1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-rq-qos.h" 46 47 #ifdef CONFIG_DEBUG_FS 48 struct dentry *blk_debugfs_root; 49 #endif 50 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 56 57 DEFINE_IDA(blk_queue_ida); 58 59 /* 60 * For the allocated request tables 61 */ 62 struct kmem_cache *request_cachep; 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 unsigned long flags; 82 83 spin_lock_irqsave(q->queue_lock, flags); 84 queue_flag_set(flag, q); 85 spin_unlock_irqrestore(q->queue_lock, flags); 86 } 87 EXPORT_SYMBOL(blk_queue_flag_set); 88 89 /** 90 * blk_queue_flag_clear - atomically clear a queue flag 91 * @flag: flag to be cleared 92 * @q: request queue 93 */ 94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(q->queue_lock, flags); 99 queue_flag_clear(flag, q); 100 spin_unlock_irqrestore(q->queue_lock, flags); 101 } 102 EXPORT_SYMBOL(blk_queue_flag_clear); 103 104 /** 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag 106 * @flag: flag to be set 107 * @q: request queue 108 * 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 110 * the flag was already set. 111 */ 112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 113 { 114 unsigned long flags; 115 bool res; 116 117 spin_lock_irqsave(q->queue_lock, flags); 118 res = queue_flag_test_and_set(flag, q); 119 spin_unlock_irqrestore(q->queue_lock, flags); 120 121 return res; 122 } 123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 124 125 /** 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag 127 * @flag: flag to be cleared 128 * @q: request queue 129 * 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 131 * the flag was set. 132 */ 133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) 134 { 135 unsigned long flags; 136 bool res; 137 138 spin_lock_irqsave(q->queue_lock, flags); 139 res = queue_flag_test_and_clear(flag, q); 140 spin_unlock_irqrestore(q->queue_lock, flags); 141 142 return res; 143 } 144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear); 145 146 static void blk_clear_congested(struct request_list *rl, int sync) 147 { 148 #ifdef CONFIG_CGROUP_WRITEBACK 149 clear_wb_congested(rl->blkg->wb_congested, sync); 150 #else 151 /* 152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 153 * flip its congestion state for events on other blkcgs. 154 */ 155 if (rl == &rl->q->root_rl) 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 157 #endif 158 } 159 160 static void blk_set_congested(struct request_list *rl, int sync) 161 { 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 set_wb_congested(rl->blkg->wb_congested, sync); 164 #else 165 /* see blk_clear_congested() */ 166 if (rl == &rl->q->root_rl) 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 168 #endif 169 } 170 171 void blk_queue_congestion_threshold(struct request_queue *q) 172 { 173 int nr; 174 175 nr = q->nr_requests - (q->nr_requests / 8) + 1; 176 if (nr > q->nr_requests) 177 nr = q->nr_requests; 178 q->nr_congestion_on = nr; 179 180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 181 if (nr < 1) 182 nr = 1; 183 q->nr_congestion_off = nr; 184 } 185 186 void blk_rq_init(struct request_queue *q, struct request *rq) 187 { 188 memset(rq, 0, sizeof(*rq)); 189 190 INIT_LIST_HEAD(&rq->queuelist); 191 INIT_LIST_HEAD(&rq->timeout_list); 192 rq->cpu = -1; 193 rq->q = q; 194 rq->__sector = (sector_t) -1; 195 INIT_HLIST_NODE(&rq->hash); 196 RB_CLEAR_NODE(&rq->rb_node); 197 rq->tag = -1; 198 rq->internal_tag = -1; 199 rq->start_time_ns = ktime_get_ns(); 200 rq->part = NULL; 201 } 202 EXPORT_SYMBOL(blk_rq_init); 203 204 static const struct { 205 int errno; 206 const char *name; 207 } blk_errors[] = { 208 [BLK_STS_OK] = { 0, "" }, 209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 220 221 /* device mapper special case, should not leak out: */ 222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 223 224 /* everything else not covered above: */ 225 [BLK_STS_IOERR] = { -EIO, "I/O" }, 226 }; 227 228 blk_status_t errno_to_blk_status(int errno) 229 { 230 int i; 231 232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 233 if (blk_errors[i].errno == errno) 234 return (__force blk_status_t)i; 235 } 236 237 return BLK_STS_IOERR; 238 } 239 EXPORT_SYMBOL_GPL(errno_to_blk_status); 240 241 int blk_status_to_errno(blk_status_t status) 242 { 243 int idx = (__force int)status; 244 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 246 return -EIO; 247 return blk_errors[idx].errno; 248 } 249 EXPORT_SYMBOL_GPL(blk_status_to_errno); 250 251 static void print_req_error(struct request *req, blk_status_t status) 252 { 253 int idx = (__force int)status; 254 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 256 return; 257 258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 259 __func__, blk_errors[idx].name, req->rq_disk ? 260 req->rq_disk->disk_name : "?", 261 (unsigned long long)blk_rq_pos(req)); 262 } 263 264 static void req_bio_endio(struct request *rq, struct bio *bio, 265 unsigned int nbytes, blk_status_t error) 266 { 267 if (error) 268 bio->bi_status = error; 269 270 if (unlikely(rq->rq_flags & RQF_QUIET)) 271 bio_set_flag(bio, BIO_QUIET); 272 273 bio_advance(bio, nbytes); 274 275 /* don't actually finish bio if it's part of flush sequence */ 276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 277 bio_endio(bio); 278 } 279 280 void blk_dump_rq_flags(struct request *rq, char *msg) 281 { 282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 283 rq->rq_disk ? rq->rq_disk->disk_name : "?", 284 (unsigned long long) rq->cmd_flags); 285 286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 287 (unsigned long long)blk_rq_pos(rq), 288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 289 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 290 rq->bio, rq->biotail, blk_rq_bytes(rq)); 291 } 292 EXPORT_SYMBOL(blk_dump_rq_flags); 293 294 static void blk_delay_work(struct work_struct *work) 295 { 296 struct request_queue *q; 297 298 q = container_of(work, struct request_queue, delay_work.work); 299 spin_lock_irq(q->queue_lock); 300 __blk_run_queue(q); 301 spin_unlock_irq(q->queue_lock); 302 } 303 304 /** 305 * blk_delay_queue - restart queueing after defined interval 306 * @q: The &struct request_queue in question 307 * @msecs: Delay in msecs 308 * 309 * Description: 310 * Sometimes queueing needs to be postponed for a little while, to allow 311 * resources to come back. This function will make sure that queueing is 312 * restarted around the specified time. 313 */ 314 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 315 { 316 lockdep_assert_held(q->queue_lock); 317 WARN_ON_ONCE(q->mq_ops); 318 319 if (likely(!blk_queue_dead(q))) 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 321 msecs_to_jiffies(msecs)); 322 } 323 EXPORT_SYMBOL(blk_delay_queue); 324 325 /** 326 * blk_start_queue_async - asynchronously restart a previously stopped queue 327 * @q: The &struct request_queue in question 328 * 329 * Description: 330 * blk_start_queue_async() will clear the stop flag on the queue, and 331 * ensure that the request_fn for the queue is run from an async 332 * context. 333 **/ 334 void blk_start_queue_async(struct request_queue *q) 335 { 336 lockdep_assert_held(q->queue_lock); 337 WARN_ON_ONCE(q->mq_ops); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 blk_run_queue_async(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue_async); 343 344 /** 345 * blk_start_queue - restart a previously stopped queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * blk_start_queue() will clear the stop flag on the queue, and call 350 * the request_fn for the queue if it was in a stopped state when 351 * entered. Also see blk_stop_queue(). 352 **/ 353 void blk_start_queue(struct request_queue *q) 354 { 355 lockdep_assert_held(q->queue_lock); 356 WARN_ON_ONCE(q->mq_ops); 357 358 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 359 __blk_run_queue(q); 360 } 361 EXPORT_SYMBOL(blk_start_queue); 362 363 /** 364 * blk_stop_queue - stop a queue 365 * @q: The &struct request_queue in question 366 * 367 * Description: 368 * The Linux block layer assumes that a block driver will consume all 369 * entries on the request queue when the request_fn strategy is called. 370 * Often this will not happen, because of hardware limitations (queue 371 * depth settings). If a device driver gets a 'queue full' response, 372 * or if it simply chooses not to queue more I/O at one point, it can 373 * call this function to prevent the request_fn from being called until 374 * the driver has signalled it's ready to go again. This happens by calling 375 * blk_start_queue() to restart queue operations. 376 **/ 377 void blk_stop_queue(struct request_queue *q) 378 { 379 lockdep_assert_held(q->queue_lock); 380 WARN_ON_ONCE(q->mq_ops); 381 382 cancel_delayed_work(&q->delay_work); 383 queue_flag_set(QUEUE_FLAG_STOPPED, q); 384 } 385 EXPORT_SYMBOL(blk_stop_queue); 386 387 /** 388 * blk_sync_queue - cancel any pending callbacks on a queue 389 * @q: the queue 390 * 391 * Description: 392 * The block layer may perform asynchronous callback activity 393 * on a queue, such as calling the unplug function after a timeout. 394 * A block device may call blk_sync_queue to ensure that any 395 * such activity is cancelled, thus allowing it to release resources 396 * that the callbacks might use. The caller must already have made sure 397 * that its ->make_request_fn will not re-add plugging prior to calling 398 * this function. 399 * 400 * This function does not cancel any asynchronous activity arising 401 * out of elevator or throttling code. That would require elevator_exit() 402 * and blkcg_exit_queue() to be called with queue lock initialized. 