xref: /openbmc/linux/block/blk-core.c (revision 36bccb11)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
47 
48 DEFINE_IDA(blk_queue_ida);
49 
50 /*
51  * For the allocated request tables
52  */
53 struct kmem_cache *request_cachep = NULL;
54 
55 /*
56  * For queue allocation
57  */
58 struct kmem_cache *blk_requestq_cachep;
59 
60 /*
61  * Controlling structure to kblockd
62  */
63 static struct workqueue_struct *kblockd_workqueue;
64 
65 void blk_queue_congestion_threshold(struct request_queue *q)
66 {
67 	int nr;
68 
69 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
70 	if (nr > q->nr_requests)
71 		nr = q->nr_requests;
72 	q->nr_congestion_on = nr;
73 
74 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
75 	if (nr < 1)
76 		nr = 1;
77 	q->nr_congestion_off = nr;
78 }
79 
80 /**
81  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
82  * @bdev:	device
83  *
84  * Locates the passed device's request queue and returns the address of its
85  * backing_dev_info
86  *
87  * Will return NULL if the request queue cannot be located.
88  */
89 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
90 {
91 	struct backing_dev_info *ret = NULL;
92 	struct request_queue *q = bdev_get_queue(bdev);
93 
94 	if (q)
95 		ret = &q->backing_dev_info;
96 	return ret;
97 }
98 EXPORT_SYMBOL(blk_get_backing_dev_info);
99 
100 void blk_rq_init(struct request_queue *q, struct request *rq)
101 {
102 	memset(rq, 0, sizeof(*rq));
103 
104 	INIT_LIST_HEAD(&rq->queuelist);
105 	INIT_LIST_HEAD(&rq->timeout_list);
106 	rq->cpu = -1;
107 	rq->q = q;
108 	rq->__sector = (sector_t) -1;
109 	INIT_HLIST_NODE(&rq->hash);
110 	RB_CLEAR_NODE(&rq->rb_node);
111 	rq->cmd = rq->__cmd;
112 	rq->cmd_len = BLK_MAX_CDB;
113 	rq->tag = -1;
114 	rq->start_time = jiffies;
115 	set_start_time_ns(rq);
116 	rq->part = NULL;
117 }
118 EXPORT_SYMBOL(blk_rq_init);
119 
120 static void req_bio_endio(struct request *rq, struct bio *bio,
121 			  unsigned int nbytes, int error)
122 {
123 	if (error)
124 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
125 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
126 		error = -EIO;
127 
128 	if (unlikely(rq->cmd_flags & REQ_QUIET))
129 		set_bit(BIO_QUIET, &bio->bi_flags);
130 
131 	bio_advance(bio, nbytes);
132 
133 	/* don't actually finish bio if it's part of flush sequence */
134 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
135 		bio_endio(bio, error);
136 }
137 
138 void blk_dump_rq_flags(struct request *rq, char *msg)
139 {
140 	int bit;
141 
142 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
143 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
144 		(unsigned long long) rq->cmd_flags);
145 
146 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
147 	       (unsigned long long)blk_rq_pos(rq),
148 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
149 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
150 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
151 
152 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
153 		printk(KERN_INFO "  cdb: ");
154 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
155 			printk("%02x ", rq->cmd[bit]);
156 		printk("\n");
157 	}
158 }
159 EXPORT_SYMBOL(blk_dump_rq_flags);
160 
161 static void blk_delay_work(struct work_struct *work)
162 {
163 	struct request_queue *q;
164 
165 	q = container_of(work, struct request_queue, delay_work.work);
166 	spin_lock_irq(q->queue_lock);
167 	__blk_run_queue(q);
168 	spin_unlock_irq(q->queue_lock);
169 }
170 
171 /**
172  * blk_delay_queue - restart queueing after defined interval
173  * @q:		The &struct request_queue in question
174  * @msecs:	Delay in msecs
175  *
176  * Description:
177  *   Sometimes queueing needs to be postponed for a little while, to allow
178  *   resources to come back. This function will make sure that queueing is
179  *   restarted around the specified time. Queue lock must be held.
180  */
181 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
182 {
183 	if (likely(!blk_queue_dead(q)))
184 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
185 				   msecs_to_jiffies(msecs));
186 }
187 EXPORT_SYMBOL(blk_delay_queue);
188 
189 /**
190  * blk_start_queue - restart a previously stopped queue
191  * @q:    The &struct request_queue in question
192  *
193  * Description:
194  *   blk_start_queue() will clear the stop flag on the queue, and call
195  *   the request_fn for the queue if it was in a stopped state when
196  *   entered. Also see blk_stop_queue(). Queue lock must be held.
197  **/
198 void blk_start_queue(struct request_queue *q)
199 {
200 	WARN_ON(!irqs_disabled());
201 
202 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
203 	__blk_run_queue(q);
204 }
205 EXPORT_SYMBOL(blk_start_queue);
206 
207 /**
208  * blk_stop_queue - stop a queue
209  * @q:    The &struct request_queue in question
210  *
211  * Description:
212  *   The Linux block layer assumes that a block driver will consume all
213  *   entries on the request queue when the request_fn strategy is called.
214  *   Often this will not happen, because of hardware limitations (queue
215  *   depth settings). If a device driver gets a 'queue full' response,
216  *   or if it simply chooses not to queue more I/O at one point, it can
217  *   call this function to prevent the request_fn from being called until
218  *   the driver has signalled it's ready to go again. This happens by calling
219  *   blk_start_queue() to restart queue operations. Queue lock must be held.
220  **/
221 void blk_stop_queue(struct request_queue *q)
222 {
223 	cancel_delayed_work(&q->delay_work);
224 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
225 }
226 EXPORT_SYMBOL(blk_stop_queue);
227 
228 /**
229  * blk_sync_queue - cancel any pending callbacks on a queue
230  * @q: the queue
231  *
232  * Description:
233  *     The block layer may perform asynchronous callback activity
234  *     on a queue, such as calling the unplug function after a timeout.
235  *     A block device may call blk_sync_queue to ensure that any
236  *     such activity is cancelled, thus allowing it to release resources
237  *     that the callbacks might use. The caller must already have made sure
238  *     that its ->make_request_fn will not re-add plugging prior to calling
239  *     this function.
240  *
241  *     This function does not cancel any asynchronous activity arising
242  *     out of elevator or throttling code. That would require elevaotor_exit()
243  *     and blkcg_exit_queue() to be called with queue lock initialized.
244  *
245  */
246 void blk_sync_queue(struct request_queue *q)
247 {
248 	del_timer_sync(&q->timeout);
249 
250 	if (q->mq_ops) {
251 		struct blk_mq_hw_ctx *hctx;
252 		int i;
253 
254 		queue_for_each_hw_ctx(q, hctx, i)
255 			cancel_delayed_work_sync(&hctx->delayed_work);
256 	} else {
257 		cancel_delayed_work_sync(&q->delay_work);
258 	}
259 }
260 EXPORT_SYMBOL(blk_sync_queue);
261 
262 /**
263  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
264  * @q:	The queue to run
265  *
266  * Description:
267  *    Invoke request handling on a queue if there are any pending requests.
268  *    May be used to restart request handling after a request has completed.
269  *    This variant runs the queue whether or not the queue has been
270  *    stopped. Must be called with the queue lock held and interrupts
271  *    disabled. See also @blk_run_queue.
272  */
273 inline void __blk_run_queue_uncond(struct request_queue *q)
274 {
275 	if (unlikely(blk_queue_dead(q)))
276 		return;
277 
278 	/*
279 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
280 	 * the queue lock internally. As a result multiple threads may be
281 	 * running such a request function concurrently. Keep track of the
282 	 * number of active request_fn invocations such that blk_drain_queue()
283 	 * can wait until all these request_fn calls have finished.
284 	 */
285 	q->request_fn_active++;
286 	q->request_fn(q);
287 	q->request_fn_active--;
288 }
289 
290 /**
291  * __blk_run_queue - run a single device queue
292  * @q:	The queue to run
293  *
294  * Description:
295  *    See @blk_run_queue. This variant must be called with the queue lock
296  *    held and interrupts disabled.
297  */
298 void __blk_run_queue(struct request_queue *q)
299 {
300 	if (unlikely(blk_queue_stopped(q)))
301 		return;
302 
303 	__blk_run_queue_uncond(q);
304 }
305 EXPORT_SYMBOL(__blk_run_queue);
306 
307 /**
308  * blk_run_queue_async - run a single device queue in workqueue context
309  * @q:	The queue to run
310  *
311  * Description:
312  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
313  *    of us. The caller must hold the queue lock.
314  */
315 void blk_run_queue_async(struct request_queue *q)
316 {
317 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
318 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
319 }
320 EXPORT_SYMBOL(blk_run_queue_async);
321 
322 /**
323  * blk_run_queue - run a single device queue
324  * @q: The queue to run
325  *
326  * Description:
327  *    Invoke request handling on this queue, if it has pending work to do.
328  *    May be used to restart queueing when a request has completed.
329  */
330 void blk_run_queue(struct request_queue *q)
331 {
332 	unsigned long flags;
333 
334 	spin_lock_irqsave(q->queue_lock, flags);
335 	__blk_run_queue(q);
336 	spin_unlock_irqrestore(q->queue_lock, flags);
337 }
338 EXPORT_SYMBOL(blk_run_queue);
339 
340 void blk_put_queue(struct request_queue *q)
341 {
342 	kobject_put(&q->kobj);
343 }
344 EXPORT_SYMBOL(blk_put_queue);
345 
346 /**
347  * __blk_drain_queue - drain requests from request_queue
348  * @q: queue to drain
349  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
350  *
351  * Drain requests from @q.  If @drain_all is set, all requests are drained.
352  * If not, only ELVPRIV requests are drained.  The caller is responsible
353  * for ensuring that no new requests which need to be drained are queued.
354  */
355 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
356 	__releases(q->queue_lock)
357 	__acquires(q->queue_lock)
358 {
359 	int i;
360 
361 	lockdep_assert_held(q->queue_lock);
362 
363 	while (true) {
364 		bool drain = false;
365 
366 		/*
367 		 * The caller might be trying to drain @q before its
368 		 * elevator is initialized.
369 		 */
370 		if (q->elevator)
371 			elv_drain_elevator(q);
372 
373 		blkcg_drain_queue(q);
374 
375 		/*
376 		 * This function might be called on a queue which failed
377 		 * driver init after queue creation or is not yet fully
378 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
379 		 * in such cases.  Kick queue iff dispatch queue has
380 		 * something on it and @q has request_fn set.
381 		 */
382 		if (!list_empty(&q->queue_head) && q->request_fn)
383 			__blk_run_queue(q);
384 
385 		drain |= q->nr_rqs_elvpriv;
386 		drain |= q->request_fn_active;
387 
388 		/*
389 		 * Unfortunately, requests are queued at and tracked from
390 		 * multiple places and there's no single counter which can
391 		 * be drained.  Check all the queues and counters.
392 		 */
393 		if (drain_all) {
394 			drain |= !list_empty(&q->queue_head);
395 			for (i = 0; i < 2; i++) {
396 				drain |= q->nr_rqs[i];
397 				drain |= q->in_flight[i];
398 				drain |= !list_empty(&q->flush_queue[i]);
399 			}
400 		}
401 
402 		if (!drain)
403 			break;
404 
405 		spin_unlock_irq(q->queue_lock);
406 
407 		msleep(10);
408 
409 		spin_lock_irq(q->queue_lock);
410 	}
411 
412 	/*
413 	 * With queue marked dead, any woken up waiter will fail the
414 	 * allocation path, so the wakeup chaining is lost and we're
415 	 * left with hung waiters. We need to wake up those waiters.
416 	 */
417 	if (q->request_fn) {
418 		struct request_list *rl;
419 
420 		blk_queue_for_each_rl(rl, q)
421 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
422 				wake_up_all(&rl->wait[i]);
423 	}
424 }
425 
426 /**
427  * blk_queue_bypass_start - enter queue bypass mode
428  * @q: queue of interest
429  *
430  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
431  * function makes @q enter bypass mode and drains all requests which were
432  * throttled or issued before.  On return, it's guaranteed that no request
433  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
434  * inside queue or RCU read lock.
435  */
436 void blk_queue_bypass_start(struct request_queue *q)
437 {
438 	bool drain;
439 
440 	spin_lock_irq(q->queue_lock);
441 	drain = !q->bypass_depth++;
442 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
443 	spin_unlock_irq(q->queue_lock);
444 
445 	if (drain) {
446 		spin_lock_irq(q->queue_lock);
447 		__blk_drain_queue(q, false);
448 		spin_unlock_irq(q->queue_lock);
449 
450 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
451 		synchronize_rcu();
452 	}
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455 
456 /**
457  * blk_queue_bypass_end - leave queue bypass mode
458  * @q: queue of interest
459  *
460  * Leave bypass mode and restore the normal queueing behavior.
