ_TYPE_FS;
1074 
1075 	/*
1076 	 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1077 	 */
1078 	if (bio_rw_ahead(bio) || bio_failfast(bio))
1079 		req->cmd_flags |= REQ_FAILFAST;
1080 
1081 	/*
1082 	 * REQ_BARRIER implies no merging, but lets make it explicit
1083 	 */
1084 	if (unlikely(bio_discard(bio))) {
1085 		req->cmd_flags |= REQ_DISCARD;
1086 		if (bio_barrier(bio))
1087 			req->cmd_flags |= REQ_SOFTBARRIER;
1088 		req->q->prepare_discard_fn(req->q, req);
1089 	} else if (unlikely(bio_barrier(bio)))
1090 		req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
1091 
1092 	if (bio_sync(bio))
1093 		req->cmd_flags |= REQ_RW_SYNC;
1094 	if (bio_rw_meta(bio))
1095 		req->cmd_flags |= REQ_RW_META;
1096 
1097 	req->errors = 0;
1098 	req->hard_sector = req->sector = bio->bi_sector;
1099 	req->ioprio = bio_prio(bio);
1100 	req->start_time = jiffies;
1101 	blk_rq_bio_prep(req->q, req, bio);
1102 }
1103 
1104 static int __make_request(struct request_queue *q, struct bio *bio)
1105 {
1106 	struct request *req;
1107 	int el_ret, nr_sectors, barrier, discard, err;
1108 	const unsigned short prio = bio_prio(bio);
1109 	const int sync = bio_sync(bio);
1110 	int rw_flags;
1111 
1112 	nr_sectors = bio_sectors(bio);
1113 
1114 	/*
1115 	 * low level driver can indicate that it wants pages above a
1116 	 * certain limit bounced to low memory (ie for highmem, or even
1117 	 * ISA dma in theory)
1118 	 */
1119 	blk_queue_bounce(q, &bio);
1120 
1121 	barrier = bio_barrier(bio);
1122 	if (unlikely(barrier) && bio_has_data(bio) &&
1123 	    (q->next_ordered == QUEUE_ORDERED_NONE)) {
1124 		err = -EOPNOTSUPP;
1125 		goto end_io;
1126 	}
1127 
1128 	discard = bio_discard(bio);
1129 	if (unlikely(discard) && !q->prepare_discard_fn) {
1130 		err = -EOPNOTSUPP;
1131 		goto end_io;
1132 	}
1133 
1134 	spin_lock_irq(q->queue_lock);
1135 
1136 	if (unlikely(barrier) || elv_queue_empty(q))
1137 		goto get_rq;
1138 
1139 	el_ret = elv_merge(q, &req, bio);
1140 	switch (el_ret) {
1141 	case ELEVATOR_BACK_MERGE:
1142 		BUG_ON(!rq_mergeable(req));
1143 
1144 		if (!ll_back_merge_fn(q, req, bio))
1145 			break;
1146 
1147 		blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
1148 
1149 		req->biotail->bi_next = bio;
1150 		req->biotail = bio;
1151 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1152 		req->ioprio = ioprio_best(req->ioprio, prio);
1153 		if (!blk_rq_cpu_valid(req))
1154 			req->cpu = bio->bi_comp_cpu;
1155 		drive_stat_acct(req, 0);
1156 		if (!attempt_back_merge(q, req))
1157 			elv_merged_request(q, req, el_ret);
1158 		goto out;
1159 
1160 	case ELEVATOR_FRONT_MERGE:
1161 		BUG_ON(!rq_mergeable(req));
1162 
1163 		if (!ll_front_merge_fn(q, req, bio))
1164 			break;
1165 
1166 		blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
1167 
1168 		bio->bi_next = req->bio;
1169 		req->bio = bio;
1170 
1171 		/*
1172 		 * may not be valid. if the low level driver said
1173 		 * it didn't need a bounce buffer then it better
1174 		 * not touch req->buffer either...
1175 		 */
1176 		req->buffer = bio_data(bio);
1177 		req->current_nr_sectors = bio_cur_sectors(bio);
1178 		req->hard_cur_sectors = req->current_nr_sectors;
1179 		req->sector = req->hard_sector = bio->bi_sector;
1180 		req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1181 		req->ioprio = ioprio_best(req->ioprio, prio);
1182 		if (!blk_rq_cpu_valid(req))
1183 			req->cpu = bio->bi_comp_cpu;
1184 		drive_stat_acct(req, 0);
1185 		if (!attempt_front_merge(q, req))
1186 			elv_merged_request(q, req, el_ret);
1187 		goto out;
1188 
1189 	/* ELV_NO_MERGE: elevator says don't/can't merge. */
1190 	default:
1191 		;
1192 	}
1193 
1194 get_rq:
1195 	/*
1196 	 * This sync check and mask will be re-done in init_request_from_bio(),
1197 	 * but we need to set it earlier to expose the sync flag to the
1198 	 * rq allocator and io schedulers.