403 * 404 */ 405 void blk_sync_queue(struct request_queue *q) 406 { 407 del_timer_sync(&q->timeout); 408 cancel_work_sync(&q->timeout_work); 409 410 if (q->mq_ops) { 411 struct blk_mq_hw_ctx *hctx; 412 int i; 413 414 cancel_delayed_work_sync(&q->requeue_work); 415 queue_for_each_hw_ctx(q, hctx, i) 416 cancel_delayed_work_sync(&hctx->run_work); 417 } else { 418 cancel_delayed_work_sync(&q->delay_work); 419 } 420 } 421 EXPORT_SYMBOL(blk_sync_queue); 422 423 /** 424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 425 * @q: request queue pointer 426 * 427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 428 * set and 1 if the flag was already set. 429 */ 430 int blk_set_preempt_only(struct request_queue *q) 431 { 432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 433 } 434 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 435 436 void blk_clear_preempt_only(struct request_queue *q) 437 { 438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 439 wake_up_all(&q->mq_freeze_wq); 440 } 441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 442 443 /** 444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 445 * @q: The queue to run 446 * 447 * Description: 448 * Invoke request handling on a queue if there are any pending requests. 449 * May be used to restart request handling after a request has completed. 450 * This variant runs the queue whether or not the queue has been 451 * stopped. Must be called with the queue lock held and interrupts 452 * disabled. See also @blk_run_queue. 453 */ 454 inline void __blk_run_queue_uncond(struct request_queue *q) 455 { 456 lockdep_assert_held(q->queue_lock); 457 WARN_ON_ONCE(q->mq_ops); 458 459 if (unlikely(blk_queue_dead(q))) 460 return; 461 462 /* 463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 464 * the queue lock internally. As a result multiple threads may be 465 * running such a request function concurrently. Keep track of the 466 * number of active request_fn invocations such that blk_drain_queue() 467 * can wait until all these request_fn calls have finished. 468 */ 469 q->request_fn_active++; 470 q->request_fn(q); 471 q->request_fn_active--; 472 } 473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 474 475 /** 476 * __blk_run_queue - run a single device queue 477 * @q: The queue to run 478 * 479 * Description: 480 * See @blk_run_queue. 481 */ 482 void __blk_run_queue(struct request_queue *q) 483 { 484 lockdep_assert_held(q->queue_lock); 485 WARN_ON_ONCE(q->mq_ops); 486 487 if (unlikely(blk_queue_stopped(q))) 488 return; 489 490 __blk_run_queue_uncond(q); 491 } 492 EXPORT_SYMBOL(__blk_run_queue); 493 494 /** 495 * blk_run_queue_async - run a single device queue in workqueue context 496 * @q: The queue to run 497 * 498 * Description: 499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 500 * of us. 501 * 502 * Note: 503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 504 * has canceled q->delay_work, callers must hold the queue lock to avoid 505 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 506 */ 507 void blk_run_queue_async(struct request_queue *q) 508 { 509 lockdep_assert_held(q->queue_lock); 510 WARN_ON_ONCE(q->mq_ops); 511 512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 514 } 515 EXPORT_SYMBOL(blk_run_queue_async); 516 517 /** 518 * blk_run_queue - run a single device queue 519 * @q: The queue to run 520 * 521 * Description: 522 * Invoke request handling on this queue, if it has pending work to do. 523 * May be used to restart queueing when a request has completed. 524 */ 525 void blk_run_queue(struct request_queue *q) 526 { 527 unsigned long flags; 528 529 WARN_ON_ONCE(q->mq_ops); 530 531 spin_lock_irqsave(q->queue_lock, flags); 532 __blk_run_queue(q); 533 spin_unlock_irqrestore(q->queue_lock, flags); 534 } 535 EXPORT_SYMBOL(blk_run_queue); 536 537 void blk_put_queue(struct request_queue *q) 538 { 539 kobject_put(&q->kobj); 540 } 541 EXPORT_SYMBOL(blk_put_queue); 542 543 /** 544 * __blk_drain_queue - drain requests from request_queue 545 * @q: queue to drain 546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 547 * 548 * Drain requests from @q. If @drain_all is set, all requests are drained. 549 * If not, only ELVPRIV requests are drained. The caller is responsible 550 * for ensuring that no new requests which need to be drained are queued. 551 */ 552 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 553 __releases(q->queue_lock) 554 __acquires(q->queue_lock) 555 { 556 int i; 557 558 lockdep_assert_held(q->queue_lock); 559 WARN_ON_ONCE(q->mq_ops); 560 561 while (true) { 562 bool drain = false; 563 564 /* 565 * The caller might be trying to drain @q before its 566 * elevator is initialized. 567 */ 568 if (q->elevator) 569 elv_drain_elevator(q); 570 571 blkcg_drain_queue(q); 572 573 /* 574 * This function might be called on a queue which failed 575 * driver init after queue creation or is not yet fully 576 * active yet. Some drivers (e.g. fd and loop) get unhappy 577 * in such cases. Kick queue iff dispatch queue has 578 * something on it and @q has request_fn set. 579 */ 580 if (!list_empty(&q->queue_head) && q->request_fn) 581 __blk_run_queue(q); 582 583 drain |= q->nr_rqs_elvpriv; 584 drain |= q->request_fn_active; 585 586 /* 587 * Unfortunately, requests are queued at and tracked from 588 * multiple places and there's no single counter which can 589 * be drained. Check all the queues and counters. 590 */ 591 if (drain_all) { 592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 593 drain |= !list_empty(&q->queue_head); 594 for (i = 0; i < 2; i++) { 595 drain |= q->nr_rqs[i]; 596 drain |= q->in_flight[i]; 597 if (fq) 598 drain |= !list_empty(&fq->flush_queue[i]); 599 } 600 } 601 602 if (!drain) 603 break; 604 605 spin_unlock_irq(q->queue_lock); 606 607 msleep(10); 608 609 spin_lock_irq(q->queue_lock); 610 } 611 612 /* 613 * With queue marked dead, any woken up waiter will fail the 614 * allocation path, so the wakeup chaining is lost and we're 615 * left with hung waiters. We need to wake up those waiters. 616 */ 617 if (q->request_fn) { 618 struct request_list *rl; 619 620 blk_queue_for_each_rl(rl, q) 621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 622 wake_up_all(&rl->wait[i]); 623 } 624 } 625 626 void blk_drain_queue(struct request_queue *q) 627 { 628 spin_lock_irq(q->queue_lock); 629 __blk_drain_queue(q, true); 630 spin_unlock_irq(q->queue_lock); 631 } 632 633 /** 634 * blk_queue_bypass_start - enter queue bypass mode 635 * @q: queue of interest 636 * 637 * In bypass mode, only the dispatch FIFO queue of @q is used. This 638 * function makes @q enter bypass mode and drains all requests which were 639 * throttled or issued before. On return, it's guaranteed that no request 640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 641 * inside queue or RCU read lock. 642 */ 643 void blk_queue_bypass_start(struct request_queue *q) 644 { 645 WARN_ON_ONCE(q->mq_ops); 646 647 spin_lock_irq(q->queue_lock); 648 q->bypass_depth++; 649 queue_flag_set(QUEUE_FLAG_BYPASS, q); 650 spin_unlock_irq(q->queue_lock); 651 652 /* 653 * Queues start drained. Skip actual draining till init is 654 * complete. This avoids lenghty delays during queue init which 655 * can happen many times during boot. 656 */ 657 if (blk_queue_init_done(q)) { 658 spin_lock_irq(q->queue_lock); 659 __blk_drain_queue(q, false); 660 spin_unlock_irq(q->queue_lock); 661 662 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 663 synchronize_rcu(); 664 } 665 } 666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 667 668 /** 669 * blk_queue_bypass_end - leave queue bypass mode 670 * @q: queue of interest 671 * 672 * Leave bypass mode and restore the normal queueing behavior. 673 * 674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 675 * this function is called for both blk-sq and blk-mq queues. 676 */ 677 void blk_queue_bypass_end(struct request_queue *q) 678 { 679 spin_lock_irq(q->queue_lock); 680 if (!--q->bypass_depth) 681 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 682 WARN_ON_ONCE(q->bypass_depth < 0); 683 spin_unlock_irq(q->queue_lock); 684 } 685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 686 687 void blk_set_queue_dying(struct request_queue *q) 688 { 689 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 690 691 /* 692 * When queue DYING flag is set, we need to block new req 693 * entering queue, so we call blk_freeze_queue_start() to 694 * prevent I/O from crossing blk_queue_enter(). 695 */ 696 blk_freeze_queue_start(q); 697 698 if (q->mq_ops) 699 blk_mq_wake_waiters(q); 700 else { 701 struct request_list *rl; 702 703 spin_lock_irq(q->queue_lock); 704 blk_queue_for_each_rl(rl, q) { 705 if (rl->rq_pool) { 706 wake_up_all(&rl->wait[BLK_RW_SYNC]); 707 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 708 } 709 } 710 spin_unlock_irq(q->queue_lock); 711 } 712 713 /* Make blk_queue_enter() reexamine the DYING flag. */ 714 wake_up_all(&q->mq_freeze_wq); 715 } 716 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 717 718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ 719 void blk_exit_queue(struct request_queue *q) 720 { 721 /* 722 * Since the I/O scheduler exit code may access cgroup information, 723 * perform I/O scheduler exit before disassociating from the block 724 * cgroup controller. 725 */ 726 if (q->elevator) { 727 ioc_clear_queue(q); 728 elevator_exit(q, q->elevator); 729 q->elevator = NULL; 730 } 731 732 /* 733 * Remove all references to @q from the block cgroup controller before 734 * restoring @q->queue_lock to avoid that restoring this pointer causes 735 * e.g. blkcg_print_blkgs() to crash. 736 */ 737 blkcg_exit_queue(q); 738 739 /* 740 * Since the cgroup code may dereference the @q->backing_dev_info 741 * pointer, only decrease its reference count after having removed the 742 * association with the block cgroup controller. 743 */ 744 bdi_put(q->backing_dev_info); 745 } 746 747 /** 748 * blk_cleanup_queue - shutdown a request queue 749 * @q: request queue to shutdown 750 * 751 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 752 * put it. All future requests will be failed immediately with -ENODEV. 