461  */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 	spin_lock_irq(q->queue_lock);
465 	if (!--q->bypass_depth)
466 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 	WARN_ON_ONCE(q->bypass_depth < 0);
468 	spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471 
472 /**
473  * blk_cleanup_queue - shutdown a request queue
474  * @q: request queue to shutdown
475  *
476  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
477  * put it.  All future requests will be failed immediately with -ENODEV.
478  */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 	spinlock_t *lock = q->queue_lock;
482 
483 	/* mark @q DYING, no new request or merges will be allowed afterwards */
484 	mutex_lock(&q->sysfs_lock);
485 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
486 	spin_lock_irq(lock);
487 
488 	/*
489 	 * A dying queue is permanently in bypass mode till released.  Note
490 	 * that, unlike blk_queue_bypass_start(), we aren't performing
491 	 * synchronize_rcu() after entering bypass mode to avoid the delay
492 	 * as some drivers create and destroy a lot of queues while
493 	 * probing.  This is still safe because blk_release_queue() will be
494 	 * called only after the queue refcnt drops to zero and nothing,
495 	 * RCU or not, would be traversing the queue by then.
496 	 */
497 	q->bypass_depth++;
498 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
499 
500 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 	queue_flag_set(QUEUE_FLAG_DYING, q);
503 	spin_unlock_irq(lock);
504 	mutex_unlock(&q->sysfs_lock);
505 
506 	/*
507 	 * Drain all requests queued before DYING marking. Set DEAD flag to
508 	 * prevent that q->request_fn() gets invoked after draining finished.
509 	 */
510 	if (q->mq_ops) {
511 		blk_mq_drain_queue(q);
512 		spin_lock_irq(lock);
513 	} else {
514 		spin_lock_irq(lock);
515 		__blk_drain_queue(q, true);
516 	}
517 	queue_flag_set(QUEUE_FLAG_DEAD, q);
518 	spin_unlock_irq(lock);
519 
520 	/* @q won't process any more request, flush async actions */
521 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
522 	blk_sync_queue(q);
523 
524 	spin_lock_irq(lock);
525 	if (q->queue_lock != &q->__queue_lock)
526 		q->queue_lock = &q->__queue_lock;
527 	spin_unlock_irq(lock);
528 
529 	/* @q is and will stay empty, shutdown and put */
530 	blk_put_queue(q);
531 }
532 EXPORT_SYMBOL(blk_cleanup_queue);
533 
534 int blk_init_rl(struct request_list *rl, struct request_queue *q,
535 		gfp_t gfp_mask)
536 {
537 	if (unlikely(rl->rq_pool))
538 		return 0;
539 
540 	rl->q = q;
541 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
542 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
543 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
544 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
545 
546 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
547 					  mempool_free_slab, request_cachep,
548 					  gfp_mask, q->node);
549 	if (!rl->rq_pool)
550 		return -ENOMEM;
551 
552 	return 0;
553 }
554 
555 void blk_exit_rl(struct request_list *rl)
556 {
557 	if (rl->rq_pool)
558 		mempool_destroy(rl->rq_pool);
559 }
560 
561 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
562 {
563 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
564 }
565 EXPORT_SYMBOL(blk_alloc_queue);
566 
567 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
568 {
569 	struct request_queue *q;
570 	int err;
571 
572 	q = kmem_cache_alloc_node(blk_requestq_cachep,
573 				gfp_mask | __GFP_ZERO, node_id);
574 	if (!q)
575 		return NULL;
576 
577 	if (percpu_counter_init(&q->mq_usage_counter, 0))
578 		goto fail_q;
579 
580 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
581 	if (q->id < 0)
582 		goto fail_c;
583 
584 	q->backing_dev_info.ra_pages =
585 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
586 	q->backing_dev_info.state = 0;
587 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
588 	q->backing_dev_info.name = "block";
589 	q->node = node_id;
590 
591 	err = bdi_init(&q->backing_dev_info);
592 	if (err)
593 		goto fail_id;
594 
595 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
596 		    laptop_mode_timer_fn, (unsigned long) q);
597 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
598 	INIT_LIST_HEAD(&q->queue_head);
599 	INIT_LIST_HEAD(&q->timeout_list);
600 	INIT_LIST_HEAD(&q->icq_list);
601 #ifdef CONFIG_BLK_CGROUP
602 	INIT_LIST_HEAD(&q->blkg_list);
603 #endif
604 	INIT_LIST_HEAD(&q->flush_queue[0]);
605 	INIT_LIST_HEAD(&q->flush_queue[1]);
606 	INIT_LIST_HEAD(&q->flush_data_in_flight);
607 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
608 
609 	kobject_init(&q->kobj, &blk_queue_ktype);
610 
611 	mutex_init(&q->sysfs_lock);
612 	spin_lock_init(&q->__queue_lock);
613 
614 	/*
615 	 * By default initialize queue_lock to internal lock and driver can
616 	 * override it later if need be.
617 	 */
618 	q->queue_lock = &q->__queue_lock;
619 
620 	/*
621 	 * A queue starts its life with bypass turned on to avoid
622 	 * unnecessary bypass on/off overhead and nasty surprises during
623 	 * init.  The initial bypass will be finished when the queue is
624 	 * registered by blk_register_queue().
625 	 */
626 	q->bypass_depth = 1;
627 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
628 
629 	init_waitqueue_head(&q->mq_freeze_wq);
630 
631 	if (blkcg_init_queue(q))
632 		goto fail_bdi;
633 
634 	return q;
635 
636 fail_bdi:
637 	bdi_destroy(&q->backing_dev_info);
638 fail_id:
639 	ida_simple_remove(&blk_queue_ida, q->id);
640 fail_c:
641 	percpu_counter_destroy(&q->mq_usage_counter);
642 fail_q:
643 	kmem_cache_free(blk_requestq_cachep, q);
644 	return NULL;
645 }
646 EXPORT_SYMBOL(blk_alloc_queue_node);
647 
648 /**
649  * blk_init_queue  - prepare a request queue for use with a block device
650  * @rfn:  The function to be called to process requests that have been
651  *        placed on the queue.
652  * @lock: Request queue spin lock
653  *
654  * Description:
655  *    If a block device wishes to use the standard request handling procedures,
656  *    which sorts requests and coalesces adjacent requests, then it must
657  *    call blk_init_queue().  The function @rfn will be called when there
658  *    are requests on the queue that need to be processed.  If the device
659  *    supports plugging, then @rfn may not be called immediately when requests
660  *    are available on the queue, but may be called at some time later instead.
661  *    Plugged queues are generally unplugged when a buffer belonging to one
662  *    of the requests on the queue is needed, or due to memory pressure.
663  *
664  *    @rfn is not required, or even expected, to remove all requests off the
665  *    queue, but only as many as it can handle at a time.  If it does leave
666  *    requests on the queue, it is responsible for arranging that the requests
667  *    get dealt with eventually.
668  *
669  *    The queue spin lock must be held while manipulating the requests on the
670  *    request queue; this lock will be taken also from interrupt context, so irq
671  *    disabling is needed for it.
672  *
673  *    Function returns a pointer to the initialized request queue, or %NULL if
674  *    it didn't succeed.
675  *
676  * Note:
677  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
678  *    when the block device is deactivated (such as at module unload).
679  **/
680 
681 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
682 {
683 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
684 }
685 EXPORT_SYMBOL(blk_init_queue);
686 
687 struct request_queue *
688 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
689 {
690 	struct request_queue *uninit_q, *q;
691 
692 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
693 	if (!uninit_q)
694 		return NULL;
695 
696 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
697 	if (!q)
698 		blk_cleanup_queue(uninit_q);
699 
700 	return q;
701 }
702 EXPORT_SYMBOL(blk_init_queue_node);
703 
704 struct request_queue *
705 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
706 			 spinlock_t *lock)
707 {
708 	if (!q)
709 		return NULL;
710 
711 	q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
712 	if (!q->flush_rq)
713 		return NULL;
714 
715 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
716 		goto fail;
717 
718 	q->request_fn		= rfn;
719 	q->prep_rq_fn		= NULL;
720 	q->unprep_rq_fn		= NULL;
721 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
722 
723 	/* Override internal queue lock with supplied lock pointer */
724 	if (lock)
725 		q->queue_lock		= lock;
726 
727 	/*
728 	 * This also sets hw/phys segments, boundary and size
729 	 */
730 	blk_queue_make_request(q, blk_queue_bio);
731 
732 	q->sg_reserved_size = INT_MAX;
733 
734 	/* Protect q->elevator from elevator_change */
735 	mutex_lock(&q->sysfs_lock);
736 
737 	/* init elevator */
738 	if (elevator_init(q, NULL)) {
739 		mutex_unlock(&q->sysfs_lock);
740 		goto fail;
741 	}
742 
743 	mutex_unlock(&q->sysfs_lock);
744 
745 	return q;
746 
747 fail:
748 	kfree(q->flush_rq);
749 	return NULL;
750 }
751 EXPORT_SYMBOL(blk_init_allocated_queue);
752 
753 bool blk_get_queue(struct request_queue *q)
754 {
755 	if (likely(!blk_queue_dying(q))) {
756 		__blk_get_queue(q);
757 		return true;
758 	}
759 
760 	return false;
761 }
762 EXPORT_SYMBOL(blk_get_queue);
763 
764 static inline void blk_free_request(struct request_list *rl, struct request *rq)
765 {
766 	if (rq->cmd_flags & REQ_ELVPRIV) {
767 		elv_put_request(rl->q, rq);
768 		if (rq->elv.icq)
769 			put_io_context(rq->elv.icq->ioc);
770 	}
771 
772 	mempool_free(rq, rl->rq_pool);
773 }
774 
775 /*
776  * ioc_batching returns true if the ioc is a valid batching request and
777  * should be given priority access to a request.
778  */
779 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
780 {
781 	if (!ioc)
782 		return 0;
783 
784 	/*
785 	 * Make sure the process is able to allocate at least 1 request
786 	 * even if the batch times out, otherwise we could theoretically
787 	 * lose wakeups.
788 	 */
789 	return ioc->nr_batch_requests == q->nr_batching ||
790 		(ioc->nr_batch_requests > 0
791 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
792 }
793 
794 /*
795  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
796  * will cause the process to be a "batcher" on all queues in the system. This
797  * is the behaviour we want though - once it gets a wakeup it should be given
798  * a nice run.
799  */
800 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
801 {
802 	if (!ioc || ioc_batching(q, ioc))
803 		return;
804 
805 	ioc->nr_batch_requests = q->nr_batching;
806 	ioc->last_waited = jiffies;
807 }
808 
809 static void __freed_request(struct request_list *rl, int sync)
810 {
811 	struct request_queue *q = rl->q;
812 
813 	/*
814 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
815 	 * blkcg anyway, just use root blkcg state.
816 	 */
817 	if (rl == &q->root_rl &&
818 	    rl->count[sync] < queue_congestion_off_threshold(q))
819 		blk_clear_queue_congested(q, sync);
820 
821 	if (rl->count[sync] + 1 <= q->nr_requests) {
822 		if (waitqueue_active(&rl->wait[sync]))
823 			wake_up(&rl->wait[sync]);
824 
825 		blk_clear_rl_full(rl, sync);
826 	}
827 }
828 
829 /*
830  * A request has just been released.  Account for it, update the full and
831  * congestion status, wake up any waiters.   Called under q->queue_lock.
832  */
833 static void freed_request(struct request_list *rl, unsigned int flags)
834 {
835 	struct request_queue *q = rl->q;
836 	int sync = rw_is_sync(flags);
837 
838 	q->nr_rqs[sync]--;
839 	rl->count[sync]--;
840 	if (flags & REQ_ELVPRIV)
841 		q->nr_rqs_elvpriv--;
842 
843 	__freed_request(rl, sync);
844 
845 	if (unlikely(rl->starved[sync ^ 1]))
846 		__freed_request(rl, sync ^ 1);
847 }
848 
849 /*
850  * Determine if elevator data should be initialized when allocating the
851  * request associated with @bio.
852  */
853 static bool blk_rq_should_init_elevator(struct bio *bio)
854 {
855 	if (!bio)
856 		return true;
857 
858 	/*
859 	 * Flush requests do not use the elevator so skip initialization.
860 	 * This allows a request to share the flush and elevator data.
861 	 */
862 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
863 		return false;
864 
865 	return true;
866 }
867 
868 /**
869  * rq_ioc - determine io_context for request allocation
870  * @bio: request being allocated is for this bio (can be %NULL)
871  *
872  * Determine io_context to use for request allocation for @bio.  May return
873  * %NULL if %current->io_context doesn't exist.