1199 	 */
1200 	rw_flags = bio_data_dir(bio);
1201 	if (sync)
1202 		rw_flags |= REQ_RW_SYNC;
1203 
1204 	/*
1205 	 * Grab a free request. This is might sleep but can not fail.
1206 	 * Returns with the queue unlocked.
1207 	 */
1208 	req = get_request_wait(q, rw_flags, bio);
1209 
1210 	/*
1211 	 * After dropping the lock and possibly sleeping here, our request
1212 	 * may now be mergeable after it had proven unmergeable (above).
1213 	 * We don't worry about that case for efficiency. It won't happen
1214 	 * often, and the elevators are able to handle it.
1215 	 */
1216 	init_request_from_bio(req, bio);
1217 
1218 	spin_lock_irq(q->queue_lock);
1219 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1220 	    bio_flagged(bio, BIO_CPU_AFFINE))
1221 		req->cpu = blk_cpu_to_group(smp_processor_id());
1222 	if (elv_queue_empty(q))
1223 		blk_plug_device(q);
1224 	add_request(q, req);
1225 out:
1226 	if (sync)
1227 		__generic_unplug_device(q);
1228 	spin_unlock_irq(q->queue_lock);
1229 	return 0;
1230 
1231 end_io:
1232 	bio_endio(bio, err);
1233 	return 0;
1234 }
1235 
1236 /*
1237  * If bio->bi_dev is a partition, remap the location
1238  */
1239 static inline void blk_partition_remap(struct bio *bio)
1240 {
1241 	struct block_device *bdev = bio->bi_bdev;
1242 
1243 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1244 		struct hd_struct *p = bdev->bd_part;
1245 
1246 		bio->bi_sector += p->start_sect;
1247 		bio->bi_bdev = bdev->bd_contains;
1248 
1249 		blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1250 				    bdev->bd_dev, bio->bi_sector,
1251 				    bio->bi_sector - p->start_sect);
1252 	}
1253 }
1254 
1255 static void handle_bad_sector(struct bio *bio)
1256 {
1257 	char b[BDEVNAME_SIZE];
1258 
1259 	printk(KERN_INFO "attempt to access beyond end of device\n");
1260 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1261 			bdevname(bio->bi_bdev, b),
1262 			bio->bi_rw,
1263 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1264 			(long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1265 
1266 	set_bit(BIO_EOF, &bio->bi_flags);
1267 }
1268 
1269 #ifdef CONFIG_FAIL_MAKE_REQUEST
1270 
1271 static DECLARE_FAULT_ATTR(fail_make_request);
1272 
1273 static int __init setup_fail_make_request(char *str)
1274 {
1275 	return setup_fault_attr(&fail_make_request, str);
1276 }
1277 __setup("fail_make_request=", setup_fail_make_request);
1278 
1279 static int should_fail_request(struct bio *bio)
1280 {
1281 	struct hd_struct *part = bio->bi_bdev->bd_part;
1282 
1283 	if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
1284 		return should_fail(&fail_make_request, bio->bi_size);
1285 
1286 	return 0;
1287 }
1288 
1289 static int __init fail_make_request_debugfs(void)
1290 {
1291 	return init_fault_attr_dentries(&fail_make_request,
1292 					"fail_make_request");
1293 }
1294 
1295 late_initcall(fail_make_request_debugfs);
1296 
1297 #else /* CONFIG_FAIL_MAKE_REQUEST */
1298 
1299 static inline int should_fail_request(struct bio *bio)
1300 {
1301 	return 0;
1302 }
1303 
1304 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1305 
1306 /*
1307  * Check whether this bio extends beyond the end of the device.
1308  */
1309 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1310 {
1311 	sector_t maxsector;
1312 
1313 	if (!nr_sectors)
1314 		return 0;
1315 
1316 	/* Test device or partition size, when known. */
1317 	maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1318 	if (maxsector) {
1319 		sector_t sector = bio->bi_sector;
1320 
1321 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1322 			/*
1323 			 * This may well happen - the kernel calls bread()
1324 			 * without checking the size of the device, e.g., when
1325 			 * mounting a device.
