1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/blktrace_api.h> 30 #include <linux/fault-inject.h> 31 32 #include "blk.h" 33 34 static int __make_request(struct request_queue *q, struct bio *bio); 35 36 /* 37 * For the allocated request tables 38 */ 39 static struct kmem_cache *request_cachep; 40 41 /* 42 * For queue allocation 43 */ 44 struct kmem_cache *blk_requestq_cachep; 45 46 /* 47 * Controlling structure to kblockd 48 */ 49 static struct workqueue_struct *kblockd_workqueue; 50 51 static void drive_stat_acct(struct request *rq, int new_io) 52 { 53 struct hd_struct *part; 54 int rw = rq_data_dir(rq); 55 int cpu; 56 57 if (!blk_fs_request(rq) || !rq->rq_disk) 58 return; 59 60 cpu = part_stat_lock(); 61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector); 62 63 if (!new_io) 64 part_stat_inc(cpu, part, merges[rw]); 65 else { 66 part_round_stats(cpu, part); 67 part_inc_in_flight(part); 68 } 69 70 part_stat_unlock(); 71 } 72 73 void blk_queue_congestion_threshold(struct request_queue *q) 74 { 75 int nr; 76 77 nr = q->nr_requests - (q->nr_requests / 8) + 1; 78 if (nr > q->nr_requests) 79 nr = q->nr_requests; 80 q->nr_congestion_on = nr; 81 82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 83 if (nr < 1) 84 nr = 1; 85 q->nr_congestion_off = nr; 86 } 87 88 /** 89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 90 * @bdev: device 91 * 92 * Locates the passed device's request queue and returns the address of its 93 * backing_dev_info 94 * 95 * Will return NULL if the request queue cannot be located. 96 */ 97 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 98 { 99 struct backing_dev_info *ret = NULL; 100 struct request_queue *q = bdev_get_queue(bdev); 101 102 if (q) 103 ret = &q->backing_dev_info; 104 return ret; 105 } 106 EXPORT_SYMBOL(blk_get_backing_dev_info); 107 108 void blk_rq_init(struct request_queue *q, struct request *rq) 109 { 110 memset(rq, 0, sizeof(*rq)); 111 112 INIT_LIST_HEAD(&rq->queuelist); 113 INIT_LIST_HEAD(&rq->timeout_list); 114 rq->cpu = -1; 115 rq->q = q; 116 rq->sector = rq->hard_sector = (sector_t) -1; 117 INIT_HLIST_NODE(&rq->hash); 118 RB_CLEAR_NODE(&rq->rb_node); 119 rq->cmd = rq->__cmd; 120 rq->tag = -1; 121 rq->ref_count = 1; 122 } 123 EXPORT_SYMBOL(blk_rq_init); 124 125 static void req_bio_endio(struct request *rq, struct bio *bio, 126 unsigned int nbytes, int error) 127 { 128 struct request_queue *q = rq->q; 129 130 if (&q->bar_rq != rq) { 131 if (error) 132 clear_bit(BIO_UPTODATE, &bio->bi_flags); 133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 134 error = -EIO; 135 136 if (unlikely(nbytes > bio->bi_size)) { 137 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 138 __func__, nbytes, bio->bi_size); 139 nbytes = bio->bi_size; 140 } 141 142 bio->bi_size -= nbytes; 143 bio->bi_sector += (nbytes >> 9); 144 145 if (bio_integrity(bio)) 146 bio_integrity_advance(bio, nbytes); 147 148 if (bio->bi_size == 0) 149 bio_endio(bio, error); 150 } else { 151 152 /* 153 * Okay, this is the barrier request in progress, just 154 * record the error; 155 */ 156 if (error && !q->orderr) 157 q->orderr = error; 158 } 159 } 160 161 void blk_dump_rq_flags(struct request *rq, char *msg) 162 { 163 int bit; 164 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 167 rq->cmd_flags); 168 169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 170 (unsigned long long)rq->sector, 171 rq->nr_sectors, 172 rq->current_nr_sectors); 173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 174 rq->bio, rq->biotail, 175 rq->buffer, rq->data, 176 rq->data_len); 177 178 if (blk_pc_request(rq)) { 179 printk(KERN_INFO " cdb: "); 180 for (bit = 0; bit < BLK_MAX_CDB; bit++) 181 printk("%02x ", rq->cmd[bit]); 182 printk("\n"); 183 } 184 } 185 EXPORT_SYMBOL(blk_dump_rq_flags); 186 187 /* 188 * "plug" the device if there are no outstanding requests: this will 189 * force the transfer to start only after we have put all the requests 190 * on the list. 191 * 192 * This is called with interrupts off and no requests on the queue and 193 * with the queue lock held. 194 */ 195 void blk_plug_device(struct request_queue *q) 196 { 197 WARN_ON(!irqs_disabled()); 198 199 /* 200 * don't plug a stopped queue, it must be paired with blk_start_queue() 201 * which will restart the queueing 202 */ 203 if (blk_queue_stopped(q)) 204 return; 205 206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) { 207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 209 } 210 } 211 EXPORT_SYMBOL(blk_plug_device); 212 213 /** 214 * blk_plug_device_unlocked - plug a device without queue lock held 215 * @q: The &struct request_queue to plug 216 * 217 * Description: 218 * Like @blk_plug_device(), but grabs the queue lock and disables 219 * interrupts. 220 **/ 221 void blk_plug_device_unlocked(struct request_queue *q) 222 { 223 unsigned long flags; 224 225 spin_lock_irqsave(q->queue_lock, flags); 226 blk_plug_device(q); 227 spin_unlock_irqrestore(q->queue_lock, flags); 228 } 229 EXPORT_SYMBOL(blk_plug_device_unlocked); 230 231 /* 232 * remove the queue from the plugged list, if present. called with 233 * queue lock held and interrupts disabled. 234 */ 235 int blk_remove_plug(struct request_queue *q) 236 { 237 WARN_ON(!irqs_disabled()); 238 239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q)) 240 return 0; 241 242 del_timer(&q->unplug_timer); 243 return 1; 244 } 245 EXPORT_SYMBOL(blk_remove_plug); 246 247 /* 248 * remove the plug and let it rip.. 249 */ 250 void __generic_unplug_device(struct request_queue *q) 251 { 252 if (unlikely(blk_queue_stopped(q))) 253 return; 254 255 if (!blk_remove_plug(q)) 256 return; 257 258 q->request_fn(q); 259 } 260 261 /** 262 * generic_unplug_device - fire a request queue 263 * @q: The &struct request_queue in question 264 * 265 * Description: 266 * Linux uses plugging to build bigger requests queues before letting 267 * the device have at them. If a queue is plugged, the I/O scheduler 268 * is still adding and merging requests on the queue. Once the queue 269 * gets unplugged, the request_fn defined for the queue is invoked and 270 * transfers started. 271 **/ 272 void generic_unplug_device(struct request_queue *q) 273 { 274 if (blk_queue_plugged(q)) { 275 spin_lock_irq(q->queue_lock); 276 __generic_unplug_device(q); 277 spin_unlock_irq(q->queue_lock); 278 } 279 } 280 EXPORT_SYMBOL(generic_unplug_device); 281 282 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 283 struct page *page) 284 { 285 struct request_queue *q = bdi->unplug_io_data; 286 287 blk_unplug(q); 288 } 289 290 void blk_unplug_work(struct work_struct *work) 291 { 292 struct request_queue *q = 293 container_of(work, struct request_queue, unplug_work); 294 295 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 296 q->rq.count[READ] + q->rq.count[WRITE]); 297 298 q->unplug_fn(q); 299 } 300 301 void blk_unplug_timeout(unsigned long data) 302 { 303 struct request_queue *q = (struct request_queue *)data; 304 305 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 306 q->rq.count[READ] + q->rq.count[WRITE]); 307 308 kblockd_schedule_work(q, &q->unplug_work); 309 } 310 311 void blk_unplug(struct request_queue *q) 312 { 313 /* 314 * devices don't necessarily have an ->unplug_fn defined 315 */ 316 if (q->unplug_fn) { 317 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 318 q->rq.count[READ] + q->rq.count[WRITE]); 319 320 q->unplug_fn(q); 321 } 322 } 323 EXPORT_SYMBOL(blk_unplug); 324 325 static void blk_invoke_request_fn(struct request_queue *q) 326 { 327 if (unlikely(blk_queue_stopped(q))) 328 return; 329 330 /* 331 * one level of recursion is ok and is much faster than kicking 332 * the unplug handling 333 */ 334 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) { 335 q->request_fn(q); 336 queue_flag_clear(QUEUE_FLAG_REENTER, q); 337 } else { 338 queue_flag_set(QUEUE_FLAG_PLUGGED, q); 339 kblockd_schedule_work(q, &q->unplug_work); 340 } 341 } 342 343 /** 344 * blk_start_queue - restart a previously stopped queue 345 * @q: The &struct request_queue in question 346 * 347 * Description: 348 * blk_start_queue() will clear the stop flag on the queue, and call 349 * the request_fn for the queue if it was in a stopped state when 350 * entered. Also see blk_stop_queue(). Queue lock must be held. 351 **/ 352 void blk_start_queue(struct request_queue *q) 353 { 354 WARN_ON(!irqs_disabled()); 355 356 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 357 blk_invoke_request_fn(q); 358 } 359 EXPORT_SYMBOL(blk_start_queue); 360 361 /** 362 * blk_stop_queue - stop a queue 363 * @q: The &struct request_queue in question 364 * 365 * Description: 366 * The Linux block layer assumes that a block driver will consume all 367 * entries on the request queue when the request_fn strategy is called. 