874  */
875 static struct io_context *rq_ioc(struct bio *bio)
876 {
877 #ifdef CONFIG_BLK_CGROUP
878 	if (bio && bio->bi_ioc)
879 		return bio->bi_ioc;
880 #endif
881 	return current->io_context;
882 }
883 
884 /**
885  * __get_request - get a free request
886  * @rl: request list to allocate from
887  * @rw_flags: RW and SYNC flags
888  * @bio: bio to allocate request for (can be %NULL)
889  * @gfp_mask: allocation mask
890  *
891  * Get a free request from @q.  This function may fail under memory
892  * pressure or if @q is dead.
893  *
894  * Must be callled with @q->queue_lock held and,
895  * Returns %NULL on failure, with @q->queue_lock held.
896  * Returns !%NULL on success, with @q->queue_lock *not held*.
897  */
898 static struct request *__get_request(struct request_list *rl, int rw_flags,
899 				     struct bio *bio, gfp_t gfp_mask)
900 {
901 	struct request_queue *q = rl->q;
902 	struct request *rq;
903 	struct elevator_type *et = q->elevator->type;
904 	struct io_context *ioc = rq_ioc(bio);
905 	struct io_cq *icq = NULL;
906 	const bool is_sync = rw_is_sync(rw_flags) != 0;
907 	int may_queue;
908 
909 	if (unlikely(blk_queue_dying(q)))
910 		return NULL;
911 
912 	may_queue = elv_may_queue(q, rw_flags);
913 	if (may_queue == ELV_MQUEUE_NO)
914 		goto rq_starved;
915 
916 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
917 		if (rl->count[is_sync]+1 >= q->nr_requests) {
918 			/*
919 			 * The queue will fill after this allocation, so set
920 			 * it as full, and mark this process as "batching".
921 			 * This process will be allowed to complete a batch of
922 			 * requests, others will be blocked.
923 			 */
924 			if (!blk_rl_full(rl, is_sync)) {
925 				ioc_set_batching(q, ioc);
926 				blk_set_rl_full(rl, is_sync);
927 			} else {
928 				if (may_queue != ELV_MQUEUE_MUST
929 						&& !ioc_batching(q, ioc)) {
930 					/*
931 					 * The queue is full and the allocating
932 					 * process is not a "batcher", and not
933 					 * exempted by the IO scheduler
934 					 */
935 					return NULL;
936 				}
937 			}
938 		}
939 		/*
940 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
941 		 * root blkcg anyway, just use root blkcg state.
942 		 */
943 		if (rl == &q->root_rl)
944 			blk_set_queue_congested(q, is_sync);
945 	}
946 
947 	/*
948 	 * Only allow batching queuers to allocate up to 50% over the defined
949 	 * limit of requests, otherwise we could have thousands of requests
950 	 * allocated with any setting of ->nr_requests
951 	 */
952 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
953 		return NULL;
954 
955 	q->nr_rqs[is_sync]++;
956 	rl->count[is_sync]++;
957 	rl->starved[is_sync] = 0;
958 
959 	/*
960 	 * Decide whether the new request will be managed by elevator.  If
961 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
962 	 * prevent the current elevator from being destroyed until the new
963 	 * request is freed.  This guarantees icq's won't be destroyed and
964 	 * makes creating new ones safe.
965 	 *
966 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
967 	 * it will be created after releasing queue_lock.
968 	 */
969 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
970 		rw_flags |= REQ_ELVPRIV;
971 		q->nr_rqs_elvpriv++;
972 		if (et->icq_cache && ioc)
973 			icq = ioc_lookup_icq(ioc, q);
974 	}
975 
976 	if (blk_queue_io_stat(q))
977 		rw_flags |= REQ_IO_STAT;
978 	spin_unlock_irq(q->queue_lock);
979 
980 	/* allocate and init request */
981 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
982 	if (!rq)
983 		goto fail_alloc;
984 
985 	blk_rq_init(q, rq);
986 	blk_rq_set_rl(rq, rl);
987 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
988 
989 	/* init elvpriv */
990 	if (rw_flags & REQ_ELVPRIV) {
991 		if (unlikely(et->icq_cache && !icq)) {
992 			if (ioc)
993 				icq = ioc_create_icq(ioc, q, gfp_mask);
994 			if (!icq)
995 				goto fail_elvpriv;
996 		}
997 
998 		rq->elv.icq = icq;
999 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1000 			goto fail_elvpriv;
1001 
1002 		/* @rq->elv.icq holds io_context until @rq is freed */
1003 		if (icq)
1004 			get_io_context(icq->ioc);
1005 	}
1006 out:
1007 	/*
1008 	 * ioc may be NULL here, and ioc_batching will be false. That's
1009 	 * OK, if the queue is under the request limit then requests need
1010 	 * not count toward the nr_batch_requests limit. There will always
1011 	 * be some limit enforced by BLK_BATCH_TIME.
1012 	 */
1013 	if (ioc_batching(q, ioc))
1014 		ioc->nr_batch_requests--;
1015 
1016 	trace_block_getrq(q, bio, rw_flags & 1);
1017 	return rq;
1018 
1019 fail_elvpriv:
1020 	/*
1021 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1022 	 * and may fail indefinitely under memory pressure and thus
1023 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1024 	 * disturb iosched and blkcg but weird is bettern than dead.
1025 	 */
1026 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1027 			   dev_name(q->backing_dev_info.dev));
1028 
1029 	rq->cmd_flags &= ~REQ_ELVPRIV;
1030 	rq->elv.icq = NULL;
1031 
1032 	spin_lock_irq(q->queue_lock);
1033 	q->nr_rqs_elvpriv--;
1034 	spin_unlock_irq(q->queue_lock);
1035 	goto out;
1036 
1037 fail_alloc:
1038 	/*
1039 	 * Allocation failed presumably due to memory. Undo anything we
1040 	 * might have messed up.
1041 	 *
1042 	 * Allocating task should really be put onto the front of the wait
1043 	 * queue, but this is pretty rare.
1044 	 */
1045 	spin_lock_irq(q->queue_lock);
1046 	freed_request(rl, rw_flags);
1047 
1048 	/*
1049 	 * in the very unlikely event that allocation failed and no
1050 	 * requests for this direction was pending, mark us starved so that
1051 	 * freeing of a request in the other direction will notice
1052 	 * us. another possible fix would be to split the rq mempool into
1053 	 * READ and WRITE
1054 	 */
1055 rq_starved:
1056 	if (unlikely(rl->count[is_sync] == 0))
1057 		rl->starved[is_sync] = 1;
1058 	return NULL;
1059 }
1060 
1061 /**
1062  * get_request - get a free request
1063  * @q: request_queue to allocate request from
1064  * @rw_flags: RW and SYNC flags
1065  * @bio: bio to allocate request for (can be %NULL)
1066  * @gfp_mask: allocation mask
1067  *
1068  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1069  * function keeps retrying under memory pressure and fails iff @q is dead.
1070  *
1071  * Must be callled with @q->queue_lock held and,
1072  * Returns %NULL on failure, with @q->queue_lock held.
1073  * Returns !%NULL on success, with @q->queue_lock *not held*.
1074  */
1075 static struct request *get_request(struct request_queue *q, int rw_flags,
1076 				   struct bio *bio, gfp_t gfp_mask)
1077 {
1078 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1079 	DEFINE_WAIT(wait);
1080 	struct request_list *rl;
1081 	struct request *rq;
1082 
1083 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1084 retry:
1085 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1086 	if (rq)
1087 		return rq;
1088 
1089 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1090 		blk_put_rl(rl);
1091 		return NULL;
1092 	}
1093 
1094 	/* wait on @rl and retry */
1095 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1096 				  TASK_UNINTERRUPTIBLE);
1097 
1098 	trace_block_sleeprq(q, bio, rw_flags & 1);
1099 
1100 	spin_unlock_irq(q->queue_lock);
1101 	io_schedule();
1102 
1103 	/*
1104 	 * After sleeping, we become a "batching" process and will be able
1105 	 * to allocate at least one request, and up to a big batch of them
1106 	 * for a small period time.  See ioc_batching, ioc_set_batching
1107 	 */
1108 	ioc_set_batching(q, current->io_context);
1109 
1110 	spin_lock_irq(q->queue_lock);
1111 	finish_wait(&rl->wait[is_sync], &wait);
1112 
1113 	goto retry;
1114 }
1115 
1116 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1117 		gfp_t gfp_mask)
1118 {
1119 	struct request *rq;
1120 
1121 	BUG_ON(rw != READ && rw != WRITE);
1122 
1123 	/* create ioc upfront */
1124 	create_io_context(gfp_mask, q->node);
1125 
1126 	spin_lock_irq(q->queue_lock);
1127 	rq = get_request(q, rw, NULL, gfp_mask);
1128 	if (!rq)
1129 		spin_unlock_irq(q->queue_lock);
1130 	/* q->queue_lock is unlocked at this point */
1131 
1132 	return rq;
1133 }
1134 
1135 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1136 {
1137 	if (q->mq_ops)
1138 		return blk_mq_alloc_request(q, rw, gfp_mask);
1139 	else
1140 		return blk_old_get_request(q, rw, gfp_mask);
1141 }
1142 EXPORT_SYMBOL(blk_get_request);
1143 
1144 /**
1145  * blk_make_request - given a bio, allocate a corresponding struct request.
1146  * @q: target request queue
1147  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1148  *        It may be a chained-bio properly constructed by block/bio layer.
1149  * @gfp_mask: gfp flags to be used for memory allocation
1150  *
1151  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1152  * type commands. Where the struct request needs to be farther initialized by
1153  * the caller. It is passed a &struct bio, which describes the memory info of
1154  * the I/O transfer.
1155  *
1156  * The caller of blk_make_request must make sure that bi_io_vec
1157  * are set to describe the memory buffers. That bio_data_dir() will return
1158  * the needed direction of the request. (And all bio's in the passed bio-chain
1159  * are properly set accordingly)
1160  *
1161  * If called under none-sleepable conditions, mapped bio buffers must not
1162  * need bouncing, by calling the appropriate masked or flagged allocator,
1163  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1164  * BUG.
1165  *
1166  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1167  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1168  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1169  * completion of a bio that hasn't been submitted yet, thus resulting in a
1170  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1171  * of bio_alloc(), as that avoids the mempool deadlock.
1172  * If possible a big IO should be split into smaller parts when allocation
1173  * fails. Partial allocation should not be an error, or you risk a live-lock.
1174  */
1175 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1176 				 gfp_t gfp_mask)
1177 {
1178 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1179 
1180 	if (unlikely(!rq))
1181 		return ERR_PTR(-ENOMEM);
1182 
1183 	for_each_bio(bio) {
1184 		struct bio *bounce_bio = bio;
1185 		int ret;
1186 
1187 		blk_queue_bounce(q, &bounce_bio);
1188 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1189 		if (unlikely(ret)) {
1190 			blk_put_request(rq);
1191 			return ERR_PTR(ret);
1192 		}
1193 	}
1194 
1195 	return rq;
1196 }
1197 EXPORT_SYMBOL(blk_make_request);
1198 
1199 /**
1200  * blk_requeue_request - put a request back on queue
1201  * @q:		request queue where request should be inserted
1202  * @rq:		request to be inserted
1203  *
1204  * Description:
1205  *    Drivers often keep queueing requests until the hardware cannot accept
1206  *    more, when that condition happens we need to put the request back
1207  *    on the queue. Must be called with queue lock held.
1208  */
1209 void blk_requeue_request(struct request_queue *q, struct request *rq)
1210 {
1211 	blk_delete_timer(rq);
1212 	blk_clear_rq_complete(rq);
1213 	trace_block_rq_requeue(q, rq);
1214 
1215 	if (blk_rq_tagged(rq))
1216 		blk_queue_end_tag(q, rq);
1217 
1218 	BUG_ON(blk_queued_rq(rq));
1219 
1220 	elv_requeue_request(q, rq);
1221 }
1222 EXPORT_SYMBOL(blk_requeue_request);
1223 
1224 static void add_acct_request(struct request_queue *q, struct request *rq,
1225 			     int where)
1226 {
1227 	blk_account_io_start(rq, true);
1228 	__elv_add_request(q, rq, where);
1229 }
1230 
1231 static void part_round_stats_single(int cpu, struct hd_struct *part,
1232 				    unsigned long now)
1233 {
1234 	if (now == part->stamp)
1235 		return;
1236 
1237 	if (part_in_flight(part)) {
1238 		__part_stat_add(cpu, part, time_in_queue,
1239 				part_in_flight(part) * (now - part->stamp));
1240 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1241 	}
1242 	part->stamp = now;
1243 }
1244 
1245 /**
1246  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1247  * @cpu: cpu number for stats access
1248  * @part: target partition
1249  *
1250  * The average IO queue length and utilisation statistics are maintained
1251  * by observing the current state of the queue length and the amount of
1252  * time it has been in this state for.
1253  *
1254  * Normally, that accounting is done on IO completion, but that can result
1255  * in more than a second's worth of IO being accounted for within any one
1256  * second, leading to >100% utilisation.  To deal with that, we call this
1257  * function to do a round-off before returning the results when reading
1258  * /proc/diskstats.  This accounts immediately for all queue usage up to
1259  * the current jiffies and restarts the counters again.