1326 			 */
1327 			handle_bad_sector(bio);
1328 			return 1;
1329 		}
1330 	}
1331 
1332 	return 0;
1333 }
1334 
1335 /**
1336  * generic_make_request - hand a buffer to its device driver for I/O
1337  * @bio:  The bio describing the location in memory and on the device.
1338  *
1339  * generic_make_request() is used to make I/O requests of block
1340  * devices. It is passed a &struct bio, which describes the I/O that needs
1341  * to be done.
1342  *
1343  * generic_make_request() does not return any status.  The
1344  * success/failure status of the request, along with notification of
1345  * completion, is delivered asynchronously through the bio->bi_end_io
1346  * function described (one day) else where.
1347  *
1348  * The caller of generic_make_request must make sure that bi_io_vec
1349  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1350  * set to describe the device address, and the
1351  * bi_end_io and optionally bi_private are set to describe how
1352  * completion notification should be signaled.
1353  *
1354  * generic_make_request and the drivers it calls may use bi_next if this
1355  * bio happens to be merged with someone else, and may change bi_dev and
1356  * bi_sector for remaps as it sees fit.  So the values of these fields
1357  * should NOT be depended on after the call to generic_make_request.
1358  */
1359 static inline void __generic_make_request(struct bio *bio)
1360 {
1361 	struct request_queue *q;
1362 	sector_t old_sector;
1363 	int ret, nr_sectors = bio_sectors(bio);
1364 	dev_t old_dev;
1365 	int err = -EIO;
1366 
1367 	might_sleep();
1368 
1369 	if (bio_check_eod(bio, nr_sectors))
1370 		goto end_io;
1371 
1372 	/*
1373 	 * Resolve the mapping until finished. (drivers are
1374 	 * still free to implement/resolve their own stacking
1375 	 * by explicitly returning 0)
1376 	 *
1377 	 * NOTE: we don't repeat the blk_size check for each new device.
1378 	 * Stacking drivers are expected to know what they are doing.
1379 	 */
1380 	old_sector = -1;
1381 	old_dev = 0;
1382 	do {
1383 		char b[BDEVNAME_SIZE];
1384 
1385 		q = bdev_get_queue(bio->bi_bdev);
1386 		if (!q) {
1387 			printk(KERN_ERR
1388 			       "generic_make_request: Trying to access "
1389 				"nonexistent block-device %s (%Lu)\n",
1390 				bdevname(bio->bi_bdev, b),
1391 				(long long) bio->bi_sector);
1392 end_io:
1393 			bio_endio(bio, err);
1394 			break;
1395 		}
1396 
1397 		if (unlikely(nr_sectors > q->max_hw_sectors)) {
1398 			printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1399 				bdevname(bio->bi_bdev, b),
1400 				bio_sectors(bio),
1401 				q->max_hw_sectors);
1402 			goto end_io;
1403 		}
1404 
1405 		if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1406 			goto end_io;
1407 
1408 		if (should_fail_request(bio))
1409 			goto end_io;
1410 
1411 		/*
1412 		 * If this device has partitions, remap block n
1413 		 * of partition p to block n+start(p) of the disk.
1414 		 */
1415 		blk_partition_remap(bio);
1416 
1417 		if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1418 			goto end_io;
1419 
1420 		if (old_sector != -1)
1421 			blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
1422 					    old_sector);
1423 
1424 		blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1425 
1426 		old_sector = bio->bi_sector;
1427 		old_dev = bio->bi_bdev->bd_dev;
1428 
1429 		if (bio_check_eod(bio, nr_sectors))
1430 			goto end_io;
1431 		if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1432 		    (bio_discard(bio) && !q->prepare_discard_fn)) {
1433 			err = -EOPNOTSUPP;
1434 			goto end_io;
1435 		}
1436 
1437 		ret = q->make_request_fn(q, bio);
1438 	} while (ret);
1439 }
1440 
1441 /*
1442  * We only want one ->make_request_fn to be active at a time,
1443  * else stack usage with stacked devices could be a problem.
1444  * So use current->bio_{list,tail} to keep a list of requests
1445  * submited by a make_request_fn function.
1446  * current->bio_tail is also used as a flag to say if
1447  * generic_make_request is currently active in this task or not.
1448  * If it is NULL, then no make_request is active.  If it is non-NULL,
1449  * then a make_request is active, and new requests should be added
1450  * at the tail
1451  */
1452 void generic_make_request(struct bio *bio)
1453 {
1454 	if (current->bio_tail) {
1455 		/* make_request is active */
1456 		*(current->bio_tail) = bio;
1457 		bio->bi_next = NULL;
1458 		current->bio_tail = &bio->bi_next;
1459 		return;
1460 	}
1461 	/* following loop may be a bit non-obvious, and so deserves some
1462 	 * explanation.
