1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/blktrace_api.h> 30 #include <linux/fault-inject.h> 31 32 #include "blk.h" 33 34 static int __make_request(struct request_queue *q, struct bio *bio); 35 36 /* 37 * For the allocated request tables 38 */ 39 static struct kmem_cache *request_cachep; 40 41 /* 42 * For queue allocation 43 */ 44 struct kmem_cache *blk_requestq_cachep; 45 46 /* 47 * Controlling structure to kblockd 48 */ 49 static struct workqueue_struct *kblockd_workqueue; 50 51 static void drive_stat_acct(struct request *rq, int new_io) 52 { 53 struct hd_struct *part; 54 int rw = rq_data_dir(rq); 55 int cpu; 56 57 if (!blk_fs_request(rq) || !rq->rq_disk) 58 return; 59 60 cpu = part_stat_lock(); 61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector); 62 63 if (!new_io) 64 part_stat_inc(cpu, part, merges[rw]); 65 else { 66 part_round_stats(cpu, part); 67 part_inc_in_flight(part); 68 } 69 70 part_stat_unlock(); 71 } 72 73 void blk_queue_congestion_threshold(struct request_queue *q) 74 { 75 int nr; 76 77 nr = q->nr_requests - (q->nr_requests / 8) + 1; 78 if (nr > q->nr_requests) 79 nr = q->nr_requests; 80 q->nr_congestion_on = nr; 81 82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 83 if (nr < 1) 84 nr = 1; 85 q->nr_congestion_off = nr; 86 } 87 88 /** 89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 90 * @bdev: device 91 * 92 * Locates the passed device's request queue and returns the address of its 93 * backing_dev_info 94 * 95 * Will return NULL if the request queue cannot be located. 96 */ 97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 98 { 99 struct backing_dev_info *ret = NULL; 100 struct request_queue *q = bdev_get_queue(bdev); 101 102 if (q) 103 ret = &q->backing_dev_info; 104 return ret; 105 } 106 EXPORT_SYMBOL(blk_get_backing_dev_info); 107 108 void blk_rq_init(struct request_queue *q, struct request *rq) 109 { 110 memset(rq, 0, sizeof(*rq)); 111 112 INIT_LIST_HEAD(&rq->queuelist); 113 INIT_LIST_HEAD(&rq->timeout_list); 114 rq->cpu = -1; 115 rq->q = q; 116 rq->sector = rq->hard_sector = (sector_t) -1; 117 INIT_HLIST_NODE(&rq->hash); 118 RB_CLEAR_NODE(&rq->rb_node); 119 rq->cmd = rq->__cmd; 120 rq->tag = -1; 121 rq->ref_count = 1; 122 } 123 EXPORT_SYMBOL(blk_rq_init); 124 125 static void req_bio_endio(struct request *rq, struct bio *bio, 126 unsigned int nbytes, int error) 127 { 128 struct request_queue *q = rq->q; 129 130 if (&q->bar_rq != rq) { 131 if (error) 132 clear_bit(BIO_UPTODATE, &bio->bi_flags); 133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 134 error = -EIO; 135 136 if (unlikely(nbytes > bio->bi_size)) { 137 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 138 __func__, nbytes, bio->bi_size); 139 nbytes = bio->bi_size; 140 } 141 142 bio->bi_size -= nbytes; 143 bio->bi_sector += (nbytes >> 9); 144 145 if (bio_integrity(bio)) 146 bio_integrity_advance(bio, nbytes); 147 148 if (bio->bi_size == 0) 149 bio_endio(bio, error); 150 } else { 151 152 /* 153 * Okay, this is the barrier request in progress, just 154 * record the error; 155 */ 156 if (error && !q->orderr) 157 q->orderr = error; 158 } 159 } 160 161 void blk_dump_rq_flags(struct request *rq, char *msg) 162 { 163 int bit; 164 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 167 rq->cmd_flags); 168 169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 170 (unsigned long long)rq->sector, 171 rq->nr_sectors, 172 rq->current_nr_sectors); 173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 174 rq->bio, rq->biotail, 175 rq->buffer, rq->data, 176 rq->data_len); 177 178 if (blk_pc_request(rq)) { 179 printk(KERN_INFO " cdb: "); 180 for (bit = 0; bit < BLK_MAX_CDB; bit++) 181 printk("%02x ", rq->cmd[bit]); 182 printk("\n"); 183 } 184 } 185 EXPORT_SYMBOL(blk_dump_rq_flags); 186 187 /* 188 * "plug" the device if there are no outstanding requests: this will 189 * force the transfer to start only after we have put all the requests 190 * on the list. 191 * 192 * This is called with interrupts off and no requests on the queue and 193 * with the queue lock held. 194 */ 195 void blk_plug_device(struct request_queue *q) 196 { 197 WARN_ON(!irqs_disabled()); 198 199 /* 200 * don't plug a stopped queue, it must be paired with blk_start_queue() 201 * which will restart the queueing 202 */ 203 if (blk_queue_stopped(q)) 204 return; 205 206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 209 } 210 } 211 EXPORT_SYMBOL(blk_plug_device); 212 213 /** 214 * blk_plug_device_unlocked - plug a device without queue lock held 215 * @q: The &struct request_queue to plug 216 * 217 * Description: 218 * Like @blk_plug_device(), but grabs the queue lock and disables 219 * interrupts. 220 **/ 221 void blk_plug_device_unlocked(struct request_queue *q) 222 { 223 unsigned long flags; 224 225 spin_lock_irqsave(q->queue_lock, flags); 226 blk_plug_device(q); 227 spin_unlock_irqrestore(q->queue_lock, flags); 228 } 229 EXPORT_SYMBOL(blk_plug_device_unlocked); 230 231 /* 232 * remove the queue from the plugged list, if present. called with 233 * queue lock held and interrupts disabled. 234 */ 235 int blk_remove_plug(struct request_queue *q) 236 { 237 WARN_ON(!irqs_disabled()); 238 239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 240 return 0; 241 242 del_timer(&q->unplug_timer); 243 return 1; 244 } 245 EXPORT_SYMBOL(blk_remove_plug); 246 247 /* 248 * remove the plug and let it rip.. 249 */ 250 void __generic_unplug_device(struct request_queue *q) 251 { 252 if (unlikely(blk_queue_stopped(q))) 253 return; 254 255 if (!blk_remove_plug(q)) 256 return; 257 258 q->request_fn(q); 259 } 260 EXPORT_SYMBOL(__generic_unplug_device); 261 262 /** 263 * generic_unplug_device - fire a request queue 264 * @q: The &struct request_queue in question 265 * 266 * Description: 267 * Linux uses plugging to build bigger requests queues before letting 268 * the device have at them. If a queue is plugged, the I/O scheduler 269 * is still adding and merging requests on the queue. Once the queue 270 * gets unplugged, the request_fn defined for the queue is invoked and 271 * transfers started. 272 **/ 273 void generic_unplug_device(struct request_queue *q) 274 { 275 if (blk_queue_plugged(q)) { 276 spin_lock_irq(q->queue_lock); 277 __generic_unplug_device(q); 278 spin_unlock_irq(q->queue_lock); 279 } 280 } 281 EXPORT_SYMBOL(generic_unplug_device); 282 283 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 284 struct page *page) 285 { 286 struct request_queue *q = bdi->unplug_io_data; 287 288 blk_unplug(q); 289 } 290 291 void blk_unplug_work(struct work_struct *work) 292 { 293 struct request_queue *q = 294 container_of(work, struct request_queue, unplug_work); 295 296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 297 q->rq.count[READ] + q->rq.count[WRITE]); 298 299 q->unplug_fn(q); 300 } 301 302 void blk_unplug_timeout(unsigned long data) 303 { 304 struct request_queue *q = (struct request_queue *)data; 305 306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 307 q->rq.count[READ] + q->rq.count[WRITE]); 308 309 kblockd_schedule_work(q, &q->unplug_work); 310 } 311 312 void blk_unplug(struct request_queue *q) 313 { 314 /* 315 * devices don't necessarily have an ->unplug_fn defined 316 */ 317 if (q->unplug_fn) { 318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 319 q->rq.count[READ] + q->rq.count[WRITE]); 320 321 q->unplug_fn(q); 322 } 323 } 324 EXPORT_SYMBOL(blk_unplug); 325 326 static void blk_invoke_request_fn(struct request_queue *q) 327 { 328 /* 329 * one level of recursion is ok and is much faster than kicking 330 * the unplug handling 331 */ 332 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 333 q->request_fn(q); 334 queue_flag_clear(QUEUE_FLAG_REENTER, q); 335 } else { 336 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 337 kblockd_schedule_work(q, &q->unplug_work); 338 } 339 } 340 341 /** 342 * blk_start_queue - restart a previously stopped queue 343 * @q: The &struct request_queue in question 344 * 345 * Description: 346 * blk_start_queue() will clear the stop flag on the queue, and call 347 * the request_fn for the queue if it was in a stopped state when 348 * entered. Also see blk_stop_queue(). Queue lock must be held. 349 **/ 350 void blk_start_queue(struct request_queue *q) 351 { 352 WARN_ON(!irqs_disabled()); 353 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 355 blk_invoke_request_fn(q); 356 } 357 EXPORT_SYMBOL(blk_start_queue); 358 359 /** 360 * blk_stop_queue - stop a queue 361 * @q: The &struct request_queue in question 362 * 363 * Description: 364 * The Linux block layer assumes that a block driver will consume all 365 * entries on the request queue when the request_fn strategy is called. 