1260  */
1261 void part_round_stats(int cpu, struct hd_struct *part)
1262 {
1263 	unsigned long now = jiffies;
1264 
1265 	if (part->partno)
1266 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1267 	part_round_stats_single(cpu, part, now);
1268 }
1269 EXPORT_SYMBOL_GPL(part_round_stats);
1270 
1271 #ifdef CONFIG_PM_RUNTIME
1272 static void blk_pm_put_request(struct request *rq)
1273 {
1274 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1275 		pm_runtime_mark_last_busy(rq->q->dev);
1276 }
1277 #else
1278 static inline void blk_pm_put_request(struct request *rq) {}
1279 #endif
1280 
1281 /*
1282  * queue lock must be held
1283  */
1284 void __blk_put_request(struct request_queue *q, struct request *req)
1285 {
1286 	if (unlikely(!q))
1287 		return;
1288 
1289 	if (q->mq_ops) {
1290 		blk_mq_free_request(req);
1291 		return;
1292 	}
1293 
1294 	blk_pm_put_request(req);
1295 
1296 	elv_completed_request(q, req);
1297 
1298 	/* this is a bio leak */
1299 	WARN_ON(req->bio != NULL);
1300 
1301 	/*
1302 	 * Request may not have originated from ll_rw_blk. if not,
1303 	 * it didn't come out of our reserved rq pools
1304 	 */
1305 	if (req->cmd_flags & REQ_ALLOCED) {
1306 		unsigned int flags = req->cmd_flags;
1307 		struct request_list *rl = blk_rq_rl(req);
1308 
1309 		BUG_ON(!list_empty(&req->queuelist));
1310 		BUG_ON(ELV_ON_HASH(req));
1311 
1312 		blk_free_request(rl, req);
1313 		freed_request(rl, flags);
1314 		blk_put_rl(rl);
1315 	}
1316 }
1317 EXPORT_SYMBOL_GPL(__blk_put_request);
1318 
1319 void blk_put_request(struct request *req)
1320 {
1321 	struct request_queue *q = req->q;
1322 
1323 	if (q->mq_ops)
1324 		blk_mq_free_request(req);
1325 	else {
1326 		unsigned long flags;
1327 
1328 		spin_lock_irqsave(q->queue_lock, flags);
1329 		__blk_put_request(q, req);
1330 		spin_unlock_irqrestore(q->queue_lock, flags);
1331 	}
1332 }
1333 EXPORT_SYMBOL(blk_put_request);
1334 
1335 /**
1336  * blk_add_request_payload - add a payload to a request
1337  * @rq: request to update
1338  * @page: page backing the payload
1339  * @len: length of the payload.
1340  *
1341  * This allows to later add a payload to an already submitted request by
1342  * a block driver.  The driver needs to take care of freeing the payload
1343  * itself.
1344  *
1345  * Note that this is a quite horrible hack and nothing but handling of
1346  * discard requests should ever use it.
1347  */
1348 void blk_add_request_payload(struct request *rq, struct page *page,
1349 		unsigned int len)
1350 {
1351 	struct bio *bio = rq->bio;
1352 
1353 	bio->bi_io_vec->bv_page = page;
1354 	bio->bi_io_vec->bv_offset = 0;
1355 	bio->bi_io_vec->bv_len = len;
1356 
1357 	bio->bi_iter.bi_size = len;
1358 	bio->bi_vcnt = 1;
1359 	bio->bi_phys_segments = 1;
1360 
1361 	rq->__data_len = rq->resid_len = len;
1362 	rq->nr_phys_segments = 1;
1363 	rq->buffer = bio_data(bio);
1364 }
1365 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1366 
1367 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1368 			    struct bio *bio)
1369 {
1370 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1371 
1372 	if (!ll_back_merge_fn(q, req, bio))
1373 		return false;
1374 
1375 	trace_block_bio_backmerge(q, req, bio);
1376 
1377 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1378 		blk_rq_set_mixed_merge(req);
1379 
1380 	req->biotail->bi_next = bio;
1381 	req->biotail = bio;
1382 	req->__data_len += bio->bi_iter.bi_size;
1383 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1384 
1385 	blk_account_io_start(req, false);
1386 	return true;
1387 }
1388 
1389 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1390 			     struct bio *bio)
1391 {
1392 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1393 
1394 	if (!ll_front_merge_fn(q, req, bio))
1395 		return false;
1396 
1397 	trace_block_bio_frontmerge(q, req, bio);
1398 
1399 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1400 		blk_rq_set_mixed_merge(req);
1401 
1402 	bio->bi_next = req->bio;
1403 	req->bio = bio;
1404 
1405 	/*
1406 	 * may not be valid. if the low level driver said
1407 	 * it didn't need a bounce buffer then it better
1408 	 * not touch req->buffer either...
1409 	 */
1410 	req->buffer = bio_data(bio);
1411 	req->__sector = bio->bi_iter.bi_sector;
1412 	req->__data_len += bio->bi_iter.bi_size;
1413 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1414 
1415 	blk_account_io_start(req, false);
1416 	return true;
1417 }
1418 
1419 /**
1420  * blk_attempt_plug_merge - try to merge with %current's plugged list
1421  * @q: request_queue new bio is being queued at
1422  * @bio: new bio being queued
1423  * @request_count: out parameter for number of traversed plugged requests
1424  *
1425  * Determine whether @bio being queued on @q can be merged with a request
1426  * on %current's plugged list.  Returns %true if merge was successful,
1427  * otherwise %false.
1428  *
1429  * Plugging coalesces IOs from the same issuer for the same purpose without
1430  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1431  * than scheduling, and the request, while may have elvpriv data, is not
1432  * added on the elevator at this point.  In addition, we don't have
1433  * reliable access to the elevator outside queue lock.  Only check basic
1434  * merging parameters without querying the elevator.
1435  */
1436 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1437 			    unsigned int *request_count)
1438 {
1439 	struct blk_plug *plug;
1440 	struct request *rq;
1441 	bool ret = false;
1442 	struct list_head *plug_list;
1443 
1444 	if (blk_queue_nomerges(q))
1445 		goto out;
1446 
1447 	plug = current->plug;
1448 	if (!plug)
1449 		goto out;
1450 	*request_count = 0;
1451 
1452 	if (q->mq_ops)
1453 		plug_list = &plug->mq_list;
1454 	else
1455 		plug_list = &plug->list;
1456 
1457 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1458 		int el_ret;
1459 
1460 		if (rq->q == q)
1461 			(*request_count)++;
1462 
1463 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1464 			continue;
1465 
1466 		el_ret = blk_try_merge(rq, bio);
1467 		if (el_ret == ELEVATOR_BACK_MERGE) {
1468 			ret = bio_attempt_back_merge(q, rq, bio);
1469 			if (ret)
1470 				break;
1471 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1472 			ret = bio_attempt_front_merge(q, rq, bio);
1473 			if (ret)
1474 				break;
1475 		}
1476 	}
1477 out:
1478 	return ret;
1479 }
1480 
1481 void init_request_from_bio(struct request *req, struct bio *bio)
1482 {
1483 	req->cmd_type = REQ_TYPE_FS;
1484 
1485 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1486 	if (bio->bi_rw & REQ_RAHEAD)
1487 		req->cmd_flags |= REQ_FAILFAST_MASK;
1488 
1489 	req->errors = 0;
1490 	req->__sector = bio->bi_iter.bi_sector;
1491 	req->ioprio = bio_prio(bio);
1492 	blk_rq_bio_prep(req->q, req, bio);
1493 }
1494 
1495 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1496 {
1497 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1498 	struct blk_plug *plug;
1499 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1500 	struct request *req;
1501 	unsigned int request_count = 0;
1502 
1503 	/*
1504 	 * low level driver can indicate that it wants pages above a
1505 	 * certain limit bounced to low memory (ie for highmem, or even
1506 	 * ISA dma in theory)
1507 	 */
1508 	blk_queue_bounce(q, &bio);
1509 
1510 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1511 		bio_endio(bio, -EIO);
1512 		return;
1513 	}
1514 
1515 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1516 		spin_lock_irq(q->queue_lock);
1517 		where = ELEVATOR_INSERT_FLUSH;
1518 		goto get_rq;
1519 	}
1520 
1521 	/*
1522 	 * Check if we can merge with the plugged list before grabbing
1523 	 * any locks.
1524 	 */
1525 	if (blk_attempt_plug_merge(q, bio, &request_count))
1526 		return;
1527 
1528 	spin_lock_irq(q->queue_lock);
1529 
1530 	el_ret = elv_merge(q, &req, bio);
1531 	if (el_ret == ELEVATOR_BACK_MERGE) {
1532 		if (bio_attempt_back_merge(q, req, bio)) {
1533 			elv_bio_merged(q, req, bio);
1534 			if (!attempt_back_merge(q, req))
1535 				elv_merged_request(q, req, el_ret);
1536 			goto out_unlock;
1537 		}
1538 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1539 		if (bio_attempt_front_merge(q, req, bio)) {
1540 			elv_bio_merged(q, req, bio);
1541 			if (!attempt_front_merge(q, req))
1542 				elv_merged_request(q, req, el_ret);
1543 			goto out_unlock;
1544 		}
1545 	}
1546 
1547 get_rq:
1548 	/*
1549 	 * This sync check and mask will be re-done in init_request_from_bio(),
1550 	 * but we need to set it earlier to expose the sync flag to the
1551 	 * rq allocator and io schedulers.
1552 	 */
1553 	rw_flags = bio_data_dir(bio);
1554 	if (sync)
1555 		rw_flags |= REQ_SYNC;
1556 
1557 	/*
1558 	 * Grab a free request. This is might sleep but can not fail.
1559 	 * Returns with the queue unlocked.
1560 	 */
1561 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1562 	if (unlikely(!req)) {
1563 		bio_endio(bio, -ENODEV);	/* @q is dead */
1564 		goto out_unlock;
1565 	}
1566 
1567 	/*
1568 	 * After dropping the lock and possibly sleeping here, our request
1569 	 * may now be mergeable after it had proven unmergeable (above).
1570 	 * We don't worry about that case for efficiency. It won't happen
1571 	 * often, and the elevators are able to handle it.
1572 	 */
1573 	init_request_from_bio(req, bio);
1574 
1575 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1576 		req->cpu = raw_smp_processor_id();
1577 
1578 	plug = current->plug;
1579 	if (plug) {
1580 		/*
1581 		 * If this is the first request added after a plug, fire
1582 		 * of a plug trace.
1583 		 */
1584 		if (!request_count)
1585 			trace_block_plug(q);
1586 		else {
1587 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1588 				blk_flush_plug_list(plug, false);
1589 				trace_block_plug(q);
1590 			}
1591 		}
1592 		list_add_tail(&req->queuelist, &plug->list);
1593 		blk_account_io_start(req, true);
1594 	} else {
1595 		spin_lock_irq(q->queue_lock);
1596 		add_acct_request(q, req, where);
1597 		__blk_run_queue(q);
1598 out_unlock:
1599 		spin_unlock_irq(q->queue_lock);
1600 	}
1601 }
1602 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1603 
1604 /*
1605  * If bio->bi_dev is a partition, remap the location
1606  */
1607 static inline void blk_partition_remap(struct bio *bio)
1608 {
1609 	struct block_device *bdev = bio->bi_bdev;
1610 
1611 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1612 		struct hd_struct *p = bdev->bd_part;
1613 
1614 		bio->bi_iter.bi_sector += p->start_sect;
1615 		bio->bi_bdev = bdev->bd_contains;
1616 
1617 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1618 				      bdev->bd_dev,
1619 				      bio->bi_iter.bi_sector - p->start_sect);
1620 	}
1621 }
1622 
1623 static void handle_bad_sector(struct bio *bio)
1624 {
1625 	char b[BDEVNAME_SIZE];
1626 
1627 	printk(KERN_INFO "attempt to access beyond end of device\n");
1628 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1629 			bdevname(bio->bi_bdev, b),
1630 			bio->bi_rw,
1631 			(unsigned long long)bio_end_sector(bio),
1632 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1633 
1634 	set_bit(BIO_EOF, &bio->bi_flags);
1635 }
1636 
1637 #ifdef CONFIG_FAIL_MAKE_REQUEST
1638 
1639 static DECLARE_FAULT_ATTR(fail_make_request);
1640 
1641 static int __init setup_fail_make_request(char *str)
1642 {
1643 	return setup_fault_attr(&fail_make_request, str);
1644 }
1645 __setup("fail_make_request=", setup_fail_make_request);
1646 
1647 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1648 {
1649 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1650 }
1651 
1652 static int __init fail_make_request_debugfs(void)
1653 {
1654 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1655 						NULL, &fail_make_request);
1656 
1657 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1658 }
1659 
1660 late_initcall(fail_make_request_debugfs);
1661 
1662 #else /* CONFIG_FAIL_MAKE_REQUEST */
1663 
1664 static inline bool should_fail_request(struct hd_struct *part,
1665 					unsigned int bytes)
1666 {
1667 	return false;
1668 }
1669 
1670 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1671 
1672 /*
1673  * Check whether this bio extends beyond the end of the device.