1463 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1464 	 * ensure that) so we have a list with a single bio.
1465 	 * We pretend that we have just taken it off a longer list, so
1466 	 * we assign bio_list to the next (which is NULL) and bio_tail
1467 	 * to &bio_list, thus initialising the bio_list of new bios to be
1468 	 * added.  __generic_make_request may indeed add some more bios
1469 	 * through a recursive call to generic_make_request.  If it
1470 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1471 	 * from the top.  In this case we really did just take the bio
1472 	 * of the top of the list (no pretending) and so fixup bio_list and
1473 	 * bio_tail or bi_next, and call into __generic_make_request again.
1474 	 *
1475 	 * The loop was structured like this to make only one call to
1476 	 * __generic_make_request (which is important as it is large and
1477 	 * inlined) and to keep the structure simple.
1478 	 */
1479 	BUG_ON(bio->bi_next);
1480 	do {
1481 		current->bio_list = bio->bi_next;
1482 		if (bio->bi_next == NULL)
1483 			current->bio_tail = &current->bio_list;
1484 		else
1485 			bio->bi_next = NULL;
1486 		__generic_make_request(bio);
1487 		bio = current->bio_list;
1488 	} while (bio);
1489 	current->bio_tail = NULL; /* deactivate */
1490 }
1491 EXPORT_SYMBOL(generic_make_request);
1492 
1493 /**
1494  * submit_bio - submit a bio to the block device layer for I/O
1495  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1496  * @bio: The &struct bio which describes the I/O
1497  *
1498  * submit_bio() is very similar in purpose to generic_make_request(), and
1499  * uses that function to do most of the work. Both are fairly rough
1500  * interfaces; @bio must be presetup and ready for I/O.
1501  *
1502  */
1503 void submit_bio(int rw, struct bio *bio)
1504 {
1505 	int count = bio_sectors(bio);
1506 
1507 	bio->bi_rw |= rw;
1508 
1509 	/*
1510 	 * If it's a regular read/write or a barrier with data attached,
1511 	 * go through the normal accounting stuff before submission.
1512 	 */
1513 	if (bio_has_data(bio)) {
1514 		if (rw & WRITE) {
1515 			count_vm_events(PGPGOUT, count);
1516 		} else {
1517 			task_io_account_read(bio->bi_size);
1518 			count_vm_events(PGPGIN, count);
1519 		}
1520 
1521 		if (unlikely(block_dump)) {
1522 			char b[BDEVNAME_SIZE];
1523 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
1524 			current->comm, task_pid_nr(current),
1525 				(rw & WRITE) ? "WRITE" : "READ",
1526 				(unsigned long long)bio->bi_sector,
1527 				bdevname(bio->bi_bdev, b));
1528 		}
1529 	}
1530 
1531 	generic_make_request(bio);
1532 }
1533 EXPORT_SYMBOL(submit_bio);
1534 
1535 /**
1536  * blk_rq_check_limits - Helper function to check a request for the queue limit
1537  * @q:  the queue
1538  * @rq: the request being checked
1539  *
1540  * Description:
1541  *    @rq may have been made based on weaker limitations of upper-level queues
1542  *    in request stacking drivers, and it may violate the limitation of @q.
1543  *    Since the block layer and the underlying device driver trust @rq
1544  *    after it is inserted to @q, it should be checked against @q before
1545  *    the insertion using this generic function.
1546  *
1547  *    This function should also be useful for request stacking drivers
1548  *    in some cases below, so export this fuction.
1549  *    Request stacking drivers like request-based dm may change the queue
1550  *    limits while requests are in the queue (e.g. dm's table swapping).
1551  *    Such request stacking drivers should check those requests agaist
1552  *    the new queue limits again when they dispatch those requests,
1553  *    although such checkings are also done against the old queue limits
1554  *    when submitting requests.
1555  */
1556 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1557 {
1558 	if (rq->nr_sectors > q->max_sectors ||
1559 	    rq->data_len > q->max_hw_sectors << 9) {
1560 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1561 		return -EIO;
1562 	}
1563 
1564 	/*
1565 	 * queue's settings related to segment counting like q->bounce_pfn
1566 	 * may differ from that of other stacking queues.
1567 	 * Recalculate it to check the request correctly on this queue's
1568 	 * limitation.