753 */ 754 void blk_cleanup_queue(struct request_queue *q) 755 { 756 spinlock_t *lock = q->queue_lock; 757 758 /* mark @q DYING, no new request or merges will be allowed afterwards */ 759 mutex_lock(&q->sysfs_lock); 760 blk_set_queue_dying(q); 761 spin_lock_irq(lock); 762 763 /* 764 * A dying queue is permanently in bypass mode till released. Note 765 * that, unlike blk_queue_bypass_start(), we aren't performing 766 * synchronize_rcu() after entering bypass mode to avoid the delay 767 * as some drivers create and destroy a lot of queues while 768 * probing. This is still safe because blk_release_queue() will be 769 * called only after the queue refcnt drops to zero and nothing, 770 * RCU or not, would be traversing the queue by then. 771 */ 772 q->bypass_depth++; 773 queue_flag_set(QUEUE_FLAG_BYPASS, q); 774 775 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 776 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 777 queue_flag_set(QUEUE_FLAG_DYING, q); 778 spin_unlock_irq(lock); 779 mutex_unlock(&q->sysfs_lock); 780 781 /* 782 * Drain all requests queued before DYING marking. Set DEAD flag to 783 * prevent that q->request_fn() gets invoked after draining finished. 784 */ 785 blk_freeze_queue(q); 786 spin_lock_irq(lock); 787 queue_flag_set(QUEUE_FLAG_DEAD, q); 788 spin_unlock_irq(lock); 789 790 /* 791 * make sure all in-progress dispatch are completed because 792 * blk_freeze_queue() can only complete all requests, and 793 * dispatch may still be in-progress since we dispatch requests 794 * from more than one contexts. 795 * 796 * No need to quiesce queue if it isn't initialized yet since 797 * blk_freeze_queue() should be enough for cases of passthrough 798 * request. 799 */ 800 if (q->mq_ops && blk_queue_init_done(q)) 801 blk_mq_quiesce_queue(q); 802 803 /* for synchronous bio-based driver finish in-flight integrity i/o */ 804 blk_flush_integrity(); 805 806 /* @q won't process any more request, flush async actions */ 807 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 808 blk_sync_queue(q); 809 810 /* 811 * I/O scheduler exit is only safe after the sysfs scheduler attribute 812 * has been removed. 813 */ 814 WARN_ON_ONCE(q->kobj.state_in_sysfs); 815 816 blk_exit_queue(q); 817 818 if (q->mq_ops) 819 blk_mq_free_queue(q); 820 percpu_ref_exit(&q->q_usage_counter); 821 822 spin_lock_irq(lock); 823 if (q->queue_lock != &q->__queue_lock) 824 q->queue_lock = &q->__queue_lock; 825 spin_unlock_irq(lock); 826 827 /* @q is and will stay empty, shutdown and put */ 828 blk_put_queue(q); 829 } 830 EXPORT_SYMBOL(blk_cleanup_queue); 831 832 /* Allocate memory local to the request queue */ 833 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 834 { 835 struct request_queue *q = data; 836 837 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 838 } 839 840 static void free_request_simple(void *element, void *data) 841 { 842 kmem_cache_free(request_cachep, element); 843 } 844 845 static void *alloc_request_size(gfp_t gfp_mask, void *data) 846 { 847 struct request_queue *q = data; 848 struct request *rq; 849 850 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 851 q->node); 852 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 853 kfree(rq); 854 rq = NULL; 855 } 856 return rq; 857 } 858 859 static void free_request_size(void *element, void *data) 860 { 861 struct request_queue *q = data; 862 863 if (q->exit_rq_fn) 864 q->exit_rq_fn(q, element); 865 kfree(element); 866 } 867 868 int blk_init_rl(struct request_list *rl, struct request_queue *q, 869 gfp_t gfp_mask) 870 { 871 if (unlikely(rl->rq_pool) || q->mq_ops) 872 return 0; 873 874 rl->q = q; 875 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 876 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 877 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 878 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 879 880 if (q->cmd_size) { 881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 882 alloc_request_size, free_request_size, 883 q, gfp_mask, q->node); 884 } else { 885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 886 alloc_request_simple, free_request_simple, 887 q, gfp_mask, q->node); 888 } 889 if (!rl->rq_pool) 890 return -ENOMEM; 891 892 if (rl != &q->root_rl) 893 WARN_ON_ONCE(!blk_get_queue(q)); 894 895 return 0; 896 } 897 898 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 899 { 900 if (rl->rq_pool) { 901 mempool_destroy(rl->rq_pool); 902 if (rl != &q->root_rl) 903 blk_put_queue(q); 904 } 905 } 906 907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 908 { 909 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL); 910 } 911 EXPORT_SYMBOL(blk_alloc_queue); 912 913 /** 914 * blk_queue_enter() - try to increase q->q_usage_counter 915 * @q: request queue pointer 916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 917 */ 918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 919 { 920 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 921 922 while (true) { 923 bool success = false; 924 925 rcu_read_lock(); 926 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 927 /* 928 * The code that sets the PREEMPT_ONLY flag is 929 * responsible for ensuring that that flag is globally 930 * visible before the queue is unfrozen. 931 */ 932 if (preempt || !blk_queue_preempt_only(q)) { 933 success = true; 934 } else { 935 percpu_ref_put(&q->q_usage_counter); 936 } 937 } 938 rcu_read_unlock(); 939 940 if (success) 941 return 0; 942 943 if (flags & BLK_MQ_REQ_NOWAIT) 944 return -EBUSY; 945 946 /* 947 * read pair of barrier in blk_freeze_queue_start(), 948 * we need to order reading __PERCPU_REF_DEAD flag of 949 * .q_usage_counter and reading .mq_freeze_depth or 950 * queue dying flag, otherwise the following wait may 951 * never return if the two reads are reordered. 952 */ 953 smp_rmb(); 954 955 wait_event(q->mq_freeze_wq, 956 (atomic_read(&q->mq_freeze_depth) == 0 && 957 (preempt || !blk_queue_preempt_only(q))) || 958 blk_queue_dying(q)); 959 if (blk_queue_dying(q)) 960 return -ENODEV; 961 } 962 } 963 964 void blk_queue_exit(struct request_queue *q) 965 { 966 percpu_ref_put(&q->q_usage_counter); 967 } 968 969 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 970 { 971 struct request_queue *q = 972 container_of(ref, struct request_queue, q_usage_counter); 973 974 wake_up_all(&q->mq_freeze_wq); 975 } 976 977 static void blk_rq_timed_out_timer(struct timer_list *t) 978 { 979 struct request_queue *q = from_timer(q, t, timeout); 980 981 kblockd_schedule_work(&q->timeout_work); 982 } 983 984 /** 985 * blk_alloc_queue_node - allocate a request queue 986 * @gfp_mask: memory allocation flags 987 * @node_id: NUMA node to allocate memory from 988 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g. 989 * serialize calls to the legacy .request_fn() callback. Ignored for 990 * blk-mq request queues. 991 * 992 * Note: pass the queue lock as the third argument to this function instead of 993 * setting the queue lock pointer explicitly to avoid triggering a sporadic 994 * crash in the blkcg code. This function namely calls blkcg_init_queue() and 995 * the queue lock pointer must be set before blkcg_init_queue() is called. 996 */ 997 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 998 spinlock_t *lock) 999 { 1000 struct request_queue *q; 1001 int ret; 1002 1003 q = kmem_cache_alloc_node(blk_requestq_cachep, 1004 gfp_mask | __GFP_ZERO, node_id); 1005 if (!q) 1006 return NULL; 1007 1008 INIT_LIST_HEAD(&q->queue_head); 1009 q->last_merge = NULL; 1010 q->end_sector = 0; 1011 q->boundary_rq = NULL; 1012 1013 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 1014 if (q->id < 0) 1015 goto fail_q; 1016 1017 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 1018 if (ret) 1019 goto fail_id; 1020 1021 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 1022 if (!q->backing_dev_info) 1023 goto fail_split; 1024 1025 q->stats = blk_alloc_queue_stats(); 1026 if (!q->stats) 1027 goto fail_stats; 1028 1029 q->backing_dev_info->ra_pages = 1030 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 1031 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 1032 q->backing_dev_info->name = "block"; 1033 q->node = node_id; 1034 1035 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 1036 laptop_mode_timer_fn, 0); 1037 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 1038 INIT_WORK(&q->timeout_work, NULL); 1039 INIT_LIST_HEAD(&q->timeout_list); 1040 INIT_LIST_HEAD(&q->icq_list); 1041 #ifdef CONFIG_BLK_CGROUP 1042 INIT_LIST_HEAD(&q->blkg_list); 1043 #endif 1044 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 1045 1046 kobject_init(&q->kobj, &blk_queue_ktype); 1047 1048 #ifdef CONFIG_BLK_DEV_IO_TRACE 1049 mutex_init(&q->blk_trace_mutex); 1050 #endif 1051 mutex_init(&q->sysfs_lock); 1052 spin_lock_init(&q->__queue_lock); 1053 1054 if (!q->mq_ops) 1055 q->queue_lock = lock ? : &q->__queue_lock; 1056 1057 /* 1058 * A queue starts its life with bypass turned on to avoid 1059 * unnecessary bypass on/off overhead and nasty surprises during 1060 * init. The initial bypass will be finished when the queue is 1061 * registered by blk_register_queue(). 1062 */ 1063 q->bypass_depth = 1; 1064 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q); 1065 1066 init_waitqueue_head(&q->mq_freeze_wq); 1067 1068 /* 1069 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1070 * See blk_register_queue() for details. 1071 */ 1072 if (percpu_ref_init(&q->q_usage_counter, 1073 blk_queue_usage_counter_release, 1074 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1075 goto fail_bdi; 1076 1077 if (blkcg_init_queue(q)) 1078 goto fail_ref; 1079 1080 return q; 1081 1082 fail_ref: 1083 percpu_ref_exit(&q->q_usage_counter); 1084 fail_bdi: 1085 blk_free_queue_stats(q->stats); 1086 fail_stats: 1087 bdi_put(q->backing_dev_info); 1088 fail_split: 1089 bioset_exit(&q->bio_split); 1090 fail_id: 1091 ida_simple_remove(&blk_queue_ida, q->id); 1092 fail_q: 1093 kmem_cache_free(blk_requestq_cachep, q); 1094 return NULL; 1095 } 1096 EXPORT_SYMBOL(blk_alloc_queue_node); 1097 1098 /** 1099 * blk_init_queue - prepare a request queue for use with a block device 1100 * @rfn: The function to be called to process requests that have been 1101 * placed on the queue. 1102 * @lock: Request queue spin lock 1103 * 1104 * Description: 1105 * If a block device wishes to use the standard request handling procedures, 1106 * which sorts requests and coalesces adjacent requests, then it must 1107 * call blk_init_queue(). The function @rfn will be called when there 1108 * are requests on the queue that need to be processed. If the device 1109 * supports plugging, then @rfn may not be called immediately when requests 1110 * are available on the queue, but may be called at some time later instead. 