1674  */
1675 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1676 {
1677 	sector_t maxsector;
1678 
1679 	if (!nr_sectors)
1680 		return 0;
1681 
1682 	/* Test device or partition size, when known. */
1683 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1684 	if (maxsector) {
1685 		sector_t sector = bio->bi_iter.bi_sector;
1686 
1687 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1688 			/*
1689 			 * This may well happen - the kernel calls bread()
1690 			 * without checking the size of the device, e.g., when
1691 			 * mounting a device.
1692 			 */
1693 			handle_bad_sector(bio);
1694 			return 1;
1695 		}
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 static noinline_for_stack bool
1702 generic_make_request_checks(struct bio *bio)
1703 {
1704 	struct request_queue *q;
1705 	int nr_sectors = bio_sectors(bio);
1706 	int err = -EIO;
1707 	char b[BDEVNAME_SIZE];
1708 	struct hd_struct *part;
1709 
1710 	might_sleep();
1711 
1712 	if (bio_check_eod(bio, nr_sectors))
1713 		goto end_io;
1714 
1715 	q = bdev_get_queue(bio->bi_bdev);
1716 	if (unlikely(!q)) {
1717 		printk(KERN_ERR
1718 		       "generic_make_request: Trying to access "
1719 			"nonexistent block-device %s (%Lu)\n",
1720 			bdevname(bio->bi_bdev, b),
1721 			(long long) bio->bi_iter.bi_sector);
1722 		goto end_io;
1723 	}
1724 
1725 	if (likely(bio_is_rw(bio) &&
1726 		   nr_sectors > queue_max_hw_sectors(q))) {
1727 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1728 		       bdevname(bio->bi_bdev, b),
1729 		       bio_sectors(bio),
1730 		       queue_max_hw_sectors(q));
1731 		goto end_io;
1732 	}
1733 
1734 	part = bio->bi_bdev->bd_part;
1735 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1736 	    should_fail_request(&part_to_disk(part)->part0,
1737 				bio->bi_iter.bi_size))
1738 		goto end_io;
1739 
1740 	/*
1741 	 * If this device has partitions, remap block n
1742 	 * of partition p to block n+start(p) of the disk.
1743 	 */
1744 	blk_partition_remap(bio);
1745 
1746 	if (bio_check_eod(bio, nr_sectors))
1747 		goto end_io;
1748 
1749 	/*
1750 	 * Filter flush bio's early so that make_request based
1751 	 * drivers without flush support don't have to worry
1752 	 * about them.
1753 	 */
1754 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1755 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1756 		if (!nr_sectors) {
1757 			err = 0;
1758 			goto end_io;
1759 		}
1760 	}
1761 
1762 	if ((bio->bi_rw & REQ_DISCARD) &&
1763 	    (!blk_queue_discard(q) ||
1764 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1765 		err = -EOPNOTSUPP;
1766 		goto end_io;
1767 	}
1768 
1769 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1770 		err = -EOPNOTSUPP;
1771 		goto end_io;
1772 	}
1773 
1774 	/*
1775 	 * Various block parts want %current->io_context and lazy ioc
1776 	 * allocation ends up trading a lot of pain for a small amount of
1777 	 * memory.  Just allocate it upfront.  This may fail and block
1778 	 * layer knows how to live with it.
1779 	 */
1780 	create_io_context(GFP_ATOMIC, q->node);
1781 
1782 	if (blk_throtl_bio(q, bio))
1783 		return false;	/* throttled, will be resubmitted later */
1784 
1785 	trace_block_bio_queue(q, bio);
1786 	return true;
1787 
1788 end_io:
1789 	bio_endio(bio, err);
1790 	return false;
1791 }
1792 
1793 /**
1794  * generic_make_request - hand a buffer to its device driver for I/O
1795  * @bio:  The bio describing the location in memory and on the device.
1796  *
1797  * generic_make_request() is used to make I/O requests of block
1798  * devices. It is passed a &struct bio, which describes the I/O that needs
1799  * to be done.
1800  *
1801  * generic_make_request() does not return any status.  The
1802  * success/failure status of the request, along with notification of
1803  * completion, is delivered asynchronously through the bio->bi_end_io
1804  * function described (one day) else where.
1805  *
1806  * The caller of generic_make_request must make sure that bi_io_vec
1807  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1808  * set to describe the device address, and the
1809  * bi_end_io and optionally bi_private are set to describe how
1810  * completion notification should be signaled.
1811  *
1812  * generic_make_request and the drivers it calls may use bi_next if this
1813  * bio happens to be merged with someone else, and may resubmit the bio to
1814  * a lower device by calling into generic_make_request recursively, which
1815  * means the bio should NOT be touched after the call to ->make_request_fn.
1816  */
1817 void generic_make_request(struct bio *bio)
1818 {
1819 	struct bio_list bio_list_on_stack;
1820 
1821 	if (!generic_make_request_checks(bio))
1822 		return;
1823 
1824 	/*
1825 	 * We only want one ->make_request_fn to be active at a time, else
1826 	 * stack usage with stacked devices could be a problem.  So use
1827 	 * current->bio_list to keep a list of requests submited by a
1828 	 * make_request_fn function.  current->bio_list is also used as a
1829 	 * flag to say if generic_make_request is currently active in this
1830 	 * task or not.  If it is NULL, then no make_request is active.  If
1831 	 * it is non-NULL, then a make_request is active, and new requests
1832 	 * should be added at the tail
1833 	 */
1834 	if (current->bio_list) {
1835 		bio_list_add(current->bio_list, bio);
1836 		return;
1837 	}
1838 
1839 	/* following loop may be a bit non-obvious, and so deserves some
1840 	 * explanation.
1841 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1842 	 * ensure that) so we have a list with a single bio.
1843 	 * We pretend that we have just taken it off a longer list, so
1844 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1845 	 * thus initialising the bio_list of new bios to be
1846 	 * added.  ->make_request() may indeed add some more bios
1847 	 * through a recursive call to generic_make_request.  If it
1848 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1849 	 * from the top.  In this case we really did just take the bio
1850 	 * of the top of the list (no pretending) and so remove it from
1851 	 * bio_list, and call into ->make_request() again.
1852 	 */
1853 	BUG_ON(bio->bi_next);
1854 	bio_list_init(&bio_list_on_stack);
1855 	current->bio_list = &bio_list_on_stack;
1856 	do {
1857 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1858 
1859 		q->make_request_fn(q, bio);
1860 
1861 		bio = bio_list_pop(current->bio_list);
1862 	} while (bio);
1863 	current->bio_list = NULL; /* deactivate */
1864 }
1865 EXPORT_SYMBOL(generic_make_request);
1866 
1867 /**
1868  * submit_bio - submit a bio to the block device layer for I/O
1869  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1870  * @bio: The &struct bio which describes the I/O
1871  *
1872  * submit_bio() is very similar in purpose to generic_make_request(), and
1873  * uses that function to do most of the work. Both are fairly rough
1874  * interfaces; @bio must be presetup and ready for I/O.
1875  *
1876  */
1877 void submit_bio(int rw, struct bio *bio)
1878 {
1879 	bio->bi_rw |= rw;
1880 
1881 	/*
1882 	 * If it's a regular read/write or a barrier with data attached,
1883 	 * go through the normal accounting stuff before submission.
1884 	 */
1885 	if (bio_has_data(bio)) {
1886 		unsigned int count;
1887 
1888 		if (unlikely(rw & REQ_WRITE_SAME))
1889 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1890 		else
1891 			count = bio_sectors(bio);
1892 
1893 		if (rw & WRITE) {
1894 			count_vm_events(PGPGOUT, count);
1895 		} else {
1896 			task_io_account_read(bio->bi_iter.bi_size);
1897 			count_vm_events(PGPGIN, count);
1898 		}
1899 
1900 		if (unlikely(block_dump)) {
1901 			char b[BDEVNAME_SIZE];
1902 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1903 			current->comm, task_pid_nr(current),
1904 				(rw & WRITE) ? "WRITE" : "READ",
1905 				(unsigned long long)bio->bi_iter.bi_sector,
1906 				bdevname(bio->bi_bdev, b),
1907 				count);
1908 		}
1909 	}
1910 
1911 	generic_make_request(bio);
1912 }
1913 EXPORT_SYMBOL(submit_bio);
1914 
1915 /**
1916  * blk_rq_check_limits - Helper function to check a request for the queue limit
1917  * @q:  the queue
1918  * @rq: the request being checked
1919  *
1920  * Description:
1921  *    @rq may have been made based on weaker limitations of upper-level queues
1922  *    in request stacking drivers, and it may violate the limitation of @q.
1923  *    Since the block layer and the underlying device driver trust @rq
1924  *    after it is inserted to @q, it should be checked against @q before
1925  *    the insertion using this generic function.
1926  *
1927  *    This function should also be useful for request stacking drivers
1928  *    in some cases below, so export this function.
1929  *    Request stacking drivers like request-based dm may change the queue
1930  *    limits while requests are in the queue (e.g. dm's table swapping).
1931  *    Such request stacking drivers should check those requests against
1932  *    the new queue limits again when they dispatch those requests,
1933  *    although such checkings are also done against the old queue limits
1934  *    when submitting requests.
1935  */
1936 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1937 {
1938 	if (!rq_mergeable(rq))
1939 		return 0;
1940 
1941 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1942 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1943 		return -EIO;
1944 	}
1945 
1946 	/*
1947 	 * queue's settings related to segment counting like q->bounce_pfn
1948 	 * may differ from that of other stacking queues.
1949 	 * Recalculate it to check the request correctly on this queue's
1950 	 * limitation.
1951 	 */
1952 	blk_recalc_rq_segments(rq);
1953 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1954 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1955 		return -EIO;
1956 	}
1957 
1958 	return 0;
1959 }
1960 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1961 
1962 /**
1963  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1964  * @q:  the queue to submit the request
1965  * @rq: the request being queued
1966  */
1967 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1968 {
1969 	unsigned long flags;
1970 	int where = ELEVATOR_INSERT_BACK;
1971 
1972 	if (blk_rq_check_limits(q, rq))
1973 		return -EIO;
1974 
1975 	if (rq->rq_disk &&
1976 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1977 		return -EIO;
1978 
1979 	spin_lock_irqsave(q->queue_lock, flags);
1980 	if (unlikely(blk_queue_dying(q))) {
1981 		spin_unlock_irqrestore(q->queue_lock, flags);
1982 		return -ENODEV;
1983 	}
1984 
1985 	/*
1986 	 * Submitting request must be dequeued before calling this function
1987 	 * because it will be linked to another request_queue
1988 	 */
1989 	BUG_ON(blk_queued_rq(rq));
1990 
1991 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1992 		where = ELEVATOR_INSERT_FLUSH;
1993 
1994 	add_acct_request(q, rq, where);
1995 	if (where == ELEVATOR_INSERT_FLUSH)
1996 		__blk_run_queue(q);
1997 	spin_unlock_irqrestore(q->queue_lock, flags);
1998 
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2002 
2003 /**
2004  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2005  * @rq: request to examine
2006  *
2007  * Description:
2008  *     A request could be merge of IOs which require different failure
2009  *     handling.  This function determines the number of bytes which
2010  *     can be failed from the beginning of the request without
2011  *     crossing into area which need to be retried further.
2012  *
2013  * Return:
2014  *     The number of bytes to fail.
2015  *
2016  * Context:
2017  *     queue_lock must be held.
2018  */
2019 unsigned int blk_rq_err_bytes(const struct request *rq)
2020 {
2021 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2022 	unsigned int bytes = 0;
2023 	struct bio *bio;
2024 
2025 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2026 		return blk_rq_bytes(rq);
2027 
2028 	/*
2029 	 * Currently the only 'mixing' which can happen is between
2030 	 * different fastfail types.  We can safely fail portions
2031 	 * which have all the failfast bits that the first one has -
2032 	 * the ones which are at least as eager to fail as the first
2033 	 * one.
2034 	 */
2035 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2036 		if ((bio->bi_rw & ff) != ff)
2037 			break;
2038 		bytes += bio->bi_iter.bi_size;
2039 	}
2040 
2041 	/* this could lead to infinite loop */
2042 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2043 	return bytes;
2044 }
2045 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2046 
2047 void blk_account_io_completion(struct request *req, unsigned int bytes)
2048 {
2049 	if (blk_do_io_stat(req)) {
2050 		const int rw = rq_data_dir(req);
2051 		struct hd_struct *part;
2052 		int cpu;
2053 
2054 		cpu = part_stat_lock();
2055 		part = req->part;
2056 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2057 		part_stat_unlock();
2058 	}
2059 }
2060 
2061 void blk_account_io_done(struct request *req)
2062 {
2063 	/*
2064 	 * Account IO completion.  flush_rq isn't accounted as a
2065 	 * normal IO on queueing nor completion.  Accounting the
2066 	 * containing request is enough.
