xref: /openbmc/linux/block/blk-core.c (revision 2e6ae11dd0d1c37f44cec51a58fb2092e55ed0f5)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 #include <linux/bpf.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/block.h>
41 
42 #include "blk.h"
43 #include "blk-mq.h"
44 #include "blk-mq-sched.h"
45 #include "blk-rq-qos.h"
46 
47 #ifdef CONFIG_DEBUG_FS
48 struct dentry *blk_debugfs_root;
49 #endif
50 
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
56 
57 DEFINE_IDA(blk_queue_ida);
58 
59 /*
60  * For the allocated request tables
61  */
62 struct kmem_cache *request_cachep;
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	unsigned long flags;
82 
83 	spin_lock_irqsave(q->queue_lock, flags);
84 	queue_flag_set(flag, q);
85 	spin_unlock_irqrestore(q->queue_lock, flags);
86 }
87 EXPORT_SYMBOL(blk_queue_flag_set);
88 
89 /**
90  * blk_queue_flag_clear - atomically clear a queue flag
91  * @flag: flag to be cleared
92  * @q: request queue
93  */
94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
95 {
96 	unsigned long flags;
97 
98 	spin_lock_irqsave(q->queue_lock, flags);
99 	queue_flag_clear(flag, q);
100 	spin_unlock_irqrestore(q->queue_lock, flags);
101 }
102 EXPORT_SYMBOL(blk_queue_flag_clear);
103 
104 /**
105  * blk_queue_flag_test_and_set - atomically test and set a queue flag
106  * @flag: flag to be set
107  * @q: request queue
108  *
109  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
110  * the flag was already set.
111  */
112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
113 {
114 	unsigned long flags;
115 	bool res;
116 
117 	spin_lock_irqsave(q->queue_lock, flags);
118 	res = queue_flag_test_and_set(flag, q);
119 	spin_unlock_irqrestore(q->queue_lock, flags);
120 
121 	return res;
122 }
123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
124 
125 /**
126  * blk_queue_flag_test_and_clear - atomically test and clear a queue flag
127  * @flag: flag to be cleared
128  * @q: request queue
129  *
130  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
131  * the flag was set.
132  */
133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q)
134 {
135 	unsigned long flags;
136 	bool res;
137 
138 	spin_lock_irqsave(q->queue_lock, flags);
139 	res = queue_flag_test_and_clear(flag, q);
140 	spin_unlock_irqrestore(q->queue_lock, flags);
141 
142 	return res;
143 }
144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear);
145 
146 static void blk_clear_congested(struct request_list *rl, int sync)
147 {
148 #ifdef CONFIG_CGROUP_WRITEBACK
149 	clear_wb_congested(rl->blkg->wb_congested, sync);
150 #else
151 	/*
152 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
153 	 * flip its congestion state for events on other blkcgs.
154 	 */
155 	if (rl == &rl->q->root_rl)
156 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
157 #endif
158 }
159 
160 static void blk_set_congested(struct request_list *rl, int sync)
161 {
162 #ifdef CONFIG_CGROUP_WRITEBACK
163 	set_wb_congested(rl->blkg->wb_congested, sync);
164 #else
165 	/* see blk_clear_congested() */
166 	if (rl == &rl->q->root_rl)
167 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
168 #endif
169 }
170 
171 void blk_queue_congestion_threshold(struct request_queue *q)
172 {
173 	int nr;
174 
175 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
176 	if (nr > q->nr_requests)
177 		nr = q->nr_requests;
178 	q->nr_congestion_on = nr;
179 
180 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
181 	if (nr < 1)
182 		nr = 1;
183 	q->nr_congestion_off = nr;
184 }
185 
186 void blk_rq_init(struct request_queue *q, struct request *rq)
187 {
188 	memset(rq, 0, sizeof(*rq));
189 
190 	INIT_LIST_HEAD(&rq->queuelist);
191 	INIT_LIST_HEAD(&rq->timeout_list);
192 	rq->cpu = -1;
193 	rq->q = q;
194 	rq->__sector = (sector_t) -1;
195 	INIT_HLIST_NODE(&rq->hash);
196 	RB_CLEAR_NODE(&rq->rb_node);
197 	rq->tag = -1;
198 	rq->internal_tag = -1;
199 	rq->start_time_ns = ktime_get_ns();
200 	rq->part = NULL;
201 }
202 EXPORT_SYMBOL(blk_rq_init);
203 
204 static const struct {
205 	int		errno;
206 	const char	*name;
207 } blk_errors[] = {
208 	[BLK_STS_OK]		= { 0,		"" },
209 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
210 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
211 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
212 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
213 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
214 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
215 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
216 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
217 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
218 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
219 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
220 
221 	/* device mapper special case, should not leak out: */
222 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
223 
224 	/* everything else not covered above: */
225 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
226 };
227 
228 blk_status_t errno_to_blk_status(int errno)
229 {
230 	int i;
231 
232 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
233 		if (blk_errors[i].errno == errno)
234 			return (__force blk_status_t)i;
235 	}
236 
237 	return BLK_STS_IOERR;
238 }
239 EXPORT_SYMBOL_GPL(errno_to_blk_status);
240 
241 int blk_status_to_errno(blk_status_t status)
242 {
243 	int idx = (__force int)status;
244 
245 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
246 		return -EIO;
247 	return blk_errors[idx].errno;
248 }
249 EXPORT_SYMBOL_GPL(blk_status_to_errno);
250 
251 static void print_req_error(struct request *req, blk_status_t status)
252 {
253 	int idx = (__force int)status;
254 
255 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
256 		return;
257 
258 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
259 			   __func__, blk_errors[idx].name, req->rq_disk ?
260 			   req->rq_disk->disk_name : "?",
261 			   (unsigned long long)blk_rq_pos(req));
262 }
263 
264 static void req_bio_endio(struct request *rq, struct bio *bio,
265 			  unsigned int nbytes, blk_status_t error)
266 {
267 	if (error)
268 		bio->bi_status = error;
269 
270 	if (unlikely(rq->rq_flags & RQF_QUIET))
271 		bio_set_flag(bio, BIO_QUIET);
272 
273 	bio_advance(bio, nbytes);
274 
275 	/* don't actually finish bio if it's part of flush sequence */
276 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
277 		bio_endio(bio);
278 }
279 
280 void blk_dump_rq_flags(struct request *rq, char *msg)
281 {
282 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
283 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
284 		(unsigned long long) rq->cmd_flags);
285 
286 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
287 	       (unsigned long long)blk_rq_pos(rq),
288 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
289 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
290 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
291 }
292 EXPORT_SYMBOL(blk_dump_rq_flags);
293 
294 static void blk_delay_work(struct work_struct *work)
295 {
296 	struct request_queue *q;
297 
298 	q = container_of(work, struct request_queue, delay_work.work);
299 	spin_lock_irq(q->queue_lock);
300 	__blk_run_queue(q);
301 	spin_unlock_irq(q->queue_lock);
302 }
303 
304 /**
305  * blk_delay_queue - restart queueing after defined interval
306  * @q:		The &struct request_queue in question
307  * @msecs:	Delay in msecs
308  *
309  * Description:
310  *   Sometimes queueing needs to be postponed for a little while, to allow
311  *   resources to come back. This function will make sure that queueing is
312  *   restarted around the specified time.
313  */
314 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
315 {
316 	lockdep_assert_held(q->queue_lock);
317 	WARN_ON_ONCE(q->mq_ops);
318 
319 	if (likely(!blk_queue_dead(q)))
320 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
321 				   msecs_to_jiffies(msecs));
322 }
323 EXPORT_SYMBOL(blk_delay_queue);
324 
325 /**
326  * blk_start_queue_async - asynchronously restart a previously stopped queue
327  * @q:    The &struct request_queue in question
328  *
329  * Description:
330  *   blk_start_queue_async() will clear the stop flag on the queue, and
331  *   ensure that the request_fn for the queue is run from an async
332  *   context.
333  **/
334 void blk_start_queue_async(struct request_queue *q)
335 {
336 	lockdep_assert_held(q->queue_lock);
337 	WARN_ON_ONCE(q->mq_ops);
338 
339 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
340 	blk_run_queue_async(q);
341 }
342 EXPORT_SYMBOL(blk_start_queue_async);
343 
344 /**
345  * blk_start_queue - restart a previously stopped queue
346  * @q:    The &struct request_queue in question
347  *
348  * Description:
349  *   blk_start_queue() will clear the stop flag on the queue, and call
350  *   the request_fn for the queue if it was in a stopped state when
351  *   entered. Also see blk_stop_queue().
352  **/
353 void blk_start_queue(struct request_queue *q)
354 {
355 	lockdep_assert_held(q->queue_lock);
356 	WARN_ON_ONCE(q->mq_ops);
357 
358 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
359 	__blk_run_queue(q);
360 }
361 EXPORT_SYMBOL(blk_start_queue);
362 
363 /**
364  * blk_stop_queue - stop a queue
365  * @q:    The &struct request_queue in question
366  *
367  * Description:
368  *   The Linux block layer assumes that a block driver will consume all
369  *   entries on the request queue when the request_fn strategy is called.
370  *   Often this will not happen, because of hardware limitations (queue
371  *   depth settings). If a device driver gets a 'queue full' response,
372  *   or if it simply chooses not to queue more I/O at one point, it can
373  *   call this function to prevent the request_fn from being called until
374  *   the driver has signalled it's ready to go again. This happens by calling
375  *   blk_start_queue() to restart queue operations.
376  **/
377 void blk_stop_queue(struct request_queue *q)
378 {
379 	lockdep_assert_held(q->queue_lock);
380 	WARN_ON_ONCE(q->mq_ops);
381 
382 	cancel_delayed_work(&q->delay_work);
383 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
384 }
385 EXPORT_SYMBOL(blk_stop_queue);
386 
387 /**
388  * blk_sync_queue - cancel any pending callbacks on a queue
389  * @q: the queue
390  *
391  * Description:
392  *     The block layer may perform asynchronous callback activity
393  *     on a queue, such as calling the unplug function after a timeout.
394  *     A block device may call blk_sync_queue to ensure that any
395  *     such activity is cancelled, thus allowing it to release resources
396  *     that the callbacks might use. The caller must already have made sure
397  *     that its ->make_request_fn will not re-add plugging prior to calling
398  *     this function.
399  *
400  *     This function does not cancel any asynchronous activity arising
401  *     out of elevator or throttling code. That would require elevator_exit()
402  *     and blkcg_exit_queue() to be called with queue lock initialized.
403  *
404  */
405 void blk_sync_queue(struct request_queue *q)
406 {
407 	del_timer_sync(&q->timeout);
408 	cancel_work_sync(&q->timeout_work);
409 
410 	if (q->mq_ops) {
411 		struct blk_mq_hw_ctx *hctx;
412 		int i;
413 
414 		cancel_delayed_work_sync(&q->requeue_work);
415 		queue_for_each_hw_ctx(q, hctx, i)
416 			cancel_delayed_work_sync(&hctx->run_work);
417 	} else {
418 		cancel_delayed_work_sync(&q->delay_work);
419 	}
420 }
421 EXPORT_SYMBOL(blk_sync_queue);
422 
423 /**
424  * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY
425  * @q: request queue pointer
426  *
427  * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not
428  * set and 1 if the flag was already set.
429  */
430 int blk_set_preempt_only(struct request_queue *q)
431 {
432 	return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q);
433 }
434 EXPORT_SYMBOL_GPL(blk_set_preempt_only);
435 
436 void blk_clear_preempt_only(struct request_queue *q)
437 {
438 	blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q);
439 	wake_up_all(&q->mq_freeze_wq);
440 }
441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only);
442 
443 /**
444  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
445  * @q:	The queue to run
446  *
447  * Description:
448  *    Invoke request handling on a queue if there are any pending requests.
449  *    May be used to restart request handling after a request has completed.
450  *    This variant runs the queue whether or not the queue has been
451  *    stopped. Must be called with the queue lock held and interrupts
452  *    disabled. See also @blk_run_queue.
453  */
454 inline void __blk_run_queue_uncond(struct request_queue *q)
455 {
456 	lockdep_assert_held(q->queue_lock);
457 	WARN_ON_ONCE(q->mq_ops);
458 
459 	if (unlikely(blk_queue_dead(q)))
460 		return;
461 
462 	/*
463 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
464 	 * the queue lock internally. As a result multiple threads may be
465 	 * running such a request function concurrently. Keep track of the
466 	 * number of active request_fn invocations such that blk_drain_queue()
467 	 * can wait until all these request_fn calls have finished.
468 	 */
469 	q->request_fn_active++;
470 	q->request_fn(q);
471 	q->request_fn_active--;
472 }
473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
474 
475 /**
476  * __blk_run_queue - run a single device queue
477  * @q:	The queue to run
478  *
479  * Description:
480  *    See @blk_run_queue.
481  */
482 void __blk_run_queue(struct request_queue *q)
483 {
484 	lockdep_assert_held(q->queue_lock);
485 	WARN_ON_ONCE(q->mq_ops);
486 
487 	if (unlikely(blk_queue_stopped(q)))
488 		return;
489 
490 	__blk_run_queue_uncond(q);
491 }
492 EXPORT_SYMBOL(__blk_run_queue);
493 
494 /**
495  * blk_run_queue_async - run a single device queue in workqueue context
496  * @q:	The queue to run
497  *
498  * Description:
499  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
500  *    of us.
501  *
502  * Note:
503  *    Since it is not allowed to run q->delay_work after blk_cleanup_queue()
504  *    has canceled q->delay_work, callers must hold the queue lock to avoid
505  *    race conditions between blk_cleanup_queue() and blk_run_queue_async().
506  */
507 void blk_run_queue_async(struct request_queue *q)
508 {
509 	lockdep_assert_held(q->queue_lock);
510 	WARN_ON_ONCE(q->mq_ops);
511 
512 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
513 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
514 }
515 EXPORT_SYMBOL(blk_run_queue_async);
516 
517 /**
518  * blk_run_queue - run a single device queue
519  * @q: The queue to run
520  *
521  * Description:
522  *    Invoke request handling on this queue, if it has pending work to do.
523  *    May be used to restart queueing when a request has completed.
524  */
525 void blk_run_queue(struct request_queue *q)
526 {
527 	unsigned long flags;
528 
529 	WARN_ON_ONCE(q->mq_ops);
530 
531 	spin_lock_irqsave(q->queue_lock, flags);
532 	__blk_run_queue(q);
533 	spin_unlock_irqrestore(q->queue_lock, flags);
534 }
535 EXPORT_SYMBOL(blk_run_queue);
536 
537 void blk_put_queue(struct request_queue *q)
538 {
539 	kobject_put(&q->kobj);
540 }
541 EXPORT_SYMBOL(blk_put_queue);
542 
543 /**
544  * __blk_drain_queue - drain requests from request_queue
545  * @q: queue to drain
546  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
547  *
548  * Drain requests from @q.  If @drain_all is set, all requests are drained.
549  * If not, only ELVPRIV requests are drained.  The caller is responsible
550  * for ensuring that no new requests which need to be drained are queued.
551  */
552 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
553 	__releases(q->queue_lock)
554 	__acquires(q->queue_lock)
555 {
556 	int i;
557 
558 	lockdep_assert_held(q->queue_lock);
559 	WARN_ON_ONCE(q->mq_ops);
560 
561 	while (true) {
562 		bool drain = false;
563 
564 		/*
565 		 * The caller might be trying to drain @q before its
566 		 * elevator is initialized.
567 		 */
568 		if (q->elevator)
569 			elv_drain_elevator(q);
570 
571 		blkcg_drain_queue(q);
572 
573 		/*
574 		 * This function might be called on a queue which failed
575 		 * driver init after queue creation or is not yet fully
576 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
577 		 * in such cases.  Kick queue iff dispatch queue has
578 		 * something on it and @q has request_fn set.
579 		 */
580 		if (!list_empty(&q->queue_head) && q->request_fn)
581 			__blk_run_queue(q);
582 
583 		drain |= q->nr_rqs_elvpriv;
584 		drain |= q->request_fn_active;
585 
586 		/*
587 		 * Unfortunately, requests are queued at and tracked from
588 		 * multiple places and there's no single counter which can
589 		 * be drained.  Check all the queues and counters.