1569 	 */
1570 	blk_recalc_rq_segments(rq);
1571 	if (rq->nr_phys_segments > q->max_phys_segments ||
1572 	    rq->nr_phys_segments > q->max_hw_segments) {
1573 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1574 		return -EIO;
1575 	}
1576 
1577 	return 0;
1578 }
1579 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1580 
1581 /**
1582  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1583  * @q:  the queue to submit the request
1584  * @rq: the request being queued
1585  */
1586 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1587 {
1588 	unsigned long flags;
1589 
1590 	if (blk_rq_check_limits(q, rq))
1591 		return -EIO;
1592 
1593 #ifdef CONFIG_FAIL_MAKE_REQUEST
1594 	if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1595 	    should_fail(&fail_make_request, blk_rq_bytes(rq)))
1596 		return -EIO;
1597 #endif
1598 
1599 	spin_lock_irqsave(q->queue_lock, flags);
1600 
1601 	/*
1602 	 * Submitting request must be dequeued before calling this function
1603 	 * because it will be linked to another request_queue
1604 	 */
1605 	BUG_ON(blk_queued_rq(rq));
1606 
1607 	drive_stat_acct(rq, 1);
1608 	__elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1609 
1610 	spin_unlock_irqrestore(q->queue_lock, flags);
1611 
1612 	return 0;
1613 }
1614 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1615 
1616 /**
1617  * __end_that_request_first - end I/O on a request
1618  * @req:      the request being processed
1619  * @error:    %0 for success, < %0 for error
1620  * @nr_bytes: number of bytes to complete
1621  *
1622  * Description:
1623  *     Ends I/O on a number of bytes attached to @req, and sets it up
1624  *     for the next range of segments (if any) in the cluster.
1625  *
1626  * Return:
1627  *     %0 - we are done with this request, call end_that_request_last()
1628  *     %1 - still buffers pending for this request
1629  **/
1630 static int __end_that_request_first(struct request *req, int error,
1631 				    int nr_bytes)
1632 {
1633 	int total_bytes, bio_nbytes, next_idx = 0;
1634 	struct bio *bio;
1635 
1636 	blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1637 
1638 	/*
1639 	 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1640 	 * sense key with us all the way through
1641 	 */
1642 	if (!blk_pc_request(req))
1643 		req->errors = 0;
1644 
1645 	if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1646 		printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1647 				req->rq_disk ? req->rq_disk->disk_name : "?",
1648 				(unsigned long long)req->sector);
1649 	}
1650 
1651 	if (blk_fs_request(req) && req->rq_disk) {
1652 		const int rw = rq_data_dir(req);
1653 		struct hd_struct *part;
1654 		int cpu;
1655 
1656 		cpu = part_stat_lock();
1657 		part = disk_map_sector_rcu(req->rq_disk, req->sector);
1658 		part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1659 		part_stat_unlock();
1660 	}
1661 
1662 	total_bytes = bio_nbytes = 0;
1663 	while ((bio = req->bio) != NULL) {
1664 		int nbytes;
1665 
1666 		/*
1667 		 * For an empty barrier request, the low level driver must
1668 		 * store a potential error location in ->sector. We pass
1669 		 * that back up in ->bi_sector.
1670 		 */
1671 		if (blk_empty_barrier(req))
1672 			bio->bi_sector = req->sector;
1673 
1674 		if (nr_bytes >= bio->bi_size) {
1675 			req->bio = bio->bi_next;
1676 			nbytes = bio->bi_size;
1677 			req_bio_endio(req, bio, nbytes, error);
1678 			next_idx = 0;
1679 			bio_nbytes = 0;
1680 		} else {
1681 			int idx = bio->bi_idx + next_idx;
1682 
1683 			if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1684 				blk_dump_rq_flags(req, "__end_that");
1685 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
1686 				       __func__, bio->bi_idx, bio->bi_vcnt);
1687 				break;
1688 			}
1689 
1690 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
1691 			BIO_BUG_ON(nbytes > bio->bi_size);
1692 
1693 			/*
1694 			 * not a complete bvec done
1695 			 */
1696 			if (unlikely(nbytes > nr_bytes)) {
1697 				bio_nbytes += nr_bytes;
1698 				total_bytes += nr_bytes;
1699 				break;
1700 			}
1701 
1702 			/*
1703 			 * advance to the next vector
1704 			 */
1705 			next_idx++;
1706 			bio_nbytes += nbytes;
1707 		}
1708 
1709 		total_bytes += nbytes;
1710 		nr_bytes -= nbytes;
1711 
1712 		bio = req->bio;
1713 		if (bio) {
1714 			/*
1715 			 * end more in this run, or just return 'not-done'