366 * Often this will not happen, because of hardware limitations (queue 367 * depth settings). If a device driver gets a 'queue full' response, 368 * or if it simply chooses not to queue more I/O at one point, it can 369 * call this function to prevent the request_fn from being called until 370 * the driver has signalled it's ready to go again. This happens by calling 371 * blk_start_queue() to restart queue operations. Queue lock must be held. 372 **/ 373 void blk_stop_queue(struct request_queue *q) 374 { 375 blk_remove_plug(q); 376 queue_flag_set(QUEUE_FLAG_STOPPED, q); 377 } 378 EXPORT_SYMBOL(blk_stop_queue); 379 380 /** 381 * blk_sync_queue - cancel any pending callbacks on a queue 382 * @q: the queue 383 * 384 * Description: 385 * The block layer may perform asynchronous callback activity 386 * on a queue, such as calling the unplug function after a timeout. 387 * A block device may call blk_sync_queue to ensure that any 388 * such activity is cancelled, thus allowing it to release resources 389 * that the callbacks might use. The caller must already have made sure 390 * that its ->make_request_fn will not re-add plugging prior to calling 391 * this function. 392 * 393 */ 394 void blk_sync_queue(struct request_queue *q) 395 { 396 del_timer_sync(&q->unplug_timer); 397 kblockd_flush_work(&q->unplug_work); 398 } 399 EXPORT_SYMBOL(blk_sync_queue); 400 401 /** 402 * blk_run_queue - run a single device queue 403 * @q: The queue to run 404 */ 405 void __blk_run_queue(struct request_queue *q) 406 { 407 blk_remove_plug(q); 408 409 /* 410 * Only recurse once to avoid overrunning the stack, let the unplug 411 * handling reinvoke the handler shortly if we already got there. 412 */ 413 if (!elv_queue_empty(q)) 414 blk_invoke_request_fn(q); 415 } 416 EXPORT_SYMBOL(__blk_run_queue); 417 418 /** 419 * blk_run_queue - run a single device queue 420 * @q: The queue to run 421 */ 422 void blk_run_queue(struct request_queue *q) 423 { 424 unsigned long flags; 425 426 spin_lock_irqsave(q->queue_lock, flags); 427 __blk_run_queue(q); 428 spin_unlock_irqrestore(q->queue_lock, flags); 429 } 430 EXPORT_SYMBOL(blk_run_queue); 431 432 void blk_put_queue(struct request_queue *q) 433 { 434 kobject_put(&q->kobj); 435 } 436 437 void blk_cleanup_queue(struct request_queue *q) 438 { 439 /* 440 * We know we have process context here, so we can be a little 441 * cautious and ensure that pending block actions on this device 442 * are done before moving on. Going into this function, we should 443 * not have processes doing IO to this device. 444 */ 445 blk_sync_queue(q); 446 447 mutex_lock(&q->sysfs_lock); 448 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 449 mutex_unlock(&q->sysfs_lock); 450 451 if (q->elevator) 452 elevator_exit(q->elevator); 453 454 blk_put_queue(q); 455 } 456 EXPORT_SYMBOL(blk_cleanup_queue); 457 458 static int blk_init_free_list(struct request_queue *q) 459 { 460 struct request_list *rl = &q->rq; 461 462 rl->count[READ] = rl->count[WRITE] = 0; 463 rl->starved[READ] = rl->starved[WRITE] = 0; 464 rl->elvpriv = 0; 465 init_waitqueue_head(&rl->wait[READ]); 466 init_waitqueue_head(&rl->wait[WRITE]); 467 468 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 469 mempool_free_slab, request_cachep, q->node); 470 471 if (!rl->rq_pool) 472 return -ENOMEM; 473 474 return 0; 475 } 476 477 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 478 { 479 return blk_alloc_queue_node(gfp_mask, -1); 480 } 481 EXPORT_SYMBOL(blk_alloc_queue); 482 483 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 484 { 485 struct request_queue *q; 486 int err; 487 488 q = kmem_cache_alloc_node(blk_requestq_cachep, 489 gfp_mask | __GFP_ZERO, node_id); 490 if (!q) 491 return NULL; 492 493 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 494 q->backing_dev_info.unplug_io_data = q; 495 err = bdi_init(&q->backing_dev_info); 496 if (err) { 497 kmem_cache_free(blk_requestq_cachep, q); 498 return NULL; 499 } 500 501 init_timer(&q->unplug_timer); 502 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 503 INIT_LIST_HEAD(&q->timeout_list); 504 505 kobject_init(&q->kobj, &blk_queue_ktype); 506 507 mutex_init(&q->sysfs_lock); 508 spin_lock_init(&q->__queue_lock); 509 510 return q; 511 } 512 EXPORT_SYMBOL(blk_alloc_queue_node); 513 514 /** 515 * blk_init_queue - prepare a request queue for use with a block device 516 * @rfn: The function to be called to process requests that have been 517 * placed on the queue. 518 * @lock: Request queue spin lock 519 * 520 * Description: 521 * If a block device wishes to use the standard request handling procedures, 522 * which sorts requests and coalesces adjacent requests, then it must 523 * call blk_init_queue(). The function @rfn will be called when there 524 * are requests on the queue that need to be processed. If the device 525 * supports plugging, then @rfn may not be called immediately when requests 526 * are available on the queue, but may be called at some time later instead. 527 * Plugged queues are generally unplugged when a buffer belonging to one 528 * of the requests on the queue is needed, or due to memory pressure. 529 * 530 * @rfn is not required, or even expected, to remove all requests off the 531 * queue, but only as many as it can handle at a time. If it does leave 532 * requests on the queue, it is responsible for arranging that the requests 533 * get dealt with eventually. 534 * 535 * The queue spin lock must be held while manipulating the requests on the 536 * request queue; this lock will be taken also from interrupt context, so irq 537 * disabling is needed for it. 538 * 539 * Function returns a pointer to the initialized request queue, or %NULL if 540 * it didn't succeed. 541 * 542 * Note: 543 * blk_init_queue() must be paired with a blk_cleanup_queue() call 544 * when the block device is deactivated (such as at module unload). 