368 * Often this will not happen, because of hardware limitations (queue 369 * depth settings). If a device driver gets a 'queue full' response, 370 * or if it simply chooses not to queue more I/O at one point, it can 371 * call this function to prevent the request_fn from being called until 372 * the driver has signalled it's ready to go again. This happens by calling 373 * blk_start_queue() to restart queue operations. Queue lock must be held. 374 **/ 375 void blk_stop_queue(struct request_queue *q) 376 { 377 blk_remove_plug(q); 378 queue_flag_set(QUEUE_FLAG_STOPPED, q); 379 } 380 EXPORT_SYMBOL(blk_stop_queue); 381 382 /** 383 * blk_sync_queue - cancel any pending callbacks on a queue 384 * @q: the queue 385 * 386 * Description: 387 * The block layer may perform asynchronous callback activity 388 * on a queue, such as calling the unplug function after a timeout. 389 * A block device may call blk_sync_queue to ensure that any 390 * such activity is cancelled, thus allowing it to release resources 391 * that the callbacks might use. The caller must already have made sure 392 * that its ->make_request_fn will not re-add plugging prior to calling 393 * this function. 394 * 395 */ 396 void blk_sync_queue(struct request_queue *q) 397 { 398 del_timer_sync(&q->unplug_timer); 399 kblockd_flush_work(&q->unplug_work); 400 } 401 EXPORT_SYMBOL(blk_sync_queue); 402 403 /** 404 * __blk_run_queue - run a single device queue 405 * @q: The queue to run 406 * 407 * Description: 408 * See @blk_run_queue. This variant must be called with the queue lock 409 * held and interrupts disabled. 410 * 411 */ 412 void __blk_run_queue(struct request_queue *q) 413 { 414 blk_remove_plug(q); 415 416 /* 417 * Only recurse once to avoid overrunning the stack, let the unplug 418 * handling reinvoke the handler shortly if we already got there. 419 */ 420 if (!elv_queue_empty(q)) 421 blk_invoke_request_fn(q); 422 } 423 EXPORT_SYMBOL(__blk_run_queue); 424 425 /** 426 * blk_run_queue - run a single device queue 427 * @q: The queue to run 428 * 429 * Description: 430 * Invoke request handling on this queue, if it has pending work to do. 431 * May be used to restart queueing when a request has completed. Also 432 * See @blk_start_queueing. 433 * 434 */ 435 void blk_run_queue(struct request_queue *q) 436 { 437 unsigned long flags; 438 439 spin_lock_irqsave(q->queue_lock, flags); 440 __blk_run_queue(q); 441 spin_unlock_irqrestore(q->queue_lock, flags); 442 } 443 EXPORT_SYMBOL(blk_run_queue); 444 445 void blk_put_queue(struct request_queue *q) 446 { 447 kobject_put(&q->kobj); 448 } 449 450 void blk_cleanup_queue(struct request_queue *q) 451 { 452 /* 453 * We know we have process context here, so we can be a little 454 * cautious and ensure that pending block actions on this device 455 * are done before moving on. Going into this function, we should 456 * not have processes doing IO to this device. 457 */ 458 blk_sync_queue(q); 459 460 mutex_lock(&q->sysfs_lock); 461 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 462 mutex_unlock(&q->sysfs_lock); 463 464 if (q->elevator) 465 elevator_exit(q->elevator); 466 467 blk_put_queue(q); 468 } 469 EXPORT_SYMBOL(blk_cleanup_queue); 470 471 static int blk_init_free_list(struct request_queue *q) 472 { 473 struct request_list *rl = &q->rq; 474 475 rl->count[READ] = rl->count[WRITE] = 0; 476 rl->starved[READ] = rl->starved[WRITE] = 0; 477 rl->elvpriv = 0; 478 init_waitqueue_head(&rl->wait[READ]); 479 init_waitqueue_head(&rl->wait[WRITE]); 480 481 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 482 mempool_free_slab, request_cachep, q->node); 483 484 if (!rl->rq_pool) 485 return -ENOMEM; 486 487 return 0; 488 } 489 490 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 491 { 492 return blk_alloc_queue_node(gfp_mask, -1); 493 } 494 EXPORT_SYMBOL(blk_alloc_queue); 495 496 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 497 { 498 struct request_queue *q; 499 int err; 500 501 q = kmem_cache_alloc_node(blk_requestq_cachep, 502 gfp_mask | __GFP_ZERO, node_id); 503 if (!q) 504 return NULL; 505 506 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 507 q->backing_dev_info.unplug_io_data = q; 508 err = bdi_init(&q->backing_dev_info); 509 if (err) { 510 kmem_cache_free(blk_requestq_cachep, q); 511 return NULL; 512 } 513 514 init_timer(&q->unplug_timer); 515 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 516 INIT_LIST_HEAD(&q->timeout_list); 517 INIT_WORK(&q->unplug_work, blk_unplug_work); 518 519 kobject_init(&q->kobj, &blk_queue_ktype); 520 521 mutex_init(&q->sysfs_lock); 522 spin_lock_init(&q->__queue_lock); 523 524 return q; 525 } 526 EXPORT_SYMBOL(blk_alloc_queue_node); 527 528 /** 529 * blk_init_queue - prepare a request queue for use with a block device 530 * @rfn: The function to be called to process requests that have been 531 * placed on the queue. 532 * @lock: Request queue spin lock 533 * 534 * Description: 535 * If a block device wishes to use the standard request handling procedures, 536 * which sorts requests and coalesces adjacent requests, then it must 537 * call blk_init_queue(). The function @rfn will be called when there 538 * are requests on the queue that need to be processed. If the device 539 * supports plugging, then @rfn may not be called immediately when requests 540 * are available on the queue, but may be called at some time later instead. 541 * Plugged queues are generally unplugged when a buffer belonging to one 542 * of the requests on the queue is needed, or due to memory pressure. 543 * 544 * @rfn is not required, or even expected, to remove all requests off the 545 * queue, but only as many as it can handle at a time. If it does leave 546 * requests on the queue, it is responsible for arranging that the requests 547 * get dealt with eventually. 548 * 549 * The queue spin lock must be held while manipulating the requests on the 550 * request queue; this lock will be taken also from interrupt context, so irq 551 * disabling is needed for it. 552 * 553 * Function returns a pointer to the initialized request queue, or %NULL if 554 * it didn't succeed. 555 * 556 * Note: 557 * blk_init_queue() must be paired with a blk_cleanup_queue() call 558 * when the block device is deactivated (such as at module unload). 