1716 			 */
1717 			if (unlikely(nr_bytes <= 0))
1718 				break;
1719 		}
1720 	}
1721 
1722 	/*
1723 	 * completely done
1724 	 */
1725 	if (!req->bio)
1726 		return 0;
1727 
1728 	/*
1729 	 * if the request wasn't completed, update state
1730 	 */
1731 	if (bio_nbytes) {
1732 		req_bio_endio(req, bio, bio_nbytes, error);
1733 		bio->bi_idx += next_idx;
1734 		bio_iovec(bio)->bv_offset += nr_bytes;
1735 		bio_iovec(bio)->bv_len -= nr_bytes;
1736 	}
1737 
1738 	blk_recalc_rq_sectors(req, total_bytes >> 9);
1739 	blk_recalc_rq_segments(req);
1740 	return 1;
1741 }
1742 
1743 /*
1744  * queue lock must be held
1745  */
1746 static void end_that_request_last(struct request *req, int error)
1747 {
1748 	struct gendisk *disk = req->rq_disk;
1749 
1750 	blk_delete_timer(req);
1751 
1752 	if (blk_rq_tagged(req))
1753 		blk_queue_end_tag(req->q, req);
1754 
1755 	if (blk_queued_rq(req))
1756 		blkdev_dequeue_request(req);
1757 
1758 	if (unlikely(laptop_mode) && blk_fs_request(req))
1759 		laptop_io_completion();
1760 
1761 	/*
1762 	 * Account IO completion.  bar_rq isn't accounted as a normal
1763 	 * IO on queueing nor completion.  Accounting the containing
1764 	 * request is enough.
1765 	 */
1766 	if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1767 		unsigned long duration = jiffies - req->start_time;
1768 		const int rw = rq_data_dir(req);
1769 		struct hd_struct *part;
1770 		int cpu;
1771 
1772 		cpu = part_stat_lock();
1773 		part = disk_map_sector_rcu(disk, req->sector);
1774 
1775 		part_stat_inc(cpu, part, ios[rw]);
1776 		part_stat_add(cpu, part, ticks[rw], duration);
1777 		part_round_stats(cpu, part);
1778 		part_dec_in_flight(part);
1779 
1780 		part_stat_unlock();
1781 	}
1782 
1783 	if (req->end_io)
1784 		req->end_io(req, error);
1785 	else {
1786 		if (blk_bidi_rq(req))
1787 			__blk_put_request(req->next_rq->q, req->next_rq);
1788 
1789 		__blk_put_request(req->q, req);
1790 	}
1791 }
1792 
1793 /**
1794  * blk_rq_bytes - Returns bytes left to complete in the entire request
1795  * @rq: the request being processed
1796  **/
1797 unsigned int blk_rq_bytes(struct request *rq)
1798 {
1799 	if (blk_fs_request(rq))
1800 		return rq->hard_nr_sectors << 9;
1801 
1802 	return rq->data_len;
1803 }
1804 EXPORT_SYMBOL_GPL(blk_rq_bytes);
1805 
1806 /**
1807  * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
1808  * @rq: the request being processed
1809  **/
1810 unsigned int blk_rq_cur_bytes(struct request *rq)
1811 {
1812 	if (blk_fs_request(rq))
1813 		return rq->current_nr_sectors << 9;
1814 
1815 	if (rq->bio)
1816 		return rq->bio->bi_size;
1817 
1818 	return rq->data_len;
1819 }
1820 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
1821 
1822 /**
1823  * end_request - end I/O on the current segment of the request
1824  * @req:	the request being processed
1825  * @uptodate:	error value or %0/%1 uptodate flag
1826  *
1827  * Description:
1828  *     Ends I/O on the current segment of a request. If that is the only
1829  *     remaining segment, the request is also completed and freed.
1830  *
1831  *     This is a remnant of how older block drivers handled I/O completions.
1832  *     Modern drivers typically end I/O on the full request in one go, unless
1833  *     they have a residual value to account for. For that case this function
1834  *     isn't really useful, unless the residual just happens to be the
1835  *     full current segment. In other words, don't use this function in new
1836  *     code. Use blk_end_request() or __blk_end_request() to end a request.
1837  **/
1838 void end_request(struct request *req, int uptodate)
1839 {
1840 	int error = 0;
1841 
1842 	if (uptodate <= 0)
1843 		error = uptodate ? uptodate : -EIO;
1844 
1845 	__blk_end_request(req, error, req->hard_cur_sectors << 9);
1846 }
1847 EXPORT_SYMBOL(end_request);
1848 
1849 static int end_that_request_data(struct request *rq, int error,
1850 				 unsigned int nr_bytes, unsigned int bidi_bytes)
1851 {
1852 	if (rq->bio) {
1853 		if (__end_that_request_first(rq, error, nr_bytes))
1854 			return 1;
1855 
1856 		/* Bidi request must be completed as a whole */
1857 		if (blk_bidi_rq(rq) &&
1858 		    __end_that_request_first(rq->next_rq, error, bidi_bytes))
1859 			return 1;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 /**
1866  * blk_end_io - Generic end_io function to complete a request.