545 **/ 546 547 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 548 { 549 return blk_init_queue_node(rfn, lock, -1); 550 } 551 EXPORT_SYMBOL(blk_init_queue); 552 553 struct request_queue * 554 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 555 { 556 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 557 558 if (!q) 559 return NULL; 560 561 q->node = node_id; 562 if (blk_init_free_list(q)) { 563 kmem_cache_free(blk_requestq_cachep, q); 564 return NULL; 565 } 566 567 /* 568 * if caller didn't supply a lock, they get per-queue locking with 569 * our embedded lock 570 */ 571 if (!lock) 572 lock = &q->__queue_lock; 573 574 q->request_fn = rfn; 575 q->prep_rq_fn = NULL; 576 q->unplug_fn = generic_unplug_device; 577 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER | 578 1 << QUEUE_FLAG_STACKABLE); 579 q->queue_lock = lock; 580 581 blk_queue_segment_boundary(q, 0xffffffff); 582 583 blk_queue_make_request(q, __make_request); 584 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 585 586 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 587 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 588 589 q->sg_reserved_size = INT_MAX; 590 591 blk_set_cmd_filter_defaults(&q->cmd_filter); 592 593 /* 594 * all done 595 */ 596 if (!elevator_init(q, NULL)) { 597 blk_queue_congestion_threshold(q); 598 return q; 599 } 600 601 blk_put_queue(q); 602 return NULL; 603 } 604 EXPORT_SYMBOL(blk_init_queue_node); 605 606 int blk_get_queue(struct request_queue *q) 607 { 608 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 609 kobject_get(&q->kobj); 610 return 0; 611 } 612 613 return 1; 614 } 615 616 static inline void blk_free_request(struct request_queue *q, struct request *rq) 617 { 618 if (rq->cmd_flags & REQ_ELVPRIV) 619 elv_put_request(q, rq); 620 mempool_free(rq, q->rq.rq_pool); 621 } 622 623 static struct request * 624 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 625 { 626 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 627 628 if (!rq) 629 return NULL; 630 631 blk_rq_init(q, rq); 632 633 rq->cmd_flags = rw | REQ_ALLOCED; 634 635 if (priv) { 636 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 637 mempool_free(rq, q->rq.rq_pool); 638 return NULL; 639 } 640 rq->cmd_flags |= REQ_ELVPRIV; 641 } 642 643 return rq; 644 } 645 646 /* 647 * ioc_batching returns true if the ioc is a valid batching request and 648 * should be given priority access to a request. 649 */ 650 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 651 { 652 if (!ioc) 653 return 0; 654 655 /* 656 * Make sure the process is able to allocate at least 1 request 657 * even if the batch times out, otherwise we could theoretically 658 * lose wakeups. 659 */ 660 return ioc->nr_batch_requests == q->nr_batching || 661 (ioc->nr_batch_requests > 0 662 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 663 } 664 665 /* 666 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 667 * will cause the process to be a "batcher" on all queues in the system. This 668 * is the behaviour we want though - once it gets a wakeup it should be given 669 * a nice run. 670 */ 671 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 672 { 673 if (!ioc || ioc_batching(q, ioc)) 674 return; 675 676 ioc->nr_batch_requests = q->nr_batching; 677 ioc->last_waited = jiffies; 678 } 679 680 static void __freed_request(struct request_queue *q, int rw) 681 { 682 struct request_list *rl = &q->rq; 683 684 if (rl->count[rw] < queue_congestion_off_threshold(q)) 685 blk_clear_queue_congested(q, rw); 686 687 if (rl->count[rw] + 1 <= q->nr_requests) { 688 if (waitqueue_active(&rl->wait[rw])) 689 wake_up(&rl->wait[rw]); 690 691 blk_clear_queue_full(q, rw); 692 } 693 } 694 695 /* 696 * A request has just been released. Account for it, update the full and 697 * congestion status, wake up any waiters. Called under q->queue_lock. 698 */ 699 static void freed_request(struct request_queue *q, int rw, int priv) 700 { 701 struct request_list *rl = &q->rq; 702 703 rl->count[rw]--; 704 if (priv) 705 rl->elvpriv--; 706 707 __freed_request(q, rw); 708 709 if (unlikely(rl->starved[rw ^ 1])) 710 __freed_request(q, rw ^ 1); 711 } 712 713 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 714 /* 715 * Get a free request, queue_lock must be held. 716 * Returns NULL on failure, with queue_lock held. 717 * Returns !NULL on success, with queue_lock *not held*. 718 */ 719 static struct request *get_request(struct request_queue *q, int rw_flags, 720 struct bio *bio, gfp_t gfp_mask) 721 { 722 struct request *rq = NULL; 723 struct request_list *rl = &q->rq; 724 struct io_context *ioc = NULL; 725 const int rw = rw_flags & 0x01; 726 int may_queue, priv; 727 728 may_queue = elv_may_queue(q, rw_flags); 729 if (may_queue == ELV_MQUEUE_NO) 730 goto rq_starved; 731 732 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 733 if (rl->count[rw]+1 >= q->nr_requests) { 734 ioc = current_io_context(GFP_ATOMIC, q->node); 735 /* 736 * The queue will fill after this allocation, so set 737 * it as full, and mark this process as "batching". 738 * This process will be allowed to complete a batch of 739 * requests, others will be blocked. 740 */ 741 if (!blk_queue_full(q, rw)) { 742 ioc_set_batching(q, ioc); 743 blk_set_queue_full(q, rw); 744 } else { 745 if (may_queue != ELV_MQUEUE_MUST 746 && !ioc_batching(q, ioc)) { 747 /* 748 * The queue is full and the allocating 749 * process is not a "batcher", and not 750 * exempted by the IO scheduler 751 */ 752 goto out; 753 } 754 } 755 } 756 blk_set_queue_congested(q, rw); 757 } 758 759 /* 760 * Only allow batching queuers to allocate up to 50% over the defined 761 * limit of requests, otherwise we could have thousands of requests 762 * allocated with any setting of ->nr_requests 763 */ 764 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 765 goto out; 766 767 rl->count[rw]++; 768 rl->starved[rw] = 0; 769 770 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 771 if (priv) 772 rl->elvpriv++; 773 774 spin_unlock_irq(q->queue_lock); 775 776 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 777 if (unlikely(!rq)) { 778 /* 779 * Allocation failed presumably due to memory. Undo anything 780 * we might have messed up. 781 * 782 * Allocating task should really be put onto the front of the 783 * wait queue, but this is pretty rare. 784 */ 785 spin_lock_irq(q->queue_lock); 786 freed_request(q, rw, priv); 787 788 /* 789 * in the very unlikely event that allocation failed and no 790 * requests for this direction was pending, mark us starved 791 * so that freeing of a request in the other direction will 792 * notice us. another possible fix would be to split the 793 * rq mempool into READ and WRITE 794 */ 795 rq_starved: 796 if (unlikely(rl->count[rw] == 0)) 797 rl->starved[rw] = 1; 798 799 goto out; 800 } 801 802 /* 803 * ioc may be NULL here, and ioc_batching will be false. That's 804 * OK, if the queue is under the request limit then requests need 805 * not count toward the nr_batch_requests limit. There will always 806 * be some limit enforced by BLK_BATCH_TIME. 807 */ 808 if (ioc_batching(q, ioc)) 809 ioc->nr_batch_requests--; 810 811 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 812 out: 813 return rq; 814 } 815 816 /* 817 * No available requests for this queue, unplug the device and wait for some 818 * requests to become available. 819 * 820 * Called with q->queue_lock held, and returns with it unlocked. 821 */ 822 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 823 struct bio *bio) 824 { 825 const int rw = rw_flags & 0x01; 826 struct request *rq; 827 828 rq = get_request(q, rw_flags, bio, GFP_NOIO); 829 while (!rq) { 830 DEFINE_WAIT(wait); 831 struct io_context *ioc; 832 struct request_list *rl = &q->rq; 833 834 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 835 TASK_UNINTERRUPTIBLE); 836 837 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 838 839 __generic_unplug_device(q); 840 spin_unlock_irq(q->queue_lock); 841 io_schedule(); 842 843 /* 844 * After sleeping, we become a "batching" process and 845 * will be able to allocate at least one request, and 846 * up to a big batch of them for a small period time. 847 * See ioc_batching, ioc_set_batching 848 */ 849 ioc = current_io_context(GFP_NOIO, q->node); 850 ioc_set_batching(q, ioc); 851 852 spin_lock_irq(q->queue_lock); 853 finish_wait(&rl->wait[rw], &wait); 854 855 rq = get_request(q, rw_flags, bio, GFP_NOIO); 856 }; 857 858 return rq; 859 } 860 861 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 862 { 863 struct request *rq; 864 865 BUG_ON(rw != READ && rw != WRITE); 866 867 spin_lock_irq(q->queue_lock); 868 if (gfp_mask & __GFP_WAIT) { 869 rq = get_request_wait(q, rw, NULL); 870 } else { 871 rq = get_request(q, rw, NULL, gfp_mask); 872 if (!rq) 873 spin_unlock_irq(q->queue_lock); 874 } 875 /* q->queue_lock is unlocked at this point */ 876 877 return rq; 878 } 879 EXPORT_SYMBOL(blk_get_request); 880 881 /** 882 * blk_start_queueing - initiate dispatch of requests to device 883 * @q: request queue to kick into gear 884 * 885 * This is basically a helper to remove the need to know whether a queue 886 * is plugged or not if someone just wants to initiate dispatch of requests 887 * for this queue. 