1111 * Plugged queues are generally unplugged when a buffer belonging to one 1112 * of the requests on the queue is needed, or due to memory pressure. 1113 * 1114 * @rfn is not required, or even expected, to remove all requests off the 1115 * queue, but only as many as it can handle at a time. If it does leave 1116 * requests on the queue, it is responsible for arranging that the requests 1117 * get dealt with eventually. 1118 * 1119 * The queue spin lock must be held while manipulating the requests on the 1120 * request queue; this lock will be taken also from interrupt context, so irq 1121 * disabling is needed for it. 1122 * 1123 * Function returns a pointer to the initialized request queue, or %NULL if 1124 * it didn't succeed. 1125 * 1126 * Note: 1127 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1128 * when the block device is deactivated (such as at module unload). 1129 **/ 1130 1131 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1132 { 1133 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1134 } 1135 EXPORT_SYMBOL(blk_init_queue); 1136 1137 struct request_queue * 1138 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1139 { 1140 struct request_queue *q; 1141 1142 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock); 1143 if (!q) 1144 return NULL; 1145 1146 q->request_fn = rfn; 1147 if (blk_init_allocated_queue(q) < 0) { 1148 blk_cleanup_queue(q); 1149 return NULL; 1150 } 1151 1152 return q; 1153 } 1154 EXPORT_SYMBOL(blk_init_queue_node); 1155 1156 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1157 1158 1159 int blk_init_allocated_queue(struct request_queue *q) 1160 { 1161 WARN_ON_ONCE(q->mq_ops); 1162 1163 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1164 if (!q->fq) 1165 return -ENOMEM; 1166 1167 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1168 goto out_free_flush_queue; 1169 1170 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1171 goto out_exit_flush_rq; 1172 1173 INIT_WORK(&q->timeout_work, blk_timeout_work); 1174 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1175 1176 /* 1177 * This also sets hw/phys segments, boundary and size 1178 */ 1179 blk_queue_make_request(q, blk_queue_bio); 1180 1181 q->sg_reserved_size = INT_MAX; 1182 1183 if (elevator_init(q)) 1184 goto out_exit_flush_rq; 1185 return 0; 1186 1187 out_exit_flush_rq: 1188 if (q->exit_rq_fn) 1189 q->exit_rq_fn(q, q->fq->flush_rq); 1190 out_free_flush_queue: 1191 blk_free_flush_queue(q->fq); 1192 q->fq = NULL; 1193 return -ENOMEM; 1194 } 1195 EXPORT_SYMBOL(blk_init_allocated_queue); 1196 1197 bool blk_get_queue(struct request_queue *q) 1198 { 1199 if (likely(!blk_queue_dying(q))) { 1200 __blk_get_queue(q); 1201 return true; 1202 } 1203 1204 return false; 1205 } 1206 EXPORT_SYMBOL(blk_get_queue); 1207 1208 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1209 { 1210 if (rq->rq_flags & RQF_ELVPRIV) { 1211 elv_put_request(rl->q, rq); 1212 if (rq->elv.icq) 1213 put_io_context(rq->elv.icq->ioc); 1214 } 1215 1216 mempool_free(rq, rl->rq_pool); 1217 } 1218 1219 /* 1220 * ioc_batching returns true if the ioc is a valid batching request and 1221 * should be given priority access to a request. 1222 */ 1223 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1224 { 1225 if (!ioc) 1226 return 0; 1227 1228 /* 1229 * Make sure the process is able to allocate at least 1 request 1230 * even if the batch times out, otherwise we could theoretically 1231 * lose wakeups. 1232 */ 1233 return ioc->nr_batch_requests == q->nr_batching || 1234 (ioc->nr_batch_requests > 0 1235 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1236 } 1237 1238 /* 1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1240 * will cause the process to be a "batcher" on all queues in the system. This 1241 * is the behaviour we want though - once it gets a wakeup it should be given 1242 * a nice run. 1243 */ 1244 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1245 { 1246 if (!ioc || ioc_batching(q, ioc)) 1247 return; 1248 1249 ioc->nr_batch_requests = q->nr_batching; 1250 ioc->last_waited = jiffies; 1251 } 1252 1253 static void __freed_request(struct request_list *rl, int sync) 1254 { 1255 struct request_queue *q = rl->q; 1256 1257 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1258 blk_clear_congested(rl, sync); 1259 1260 if (rl->count[sync] + 1 <= q->nr_requests) { 1261 if (waitqueue_active(&rl->wait[sync])) 1262 wake_up(&rl->wait[sync]); 1263 1264 blk_clear_rl_full(rl, sync); 1265 } 1266 } 1267 1268 /* 1269 * A request has just been released. Account for it, update the full and 1270 * congestion status, wake up any waiters. Called under q->queue_lock. 1271 */ 1272 static void freed_request(struct request_list *rl, bool sync, 1273 req_flags_t rq_flags) 1274 { 1275 struct request_queue *q = rl->q; 1276 1277 q->nr_rqs[sync]--; 1278 rl->count[sync]--; 1279 if (rq_flags & RQF_ELVPRIV) 1280 q->nr_rqs_elvpriv--; 1281 1282 __freed_request(rl, sync); 1283 1284 if (unlikely(rl->starved[sync ^ 1])) 1285 __freed_request(rl, sync ^ 1); 1286 } 1287 1288 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1289 { 1290 struct request_list *rl; 1291 int on_thresh, off_thresh; 1292 1293 WARN_ON_ONCE(q->mq_ops); 1294 1295 spin_lock_irq(q->queue_lock); 1296 q->nr_requests = nr; 1297 blk_queue_congestion_threshold(q); 1298 on_thresh = queue_congestion_on_threshold(q); 1299 off_thresh = queue_congestion_off_threshold(q); 1300 1301 blk_queue_for_each_rl(rl, q) { 1302 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1303 blk_set_congested(rl, BLK_RW_SYNC); 1304 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1305 blk_clear_congested(rl, BLK_RW_SYNC); 1306 1307 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1308 blk_set_congested(rl, BLK_RW_ASYNC); 1309 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1310 blk_clear_congested(rl, BLK_RW_ASYNC); 1311 1312 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1313 blk_set_rl_full(rl, BLK_RW_SYNC); 1314 } else { 1315 blk_clear_rl_full(rl, BLK_RW_SYNC); 1316 wake_up(&rl->wait[BLK_RW_SYNC]); 1317 } 1318 1319 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1320 blk_set_rl_full(rl, BLK_RW_ASYNC); 1321 } else { 1322 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1323 wake_up(&rl->wait[BLK_RW_ASYNC]); 1324 } 1325 } 1326 1327 spin_unlock_irq(q->queue_lock); 1328 return 0; 1329 } 1330 1331 /** 1332 * __get_request - get a free request 1333 * @rl: request list to allocate from 1334 * @op: operation and flags 1335 * @bio: bio to allocate request for (can be %NULL) 1336 * @flags: BLQ_MQ_REQ_* flags 1337 * @gfp_mask: allocator flags 1338 * 1339 * Get a free request from @q. This function may fail under memory 1340 * pressure or if @q is dead. 1341 * 1342 * Must be called with @q->queue_lock held and, 1343 * Returns ERR_PTR on failure, with @q->queue_lock held. 1344 * Returns request pointer on success, with @q->queue_lock *not held*. 1345 */ 1346 static struct request *__get_request(struct request_list *rl, unsigned int op, 1347 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask) 1348 { 1349 struct request_queue *q = rl->q; 1350 struct request *rq; 1351 struct elevator_type *et = q->elevator->type; 1352 struct io_context *ioc = rq_ioc(bio); 1353 struct io_cq *icq = NULL; 1354 const bool is_sync = op_is_sync(op); 1355 int may_queue; 1356 req_flags_t rq_flags = RQF_ALLOCED; 1357 1358 lockdep_assert_held(q->queue_lock); 1359 1360 if (unlikely(blk_queue_dying(q))) 1361 return ERR_PTR(-ENODEV); 1362 1363 may_queue = elv_may_queue(q, op); 1364 if (may_queue == ELV_MQUEUE_NO) 1365 goto rq_starved; 1366 1367 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1368 if (rl->count[is_sync]+1 >= q->nr_requests) { 1369 /* 1370 * The queue will fill after this allocation, so set 1371 * it as full, and mark this process as "batching". 1372 * This process will be allowed to complete a batch of 1373 * requests, others will be blocked. 1374 */ 1375 if (!blk_rl_full(rl, is_sync)) { 1376 ioc_set_batching(q, ioc); 1377 blk_set_rl_full(rl, is_sync); 1378 } else { 1379 if (may_queue != ELV_MQUEUE_MUST 1380 && !ioc_batching(q, ioc)) { 1381 /* 1382 * The queue is full and the allocating 1383 * process is not a "batcher", and not 1384 * exempted by the IO scheduler 1385 */ 1386 return ERR_PTR(-ENOMEM); 1387 } 1388 } 1389 } 1390 blk_set_congested(rl, is_sync); 1391 } 1392 1393 /* 1394 * Only allow batching queuers to allocate up to 50% over the defined 1395 * limit of requests, otherwise we could have thousands of requests 1396 * allocated with any setting of ->nr_requests 1397 */ 1398 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1399 return ERR_PTR(-ENOMEM); 1400 1401 q->nr_rqs[is_sync]++; 1402 rl->count[is_sync]++; 1403 rl->starved[is_sync] = 0; 1404 1405 /* 1406 * Decide whether the new request will be managed by elevator. If 1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1408 * prevent the current elevator from being destroyed until the new 1409 * request is freed. This guarantees icq's won't be destroyed and 1410 * makes creating new ones safe. 1411 * 1412 * Flush requests do not use the elevator so skip initialization. 