2067 	 */
2068 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2069 		unsigned long duration = jiffies - req->start_time;
2070 		const int rw = rq_data_dir(req);
2071 		struct hd_struct *part;
2072 		int cpu;
2073 
2074 		cpu = part_stat_lock();
2075 		part = req->part;
2076 
2077 		part_stat_inc(cpu, part, ios[rw]);
2078 		part_stat_add(cpu, part, ticks[rw], duration);
2079 		part_round_stats(cpu, part);
2080 		part_dec_in_flight(part, rw);
2081 
2082 		hd_struct_put(part);
2083 		part_stat_unlock();
2084 	}
2085 }
2086 
2087 #ifdef CONFIG_PM_RUNTIME
2088 /*
2089  * Don't process normal requests when queue is suspended
2090  * or in the process of suspending/resuming
2091  */
2092 static struct request *blk_pm_peek_request(struct request_queue *q,
2093 					   struct request *rq)
2094 {
2095 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2096 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2097 		return NULL;
2098 	else
2099 		return rq;
2100 }
2101 #else
2102 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2103 						  struct request *rq)
2104 {
2105 	return rq;
2106 }
2107 #endif
2108 
2109 void blk_account_io_start(struct request *rq, bool new_io)
2110 {
2111 	struct hd_struct *part;
2112 	int rw = rq_data_dir(rq);
2113 	int cpu;
2114 
2115 	if (!blk_do_io_stat(rq))
2116 		return;
2117 
2118 	cpu = part_stat_lock();
2119 
2120 	if (!new_io) {
2121 		part = rq->part;
2122 		part_stat_inc(cpu, part, merges[rw]);
2123 	} else {
2124 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2125 		if (!hd_struct_try_get(part)) {
2126 			/*
2127 			 * The partition is already being removed,
2128 			 * the request will be accounted on the disk only
2129 			 *
2130 			 * We take a reference on disk->part0 although that
2131 			 * partition will never be deleted, so we can treat
2132 			 * it as any other partition.
2133 			 */
2134 			part = &rq->rq_disk->part0;
2135 			hd_struct_get(part);
2136 		}
2137 		part_round_stats(cpu, part);
2138 		part_inc_in_flight(part, rw);
2139 		rq->part = part;
2140 	}
2141 
2142 	part_stat_unlock();
2143 }
2144 
2145 /**
2146  * blk_peek_request - peek at the top of a request queue
2147  * @q: request queue to peek at
2148  *
2149  * Description:
2150  *     Return the request at the top of @q.  The returned request
2151  *     should be started using blk_start_request() before LLD starts
2152  *     processing it.
2153  *
2154  * Return:
2155  *     Pointer to the request at the top of @q if available.  Null
2156  *     otherwise.
2157  *
2158  * Context:
2159  *     queue_lock must be held.
2160  */
2161 struct request *blk_peek_request(struct request_queue *q)
2162 {
2163 	struct request *rq;
2164 	int ret;
2165 
2166 	while ((rq = __elv_next_request(q)) != NULL) {
2167 
2168 		rq = blk_pm_peek_request(q, rq);
2169 		if (!rq)
2170 			break;
2171 
2172 		if (!(rq->cmd_flags & REQ_STARTED)) {
2173 			/*
2174 			 * This is the first time the device driver
2175 			 * sees this request (possibly after
2176 			 * requeueing).  Notify IO scheduler.
2177 			 */
2178 			if (rq->cmd_flags & REQ_SORTED)
2179 				elv_activate_rq(q, rq);
2180 
2181 			/*
2182 			 * just mark as started even if we don't start
2183 			 * it, a request that has been delayed should
2184 			 * not be passed by new incoming requests
2185 			 */
2186 			rq->cmd_flags |= REQ_STARTED;
2187 			trace_block_rq_issue(q, rq);
2188 		}
2189 
2190 		if (!q->boundary_rq || q->boundary_rq == rq) {
2191 			q->end_sector = rq_end_sector(rq);
2192 			q->boundary_rq = NULL;
2193 		}
2194 
2195 		if (rq->cmd_flags & REQ_DONTPREP)
2196 			break;
2197 
2198 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2199 			/*
2200 			 * make sure space for the drain appears we
2201 			 * know we can do this because max_hw_segments
2202 			 * has been adjusted to be one fewer than the
2203 			 * device can handle
2204 			 */
2205 			rq->nr_phys_segments++;
2206 		}
2207 
2208 		if (!q->prep_rq_fn)
2209 			break;
2210 
2211 		ret = q->prep_rq_fn(q, rq);
2212 		if (ret == BLKPREP_OK) {
2213 			break;
2214 		} else if (ret == BLKPREP_DEFER) {
2215 			/*
2216 			 * the request may have been (partially) prepped.
2217 			 * we need to keep this request in the front to
2218 			 * avoid resource deadlock.  REQ_STARTED will
2219 			 * prevent other fs requests from passing this one.
2220 			 */
2221 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2222 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2223 				/*
2224 				 * remove the space for the drain we added
2225 				 * so that we don't add it again
2226 				 */
2227 				--rq->nr_phys_segments;
2228 			}
2229 
2230 			rq = NULL;
2231 			break;
2232 		} else if (ret == BLKPREP_KILL) {
2233 			rq->cmd_flags |= REQ_QUIET;
2234 			/*
2235 			 * Mark this request as started so we don't trigger
2236 			 * any debug logic in the end I/O path.
2237 			 */
2238 			blk_start_request(rq);
2239 			__blk_end_request_all(rq, -EIO);
2240 		} else {
2241 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2242 			break;
2243 		}
2244 	}
2245 
2246 	return rq;
2247 }
2248 EXPORT_SYMBOL(blk_peek_request);
2249 
2250 void blk_dequeue_request(struct request *rq)
2251 {
2252 	struct request_queue *q = rq->q;
2253 
2254 	BUG_ON(list_empty(&rq->queuelist));
2255 	BUG_ON(ELV_ON_HASH(rq));
2256 
2257 	list_del_init(&rq->queuelist);
2258 
2259 	/*
2260 	 * the time frame between a request being removed from the lists
2261 	 * and to it is freed is accounted as io that is in progress at
2262 	 * the driver side.
2263 	 */
2264 	if (blk_account_rq(rq)) {
2265 		q->in_flight[rq_is_sync(rq)]++;
2266 		set_io_start_time_ns(rq);
2267 	}
2268 }
2269 
2270 /**
2271  * blk_start_request - start request processing on the driver
2272  * @req: request to dequeue
2273  *
2274  * Description:
2275  *     Dequeue @req and start timeout timer on it.  This hands off the
2276  *     request to the driver.
2277  *
2278  *     Block internal functions which don't want to start timer should
2279  *     call blk_dequeue_request().
2280  *
2281  * Context:
2282  *     queue_lock must be held.
2283  */
2284 void blk_start_request(struct request *req)
2285 {
2286 	blk_dequeue_request(req);
2287 
2288 	/*
2289 	 * We are now handing the request to the hardware, initialize
2290 	 * resid_len to full count and add the timeout handler.
2291 	 */
2292 	req->resid_len = blk_rq_bytes(req);
2293 	if (unlikely(blk_bidi_rq(req)))
2294 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2295 
2296 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2297 	blk_add_timer(req);
2298 }
2299 EXPORT_SYMBOL(blk_start_request);
2300 
2301 /**
2302  * blk_fetch_request - fetch a request from a request queue
2303  * @q: request queue to fetch a request from
2304  *
2305  * Description:
2306  *     Return the request at the top of @q.  The request is started on
2307  *     return and LLD can start processing it immediately.
2308  *
2309  * Return:
2310  *     Pointer to the request at the top of @q if available.  Null
2311  *     otherwise.
2312  *
2313  * Context:
2314  *     queue_lock must be held.
2315  */
2316 struct request *blk_fetch_request(struct request_queue *q)
2317 {
2318 	struct request *rq;
2319 
2320 	rq = blk_peek_request(q);
2321 	if (rq)
2322 		blk_start_request(rq);
2323 	return rq;
2324 }
2325 EXPORT_SYMBOL(blk_fetch_request);
2326 
2327 /**
2328  * blk_update_request - Special helper function for request stacking drivers
2329  * @req:      the request being processed
2330  * @error:    %0 for success, < %0 for error
2331  * @nr_bytes: number of bytes to complete @req
2332  *
2333  * Description:
2334  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2335  *     the request structure even if @req doesn't have leftover.
2336  *     If @req has leftover, sets it up for the next range of segments.
2337  *
2338  *     This special helper function is only for request stacking drivers
2339  *     (e.g. request-based dm) so that they can handle partial completion.
2340  *     Actual device drivers should use blk_end_request instead.
2341  *
2342  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2343  *     %false return from this function.
2344  *
2345  * Return:
2346  *     %false - this request doesn't have any more data
2347  *     %true  - this request has more data
2348  **/
2349 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2350 {
2351 	int total_bytes;
2352 
2353 	if (!req->bio)
2354 		return false;
2355 
2356 	trace_block_rq_complete(req->q, req, nr_bytes);
2357 
2358 	/*
2359 	 * For fs requests, rq is just carrier of independent bio's
2360 	 * and each partial completion should be handled separately.
2361 	 * Reset per-request error on each partial completion.
2362 	 *
2363 	 * TODO: tj: This is too subtle.  It would be better to let
2364 	 * low level drivers do what they see fit.
2365 	 */
2366 	if (req->cmd_type == REQ_TYPE_FS)
2367 		req->errors = 0;
2368 
2369 	if (error && req->cmd_type == REQ_TYPE_FS &&
2370 	    !(req->cmd_flags & REQ_QUIET)) {
2371 		char *error_type;
2372 
2373 		switch (error) {
2374 		case -ENOLINK:
2375 			error_type = "recoverable transport";
2376 			break;
2377 		case -EREMOTEIO:
2378 			error_type = "critical target";
2379 			break;
2380 		case -EBADE:
2381 			error_type = "critical nexus";
2382 			break;
2383 		case -ETIMEDOUT:
2384 			error_type = "timeout";
2385 			break;
2386 		case -ENOSPC:
2387 			error_type = "critical space allocation";
2388 			break;
2389 		case -ENODATA:
2390 			error_type = "critical medium";
2391 			break;
2392 		case -EIO:
2393 		default:
2394 			error_type = "I/O";
2395 			break;
2396 		}
2397 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2398 				   error_type, req->rq_disk ?
2399 				   req->rq_disk->disk_name : "?",
2400 				   (unsigned long long)blk_rq_pos(req));
2401 
2402 	}
2403 
2404 	blk_account_io_completion(req, nr_bytes);
2405 
2406 	total_bytes = 0;
2407 	while (req->bio) {
2408 		struct bio *bio = req->bio;
2409 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2410 
2411 		if (bio_bytes == bio->bi_iter.bi_size)
2412 			req->bio = bio->bi_next;
2413 
2414 		req_bio_endio(req, bio, bio_bytes, error);
2415 
2416 		total_bytes += bio_bytes;
2417 		nr_bytes -= bio_bytes;
2418 
2419 		if (!nr_bytes)
2420 			break;
2421 	}
2422 
2423 	/*
2424 	 * completely done
2425 	 */
2426 	if (!req->bio) {
2427 		/*
2428 		 * Reset counters so that the request stacking driver
2429 		 * can find how many bytes remain in the request
2430 		 * later.
2431 		 */
2432 		req->__data_len = 0;
2433 		return false;
2434 	}
2435 
2436 	req->__data_len -= total_bytes;
2437 	req->buffer = bio_data(req->bio);
2438 
2439 	/* update sector only for requests with clear definition of sector */
2440 	if (req->cmd_type == REQ_TYPE_FS)
2441 		req->__sector += total_bytes >> 9;
2442 
2443 	/* mixed attributes always follow the first bio */
2444 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2445 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2446 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2447 	}
2448 
2449 	/*
2450 	 * If total number of sectors is less than the first segment
2451 	 * size, something has gone terribly wrong.
2452 	 */
2453 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2454 		blk_dump_rq_flags(req, "request botched");
2455 		req->__data_len = blk_rq_cur_bytes(req);
2456 	}
2457 
2458 	/* recalculate the number of segments */
2459 	blk_recalc_rq_segments(req);
2460 
2461 	return true;
2462 }
2463 EXPORT_SYMBOL_GPL(blk_update_request);
2464 
2465 static bool blk_update_bidi_request(struct request *rq, int error,
2466 				    unsigned int nr_bytes,
2467 				    unsigned int bidi_bytes)
2468 {
2469 	if (blk_update_request(rq, error, nr_bytes))
2470 		return true;
2471 
2472 	/* Bidi request must be completed as a whole */
2473 	if (unlikely(blk_bidi_rq(rq)) &&
2474 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2475 		return true;
2476 
2477 	if (blk_queue_add_random(rq->q))
2478 		add_disk_randomness(rq->rq_disk);
2479 
2480 	return false;
2481 }
2482 
2483 /**
2484  * blk_unprep_request - unprepare a request
2485  * @req:	the request
2486  *
2487  * This function makes a request ready for complete resubmission (or
2488  * completion).  It happens only after all error handling is complete,
2489  * so represents the appropriate moment to deallocate any resources
2490  * that were allocated to the request in the prep_rq_fn.  The queue
2491  * lock is held when calling this.