888 * 889 * The queue lock must be held with interrupts disabled. 890 */ 891 void blk_start_queueing(struct request_queue *q) 892 { 893 if (!blk_queue_plugged(q)) { 894 if (unlikely(blk_queue_stopped(q))) 895 return; 896 q->request_fn(q); 897 } else 898 __generic_unplug_device(q); 899 } 900 EXPORT_SYMBOL(blk_start_queueing); 901 902 /** 903 * blk_requeue_request - put a request back on queue 904 * @q: request queue where request should be inserted 905 * @rq: request to be inserted 906 * 907 * Description: 908 * Drivers often keep queueing requests until the hardware cannot accept 909 * more, when that condition happens we need to put the request back 910 * on the queue. Must be called with queue lock held. 911 */ 912 void blk_requeue_request(struct request_queue *q, struct request *rq) 913 { 914 blk_delete_timer(rq); 915 blk_clear_rq_complete(rq); 916 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 917 918 if (blk_rq_tagged(rq)) 919 blk_queue_end_tag(q, rq); 920 921 elv_requeue_request(q, rq); 922 } 923 EXPORT_SYMBOL(blk_requeue_request); 924 925 /** 926 * blk_insert_request - insert a special request into a request queue 927 * @q: request queue where request should be inserted 928 * @rq: request to be inserted 929 * @at_head: insert request at head or tail of queue 930 * @data: private data 931 * 932 * Description: 933 * Many block devices need to execute commands asynchronously, so they don't 934 * block the whole kernel from preemption during request execution. This is 935 * accomplished normally by inserting aritficial requests tagged as 936 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 937 * be scheduled for actual execution by the request queue. 938 * 939 * We have the option of inserting the head or the tail of the queue. 940 * Typically we use the tail for new ioctls and so forth. We use the head 941 * of the queue for things like a QUEUE_FULL message from a device, or a 942 * host that is unable to accept a particular command. 943 */ 944 void blk_insert_request(struct request_queue *q, struct request *rq, 945 int at_head, void *data) 946 { 947 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 948 unsigned long flags; 949 950 /* 951 * tell I/O scheduler that this isn't a regular read/write (ie it 952 * must not attempt merges on this) and that it acts as a soft 953 * barrier 954 */ 955 rq->cmd_type = REQ_TYPE_SPECIAL; 956 rq->cmd_flags |= REQ_SOFTBARRIER; 957 958 rq->special = data; 959 960 spin_lock_irqsave(q->queue_lock, flags); 961 962 /* 963 * If command is tagged, release the tag 964 */ 965 if (blk_rq_tagged(rq)) 966 blk_queue_end_tag(q, rq); 967 968 drive_stat_acct(rq, 1); 969 __elv_add_request(q, rq, where, 0); 970 blk_start_queueing(q); 971 spin_unlock_irqrestore(q->queue_lock, flags); 972 } 973 EXPORT_SYMBOL(blk_insert_request); 974 975 /* 976 * add-request adds a request to the linked list. 977 * queue lock is held and interrupts disabled, as we muck with the 978 * request queue list. 979 */ 980 static inline void add_request(struct request_queue *q, struct request *req) 981 { 982 drive_stat_acct(req, 1); 983 984 /* 985 * elevator indicated where it wants this request to be 986 * inserted at elevator_merge time 987 */ 988 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 989 } 990 991 static void part_round_stats_single(int cpu, struct hd_struct *part, 992 unsigned long now) 993 { 994 if (now == part->stamp) 995 return; 996 997 if (part->in_flight) { 998 __part_stat_add(cpu, part, time_in_queue, 999 part->in_flight * (now - part->stamp)); 1000 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1001 } 1002 part->stamp = now; 1003 } 1004 1005 /** 1006 * part_round_stats() - Round off the performance stats on a struct 1007 * disk_stats. 1008 * 1009 * The average IO queue length and utilisation statistics are maintained 1010 * by observing the current state of the queue length and the amount of 1011 * time it has been in this state for. 1012 * 1013 * Normally, that accounting is done on IO completion, but that can result 1014 * in more than a second's worth of IO being accounted for within any one 1015 * second, leading to >100% utilisation. To deal with that, we call this 1016 * function to do a round-off before returning the results when reading 1017 * /proc/diskstats. This accounts immediately for all queue usage up to 1018 * the current jiffies and restarts the counters again. 1019 */ 1020 void part_round_stats(int cpu, struct hd_struct *part) 1021 { 1022 unsigned long now = jiffies; 1023 1024 if (part->partno) 1025 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1026 part_round_stats_single(cpu, part, now); 1027 } 1028 EXPORT_SYMBOL_GPL(part_round_stats); 1029 1030 /* 1031 * queue lock must be held 1032 */ 1033 void __blk_put_request(struct request_queue *q, struct request *req) 1034 { 1035 if (unlikely(!q)) 1036 return; 1037 if (unlikely(--req->ref_count)) 1038 return; 1039 1040 elv_completed_request(q, req); 1041 1042 /* 1043 * Request may not have originated from ll_rw_blk. if not, 1044 * it didn't come out of our reserved rq pools 1045 */ 1046 if (req->cmd_flags & REQ_ALLOCED) { 1047 int rw = rq_data_dir(req); 1048 int priv = req->cmd_flags & REQ_ELVPRIV; 1049 1050 BUG_ON(!list_empty(&req->queuelist)); 1051 BUG_ON(!hlist_unhashed(&req->hash)); 1052 1053 blk_free_request(q, req); 1054 freed_request(q, rw, priv); 1055 } 1056 } 1057 EXPORT_SYMBOL_GPL(__blk_put_request); 1058 1059 void blk_put_request(struct request *req) 1060 { 1061 unsigned long flags; 1062 struct request_queue *q = req->q; 1063 1064 spin_lock_irqsave(q->queue_lock, flags); 1065 __blk_put_request(q, req); 1066 spin_unlock_irqrestore(q->queue_lock, flags); 1067 } 1068 EXPORT_SYMBOL(blk_put_request); 1069 1070 void init_request_from_bio(struct request *req, struct bio *bio) 1071 { 1072 req->cpu = bio->bi_comp_cpu; 1073 req->cmd_type = REQ_TYPE_FS; 1074 1075 /* 1076 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1077 */ 1078 if (bio_rw_ahead(bio) || bio_failfast(bio)) 1079 req->cmd_flags |= REQ_FAILFAST; 1080 1081 /* 1082 * REQ_BARRIER implies no merging, but lets make it explicit 1083 */ 1084 if (unlikely(bio_discard(bio))) { 1085 req->cmd_flags |= REQ_DISCARD; 1086 if (bio_barrier(bio)) 1087 req->cmd_flags |= REQ_SOFTBARRIER; 1088 req->q->prepare_discard_fn(req->q, req); 1089 } else if (unlikely(bio_barrier(bio))) 1090 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1091 1092 if (bio_sync(bio)) 1093 req->cmd_flags |= REQ_RW_SYNC; 1094 if (bio_rw_meta(bio)) 1095 req->cmd_flags |= REQ_RW_META; 1096 1097 req->errors = 0; 1098 req->hard_sector = req->sector = bio->bi_sector; 1099 req->ioprio = bio_prio(bio); 1100 req->start_time = jiffies; 1101 blk_rq_bio_prep(req->q, req, bio); 1102 } 1103 1104 static int __make_request(struct request_queue *q, struct bio *bio) 1105 { 1106 struct request *req; 1107 int el_ret, nr_sectors, barrier, discard, err; 1108 const unsigned short prio = bio_prio(bio); 1109 const int sync = bio_sync(bio); 1110 int rw_flags; 1111 1112 nr_sectors = bio_sectors(bio); 1113 1114 /* 1115 * low level driver can indicate that it wants pages above a 1116 * certain limit bounced to low memory (ie for highmem, or even 1117 * ISA dma in theory) 1118 */ 1119 blk_queue_bounce(q, &bio); 1120 1121 barrier = bio_barrier(bio); 1122 if (unlikely(barrier) && bio_has_data(bio) && 1123 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1124 err = -EOPNOTSUPP; 1125 goto end_io; 1126 } 1127 1128 discard = bio_discard(bio); 1129 if (unlikely(discard) && !q->prepare_discard_fn) { 1130 err = -EOPNOTSUPP; 1131 goto end_io; 1132 } 1133 1134 spin_lock_irq(q->queue_lock); 1135 1136 if (unlikely(barrier) || elv_queue_empty(q)) 1137 goto get_rq; 1138 1139 el_ret = elv_merge(q, &req, bio); 1140 switch (el_ret) { 1141 case ELEVATOR_BACK_MERGE: 1142 BUG_ON(!rq_mergeable(req)); 1143 1144 if (!ll_back_merge_fn(q, req, bio)) 1145 break; 1146 1147 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1148 1149 req->biotail->bi_next = bio; 1150 req->biotail = bio; 1151 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1152 req->ioprio = ioprio_best(req->ioprio, prio); 1153 if (!blk_rq_cpu_valid(req)) 1154 req->cpu = bio->bi_comp_cpu; 1155 drive_stat_acct(req, 0); 1156 if (!attempt_back_merge(q, req)) 1157 elv_merged_request(q, req, el_ret); 1158 goto out; 1159 1160 case ELEVATOR_FRONT_MERGE: 1161 BUG_ON(!rq_mergeable(req)); 1162 1163 if (!ll_front_merge_fn(q, req, bio)) 1164 break; 1165 1166 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1167 1168 bio->bi_next = req->bio; 1169 req->bio = bio; 1170 1171 /* 1172 * may not be valid. if the low level driver said 1173 * it didn't need a bounce buffer then it better 1174 * not touch req->buffer either... 1175 */ 1176 req->buffer = bio_data(bio); 1177 req->current_nr_sectors = bio_cur_sectors(bio); 1178 req->hard_cur_sectors = req->current_nr_sectors; 1179 req->sector = req->hard_sector = bio->bi_sector; 1180 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1181 req->ioprio = ioprio_best(req->ioprio, prio); 1182 if (!blk_rq_cpu_valid(req)) 1183 req->cpu = bio->bi_comp_cpu; 1184 drive_stat_acct(req, 0); 1185 if (!attempt_front_merge(q, req)) 1186 elv_merged_request(q, req, el_ret); 1187 goto out; 1188 1189 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1190 default: 1191 ; 1192 } 1193 1194 get_rq: 1195 /* 1196 * This sync check and mask will be re-done in init_request_from_bio(), 1197 * but we need to set it earlier to expose the sync flag to the 1198 * rq allocator and io schedulers. 1199 */ 1200 rw_flags = bio_data_dir(bio); 1201 if (sync) 1202 rw_flags |= REQ_RW_SYNC; 1203 1204 /* 1205 * Grab a free request. This is might sleep but can not fail. 1206 * Returns with the queue unlocked. 1207 */ 1208 req = get_request_wait(q, rw_flags, bio); 1209 1210 /* 1211 * After dropping the lock and possibly sleeping here, our request 1212 * may now be mergeable after it had proven unmergeable (above). 1213 * We don't worry about that case for efficiency. It won't happen 1214 * often, and the elevators are able to handle it. 1215 */ 1216 init_request_from_bio(req, bio); 1217 1218 spin_lock_irq(q->queue_lock); 1219 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1220 bio_flagged(bio, BIO_CPU_AFFINE)) 1221 req->cpu = blk_cpu_to_group(smp_processor_id()); 1222 if (elv_queue_empty(q)) 1223 blk_plug_device(q); 1224 add_request(q, req); 1225 out: 1226 if (sync) 1227 __generic_unplug_device(q); 1228 spin_unlock_irq(q->queue_lock); 1229 return 0; 1230 1231 end_io: 1232 bio_endio(bio, err); 1233 return 0; 1234 } 1235 1236 /* 1237 * If bio->bi_dev is a partition, remap the location 1238 */ 1239 static inline void blk_partition_remap(struct bio *bio) 1240 { 1241 struct block_device *bdev = bio->bi_bdev; 1242 1243 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1244 struct hd_struct *p = bdev->bd_part; 1245 1246 bio->bi_sector += p->start_sect; 1247 bio->bi_bdev = bdev->bd_contains; 1248 1249 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1250 bdev->bd_dev, bio->bi_sector, 1251 bio->bi_sector - p->start_sect); 1252 } 1253 } 1254 1255 static void handle_bad_sector(struct bio *bio) 1256 { 1257 char b[BDEVNAME_SIZE]; 1258 1259 printk(KERN_INFO "attempt to access beyond end of device\n"); 1260 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1261 bdevname(bio->bi_bdev, b), 1262 bio->bi_rw, 1263 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1264 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1265 1266 set_bit(BIO_EOF, &bio->bi_flags); 1267 } 1268 1269 #ifdef CONFIG_FAIL_MAKE_REQUEST 1270 1271 static DECLARE_FAULT_ATTR(fail_make_request); 1272 1273 static int __init setup_fail_make_request(char *str) 1274 { 1275 return setup_fault_attr(&fail_make_request, str); 1276 } 1277 __setup("fail_make_request=", setup_fail_make_request); 1278 1279 static int should_fail_request(struct bio *bio) 1280 { 1281 struct hd_struct *part = bio->bi_bdev->bd_part; 1282 1283 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1284 return should_fail(&fail_make_request, bio->bi_size); 1285 1286 return 0; 1287 } 1288 1289 static int __init fail_make_request_debugfs(void) 1290 { 1291 return init_fault_attr_dentries(&fail_make_request, 1292 "fail_make_request"); 1293 } 1294 1295 late_initcall(fail_make_request_debugfs); 1296 1297 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1298 1299 static inline int should_fail_request(struct bio *bio) 1300 { 1301 return 0; 1302 } 1303 1304 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1305 1306 /* 1307 * Check whether this bio extends beyond the end of the device. 1308 */ 1309 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1310 { 1311 sector_t maxsector; 1312 1313 if (!nr_sectors) 1314 return 0; 1315 1316 /* Test device or partition size, when known. */ 1317 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1318 if (maxsector) { 1319 sector_t sector = bio->bi_sector; 1320 1321 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1322 /* 1323 * This may well happen - the kernel calls bread() 1324 * without checking the size of the device, e.g., when 1325 * mounting a device. 1326 */ 1327 handle_bad_sector(bio); 1328 return 1; 1329 } 1330 } 1331 1332 return 0; 1333 } 1334 1335 /** 1336 * generic_make_request - hand a buffer to its device driver for I/O 1337 * @bio: The bio describing the location in memory and on the device. 1338 * 1339 * generic_make_request() is used to make I/O requests of block 1340 * devices. It is passed a &struct bio, which describes the I/O that needs 1341 * to be done. 1342 * 1343 * generic_make_request() does not return any status. The 1344 * success/failure status of the request, along with notification of 1345 * completion, is delivered asynchronously through the bio->bi_end_io 1346 * function described (one day) else where. 1347 * 1348 * The caller of generic_make_request must make sure that bi_io_vec 1349 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1350 * set to describe the device address, and the 1351 * bi_end_io and optionally bi_private are set to describe how 1352 * completion notification should be signaled. 1353 * 1354 * generic_make_request and the drivers it calls may use bi_next if this 1355 * bio happens to be merged with someone else, and may change bi_dev and 1356 * bi_sector for remaps as it sees fit. So the values of these fields 1357 * should NOT be depended on after the call to generic_make_request. 1358 */ 1359 static inline void __generic_make_request(struct bio *bio) 1360 { 1361 struct request_queue *q; 1362 sector_t old_sector; 1363 int ret, nr_sectors = bio_sectors(bio); 1364 dev_t old_dev; 1365 int err = -EIO; 1366 1367 might_sleep(); 1368 1369 if (bio_check_eod(bio, nr_sectors)) 1370 goto end_io; 1371 1372 /* 1373 * Resolve the mapping until finished. (drivers are 1374 * still free to implement/resolve their own stacking 1375 * by explicitly returning 0) 1376 * 1377 * NOTE: we don't repeat the blk_size check for each new device. 1378 * Stacking drivers are expected to know what they are doing. 