1413 * This allows a request to share the flush and elevator data. 1414 * 1415 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1416 * it will be created after releasing queue_lock. 1417 */ 1418 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1419 rq_flags |= RQF_ELVPRIV; 1420 q->nr_rqs_elvpriv++; 1421 if (et->icq_cache && ioc) 1422 icq = ioc_lookup_icq(ioc, q); 1423 } 1424 1425 if (blk_queue_io_stat(q)) 1426 rq_flags |= RQF_IO_STAT; 1427 spin_unlock_irq(q->queue_lock); 1428 1429 /* allocate and init request */ 1430 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1431 if (!rq) 1432 goto fail_alloc; 1433 1434 blk_rq_init(q, rq); 1435 blk_rq_set_rl(rq, rl); 1436 rq->cmd_flags = op; 1437 rq->rq_flags = rq_flags; 1438 if (flags & BLK_MQ_REQ_PREEMPT) 1439 rq->rq_flags |= RQF_PREEMPT; 1440 1441 /* init elvpriv */ 1442 if (rq_flags & RQF_ELVPRIV) { 1443 if (unlikely(et->icq_cache && !icq)) { 1444 if (ioc) 1445 icq = ioc_create_icq(ioc, q, gfp_mask); 1446 if (!icq) 1447 goto fail_elvpriv; 1448 } 1449 1450 rq->elv.icq = icq; 1451 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1452 goto fail_elvpriv; 1453 1454 /* @rq->elv.icq holds io_context until @rq is freed */ 1455 if (icq) 1456 get_io_context(icq->ioc); 1457 } 1458 out: 1459 /* 1460 * ioc may be NULL here, and ioc_batching will be false. That's 1461 * OK, if the queue is under the request limit then requests need 1462 * not count toward the nr_batch_requests limit. There will always 1463 * be some limit enforced by BLK_BATCH_TIME. 1464 */ 1465 if (ioc_batching(q, ioc)) 1466 ioc->nr_batch_requests--; 1467 1468 trace_block_getrq(q, bio, op); 1469 return rq; 1470 1471 fail_elvpriv: 1472 /* 1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1474 * and may fail indefinitely under memory pressure and thus 1475 * shouldn't stall IO. Treat this request as !elvpriv. This will 1476 * disturb iosched and blkcg but weird is bettern than dead. 1477 */ 1478 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1479 __func__, dev_name(q->backing_dev_info->dev)); 1480 1481 rq->rq_flags &= ~RQF_ELVPRIV; 1482 rq->elv.icq = NULL; 1483 1484 spin_lock_irq(q->queue_lock); 1485 q->nr_rqs_elvpriv--; 1486 spin_unlock_irq(q->queue_lock); 1487 goto out; 1488 1489 fail_alloc: 1490 /* 1491 * Allocation failed presumably due to memory. Undo anything we 1492 * might have messed up. 1493 * 1494 * Allocating task should really be put onto the front of the wait 1495 * queue, but this is pretty rare. 1496 */ 1497 spin_lock_irq(q->queue_lock); 1498 freed_request(rl, is_sync, rq_flags); 1499 1500 /* 1501 * in the very unlikely event that allocation failed and no 1502 * requests for this direction was pending, mark us starved so that 1503 * freeing of a request in the other direction will notice 1504 * us. another possible fix would be to split the rq mempool into 1505 * READ and WRITE 1506 */ 1507 rq_starved: 1508 if (unlikely(rl->count[is_sync] == 0)) 1509 rl->starved[is_sync] = 1; 1510 return ERR_PTR(-ENOMEM); 1511 } 1512 1513 /** 1514 * get_request - get a free request 1515 * @q: request_queue to allocate request from 1516 * @op: operation and flags 1517 * @bio: bio to allocate request for (can be %NULL) 1518 * @flags: BLK_MQ_REQ_* flags. 1519 * @gfp: allocator flags 1520 * 1521 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags, 1522 * this function keeps retrying under memory pressure and fails iff @q is dead. 1523 * 1524 * Must be called with @q->queue_lock held and, 1525 * Returns ERR_PTR on failure, with @q->queue_lock held. 1526 * Returns request pointer on success, with @q->queue_lock *not held*. 1527 */ 1528 static struct request *get_request(struct request_queue *q, unsigned int op, 1529 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp) 1530 { 1531 const bool is_sync = op_is_sync(op); 1532 DEFINE_WAIT(wait); 1533 struct request_list *rl; 1534 struct request *rq; 1535 1536 lockdep_assert_held(q->queue_lock); 1537 WARN_ON_ONCE(q->mq_ops); 1538 1539 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1540 retry: 1541 rq = __get_request(rl, op, bio, flags, gfp); 1542 if (!IS_ERR(rq)) 1543 return rq; 1544 1545 if (op & REQ_NOWAIT) { 1546 blk_put_rl(rl); 1547 return ERR_PTR(-EAGAIN); 1548 } 1549 1550 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1551 blk_put_rl(rl); 1552 return rq; 1553 } 1554 1555 /* wait on @rl and retry */ 1556 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1557 TASK_UNINTERRUPTIBLE); 1558 1559 trace_block_sleeprq(q, bio, op); 1560 1561 spin_unlock_irq(q->queue_lock); 1562 io_schedule(); 1563 1564 /* 1565 * After sleeping, we become a "batching" process and will be able 1566 * to allocate at least one request, and up to a big batch of them 1567 * for a small period time. See ioc_batching, ioc_set_batching 1568 */ 1569 ioc_set_batching(q, current->io_context); 1570 1571 spin_lock_irq(q->queue_lock); 1572 finish_wait(&rl->wait[is_sync], &wait); 1573 1574 goto retry; 1575 } 1576 1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1578 static struct request *blk_old_get_request(struct request_queue *q, 1579 unsigned int op, blk_mq_req_flags_t flags) 1580 { 1581 struct request *rq; 1582 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO; 1583 int ret = 0; 1584 1585 WARN_ON_ONCE(q->mq_ops); 1586 1587 /* create ioc upfront */ 1588 create_io_context(gfp_mask, q->node); 1589 1590 ret = blk_queue_enter(q, flags); 1591 if (ret) 1592 return ERR_PTR(ret); 1593 spin_lock_irq(q->queue_lock); 1594 rq = get_request(q, op, NULL, flags, gfp_mask); 1595 if (IS_ERR(rq)) { 1596 spin_unlock_irq(q->queue_lock); 1597 blk_queue_exit(q); 1598 return rq; 1599 } 1600 1601 /* q->queue_lock is unlocked at this point */ 1602 rq->__data_len = 0; 1603 rq->__sector = (sector_t) -1; 1604 rq->bio = rq->biotail = NULL; 1605 return rq; 1606 } 1607 1608 /** 1609 * blk_get_request - allocate a request 1610 * @q: request queue to allocate a request for 1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1613 */ 1614 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1615 blk_mq_req_flags_t flags) 1616 { 1617 struct request *req; 1618 1619 WARN_ON_ONCE(op & REQ_NOWAIT); 1620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1621 1622 if (q->mq_ops) { 1623 req = blk_mq_alloc_request(q, op, flags); 1624 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1625 q->mq_ops->initialize_rq_fn(req); 1626 } else { 1627 req = blk_old_get_request(q, op, flags); 1628 if (!IS_ERR(req) && q->initialize_rq_fn) 1629 q->initialize_rq_fn(req); 1630 } 1631 1632 return req; 1633 } 1634 EXPORT_SYMBOL(blk_get_request); 1635 1636 /** 1637 * blk_requeue_request - put a request back on queue 1638 * @q: request queue where request should be inserted 1639 * @rq: request to be inserted 1640 * 1641 * Description: 1642 * Drivers often keep queueing requests until the hardware cannot accept 1643 * more, when that condition happens we need to put the request back 1644 * on the queue. Must be called with queue lock held. 1645 */ 1646 void blk_requeue_request(struct request_queue *q, struct request *rq) 1647 { 1648 lockdep_assert_held(q->queue_lock); 1649 WARN_ON_ONCE(q->mq_ops); 1650 1651 blk_delete_timer(rq); 1652 blk_clear_rq_complete(rq); 1653 trace_block_rq_requeue(q, rq); 1654 rq_qos_requeue(q, rq); 1655 1656 if (rq->rq_flags & RQF_QUEUED) 1657 blk_queue_end_tag(q, rq); 1658 1659 BUG_ON(blk_queued_rq(rq)); 1660 1661 elv_requeue_request(q, rq); 1662 } 1663 EXPORT_SYMBOL(blk_requeue_request); 1664 1665 static void add_acct_request(struct request_queue *q, struct request *rq, 1666 int where) 1667 { 1668 blk_account_io_start(rq, true); 1669 __elv_add_request(q, rq, where); 1670 } 1671 1672 static void part_round_stats_single(struct request_queue *q, int cpu, 1673 struct hd_struct *part, unsigned long now, 1674 unsigned int inflight) 1675 { 1676 if (inflight) { 1677 __part_stat_add(cpu, part, time_in_queue, 1678 inflight * (now - part->stamp)); 1679 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1680 } 1681 part->stamp = now; 1682 } 1683 1684 /** 1685 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1686 * @q: target block queue 1687 * @cpu: cpu number for stats access 1688 * @part: target partition 1689 * 1690 * The average IO queue length and utilisation statistics are maintained 1691 * by observing the current state of the queue length and the amount of 1692 * time it has been in this state for. 1693 * 1694 * Normally, that accounting is done on IO completion, but that can result 1695 * in more than a second's worth of IO being accounted for within any one 1696 * second, leading to >100% utilisation. To deal with that, we call this 1697 * function to do a round-off before returning the results when reading 1698 * /proc/diskstats. This accounts immediately for all queue usage up to 1699 * the current jiffies and restarts the counters again. 1700 */ 1701 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1702 { 1703 struct hd_struct *part2 = NULL; 1704 unsigned long now = jiffies; 1705 unsigned int inflight[2]; 1706 int stats = 0; 1707 1708 if (part->stamp != now) 1709 stats |= 1; 1710 1711 if (part->partno) { 1712 part2 = &part_to_disk(part)->part0; 1713 if (part2->stamp != now) 1714 stats |= 2; 1715 } 1716 1717 if (!stats) 1718 return; 1719 1720 part_in_flight(q, part, inflight); 1721 1722 if (stats & 2) 1723 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1724 if (stats & 1) 1725 part_round_stats_single(q, cpu, part, now, inflight[0]); 1726 } 1727 EXPORT_SYMBOL_GPL(part_round_stats); 1728 1729 #ifdef CONFIG_PM 1730 static void blk_pm_put_request(struct request *rq) 1731 { 1732 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1733 pm_runtime_mark_last_busy(rq->q->dev); 1734 } 1735 #else 1736 static inline void blk_pm_put_request(struct request *rq) {} 1737 #endif 1738 1739 void __blk_put_request(struct request_queue *q, struct request *req) 1740 { 1741 req_flags_t rq_flags = req->rq_flags; 1742 1743 if (unlikely(!q)) 1744 return; 1745 1746 if (q->mq_ops) { 1747 blk_mq_free_request(req); 1748 return; 1749 } 1750 1751 lockdep_assert_held(q->queue_lock); 1752 1753 blk_req_zone_write_unlock(req); 1754 blk_pm_put_request(req); 1755 1756 elv_completed_request(q, req); 1757 1758 /* this is a bio leak */ 1759 WARN_ON(req->bio != NULL); 1760 1761 rq_qos_done(q, req); 1762 1763 /* 1764 * Request may not have originated from ll_rw_blk. if not, 1765 * it didn't come out of our reserved rq pools 1766 */ 1767 if (rq_flags & RQF_ALLOCED) { 1768 struct request_list *rl = blk_rq_rl(req); 1769 bool sync = op_is_sync(req->cmd_flags); 1770 1771 BUG_ON(!list_empty(&req->queuelist)); 1772 BUG_ON(ELV_ON_HASH(req)); 1773 1774 blk_free_request(rl, req); 1775 freed_request(rl, sync, rq_flags); 1776 blk_put_rl(rl); 1777 blk_queue_exit(q); 1778 } 1779 } 1780 EXPORT_SYMBOL_GPL(__blk_put_request); 1781 1782 void blk_put_request(struct request *req) 1783 { 1784 struct request_queue *q = req->q; 1785 1786 if (q->mq_ops) 1787 blk_mq_free_request(req); 1788 else { 1789 unsigned long flags; 1790 1791 spin_lock_irqsave(q->queue_lock, flags); 1792 __blk_put_request(q, req); 1793 spin_unlock_irqrestore(q->queue_lock, flags); 1794 } 1795 } 1796 EXPORT_SYMBOL(blk_put_request); 1797 1798 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1799 struct bio *bio) 1800 { 1801 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1802 1803 if (!ll_back_merge_fn(q, req, bio)) 1804 return false; 1805 1806 trace_block_bio_backmerge(q, req, bio); 1807 1808 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1809 blk_rq_set_mixed_merge(req); 1810 1811 req->biotail->bi_next = bio; 1812 req->biotail = bio; 1813 req->__data_len += bio->bi_iter.bi_size; 1814 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1815 1816 blk_account_io_start(req, false); 1817 return true; 1818 } 1819 1820 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1821 struct bio *bio) 1822 { 1823 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1824 1825 if (!ll_front_merge_fn(q, req, bio)) 1826 return false; 1827 1828 trace_block_bio_frontmerge(q, req, bio); 1829 1830 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1831 blk_rq_set_mixed_merge(req); 1832 1833 bio->bi_next = req->bio; 1834 req->bio = bio; 1835 1836 req->__sector = bio->bi_iter.bi_sector; 1837 req->__data_len += bio->bi_iter.bi_size; 1838 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1839 1840 blk_account_io_start(req, false); 1841 return true; 1842 } 1843 1844 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1845 struct bio *bio) 1846 { 1847 unsigned short segments = blk_rq_nr_discard_segments(req); 1848 1849 if (segments >= queue_max_discard_segments(q)) 1850 goto no_merge; 1851 if (blk_rq_sectors(req) + bio_sectors(bio) > 1852 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1853 goto no_merge; 1854 1855 req->biotail->bi_next = bio; 1856 req->biotail = bio; 1857 req->__data_len += bio->bi_iter.bi_size; 1858 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1859 req->nr_phys_segments = segments + 1; 1860 1861 blk_account_io_start(req, false); 1862 return true; 1863 no_merge: 1864 req_set_nomerge(q, req); 1865 return false; 1866 } 1867 1868 /** 1869 * blk_attempt_plug_merge - try to merge with %current's plugged list 1870 * @q: request_queue new bio is being queued at 1871 * @bio: new bio being queued 1872 * @request_count: out parameter for number of traversed plugged requests 1873 * @same_queue_rq: pointer to &struct request that gets filled in when 1874 * another request associated with @q is found on the plug list 1875 * (optional, may be %NULL) 1876 * 1877 * Determine whether @bio being queued on @q can be merged with a request 1878 * on %current's plugged list. Returns %true if merge was successful, 1879 * otherwise %false. 1880 * 1881 * Plugging coalesces IOs from the same issuer for the same purpose without 1882 * going through @q->queue_lock. As such it's more of an issuing mechanism 1883 * than scheduling, and the request, while may have elvpriv data, is not 1884 * added on the elevator at this point. In addition, we don't have 1885 * reliable access to the elevator outside queue lock. Only check basic 1886 * merging parameters without querying the elevator. 1887 * 1888 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1889 */ 1890 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1891 unsigned int *request_count, 1892 struct request **same_queue_rq) 1893 { 1894 struct blk_plug *plug; 1895 struct request *rq; 1896 struct list_head *plug_list; 1897 1898 plug = current->plug; 1899 if (!plug) 1900 return false; 1901 *request_count = 0; 1902 1903 if (q->mq_ops) 1904 plug_list = &plug->mq_list; 1905 else 1906 plug_list = &plug->list; 1907 1908 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1909 bool merged = false; 1910 1911 if (rq->q == q) { 1912 (*request_count)++; 1913 /* 1914 * Only blk-mq multiple hardware queues case checks the 1915 * rq in the same queue, there should be only one such 1916 * rq in a queue 1917 **/ 1918 if (same_queue_rq) 1919 *same_queue_rq = rq; 1920 } 1921 1922 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1923 continue; 1924 1925 switch (blk_try_merge(rq, bio)) { 1926 case ELEVATOR_BACK_MERGE: 1927 merged = bio_attempt_back_merge(q, rq, bio); 1928 break; 1929 case ELEVATOR_FRONT_MERGE: 1930 merged = bio_attempt_front_merge(q, rq, bio); 1931 break; 1932 case ELEVATOR_DISCARD_MERGE: 1933 merged = bio_attempt_discard_merge(q, rq, bio); 1934 break; 1935 default: 1936 break; 1937 } 1938 1939 if (merged) 1940 return true; 1941 } 1942 1943 return false; 1944 } 1945 1946 unsigned int blk_plug_queued_count(struct request_queue *q) 1947 { 1948 struct blk_plug *plug; 1949 struct request *rq; 1950 struct list_head *plug_list; 1951 unsigned int ret = 0; 1952 1953 plug = current->plug; 1954 if (!plug) 1955 goto out; 1956 1957 if (q->mq_ops) 1958 plug_list = &plug->mq_list; 1959 else 1960 plug_list = &plug->list; 1961 1962 list_for_each_entry(rq, plug_list, queuelist) { 1963 if (rq->q == q) 1964 ret++; 1965 } 1966 out: 1967 return ret; 1968 } 1969 1970 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1971 { 1972 struct io_context *ioc = rq_ioc(bio); 1973 1974 if (bio->bi_opf & REQ_RAHEAD) 1975 req->cmd_flags |= REQ_FAILFAST_MASK; 1976 1977 req->__sector = bio->bi_iter.bi_sector; 1978 if (ioprio_valid(bio_prio(bio))) 1979 req->ioprio = bio_prio(bio); 1980 else if (ioc) 1981 req->ioprio = ioc->ioprio; 1982 else 1983 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1984 req->write_hint = bio->bi_write_hint; 1985 blk_rq_bio_prep(req->q, req, bio); 1986 } 1987 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1988 1989 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1990 { 1991 struct blk_plug *plug; 1992 int where = ELEVATOR_INSERT_SORT; 1993 struct request *req, *free; 1994 unsigned int request_count = 0; 1995 1996 /* 1997 * low level driver can indicate that it wants pages above a 1998 * certain limit bounced to low memory (ie for highmem, or even 1999 * ISA dma in theory) 2000 */ 2001 blk_queue_bounce(q, &bio); 2002 2003 blk_queue_split(q, &bio); 2004 2005 if (!bio_integrity_prep(bio)) 2006 return BLK_QC_T_NONE; 2007 2008 if (op_is_flush(bio->bi_opf)) { 2009 spin_lock_irq(q->queue_lock); 2010 where = ELEVATOR_INSERT_FLUSH; 2011 goto get_rq; 2012 } 2013 2014 /* 2015 * Check if we can merge with the plugged list before grabbing 2016 * any locks. 2017 */ 2018 if (!blk_queue_nomerges(q)) { 2019 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 2020 return BLK_QC_T_NONE; 2021 } else 2022 request_count = blk_plug_queued_count(q); 2023 2024 spin_lock_irq(q->queue_lock); 2025 2026 switch (elv_merge(q, &req, bio)) { 2027 case ELEVATOR_BACK_MERGE: 2028 if (!bio_attempt_back_merge(q, req, bio)) 2029 break; 2030 elv_bio_merged(q, req, bio); 2031 free = attempt_back_merge(q, req); 2032 if (free) 2033 __blk_put_request(q, free); 2034 else 2035 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 2036 goto out_unlock; 2037 case ELEVATOR_FRONT_MERGE: 2038 if (!bio_attempt_front_merge(q, req, bio)) 2039 break; 2040 elv_bio_merged(q, req, bio); 2041 free = attempt_front_merge(q, req); 2042 if (free) 2043 __blk_put_request(q, free); 2044 else 2045 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 2046 goto out_unlock; 2047 default: 2048 break; 2049 } 2050 2051 get_rq: 2052 rq_qos_throttle(q, bio, q->queue_lock); 2053 2054 /* 2055 * Grab a free request. This is might sleep but can not fail. 2056 * Returns with the queue unlocked. 2057 */ 2058 blk_queue_enter_live(q); 2059 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO); 2060 if (IS_ERR(req)) { 2061 blk_queue_exit(q); 2062 rq_qos_cleanup(q, bio); 2063 if (PTR_ERR(req) == -ENOMEM) 2064 bio->bi_status = BLK_STS_RESOURCE; 2065 else 2066 bio->bi_status = BLK_STS_IOERR; 2067 bio_endio(bio); 2068 goto out_unlock; 2069 } 2070 2071 rq_qos_track(q, req, bio); 2072 2073 /* 2074 * After dropping the lock and possibly sleeping here, our request 2075 * may now be mergeable after it had proven unmergeable (above). 2076 * We don't worry about that case for efficiency. It won't happen 2077 * often, and the elevators are able to handle it. 2078 */ 2079 blk_init_request_from_bio(req, bio); 2080 2081 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 2082 req->cpu = raw_smp_processor_id(); 2083 2084 plug = current->plug; 2085 if (plug) { 2086 /* 2087 * If this is the first request added after a plug, fire 2088 * of a plug trace. 2089 * 2090 * @request_count may become stale because of schedule 2091 * out, so check plug list again. 2092 */ 2093 if (!request_count || list_empty(&plug->list)) 2094 trace_block_plug(q); 2095 else { 2096 struct request *last = list_entry_rq(plug->list.prev); 2097 if (request_count >= BLK_MAX_REQUEST_COUNT || 2098 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2099 blk_flush_plug_list(plug, false); 2100 trace_block_plug(q); 2101 } 2102 } 2103 list_add_tail(&req->queuelist, &plug->list); 2104 blk_account_io_start(req, true); 2105 } else { 2106 spin_lock_irq(q->queue_lock); 2107 add_acct_request(q, req, where); 2108 __blk_run_queue(q); 2109 out_unlock: 2110 spin_unlock_irq(q->queue_lock); 2111 } 2112 2113 return BLK_QC_T_NONE; 2114 } 2115 2116 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 2117 { 2118 char b[BDEVNAME_SIZE]; 2119 2120 printk(KERN_INFO "attempt to access beyond end of device\n"); 2121 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2122 bio_devname(bio, b), bio->bi_opf, 2123 (unsigned long long)bio_end_sector(bio), 2124 (long long)maxsector); 2125 } 2126 2127 #ifdef CONFIG_FAIL_MAKE_REQUEST 2128 2129 static DECLARE_FAULT_ATTR(fail_make_request); 2130 2131 static int __init setup_fail_make_request(char *str) 2132 { 2133 return setup_fault_attr(&fail_make_request, str); 2134 } 2135 __setup("fail_make_request=", setup_fail_make_request); 2136 2137 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2138 { 2139 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2140 } 2141 2142 static int __init fail_make_request_debugfs(void) 2143 { 2144 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2145 NULL, &fail_make_request); 2146 2147 return PTR_ERR_OR_ZERO(dir); 2148 } 2149 2150 late_initcall(fail_make_request_debugfs); 2151 2152 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2153 2154 static inline bool should_fail_request(struct hd_struct *part, 2155 unsigned int bytes) 2156 { 2157 return false; 2158 } 2159 2160 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2161 2162 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2163 { 2164 const int op = bio_op(bio); 2165 2166 if (part->policy && op_is_write(op)) { 2167 char b[BDEVNAME_SIZE]; 2168 2169 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 2170 return false; 2171 2172 WARN_ONCE(1, 2173 "generic_make_request: Trying to write " 2174 "to read-only block-device %s (partno %d)\n", 2175 bio_devname(bio, b), part->partno); 2176 /* Older lvm-tools actually trigger this */ 2177 return false; 2178 } 2179 2180 return false; 2181 } 2182 2183 static noinline int should_fail_bio(struct bio *bio) 2184 { 2185 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2186 return -EIO; 2187 return 0; 2188 } 2189 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2190 2191 /* 2192 * Check whether this bio extends beyond the end of the device or partition. 