559 **/ 560 561 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 562 { 563 return blk_init_queue_node(rfn, lock, -1); 564 } 565 EXPORT_SYMBOL(blk_init_queue); 566 567 struct request_queue * 568 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 569 { 570 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 571 572 if (!q) 573 return NULL; 574 575 q->node = node_id; 576 if (blk_init_free_list(q)) { 577 kmem_cache_free(blk_requestq_cachep, q); 578 return NULL; 579 } 580 581 /* 582 * if caller didn't supply a lock, they get per-queue locking with 583 * our embedded lock 584 */ 585 if (!lock) 586 lock = &q->__queue_lock; 587 588 q->request_fn = rfn; 589 q->prep_rq_fn = NULL; 590 q->unplug_fn = generic_unplug_device; 591 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER | 592 1 << QUEUE_FLAG_STACKABLE); 593 q->queue_lock = lock; 594 595 blk_queue_segment_boundary(q, 0xffffffff); 596 597 blk_queue_make_request(q, __make_request); 598 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 599 600 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 601 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 602 603 q->sg_reserved_size = INT_MAX; 604 605 blk_set_cmd_filter_defaults(&q->cmd_filter); 606 607 /* 608 * all done 609 */ 610 if (!elevator_init(q, NULL)) { 611 blk_queue_congestion_threshold(q); 612 return q; 613 } 614 615 blk_put_queue(q); 616 return NULL; 617 } 618 EXPORT_SYMBOL(blk_init_queue_node); 619 620 int blk_get_queue(struct request_queue *q) 621 { 622 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 623 kobject_get(&q->kobj); 624 return 0; 625 } 626 627 return 1; 628 } 629 630 static inline void blk_free_request(struct request_queue *q, struct request *rq) 631 { 632 if (rq->cmd_flags & REQ_ELVPRIV) 633 elv_put_request(q, rq); 634 mempool_free(rq, q->rq.rq_pool); 635 } 636 637 static struct request * 638 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 639 { 640 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 641 642 if (!rq) 643 return NULL; 644 645 blk_rq_init(q, rq); 646 647 rq->cmd_flags = rw | REQ_ALLOCED; 648 649 if (priv) { 650 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 651 mempool_free(rq, q->rq.rq_pool); 652 return NULL; 653 } 654 rq->cmd_flags |= REQ_ELVPRIV; 655 } 656 657 return rq; 658 } 659 660 /* 661 * ioc_batching returns true if the ioc is a valid batching request and 662 * should be given priority access to a request. 663 */ 664 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 665 { 666 if (!ioc) 667 return 0; 668 669 /* 670 * Make sure the process is able to allocate at least 1 request 671 * even if the batch times out, otherwise we could theoretically 672 * lose wakeups. 673 */ 674 return ioc->nr_batch_requests == q->nr_batching || 675 (ioc->nr_batch_requests > 0 676 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 677 } 678 679 /* 680 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 681 * will cause the process to be a "batcher" on all queues in the system. This 682 * is the behaviour we want though - once it gets a wakeup it should be given 683 * a nice run. 684 */ 685 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 686 { 687 if (!ioc || ioc_batching(q, ioc)) 688 return; 689 690 ioc->nr_batch_requests = q->nr_batching; 691 ioc->last_waited = jiffies; 692 } 693 694 static void __freed_request(struct request_queue *q, int rw) 695 { 696 struct request_list *rl = &q->rq; 697 698 if (rl->count[rw] < queue_congestion_off_threshold(q)) 699 blk_clear_queue_congested(q, rw); 700 701 if (rl->count[rw] + 1 <= q->nr_requests) { 702 if (waitqueue_active(&rl->wait[rw])) 703 wake_up(&rl->wait[rw]); 704 705 blk_clear_queue_full(q, rw); 706 } 707 } 708 709 /* 710 * A request has just been released. Account for it, update the full and 711 * congestion status, wake up any waiters. Called under q->queue_lock. 712 */ 713 static void freed_request(struct request_queue *q, int rw, int priv) 714 { 715 struct request_list *rl = &q->rq; 716 717 rl->count[rw]--; 718 if (priv) 719 rl->elvpriv--; 720 721 __freed_request(q, rw); 722 723 if (unlikely(rl->starved[rw ^ 1])) 724 __freed_request(q, rw ^ 1); 725 } 726 727 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 728 /* 729 * Get a free request, queue_lock must be held. 730 * Returns NULL on failure, with queue_lock held. 731 * Returns !NULL on success, with queue_lock *not held*. 732 */ 733 static struct request *get_request(struct request_queue *q, int rw_flags, 734 struct bio *bio, gfp_t gfp_mask) 735 { 736 struct request *rq = NULL; 737 struct request_list *rl = &q->rq; 738 struct io_context *ioc = NULL; 739 const int rw = rw_flags & 0x01; 740 int may_queue, priv; 741 742 may_queue = elv_may_queue(q, rw_flags); 743 if (may_queue == ELV_MQUEUE_NO) 744 goto rq_starved; 745 746 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 747 if (rl->count[rw]+1 >= q->nr_requests) { 748 ioc = current_io_context(GFP_ATOMIC, q->node); 749 /* 750 * The queue will fill after this allocation, so set 751 * it as full, and mark this process as "batching". 752 * This process will be allowed to complete a batch of 753 * requests, others will be blocked. 754 */ 755 if (!blk_queue_full(q, rw)) { 756 ioc_set_batching(q, ioc); 757 blk_set_queue_full(q, rw); 758 } else { 759 if (may_queue != ELV_MQUEUE_MUST 760 && !ioc_batching(q, ioc)) { 761 /* 762 * The queue is full and the allocating 763 * process is not a "batcher", and not 764 * exempted by the IO scheduler 765 */ 766 goto out; 767 } 768 } 769 } 770 blk_set_queue_congested(q, rw); 771 } 772 773 /* 774 * Only allow batching queuers to allocate up to 50% over the defined 775 * limit of requests, otherwise we could have thousands of requests 776 * allocated with any setting of ->nr_requests 777 */ 778 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 779 goto out; 780 781 rl->count[rw]++; 782 rl->starved[rw] = 0; 783 784 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 785 if (priv) 786 rl->elvpriv++; 787 788 spin_unlock_irq(q->queue_lock); 789 790 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 791 if (unlikely(!rq)) { 792 /* 793 * Allocation failed presumably due to memory. Undo anything 794 * we might have messed up. 795 * 796 * Allocating task should really be put onto the front of the 797 * wait queue, but this is pretty rare. 798 */ 799 spin_lock_irq(q->queue_lock); 800 freed_request(q, rw, priv); 801 802 /* 803 * in the very unlikely event that allocation failed and no 804 * requests for this direction was pending, mark us starved 805 * so that freeing of a request in the other direction will 806 * notice us. another possible fix would be to split the 807 * rq mempool into READ and WRITE 808 */ 809 rq_starved: 810 if (unlikely(rl->count[rw] == 0)) 811 rl->starved[rw] = 1; 812 813 goto out; 814 } 815 816 /* 817 * ioc may be NULL here, and ioc_batching will be false. That's 818 * OK, if the queue is under the request limit then requests need 819 * not count toward the nr_batch_requests limit. There will always 820 * be some limit enforced by BLK_BATCH_TIME. 821 */ 822 if (ioc_batching(q, ioc)) 823 ioc->nr_batch_requests--; 824 825 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 826 out: 827 return rq; 828 } 829 830 /* 831 * No available requests for this queue, unplug the device and wait for some 832 * requests to become available. 833 * 834 * Called with q->queue_lock held, and returns with it unlocked. 835 */ 836 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 837 struct bio *bio) 838 { 839 const int rw = rw_flags & 0x01; 840 struct request *rq; 841 842 rq = get_request(q, rw_flags, bio, GFP_NOIO); 843 while (!rq) { 844 DEFINE_WAIT(wait); 845 struct io_context *ioc; 846 struct request_list *rl = &q->rq; 847 848 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 849 TASK_UNINTERRUPTIBLE); 850 851 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 852 853 __generic_unplug_device(q); 854 spin_unlock_irq(q->queue_lock); 855 io_schedule(); 856 857 /* 858 * After sleeping, we become a "batching" process and 859 * will be able to allocate at least one request, and 860 * up to a big batch of them for a small period time. 861 * See ioc_batching, ioc_set_batching 862 */ 863 ioc = current_io_context(GFP_NOIO, q->node); 864 ioc_set_batching(q, ioc); 865 866 spin_lock_irq(q->queue_lock); 867 finish_wait(&rl->wait[rw], &wait); 868 869 rq = get_request(q, rw_flags, bio, GFP_NOIO); 870 }; 871 872 return rq; 873 } 874 875 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 876 { 877 struct request *rq; 878 879 BUG_ON(rw != READ && rw != WRITE); 880 881 spin_lock_irq(q->queue_lock); 882 if (gfp_mask & __GFP_WAIT) { 883 rq = get_request_wait(q, rw, NULL); 884 } else { 885 rq = get_request(q, rw, NULL, gfp_mask); 886 if (!rq) 887 spin_unlock_irq(q->queue_lock); 888 } 889 /* q->queue_lock is unlocked at this point */ 890 891 return rq; 892 } 893 EXPORT_SYMBOL(blk_get_request); 894 895 /** 896 * blk_start_queueing - initiate dispatch of requests to device 897 * @q: request queue to kick into gear 898 * 899 * This is basically a helper to remove the need to know whether a queue 900 * is plugged or not if someone just wants to initiate dispatch of requests 901 * for this queue. Should be used to start queueing on a device outside 902 * of ->request_fn() context. Also see @blk_run_queue. 