590 		 */
591 		if (drain_all) {
592 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
593 			drain |= !list_empty(&q->queue_head);
594 			for (i = 0; i < 2; i++) {
595 				drain |= q->nr_rqs[i];
596 				drain |= q->in_flight[i];
597 				if (fq)
598 				    drain |= !list_empty(&fq->flush_queue[i]);
599 			}
600 		}
601 
602 		if (!drain)
603 			break;
604 
605 		spin_unlock_irq(q->queue_lock);
606 
607 		msleep(10);
608 
609 		spin_lock_irq(q->queue_lock);
610 	}
611 
612 	/*
613 	 * With queue marked dead, any woken up waiter will fail the
614 	 * allocation path, so the wakeup chaining is lost and we're
615 	 * left with hung waiters. We need to wake up those waiters.
616 	 */
617 	if (q->request_fn) {
618 		struct request_list *rl;
619 
620 		blk_queue_for_each_rl(rl, q)
621 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
622 				wake_up_all(&rl->wait[i]);
623 	}
624 }
625 
626 void blk_drain_queue(struct request_queue *q)
627 {
628 	spin_lock_irq(q->queue_lock);
629 	__blk_drain_queue(q, true);
630 	spin_unlock_irq(q->queue_lock);
631 }
632 
633 /**
634  * blk_queue_bypass_start - enter queue bypass mode
635  * @q: queue of interest
636  *
637  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
638  * function makes @q enter bypass mode and drains all requests which were
639  * throttled or issued before.  On return, it's guaranteed that no request
640  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
641  * inside queue or RCU read lock.
642  */
643 void blk_queue_bypass_start(struct request_queue *q)
644 {
645 	WARN_ON_ONCE(q->mq_ops);
646 
647 	spin_lock_irq(q->queue_lock);
648 	q->bypass_depth++;
649 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
650 	spin_unlock_irq(q->queue_lock);
651 
652 	/*
653 	 * Queues start drained.  Skip actual draining till init is
654 	 * complete.  This avoids lenghty delays during queue init which
655 	 * can happen many times during boot.
656 	 */
657 	if (blk_queue_init_done(q)) {
658 		spin_lock_irq(q->queue_lock);
659 		__blk_drain_queue(q, false);
660 		spin_unlock_irq(q->queue_lock);
661 
662 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
663 		synchronize_rcu();
664 	}
665 }
666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
667 
668 /**
669  * blk_queue_bypass_end - leave queue bypass mode
670  * @q: queue of interest
671  *
672  * Leave bypass mode and restore the normal queueing behavior.
673  *
674  * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
675  * this function is called for both blk-sq and blk-mq queues.
676  */
677 void blk_queue_bypass_end(struct request_queue *q)
678 {
679 	spin_lock_irq(q->queue_lock);
680 	if (!--q->bypass_depth)
681 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
682 	WARN_ON_ONCE(q->bypass_depth < 0);
683 	spin_unlock_irq(q->queue_lock);
684 }
685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
686 
687 void blk_set_queue_dying(struct request_queue *q)
688 {
689 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
690 
691 	/*
692 	 * When queue DYING flag is set, we need to block new req
693 	 * entering queue, so we call blk_freeze_queue_start() to
694 	 * prevent I/O from crossing blk_queue_enter().
695 	 */
696 	blk_freeze_queue_start(q);
697 
698 	if (q->mq_ops)
699 		blk_mq_wake_waiters(q);
700 	else {
701 		struct request_list *rl;
702 
703 		spin_lock_irq(q->queue_lock);
704 		blk_queue_for_each_rl(rl, q) {
705 			if (rl->rq_pool) {
706 				wake_up_all(&rl->wait[BLK_RW_SYNC]);
707 				wake_up_all(&rl->wait[BLK_RW_ASYNC]);
708 			}
709 		}
710 		spin_unlock_irq(q->queue_lock);
711 	}
712 
713 	/* Make blk_queue_enter() reexamine the DYING flag. */
714 	wake_up_all(&q->mq_freeze_wq);
715 }
716 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
717 
718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
719 void blk_exit_queue(struct request_queue *q)
720 {
721 	/*
722 	 * Since the I/O scheduler exit code may access cgroup information,
723 	 * perform I/O scheduler exit before disassociating from the block
724 	 * cgroup controller.
725 	 */
726 	if (q->elevator) {
727 		ioc_clear_queue(q);
728 		elevator_exit(q, q->elevator);
729 		q->elevator = NULL;
730 	}
731 
732 	/*
733 	 * Remove all references to @q from the block cgroup controller before
734 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
735 	 * e.g. blkcg_print_blkgs() to crash.
736 	 */
737 	blkcg_exit_queue(q);
738 
739 	/*
740 	 * Since the cgroup code may dereference the @q->backing_dev_info
741 	 * pointer, only decrease its reference count after having removed the
742 	 * association with the block cgroup controller.
743 	 */
744 	bdi_put(q->backing_dev_info);
745 }
746 
747 /**
748  * blk_cleanup_queue - shutdown a request queue
749  * @q: request queue to shutdown
750  *
751  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
752  * put it.  All future requests will be failed immediately with -ENODEV.
753  */
754 void blk_cleanup_queue(struct request_queue *q)
755 {
756 	spinlock_t *lock = q->queue_lock;
757 
758 	/* mark @q DYING, no new request or merges will be allowed afterwards */
759 	mutex_lock(&q->sysfs_lock);
760 	blk_set_queue_dying(q);
761 	spin_lock_irq(lock);
762 
763 	/*
764 	 * A dying queue is permanently in bypass mode till released.  Note
765 	 * that, unlike blk_queue_bypass_start(), we aren't performing
766 	 * synchronize_rcu() after entering bypass mode to avoid the delay
767 	 * as some drivers create and destroy a lot of queues while
768 	 * probing.  This is still safe because blk_release_queue() will be
769 	 * called only after the queue refcnt drops to zero and nothing,
770 	 * RCU or not, would be traversing the queue by then.
771 	 */
772 	q->bypass_depth++;
773 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
774 
775 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
776 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
777 	queue_flag_set(QUEUE_FLAG_DYING, q);
778 	spin_unlock_irq(lock);
779 	mutex_unlock(&q->sysfs_lock);
780 
781 	/*
782 	 * Drain all requests queued before DYING marking. Set DEAD flag to
783 	 * prevent that q->request_fn() gets invoked after draining finished.
784 	 */
785 	blk_freeze_queue(q);
786 	spin_lock_irq(lock);
787 	queue_flag_set(QUEUE_FLAG_DEAD, q);
788 	spin_unlock_irq(lock);
789 
790 	/*
791 	 * make sure all in-progress dispatch are completed because
792 	 * blk_freeze_queue() can only complete all requests, and
793 	 * dispatch may still be in-progress since we dispatch requests
794 	 * from more than one contexts.
795 	 *
796 	 * No need to quiesce queue if it isn't initialized yet since
797 	 * blk_freeze_queue() should be enough for cases of passthrough
798 	 * request.
799 	 */
800 	if (q->mq_ops && blk_queue_init_done(q))
801 		blk_mq_quiesce_queue(q);
802 
803 	/* for synchronous bio-based driver finish in-flight integrity i/o */
804 	blk_flush_integrity();
805 
806 	/* @q won't process any more request, flush async actions */
807 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
808 	blk_sync_queue(q);
809 
810 	/*
811 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
812 	 * has been removed.
813 	 */
814 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
815 
816 	blk_exit_queue(q);
817 
818 	if (q->mq_ops)
819 		blk_mq_free_queue(q);
820 	percpu_ref_exit(&q->q_usage_counter);
821 
822 	spin_lock_irq(lock);
823 	if (q->queue_lock != &q->__queue_lock)
824 		q->queue_lock = &q->__queue_lock;
825 	spin_unlock_irq(lock);
826 
827 	/* @q is and will stay empty, shutdown and put */
828 	blk_put_queue(q);
829 }
830 EXPORT_SYMBOL(blk_cleanup_queue);
831 
832 /* Allocate memory local to the request queue */
833 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
834 {
835 	struct request_queue *q = data;
836 
837 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
838 }
839 
840 static void free_request_simple(void *element, void *data)
841 {
842 	kmem_cache_free(request_cachep, element);
843 }
844 
845 static void *alloc_request_size(gfp_t gfp_mask, void *data)
846 {
847 	struct request_queue *q = data;
848 	struct request *rq;
849 
850 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
851 			q->node);
852 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
853 		kfree(rq);
854 		rq = NULL;
855 	}
856 	return rq;
857 }
858 
859 static void free_request_size(void *element, void *data)
860 {
861 	struct request_queue *q = data;
862 
863 	if (q->exit_rq_fn)
864 		q->exit_rq_fn(q, element);
865 	kfree(element);
866 }
867 
868 int blk_init_rl(struct request_list *rl, struct request_queue *q,
869 		gfp_t gfp_mask)
870 {
871 	if (unlikely(rl->rq_pool) || q->mq_ops)
872 		return 0;
873 
874 	rl->q = q;
875 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
876 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
877 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
878 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
879 
880 	if (q->cmd_size) {
881 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
882 				alloc_request_size, free_request_size,
883 				q, gfp_mask, q->node);
884 	} else {
885 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
886 				alloc_request_simple, free_request_simple,
887 				q, gfp_mask, q->node);
888 	}
889 	if (!rl->rq_pool)
890 		return -ENOMEM;
891 
892 	if (rl != &q->root_rl)
893 		WARN_ON_ONCE(!blk_get_queue(q));
894 
895 	return 0;
896 }
897 
898 void blk_exit_rl(struct request_queue *q, struct request_list *rl)
899 {
900 	if (rl->rq_pool) {
901 		mempool_destroy(rl->rq_pool);
902 		if (rl != &q->root_rl)
903 			blk_put_queue(q);
904 	}
905 }
906 
907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
908 {
909 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL);
910 }
911 EXPORT_SYMBOL(blk_alloc_queue);
912 
913 /**
914  * blk_queue_enter() - try to increase q->q_usage_counter
915  * @q: request queue pointer
916  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
917  */
918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
919 {
920 	const bool preempt = flags & BLK_MQ_REQ_PREEMPT;
921 
922 	while (true) {
923 		bool success = false;
924 
925 		rcu_read_lock();
926 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
927 			/*
928 			 * The code that sets the PREEMPT_ONLY flag is
929 			 * responsible for ensuring that that flag is globally
930 			 * visible before the queue is unfrozen.
931 			 */
932 			if (preempt || !blk_queue_preempt_only(q)) {
933 				success = true;
934 			} else {
935 				percpu_ref_put(&q->q_usage_counter);
936 			}
937 		}
938 		rcu_read_unlock();
939 
940 		if (success)
941 			return 0;
942 
943 		if (flags & BLK_MQ_REQ_NOWAIT)
944 			return -EBUSY;
945 
946 		/*
947 		 * read pair of barrier in blk_freeze_queue_start(),
948 		 * we need to order reading __PERCPU_REF_DEAD flag of
949 		 * .q_usage_counter and reading .mq_freeze_depth or
950 		 * queue dying flag, otherwise the following wait may
951 		 * never return if the two reads are reordered.
952 		 */
953 		smp_rmb();
954 
955 		wait_event(q->mq_freeze_wq,
956 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
957 			    (preempt || !blk_queue_preempt_only(q))) ||
958 			   blk_queue_dying(q));
959 		if (blk_queue_dying(q))
960 			return -ENODEV;
961 	}
962 }
963 
964 void blk_queue_exit(struct request_queue *q)
965 {
966 	percpu_ref_put(&q->q_usage_counter);
967 }
968 
969 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
970 {
971 	struct request_queue *q =
972 		container_of(ref, struct request_queue, q_usage_counter);
973 
974 	wake_up_all(&q->mq_freeze_wq);
975 }
976 
977 static void blk_rq_timed_out_timer(struct timer_list *t)
978 {
979 	struct request_queue *q = from_timer(q, t, timeout);
980 
981 	kblockd_schedule_work(&q->timeout_work);
982 }
983 
984 /**
985  * blk_alloc_queue_node - allocate a request queue
986  * @gfp_mask: memory allocation flags
987  * @node_id: NUMA node to allocate memory from
988  * @lock: For legacy queues, pointer to a spinlock that will be used to e.g.
989  *        serialize calls to the legacy .request_fn() callback. Ignored for
990  *	  blk-mq request queues.
991  *
992  * Note: pass the queue lock as the third argument to this function instead of
993  * setting the queue lock pointer explicitly to avoid triggering a sporadic
994  * crash in the blkcg code. This function namely calls blkcg_init_queue() and
995  * the queue lock pointer must be set before blkcg_init_queue() is called.
996  */
997 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id,
998 					   spinlock_t *lock)
999 {
1000 	struct request_queue *q;
1001 	int ret;
1002 
1003 	q = kmem_cache_alloc_node(blk_requestq_cachep,
1004 				gfp_mask | __GFP_ZERO, node_id);
1005 	if (!q)
1006 		return NULL;
1007 
1008 	INIT_LIST_HEAD(&q->queue_head);
1009 	q->last_merge = NULL;
1010 	q->end_sector = 0;
1011 	q->boundary_rq = NULL;
1012 
1013 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
1014 	if (q->id < 0)
1015 		goto fail_q;
1016 
1017 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
1018 	if (ret)
1019 		goto fail_id;
1020 
1021 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
1022 	if (!q->backing_dev_info)
1023 		goto fail_split;
1024 
1025 	q->stats = blk_alloc_queue_stats();
1026 	if (!q->stats)
1027 		goto fail_stats;
1028 
1029 	q->backing_dev_info->ra_pages =
1030 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
1031 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
1032 	q->backing_dev_info->name = "block";
1033 	q->node = node_id;
1034 
1035 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
1036 		    laptop_mode_timer_fn, 0);
1037 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
1038 	INIT_WORK(&q->timeout_work, NULL);
1039 	INIT_LIST_HEAD(&q->timeout_list);
1040 	INIT_LIST_HEAD(&q->icq_list);
1041 #ifdef CONFIG_BLK_CGROUP
1042 	INIT_LIST_HEAD(&q->blkg_list);
1043 #endif
1044 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
1045 
1046 	kobject_init(&q->kobj, &blk_queue_ktype);
1047 
1048 #ifdef CONFIG_BLK_DEV_IO_TRACE
1049 	mutex_init(&q->blk_trace_mutex);
1050 #endif
1051 	mutex_init(&q->sysfs_lock);
1052 	spin_lock_init(&q->__queue_lock);
1053 
1054 	if (!q->mq_ops)
1055 		q->queue_lock = lock ? : &q->__queue_lock;
1056 
1057 	/*
1058 	 * A queue starts its life with bypass turned on to avoid
1059 	 * unnecessary bypass on/off overhead and nasty surprises during
1060 	 * init.  The initial bypass will be finished when the queue is
1061 	 * registered by blk_register_queue().
1062 	 */
1063 	q->bypass_depth = 1;
1064 	queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q);
1065 
1066 	init_waitqueue_head(&q->mq_freeze_wq);
1067 
1068 	/*
1069 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1070 	 * See blk_register_queue() for details.
1071 	 */
1072 	if (percpu_ref_init(&q->q_usage_counter,
1073 				blk_queue_usage_counter_release,
1074 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1075 		goto fail_bdi;
1076 
1077 	if (blkcg_init_queue(q))
1078 		goto fail_ref;
1079 
1080 	return q;
1081 
1082 fail_ref:
1083 	percpu_ref_exit(&q->q_usage_counter);
1084 fail_bdi:
1085 	blk_free_queue_stats(q->stats);
1086 fail_stats:
1087 	bdi_put(q->backing_dev_info);
1088 fail_split:
1089 	bioset_exit(&q->bio_split);
1090 fail_id:
1091 	ida_simple_remove(&blk_queue_ida, q->id);
1092 fail_q:
1093 	kmem_cache_free(blk_requestq_cachep, q);
1094 	return NULL;
1095 }
1096 EXPORT_SYMBOL(blk_alloc_queue_node);
1097 
1098 /**
1099  * blk_init_queue  - prepare a request queue for use with a block device
1100  * @rfn:  The function to be called to process requests that have been
1101  *        placed on the queue.