2193 * This may well happen - the kernel calls bread() without checking the size of 2194 * the device, e.g., when mounting a file system. 2195 */ 2196 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 2197 { 2198 unsigned int nr_sectors = bio_sectors(bio); 2199 2200 if (nr_sectors && maxsector && 2201 (nr_sectors > maxsector || 2202 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 2203 handle_bad_sector(bio, maxsector); 2204 return -EIO; 2205 } 2206 return 0; 2207 } 2208 2209 /* 2210 * Remap block n of partition p to block n+start(p) of the disk. 2211 */ 2212 static inline int blk_partition_remap(struct bio *bio) 2213 { 2214 struct hd_struct *p; 2215 int ret = -EIO; 2216 2217 rcu_read_lock(); 2218 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2219 if (unlikely(!p)) 2220 goto out; 2221 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 2222 goto out; 2223 if (unlikely(bio_check_ro(bio, p))) 2224 goto out; 2225 2226 /* 2227 * Zone reset does not include bi_size so bio_sectors() is always 0. 2228 * Include a test for the reset op code and perform the remap if needed. 2229 */ 2230 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 2231 if (bio_check_eod(bio, part_nr_sects_read(p))) 2232 goto out; 2233 bio->bi_iter.bi_sector += p->start_sect; 2234 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2235 bio->bi_iter.bi_sector - p->start_sect); 2236 } 2237 bio->bi_partno = 0; 2238 ret = 0; 2239 out: 2240 rcu_read_unlock(); 2241 return ret; 2242 } 2243 2244 static noinline_for_stack bool 2245 generic_make_request_checks(struct bio *bio) 2246 { 2247 struct request_queue *q; 2248 int nr_sectors = bio_sectors(bio); 2249 blk_status_t status = BLK_STS_IOERR; 2250 char b[BDEVNAME_SIZE]; 2251 2252 might_sleep(); 2253 2254 q = bio->bi_disk->queue; 2255 if (unlikely(!q)) { 2256 printk(KERN_ERR 2257 "generic_make_request: Trying to access " 2258 "nonexistent block-device %s (%Lu)\n", 2259 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2260 goto end_io; 2261 } 2262 2263 /* 2264 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2265 * if queue is not a request based queue. 2266 */ 2267 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2268 goto not_supported; 2269 2270 if (should_fail_bio(bio)) 2271 goto end_io; 2272 2273 if (bio->bi_partno) { 2274 if (unlikely(blk_partition_remap(bio))) 2275 goto end_io; 2276 } else { 2277 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2278 goto end_io; 2279 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 2280 goto end_io; 2281 } 2282 2283 /* 2284 * Filter flush bio's early so that make_request based 2285 * drivers without flush support don't have to worry 2286 * about them. 2287 */ 2288 if (op_is_flush(bio->bi_opf) && 2289 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2290 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2291 if (!nr_sectors) { 2292 status = BLK_STS_OK; 2293 goto end_io; 2294 } 2295 } 2296 2297 switch (bio_op(bio)) { 2298 case REQ_OP_DISCARD: 2299 if (!blk_queue_discard(q)) 2300 goto not_supported; 2301 break; 2302 case REQ_OP_SECURE_ERASE: 2303 if (!blk_queue_secure_erase(q)) 2304 goto not_supported; 2305 break; 2306 case REQ_OP_WRITE_SAME: 2307 if (!q->limits.max_write_same_sectors) 2308 goto not_supported; 2309 break; 2310 case REQ_OP_ZONE_REPORT: 2311 case REQ_OP_ZONE_RESET: 2312 if (!blk_queue_is_zoned(q)) 2313 goto not_supported; 2314 break; 2315 case REQ_OP_WRITE_ZEROES: 2316 if (!q->limits.max_write_zeroes_sectors) 2317 goto not_supported; 2318 break; 2319 default: 2320 break; 2321 } 2322 2323 /* 2324 * Various block parts want %current->io_context and lazy ioc 2325 * allocation ends up trading a lot of pain for a small amount of 2326 * memory. Just allocate it upfront. This may fail and block 2327 * layer knows how to live with it. 2328 */ 2329 create_io_context(GFP_ATOMIC, q->node); 2330 2331 if (!blkcg_bio_issue_check(q, bio)) 2332 return false; 2333 2334 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2335 trace_block_bio_queue(q, bio); 2336 /* Now that enqueuing has been traced, we need to trace 2337 * completion as well. 2338 */ 2339 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2340 } 2341 return true; 2342 2343 not_supported: 2344 status = BLK_STS_NOTSUPP; 2345 end_io: 2346 bio->bi_status = status; 2347 bio_endio(bio); 2348 return false; 2349 } 2350 2351 /** 2352 * generic_make_request - hand a buffer to its device driver for I/O 2353 * @bio: The bio describing the location in memory and on the device. 2354 * 2355 * generic_make_request() is used to make I/O requests of block 2356 * devices. It is passed a &struct bio, which describes the I/O that needs 2357 * to be done. 2358 * 2359 * generic_make_request() does not return any status. The 2360 * success/failure status of the request, along with notification of 2361 * completion, is delivered asynchronously through the bio->bi_end_io 2362 * function described (one day) else where. 2363 * 2364 * The caller of generic_make_request must make sure that bi_io_vec 2365 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2366 * set to describe the device address, and the 2367 * bi_end_io and optionally bi_private are set to describe how 2368 * completion notification should be signaled. 2369 * 2370 * generic_make_request and the drivers it calls may use bi_next if this 2371 * bio happens to be merged with someone else, and may resubmit the bio to 2372 * a lower device by calling into generic_make_request recursively, which 2373 * means the bio should NOT be touched after the call to ->make_request_fn. 2374 */ 2375 blk_qc_t generic_make_request(struct bio *bio) 2376 { 2377 /* 2378 * bio_list_on_stack[0] contains bios submitted by the current 2379 * make_request_fn. 2380 * bio_list_on_stack[1] contains bios that were submitted before 2381 * the current make_request_fn, but that haven't been processed 2382 * yet. 2383 */ 2384 struct bio_list bio_list_on_stack[2]; 2385 blk_mq_req_flags_t flags = 0; 2386 struct request_queue *q = bio->bi_disk->queue; 2387 blk_qc_t ret = BLK_QC_T_NONE; 2388 2389 if (bio->bi_opf & REQ_NOWAIT) 2390 flags = BLK_MQ_REQ_NOWAIT; 2391 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 2392 blk_queue_enter_live(q); 2393 else if (blk_queue_enter(q, flags) < 0) { 2394 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 2395 bio_wouldblock_error(bio); 2396 else 2397 bio_io_error(bio); 2398 return ret; 2399 } 2400 2401 if (!generic_make_request_checks(bio)) 2402 goto out; 2403 2404 /* 2405 * We only want one ->make_request_fn to be active at a time, else 2406 * stack usage with stacked devices could be a problem. So use 2407 * current->bio_list to keep a list of requests submited by a 2408 * make_request_fn function. current->bio_list is also used as a 2409 * flag to say if generic_make_request is currently active in this 2410 * task or not. If it is NULL, then no make_request is active. If 2411 * it is non-NULL, then a make_request is active, and new requests 2412 * should be added at the tail 2413 */ 2414 if (current->bio_list) { 2415 bio_list_add(¤t->bio_list[0], bio); 2416 goto out; 2417 } 2418 2419 /* following loop may be a bit non-obvious, and so deserves some 2420 * explanation. 2421 * Before entering the loop, bio->bi_next is NULL (as all callers 2422 * ensure that) so we have a list with a single bio. 2423 * We pretend that we have just taken it off a longer list, so 2424 * we assign bio_list to a pointer to the bio_list_on_stack, 2425 * thus initialising the bio_list of new bios to be 2426 * added. ->make_request() may indeed add some more bios 2427 * through a recursive call to generic_make_request. If it 2428 * did, we find a non-NULL value in bio_list and re-enter the loop 2429 * from the top. In this case we really did just take the bio 2430 * of the top of the list (no pretending) and so remove it from 2431 * bio_list, and call into ->make_request() again. 2432 */ 2433 BUG_ON(bio->bi_next); 2434 bio_list_init(&bio_list_on_stack[0]); 2435 current->bio_list = bio_list_on_stack; 2436 do { 2437 bool enter_succeeded = true; 2438 2439 if (unlikely(q != bio->bi_disk->queue)) { 2440 if (q) 2441 blk_queue_exit(q); 2442 q = bio->bi_disk->queue; 2443 flags = 0; 2444 if (bio->bi_opf & REQ_NOWAIT) 2445 flags = BLK_MQ_REQ_NOWAIT; 2446 if (blk_queue_enter(q, flags) < 0) { 2447 enter_succeeded = false; 2448 q = NULL; 2449 } 2450 } 2451 2452 if (enter_succeeded) { 2453 struct bio_list lower, same; 2454 2455 /* Create a fresh bio_list for all subordinate requests */ 2456 bio_list_on_stack[1] = bio_list_on_stack[0]; 2457 bio_list_init(&bio_list_on_stack[0]); 2458 ret = q->make_request_fn(q, bio); 2459 2460 /* sort new bios into those for a lower level 2461 * and those for the same level 2462 */ 2463 bio_list_init(&lower); 2464 bio_list_init(&same); 2465 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2466 if (q == bio->bi_disk->queue) 2467 bio_list_add(&same, bio); 2468 else 2469 bio_list_add(&lower, bio); 2470 /* now assemble so we handle the lowest level first */ 2471 bio_list_merge(&bio_list_on_stack[0], &lower); 2472 bio_list_merge(&bio_list_on_stack[0], &same); 2473 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2474 } else { 2475 if (unlikely(!blk_queue_dying(q) && 2476 (bio->bi_opf & REQ_NOWAIT))) 2477 bio_wouldblock_error(bio); 2478 else 2479 bio_io_error(bio); 2480 } 2481 bio = bio_list_pop(&bio_list_on_stack[0]); 2482 } while (bio); 2483 current->bio_list = NULL; /* deactivate */ 2484 2485 out: 2486 if (q) 2487 blk_queue_exit(q); 2488 return ret; 2489 } 2490 EXPORT_SYMBOL(generic_make_request); 2491 2492 /** 2493 * direct_make_request - hand a buffer directly to its device driver for I/O 2494 * @bio: The bio describing the location in memory and on the device. 