903 * 904 * The queue lock must be held with interrupts disabled. 905 */ 906 void blk_start_queueing(struct request_queue *q) 907 { 908 if (!blk_queue_plugged(q)) { 909 if (unlikely(blk_queue_stopped(q))) 910 return; 911 q->request_fn(q); 912 } else 913 __generic_unplug_device(q); 914 } 915 EXPORT_SYMBOL(blk_start_queueing); 916 917 /** 918 * blk_requeue_request - put a request back on queue 919 * @q: request queue where request should be inserted 920 * @rq: request to be inserted 921 * 922 * Description: 923 * Drivers often keep queueing requests until the hardware cannot accept 924 * more, when that condition happens we need to put the request back 925 * on the queue. Must be called with queue lock held. 926 */ 927 void blk_requeue_request(struct request_queue *q, struct request *rq) 928 { 929 blk_delete_timer(rq); 930 blk_clear_rq_complete(rq); 931 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 932 933 if (blk_rq_tagged(rq)) 934 blk_queue_end_tag(q, rq); 935 936 elv_requeue_request(q, rq); 937 } 938 EXPORT_SYMBOL(blk_requeue_request); 939 940 /** 941 * blk_insert_request - insert a special request into a request queue 942 * @q: request queue where request should be inserted 943 * @rq: request to be inserted 944 * @at_head: insert request at head or tail of queue 945 * @data: private data 946 * 947 * Description: 948 * Many block devices need to execute commands asynchronously, so they don't 949 * block the whole kernel from preemption during request execution. This is 950 * accomplished normally by inserting aritficial requests tagged as 951 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them 952 * be scheduled for actual execution by the request queue. 953 * 954 * We have the option of inserting the head or the tail of the queue. 955 * Typically we use the tail for new ioctls and so forth. We use the head 956 * of the queue for things like a QUEUE_FULL message from a device, or a 957 * host that is unable to accept a particular command. 958 */ 959 void blk_insert_request(struct request_queue *q, struct request *rq, 960 int at_head, void *data) 961 { 962 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 963 unsigned long flags; 964 965 /* 966 * tell I/O scheduler that this isn't a regular read/write (ie it 967 * must not attempt merges on this) and that it acts as a soft 968 * barrier 969 */ 970 rq->cmd_type = REQ_TYPE_SPECIAL; 971 rq->cmd_flags |= REQ_SOFTBARRIER; 972 973 rq->special = data; 974 975 spin_lock_irqsave(q->queue_lock, flags); 976 977 /* 978 * If command is tagged, release the tag 979 */ 980 if (blk_rq_tagged(rq)) 981 blk_queue_end_tag(q, rq); 982 983 drive_stat_acct(rq, 1); 984 __elv_add_request(q, rq, where, 0); 985 blk_start_queueing(q); 986 spin_unlock_irqrestore(q->queue_lock, flags); 987 } 988 EXPORT_SYMBOL(blk_insert_request); 989 990 /* 991 * add-request adds a request to the linked list. 992 * queue lock is held and interrupts disabled, as we muck with the 993 * request queue list. 994 */ 995 static inline void add_request(struct request_queue *q, struct request *req) 996 { 997 drive_stat_acct(req, 1); 998 999 /* 1000 * elevator indicated where it wants this request to be 1001 * inserted at elevator_merge time 1002 */ 1003 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 1004 } 1005 1006 static void part_round_stats_single(int cpu, struct hd_struct *part, 1007 unsigned long now) 1008 { 1009 if (now == part->stamp) 1010 return; 1011 1012 if (part->in_flight) { 1013 __part_stat_add(cpu, part, time_in_queue, 1014 part->in_flight * (now - part->stamp)); 1015 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1016 } 1017 part->stamp = now; 1018 } 1019 1020 /** 1021 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1022 * @cpu: cpu number for stats access 1023 * @part: target partition 1024 * 1025 * The average IO queue length and utilisation statistics are maintained 1026 * by observing the current state of the queue length and the amount of 1027 * time it has been in this state for. 1028 * 1029 * Normally, that accounting is done on IO completion, but that can result 1030 * in more than a second's worth of IO being accounted for within any one 1031 * second, leading to >100% utilisation. To deal with that, we call this 1032 * function to do a round-off before returning the results when reading 1033 * /proc/diskstats. This accounts immediately for all queue usage up to 1034 * the current jiffies and restarts the counters again. 1035 */ 1036 void part_round_stats(int cpu, struct hd_struct *part) 1037 { 1038 unsigned long now = jiffies; 1039 1040 if (part->partno) 1041 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1042 part_round_stats_single(cpu, part, now); 1043 } 1044 EXPORT_SYMBOL_GPL(part_round_stats); 1045 1046 /* 1047 * queue lock must be held 1048 */ 1049 void __blk_put_request(struct request_queue *q, struct request *req) 1050 { 1051 if (unlikely(!q)) 1052 return; 1053 if (unlikely(--req->ref_count)) 1054 return; 1055 1056 elv_completed_request(q, req); 1057 1058 /* 1059 * Request may not have originated from ll_rw_blk. if not, 1060 * it didn't come out of our reserved rq pools 1061 */ 1062 if (req->cmd_flags & REQ_ALLOCED) { 1063 int rw = rq_data_dir(req); 1064 int priv = req->cmd_flags & REQ_ELVPRIV; 1065 1066 BUG_ON(!list_empty(&req->queuelist)); 1067 BUG_ON(!hlist_unhashed(&req->hash)); 1068 1069 blk_free_request(q, req); 1070 freed_request(q, rw, priv); 1071 } 1072 } 1073 EXPORT_SYMBOL_GPL(__blk_put_request); 1074 1075 void blk_put_request(struct request *req) 1076 { 1077 unsigned long flags; 1078 struct request_queue *q = req->q; 1079 1080 spin_lock_irqsave(q->queue_lock, flags); 1081 __blk_put_request(q, req); 1082 spin_unlock_irqrestore(q->queue_lock, flags); 1083 } 1084 EXPORT_SYMBOL(blk_put_request); 1085 1086 void init_request_from_bio(struct request *req, struct bio *bio) 1087 { 1088 req->cpu = bio->bi_comp_cpu; 1089 req->cmd_type = REQ_TYPE_FS; 1090 1091 /* 1092 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1093 */ 1094 if (bio_rw_ahead(bio)) 1095 req->cmd_flags |= (REQ_FAILFAST_DEV | REQ_FAILFAST_TRANSPORT | 1096 REQ_FAILFAST_DRIVER); 1097 if (bio_failfast_dev(bio)) 1098 req->cmd_flags |= REQ_FAILFAST_DEV; 1099 if (bio_failfast_transport(bio)) 1100 req->cmd_flags |= REQ_FAILFAST_TRANSPORT; 1101 if (bio_failfast_driver(bio)) 1102 req->cmd_flags |= REQ_FAILFAST_DRIVER; 1103 1104 /* 1105 * REQ_BARRIER implies no merging, but lets make it explicit 1106 */ 1107 if (unlikely(bio_discard(bio))) { 1108 req->cmd_flags |= REQ_DISCARD; 1109 if (bio_barrier(bio)) 1110 req->cmd_flags |= REQ_SOFTBARRIER; 1111 req->q->prepare_discard_fn(req->q, req); 1112 } else if (unlikely(bio_barrier(bio))) 1113 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1114 1115 if (bio_sync(bio)) 1116 req->cmd_flags |= REQ_RW_SYNC; 1117 if (bio_rw_meta(bio)) 1118 req->cmd_flags |= REQ_RW_META; 1119 1120 req->errors = 0; 1121 req->hard_sector = req->sector = bio->bi_sector; 1122 req->ioprio = bio_prio(bio); 1123 req->start_time = jiffies; 1124 blk_rq_bio_prep(req->q, req, bio); 1125 } 1126 1127 static int __make_request(struct request_queue *q, struct bio *bio) 1128 { 1129 struct request *req; 1130 int el_ret, nr_sectors, barrier, discard, err; 1131 const unsigned short prio = bio_prio(bio); 1132 const int sync = bio_sync(bio); 1133 int rw_flags; 1134 1135 nr_sectors = bio_sectors(bio); 1136 1137 /* 1138 * low level driver can indicate that it wants pages above a 1139 * certain limit bounced to low memory (ie for highmem, or even 1140 * ISA dma in theory) 1141 */ 1142 blk_queue_bounce(q, &bio); 1143 1144 barrier = bio_barrier(bio); 1145 if (unlikely(barrier) && bio_has_data(bio) && 1146 (q->next_ordered == QUEUE_ORDERED_NONE)) { 1147 err = -EOPNOTSUPP; 1148 goto end_io; 1149 } 1150 1151 discard = bio_discard(bio); 1152 if (unlikely(discard) && !q->prepare_discard_fn) { 1153 err = -EOPNOTSUPP; 1154 goto end_io; 1155 } 1156 1157 spin_lock_irq(q->queue_lock); 1158 1159 if (unlikely(barrier) || elv_queue_empty(q)) 1160 goto get_rq; 1161 1162 el_ret = elv_merge(q, &req, bio); 1163 switch (el_ret) { 1164 case ELEVATOR_BACK_MERGE: 1165 BUG_ON(!rq_mergeable(req)); 1166 1167 if (!ll_back_merge_fn(q, req, bio)) 1168 break; 1169 1170 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1171 1172 req->biotail->bi_next = bio; 1173 req->biotail = bio; 1174 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1175 req->ioprio = ioprio_best(req->ioprio, prio); 1176 if (!blk_rq_cpu_valid(req)) 1177 req->cpu = bio->bi_comp_cpu; 1178 drive_stat_acct(req, 0); 1179 if (!attempt_back_merge(q, req)) 1180 elv_merged_request(q, req, el_ret); 1181 goto out; 1182 1183 case ELEVATOR_FRONT_MERGE: 1184 BUG_ON(!rq_mergeable(req)); 1185 1186 if (!ll_front_merge_fn(q, req, bio)) 1187 break; 1188 1189 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1190 1191 bio->bi_next = req->bio; 1192 req->bio = bio; 1193 1194 /* 1195 * may not be valid. if the low level driver said 1196 * it didn't need a bounce buffer then it better 1197 * not touch req->buffer either... 1198 */ 1199 req->buffer = bio_data(bio); 1200 req->current_nr_sectors = bio_cur_sectors(bio); 1201 req->hard_cur_sectors = req->current_nr_sectors; 1202 req->sector = req->hard_sector = bio->bi_sector; 1203 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1204 req->ioprio = ioprio_best(req->ioprio, prio); 1205 if (!blk_rq_cpu_valid(req)) 1206 req->cpu = bio->bi_comp_cpu; 1207 drive_stat_acct(req, 0); 1208 if (!attempt_front_merge(q, req)) 1209 elv_merged_request(q, req, el_ret); 1210 goto out; 1211 1212 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1213 default: 1214 ; 1215 } 1216 1217 get_rq: 1218 /* 1219 * This sync check and mask will be re-done in init_request_from_bio(), 1220 * but we need to set it earlier to expose the sync flag to the 1221 * rq allocator and io schedulers. 1222 */ 1223 rw_flags = bio_data_dir(bio); 1224 if (sync) 1225 rw_flags |= REQ_RW_SYNC; 1226 1227 /* 1228 * Grab a free request. This is might sleep but can not fail. 1229 * Returns with the queue unlocked. 1230 */ 1231 req = get_request_wait(q, rw_flags, bio); 1232 1233 /* 1234 * After dropping the lock and possibly sleeping here, our request 1235 * may now be mergeable after it had proven unmergeable (above). 1236 * We don't worry about that case for efficiency. It won't happen 1237 * often, and the elevators are able to handle it. 1238 */ 1239 init_request_from_bio(req, bio); 1240 1241 spin_lock_irq(q->queue_lock); 1242 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) || 1243 bio_flagged(bio, BIO_CPU_AFFINE)) 1244 req->cpu = blk_cpu_to_group(smp_processor_id()); 1245 if (elv_queue_empty(q)) 1246 blk_plug_device(q); 1247 add_request(q, req); 1248 out: 1249 if (sync) 1250 __generic_unplug_device(q); 1251 spin_unlock_irq(q->queue_lock); 1252 return 0; 1253 1254 end_io: 1255 bio_endio(bio, err); 1256 return 0; 1257 } 1258 1259 /* 1260 * If bio->bi_dev is a partition, remap the location 1261 */ 1262 static inline void blk_partition_remap(struct bio *bio) 1263 { 1264 struct block_device *bdev = bio->bi_bdev; 1265 1266 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1267 struct hd_struct *p = bdev->bd_part; 1268 1269 bio->bi_sector += p->start_sect; 1270 bio->bi_bdev = bdev->bd_contains; 1271 1272 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1273 bdev->bd_dev, bio->bi_sector, 1274 bio->bi_sector - p->start_sect); 1275 } 1276 } 1277 1278 static void handle_bad_sector(struct bio *bio) 1279 { 1280 char b[BDEVNAME_SIZE]; 1281 1282 printk(KERN_INFO "attempt to access beyond end of device\n"); 1283 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1284 bdevname(bio->bi_bdev, b), 1285 bio->bi_rw, 1286 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1287 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1288 1289 set_bit(BIO_EOF, &bio->bi_flags); 1290 } 1291 1292 #ifdef CONFIG_FAIL_MAKE_REQUEST 1293 1294 static DECLARE_FAULT_ATTR(fail_make_request); 1295 1296 static int __init setup_fail_make_request(char *str) 1297 { 1298 return setup_fault_attr(&fail_make_request, str); 1299 } 1300 __setup("fail_make_request=", setup_fail_make_request); 1301 1302 static int should_fail_request(struct bio *bio) 1303 { 1304 struct hd_struct *part = bio->bi_bdev->bd_part; 1305 1306 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail) 1307 return should_fail(&fail_make_request, bio->bi_size); 1308 1309 return 0; 1310 } 1311 1312 static int __init fail_make_request_debugfs(void) 1313 { 1314 return init_fault_attr_dentries(&fail_make_request, 1315 "fail_make_request"); 1316 } 1317 1318 late_initcall(fail_make_request_debugfs); 1319 1320 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1321 1322 static inline int should_fail_request(struct bio *bio) 1323 { 1324 return 0; 1325 } 1326 1327 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1328 1329 /* 1330 * Check whether this bio extends beyond the end of the device. 1331 */ 1332 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1333 { 1334 sector_t maxsector; 1335 1336 if (!nr_sectors) 1337 return 0; 1338 1339 /* Test device or partition size, when known. */ 1340 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1341 if (maxsector) { 1342 sector_t sector = bio->bi_sector; 1343 1344 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1345 /* 1346 * This may well happen - the kernel calls bread() 1347 * without checking the size of the device, e.g., when 1348 * mounting a device. 1349 */ 1350 handle_bad_sector(bio); 1351 return 1; 1352 } 1353 } 1354 1355 return 0; 1356 } 1357 1358 /** 1359 * generic_make_request - hand a buffer to its device driver for I/O 1360 * @bio: The bio describing the location in memory and on the device. 1361 * 1362 * generic_make_request() is used to make I/O requests of block 1363 * devices. It is passed a &struct bio, which describes the I/O that needs 1364 * to be done. 1365 * 1366 * generic_make_request() does not return any status. The 1367 * success/failure status of the request, along with notification of 1368 * completion, is delivered asynchronously through the bio->bi_end_io 1369 * function described (one day) else where. 1370 * 1371 * The caller of generic_make_request must make sure that bi_io_vec 1372 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1373 * set to describe the device address, and the 1374 * bi_end_io and optionally bi_private are set to describe how 1375 * completion notification should be signaled. 1376 * 1377 * generic_make_request and the drivers it calls may use bi_next if this 1378 * bio happens to be merged with someone else, and may change bi_dev and 1379 * bi_sector for remaps as it sees fit. So the values of these fields 1380 * should NOT be depended on after the call to generic_make_request. 1381 */ 1382 static inline void __generic_make_request(struct bio *bio) 1383 { 1384 struct request_queue *q; 1385 sector_t old_sector; 1386 int ret, nr_sectors = bio_sectors(bio); 1387 dev_t old_dev; 1388 int err = -EIO; 1389 1390 might_sleep(); 1391 1392 if (bio_check_eod(bio, nr_sectors)) 1393 goto end_io; 1394 1395 /* 1396 * Resolve the mapping until finished. (drivers are 1397 * still free to implement/resolve their own stacking 1398 * by explicitly returning 0) 1399 * 1400 * NOTE: we don't repeat the blk_size check for each new device. 