1102  * @lock: Request queue spin lock
1103  *
1104  * Description:
1105  *    If a block device wishes to use the standard request handling procedures,
1106  *    which sorts requests and coalesces adjacent requests, then it must
1107  *    call blk_init_queue().  The function @rfn will be called when there
1108  *    are requests on the queue that need to be processed.  If the device
1109  *    supports plugging, then @rfn may not be called immediately when requests
1110  *    are available on the queue, but may be called at some time later instead.
1111  *    Plugged queues are generally unplugged when a buffer belonging to one
1112  *    of the requests on the queue is needed, or due to memory pressure.
1113  *
1114  *    @rfn is not required, or even expected, to remove all requests off the
1115  *    queue, but only as many as it can handle at a time.  If it does leave
1116  *    requests on the queue, it is responsible for arranging that the requests
1117  *    get dealt with eventually.
1118  *
1119  *    The queue spin lock must be held while manipulating the requests on the
1120  *    request queue; this lock will be taken also from interrupt context, so irq
1121  *    disabling is needed for it.
1122  *
1123  *    Function returns a pointer to the initialized request queue, or %NULL if
1124  *    it didn't succeed.
1125  *
1126  * Note:
1127  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
1128  *    when the block device is deactivated (such as at module unload).
1129  **/
1130 
1131 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1132 {
1133 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1134 }
1135 EXPORT_SYMBOL(blk_init_queue);
1136 
1137 struct request_queue *
1138 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
1139 {
1140 	struct request_queue *q;
1141 
1142 	q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock);
1143 	if (!q)
1144 		return NULL;
1145 
1146 	q->request_fn = rfn;
1147 	if (blk_init_allocated_queue(q) < 0) {
1148 		blk_cleanup_queue(q);
1149 		return NULL;
1150 	}
1151 
1152 	return q;
1153 }
1154 EXPORT_SYMBOL(blk_init_queue_node);
1155 
1156 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
1157 
1158 
1159 int blk_init_allocated_queue(struct request_queue *q)
1160 {
1161 	WARN_ON_ONCE(q->mq_ops);
1162 
1163 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
1164 	if (!q->fq)
1165 		return -ENOMEM;
1166 
1167 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
1168 		goto out_free_flush_queue;
1169 
1170 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
1171 		goto out_exit_flush_rq;
1172 
1173 	INIT_WORK(&q->timeout_work, blk_timeout_work);
1174 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
1175 
1176 	/*
1177 	 * This also sets hw/phys segments, boundary and size
1178 	 */
1179 	blk_queue_make_request(q, blk_queue_bio);
1180 
1181 	q->sg_reserved_size = INT_MAX;
1182 
1183 	if (elevator_init(q))
1184 		goto out_exit_flush_rq;
1185 	return 0;
1186 
1187 out_exit_flush_rq:
1188 	if (q->exit_rq_fn)
1189 		q->exit_rq_fn(q, q->fq->flush_rq);
1190 out_free_flush_queue:
1191 	blk_free_flush_queue(q->fq);
1192 	q->fq = NULL;
1193 	return -ENOMEM;
1194 }
1195 EXPORT_SYMBOL(blk_init_allocated_queue);
1196 
1197 bool blk_get_queue(struct request_queue *q)
1198 {
1199 	if (likely(!blk_queue_dying(q))) {
1200 		__blk_get_queue(q);
1201 		return true;
1202 	}
1203 
1204 	return false;
1205 }
1206 EXPORT_SYMBOL(blk_get_queue);
1207 
1208 static inline void blk_free_request(struct request_list *rl, struct request *rq)
1209 {
1210 	if (rq->rq_flags & RQF_ELVPRIV) {
1211 		elv_put_request(rl->q, rq);
1212 		if (rq->elv.icq)
1213 			put_io_context(rq->elv.icq->ioc);
1214 	}
1215 
1216 	mempool_free(rq, rl->rq_pool);
1217 }
1218 
1219 /*
1220  * ioc_batching returns true if the ioc is a valid batching request and
1221  * should be given priority access to a request.
1222  */
1223 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1224 {
1225 	if (!ioc)
1226 		return 0;
1227 
1228 	/*
1229 	 * Make sure the process is able to allocate at least 1 request
1230 	 * even if the batch times out, otherwise we could theoretically
1231 	 * lose wakeups.
1232 	 */
1233 	return ioc->nr_batch_requests == q->nr_batching ||
1234 		(ioc->nr_batch_requests > 0
1235 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
1236 }
1237 
1238 /*
1239  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1240  * will cause the process to be a "batcher" on all queues in the system. This
1241  * is the behaviour we want though - once it gets a wakeup it should be given
1242  * a nice run.
1243  */
1244 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1245 {
1246 	if (!ioc || ioc_batching(q, ioc))
1247 		return;
1248 
1249 	ioc->nr_batch_requests = q->nr_batching;
1250 	ioc->last_waited = jiffies;
1251 }
1252 
1253 static void __freed_request(struct request_list *rl, int sync)
1254 {
1255 	struct request_queue *q = rl->q;
1256 
1257 	if (rl->count[sync] < queue_congestion_off_threshold(q))
1258 		blk_clear_congested(rl, sync);
1259 
1260 	if (rl->count[sync] + 1 <= q->nr_requests) {
1261 		if (waitqueue_active(&rl->wait[sync]))
1262 			wake_up(&rl->wait[sync]);
1263 
1264 		blk_clear_rl_full(rl, sync);
1265 	}
1266 }
1267 
1268 /*
1269  * A request has just been released.  Account for it, update the full and
1270  * congestion status, wake up any waiters.   Called under q->queue_lock.
1271  */
1272 static void freed_request(struct request_list *rl, bool sync,
1273 		req_flags_t rq_flags)
1274 {
1275 	struct request_queue *q = rl->q;
1276 
1277 	q->nr_rqs[sync]--;
1278 	rl->count[sync]--;
1279 	if (rq_flags & RQF_ELVPRIV)
1280 		q->nr_rqs_elvpriv--;
1281 
1282 	__freed_request(rl, sync);
1283 
1284 	if (unlikely(rl->starved[sync ^ 1]))
1285 		__freed_request(rl, sync ^ 1);
1286 }
1287 
1288 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1289 {
1290 	struct request_list *rl;
1291 	int on_thresh, off_thresh;
1292 
1293 	WARN_ON_ONCE(q->mq_ops);
1294 
1295 	spin_lock_irq(q->queue_lock);
1296 	q->nr_requests = nr;
1297 	blk_queue_congestion_threshold(q);
1298 	on_thresh = queue_congestion_on_threshold(q);
1299 	off_thresh = queue_congestion_off_threshold(q);
1300 
1301 	blk_queue_for_each_rl(rl, q) {
1302 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1303 			blk_set_congested(rl, BLK_RW_SYNC);
1304 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1305 			blk_clear_congested(rl, BLK_RW_SYNC);
1306 
1307 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1308 			blk_set_congested(rl, BLK_RW_ASYNC);
1309 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1310 			blk_clear_congested(rl, BLK_RW_ASYNC);
1311 
1312 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1313 			blk_set_rl_full(rl, BLK_RW_SYNC);
1314 		} else {
1315 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1316 			wake_up(&rl->wait[BLK_RW_SYNC]);
1317 		}
1318 
1319 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1320 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1321 		} else {
1322 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1323 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1324 		}
1325 	}
1326 
1327 	spin_unlock_irq(q->queue_lock);
1328 	return 0;
1329 }
1330 
1331 /**
1332  * __get_request - get a free request
1333  * @rl: request list to allocate from
1334  * @op: operation and flags
1335  * @bio: bio to allocate request for (can be %NULL)
1336  * @flags: BLQ_MQ_REQ_* flags
1337  * @gfp_mask: allocator flags
1338  *
1339  * Get a free request from @q.  This function may fail under memory
1340  * pressure or if @q is dead.
1341  *
1342  * Must be called with @q->queue_lock held and,
1343  * Returns ERR_PTR on failure, with @q->queue_lock held.
1344  * Returns request pointer on success, with @q->queue_lock *not held*.
1345  */
1346 static struct request *__get_request(struct request_list *rl, unsigned int op,
1347 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask)
1348 {
1349 	struct request_queue *q = rl->q;
1350 	struct request *rq;
1351 	struct elevator_type *et = q->elevator->type;
1352 	struct io_context *ioc = rq_ioc(bio);
1353 	struct io_cq *icq = NULL;
1354 	const bool is_sync = op_is_sync(op);
1355 	int may_queue;
1356 	req_flags_t rq_flags = RQF_ALLOCED;
1357 
1358 	lockdep_assert_held(q->queue_lock);
1359 
1360 	if (unlikely(blk_queue_dying(q)))
1361 		return ERR_PTR(-ENODEV);
1362 
1363 	may_queue = elv_may_queue(q, op);
1364 	if (may_queue == ELV_MQUEUE_NO)
1365 		goto rq_starved;
1366 
1367 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1368 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1369 			/*
1370 			 * The queue will fill after this allocation, so set
1371 			 * it as full, and mark this process as "batching".
1372 			 * This process will be allowed to complete a batch of
1373 			 * requests, others will be blocked.
1374 			 */
1375 			if (!blk_rl_full(rl, is_sync)) {
1376 				ioc_set_batching(q, ioc);
1377 				blk_set_rl_full(rl, is_sync);
1378 			} else {
1379 				if (may_queue != ELV_MQUEUE_MUST
1380 						&& !ioc_batching(q, ioc)) {
1381 					/*
1382 					 * The queue is full and the allocating
1383 					 * process is not a "batcher", and not
1384 					 * exempted by the IO scheduler
1385 					 */
1386 					return ERR_PTR(-ENOMEM);
1387 				}
1388 			}
1389 		}
1390 		blk_set_congested(rl, is_sync);
1391 	}
1392 
1393 	/*
1394 	 * Only allow batching queuers to allocate up to 50% over the defined
1395 	 * limit of requests, otherwise we could have thousands of requests
1396 	 * allocated with any setting of ->nr_requests
1397 	 */
1398 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1399 		return ERR_PTR(-ENOMEM);
1400 
1401 	q->nr_rqs[is_sync]++;
1402 	rl->count[is_sync]++;
1403 	rl->starved[is_sync] = 0;
1404 
1405 	/*
1406 	 * Decide whether the new request will be managed by elevator.  If
1407 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1408 	 * prevent the current elevator from being destroyed until the new
1409 	 * request is freed.  This guarantees icq's won't be destroyed and
1410 	 * makes creating new ones safe.
1411 	 *
1412 	 * Flush requests do not use the elevator so skip initialization.
1413 	 * This allows a request to share the flush and elevator data.
1414 	 *
1415 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1416 	 * it will be created after releasing queue_lock.
1417 	 */
1418 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1419 		rq_flags |= RQF_ELVPRIV;
1420 		q->nr_rqs_elvpriv++;
1421 		if (et->icq_cache && ioc)
1422 			icq = ioc_lookup_icq(ioc, q);
1423 	}
1424 
1425 	if (blk_queue_io_stat(q))
1426 		rq_flags |= RQF_IO_STAT;
1427 	spin_unlock_irq(q->queue_lock);
1428 
1429 	/* allocate and init request */
1430 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1431 	if (!rq)
1432 		goto fail_alloc;
1433 
1434 	blk_rq_init(q, rq);
1435 	blk_rq_set_rl(rq, rl);
1436 	rq->cmd_flags = op;
1437 	rq->rq_flags = rq_flags;
1438 	if (flags & BLK_MQ_REQ_PREEMPT)
1439 		rq->rq_flags |= RQF_PREEMPT;
1440 
1441 	/* init elvpriv */
1442 	if (rq_flags & RQF_ELVPRIV) {
1443 		if (unlikely(et->icq_cache && !icq)) {
1444 			if (ioc)
1445 				icq = ioc_create_icq(ioc, q, gfp_mask);
1446 			if (!icq)
1447 				goto fail_elvpriv;
1448 		}
1449 
1450 		rq->elv.icq = icq;
1451 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1452 			goto fail_elvpriv;
1453 
1454 		/* @rq->elv.icq holds io_context until @rq is freed */
1455 		if (icq)
1456 			get_io_context(icq->ioc);
1457 	}
1458 out:
1459 	/*
1460 	 * ioc may be NULL here, and ioc_batching will be false. That's
1461 	 * OK, if the queue is under the request limit then requests need
1462 	 * not count toward the nr_batch_requests limit. There will always
1463 	 * be some limit enforced by BLK_BATCH_TIME.
1464 	 */
1465 	if (ioc_batching(q, ioc))
1466 		ioc->nr_batch_requests--;
1467 
1468 	trace_block_getrq(q, bio, op);
1469 	return rq;
1470 
1471 fail_elvpriv:
1472 	/*
1473 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1474 	 * and may fail indefinitely under memory pressure and thus
1475 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1476 	 * disturb iosched and blkcg but weird is bettern than dead.
1477 	 */
1478 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1479 			   __func__, dev_name(q->backing_dev_info->dev));
1480 
1481 	rq->rq_flags &= ~RQF_ELVPRIV;
1482 	rq->elv.icq = NULL;
1483 
1484 	spin_lock_irq(q->queue_lock);
1485 	q->nr_rqs_elvpriv--;
1486 	spin_unlock_irq(q->queue_lock);
1487 	goto out;
1488 
1489 fail_alloc:
1490 	/*
1491 	 * Allocation failed presumably due to memory. Undo anything we
1492 	 * might have messed up.
1493 	 *
1494 	 * Allocating task should really be put onto the front of the wait
1495 	 * queue, but this is pretty rare.
1496 	 */
1497 	spin_lock_irq(q->queue_lock);
1498 	freed_request(rl, is_sync, rq_flags);
1499 
1500 	/*
1501 	 * in the very unlikely event that allocation failed and no
1502 	 * requests for this direction was pending, mark us starved so that
1503 	 * freeing of a request in the other direction will notice
1504 	 * us. another possible fix would be to split the rq mempool into
1505 	 * READ and WRITE
1506 	 */
1507 rq_starved:
1508 	if (unlikely(rl->count[is_sync] == 0))
1509 		rl->starved[is_sync] = 1;
1510 	return ERR_PTR(-ENOMEM);
1511 }
1512 
1513 /**
1514  * get_request - get a free request
1515  * @q: request_queue to allocate request from
1516  * @op: operation and flags
1517  * @bio: bio to allocate request for (can be %NULL)
1518  * @flags: BLK_MQ_REQ_* flags.
1519  * @gfp: allocator flags
1520  *
1521  * Get a free request from @q.  If %BLK_MQ_REQ_NOWAIT is set in @flags,
1522  * this function keeps retrying under memory pressure and fails iff @q is dead.
1523  *
1524  * Must be called with @q->queue_lock held and,
1525  * Returns ERR_PTR on failure, with @q->queue_lock held.
1526  * Returns request pointer on success, with @q->queue_lock *not held*.