1867  * @rq:           the request being processed
1868  * @error:        %0 for success, < %0 for error
1869  * @nr_bytes:     number of bytes to complete @rq
1870  * @bidi_bytes:   number of bytes to complete @rq->next_rq
1871  * @drv_callback: function called between completion of bios in the request
1872  *                and completion of the request.
1873  *                If the callback returns non %0, this helper returns without
1874  *                completion of the request.
1875  *
1876  * Description:
1877  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1878  *     If @rq has leftover, sets it up for the next range of segments.
1879  *
1880  * Return:
1881  *     %0 - we are done with this request
1882  *     %1 - this request is not freed yet, it still has pending buffers.
1883  **/
1884 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1885 		      unsigned int bidi_bytes,
1886 		      int (drv_callback)(struct request *))
1887 {
1888 	struct request_queue *q = rq->q;
1889 	unsigned long flags = 0UL;
1890 
1891 	if (end_that_request_data(rq, error, nr_bytes, bidi_bytes))
1892 		return 1;
1893 
1894 	/* Special feature for tricky drivers */
1895 	if (drv_callback && drv_callback(rq))
1896 		return 1;
1897 
1898 	add_disk_randomness(rq->rq_disk);
1899 
1900 	spin_lock_irqsave(q->queue_lock, flags);
1901 	end_that_request_last(rq, error);
1902 	spin_unlock_irqrestore(q->queue_lock, flags);
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  * blk_end_request - Helper function for drivers to complete the request.
1909  * @rq:       the request being processed
1910  * @error:    %0 for success, < %0 for error
1911  * @nr_bytes: number of bytes to complete
1912  *
1913  * Description:
1914  *     Ends I/O on a number of bytes attached to @rq.
1915  *     If @rq has leftover, sets it up for the next range of segments.
1916  *
1917  * Return:
1918  *     %0 - we are done with this request
1919  *     %1 - still buffers pending for this request
1920  **/
1921 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1922 {
1923 	return blk_end_io(rq, error, nr_bytes, 0, NULL);
1924 }
1925 EXPORT_SYMBOL_GPL(blk_end_request);
1926 
1927 /**
1928  * __blk_end_request - Helper function for drivers to complete the request.
1929  * @rq:       the request being processed
1930  * @error:    %0 for success, < %0 for error
1931  * @nr_bytes: number of bytes to complete
1932  *
1933  * Description:
1934  *     Must be called with queue lock held unlike blk_end_request().
1935  *
1936  * Return:
1937  *     %0 - we are done with this request
1938  *     %1 - still buffers pending for this request
1939  **/
1940 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
1941 {
1942 	if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
1943 		return 1;
1944 
1945 	add_disk_randomness(rq->rq_disk);
1946 
1947 	end_that_request_last(rq, error);
1948 
1949 	return 0;
1950 }
1951 EXPORT_SYMBOL_GPL(__blk_end_request);
1952 
1953 /**
1954  * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1955  * @rq:         the bidi request being processed
1956  * @error:      %0 for success, < %0 for error
1957  * @nr_bytes:   number of bytes to complete @rq
1958  * @bidi_bytes: number of bytes to complete @rq->next_rq
1959  *
1960  * Description:
1961  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1962  *
1963  * Return:
1964  *     %0 - we are done with this request
1965  *     %1 - still buffers pending for this request
1966  **/
1967 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1968 			 unsigned int bidi_bytes)
1969 {
1970 	return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1971 }
1972 EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1973 
1974 /**
1975  * blk_update_request - Special helper function for request stacking drivers
1976  * @rq:           the request being processed
1977  * @error:        %0 for success, < %0 for error
1978  * @nr_bytes:     number of bytes to complete @rq
1979  *
1980  * Description:
1981  *     Ends I/O on a number of bytes attached to @rq, but doesn't complete
1982  *     the request structure even if @rq doesn't have leftover.
1983  *     If @rq has leftover, sets it up for the next range of segments.
1984  *
1985  *     This special helper function is only for request stacking drivers
1986  *     (e.g. request-based dm) so that they can handle partial completion.
1987  *     Actual device drivers should use blk_end_request instead.