1401 * Stacking drivers are expected to know what they are doing. 1402 */ 1403 old_sector = -1; 1404 old_dev = 0; 1405 do { 1406 char b[BDEVNAME_SIZE]; 1407 1408 q = bdev_get_queue(bio->bi_bdev); 1409 if (!q) { 1410 printk(KERN_ERR 1411 "generic_make_request: Trying to access " 1412 "nonexistent block-device %s (%Lu)\n", 1413 bdevname(bio->bi_bdev, b), 1414 (long long) bio->bi_sector); 1415 end_io: 1416 bio_endio(bio, err); 1417 break; 1418 } 1419 1420 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1421 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1422 bdevname(bio->bi_bdev, b), 1423 bio_sectors(bio), 1424 q->max_hw_sectors); 1425 goto end_io; 1426 } 1427 1428 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1429 goto end_io; 1430 1431 if (should_fail_request(bio)) 1432 goto end_io; 1433 1434 /* 1435 * If this device has partitions, remap block n 1436 * of partition p to block n+start(p) of the disk. 1437 */ 1438 blk_partition_remap(bio); 1439 1440 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1441 goto end_io; 1442 1443 if (old_sector != -1) 1444 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1445 old_sector); 1446 1447 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1448 1449 old_sector = bio->bi_sector; 1450 old_dev = bio->bi_bdev->bd_dev; 1451 1452 if (bio_check_eod(bio, nr_sectors)) 1453 goto end_io; 1454 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) || 1455 (bio_discard(bio) && !q->prepare_discard_fn)) { 1456 err = -EOPNOTSUPP; 1457 goto end_io; 1458 } 1459 1460 ret = q->make_request_fn(q, bio); 1461 } while (ret); 1462 } 1463 1464 /* 1465 * We only want one ->make_request_fn to be active at a time, 1466 * else stack usage with stacked devices could be a problem. 1467 * So use current->bio_{list,tail} to keep a list of requests 1468 * submited by a make_request_fn function. 1469 * current->bio_tail is also used as a flag to say if 1470 * generic_make_request is currently active in this task or not. 1471 * If it is NULL, then no make_request is active. If it is non-NULL, 1472 * then a make_request is active, and new requests should be added 1473 * at the tail 1474 */ 1475 void generic_make_request(struct bio *bio) 1476 { 1477 if (current->bio_tail) { 1478 /* make_request is active */ 1479 *(current->bio_tail) = bio; 1480 bio->bi_next = NULL; 1481 current->bio_tail = &bio->bi_next; 1482 return; 1483 } 1484 /* following loop may be a bit non-obvious, and so deserves some 1485 * explanation. 1486 * Before entering the loop, bio->bi_next is NULL (as all callers 1487 * ensure that) so we have a list with a single bio. 1488 * We pretend that we have just taken it off a longer list, so 1489 * we assign bio_list to the next (which is NULL) and bio_tail 1490 * to &bio_list, thus initialising the bio_list of new bios to be 1491 * added. __generic_make_request may indeed add some more bios 1492 * through a recursive call to generic_make_request. If it 1493 * did, we find a non-NULL value in bio_list and re-enter the loop 1494 * from the top. In this case we really did just take the bio 1495 * of the top of the list (no pretending) and so fixup bio_list and 1496 * bio_tail or bi_next, and call into __generic_make_request again. 1497 * 1498 * The loop was structured like this to make only one call to 1499 * __generic_make_request (which is important as it is large and 1500 * inlined) and to keep the structure simple. 1501 */ 1502 BUG_ON(bio->bi_next); 1503 do { 1504 current->bio_list = bio->bi_next; 1505 if (bio->bi_next == NULL) 1506 current->bio_tail = ¤t->bio_list; 1507 else 1508 bio->bi_next = NULL; 1509 __generic_make_request(bio); 1510 bio = current->bio_list; 1511 } while (bio); 1512 current->bio_tail = NULL; /* deactivate */ 1513 } 1514 EXPORT_SYMBOL(generic_make_request); 1515 1516 /** 1517 * submit_bio - submit a bio to the block device layer for I/O 1518 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1519 * @bio: The &struct bio which describes the I/O 1520 * 1521 * submit_bio() is very similar in purpose to generic_make_request(), and 1522 * uses that function to do most of the work. Both are fairly rough 1523 * interfaces; @bio must be presetup and ready for I/O. 1524 * 1525 */ 1526 void submit_bio(int rw, struct bio *bio) 1527 { 1528 int count = bio_sectors(bio); 1529 1530 bio->bi_rw |= rw; 1531 1532 /* 1533 * If it's a regular read/write or a barrier with data attached, 1534 * go through the normal accounting stuff before submission. 1535 */ 1536 if (bio_has_data(bio)) { 1537 if (rw & WRITE) { 1538 count_vm_events(PGPGOUT, count); 1539 } else { 1540 task_io_account_read(bio->bi_size); 1541 count_vm_events(PGPGIN, count); 1542 } 1543 1544 if (unlikely(block_dump)) { 1545 char b[BDEVNAME_SIZE]; 1546 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1547 current->comm, task_pid_nr(current), 1548 (rw & WRITE) ? "WRITE" : "READ", 1549 (unsigned long long)bio->bi_sector, 1550 bdevname(bio->bi_bdev, b)); 1551 } 1552 } 1553 1554 generic_make_request(bio); 1555 } 1556 EXPORT_SYMBOL(submit_bio); 1557 1558 /** 1559 * blk_rq_check_limits - Helper function to check a request for the queue limit 1560 * @q: the queue 1561 * @rq: the request being checked 1562 * 1563 * Description: 1564 * @rq may have been made based on weaker limitations of upper-level queues 1565 * in request stacking drivers, and it may violate the limitation of @q. 1566 * Since the block layer and the underlying device driver trust @rq 1567 * after it is inserted to @q, it should be checked against @q before 1568 * the insertion using this generic function. 1569 * 1570 * This function should also be useful for request stacking drivers 1571 * in some cases below, so export this fuction. 1572 * Request stacking drivers like request-based dm may change the queue 1573 * limits while requests are in the queue (e.g. dm's table swapping). 1574 * Such request stacking drivers should check those requests agaist 1575 * the new queue limits again when they dispatch those requests, 1576 * although such checkings are also done against the old queue limits 1577 * when submitting requests. 1578 */ 1579 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1580 { 1581 if (rq->nr_sectors > q->max_sectors || 1582 rq->data_len > q->max_hw_sectors << 9) { 1583 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1584 return -EIO; 1585 } 1586 1587 /* 1588 * queue's settings related to segment counting like q->bounce_pfn 1589 * may differ from that of other stacking queues. 1590 * Recalculate it to check the request correctly on this queue's 1591 * limitation. 1592 */ 1593 blk_recalc_rq_segments(rq); 1594 if (rq->nr_phys_segments > q->max_phys_segments || 1595 rq->nr_phys_segments > q->max_hw_segments) { 1596 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1597 return -EIO; 1598 } 1599 1600 return 0; 1601 } 1602 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1603 1604 /** 1605 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1606 * @q: the queue to submit the request 1607 * @rq: the request being queued 1608 */ 1609 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1610 { 1611 unsigned long flags; 1612 1613 if (blk_rq_check_limits(q, rq)) 1614 return -EIO; 1615 1616 #ifdef CONFIG_FAIL_MAKE_REQUEST 1617 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail && 1618 should_fail(&fail_make_request, blk_rq_bytes(rq))) 1619 return -EIO; 1620 #endif 1621 1622 spin_lock_irqsave(q->queue_lock, flags); 1623 1624 /* 1625 * Submitting request must be dequeued before calling this function 1626 * because it will be linked to another request_queue 1627 */ 1628 BUG_ON(blk_queued_rq(rq)); 1629 1630 drive_stat_acct(rq, 1); 1631 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0); 1632 1633 spin_unlock_irqrestore(q->queue_lock, flags); 1634 1635 return 0; 1636 } 1637 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1638 1639 /** 1640 * __end_that_request_first - end I/O on a request 1641 * @req: the request being processed 1642 * @error: %0 for success, < %0 for error 1643 * @nr_bytes: number of bytes to complete 1644 * 1645 * Description: 1646 * Ends I/O on a number of bytes attached to @req, and sets it up 1647 * for the next range of segments (if any) in the cluster. 