1527  */
1528 static struct request *get_request(struct request_queue *q, unsigned int op,
1529 		struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp)
1530 {
1531 	const bool is_sync = op_is_sync(op);
1532 	DEFINE_WAIT(wait);
1533 	struct request_list *rl;
1534 	struct request *rq;
1535 
1536 	lockdep_assert_held(q->queue_lock);
1537 	WARN_ON_ONCE(q->mq_ops);
1538 
1539 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1540 retry:
1541 	rq = __get_request(rl, op, bio, flags, gfp);
1542 	if (!IS_ERR(rq))
1543 		return rq;
1544 
1545 	if (op & REQ_NOWAIT) {
1546 		blk_put_rl(rl);
1547 		return ERR_PTR(-EAGAIN);
1548 	}
1549 
1550 	if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) {
1551 		blk_put_rl(rl);
1552 		return rq;
1553 	}
1554 
1555 	/* wait on @rl and retry */
1556 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1557 				  TASK_UNINTERRUPTIBLE);
1558 
1559 	trace_block_sleeprq(q, bio, op);
1560 
1561 	spin_unlock_irq(q->queue_lock);
1562 	io_schedule();
1563 
1564 	/*
1565 	 * After sleeping, we become a "batching" process and will be able
1566 	 * to allocate at least one request, and up to a big batch of them
1567 	 * for a small period time.  See ioc_batching, ioc_set_batching
1568 	 */
1569 	ioc_set_batching(q, current->io_context);
1570 
1571 	spin_lock_irq(q->queue_lock);
1572 	finish_wait(&rl->wait[is_sync], &wait);
1573 
1574 	goto retry;
1575 }
1576 
1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */
1578 static struct request *blk_old_get_request(struct request_queue *q,
1579 				unsigned int op, blk_mq_req_flags_t flags)
1580 {
1581 	struct request *rq;
1582 	gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO;
1583 	int ret = 0;
1584 
1585 	WARN_ON_ONCE(q->mq_ops);
1586 
1587 	/* create ioc upfront */
1588 	create_io_context(gfp_mask, q->node);
1589 
1590 	ret = blk_queue_enter(q, flags);
1591 	if (ret)
1592 		return ERR_PTR(ret);
1593 	spin_lock_irq(q->queue_lock);
1594 	rq = get_request(q, op, NULL, flags, gfp_mask);
1595 	if (IS_ERR(rq)) {
1596 		spin_unlock_irq(q->queue_lock);
1597 		blk_queue_exit(q);
1598 		return rq;
1599 	}
1600 
1601 	/* q->queue_lock is unlocked at this point */
1602 	rq->__data_len = 0;
1603 	rq->__sector = (sector_t) -1;
1604 	rq->bio = rq->biotail = NULL;
1605 	return rq;
1606 }
1607 
1608 /**
1609  * blk_get_request - allocate a request
1610  * @q: request queue to allocate a request for
1611  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
1612  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
1613  */
1614 struct request *blk_get_request(struct request_queue *q, unsigned int op,
1615 				blk_mq_req_flags_t flags)
1616 {
1617 	struct request *req;
1618 
1619 	WARN_ON_ONCE(op & REQ_NOWAIT);
1620 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
1621 
1622 	if (q->mq_ops) {
1623 		req = blk_mq_alloc_request(q, op, flags);
1624 		if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
1625 			q->mq_ops->initialize_rq_fn(req);
1626 	} else {
1627 		req = blk_old_get_request(q, op, flags);
1628 		if (!IS_ERR(req) && q->initialize_rq_fn)
1629 			q->initialize_rq_fn(req);
1630 	}
1631 
1632 	return req;
1633 }
1634 EXPORT_SYMBOL(blk_get_request);
1635 
1636 /**
1637  * blk_requeue_request - put a request back on queue
1638  * @q:		request queue where request should be inserted
1639  * @rq:		request to be inserted
1640  *
1641  * Description:
1642  *    Drivers often keep queueing requests until the hardware cannot accept
1643  *    more, when that condition happens we need to put the request back
1644  *    on the queue. Must be called with queue lock held.
1645  */
1646 void blk_requeue_request(struct request_queue *q, struct request *rq)
1647 {
1648 	lockdep_assert_held(q->queue_lock);
1649 	WARN_ON_ONCE(q->mq_ops);
1650 
1651 	blk_delete_timer(rq);
1652 	blk_clear_rq_complete(rq);
1653 	trace_block_rq_requeue(q, rq);
1654 	rq_qos_requeue(q, rq);
1655 
1656 	if (rq->rq_flags & RQF_QUEUED)
1657 		blk_queue_end_tag(q, rq);
1658 
1659 	BUG_ON(blk_queued_rq(rq));
1660 
1661 	elv_requeue_request(q, rq);
1662 }
1663 EXPORT_SYMBOL(blk_requeue_request);
1664 
1665 static void add_acct_request(struct request_queue *q, struct request *rq,
1666 			     int where)
1667 {
1668 	blk_account_io_start(rq, true);
1669 	__elv_add_request(q, rq, where);
1670 }
1671 
1672 static void part_round_stats_single(struct request_queue *q, int cpu,
1673 				    struct hd_struct *part, unsigned long now,
1674 				    unsigned int inflight)
1675 {
1676 	if (inflight) {
1677 		__part_stat_add(cpu, part, time_in_queue,
1678 				inflight * (now - part->stamp));
1679 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1680 	}
1681 	part->stamp = now;
1682 }
1683 
1684 /**
1685  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1686  * @q: target block queue
1687  * @cpu: cpu number for stats access
1688  * @part: target partition
1689  *
1690  * The average IO queue length and utilisation statistics are maintained
1691  * by observing the current state of the queue length and the amount of
1692  * time it has been in this state for.
1693  *
1694  * Normally, that accounting is done on IO completion, but that can result
1695  * in more than a second's worth of IO being accounted for within any one
1696  * second, leading to >100% utilisation.  To deal with that, we call this
1697  * function to do a round-off before returning the results when reading
1698  * /proc/diskstats.  This accounts immediately for all queue usage up to
1699  * the current jiffies and restarts the counters again.
1700  */
1701 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part)
1702 {
1703 	struct hd_struct *part2 = NULL;
1704 	unsigned long now = jiffies;
1705 	unsigned int inflight[2];
1706 	int stats = 0;
1707 
1708 	if (part->stamp != now)
1709 		stats |= 1;
1710 
1711 	if (part->partno) {
1712 		part2 = &part_to_disk(part)->part0;
1713 		if (part2->stamp != now)
1714 			stats |= 2;
1715 	}
1716 
1717 	if (!stats)
1718 		return;
1719 
1720 	part_in_flight(q, part, inflight);
1721 
1722 	if (stats & 2)
1723 		part_round_stats_single(q, cpu, part2, now, inflight[1]);
1724 	if (stats & 1)
1725 		part_round_stats_single(q, cpu, part, now, inflight[0]);
1726 }
1727 EXPORT_SYMBOL_GPL(part_round_stats);
1728 
1729 #ifdef CONFIG_PM
1730 static void blk_pm_put_request(struct request *rq)
1731 {
1732 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1733 		pm_runtime_mark_last_busy(rq->q->dev);
1734 }
1735 #else
1736 static inline void blk_pm_put_request(struct request *rq) {}
1737 #endif
1738 
1739 void __blk_put_request(struct request_queue *q, struct request *req)
1740 {
1741 	req_flags_t rq_flags = req->rq_flags;
1742 
1743 	if (unlikely(!q))
1744 		return;
1745 
1746 	if (q->mq_ops) {
1747 		blk_mq_free_request(req);
1748 		return;
1749 	}
1750 
1751 	lockdep_assert_held(q->queue_lock);
1752 
1753 	blk_req_zone_write_unlock(req);
1754 	blk_pm_put_request(req);
1755 
1756 	elv_completed_request(q, req);
1757 
1758 	/* this is a bio leak */
1759 	WARN_ON(req->bio != NULL);
1760 
1761 	rq_qos_done(q, req);
1762 
1763 	/*
1764 	 * Request may not have originated from ll_rw_blk. if not,
1765 	 * it didn't come out of our reserved rq pools
1766 	 */
1767 	if (rq_flags & RQF_ALLOCED) {
1768 		struct request_list *rl = blk_rq_rl(req);
1769 		bool sync = op_is_sync(req->cmd_flags);
1770 
1771 		BUG_ON(!list_empty(&req->queuelist));
1772 		BUG_ON(ELV_ON_HASH(req));
1773 
1774 		blk_free_request(rl, req);
1775 		freed_request(rl, sync, rq_flags);
1776 		blk_put_rl(rl);
1777 		blk_queue_exit(q);
1778 	}
1779 }
1780 EXPORT_SYMBOL_GPL(__blk_put_request);
1781 
1782 void blk_put_request(struct request *req)
1783 {
1784 	struct request_queue *q = req->q;
1785 
1786 	if (q->mq_ops)
1787 		blk_mq_free_request(req);
1788 	else {
1789 		unsigned long flags;
1790 
1791 		spin_lock_irqsave(q->queue_lock, flags);
1792 		__blk_put_request(q, req);
1793 		spin_unlock_irqrestore(q->queue_lock, flags);
1794 	}
1795 }
1796 EXPORT_SYMBOL(blk_put_request);
1797 
1798 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1799 			    struct bio *bio)
1800 {
1801 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1802 
1803 	if (!ll_back_merge_fn(q, req, bio))
1804 		return false;
1805 
1806 	trace_block_bio_backmerge(q, req, bio);
1807 
1808 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1809 		blk_rq_set_mixed_merge(req);
1810 
1811 	req->biotail->bi_next = bio;
1812 	req->biotail = bio;
1813 	req->__data_len += bio->bi_iter.bi_size;
1814 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1815 
1816 	blk_account_io_start(req, false);
1817 	return true;
1818 }
1819 
1820 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1821 			     struct bio *bio)
1822 {
1823 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1824 
1825 	if (!ll_front_merge_fn(q, req, bio))
1826 		return false;
1827 
1828 	trace_block_bio_frontmerge(q, req, bio);
1829 
1830 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1831 		blk_rq_set_mixed_merge(req);
1832 
1833 	bio->bi_next = req->bio;
1834 	req->bio = bio;
1835 
1836 	req->__sector = bio->bi_iter.bi_sector;
1837 	req->__data_len += bio->bi_iter.bi_size;
1838 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1839 
1840 	blk_account_io_start(req, false);
1841 	return true;
1842 }
1843 
1844 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1845 		struct bio *bio)
1846 {
1847 	unsigned short segments = blk_rq_nr_discard_segments(req);
1848 
1849 	if (segments >= queue_max_discard_segments(q))
1850 		goto no_merge;
1851 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1852 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1853 		goto no_merge;
1854 
1855 	req->biotail->bi_next = bio;
1856 	req->biotail = bio;
1857 	req->__data_len += bio->bi_iter.bi_size;
1858 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1859 	req->nr_phys_segments = segments + 1;
1860 
1861 	blk_account_io_start(req, false);
1862 	return true;
1863 no_merge:
1864 	req_set_nomerge(q, req);
1865 	return false;
1866 }
1867 
1868 /**
1869  * blk_attempt_plug_merge - try to merge with %current's plugged list
1870  * @q: request_queue new bio is being queued at
1871  * @bio: new bio being queued
1872  * @request_count: out parameter for number of traversed plugged requests
1873  * @same_queue_rq: pointer to &struct request that gets filled in when
1874  * another request associated with @q is found on the plug list
1875  * (optional, may be %NULL)
1876  *
1877  * Determine whether @bio being queued on @q can be merged with a request
1878  * on %current's plugged list.  Returns %true if merge was successful,
1879  * otherwise %false.
1880  *
1881  * Plugging coalesces IOs from the same issuer for the same purpose without
1882  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1883  * than scheduling, and the request, while may have elvpriv data, is not
1884  * added on the elevator at this point.  In addition, we don't have
1885  * reliable access to the elevator outside queue lock.  Only check basic
1886  * merging parameters without querying the elevator.
1887  *
1888  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1889  */
1890 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1891 			    unsigned int *request_count,
1892 			    struct request **same_queue_rq)
1893 {
1894 	struct blk_plug *plug;
1895 	struct request *rq;
1896 	struct list_head *plug_list;
1897 
1898 	plug = current->plug;
1899 	if (!plug)
1900 		return false;
1901 	*request_count = 0;
1902 
1903 	if (q->mq_ops)
1904 		plug_list = &plug->mq_list;
1905 	else
1906 		plug_list = &plug->list;
1907 
1908 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1909 		bool merged = false;
1910 
1911 		if (rq->q == q) {
1912 			(*request_count)++;
1913 			/*
1914 			 * Only blk-mq multiple hardware queues case checks the
1915 			 * rq in the same queue, there should be only one such
1916 			 * rq in a queue
1917 			 **/
1918 			if (same_queue_rq)
1919 				*same_queue_rq = rq;
1920 		}
1921 
1922 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1923 			continue;
1924 
1925 		switch (blk_try_merge(rq, bio)) {
1926 		case ELEVATOR_BACK_MERGE:
1927 			merged = bio_attempt_back_merge(q, rq, bio);
1928 			break;
1929 		case ELEVATOR_FRONT_MERGE:
1930 			merged = bio_attempt_front_merge(q, rq, bio);
1931 			break;
1932 		case ELEVATOR_DISCARD_MERGE:
1933 			merged = bio_attempt_discard_merge(q, rq, bio);
1934 			break;
1935 		default:
1936 			break;
1937 		}
1938 
1939 		if (merged)
1940 			return true;
1941 	}
1942 
1943 	return false;
1944 }
1945 
1946 unsigned int blk_plug_queued_count(struct request_queue *q)
1947 {
1948 	struct blk_plug *plug;
1949 	struct request *rq;
1950 	struct list_head *plug_list;
1951 	unsigned int ret = 0;
1952 
1953 	plug = current->plug;
1954 	if (!plug)
1955 		goto out;
1956 
1957 	if (q->mq_ops)
1958 		plug_list = &plug->mq_list;
1959 	else
1960 		plug_list = &plug->list;
1961 
1962 	list_for_each_entry(rq, plug_list, queuelist) {
1963 		if (rq->q == q)
1964 			ret++;
1965 	}
1966 out:
1967 	return ret;
1968 }
1969 
1970 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1971 {
1972 	struct io_context *ioc = rq_ioc(bio);
1973 
1974 	if (bio->bi_opf & REQ_RAHEAD)
1975 		req->cmd_flags |= REQ_FAILFAST_MASK;
1976 
1977 	req->__sector = bio->bi_iter.bi_sector;
1978 	if (ioprio_valid(bio_prio(bio)))
1979 		req->ioprio = bio_prio(bio);
1980 	else if (ioc)
1981 		req->ioprio = ioc->ioprio;
1982 	else
1983 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1984 	req->write_hint = bio->bi_write_hint;
1985 	blk_rq_bio_prep(req->q, req, bio);
1986 }
1987 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1988 
1989 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1990 {
1991 	struct blk_plug *plug;
1992 	int where = ELEVATOR_INSERT_SORT;
1993 	struct request *req, *free;
1994 	unsigned int request_count = 0;
1995 
1996 	/*
1997 	 * low level driver can indicate that it wants pages above a
1998 	 * certain limit bounced to low memory (ie for highmem, or even
1999 	 * ISA dma in theory)
2000 	 */
2001 	blk_queue_bounce(q, &bio);
2002 
2003 	blk_queue_split(q, &bio);
2004 
2005 	if (!bio_integrity_prep(bio))
2006 		return BLK_QC_T_NONE;
2007 
2008 	if (op_is_flush(bio->bi_opf)) {
2009 		spin_lock_irq(q->queue_lock);
2010 		where = ELEVATOR_INSERT_FLUSH;
2011 		goto get_rq;
2012 	}
2013 
2014 	/*
2015 	 * Check if we can merge with the plugged list before grabbing
2016 	 * any locks.
2017 	 */
2018 	if (!blk_queue_nomerges(q)) {
2019 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
2020 			return BLK_QC_T_NONE;
2021 	} else
2022 		request_count = blk_plug_queued_count(q);
2023 
2024 	spin_lock_irq(q->queue_lock);
2025 
2026 	switch (elv_merge(q, &req, bio)) {
2027 	case ELEVATOR_BACK_MERGE:
2028 		if (!bio_attempt_back_merge(q, req, bio))
2029 			break;
2030 		elv_bio_merged(q, req, bio);
2031 		free = attempt_back_merge(q, req);
2032 		if (free)
2033 			__blk_put_request(q, free);
2034 		else
2035 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
2036 		goto out_unlock;
2037 	case ELEVATOR_FRONT_MERGE:
2038 		if (!bio_attempt_front_merge(q, req, bio))
2039 			break;
2040 		elv_bio_merged(q, req, bio);
2041 		free = attempt_front_merge(q, req);
2042 		if (free)
2043 			__blk_put_request(q, free);
2044 		else
2045 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
2046 		goto out_unlock;
2047 	default:
2048 		break;
2049 	}
2050 
2051 get_rq:
2052 	rq_qos_throttle(q, bio, q->queue_lock);
2053 
2054 	/*
2055 	 * Grab a free request. This is might sleep but can not fail.