1379 */ 1380 old_sector = -1; 1381 old_dev = 0; 1382 do { 1383 char b[BDEVNAME_SIZE]; 1384 1385 q = bdev_get_queue(bio->bi_bdev); 1386 if (!q) { 1387 printk(KERN_ERR 1388 "generic_make_request: Trying to access " 1389 "nonexistent block-device %s (%Lu)\n", 1390 bdevname(bio->bi_bdev, b), 1391 (long long) bio->bi_sector); 1392 end_io: 1393 bio_endio(bio, err); 1394 break; 1395 } 1396 1397 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1398 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1399 bdevname(bio->bi_bdev, b), 1400 bio_sectors(bio), 1401 q->max_hw_sectors); 1402 goto end_io; 1403 } 1404 1405 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1406 goto end_io; 1407 1408 if (should_fail_request(bio)) 1409 goto end_io; 1410 1411 /* 1412 * If this device has partitions, remap block n 1413 * of partition p to block n+start(p) of the disk. 1414 */ 1415 blk_partition_remap(bio); 1416 1417 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1418 goto end_io; 1419 1420 if (old_sector != -1) 1421 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1422 old_sector); 1423 1424 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1425 1426 old_sector = bio->bi_sector; 1427 old_dev = bio->bi_bdev->bd_dev; 1428 1429 if (bio_check_eod(bio, nr_sectors)) 1430 goto end_io; 1431 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) || 1432 (bio_discard(bio) && !q->prepare_discard_fn)) { 1433 err = -EOPNOTSUPP; 1434 goto end_io; 1435 } 1436 1437 ret = q->make_request_fn(q, bio); 1438 } while (ret); 1439 } 1440 1441 /* 1442 * We only want one ->make_request_fn to be active at a time, 1443 * else stack usage with stacked devices could be a problem. 1444 * So use current->bio_{list,tail} to keep a list of requests 1445 * submited by a make_request_fn function. 1446 * current->bio_tail is also used as a flag to say if 1447 * generic_make_request is currently active in this task or not. 1448 * If it is NULL, then no make_request is active. If it is non-NULL, 1449 * then a make_request is active, and new requests should be added 1450 * at the tail 1451 */ 1452 void generic_make_request(struct bio *bio) 1453 { 1454 if (current->bio_tail) { 1455 /* make_request is active */ 1456 *(current->bio_tail) = bio; 1457 bio->bi_next = NULL; 1458 current->bio_tail = &bio->bi_next; 1459 return; 1460 } 1461 /* following loop may be a bit non-obvious, and so deserves some 1462 * explanation. 1463 * Before entering the loop, bio->bi_next is NULL (as all callers 1464 * ensure that) so we have a list with a single bio. 1465 * We pretend that we have just taken it off a longer list, so 1466 * we assign bio_list to the next (which is NULL) and bio_tail 1467 * to &bio_list, thus initialising the bio_list of new bios to be 1468 * added. __generic_make_request may indeed add some more bios 1469 * through a recursive call to generic_make_request. If it 1470 * did, we find a non-NULL value in bio_list and re-enter the loop 1471 * from the top. In this case we really did just take the bio 1472 * of the top of the list (no pretending) and so fixup bio_list and 1473 * bio_tail or bi_next, and call into __generic_make_request again. 1474 * 1475 * The loop was structured like this to make only one call to 1476 * __generic_make_request (which is important as it is large and 1477 * inlined) and to keep the structure simple. 1478 */ 1479 BUG_ON(bio->bi_next); 1480 do { 1481 current->bio_list = bio->bi_next; 1482 if (bio->bi_next == NULL) 1483 current->bio_tail = ¤t->bio_list; 1484 else 1485 bio->bi_next = NULL; 1486 __generic_make_request(bio); 1487 bio = current->bio_list; 1488 } while (bio); 1489 current->bio_tail = NULL; /* deactivate */ 1490 } 1491 EXPORT_SYMBOL(generic_make_request); 1492 1493 /** 1494 * submit_bio - submit a bio to the block device layer for I/O 1495 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1496 * @bio: The &struct bio which describes the I/O 1497 * 1498 * submit_bio() is very similar in purpose to generic_make_request(), and 1499 * uses that function to do most of the work. Both are fairly rough 1500 * interfaces; @bio must be presetup and ready for I/O. 1501 * 1502 */ 1503 void submit_bio(int rw, struct bio *bio) 1504 { 1505 int count = bio_sectors(bio); 1506 1507 bio->bi_rw |= rw; 1508 1509 /* 1510 * If it's a regular read/write or a barrier with data attached, 1511 * go through the normal accounting stuff before submission. 1512 */ 1513 if (bio_has_data(bio)) { 1514 if (rw & WRITE) { 1515 count_vm_events(PGPGOUT, count); 1516 } else { 1517 task_io_account_read(bio->bi_size); 1518 count_vm_events(PGPGIN, count); 1519 } 1520 1521 if (unlikely(block_dump)) { 1522 char b[BDEVNAME_SIZE]; 1523 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1524 current->comm, task_pid_nr(current), 1525 (rw & WRITE) ? "WRITE" : "READ", 1526 (unsigned long long)bio->bi_sector, 1527 bdevname(bio->bi_bdev, b)); 1528 } 1529 } 1530 1531 generic_make_request(bio); 1532 } 1533 EXPORT_SYMBOL(submit_bio); 1534 1535 /** 1536 * blk_rq_check_limits - Helper function to check a request for the queue limit 1537 * @q: the queue 1538 * @rq: the request being checked 1539 * 1540 * Description: 1541 * @rq may have been made based on weaker limitations of upper-level queues 1542 * in request stacking drivers, and it may violate the limitation of @q. 1543 * Since the block layer and the underlying device driver trust @rq 1544 * after it is inserted to @q, it should be checked against @q before 1545 * the insertion using this generic function. 1546 * 1547 * This function should also be useful for request stacking drivers 1548 * in some cases below, so export this fuction. 1549 * Request stacking drivers like request-based dm may change the queue 1550 * limits while requests are in the queue (e.g. dm's table swapping). 1551 * Such request stacking drivers should check those requests agaist 1552 * the new queue limits again when they dispatch those requests, 1553 * although such checkings are also done against the old queue limits 1554 * when submitting requests. 1555 */ 1556 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1557 { 1558 if (rq->nr_sectors > q->max_sectors || 1559 rq->data_len > q->max_hw_sectors << 9) { 1560 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1561 return -EIO; 1562 } 1563 1564 /* 1565 * queue's settings related to segment counting like q->bounce_pfn 1566 * may differ from that of other stacking queues. 1567 * Recalculate it to check the request correctly on this queue's 1568 * limitation. 1569 */ 1570 blk_recalc_rq_segments(rq); 1571 if (rq->nr_phys_segments > q->max_phys_segments || 1572 rq->nr_phys_segments > q->max_hw_segments) { 1573 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1574 return -EIO; 1575 } 1576 1577 return 0; 1578 } 1579 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1580 1581 /** 1582 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1583 * @q: the queue to submit the request 1584 * @rq: the request being queued 1585 */ 1586 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1587 { 1588 unsigned long flags; 1589 1590 if (blk_rq_check_limits(q, rq)) 1591 return -EIO; 1592 1593 #ifdef CONFIG_FAIL_MAKE_REQUEST 1594 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1595 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1596 return -EIO; 1597 #endif 1598 1599 spin_lock_irqsave(q->queue_lock, flags); 1600 1601 /* 1602 * Submitting request must be dequeued before calling this function 1603 * because it will be linked to another request_queue 1604 */ 1605 BUG_ON(blk_queued_rq(rq)); 1606 1607 drive_stat_acct(rq, 1); 1608 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1609 1610 spin_unlock_irqrestore(q->queue_lock, flags); 1611 1612 return 0; 1613 } 1614 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1615 1616 /** 1617 * __end_that_request_first - end I/O on a request 1618 * @req: the request being processed 1619 * @error: %0 for success, < %0 for error 1620 * @nr_bytes: number of bytes to complete 1621 * 1622 * Description: 1623 * Ends I/O on a number of bytes attached to @req, and sets it up 1624 * for the next range of segments (if any) in the cluster. 