1648 * 1649 * Return: 1650 * %0 - we are done with this request, call end_that_request_last() 1651 * %1 - still buffers pending for this request 1652 **/ 1653 static int __end_that_request_first(struct request *req, int error, 1654 int nr_bytes) 1655 { 1656 int total_bytes, bio_nbytes, next_idx = 0; 1657 struct bio *bio; 1658 1659 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1660 1661 /* 1662 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual 1663 * sense key with us all the way through 1664 */ 1665 if (!blk_pc_request(req)) 1666 req->errors = 0; 1667 1668 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1669 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1670 req->rq_disk ? req->rq_disk->disk_name : "?", 1671 (unsigned long long)req->sector); 1672 } 1673 1674 if (blk_fs_request(req) && req->rq_disk) { 1675 const int rw = rq_data_dir(req); 1676 struct hd_struct *part; 1677 int cpu; 1678 1679 cpu = part_stat_lock(); 1680 part = disk_map_sector_rcu(req->rq_disk, req->sector); 1681 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9); 1682 part_stat_unlock(); 1683 } 1684 1685 total_bytes = bio_nbytes = 0; 1686 while ((bio = req->bio) != NULL) { 1687 int nbytes; 1688 1689 /* 1690 * For an empty barrier request, the low level driver must 1691 * store a potential error location in ->sector. We pass 1692 * that back up in ->bi_sector. 1693 */ 1694 if (blk_empty_barrier(req)) 1695 bio->bi_sector = req->sector; 1696 1697 if (nr_bytes >= bio->bi_size) { 1698 req->bio = bio->bi_next; 1699 nbytes = bio->bi_size; 1700 req_bio_endio(req, bio, nbytes, error); 1701 next_idx = 0; 1702 bio_nbytes = 0; 1703 } else { 1704 int idx = bio->bi_idx + next_idx; 1705 1706 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1707 blk_dump_rq_flags(req, "__end_that"); 1708 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1709 __func__, bio->bi_idx, bio->bi_vcnt); 1710 break; 1711 } 1712 1713 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1714 BIO_BUG_ON(nbytes > bio->bi_size); 1715 1716 /* 1717 * not a complete bvec done 1718 */ 1719 if (unlikely(nbytes > nr_bytes)) { 1720 bio_nbytes += nr_bytes; 1721 total_bytes += nr_bytes; 1722 break; 1723 } 1724 1725 /* 1726 * advance to the next vector 1727 */ 1728 next_idx++; 1729 bio_nbytes += nbytes; 1730 } 1731 1732 total_bytes += nbytes; 1733 nr_bytes -= nbytes; 1734 1735 bio = req->bio; 1736 if (bio) { 1737 /* 1738 * end more in this run, or just return 'not-done' 1739 */ 1740 if (unlikely(nr_bytes <= 0)) 1741 break; 1742 } 1743 } 1744 1745 /* 1746 * completely done 1747 */ 1748 if (!req->bio) 1749 return 0; 1750 1751 /* 1752 * if the request wasn't completed, update state 1753 */ 1754 if (bio_nbytes) { 1755 req_bio_endio(req, bio, bio_nbytes, error); 1756 bio->bi_idx += next_idx; 1757 bio_iovec(bio)->bv_offset += nr_bytes; 1758 bio_iovec(bio)->bv_len -= nr_bytes; 1759 } 1760 1761 blk_recalc_rq_sectors(req, total_bytes >> 9); 1762 blk_recalc_rq_segments(req); 1763 return 1; 1764 } 1765 1766 /* 1767 * queue lock must be held 1768 */ 1769 static void end_that_request_last(struct request *req, int error) 1770 { 1771 struct gendisk *disk = req->rq_disk; 1772 1773 blk_delete_timer(req); 1774 1775 if (blk_rq_tagged(req)) 1776 blk_queue_end_tag(req->q, req); 1777 1778 if (blk_queued_rq(req)) 1779 blkdev_dequeue_request(req); 1780 1781 if (unlikely(laptop_mode) && blk_fs_request(req)) 1782 laptop_io_completion(); 1783 1784 /* 1785 * Account IO completion. bar_rq isn't accounted as a normal 1786 * IO on queueing nor completion. Accounting the containing 1787 * request is enough. 1788 */ 1789 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1790 unsigned long duration = jiffies - req->start_time; 1791 const int rw = rq_data_dir(req); 1792 struct hd_struct *part; 1793 int cpu; 1794 1795 cpu = part_stat_lock(); 1796 part = disk_map_sector_rcu(disk, req->sector); 1797 1798 part_stat_inc(cpu, part, ios[rw]); 1799 part_stat_add(cpu, part, ticks[rw], duration); 1800 part_round_stats(cpu, part); 1801 part_dec_in_flight(part); 1802 1803 part_stat_unlock(); 1804 } 1805 1806 if (req->end_io) 1807 req->end_io(req, error); 1808 else { 1809 if (blk_bidi_rq(req)) 1810 __blk_put_request(req->next_rq->q, req->next_rq); 1811 1812 __blk_put_request(req->q, req); 1813 } 1814 } 1815 1816 /** 1817 * blk_rq_bytes - Returns bytes left to complete in the entire request 1818 * @rq: the request being processed 1819 **/ 1820 unsigned int blk_rq_bytes(struct request *rq) 1821 { 1822 if (blk_fs_request(rq)) 1823 return rq->hard_nr_sectors << 9; 1824 1825 return rq->data_len; 1826 } 1827 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1828 1829 /** 1830 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1831 * @rq: the request being processed 1832 **/ 1833 unsigned int blk_rq_cur_bytes(struct request *rq) 1834 { 1835 if (blk_fs_request(rq)) 1836 return rq->current_nr_sectors << 9; 1837 1838 if (rq->bio) 1839 return rq->bio->bi_size; 1840 1841 return rq->data_len; 1842 } 1843 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1844 1845 /** 1846 * end_request - end I/O on the current segment of the request 1847 * @req: the request being processed 1848 * @uptodate: error value or %0/%1 uptodate flag 1849 * 1850 * Description: 1851 * Ends I/O on the current segment of a request. If that is the only 1852 * remaining segment, the request is also completed and freed. 1853 * 1854 * This is a remnant of how older block drivers handled I/O completions. 1855 * Modern drivers typically end I/O on the full request in one go, unless 1856 * they have a residual value to account for. For that case this function 1857 * isn't really useful, unless the residual just happens to be the 1858 * full current segment. In other words, don't use this function in new 1859 * code. Use blk_end_request() or __blk_end_request() to end a request. 1860 **/ 1861 void end_request(struct request *req, int uptodate) 1862 { 1863 int error = 0; 1864 1865 if (uptodate <= 0) 1866 error = uptodate ? uptodate : -EIO; 1867 1868 __blk_end_request(req, error, req->hard_cur_sectors << 9); 1869 } 1870 EXPORT_SYMBOL(end_request); 1871 1872 static int end_that_request_data(struct request *rq, int error, 1873 unsigned int nr_bytes, unsigned int bidi_bytes) 1874 { 1875 if (rq->bio) { 1876 if (__end_that_request_first(rq, error, nr_bytes)) 1877 return 1; 1878 1879 /* Bidi request must be completed as a whole */ 1880 if (blk_bidi_rq(rq) && 1881 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1882 return 1; 1883 } 1884 1885 return 0; 1886 } 1887 1888 /** 1889 * blk_end_io - Generic end_io function to complete a request. 1890 * @rq: the request being processed 1891 * @error: %0 for success, < %0 for error 1892 * @nr_bytes: number of bytes to complete @rq 1893 * @bidi_bytes: number of bytes to complete @rq->next_rq 1894 * @drv_callback: function called between completion of bios in the request 1895 * and completion of the request. 1896 * If the callback returns non %0, this helper returns without 1897 * completion of the request. 1898 * 1899 * Description: 1900 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1901 * If @rq has leftover, sets it up for the next range of segments. 1902 * 1903 * Return: 1904 * %0 - we are done with this request 1905 * %1 - this request is not freed yet, it still has pending buffers. 