2056 	 * Returns with the queue unlocked.
2057 	 */
2058 	blk_queue_enter_live(q);
2059 	req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO);
2060 	if (IS_ERR(req)) {
2061 		blk_queue_exit(q);
2062 		rq_qos_cleanup(q, bio);
2063 		if (PTR_ERR(req) == -ENOMEM)
2064 			bio->bi_status = BLK_STS_RESOURCE;
2065 		else
2066 			bio->bi_status = BLK_STS_IOERR;
2067 		bio_endio(bio);
2068 		goto out_unlock;
2069 	}
2070 
2071 	rq_qos_track(q, req, bio);
2072 
2073 	/*
2074 	 * After dropping the lock and possibly sleeping here, our request
2075 	 * may now be mergeable after it had proven unmergeable (above).
2076 	 * We don't worry about that case for efficiency. It won't happen
2077 	 * often, and the elevators are able to handle it.
2078 	 */
2079 	blk_init_request_from_bio(req, bio);
2080 
2081 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
2082 		req->cpu = raw_smp_processor_id();
2083 
2084 	plug = current->plug;
2085 	if (plug) {
2086 		/*
2087 		 * If this is the first request added after a plug, fire
2088 		 * of a plug trace.
2089 		 *
2090 		 * @request_count may become stale because of schedule
2091 		 * out, so check plug list again.
2092 		 */
2093 		if (!request_count || list_empty(&plug->list))
2094 			trace_block_plug(q);
2095 		else {
2096 			struct request *last = list_entry_rq(plug->list.prev);
2097 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
2098 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
2099 				blk_flush_plug_list(plug, false);
2100 				trace_block_plug(q);
2101 			}
2102 		}
2103 		list_add_tail(&req->queuelist, &plug->list);
2104 		blk_account_io_start(req, true);
2105 	} else {
2106 		spin_lock_irq(q->queue_lock);
2107 		add_acct_request(q, req, where);
2108 		__blk_run_queue(q);
2109 out_unlock:
2110 		spin_unlock_irq(q->queue_lock);
2111 	}
2112 
2113 	return BLK_QC_T_NONE;
2114 }
2115 
2116 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
2117 {
2118 	char b[BDEVNAME_SIZE];
2119 
2120 	printk(KERN_INFO "attempt to access beyond end of device\n");
2121 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
2122 			bio_devname(bio, b), bio->bi_opf,
2123 			(unsigned long long)bio_end_sector(bio),
2124 			(long long)maxsector);
2125 }
2126 
2127 #ifdef CONFIG_FAIL_MAKE_REQUEST
2128 
2129 static DECLARE_FAULT_ATTR(fail_make_request);
2130 
2131 static int __init setup_fail_make_request(char *str)
2132 {
2133 	return setup_fault_attr(&fail_make_request, str);
2134 }
2135 __setup("fail_make_request=", setup_fail_make_request);
2136 
2137 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
2138 {
2139 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
2140 }
2141 
2142 static int __init fail_make_request_debugfs(void)
2143 {
2144 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
2145 						NULL, &fail_make_request);
2146 
2147 	return PTR_ERR_OR_ZERO(dir);
2148 }
2149 
2150 late_initcall(fail_make_request_debugfs);
2151 
2152 #else /* CONFIG_FAIL_MAKE_REQUEST */
2153 
2154 static inline bool should_fail_request(struct hd_struct *part,
2155 					unsigned int bytes)
2156 {
2157 	return false;
2158 }
2159 
2160 #endif /* CONFIG_FAIL_MAKE_REQUEST */
2161 
2162 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
2163 {
2164 	const int op = bio_op(bio);
2165 
2166 	if (part->policy && op_is_write(op)) {
2167 		char b[BDEVNAME_SIZE];
2168 
2169 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
2170 			return false;
2171 
2172 		WARN_ONCE(1,
2173 		       "generic_make_request: Trying to write "
2174 			"to read-only block-device %s (partno %d)\n",
2175 			bio_devname(bio, b), part->partno);
2176 		/* Older lvm-tools actually trigger this */
2177 		return false;
2178 	}
2179 
2180 	return false;
2181 }
2182 
2183 static noinline int should_fail_bio(struct bio *bio)
2184 {
2185 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
2186 		return -EIO;
2187 	return 0;
2188 }
2189 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
2190 
2191 /*
2192  * Check whether this bio extends beyond the end of the device or partition.
2193  * This may well happen - the kernel calls bread() without checking the size of
2194  * the device, e.g., when mounting a file system.
2195  */
2196 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
2197 {
2198 	unsigned int nr_sectors = bio_sectors(bio);
2199 
2200 	if (nr_sectors && maxsector &&
2201 	    (nr_sectors > maxsector ||
2202 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
2203 		handle_bad_sector(bio, maxsector);
2204 		return -EIO;
2205 	}
2206 	return 0;
2207 }
2208 
2209 /*
2210  * Remap block n of partition p to block n+start(p) of the disk.
2211  */
2212 static inline int blk_partition_remap(struct bio *bio)
2213 {
2214 	struct hd_struct *p;
2215 	int ret = -EIO;
2216 
2217 	rcu_read_lock();
2218 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
2219 	if (unlikely(!p))
2220 		goto out;
2221 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
2222 		goto out;
2223 	if (unlikely(bio_check_ro(bio, p)))
2224 		goto out;
2225 
2226 	/*
2227 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
2228 	 * Include a test for the reset op code and perform the remap if needed.
2229 	 */
2230 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
2231 		if (bio_check_eod(bio, part_nr_sects_read(p)))
2232 			goto out;
2233 		bio->bi_iter.bi_sector += p->start_sect;
2234 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
2235 				      bio->bi_iter.bi_sector - p->start_sect);
2236 	}
2237 	bio->bi_partno = 0;
2238 	ret = 0;
2239 out:
2240 	rcu_read_unlock();
2241 	return ret;
2242 }
2243 
2244 static noinline_for_stack bool
2245 generic_make_request_checks(struct bio *bio)
2246 {
2247 	struct request_queue *q;
2248 	int nr_sectors = bio_sectors(bio);
2249 	blk_status_t status = BLK_STS_IOERR;
2250 	char b[BDEVNAME_SIZE];
2251 
2252 	might_sleep();
2253 
2254 	q = bio->bi_disk->queue;
2255 	if (unlikely(!q)) {
2256 		printk(KERN_ERR
2257 		       "generic_make_request: Trying to access "
2258 			"nonexistent block-device %s (%Lu)\n",
2259 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
2260 		goto end_io;
2261 	}
2262 
2263 	/*
2264 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2265 	 * if queue is not a request based queue.
2266 	 */
2267 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q))
2268 		goto not_supported;
2269 
2270 	if (should_fail_bio(bio))
2271 		goto end_io;
2272 
2273 	if (bio->bi_partno) {
2274 		if (unlikely(blk_partition_remap(bio)))
2275 			goto end_io;
2276 	} else {
2277 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
2278 			goto end_io;
2279 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
2280 			goto end_io;
2281 	}
2282 
2283 	/*
2284 	 * Filter flush bio's early so that make_request based
2285 	 * drivers without flush support don't have to worry
2286 	 * about them.
2287 	 */
2288 	if (op_is_flush(bio->bi_opf) &&
2289 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
2290 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
2291 		if (!nr_sectors) {
2292 			status = BLK_STS_OK;
2293 			goto end_io;
2294 		}
2295 	}
2296 
2297 	switch (bio_op(bio)) {
2298 	case REQ_OP_DISCARD:
2299 		if (!blk_queue_discard(q))
2300 			goto not_supported;
2301 		break;
2302 	case REQ_OP_SECURE_ERASE:
2303 		if (!blk_queue_secure_erase(q))
2304 			goto not_supported;
2305 		break;
2306 	case REQ_OP_WRITE_SAME:
2307 		if (!q->limits.max_write_same_sectors)
2308 			goto not_supported;
2309 		break;
2310 	case REQ_OP_ZONE_REPORT:
2311 	case REQ_OP_ZONE_RESET:
2312 		if (!blk_queue_is_zoned(q))
2313 			goto not_supported;
2314 		break;
2315 	case REQ_OP_WRITE_ZEROES:
2316 		if (!q->limits.max_write_zeroes_sectors)
2317 			goto not_supported;
2318 		break;
2319 	default:
2320 		break;
2321 	}
2322 
2323 	/*
2324 	 * Various block parts want %current->io_context and lazy ioc
2325 	 * allocation ends up trading a lot of pain for a small amount of
2326 	 * memory.  Just allocate it upfront.  This may fail and block
2327 	 * layer knows how to live with it.
2328 	 */
2329 	create_io_context(GFP_ATOMIC, q->node);
2330 
2331 	if (!blkcg_bio_issue_check(q, bio))
2332 		return false;
2333 
2334 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
2335 		trace_block_bio_queue(q, bio);
2336 		/* Now that enqueuing has been traced, we need to trace
2337 		 * completion as well.
2338 		 */
2339 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
2340 	}
2341 	return true;
2342 
2343 not_supported:
2344 	status = BLK_STS_NOTSUPP;
2345 end_io:
2346 	bio->bi_status = status;
2347 	bio_endio(bio);
2348 	return false;
2349 }
2350 
2351 /**
2352  * generic_make_request - hand a buffer to its device driver for I/O
2353  * @bio:  The bio describing the location in memory and on the device.
2354  *
2355  * generic_make_request() is used to make I/O requests of block
2356  * devices. It is passed a &struct bio, which describes the I/O that needs
2357  * to be done.
2358  *
2359  * generic_make_request() does not return any status.  The
2360  * success/failure status of the request, along with notification of
2361  * completion, is delivered asynchronously through the bio->bi_end_io
2362  * function described (one day) else where.
2363  *
2364  * The caller of generic_make_request must make sure that bi_io_vec
2365  * are set to describe the memory buffer, and that bi_dev and bi_sector are
2366  * set to describe the device address, and the
2367  * bi_end_io and optionally bi_private are set to describe how
2368  * completion notification should be signaled.
2369  *
2370  * generic_make_request and the drivers it calls may use bi_next if this
2371  * bio happens to be merged with someone else, and may resubmit the bio to
2372  * a lower device by calling into generic_make_request recursively, which
2373  * means the bio should NOT be touched after the call to ->make_request_fn.
2374  */
2375 blk_qc_t generic_make_request(struct bio *bio)
2376 {
2377 	/*
2378 	 * bio_list_on_stack[0] contains bios submitted by the current
2379 	 * make_request_fn.
2380 	 * bio_list_on_stack[1] contains bios that were submitted before
2381 	 * the current make_request_fn, but that haven't been processed
2382 	 * yet.
2383 	 */
2384 	struct bio_list bio_list_on_stack[2];
2385 	blk_mq_req_flags_t flags = 0;
2386 	struct request_queue *q = bio->bi_disk->queue;
2387 	blk_qc_t ret = BLK_QC_T_NONE;
2388 
2389 	if (bio->bi_opf & REQ_NOWAIT)
2390 		flags = BLK_MQ_REQ_NOWAIT;
2391 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
2392 		blk_queue_enter_live(q);
2393 	else if (blk_queue_enter(q, flags) < 0) {
2394 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
2395 			bio_wouldblock_error(bio);
2396 		else
2397 			bio_io_error(bio);
2398 		return ret;
2399 	}
2400 
2401 	if (!generic_make_request_checks(bio))
2402 		goto out;
2403 
2404 	/*
2405 	 * We only want one ->make_request_fn to be active at a time, else
2406 	 * stack usage with stacked devices could be a problem.  So use
2407 	 * current->bio_list to keep a list of requests submited by a
2408 	 * make_request_fn function.  current->bio_list is also used as a
2409 	 * flag to say if generic_make_request is currently active in this
2410 	 * task or not.  If it is NULL, then no make_request is active.  If
2411 	 * it is non-NULL, then a make_request is active, and new requests
2412 	 * should be added at the tail
2413 	 */
2414 	if (current->bio_list) {
2415 		bio_list_add(&current->bio_list[0], bio);
2416 		goto out;
2417 	}
2418 
2419 	/* following loop may be a bit non-obvious, and so deserves some
2420 	 * explanation.
2421 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2422 	 * ensure that) so we have a list with a single bio.
2423 	 * We pretend that we have just taken it off a longer list, so
2424 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2425 	 * thus initialising the bio_list of new bios to be
2426 	 * added.  ->make_request() may indeed add some more bios
2427 	 * through a recursive call to generic_make_request.  If it
2428 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2429 	 * from the top.  In this case we really did just take the bio
2430 	 * of the top of the list (no pretending) and so remove it from
2431 	 * bio_list, and call into ->make_request() again.
2432 	 */
2433 	BUG_ON(bio->bi_next);
2434 	bio_list_init(&bio_list_on_stack[0]);
2435 	current->bio_list = bio_list_on_stack;
2436 	do {
2437 		bool enter_succeeded = true;
2438 
2439 		if (unlikely(q != bio->bi_disk->queue)) {
2440 			if (q)
2441 				blk_queue_exit(q);
2442 			q = bio->bi_disk->queue;
2443 			flags = 0;
2444 			if (bio->bi_opf & REQ_NOWAIT)
2445 				flags = BLK_MQ_REQ_NOWAIT;
2446 			if (blk_queue_enter(q, flags) < 0) {
2447 				enter_succeeded = false;
2448 				q = NULL;
2449 			}
2450 		}
2451 
2452 		if (enter_succeeded) {
2453 			struct bio_list lower, same;
2454 
2455 			/* Create a fresh bio_list for all subordinate requests */
2456 			bio_list_on_stack[1] = bio_list_on_stack[0];
2457 			bio_list_init(&bio_list_on_stack[0]);
2458 			ret = q->make_request_fn(q, bio);
2459 
2460 			/* sort new bios into those for a lower level
2461 			 * and those for the same level
2462 			 */
2463 			bio_list_init(&lower);
2464 			bio_list_init(&same);
2465 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2466 				if (q == bio->bi_disk->queue)
2467 					bio_list_add(&same, bio);
2468 				else
2469 					bio_list_add(&lower, bio);
2470 			/* now assemble so we handle the lowest level first */
2471 			bio_list_merge(&bio_list_on_stack[0], &lower);
2472 			bio_list_merge(&bio_list_on_stack[0], &same);
2473 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2474 		} else {
2475 			if (unlikely(!blk_queue_dying(q) &&
2476 					(bio->bi_opf & REQ_NOWAIT)))
2477 				bio_wouldblock_error(bio);
2478 			else
2479 				bio_io_error(bio);
2480 		}
2481 		bio = bio_list_pop(&bio_list_on_stack[0]);
2482 	} while (bio);
2483 	current->bio_list = NULL; /* deactivate */
2484 
2485 out:
2486 	if (q)
2487 		blk_queue_exit(q);
2488 	return ret;
2489 }
2490 EXPORT_SYMBOL(generic_make_request);
2491 
2492 /**
2493  * direct_make_request - hand a buffer directly to its device driver for I/O
2494  * @bio:  The bio describing the location in memory and on the device.
2495  *
2496  * This function behaves like generic_make_request(), but does not protect
2497  * against recursion.  Must only be used if the called driver is known
2498  * to not call generic_make_request (or direct_make_request) again from
2499  * its make_request function.  (Calling direct_make_request again from
2500  * a workqueue is perfectly fine as that doesn't recurse).