1625 * 1626 * Return: 1627 * %0 - we are done with this request, call end_that_request_last() 1628 * %1 - still buffers pending for this request 1629 **/ 1630 static int __end_that_request_first(struct request *req, int error, 1631 int nr_bytes) 1632 { 1633 int total_bytes, bio_nbytes, next_idx = 0; 1634 struct bio *bio; 1635 1636 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1637 1638 /* 1639 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual 1640 * sense key with us all the way through 1641 */ 1642 if (!blk_pc_request(req)) 1643 req->errors = 0; 1644 1645 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1646 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1647 req->rq_disk ? req->rq_disk->disk_name : "?", 1648 (unsigned long long)req->sector); 1649 } 1650 1651 if (blk_fs_request(req) && req->rq_disk) { 1652 const int rw = rq_data_dir(req); 1653 struct hd_struct *part; 1654 int cpu; 1655 1656 cpu = part_stat_lock(); 1657 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1658 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9); 1659 part_stat_unlock(); 1660 } 1661 1662 total_bytes = bio_nbytes = 0; 1663 while ((bio = req->bio) != NULL) { 1664 int nbytes; 1665 1666 /* 1667 * For an empty barrier request, the low level driver must 1668 * store a potential error location in ->sector. We pass 1669 * that back up in ->bi_sector. 1670 */ 1671 if (blk_empty_barrier(req)) 1672 bio->bi_sector = req->sector; 1673 1674 if (nr_bytes >= bio->bi_size) { 1675 req->bio = bio->bi_next; 1676 nbytes = bio->bi_size; 1677 req_bio_endio(req, bio, nbytes, error); 1678 next_idx = 0; 1679 bio_nbytes = 0; 1680 } else { 1681 int idx = bio->bi_idx + next_idx; 1682 1683 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1684 blk_dump_rq_flags(req, "__end_that"); 1685 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1686 __func__, bio->bi_idx, bio->bi_vcnt); 1687 break; 1688 } 1689 1690 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1691 BIO_BUG_ON(nbytes > bio->bi_size); 1692 1693 /* 1694 * not a complete bvec done 1695 */ 1696 if (unlikely(nbytes > nr_bytes)) { 1697 bio_nbytes += nr_bytes; 1698 total_bytes += nr_bytes; 1699 break; 1700 } 1701 1702 /* 1703 * advance to the next vector 1704 */ 1705 next_idx++; 1706 bio_nbytes += nbytes; 1707 } 1708 1709 total_bytes += nbytes; 1710 nr_bytes -= nbytes; 1711 1712 bio = req->bio; 1713 if (bio) { 1714 /* 1715 * end more in this run, or just return 'not-done' 1716 */ 1717 if (unlikely(nr_bytes <= 0)) 1718 break; 1719 } 1720 } 1721 1722 /* 1723 * completely done 1724 */ 1725 if (!req->bio) 1726 return 0; 1727 1728 /* 1729 * if the request wasn't completed, update state 1730 */ 1731 if (bio_nbytes) { 1732 req_bio_endio(req, bio, bio_nbytes, error); 1733 bio->bi_idx += next_idx; 1734 bio_iovec(bio)->bv_offset += nr_bytes; 1735 bio_iovec(bio)->bv_len -= nr_bytes; 1736 } 1737 1738 blk_recalc_rq_sectors(req, total_bytes >> 9); 1739 blk_recalc_rq_segments(req); 1740 return 1; 1741 } 1742 1743 /* 1744 * queue lock must be held 1745 */ 1746 static void end_that_request_last(struct request *req, int error) 1747 { 1748 struct gendisk *disk = req->rq_disk; 1749 1750 blk_delete_timer(req); 1751 1752 if (blk_rq_tagged(req)) 1753 blk_queue_end_tag(req->q, req); 1754 1755 if (blk_queued_rq(req)) 1756 blkdev_dequeue_request(req); 1757 1758 if (unlikely(laptop_mode) && blk_fs_request(req)) 1759 laptop_io_completion(); 1760 1761 /* 1762 * Account IO completion. bar_rq isn't accounted as a normal 1763 * IO on queueing nor completion. Accounting the containing 1764 * request is enough. 1765 */ 1766 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1767 unsigned long duration = jiffies - req->start_time; 1768 const int rw = rq_data_dir(req); 1769 struct hd_struct *part; 1770 int cpu; 1771 1772 cpu = part_stat_lock(); 1773 part = disk_map_sector_rcu(disk, req->sector); 1774 1775 part_stat_inc(cpu, part, ios[rw]); 1776 part_stat_add(cpu, part, ticks[rw], duration); 1777 part_round_stats(cpu, part); 1778 part_dec_in_flight(part); 1779 1780 part_stat_unlock(); 1781 } 1782 1783 if (req->end_io) 1784 req->end_io(req, error); 1785 else { 1786 if (blk_bidi_rq(req)) 1787 __blk_put_request(req->next_rq->q, req->next_rq); 1788 1789 __blk_put_request(req->q, req); 1790 } 1791 } 1792 1793 /** 1794 * blk_rq_bytes - Returns bytes left to complete in the entire request 1795 * @rq: the request being processed 1796 **/ 1797 unsigned int blk_rq_bytes(struct request *rq) 1798 { 1799 if (blk_fs_request(rq)) 1800 return rq->hard_nr_sectors << 9; 1801 1802 return rq->data_len; 1803 } 1804 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1805 1806 /** 1807 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1808 * @rq: the request being processed 1809 **/ 1810 unsigned int blk_rq_cur_bytes(struct request *rq) 1811 { 1812 if (blk_fs_request(rq)) 1813 return rq->current_nr_sectors << 9; 1814 1815 if (rq->bio) 1816 return rq->bio->bi_size; 1817 1818 return rq->data_len; 1819 } 1820 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1821 1822 /** 1823 * end_request - end I/O on the current segment of the request 1824 * @req: the request being processed 1825 * @uptodate: error value or %0/%1 uptodate flag 1826 * 1827 * Description: 1828 * Ends I/O on the current segment of a request. If that is the only 1829 * remaining segment, the request is also completed and freed. 1830 * 1831 * This is a remnant of how older block drivers handled I/O completions. 1832 * Modern drivers typically end I/O on the full request in one go, unless 1833 * they have a residual value to account for. For that case this function 1834 * isn't really useful, unless the residual just happens to be the 1835 * full current segment. In other words, don't use this function in new 1836 * code. Use blk_end_request() or __blk_end_request() to end a request. 1837 **/ 1838 void end_request(struct request *req, int uptodate) 1839 { 1840 int error = 0; 1841 1842 if (uptodate <= 0) 1843 error = uptodate ? uptodate : -EIO; 1844 1845 __blk_end_request(req, error, req->hard_cur_sectors << 9); 1846 } 1847 EXPORT_SYMBOL(end_request); 1848 1849 static int end_that_request_data(struct request *rq, int error, 1850 unsigned int nr_bytes, unsigned int bidi_bytes) 1851 { 1852 if (rq->bio) { 1853 if (__end_that_request_first(rq, error, nr_bytes)) 1854 return 1; 1855 1856 /* Bidi request must be completed as a whole */ 1857 if (blk_bidi_rq(rq) && 1858 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1859 return 1; 1860 } 1861 1862 return 0; 1863 } 1864 1865 /** 1866 * blk_end_io - Generic end_io function to complete a request. 1867 * @rq: the request being processed 1868 * @error: %0 for success, < %0 for error 1869 * @nr_bytes: number of bytes to complete @rq 1870 * @bidi_bytes: number of bytes to complete @rq->next_rq 1871 * @drv_callback: function called between completion of bios in the request 1872 * and completion of the request. 1873 * If the callback returns non %0, this helper returns without 1874 * completion of the request. 1875 * 1876 * Description: 1877 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1878 * If @rq has leftover, sets it up for the next range of segments. 1879 * 1880 * Return: 1881 * %0 - we are done with this request 1882 * %1 - this request is not freed yet, it still has pending buffers. 