1906 **/ 1907 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1908 unsigned int bidi_bytes, 1909 int (drv_callback)(struct request *)) 1910 { 1911 struct request_queue *q = rq->q; 1912 unsigned long flags = 0UL; 1913 1914 if (end_that_request_data(rq, error, nr_bytes, bidi_bytes)) 1915 return 1; 1916 1917 /* Special feature for tricky drivers */ 1918 if (drv_callback && drv_callback(rq)) 1919 return 1; 1920 1921 add_disk_randomness(rq->rq_disk); 1922 1923 spin_lock_irqsave(q->queue_lock, flags); 1924 end_that_request_last(rq, error); 1925 spin_unlock_irqrestore(q->queue_lock, flags); 1926 1927 return 0; 1928 } 1929 1930 /** 1931 * blk_end_request - Helper function for drivers to complete the request. 1932 * @rq: the request being processed 1933 * @error: %0 for success, < %0 for error 1934 * @nr_bytes: number of bytes to complete 1935 * 1936 * Description: 1937 * Ends I/O on a number of bytes attached to @rq. 1938 * If @rq has leftover, sets it up for the next range of segments. 1939 * 1940 * Return: 1941 * %0 - we are done with this request 1942 * %1 - still buffers pending for this request 1943 **/ 1944 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1945 { 1946 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1947 } 1948 EXPORT_SYMBOL_GPL(blk_end_request); 1949 1950 /** 1951 * __blk_end_request - Helper function for drivers to complete the request. 1952 * @rq: the request being processed 1953 * @error: %0 for success, < %0 for error 1954 * @nr_bytes: number of bytes to complete 1955 * 1956 * Description: 1957 * Must be called with queue lock held unlike blk_end_request(). 1958 * 1959 * Return: 1960 * %0 - we are done with this request 1961 * %1 - still buffers pending for this request 1962 **/ 1963 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1964 { 1965 if (rq->bio && __end_that_request_first(rq, error, nr_bytes)) 1966 return 1; 1967 1968 add_disk_randomness(rq->rq_disk); 1969 1970 end_that_request_last(rq, error); 1971 1972 return 0; 1973 } 1974 EXPORT_SYMBOL_GPL(__blk_end_request); 1975 1976 /** 1977 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1978 * @rq: the bidi request being processed 1979 * @error: %0 for success, < %0 for error 1980 * @nr_bytes: number of bytes to complete @rq 1981 * @bidi_bytes: number of bytes to complete @rq->next_rq 1982 * 1983 * Description: 1984 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1985 * 1986 * Return: 1987 * %0 - we are done with this request 1988 * %1 - still buffers pending for this request 1989 **/ 1990 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1991 unsigned int bidi_bytes) 1992 { 1993 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1994 } 1995 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1996 1997 /** 1998 * blk_update_request - Special helper function for request stacking drivers 1999 * @rq: the request being processed 2000 * @error: %0 for success, < %0 for error 2001 * @nr_bytes: number of bytes to complete @rq 2002 * 2003 * Description: 2004 * Ends I/O on a number of bytes attached to @rq, but doesn't complete 2005 * the request structure even if @rq doesn't have leftover. 2006 * If @rq has leftover, sets it up for the next range of segments. 2007 * 2008 * This special helper function is only for request stacking drivers 2009 * (e.g. request-based dm) so that they can handle partial completion. 2010 * Actual device drivers should use blk_end_request instead. 2011 */ 2012 void blk_update_request(struct request *rq, int error, unsigned int nr_bytes) 2013 { 2014 if (!end_that_request_data(rq, error, nr_bytes, 0)) { 2015 /* 2016 * These members are not updated in end_that_request_data() 2017 * when all bios are completed. 2018 * Update them so that the request stacking driver can find 2019 * how many bytes remain in the request later. 2020 */ 2021 rq->nr_sectors = rq->hard_nr_sectors = 0; 2022 rq->current_nr_sectors = rq->hard_cur_sectors = 0; 2023 } 2024 } 2025 EXPORT_SYMBOL_GPL(blk_update_request); 2026 2027 /** 2028 * blk_end_request_callback - Special helper function for tricky drivers 2029 * @rq: the request being processed 2030 * @error: %0 for success, < %0 for error 2031 * @nr_bytes: number of bytes to complete 2032 * @drv_callback: function called between completion of bios in the request 2033 * and completion of the request. 2034 * If the callback returns non %0, this helper returns without 2035 * completion of the request. 2036 * 2037 * Description: 2038 * Ends I/O on a number of bytes attached to @rq. 2039 * If @rq has leftover, sets it up for the next range of segments. 2040 * 2041 * This special helper function is used only for existing tricky drivers. 2042 * (e.g. cdrom_newpc_intr() of ide-cd) 2043 * This interface will be removed when such drivers are rewritten. 2044 * Don't use this interface in other places anymore. 2045 * 2046 * Return: 2047 * %0 - we are done with this request 2048 * %1 - this request is not freed yet. 2049 * this request still has pending buffers or 2050 * the driver doesn't want to finish this request yet. 2051 **/ 2052 int blk_end_request_callback(struct request *rq, int error, 2053 unsigned int nr_bytes, 2054 int (drv_callback)(struct request *)) 2055 { 2056 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2057 } 2058 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2059 2060 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2061 struct bio *bio) 2062 { 2063 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and 2064 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */ 2065 rq->cmd_flags |= (bio->bi_rw & 3); 2066 2067 if (bio_has_data(bio)) { 2068 rq->nr_phys_segments = bio_phys_segments(q, bio); 2069 rq->buffer = bio_data(bio); 2070 } 2071 rq->current_nr_sectors = bio_cur_sectors(bio); 2072 rq->hard_cur_sectors = rq->current_nr_sectors; 2073 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2074 rq->data_len = bio->bi_size; 2075 2076 rq->bio = rq->biotail = bio; 2077 2078 if (bio->bi_bdev) 2079 rq->rq_disk = bio->bi_bdev->bd_disk; 2080 } 2081 2082 /** 2083 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2084 * @q : the queue of the device being checked 2085 * 2086 * Description: 2087 * Check if underlying low-level drivers of a device are busy. 2088 * If the drivers want to export their busy state, they must set own 2089 * exporting function using blk_queue_lld_busy() first. 2090 * 2091 * Basically, this function is used only by request stacking drivers 2092 * to stop dispatching requests to underlying devices when underlying 2093 * devices are busy. This behavior helps more I/O merging on the queue 2094 * of the request stacking driver and prevents I/O throughput regression 2095 * on burst I/O load. 2096 * 2097 * Return: 2098 * 0 - Not busy (The request stacking driver should dispatch request) 2099 * 1 - Busy (The request stacking driver should stop dispatching request) 2100 */ 2101 int blk_lld_busy(struct request_queue *q) 2102 { 2103 if (q->lld_busy_fn) 2104 return q->lld_busy_fn(q); 2105 2106 return 0; 2107 } 2108 EXPORT_SYMBOL_GPL(blk_lld_busy); 2109 2110 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2111 { 2112 return queue_work(kblockd_workqueue, work); 2113 } 2114 EXPORT_SYMBOL(kblockd_schedule_work); 2115 2116 void kblockd_flush_work(struct work_struct *work) 2117 { 2118 cancel_work_sync(work); 2119 } 2120 EXPORT_SYMBOL(kblockd_flush_work); 2121 2122 int __init blk_dev_init(void) 2123 { 2124 kblockd_workqueue = create_workqueue("kblockd"); 2125 if (!kblockd_workqueue) 2126 panic("Failed to create kblockd\n"); 2127 2128 request_cachep = kmem_cache_create("blkdev_requests", 2129 sizeof(struct request), 0, SLAB_PANIC, NULL); 2130 2131 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2132 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2133 2134 return 0; 2135 } 2136 2137