2492  */
2493 void blk_unprep_request(struct request *req)
2494 {
2495 	struct request_queue *q = req->q;
2496 
2497 	req->cmd_flags &= ~REQ_DONTPREP;
2498 	if (q->unprep_rq_fn)
2499 		q->unprep_rq_fn(q, req);
2500 }
2501 EXPORT_SYMBOL_GPL(blk_unprep_request);
2502 
2503 /*
2504  * queue lock must be held
2505  */
2506 static void blk_finish_request(struct request *req, int error)
2507 {
2508 	if (blk_rq_tagged(req))
2509 		blk_queue_end_tag(req->q, req);
2510 
2511 	BUG_ON(blk_queued_rq(req));
2512 
2513 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2514 		laptop_io_completion(&req->q->backing_dev_info);
2515 
2516 	blk_delete_timer(req);
2517 
2518 	if (req->cmd_flags & REQ_DONTPREP)
2519 		blk_unprep_request(req);
2520 
2521 	blk_account_io_done(req);
2522 
2523 	if (req->end_io)
2524 		req->end_io(req, error);
2525 	else {
2526 		if (blk_bidi_rq(req))
2527 			__blk_put_request(req->next_rq->q, req->next_rq);
2528 
2529 		__blk_put_request(req->q, req);
2530 	}
2531 }
2532 
2533 /**
2534  * blk_end_bidi_request - Complete a bidi request
2535  * @rq:         the request to complete
2536  * @error:      %0 for success, < %0 for error
2537  * @nr_bytes:   number of bytes to complete @rq
2538  * @bidi_bytes: number of bytes to complete @rq->next_rq
2539  *
2540  * Description:
2541  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2542  *     Drivers that supports bidi can safely call this member for any
2543  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2544  *     just ignored.
2545  *
2546  * Return:
2547  *     %false - we are done with this request
2548  *     %true  - still buffers pending for this request
2549  **/
2550 static bool blk_end_bidi_request(struct request *rq, int error,
2551 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2552 {
2553 	struct request_queue *q = rq->q;
2554 	unsigned long flags;
2555 
2556 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2557 		return true;
2558 
2559 	spin_lock_irqsave(q->queue_lock, flags);
2560 	blk_finish_request(rq, error);
2561 	spin_unlock_irqrestore(q->queue_lock, flags);
2562 
2563 	return false;
2564 }
2565 
2566 /**
2567  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2568  * @rq:         the request to complete
2569  * @error:      %0 for success, < %0 for error
2570  * @nr_bytes:   number of bytes to complete @rq
2571  * @bidi_bytes: number of bytes to complete @rq->next_rq
2572  *
2573  * Description:
2574  *     Identical to blk_end_bidi_request() except that queue lock is
2575  *     assumed to be locked on entry and remains so on return.
2576  *
2577  * Return:
2578  *     %false - we are done with this request
2579  *     %true  - still buffers pending for this request
2580  **/
2581 bool __blk_end_bidi_request(struct request *rq, int error,
2582 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2583 {
2584 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2585 		return true;
2586 
2587 	blk_finish_request(rq, error);
2588 
2589 	return false;
2590 }
2591 
2592 /**
2593  * blk_end_request - Helper function for drivers to complete the request.
2594  * @rq:       the request being processed
2595  * @error:    %0 for success, < %0 for error
2596  * @nr_bytes: number of bytes to complete
2597  *
2598  * Description:
2599  *     Ends I/O on a number of bytes attached to @rq.
2600  *     If @rq has leftover, sets it up for the next range of segments.
2601  *
2602  * Return:
2603  *     %false - we are done with this request
2604  *     %true  - still buffers pending for this request
2605  **/
2606 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2607 {
2608 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2609 }
2610 EXPORT_SYMBOL(blk_end_request);
2611 
2612 /**
2613  * blk_end_request_all - Helper function for drives to finish the request.
2614  * @rq: the request to finish
2615  * @error: %0 for success, < %0 for error
2616  *
2617  * Description:
2618  *     Completely finish @rq.
2619  */
2620 void blk_end_request_all(struct request *rq, int error)
2621 {
2622 	bool pending;
2623 	unsigned int bidi_bytes = 0;
2624 
2625 	if (unlikely(blk_bidi_rq(rq)))
2626 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2627 
2628 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2629 	BUG_ON(pending);
2630 }
2631 EXPORT_SYMBOL(blk_end_request_all);
2632 
2633 /**
2634  * blk_end_request_cur - Helper function to finish the current request chunk.
2635  * @rq: the request to finish the current chunk for
2636  * @error: %0 for success, < %0 for error
2637  *
2638  * Description:
2639  *     Complete the current consecutively mapped chunk from @rq.
2640  *
2641  * Return:
2642  *     %false - we are done with this request
2643  *     %true  - still buffers pending for this request
2644  */
2645 bool blk_end_request_cur(struct request *rq, int error)
2646 {
2647 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2648 }
2649 EXPORT_SYMBOL(blk_end_request_cur);
2650 
2651 /**
2652  * blk_end_request_err - Finish a request till the next failure boundary.
2653  * @rq: the request to finish till the next failure boundary for
2654  * @error: must be negative errno
2655  *
2656  * Description:
2657  *     Complete @rq till the next failure boundary.
2658  *
2659  * Return:
2660  *     %false - we are done with this request
2661  *     %true  - still buffers pending for this request
2662  */
2663 bool blk_end_request_err(struct request *rq, int error)
2664 {
2665 	WARN_ON(error >= 0);
2666 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2667 }
2668 EXPORT_SYMBOL_GPL(blk_end_request_err);
2669 
2670 /**
2671  * __blk_end_request - Helper function for drivers to complete the request.
2672  * @rq:       the request being processed
2673  * @error:    %0 for success, < %0 for error
2674  * @nr_bytes: number of bytes to complete
2675  *
2676  * Description:
2677  *     Must be called with queue lock held unlike blk_end_request().
2678  *
2679  * Return:
2680  *     %false - we are done with this request
2681  *     %true  - still buffers pending for this request
2682  **/
2683 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2684 {
2685 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2686 }
2687 EXPORT_SYMBOL(__blk_end_request);
2688 
2689 /**
2690  * __blk_end_request_all - Helper function for drives to finish the request.
2691  * @rq: the request to finish
2692  * @error: %0 for success, < %0 for error
2693  *
2694  * Description:
2695  *     Completely finish @rq.  Must be called with queue lock held.
2696  */
2697 void __blk_end_request_all(struct request *rq, int error)
2698 {
2699 	bool pending;
2700 	unsigned int bidi_bytes = 0;
2701 
2702 	if (unlikely(blk_bidi_rq(rq)))
2703 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2704 
2705 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2706 	BUG_ON(pending);
2707 }
2708 EXPORT_SYMBOL(__blk_end_request_all);
2709 
2710 /**
2711  * __blk_end_request_cur - Helper function to finish the current request chunk.
2712  * @rq: the request to finish the current chunk for
2713  * @error: %0 for success, < %0 for error
2714  *
2715  * Description:
2716  *     Complete the current consecutively mapped chunk from @rq.  Must
2717  *     be called with queue lock held.
2718  *
2719  * Return:
2720  *     %false - we are done with this request
2721  *     %true  - still buffers pending for this request
2722  */
2723 bool __blk_end_request_cur(struct request *rq, int error)
2724 {
2725 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2726 }
2727 EXPORT_SYMBOL(__blk_end_request_cur);
2728 
2729 /**
2730  * __blk_end_request_err - Finish a request till the next failure boundary.
2731  * @rq: the request to finish till the next failure boundary for
2732  * @error: must be negative errno
2733  *
2734  * Description:
2735  *     Complete @rq till the next failure boundary.  Must be called
2736  *     with queue lock held.
2737  *
2738  * Return:
2739  *     %false - we are done with this request
2740  *     %true  - still buffers pending for this request
2741  */
2742 bool __blk_end_request_err(struct request *rq, int error)
2743 {
2744 	WARN_ON(error >= 0);
2745 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2746 }
2747 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2748 
2749 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2750 		     struct bio *bio)
2751 {
2752 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2753 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2754 
2755 	if (bio_has_data(bio)) {
2756 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2757 		rq->buffer = bio_data(bio);
2758 	}
2759 	rq->__data_len = bio->bi_iter.bi_size;
2760 	rq->bio = rq->biotail = bio;
2761 
2762 	if (bio->bi_bdev)
2763 		rq->rq_disk = bio->bi_bdev->bd_disk;
2764 }
2765 
2766 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2767 /**
2768  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2769  * @rq: the request to be flushed
2770  *
2771  * Description:
2772  *     Flush all pages in @rq.
2773  */
2774 void rq_flush_dcache_pages(struct request *rq)
2775 {
2776 	struct req_iterator iter;
2777 	struct bio_vec bvec;
2778 
2779 	rq_for_each_segment(bvec, rq, iter)
2780 		flush_dcache_page(bvec.bv_page);
2781 }
2782 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2783 #endif
2784 
2785 /**
2786  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2787  * @q : the queue of the device being checked
2788  *
2789  * Description:
2790  *    Check if underlying low-level drivers of a device are busy.
2791  *    If the drivers want to export their busy state, they must set own
2792  *    exporting function using blk_queue_lld_busy() first.
2793  *
2794  *    Basically, this function is used only by request stacking drivers
2795  *    to stop dispatching requests to underlying devices when underlying
2796  *    devices are busy.  This behavior helps more I/O merging on the queue
2797  *    of the request stacking driver and prevents I/O throughput regression
2798  *    on burst I/O load.
2799  *
2800  * Return:
2801  *    0 - Not busy (The request stacking driver should dispatch request)
2802  *    1 - Busy (The request stacking driver should stop dispatching request)
2803  */
2804 int blk_lld_busy(struct request_queue *q)
2805 {
2806 	if (q->lld_busy_fn)
2807 		return q->lld_busy_fn(q);
2808 
2809 	return 0;
2810 }
2811 EXPORT_SYMBOL_GPL(blk_lld_busy);
2812 
2813 /**
2814  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2815  * @rq: the clone request to be cleaned up
2816  *
2817  * Description:
2818  *     Free all bios in @rq for a cloned request.
2819  */
2820 void blk_rq_unprep_clone(struct request *rq)
2821 {
2822 	struct bio *bio;
2823 
2824 	while ((bio = rq->bio) != NULL) {
2825 		rq->bio = bio->bi_next;
2826 
2827 		bio_put(bio);
2828 	}
2829 }
2830 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2831 
2832 /*
2833  * Copy attributes of the original request to the clone request.
2834  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2835  */
2836 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2837 {
2838 	dst->cpu = src->cpu;
2839 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2840 	dst->cmd_type = src->cmd_type;
2841 	dst->__sector = blk_rq_pos(src);
2842 	dst->__data_len = blk_rq_bytes(src);
2843 	dst->nr_phys_segments = src->nr_phys_segments;
2844 	dst->ioprio = src->ioprio;
2845 	dst->extra_len = src->extra_len;
2846 }
2847 
2848 /**
2849  * blk_rq_prep_clone - Helper function to setup clone request
2850  * @rq: the request to be setup
2851  * @rq_src: original request to be cloned
2852  * @bs: bio_set that bios for clone are allocated from
2853  * @gfp_mask: memory allocation mask for bio
2854  * @bio_ctr: setup function to be called for each clone bio.
2855  *           Returns %0 for success, non %0 for failure.
2856  * @data: private data to be passed to @bio_ctr
2857  *
2858  * Description:
2859  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2860  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2861  *     are not copied, and copying such parts is the caller's responsibility.
2862  *     Also, pages which the original bios are pointing to are not copied
2863  *     and the cloned bios just point same pages.
2864  *     So cloned bios must be completed before original bios, which means
2865  *     the caller must complete @rq before @rq_src.