1883 **/ 1884 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1885 unsigned int bidi_bytes, 1886 int (drv_callback)(struct request *)) 1887 { 1888 struct request_queue *q = rq->q; 1889 unsigned long flags = 0UL; 1890 1891 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes)) 1892 return 1; 1893 1894 /* Special feature for tricky drivers */ 1895 if (drv_callback && drv_callback(rq)) 1896 return 1; 1897 1898 add_disk_randomness(rq->rq_disk); 1899 1900 spin_lock_irqsave(q->queue_lock, flags); 1901 end_that_request_last(rq, error); 1902 spin_unlock_irqrestore(q->queue_lock, flags); 1903 1904 return 0; 1905 } 1906 1907 /** 1908 * blk_end_request - Helper function for drivers to complete the request. 1909 * @rq: the request being processed 1910 * @error: %0 for success, < %0 for error 1911 * @nr_bytes: number of bytes to complete 1912 * 1913 * Description: 1914 * Ends I/O on a number of bytes attached to @rq. 1915 * If @rq has leftover, sets it up for the next range of segments. 1916 * 1917 * Return: 1918 * %0 - we are done with this request 1919 * %1 - still buffers pending for this request 1920 **/ 1921 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1922 { 1923 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1924 } 1925 EXPORT_SYMBOL_GPL(blk_end_request); 1926 1927 /** 1928 * __blk_end_request - Helper function for drivers to complete the request. 1929 * @rq: the request being processed 1930 * @error: %0 for success, < %0 for error 1931 * @nr_bytes: number of bytes to complete 1932 * 1933 * Description: 1934 * Must be called with queue lock held unlike blk_end_request(). 1935 * 1936 * Return: 1937 * %0 - we are done with this request 1938 * %1 - still buffers pending for this request 1939 **/ 1940 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1941 { 1942 if (rq->bio && __end_that_request_first(rq, error, nr_bytes)) 1943 return 1; 1944 1945 add_disk_randomness(rq->rq_disk); 1946 1947 end_that_request_last(rq, error); 1948 1949 return 0; 1950 } 1951 EXPORT_SYMBOL_GPL(__blk_end_request); 1952 1953 /** 1954 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1955 * @rq: the bidi request being processed 1956 * @error: %0 for success, < %0 for error 1957 * @nr_bytes: number of bytes to complete @rq 1958 * @bidi_bytes: number of bytes to complete @rq->next_rq 1959 * 1960 * Description: 1961 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1962 * 1963 * Return: 1964 * %0 - we are done with this request 1965 * %1 - still buffers pending for this request 1966 **/ 1967 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1968 unsigned int bidi_bytes) 1969 { 1970 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1971 } 1972 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1973 1974 /** 1975 * blk_update_request - Special helper function for request stacking drivers 1976 * @rq: the request being processed 1977 * @error: %0 for success, < %0 for error 1978 * @nr_bytes: number of bytes to complete @rq 1979 * 1980 * Description: 1981 * Ends I/O on a number of bytes attached to @rq, but doesn't complete 1982 * the request structure even if @rq doesn't have leftover. 1983 * If @rq has leftover, sets it up for the next range of segments. 1984 * 1985 * This special helper function is only for request stacking drivers 1986 * (e.g. request-based dm) so that they can handle partial completion. 1987 * Actual device drivers should use blk_end_request instead. 1988 */ 1989 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes) 1990 { 1991 if (!end_that_request_data(rq, error, nr_bytes, 0)) { 1992 /* 1993 * These members are not updated in end_that_request_data() 1994 * when all bios are completed. 1995 * Update them so that the request stacking driver can find 1996 * how many bytes remain in the request later. 1997 */ 1998 rq->nr_sectors = rq->hard_nr_sectors = 0; 1999 rq->current_nr_sectors = rq->hard_cur_sectors = 0; 2000 } 2001 } 2002 EXPORT_SYMBOL_GPL(blk_update_request); 2003 2004 /** 2005 * blk_end_request_callback - Special helper function for tricky drivers 2006 * @rq: the request being processed 2007 * @error: %0 for success, < %0 for error 2008 * @nr_bytes: number of bytes to complete 2009 * @drv_callback: function called between completion of bios in the request 2010 * and completion of the request. 2011 * If the callback returns non %0, this helper returns without 2012 * completion of the request. 2013 * 2014 * Description: 2015 * Ends I/O on a number of bytes attached to @rq. 2016 * If @rq has leftover, sets it up for the next range of segments. 2017 * 2018 * This special helper function is used only for existing tricky drivers. 2019 * (e.g. cdrom_newpc_intr() of ide-cd) 2020 * This interface will be removed when such drivers are rewritten. 2021 * Don't use this interface in other places anymore. 2022 * 2023 * Return: 2024 * %0 - we are done with this request 2025 * %1 - this request is not freed yet. 2026 * this request still has pending buffers or 2027 * the driver doesn't want to finish this request yet. 2028 **/ 2029 int blk_end_request_callback(struct request *rq, int error, 2030 unsigned int nr_bytes, 2031 int (drv_callback)(struct request *)) 2032 { 2033 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2034 } 2035 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2036 2037 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2038 struct bio *bio) 2039 { 2040 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2041 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2042 rq->cmd_flags |= (bio->bi_rw & 3); 2043 2044 if (bio_has_data(bio)) { 2045 rq->nr_phys_segments = bio_phys_segments(q, bio); 2046 rq->buffer = bio_data(bio); 2047 } 2048 rq->current_nr_sectors = bio_cur_sectors(bio); 2049 rq->hard_cur_sectors = rq->current_nr_sectors; 2050 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2051 rq->data_len = bio->bi_size; 2052 2053 rq->bio = rq->biotail = bio; 2054 2055 if (bio->bi_bdev) 2056 rq->rq_disk = bio->bi_bdev->bd_disk; 2057 } 2058 2059 /** 2060 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2061 * @q : the queue of the device being checked 2062 * 2063 * Description: 2064 * Check if underlying low-level drivers of a device are busy. 2065 * If the drivers want to export their busy state, they must set own 2066 * exporting function using blk_queue_lld_busy() first. 2067 * 2068 * Basically, this function is used only by request stacking drivers 2069 * to stop dispatching requests to underlying devices when underlying 2070 * devices are busy. This behavior helps more I/O merging on the queue 2071 * of the request stacking driver and prevents I/O throughput regression 2072 * on burst I/O load. 2073 * 2074 * Return: 2075 * 0 - Not busy (The request stacking driver should dispatch request) 2076 * 1 - Busy (The request stacking driver should stop dispatching request) 2077 */ 2078 int blk_lld_busy(struct request_queue *q) 2079 { 2080 if (q->lld_busy_fn) 2081 return q->lld_busy_fn(q); 2082 2083 return 0; 2084 } 2085 EXPORT_SYMBOL_GPL(blk_lld_busy); 2086 2087 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2088 { 2089 return queue_work(kblockd_workqueue, work); 2090 } 2091 EXPORT_SYMBOL(kblockd_schedule_work); 2092 2093 void kblockd_flush_work(struct work_struct *work) 2094 { 2095 cancel_work_sync(work); 2096 } 2097 EXPORT_SYMBOL(kblockd_flush_work); 2098 2099 int __init blk_dev_init(void) 2100 { 2101 kblockd_workqueue = create_workqueue("kblockd"); 2102 if (!kblockd_workqueue) 2103 panic("Failed to create kblockd\n"); 2104 2105 request_cachep = kmem_cache_create("blkdev_requests", 2106 sizeof(struct request), 0, SLAB_PANIC, NULL); 2107 2108 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2109 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2110 2111 return 0; 2112 } 2113 2114