2501  */
2502 blk_qc_t direct_make_request(struct bio *bio)
2503 {
2504 	struct request_queue *q = bio->bi_disk->queue;
2505 	bool nowait = bio->bi_opf & REQ_NOWAIT;
2506 	blk_qc_t ret;
2507 
2508 	if (!generic_make_request_checks(bio))
2509 		return BLK_QC_T_NONE;
2510 
2511 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
2512 		if (nowait && !blk_queue_dying(q))
2513 			bio->bi_status = BLK_STS_AGAIN;
2514 		else
2515 			bio->bi_status = BLK_STS_IOERR;
2516 		bio_endio(bio);
2517 		return BLK_QC_T_NONE;
2518 	}
2519 
2520 	ret = q->make_request_fn(q, bio);
2521 	blk_queue_exit(q);
2522 	return ret;
2523 }
2524 EXPORT_SYMBOL_GPL(direct_make_request);
2525 
2526 /**
2527  * submit_bio - submit a bio to the block device layer for I/O
2528  * @bio: The &struct bio which describes the I/O
2529  *
2530  * submit_bio() is very similar in purpose to generic_make_request(), and
2531  * uses that function to do most of the work. Both are fairly rough
2532  * interfaces; @bio must be presetup and ready for I/O.
2533  *
2534  */
2535 blk_qc_t submit_bio(struct bio *bio)
2536 {
2537 	/*
2538 	 * If it's a regular read/write or a barrier with data attached,
2539 	 * go through the normal accounting stuff before submission.
2540 	 */
2541 	if (bio_has_data(bio)) {
2542 		unsigned int count;
2543 
2544 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2545 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
2546 		else
2547 			count = bio_sectors(bio);
2548 
2549 		if (op_is_write(bio_op(bio))) {
2550 			count_vm_events(PGPGOUT, count);
2551 		} else {
2552 			task_io_account_read(bio->bi_iter.bi_size);
2553 			count_vm_events(PGPGIN, count);
2554 		}
2555 
2556 		if (unlikely(block_dump)) {
2557 			char b[BDEVNAME_SIZE];
2558 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2559 			current->comm, task_pid_nr(current),
2560 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2561 				(unsigned long long)bio->bi_iter.bi_sector,
2562 				bio_devname(bio, b), count);
2563 		}
2564 	}
2565 
2566 	return generic_make_request(bio);
2567 }
2568 EXPORT_SYMBOL(submit_bio);
2569 
2570 bool blk_poll(struct request_queue *q, blk_qc_t cookie)
2571 {
2572 	if (!q->poll_fn || !blk_qc_t_valid(cookie))
2573 		return false;
2574 
2575 	if (current->plug)
2576 		blk_flush_plug_list(current->plug, false);
2577 	return q->poll_fn(q, cookie);
2578 }
2579 EXPORT_SYMBOL_GPL(blk_poll);
2580 
2581 /**
2582  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2583  *                              for new the queue limits
2584  * @q:  the queue
2585  * @rq: the request being checked
2586  *
2587  * Description:
2588  *    @rq may have been made based on weaker limitations of upper-level queues
2589  *    in request stacking drivers, and it may violate the limitation of @q.
2590  *    Since the block layer and the underlying device driver trust @rq
2591  *    after it is inserted to @q, it should be checked against @q before
2592  *    the insertion using this generic function.
2593  *
2594  *    Request stacking drivers like request-based dm may change the queue
2595  *    limits when retrying requests on other queues. Those requests need
2596  *    to be checked against the new queue limits again during dispatch.
2597  */
2598 static int blk_cloned_rq_check_limits(struct request_queue *q,
2599 				      struct request *rq)
2600 {
2601 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2602 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2603 		return -EIO;
2604 	}
2605 
2606 	/*
2607 	 * queue's settings related to segment counting like q->bounce_pfn
2608 	 * may differ from that of other stacking queues.
2609 	 * Recalculate it to check the request correctly on this queue's
2610 	 * limitation.
2611 	 */
2612 	blk_recalc_rq_segments(rq);
2613 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2614 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2615 		return -EIO;
2616 	}
2617 
2618 	return 0;
2619 }
2620 
2621 /**
2622  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2623  * @q:  the queue to submit the request
2624  * @rq: the request being queued
2625  */
2626 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2627 {
2628 	unsigned long flags;
2629 	int where = ELEVATOR_INSERT_BACK;
2630 
2631 	if (blk_cloned_rq_check_limits(q, rq))
2632 		return BLK_STS_IOERR;
2633 
2634 	if (rq->rq_disk &&
2635 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2636 		return BLK_STS_IOERR;
2637 
2638 	if (q->mq_ops) {
2639 		if (blk_queue_io_stat(q))
2640 			blk_account_io_start(rq, true);
2641 		/*
2642 		 * Since we have a scheduler attached on the top device,
2643 		 * bypass a potential scheduler on the bottom device for
2644 		 * insert.
2645 		 */
2646 		return blk_mq_request_issue_directly(rq);
2647 	}
2648 
2649 	spin_lock_irqsave(q->queue_lock, flags);
2650 	if (unlikely(blk_queue_dying(q))) {
2651 		spin_unlock_irqrestore(q->queue_lock, flags);
2652 		return BLK_STS_IOERR;
2653 	}
2654 
2655 	/*
2656 	 * Submitting request must be dequeued before calling this function
2657 	 * because it will be linked to another request_queue
2658 	 */
2659 	BUG_ON(blk_queued_rq(rq));
2660 
2661 	if (op_is_flush(rq->cmd_flags))
2662 		where = ELEVATOR_INSERT_FLUSH;
2663 
2664 	add_acct_request(q, rq, where);
2665 	if (where == ELEVATOR_INSERT_FLUSH)
2666 		__blk_run_queue(q);
2667 	spin_unlock_irqrestore(q->queue_lock, flags);
2668 
2669 	return BLK_STS_OK;
2670 }
2671 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2672 
2673 /**
2674  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2675  * @rq: request to examine
2676  *
2677  * Description:
2678  *     A request could be merge of IOs which require different failure
2679  *     handling.  This function determines the number of bytes which
2680  *     can be failed from the beginning of the request without
2681  *     crossing into area which need to be retried further.
2682  *
2683  * Return:
2684  *     The number of bytes to fail.
2685  */
2686 unsigned int blk_rq_err_bytes(const struct request *rq)
2687 {
2688 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2689 	unsigned int bytes = 0;
2690 	struct bio *bio;
2691 
2692 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2693 		return blk_rq_bytes(rq);
2694 
2695 	/*
2696 	 * Currently the only 'mixing' which can happen is between
2697 	 * different fastfail types.  We can safely fail portions
2698 	 * which have all the failfast bits that the first one has -
2699 	 * the ones which are at least as eager to fail as the first
2700 	 * one.
2701 	 */
2702 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2703 		if ((bio->bi_opf & ff) != ff)
2704 			break;
2705 		bytes += bio->bi_iter.bi_size;
2706 	}
2707 
2708 	/* this could lead to infinite loop */
2709 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2710 	return bytes;
2711 }
2712 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2713 
2714 void blk_account_io_completion(struct request *req, unsigned int bytes)
2715 {
2716 	if (blk_do_io_stat(req)) {
2717 		const int sgrp = op_stat_group(req_op(req));
2718 		struct hd_struct *part;
2719 		int cpu;
2720 
2721 		cpu = part_stat_lock();
2722 		part = req->part;
2723 		part_stat_add(cpu, part, sectors[sgrp], bytes >> 9);
2724 		part_stat_unlock();
2725 	}
2726 }
2727 
2728 void blk_account_io_done(struct request *req, u64 now)
2729 {
2730 	/*
2731 	 * Account IO completion.  flush_rq isn't accounted as a
2732 	 * normal IO on queueing nor completion.  Accounting the
2733 	 * containing request is enough.
2734 	 */
2735 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2736 		unsigned long duration;
2737 		const int sgrp = op_stat_group(req_op(req));
2738 		struct hd_struct *part;
2739 		int cpu;
2740 
2741 		duration = nsecs_to_jiffies(now - req->start_time_ns);
2742 		cpu = part_stat_lock();
2743 		part = req->part;
2744 
2745 		part_stat_inc(cpu, part, ios[sgrp]);
2746 		part_stat_add(cpu, part, ticks[sgrp], duration);
2747 		part_round_stats(req->q, cpu, part);
2748 		part_dec_in_flight(req->q, part, rq_data_dir(req));
2749 
2750 		hd_struct_put(part);
2751 		part_stat_unlock();
2752 	}
2753 }
2754 
2755 #ifdef CONFIG_PM
2756 /*
2757  * Don't process normal requests when queue is suspended
2758  * or in the process of suspending/resuming
2759  */
2760 static bool blk_pm_allow_request(struct request *rq)
2761 {
2762 	switch (rq->q->rpm_status) {
2763 	case RPM_RESUMING:
2764 	case RPM_SUSPENDING:
2765 		return rq->rq_flags & RQF_PM;
2766 	case RPM_SUSPENDED:
2767 		return false;
2768 	default:
2769 		return true;
2770 	}
2771 }
2772 #else
2773 static bool blk_pm_allow_request(struct request *rq)
2774 {
2775 	return true;
2776 }
2777 #endif
2778 
2779 void blk_account_io_start(struct request *rq, bool new_io)
2780 {
2781 	struct hd_struct *part;
2782 	int rw = rq_data_dir(rq);
2783 	int cpu;
2784 
2785 	if (!blk_do_io_stat(rq))
2786 		return;
2787 
2788 	cpu = part_stat_lock();
2789 
2790 	if (!new_io) {
2791 		part = rq->part;
2792 		part_stat_inc(cpu, part, merges[rw]);
2793 	} else {
2794 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2795 		if (!hd_struct_try_get(part)) {
2796 			/*
2797 			 * The partition is already being removed,
2798 			 * the request will be accounted on the disk only
2799 			 *
2800 			 * We take a reference on disk->part0 although that
2801 			 * partition will never be deleted, so we can treat
2802 			 * it as any other partition.
2803 			 */
2804 			part = &rq->rq_disk->part0;
2805 			hd_struct_get(part);
2806 		}
2807 		part_round_stats(rq->q, cpu, part);
2808 		part_inc_in_flight(rq->q, part, rw);
2809 		rq->part = part;
2810 	}
2811 
2812 	part_stat_unlock();
2813 }
2814 
2815 static struct request *elv_next_request(struct request_queue *q)
2816 {
2817 	struct request *rq;
2818 	struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
2819 
2820 	WARN_ON_ONCE(q->mq_ops);
2821 
2822 	while (1) {
2823 		list_for_each_entry(rq, &q->queue_head, queuelist) {
2824 			if (blk_pm_allow_request(rq))
2825 				return rq;
2826 
2827 			if (rq->rq_flags & RQF_SOFTBARRIER)
2828 				break;
2829 		}
2830 
2831 		/*
2832 		 * Flush request is running and flush request isn't queueable
2833 		 * in the drive, we can hold the queue till flush request is
2834 		 * finished. Even we don't do this, driver can't dispatch next
2835 		 * requests and will requeue them. And this can improve
2836 		 * throughput too. For example, we have request flush1, write1,
2837 		 * flush 2. flush1 is dispatched, then queue is hold, write1
2838 		 * isn't inserted to queue. After flush1 is finished, flush2
2839 		 * will be dispatched. Since disk cache is already clean,
2840 		 * flush2 will be finished very soon, so looks like flush2 is
2841 		 * folded to flush1.
2842 		 * Since the queue is hold, a flag is set to indicate the queue
2843 		 * should be restarted later. Please see flush_end_io() for
2844 		 * details.
2845 		 */
2846 		if (fq->flush_pending_idx != fq->flush_running_idx &&
2847 				!queue_flush_queueable(q)) {
2848 			fq->flush_queue_delayed = 1;
2849 			return NULL;
2850 		}
2851 		if (unlikely(blk_queue_bypass(q)) ||
2852 		    !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0))
2853 			return NULL;
2854 	}
2855 }
2856 
2857 /**
2858  * blk_peek_request - peek at the top of a request queue
2859  * @q: request queue to peek at
2860  *
2861  * Description:
2862  *     Return the request at the top of @q.  The returned request
2863  *     should be started using blk_start_request() before LLD starts
2864  *     processing it.
2865  *
2866  * Return:
2867  *     Pointer to the request at the top of @q if available.  Null
2868  *     otherwise.
2869  */
2870 struct request *blk_peek_request(struct request_queue *q)
2871 {
2872 	struct request *rq;
2873 	int ret;
2874 
2875 	lockdep_assert_held(q->queue_lock);
2876 	WARN_ON_ONCE(q->mq_ops);
2877 
2878 	while ((rq = elv_next_request(q)) != NULL) {
2879 		if (!(rq->rq_flags & RQF_STARTED)) {
2880 			/*
2881 			 * This is the first time the device driver
2882 			 * sees this request (possibly after
2883 			 * requeueing).  Notify IO scheduler.
2884 			 */
2885 			if (rq->rq_flags & RQF_SORTED)
2886 				elv_activate_rq(q, rq);
2887 
2888 			/*
2889 			 * just mark as started even if we don't start
2890 			 * it, a request that has been delayed should
2891 			 * not be passed by new incoming requests
2892 			 */
2893 			rq->rq_flags |= RQF_STARTED;
2894 			trace_block_rq_issue(q, rq);
2895 		}
2896 
2897 		if (!q->boundary_rq || q->boundary_rq == rq) {
2898 			q->end_sector = rq_end_sector(rq);
2899 			q->boundary_rq = NULL;
2900 		}
2901 
2902 		if (rq->rq_flags & RQF_DONTPREP)
2903 			break;
2904 
2905 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2906 			/*
2907 			 * make sure space for the drain appears we
2908 			 * know we can do this because max_hw_segments
2909 			 * has been adjusted to be one fewer than the
2910 			 * device can handle
2911 			 */
2912 			rq->nr_phys_segments++;
2913 		}
2914 
2915 		if (!q->prep_rq_fn)
2916 			break;
2917 
2918 		ret = q->prep_rq_fn(q, rq);
2919 		if (ret == BLKPREP_OK) {
2920 			break;
2921 		} else if (ret == BLKPREP_DEFER) {
2922 			/*
2923 			 * the request may have been (partially) prepped.
2924 			 * we need to keep this request in the front to
2925 			 * avoid resource deadlock.  RQF_STARTED will
2926 			 * prevent other fs requests from passing this one.
2927 			 */
2928 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2929 			    !(rq->rq_flags & RQF_DONTPREP)) {
2930 				/*
2931 				 * remove the space for the drain we added
2932 				 * so that we don't add it again
2933 				 */
2934 				--rq->nr_phys_segments;
2935 			}
2936 
2937 			rq = NULL;
2938 			break;
2939 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2940 			rq->rq_flags |= RQF_QUIET;
2941 			/*
2942 			 * Mark this request as started so we don't trigger
2943 			 * any debug logic in the end I/O path.
2944 			 */
2945 			blk_start_request(rq);
2946 			__blk_end_request_all(rq, ret == BLKPREP_INVALID ?
2947 					BLK_STS_TARGET : BLK_STS_IOERR);
2948 		} else {
2949 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2950 			break;
2951 		}
2952 	}
2953 
2954 	return rq;
2955 }
2956 EXPORT_SYMBOL(blk_peek_request);
2957 
2958 static void blk_dequeue_request(struct request *rq)
2959 {
2960 	struct request_queue *q = rq->q;
2961 
2962 	BUG_ON(list_empty(&rq->queuelist));
2963 	BUG_ON(ELV_ON_HASH(rq));
2964 
2965 	list_del_init(&rq->queuelist);
2966 
2967 	/*
2968 	 * the time frame between a request being removed from the lists
2969 	 * and to it is freed is accounted as io that is in progress at
2970 	 * the driver side.
2971 	 */
2972 	if (blk_account_rq(rq))
2973 		q->in_flight[rq_is_sync(rq)]++;
2974 }
2975 
2976 /**
2977  * blk_start_request - start request processing on the driver
2978  * @req: request to dequeue
2979  *
2980  * Description:
2981  *     Dequeue @req and start timeout timer on it.  This hands off the
2982  *     request to the driver.