2866  */
2867 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2868 		      struct bio_set *bs, gfp_t gfp_mask,
2869 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2870 		      void *data)
2871 {
2872 	struct bio *bio, *bio_src;
2873 
2874 	if (!bs)
2875 		bs = fs_bio_set;
2876 
2877 	blk_rq_init(NULL, rq);
2878 
2879 	__rq_for_each_bio(bio_src, rq_src) {
2880 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2881 		if (!bio)
2882 			goto free_and_out;
2883 
2884 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2885 			goto free_and_out;
2886 
2887 		if (rq->bio) {
2888 			rq->biotail->bi_next = bio;
2889 			rq->biotail = bio;
2890 		} else
2891 			rq->bio = rq->biotail = bio;
2892 	}
2893 
2894 	__blk_rq_prep_clone(rq, rq_src);
2895 
2896 	return 0;
2897 
2898 free_and_out:
2899 	if (bio)
2900 		bio_put(bio);
2901 	blk_rq_unprep_clone(rq);
2902 
2903 	return -ENOMEM;
2904 }
2905 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2906 
2907 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2908 {
2909 	return queue_work(kblockd_workqueue, work);
2910 }
2911 EXPORT_SYMBOL(kblockd_schedule_work);
2912 
2913 int kblockd_schedule_delayed_work(struct request_queue *q,
2914 			struct delayed_work *dwork, unsigned long delay)
2915 {
2916 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2917 }
2918 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2919 
2920 #define PLUG_MAGIC	0x91827364
2921 
2922 /**
2923  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2924  * @plug:	The &struct blk_plug that needs to be initialized
2925  *
2926  * Description:
2927  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2928  *   pending I/O should the task end up blocking between blk_start_plug() and
2929  *   blk_finish_plug(). This is important from a performance perspective, but
2930  *   also ensures that we don't deadlock. For instance, if the task is blocking
2931  *   for a memory allocation, memory reclaim could end up wanting to free a
2932  *   page belonging to that request that is currently residing in our private
2933  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2934  *   this kind of deadlock.
2935  */
2936 void blk_start_plug(struct blk_plug *plug)
2937 {
2938 	struct task_struct *tsk = current;
2939 
2940 	plug->magic = PLUG_MAGIC;
2941 	INIT_LIST_HEAD(&plug->list);
2942 	INIT_LIST_HEAD(&plug->mq_list);
2943 	INIT_LIST_HEAD(&plug->cb_list);
2944 
2945 	/*
2946 	 * If this is a nested plug, don't actually assign it. It will be
2947 	 * flushed on its own.
2948 	 */
2949 	if (!tsk->plug) {
2950 		/*
2951 		 * Store ordering should not be needed here, since a potential
2952 		 * preempt will imply a full memory barrier
2953 		 */
2954 		tsk->plug = plug;
2955 	}
2956 }
2957 EXPORT_SYMBOL(blk_start_plug);
2958 
2959 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2960 {
2961 	struct request *rqa = container_of(a, struct request, queuelist);
2962 	struct request *rqb = container_of(b, struct request, queuelist);
2963 
2964 	return !(rqa->q < rqb->q ||
2965 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2966 }
2967 
2968 /*
2969  * If 'from_schedule' is true, then postpone the dispatch of requests
2970  * until a safe kblockd context. We due this to avoid accidental big
2971  * additional stack usage in driver dispatch, in places where the originally
2972  * plugger did not intend it.
2973  */
2974 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2975 			    bool from_schedule)
2976 	__releases(q->queue_lock)
2977 {
2978 	trace_block_unplug(q, depth, !from_schedule);
2979 
2980 	if (from_schedule)
2981 		blk_run_queue_async(q);
2982 	else
2983 		__blk_run_queue(q);
2984 	spin_unlock(q->queue_lock);
2985 }
2986 
2987 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2988 {
2989 	LIST_HEAD(callbacks);
2990 
2991 	while (!list_empty(&plug->cb_list)) {
2992 		list_splice_init(&plug->cb_list, &callbacks);
2993 
2994 		while (!list_empty(&callbacks)) {
2995 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2996 							  struct blk_plug_cb,
2997 							  list);
2998 			list_del(&cb->list);
2999 			cb->callback(cb, from_schedule);
3000 		}
3001 	}
3002 }
3003 
3004 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3005 				      int size)
3006 {
3007 	struct blk_plug *plug = current->plug;
3008 	struct blk_plug_cb *cb;
3009 
3010 	if (!plug)
3011 		return NULL;
3012 
3013 	list_for_each_entry(cb, &plug->cb_list, list)
3014 		if (cb->callback == unplug && cb->data == data)
3015 			return cb;
3016 
3017 	/* Not currently on the callback list */
3018 	BUG_ON(size < sizeof(*cb));
3019 	cb = kzalloc(size, GFP_ATOMIC);
3020 	if (cb) {
3021 		cb->data = data;
3022 		cb->callback = unplug;
3023 		list_add(&cb->list, &plug->cb_list);
3024 	}
3025 	return cb;
3026 }
3027 EXPORT_SYMBOL(blk_check_plugged);
3028 
3029 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3030 {
3031 	struct request_queue *q;
3032 	unsigned long flags;
3033 	struct request *rq;
3034 	LIST_HEAD(list);
3035 	unsigned int depth;
3036 
3037 	BUG_ON(plug->magic != PLUG_MAGIC);
3038 
3039 	flush_plug_callbacks(plug, from_schedule);
3040 
3041 	if (!list_empty(&plug->mq_list))
3042 		blk_mq_flush_plug_list(plug, from_schedule);
3043 
3044 	if (list_empty(&plug->list))
3045 		return;
3046 
3047 	list_splice_init(&plug->list, &list);
3048 
3049 	list_sort(NULL, &list, plug_rq_cmp);
3050 
3051 	q = NULL;
3052 	depth = 0;
3053 
3054 	/*
3055 	 * Save and disable interrupts here, to avoid doing it for every
3056 	 * queue lock we have to take.
3057 	 */
3058 	local_irq_save(flags);
3059 	while (!list_empty(&list)) {
3060 		rq = list_entry_rq(list.next);
3061 		list_del_init(&rq->queuelist);
3062 		BUG_ON(!rq->q);
3063 		if (rq->q != q) {
3064 			/*
3065 			 * This drops the queue lock
3066 			 */
3067 			if (q)
3068 				queue_unplugged(q, depth, from_schedule);
3069 			q = rq->q;
3070 			depth = 0;
3071 			spin_lock(q->queue_lock);
3072 		}
3073 
3074 		/*
3075 		 * Short-circuit if @q is dead
3076 		 */
3077 		if (unlikely(blk_queue_dying(q))) {
3078 			__blk_end_request_all(rq, -ENODEV);
3079 			continue;
3080 		}
3081 
3082 		/*
3083 		 * rq is already accounted, so use raw insert
3084 		 */
3085 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3086 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3087 		else
3088 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3089 
3090 		depth++;
3091 	}
3092 
3093 	/*
3094 	 * This drops the queue lock
3095 	 */
3096 	if (q)
3097 		queue_unplugged(q, depth, from_schedule);
3098 
3099 	local_irq_restore(flags);
3100 }
3101 
3102 void blk_finish_plug(struct blk_plug *plug)
3103 {
3104 	blk_flush_plug_list(plug, false);
3105 
3106 	if (plug == current->plug)
3107 		current->plug = NULL;
3108 }
3109 EXPORT_SYMBOL(blk_finish_plug);
3110 
3111 #ifdef CONFIG_PM_RUNTIME
3112 /**
3113  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3114  * @q: the queue of the device
3115  * @dev: the device the queue belongs to
3116  *
3117  * Description:
3118  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3119  *    @dev. Drivers that want to take advantage of request-based runtime PM
3120  *    should call this function after @dev has been initialized, and its
3121  *    request queue @q has been allocated, and runtime PM for it can not happen
3122  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3123  *    cases, driver should call this function before any I/O has taken place.
3124  *
3125  *    This function takes care of setting up using auto suspend for the device,
3126  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3127  *    until an updated value is either set by user or by driver. Drivers do
3128  *    not need to touch other autosuspend settings.
3129  *
3130  *    The block layer runtime PM is request based, so only works for drivers
3131  *    that use request as their IO unit instead of those directly use bio's.
3132  */
3133 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3134 {
3135 	q->dev = dev;
3136 	q->rpm_status = RPM_ACTIVE;
3137 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3138 	pm_runtime_use_autosuspend(q->dev);
3139 }
3140 EXPORT_SYMBOL(blk_pm_runtime_init);
3141 
3142 /**
3143  * blk_pre_runtime_suspend - Pre runtime suspend check
3144  * @q: the queue of the device
3145  *
3146  * Description:
3147  *    This function will check if runtime suspend is allowed for the device
3148  *    by examining if there are any requests pending in the queue. If there
3149  *    are requests pending, the device can not be runtime suspended; otherwise,
3150  *    the queue's status will be updated to SUSPENDING and the driver can
3151  *    proceed to suspend the device.
3152  *
3153  *    For the not allowed case, we mark last busy for the device so that
3154  *    runtime PM core will try to autosuspend it some time later.
3155  *
3156  *    This function should be called near the start of the device's
3157  *    runtime_suspend callback.
3158  *
3159  * Return:
3160  *    0		- OK to runtime suspend the device
3161  *    -EBUSY	- Device should not be runtime suspended
3162  */
3163 int blk_pre_runtime_suspend(struct request_queue *q)
3164 {
3165 	int ret = 0;
3166 
3167 	spin_lock_irq(q->queue_lock);
3168 	if (q->nr_pending) {
3169 		ret = -EBUSY;
3170 		pm_runtime_mark_last_busy(q->dev);
3171 	} else {
3172 		q->rpm_status = RPM_SUSPENDING;
3173 	}
3174 	spin_unlock_irq(q->queue_lock);
3175 	return ret;
3176 }
3177 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3178 
3179 /**
3180  * blk_post_runtime_suspend - Post runtime suspend processing
3181  * @q: the queue of the device
3182  * @err: return value of the device's runtime_suspend function
3183  *
3184  * Description:
3185  *    Update the queue's runtime status according to the return value of the
3186  *    device's runtime suspend function and mark last busy for the device so
3187  *    that PM core will try to auto suspend the device at a later time.
3188  *
3189  *    This function should be called near the end of the device's
3190  *    runtime_suspend callback.
3191  */
3192 void blk_post_runtime_suspend(struct request_queue *q, int err)
3193 {
3194 	spin_lock_irq(q->queue_lock);
3195 	if (!err) {
3196 		q->rpm_status = RPM_SUSPENDED;
3197 	} else {
3198 		q->rpm_status = RPM_ACTIVE;
3199 		pm_runtime_mark_last_busy(q->dev);
3200 	}
3201 	spin_unlock_irq(q->queue_lock);
3202 }
3203 EXPORT_SYMBOL(blk_post_runtime_suspend);
3204 
3205 /**
3206  * blk_pre_runtime_resume - Pre runtime resume processing
3207  * @q: the queue of the device
3208  *
3209  * Description:
3210  *    Update the queue's runtime status to RESUMING in preparation for the
3211  *    runtime resume of the device.
3212  *
3213  *    This function should be called near the start of the device's
3214  *    runtime_resume callback.
3215  */
3216 void blk_pre_runtime_resume(struct request_queue *q)
3217 {
3218 	spin_lock_irq(q->queue_lock);
3219 	q->rpm_status = RPM_RESUMING;
3220 	spin_unlock_irq(q->queue_lock);
3221 }
3222 EXPORT_SYMBOL(blk_pre_runtime_resume);
3223 
3224 /**
3225  * blk_post_runtime_resume - Post runtime resume processing
3226  * @q: the queue of the device
3227  * @err: return value of the device's runtime_resume function
3228  *
3229  * Description:
3230  *    Update the queue's runtime status according to the return value of the
3231  *    device's runtime_resume function. If it is successfully resumed, process
3232  *    the requests that are queued into the device's queue when it is resuming
3233  *    and then mark last busy and initiate autosuspend for it.
3234  *
3235  *    This function should be called near the end of the device's
3236  *    runtime_resume callback.
3237  */
3238 void blk_post_runtime_resume(struct request_queue *q, int err)
3239 {
3240 	spin_lock_irq(q->queue_lock);
3241 	if (!err) {
3242 		q->rpm_status = RPM_ACTIVE;
3243 		__blk_run_queue(q);
3244 		pm_runtime_mark_last_busy(q->dev);
3245 		pm_request_autosuspend(q->dev);
3246 	} else {
3247 		q->rpm_status = RPM_SUSPENDED;
3248 	}
3249 	spin_unlock_irq(q->queue_lock);
3250 }
3251 EXPORT_SYMBOL(blk_post_runtime_resume);
3252 #endif
3253 
3254 int __init blk_dev_init(void)
3255 {
3256 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3257 			sizeof(((struct request *)0)->cmd_flags));
3258 
3259 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3260 	kblockd_workqueue = alloc_workqueue("kblockd",
3261 					    WQ_MEM_RECLAIM | WQ_HIGHPRI |
3262 					    WQ_POWER_EFFICIENT, 0);
3263 	if (!kblockd_workqueue)
3264 		panic("Failed to create kblockd\n");
3265 
3266 	request_cachep = kmem_cache_create("blkdev_requests",
3267 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3268 
3269 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3270 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3271 
3272 	return 0;
3273 }
3274