1988  */
1989 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes)
1990 {
1991 	if (!end_that_request_data(rq, error, nr_bytes, 0)) {
1992 		/*
1993 		 * These members are not updated in end_that_request_data()
1994 		 * when all bios are completed.
1995 		 * Update them so that the request stacking driver can find
1996 		 * how many bytes remain in the request later.
1997 		 */
1998 		rq->nr_sectors = rq->hard_nr_sectors = 0;
1999 		rq->current_nr_sectors = rq->hard_cur_sectors = 0;
2000 	}
2001 }
2002 EXPORT_SYMBOL_GPL(blk_update_request);
2003 
2004 /**
2005  * blk_end_request_callback - Special helper function for tricky drivers
2006  * @rq:           the request being processed
2007  * @error:        %0 for success, < %0 for error
2008  * @nr_bytes:     number of bytes to complete
2009  * @drv_callback: function called between completion of bios in the request
2010  *                and completion of the request.
2011  *                If the callback returns non %0, this helper returns without
2012  *                completion of the request.
2013  *
2014  * Description:
2015  *     Ends I/O on a number of bytes attached to @rq.
2016  *     If @rq has leftover, sets it up for the next range of segments.
2017  *
2018  *     This special helper function is used only for existing tricky drivers.
2019  *     (e.g. cdrom_newpc_intr() of ide-cd)
2020  *     This interface will be removed when such drivers are rewritten.
2021  *     Don't use this interface in other places anymore.
2022  *
2023  * Return:
2024  *     %0 - we are done with this request
2025  *     %1 - this request is not freed yet.
2026  *          this request still has pending buffers or
2027  *          the driver doesn't want to finish this request yet.
2028  **/
2029 int blk_end_request_callback(struct request *rq, int error,
2030 			     unsigned int nr_bytes,
2031 			     int (drv_callback)(struct request *))
2032 {
2033 	return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
2034 }
2035 EXPORT_SYMBOL_GPL(blk_end_request_callback);
2036 
2037 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2038 		     struct bio *bio)
2039 {
2040 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
2041 	   we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
2042 	rq->cmd_flags |= (bio->bi_rw & 3);
2043 
2044 	if (bio_has_data(bio)) {
2045 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2046 		rq->buffer = bio_data(bio);
2047 	}
2048 	rq->current_nr_sectors = bio_cur_sectors(bio);
2049 	rq->hard_cur_sectors = rq->current_nr_sectors;
2050 	rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
2051 	rq->data_len = bio->bi_size;
2052 
2053 	rq->bio = rq->biotail = bio;
2054 
2055 	if (bio->bi_bdev)
2056 		rq->rq_disk = bio->bi_bdev->bd_disk;
2057 }
2058 
2059 /**
2060  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2061  * @q : the queue of the device being checked
2062  *
2063  * Description:
2064  *    Check if underlying low-level drivers of a device are busy.
2065  *    If the drivers want to export their busy state, they must set own
2066  *    exporting function using blk_queue_lld_busy() first.
2067  *
2068  *    Basically, this function is used only by request stacking drivers
2069  *    to stop dispatching requests to underlying devices when underlying
2070  *    devices are busy.  This behavior helps more I/O merging on the queue
2071  *    of the request stacking driver and prevents I/O throughput regression
2072  *    on burst I/O load.
2073  *
2074  * Return:
2075  *    0 - Not busy (The request stacking driver should dispatch request)
2076  *    1 - Busy (The request stacking driver should stop dispatching request)
2077  */
2078 int blk_lld_busy(struct request_queue *q)
2079 {
2080 	if (q->lld_busy_fn)
2081 		return q->lld_busy_fn(q);
2082 
2083 	return 0;
2084 }
2085 EXPORT_SYMBOL_GPL(blk_lld_busy);
2086 
2087 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2088 {
2089 	return queue_work(kblockd_workqueue, work);
2090 }
2091 EXPORT_SYMBOL(kblockd_schedule_work);
2092 
2093 void kblockd_flush_work(struct work_struct *work)
2094 {
2095 	cancel_work_sync(work);
2096 }
2097 EXPORT_SYMBOL(kblockd_flush_work);
2098 
2099 int __init blk_dev_init(void)
2100 {
2101 	kblockd_workqueue = create_workqueue("kblockd");
2102 	if (!kblockd_workqueue)
2103 		panic("Failed to create kblockd\n");
2104 
2105 	request_cachep = kmem_cache_create("blkdev_requests",
2106 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2107 
2108 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2109 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2110 
2111 	return 0;
2112 }
2113 
2114