2983  */
2984 void blk_start_request(struct request *req)
2985 {
2986 	lockdep_assert_held(req->q->queue_lock);
2987 	WARN_ON_ONCE(req->q->mq_ops);
2988 
2989 	blk_dequeue_request(req);
2990 
2991 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2992 		req->io_start_time_ns = ktime_get_ns();
2993 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2994 		req->throtl_size = blk_rq_sectors(req);
2995 #endif
2996 		req->rq_flags |= RQF_STATS;
2997 		rq_qos_issue(req->q, req);
2998 	}
2999 
3000 	BUG_ON(blk_rq_is_complete(req));
3001 	blk_add_timer(req);
3002 }
3003 EXPORT_SYMBOL(blk_start_request);
3004 
3005 /**
3006  * blk_fetch_request - fetch a request from a request queue
3007  * @q: request queue to fetch a request from
3008  *
3009  * Description:
3010  *     Return the request at the top of @q.  The request is started on
3011  *     return and LLD can start processing it immediately.
3012  *
3013  * Return:
3014  *     Pointer to the request at the top of @q if available.  Null
3015  *     otherwise.
3016  */
3017 struct request *blk_fetch_request(struct request_queue *q)
3018 {
3019 	struct request *rq;
3020 
3021 	lockdep_assert_held(q->queue_lock);
3022 	WARN_ON_ONCE(q->mq_ops);
3023 
3024 	rq = blk_peek_request(q);
3025 	if (rq)
3026 		blk_start_request(rq);
3027 	return rq;
3028 }
3029 EXPORT_SYMBOL(blk_fetch_request);
3030 
3031 /*
3032  * Steal bios from a request and add them to a bio list.
3033  * The request must not have been partially completed before.
3034  */
3035 void blk_steal_bios(struct bio_list *list, struct request *rq)
3036 {
3037 	if (rq->bio) {
3038 		if (list->tail)
3039 			list->tail->bi_next = rq->bio;
3040 		else
3041 			list->head = rq->bio;
3042 		list->tail = rq->biotail;
3043 
3044 		rq->bio = NULL;
3045 		rq->biotail = NULL;
3046 	}
3047 
3048 	rq->__data_len = 0;
3049 }
3050 EXPORT_SYMBOL_GPL(blk_steal_bios);
3051 
3052 /**
3053  * blk_update_request - Special helper function for request stacking drivers
3054  * @req:      the request being processed
3055  * @error:    block status code
3056  * @nr_bytes: number of bytes to complete @req
3057  *
3058  * Description:
3059  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
3060  *     the request structure even if @req doesn't have leftover.
3061  *     If @req has leftover, sets it up for the next range of segments.
3062  *
3063  *     This special helper function is only for request stacking drivers
3064  *     (e.g. request-based dm) so that they can handle partial completion.
3065  *     Actual device drivers should use blk_end_request instead.
3066  *
3067  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
3068  *     %false return from this function.
3069  *
3070  * Note:
3071  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
3072  *	blk_rq_bytes() and in blk_update_request().
3073  *
3074  * Return:
3075  *     %false - this request doesn't have any more data
3076  *     %true  - this request has more data
3077  **/
3078 bool blk_update_request(struct request *req, blk_status_t error,
3079 		unsigned int nr_bytes)
3080 {
3081 	int total_bytes;
3082 
3083 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
3084 
3085 	if (!req->bio)
3086 		return false;
3087 
3088 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
3089 		     !(req->rq_flags & RQF_QUIET)))
3090 		print_req_error(req, error);
3091 
3092 	blk_account_io_completion(req, nr_bytes);
3093 
3094 	total_bytes = 0;
3095 	while (req->bio) {
3096 		struct bio *bio = req->bio;
3097 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
3098 
3099 		if (bio_bytes == bio->bi_iter.bi_size)
3100 			req->bio = bio->bi_next;
3101 
3102 		/* Completion has already been traced */
3103 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
3104 		req_bio_endio(req, bio, bio_bytes, error);
3105 
3106 		total_bytes += bio_bytes;
3107 		nr_bytes -= bio_bytes;
3108 
3109 		if (!nr_bytes)
3110 			break;
3111 	}
3112 
3113 	/*
3114 	 * completely done
3115 	 */
3116 	if (!req->bio) {
3117 		/*
3118 		 * Reset counters so that the request stacking driver
3119 		 * can find how many bytes remain in the request
3120 		 * later.
3121 		 */
3122 		req->__data_len = 0;
3123 		return false;
3124 	}
3125 
3126 	req->__data_len -= total_bytes;
3127 
3128 	/* update sector only for requests with clear definition of sector */
3129 	if (!blk_rq_is_passthrough(req))
3130 		req->__sector += total_bytes >> 9;
3131 
3132 	/* mixed attributes always follow the first bio */
3133 	if (req->rq_flags & RQF_MIXED_MERGE) {
3134 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
3135 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
3136 	}
3137 
3138 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
3139 		/*
3140 		 * If total number of sectors is less than the first segment
3141 		 * size, something has gone terribly wrong.
3142 		 */
3143 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
3144 			blk_dump_rq_flags(req, "request botched");
3145 			req->__data_len = blk_rq_cur_bytes(req);
3146 		}
3147 
3148 		/* recalculate the number of segments */
3149 		blk_recalc_rq_segments(req);
3150 	}
3151 
3152 	return true;
3153 }
3154 EXPORT_SYMBOL_GPL(blk_update_request);
3155 
3156 static bool blk_update_bidi_request(struct request *rq, blk_status_t error,
3157 				    unsigned int nr_bytes,
3158 				    unsigned int bidi_bytes)
3159 {
3160 	if (blk_update_request(rq, error, nr_bytes))
3161 		return true;
3162 
3163 	/* Bidi request must be completed as a whole */
3164 	if (unlikely(blk_bidi_rq(rq)) &&
3165 	    blk_update_request(rq->next_rq, error, bidi_bytes))
3166 		return true;
3167 
3168 	if (blk_queue_add_random(rq->q))
3169 		add_disk_randomness(rq->rq_disk);
3170 
3171 	return false;
3172 }
3173 
3174 /**
3175  * blk_unprep_request - unprepare a request
3176  * @req:	the request
3177  *
3178  * This function makes a request ready for complete resubmission (or
3179  * completion).  It happens only after all error handling is complete,
3180  * so represents the appropriate moment to deallocate any resources
3181  * that were allocated to the request in the prep_rq_fn.  The queue
3182  * lock is held when calling this.
3183  */
3184 void blk_unprep_request(struct request *req)
3185 {
3186 	struct request_queue *q = req->q;
3187 
3188 	req->rq_flags &= ~RQF_DONTPREP;
3189 	if (q->unprep_rq_fn)
3190 		q->unprep_rq_fn(q, req);
3191 }
3192 EXPORT_SYMBOL_GPL(blk_unprep_request);
3193 
3194 void blk_finish_request(struct request *req, blk_status_t error)
3195 {
3196 	struct request_queue *q = req->q;
3197 	u64 now = ktime_get_ns();
3198 
3199 	lockdep_assert_held(req->q->queue_lock);
3200 	WARN_ON_ONCE(q->mq_ops);
3201 
3202 	if (req->rq_flags & RQF_STATS)
3203 		blk_stat_add(req, now);
3204 
3205 	if (req->rq_flags & RQF_QUEUED)
3206 		blk_queue_end_tag(q, req);
3207 
3208 	BUG_ON(blk_queued_rq(req));
3209 
3210 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
3211 		laptop_io_completion(req->q->backing_dev_info);
3212 
3213 	blk_delete_timer(req);
3214 
3215 	if (req->rq_flags & RQF_DONTPREP)
3216 		blk_unprep_request(req);
3217 
3218 	blk_account_io_done(req, now);
3219 
3220 	if (req->end_io) {
3221 		rq_qos_done(q, req);
3222 		req->end_io(req, error);
3223 	} else {
3224 		if (blk_bidi_rq(req))
3225 			__blk_put_request(req->next_rq->q, req->next_rq);
3226 
3227 		__blk_put_request(q, req);
3228 	}
3229 }
3230 EXPORT_SYMBOL(blk_finish_request);
3231 
3232 /**
3233  * blk_end_bidi_request - Complete a bidi request
3234  * @rq:         the request to complete
3235  * @error:      block status code
3236  * @nr_bytes:   number of bytes to complete @rq
3237  * @bidi_bytes: number of bytes to complete @rq->next_rq
3238  *
3239  * Description:
3240  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
3241  *     Drivers that supports bidi can safely call this member for any
3242  *     type of request, bidi or uni.  In the later case @bidi_bytes is
3243  *     just ignored.
3244  *
3245  * Return:
3246  *     %false - we are done with this request
3247  *     %true  - still buffers pending for this request
3248  **/
3249 static bool blk_end_bidi_request(struct request *rq, blk_status_t error,
3250 				 unsigned int nr_bytes, unsigned int bidi_bytes)
3251 {
3252 	struct request_queue *q = rq->q;
3253 	unsigned long flags;
3254 
3255 	WARN_ON_ONCE(q->mq_ops);
3256 
3257 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3258 		return true;
3259 
3260 	spin_lock_irqsave(q->queue_lock, flags);
3261 	blk_finish_request(rq, error);
3262 	spin_unlock_irqrestore(q->queue_lock, flags);
3263 
3264 	return false;
3265 }
3266 
3267 /**
3268  * __blk_end_bidi_request - Complete a bidi request with queue lock held
3269  * @rq:         the request to complete
3270  * @error:      block status code
3271  * @nr_bytes:   number of bytes to complete @rq
3272  * @bidi_bytes: number of bytes to complete @rq->next_rq
3273  *
3274  * Description:
3275  *     Identical to blk_end_bidi_request() except that queue lock is
3276  *     assumed to be locked on entry and remains so on return.
3277  *
3278  * Return:
3279  *     %false - we are done with this request
3280  *     %true  - still buffers pending for this request
3281  **/
3282 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error,
3283 				   unsigned int nr_bytes, unsigned int bidi_bytes)
3284 {
3285 	lockdep_assert_held(rq->q->queue_lock);
3286 	WARN_ON_ONCE(rq->q->mq_ops);
3287 
3288 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
3289 		return true;
3290 
3291 	blk_finish_request(rq, error);
3292 
3293 	return false;
3294 }
3295 
3296 /**
3297  * blk_end_request - Helper function for drivers to complete the request.
3298  * @rq:       the request being processed
3299  * @error:    block status code
3300  * @nr_bytes: number of bytes to complete
3301  *
3302  * Description:
3303  *     Ends I/O on a number of bytes attached to @rq.
3304  *     If @rq has leftover, sets it up for the next range of segments.
3305  *
3306  * Return:
3307  *     %false - we are done with this request
3308  *     %true  - still buffers pending for this request
3309  **/
3310 bool blk_end_request(struct request *rq, blk_status_t error,
3311 		unsigned int nr_bytes)
3312 {
3313 	WARN_ON_ONCE(rq->q->mq_ops);
3314 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
3315 }
3316 EXPORT_SYMBOL(blk_end_request);
3317 
3318 /**
3319  * blk_end_request_all - Helper function for drives to finish the request.
3320  * @rq: the request to finish
3321  * @error: block status code
3322  *
3323  * Description:
3324  *     Completely finish @rq.
3325  */
3326 void blk_end_request_all(struct request *rq, blk_status_t error)
3327 {
3328 	bool pending;
3329 	unsigned int bidi_bytes = 0;
3330 
3331 	if (unlikely(blk_bidi_rq(rq)))
3332 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3333 
3334 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3335 	BUG_ON(pending);
3336 }
3337 EXPORT_SYMBOL(blk_end_request_all);
3338 
3339 /**
3340  * __blk_end_request - Helper function for drivers to complete the request.
3341  * @rq:       the request being processed
3342  * @error:    block status code
3343  * @nr_bytes: number of bytes to complete
3344  *
3345  * Description:
3346  *     Must be called with queue lock held unlike blk_end_request().
3347  *
3348  * Return:
3349  *     %false - we are done with this request
3350  *     %true  - still buffers pending for this request
3351  **/
3352 bool __blk_end_request(struct request *rq, blk_status_t error,
3353 		unsigned int nr_bytes)
3354 {
3355 	lockdep_assert_held(rq->q->queue_lock);
3356 	WARN_ON_ONCE(rq->q->mq_ops);
3357 
3358 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
3359 }
3360 EXPORT_SYMBOL(__blk_end_request);
3361 
3362 /**
3363  * __blk_end_request_all - Helper function for drives to finish the request.
3364  * @rq: the request to finish
3365  * @error:    block status code
3366  *
3367  * Description:
3368  *     Completely finish @rq.  Must be called with queue lock held.
3369  */
3370 void __blk_end_request_all(struct request *rq, blk_status_t error)
3371 {
3372 	bool pending;
3373 	unsigned int bidi_bytes = 0;
3374 
3375 	lockdep_assert_held(rq->q->queue_lock);
3376 	WARN_ON_ONCE(rq->q->mq_ops);
3377 
3378 	if (unlikely(blk_bidi_rq(rq)))
3379 		bidi_bytes = blk_rq_bytes(rq->next_rq);
3380 
3381 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
3382 	BUG_ON(pending);
3383 }
3384 EXPORT_SYMBOL(__blk_end_request_all);
3385 
3386 /**
3387  * __blk_end_request_cur - Helper function to finish the current request chunk.
3388  * @rq: the request to finish the current chunk for
3389  * @error:    block status code
3390  *
3391  * Description:
3392  *     Complete the current consecutively mapped chunk from @rq.  Must
3393  *     be called with queue lock held.
3394  *
3395  * Return:
3396  *     %false - we are done with this request
3397  *     %true  - still buffers pending for this request
3398  */
3399 bool __blk_end_request_cur(struct request *rq, blk_status_t error)
3400 {
3401 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
3402 }
3403 EXPORT_SYMBOL(__blk_end_request_cur);
3404 
3405 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
3406 		     struct bio *bio)
3407 {
3408 	if (bio_has_data(bio))
3409 		rq->nr_phys_segments = bio_phys_segments(q, bio);
3410 	else if (bio_op(bio) == REQ_OP_DISCARD)
3411 		rq->nr_phys_segments = 1;
3412 
3413 	rq->__data_len = bio->bi_iter.bi_size;
3414 	rq->bio = rq->biotail = bio;
3415 
3416 	if (bio->bi_disk)
3417 		rq->rq_disk = bio->bi_disk;
3418 }
3419 
3420 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3421 /**
3422  * rq_flush_dcache_pages - Helper function to flush all pages in a request
3423  * @rq: the request to be flushed
3424  *
3425  * Description:
3426  *     Flush all pages in @rq.
3427  */
3428 void rq_flush_dcache_pages(struct request *rq)
3429 {
3430 	struct req_iterator iter;
3431 	struct bio_vec bvec;
3432 
3433 	rq_for_each_segment(bvec, rq, iter)
3434 		flush_dcache_page(bvec.bv_page);
3435 }
3436 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
3437 #endif
3438 
3439 /**
3440  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3441  * @q : the queue of the device being checked
3442  *
3443  * Description:
3444  *    Check if underlying low-level drivers of a device are busy.
3445  *    If the drivers want to export their busy state, they must set own
3446  *    exporting function using blk_queue_lld_busy() first.
3447  *
3448  *    Basically, this function is used only by request stacking drivers
3449  *    to stop dispatching requests to underlying devices when underlying
3450  *    devices are busy.  This behavior helps more I/O merging on the queue
3451  *    of the request stacking driver and prevents I/O throughput regression
3452  *    on burst I/O load.
3453  *
3454  * Return:
3455  *    0 - Not busy (The request stacking driver should dispatch request)
3456  *    1 - Busy (The request stacking driver should stop dispatching request)
3457  */
3458 int blk_lld_busy(struct request_queue *q)
3459 {
3460 	if (q->lld_busy_fn)
3461 		return q->lld_busy_fn(q);
3462 
3463 	return 0;
3464 }
3465 EXPORT_SYMBOL_GPL(blk_lld_busy);
3466 
3467 /**
3468  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3469  * @rq: the clone request to be cleaned up
3470  *
3471  * Description:
3472  *     Free all bios in @rq for a cloned request.
3473  */
3474 void blk_rq_unprep_clone(struct request *rq)
3475 {
3476 	struct bio *bio;
3477 
3478 	while ((bio = rq->bio) != NULL) {
3479 		rq->bio = bio->bi_next;
3480 
3481 		bio_put(bio);
3482 	}
3483 }
3484 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3485 
3486 /*
3487  * Copy attributes of the original request to the clone request.
3488  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3489  */
3490 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
3491 {
3492 	dst->cpu = src->cpu;
3493 	dst->__sector = blk_rq_pos(src);
3494 	dst->__data_len = blk_rq_bytes(src);
3495 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3496 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
3497 		dst->special_vec = src->special_vec;
3498 	}
3499 	dst->nr_phys_segments = src->nr_phys_segments;
3500 	dst->ioprio = src->ioprio;
3501 	dst->extra_len = src->extra_len;
3502 }
3503 
3504 /**
3505  * blk_rq_prep_clone - Helper function to setup clone request
3506  * @rq: the request to be setup
3507  * @rq_src: original request to be cloned
3508  * @bs: bio_set that bios for clone are allocated from
3509  * @gfp_mask: memory allocation mask for bio
3510  * @bio_ctr: setup function to be called for each clone bio.
3511  *           Returns %0 for success, non %0 for failure.
3512  * @data: private data to be passed to @bio_ctr
3513  *
3514  * Description:
3515  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3516  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3517  *     are not copied, and copying such parts is the caller's responsibility.
3518  *     Also, pages which the original bios are pointing to are not copied
3519  *     and the cloned bios just point same pages.
3520  *     So cloned bios must be completed before original bios, which means
3521  *     the caller must complete @rq before @rq_src.
3522  */
3523 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3524 		      struct bio_set *bs, gfp_t gfp_mask,
3525 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3526 		      void *data)
3527 {
3528 	struct bio *bio, *bio_src;
3529 
3530 	if (!bs)
3531 		bs = &fs_bio_set;
3532 
3533 	__rq_for_each_bio(bio_src, rq_src) {
3534 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3535 		if (!bio)
3536 			goto free_and_out;
3537 
3538 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3539 			goto free_and_out;
3540 
3541 		if (rq->bio) {
3542 			rq->biotail->bi_next = bio;
3543 			rq->biotail = bio;
3544 		} else
3545 			rq->bio = rq->biotail = bio;
3546 	}
3547 
3548 	__blk_rq_prep_clone(rq, rq_src);
3549 
3550 	return 0;
3551 
3552 free_and_out:
3553 	if (bio)
3554 		bio_put(bio);
3555 	blk_rq_unprep_clone(rq);
3556 
3557 	return -ENOMEM;
3558 }
3559 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3560 
3561 int kblockd_schedule_work(struct work_struct *work)
3562 {
3563 	return queue_work(kblockd_workqueue, work);
3564 }
3565 EXPORT_SYMBOL(kblockd_schedule_work);
3566 
3567 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3568 {
3569 	return queue_work_on(cpu, kblockd_workqueue, work);
3570 }
3571 EXPORT_SYMBOL(kblockd_schedule_work_on);
3572 
3573 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3574 				unsigned long delay)
3575 {
3576 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3577 }
3578 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3579 
3580 /**
3581  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3582  * @plug:	The &struct blk_plug that needs to be initialized
3583  *
3584  * Description:
3585  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3586  *   pending I/O should the task end up blocking between blk_start_plug() and
3587  *   blk_finish_plug(). This is important from a performance perspective, but
3588  *   also ensures that we don't deadlock. For instance, if the task is blocking
3589  *   for a memory allocation, memory reclaim could end up wanting to free a
3590  *   page belonging to that request that is currently residing in our private
3591  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3592  *   this kind of deadlock.
3593  */
3594 void blk_start_plug(struct blk_plug *plug)
3595 {
3596 	struct task_struct *tsk = current;
3597 
3598 	/*
3599 	 * If this is a nested plug, don't actually assign it.
3600 	 */
3601 	if (tsk->plug)
3602 		return;
3603 
3604 	INIT_LIST_HEAD(&plug->list);
3605 	INIT_LIST_HEAD(&plug->mq_list);
3606 	INIT_LIST_HEAD(&plug->cb_list);
3607 	/*
3608 	 * Store ordering should not be needed here, since a potential
3609 	 * preempt will imply a full memory barrier
3610 	 */
3611 	tsk->plug = plug;
3612 }
3613 EXPORT_SYMBOL(blk_start_plug);
3614 
3615 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3616 {
3617 	struct request *rqa = container_of(a, struct request, queuelist);
3618 	struct request *rqb = container_of(b, struct request, queuelist);
3619 
3620 	return !(rqa->q < rqb->q ||
3621 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3622 }
3623 
3624 /*
3625  * If 'from_schedule' is true, then postpone the dispatch of requests
3626  * until a safe kblockd context. We due this to avoid accidental big
3627  * additional stack usage in driver dispatch, in places where the originally
3628  * plugger did not intend it.
3629  */
3630 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3631 			    bool from_schedule)
3632 	__releases(q->queue_lock)
3633 {
3634 	lockdep_assert_held(q->queue_lock);
3635 
3636 	trace_block_unplug(q, depth, !from_schedule);
3637 
3638 	if (from_schedule)
3639 		blk_run_queue_async(q);
3640 	else
3641 		__blk_run_queue(q);
3642 	spin_unlock_irq(q->queue_lock);
3643 }
3644 
3645 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3646 {
3647 	LIST_HEAD(callbacks);
3648 
3649 	while (!list_empty(&plug->cb_list)) {
3650 		list_splice_init(&plug->cb_list, &callbacks);
3651 
3652 		while (!list_empty(&callbacks)) {
3653 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3654 							  struct blk_plug_cb,
3655 							  list);
3656 			list_del(&cb->list);
3657 			cb->callback(cb, from_schedule);
3658 		}
3659 	}
3660 }
3661 
3662 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3663 				      int size)
3664 {
3665 	struct blk_plug *plug = current->plug;
3666 	struct blk_plug_cb *cb;
3667 
3668 	if (!plug)
3669 		return NULL;
3670 
3671 	list_for_each_entry(cb, &plug->cb_list, list)
3672 		if (cb->callback == unplug && cb->data == data)
3673 			return cb;
3674 
3675 	/* Not currently on the callback list */
3676 	BUG_ON(size < sizeof(*cb));
3677 	cb = kzalloc(size, GFP_ATOMIC);
3678 	if (cb) {
3679 		cb->data = data;
3680 		cb->callback = unplug;
3681 		list_add(&cb->list, &plug->cb_list);
3682 	}
3683 	return cb;
3684 }
3685 EXPORT_SYMBOL(blk_check_plugged);
3686 
3687 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3688 {
3689 	struct request_queue *q;
3690 	struct request *rq;
3691 	LIST_HEAD(list);
3692 	unsigned int depth;
3693 
3694 	flush_plug_callbacks(plug, from_schedule);
3695 
3696 	if (!list_empty(&plug->mq_list))
3697 		blk_mq_flush_plug_list(plug, from_schedule);
3698 
3699 	if (list_empty(&plug->list))
3700 		return;
3701 
3702 	list_splice_init(&plug->list, &list);
3703 
3704 	list_sort(NULL, &list, plug_rq_cmp);
3705 
3706 	q = NULL;
3707 	depth = 0;
3708 
3709 	while (!list_empty(&list)) {
3710 		rq = list_entry_rq(list.next);
3711 		list_del_init(&rq->queuelist);
3712 		BUG_ON(!rq->q);
3713 		if (rq->q != q) {
3714 			/*
3715 			 * This drops the queue lock
3716 			 */
3717 			if (q)
3718 				queue_unplugged(q, depth, from_schedule);
3719 			q = rq->q;
3720 			depth = 0;
3721 			spin_lock_irq(q->queue_lock);
3722 		}
3723 
3724 		/*
3725 		 * Short-circuit if @q is dead
3726 		 */
3727 		if (unlikely(blk_queue_dying(q))) {
3728 			__blk_end_request_all(rq, BLK_STS_IOERR);
3729 			continue;
3730 		}
3731 
3732 		/*
3733 		 * rq is already accounted, so use raw insert
3734 		 */
3735 		if (op_is_flush(rq->cmd_flags))
3736 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3737 		else
3738 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3739 
3740 		depth++;
3741 	}
3742 
3743 	/*
3744 	 * This drops the queue lock
3745 	 */
3746 	if (q)
3747 		queue_unplugged(q, depth, from_schedule);
3748 }
3749 
3750 void blk_finish_plug(struct blk_plug *plug)
3751 {
3752 	if (plug != current->plug)
3753 		return;
3754 	blk_flush_plug_list(plug, false);
3755 
3756 	current->plug = NULL;
3757 }
3758 EXPORT_SYMBOL(blk_finish_plug);
3759 
3760 #ifdef CONFIG_PM
3761 /**
3762  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3763  * @q: the queue of the device
3764  * @dev: the device the queue belongs to
3765  *
3766  * Description:
3767  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3768  *    @dev. Drivers that want to take advantage of request-based runtime PM
3769  *    should call this function after @dev has been initialized, and its
3770  *    request queue @q has been allocated, and runtime PM for it can not happen
3771  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3772  *    cases, driver should call this function before any I/O has taken place.
3773  *
3774  *    This function takes care of setting up using auto suspend for the device,
3775  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3776  *    until an updated value is either set by user or by driver. Drivers do
3777  *    not need to touch other autosuspend settings.
3778  *
3779  *    The block layer runtime PM is request based, so only works for drivers
3780  *    that use request as their IO unit instead of those directly use bio's.
3781  */
3782 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3783 {
3784 	/* Don't enable runtime PM for blk-mq until it is ready */
3785 	if (q->mq_ops) {
3786 		pm_runtime_disable(dev);
3787 		return;
3788 	}
3789 
3790 	q->dev = dev;
3791 	q->rpm_status = RPM_ACTIVE;
3792 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3793 	pm_runtime_use_autosuspend(q->dev);
3794 }
3795 EXPORT_SYMBOL(blk_pm_runtime_init);
3796 
3797 /**
3798  * blk_pre_runtime_suspend - Pre runtime suspend check
3799  * @q: the queue of the device
3800  *
3801  * Description:
3802  *    This function will check if runtime suspend is allowed for the device
3803  *    by examining if there are any requests pending in the queue. If there
3804  *    are requests pending, the device can not be runtime suspended; otherwise,
3805  *    the queue's status will be updated to SUSPENDING and the driver can
3806  *    proceed to suspend the device.
3807  *
3808  *    For the not allowed case, we mark last busy for the device so that
3809  *    runtime PM core will try to autosuspend it some time later.
3810  *
3811  *    This function should be called near the start of the device's
3812  *    runtime_suspend callback.
3813  *
3814  * Return:
3815  *    0		- OK to runtime suspend the device
3816  *    -EBUSY	- Device should not be runtime suspended
3817  */
3818 int blk_pre_runtime_suspend(struct request_queue *q)
3819 {
3820 	int ret = 0;
3821 
3822 	if (!q->dev)
3823 		return ret;
3824 
3825 	spin_lock_irq(q->queue_lock);
3826 	if (q->nr_pending) {
3827 		ret = -EBUSY;
3828 		pm_runtime_mark_last_busy(q->dev);
3829 	} else {
3830 		q->rpm_status = RPM_SUSPENDING;
3831 	}
3832 	spin_unlock_irq(q->queue_lock);
3833 	return ret;
3834 }
3835 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3836 
3837 /**
3838  * blk_post_runtime_suspend - Post runtime suspend processing
3839  * @q: the queue of the device
3840  * @err: return value of the device's runtime_suspend function
3841  *
3842  * Description:
3843  *    Update the queue's runtime status according to the return value of the
3844  *    device's runtime suspend function and mark last busy for the device so
3845  *    that PM core will try to auto suspend the device at a later time.
3846  *
3847  *    This function should be called near the end of the device's
3848  *    runtime_suspend callback.
3849  */
3850 void blk_post_runtime_suspend(struct request_queue *q, int err)
3851 {
3852 	if (!q->dev)
3853 		return;
3854 
3855 	spin_lock_irq(q->queue_lock);
3856 	if (!err) {
3857 		q->rpm_status = RPM_SUSPENDED;
3858 	} else {
3859 		q->rpm_status = RPM_ACTIVE;
3860 		pm_runtime_mark_last_busy(q->dev);
3861 	}
3862 	spin_unlock_irq(q->queue_lock);
3863 }
3864 EXPORT_SYMBOL(blk_post_runtime_suspend);
3865 
3866 /**
3867  * blk_pre_runtime_resume - Pre runtime resume processing
3868  * @q: the queue of the device
3869  *
3870  * Description:
3871  *    Update the queue's runtime status to RESUMING in preparation for the
3872  *    runtime resume of the device.
3873  *
3874  *    This function should be called near the start of the device's
3875  *    runtime_resume callback.
3876  */
3877 void blk_pre_runtime_resume(struct request_queue *q)
3878 {
3879 	if (!q->dev)
3880 		return;
3881 
3882 	spin_lock_irq(q->queue_lock);
3883 	q->rpm_status = RPM_RESUMING;
3884 	spin_unlock_irq(q->queue_lock);
3885 }
3886 EXPORT_SYMBOL(blk_pre_runtime_resume);
3887 
3888 /**
3889  * blk_post_runtime_resume - Post runtime resume processing
3890  * @q: the queue of the device
3891  * @err: return value of the device's runtime_resume function
3892  *
3893  * Description:
3894  *    Update the queue's runtime status according to the return value of the
3895  *    device's runtime_resume function. If it is successfully resumed, process
3896  *    the requests that are queued into the device's queue when it is resuming
3897  *    and then mark last busy and initiate autosuspend for it.
3898  *
3899  *    This function should be called near the end of the device's
3900  *    runtime_resume callback.
3901  */
3902 void blk_post_runtime_resume(struct request_queue *q, int err)
3903 {
3904 	if (!q->dev)
3905 		return;
3906 
3907 	spin_lock_irq(q->queue_lock);
3908 	if (!err) {
3909 		q->rpm_status = RPM_ACTIVE;
3910 		__blk_run_queue(q);
3911 		pm_runtime_mark_last_busy(q->dev);
3912 		pm_request_autosuspend(q->dev);
3913 	} else {
3914 		q->rpm_status = RPM_SUSPENDED;
3915 	}
3916 	spin_unlock_irq(q->queue_lock);
3917 }
3918 EXPORT_SYMBOL(blk_post_runtime_resume);
3919 
3920 /**
3921  * blk_set_runtime_active - Force runtime status of the queue to be active
3922  * @q: the queue of the device
3923  *
3924  * If the device is left runtime suspended during system suspend the resume
3925  * hook typically resumes the device and corrects runtime status
3926  * accordingly. However, that does not affect the queue runtime PM status
3927  * which is still "suspended". This prevents processing requests from the
3928  * queue.
3929  *
3930  * This function can be used in driver's resume hook to correct queue
3931  * runtime PM status and re-enable peeking requests from the queue. It
3932  * should be called before first request is added to the queue.
3933  */
3934 void blk_set_runtime_active(struct request_queue *q)
3935 {
3936 	spin_lock_irq(q->queue_lock);
3937 	q->rpm_status = RPM_ACTIVE;
3938 	pm_runtime_mark_last_busy(q->dev);
3939 	pm_request_autosuspend(q->dev);
3940 	spin_unlock_irq(q->queue_lock);
3941 }
3942 EXPORT_SYMBOL(blk_set_runtime_active);
3943 #endif
3944 
3945 int __init blk_dev_init(void)
3946 {
3947 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3948 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3949 			FIELD_SIZEOF(struct request, cmd_flags));
3950 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3951 			FIELD_SIZEOF(struct bio, bi_opf));
3952 
3953 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3954 	kblockd_workqueue = alloc_workqueue("kblockd",
3955 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3956 	if (!kblockd_workqueue)
3957 		panic("Failed to create kblockd\n");
3958 
3959 	request_cachep = kmem_cache_create("blkdev_requests",
3960 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3961 
3962 	blk_requestq_cachep = kmem_cache_create("request_queue",
3963 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3964 
3965 #ifdef CONFIG_DEBUG_FS
3966 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3967 #endif
3968 
3969 	return 0;
3970 }
3971