2495 * 2496 * This function behaves like generic_make_request(), but does not protect 2497 * against recursion. Must only be used if the called driver is known 2498 * to not call generic_make_request (or direct_make_request) again from 2499 * its make_request function. (Calling direct_make_request again from 2500 * a workqueue is perfectly fine as that doesn't recurse). 2501 */ 2502 blk_qc_t direct_make_request(struct bio *bio) 2503 { 2504 struct request_queue *q = bio->bi_disk->queue; 2505 bool nowait = bio->bi_opf & REQ_NOWAIT; 2506 blk_qc_t ret; 2507 2508 if (!generic_make_request_checks(bio)) 2509 return BLK_QC_T_NONE; 2510 2511 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2512 if (nowait && !blk_queue_dying(q)) 2513 bio->bi_status = BLK_STS_AGAIN; 2514 else 2515 bio->bi_status = BLK_STS_IOERR; 2516 bio_endio(bio); 2517 return BLK_QC_T_NONE; 2518 } 2519 2520 ret = q->make_request_fn(q, bio); 2521 blk_queue_exit(q); 2522 return ret; 2523 } 2524 EXPORT_SYMBOL_GPL(direct_make_request); 2525 2526 /** 2527 * submit_bio - submit a bio to the block device layer for I/O 2528 * @bio: The &struct bio which describes the I/O 2529 * 2530 * submit_bio() is very similar in purpose to generic_make_request(), and 2531 * uses that function to do most of the work. Both are fairly rough 2532 * interfaces; @bio must be presetup and ready for I/O. 2533 * 2534 */ 2535 blk_qc_t submit_bio(struct bio *bio) 2536 { 2537 /* 2538 * If it's a regular read/write or a barrier with data attached, 2539 * go through the normal accounting stuff before submission. 2540 */ 2541 if (bio_has_data(bio)) { 2542 unsigned int count; 2543 2544 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2545 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2546 else 2547 count = bio_sectors(bio); 2548 2549 if (op_is_write(bio_op(bio))) { 2550 count_vm_events(PGPGOUT, count); 2551 } else { 2552 task_io_account_read(bio->bi_iter.bi_size); 2553 count_vm_events(PGPGIN, count); 2554 } 2555 2556 if (unlikely(block_dump)) { 2557 char b[BDEVNAME_SIZE]; 2558 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2559 current->comm, task_pid_nr(current), 2560 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2561 (unsigned long long)bio->bi_iter.bi_sector, 2562 bio_devname(bio, b), count); 2563 } 2564 } 2565 2566 return generic_make_request(bio); 2567 } 2568 EXPORT_SYMBOL(submit_bio); 2569 2570 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2571 { 2572 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2573 return false; 2574 2575 if (current->plug) 2576 blk_flush_plug_list(current->plug, false); 2577 return q->poll_fn(q, cookie); 2578 } 2579 EXPORT_SYMBOL_GPL(blk_poll); 2580 2581 /** 2582 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2583 * for new the queue limits 2584 * @q: the queue 2585 * @rq: the request being checked 2586 * 2587 * Description: 2588 * @rq may have been made based on weaker limitations of upper-level queues 2589 * in request stacking drivers, and it may violate the limitation of @q. 2590 * Since the block layer and the underlying device driver trust @rq 2591 * after it is inserted to @q, it should be checked against @q before 2592 * the insertion using this generic function. 2593 * 2594 * Request stacking drivers like request-based dm may change the queue 2595 * limits when retrying requests on other queues. Those requests need 2596 * to be checked against the new queue limits again during dispatch. 2597 */ 2598 static int blk_cloned_rq_check_limits(struct request_queue *q, 2599 struct request *rq) 2600 { 2601 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2602 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2603 return -EIO; 2604 } 2605 2606 /* 2607 * queue's settings related to segment counting like q->bounce_pfn 2608 * may differ from that of other stacking queues. 2609 * Recalculate it to check the request correctly on this queue's 2610 * limitation. 2611 */ 2612 blk_recalc_rq_segments(rq); 2613 if (rq->nr_phys_segments > queue_max_segments(q)) { 2614 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2615 return -EIO; 2616 } 2617 2618 return 0; 2619 } 2620 2621 /** 2622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2623 * @q: the queue to submit the request 2624 * @rq: the request being queued 2625 */ 2626 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2627 { 2628 unsigned long flags; 2629 int where = ELEVATOR_INSERT_BACK; 2630 2631 if (blk_cloned_rq_check_limits(q, rq)) 2632 return BLK_STS_IOERR; 2633 2634 if (rq->rq_disk && 2635 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2636 return BLK_STS_IOERR; 2637 2638 if (q->mq_ops) { 2639 if (blk_queue_io_stat(q)) 2640 blk_account_io_start(rq, true); 2641 /* 2642 * Since we have a scheduler attached on the top device, 2643 * bypass a potential scheduler on the bottom device for 2644 * insert. 2645 */ 2646 return blk_mq_request_issue_directly(rq); 2647 } 2648 2649 spin_lock_irqsave(q->queue_lock, flags); 2650 if (unlikely(blk_queue_dying(q))) { 2651 spin_unlock_irqrestore(q->queue_lock, flags); 2652 return BLK_STS_IOERR; 2653 } 2654 2655 /* 2656 * Submitting request must be dequeued before calling this function 2657 * because it will be linked to another request_queue 2658 */ 2659 BUG_ON(blk_queued_rq(rq)); 2660 2661 if (op_is_flush(rq->cmd_flags)) 2662 where = ELEVATOR_INSERT_FLUSH; 2663 2664 add_acct_request(q, rq, where); 2665 if (where == ELEVATOR_INSERT_FLUSH) 2666 __blk_run_queue(q); 2667 spin_unlock_irqrestore(q->queue_lock, flags); 2668 2669 return BLK_STS_OK; 2670 } 2671 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2672 2673 /** 2674 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2675 * @rq: request to examine 2676 * 2677 * Description: 2678 * A request could be merge of IOs which require different failure 2679 * handling. This function determines the number of bytes which 2680 * can be failed from the beginning of the request without 2681 * crossing into area which need to be retried further. 2682 * 2683 * Return: 2684 * The number of bytes to fail. 2685 */ 2686 unsigned int blk_rq_err_bytes(const struct request *rq) 2687 { 2688 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2689 unsigned int bytes = 0; 2690 struct bio *bio; 2691 2692 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2693 return blk_rq_bytes(rq); 2694 2695 /* 2696 * Currently the only 'mixing' which can happen is between 2697 * different fastfail types. We can safely fail portions 2698 * which have all the failfast bits that the first one has - 2699 * the ones which are at least as eager to fail as the first 2700 * one. 2701 */ 2702 for (bio = rq->bio; bio; bio = bio->bi_next) { 2703 if ((bio->bi_opf & ff) != ff) 2704 break; 2705 bytes += bio->bi_iter.bi_size; 2706 } 2707 2708 /* this could lead to infinite loop */ 2709 BUG_ON(blk_rq_bytes(rq) && !bytes); 2710 return bytes; 2711 } 2712 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2713 2714 void blk_account_io_completion(struct request *req, unsigned int bytes) 2715 { 2716 if (blk_do_io_stat(req)) { 2717 const int sgrp = op_stat_group(req_op(req)); 2718 struct hd_struct *part; 2719 int cpu; 2720 2721 cpu = part_stat_lock(); 2722 part = req->part; 2723 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9); 2724 part_stat_unlock(); 2725 } 2726 } 2727 2728 void blk_account_io_done(struct request *req, u64 now) 2729 { 2730 /* 2731 * Account IO completion. flush_rq isn't accounted as a 2732 * normal IO on queueing nor completion. Accounting the 2733 * containing request is enough. 2734 */ 2735 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2736 unsigned long duration; 2737 const int sgrp = op_stat_group(req_op(req)); 2738 struct hd_struct *part; 2739 int cpu; 2740 2741 duration = nsecs_to_jiffies(now - req->start_time_ns); 2742 cpu = part_stat_lock(); 2743 part = req->part; 2744 2745 part_stat_inc(cpu, part, ios[sgrp]); 2746 part_stat_add(cpu, part, ticks[sgrp], duration); 2747 part_round_stats(req->q, cpu, part); 2748 part_dec_in_flight(req->q, part, rq_data_dir(req)); 2749 2750 hd_struct_put(part); 2751 part_stat_unlock(); 2752 } 2753 } 2754 2755 #ifdef CONFIG_PM 2756 /* 2757 * Don't process normal requests when queue is suspended 2758 * or in the process of suspending/resuming 2759 */ 2760 static bool blk_pm_allow_request(struct request *rq) 2761 { 2762 switch (rq->q->rpm_status) { 2763 case RPM_RESUMING: 2764 case RPM_SUSPENDING: 2765 return rq->rq_flags & RQF_PM; 2766 case RPM_SUSPENDED: 2767 return false; 2768 default: 2769 return true; 2770 } 2771 } 2772 #else 2773 static bool blk_pm_allow_request(struct request *rq) 2774 { 2775 return true; 2776 } 2777 #endif 2778 2779 void blk_account_io_start(struct request *rq, bool new_io) 2780 { 2781 struct hd_struct *part; 2782 int rw = rq_data_dir(rq); 2783 int cpu; 2784 2785 if (!blk_do_io_stat(rq)) 2786 return; 2787 2788 cpu = part_stat_lock(); 2789 2790 if (!new_io) { 2791 part = rq->part; 2792 part_stat_inc(cpu, part, merges[rw]); 2793 } else { 2794 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2795 if (!hd_struct_try_get(part)) { 2796 /* 2797 * The partition is already being removed, 2798 * the request will be accounted on the disk only 2799 * 2800 * We take a reference on disk->part0 although that 2801 * partition will never be deleted, so we can treat 2802 * it as any other partition. 2803 */ 2804 part = &rq->rq_disk->part0; 2805 hd_struct_get(part); 2806 } 2807 part_round_stats(rq->q, cpu, part); 2808 part_inc_in_flight(rq->q, part, rw); 2809 rq->part = part; 2810 } 2811 2812 part_stat_unlock(); 2813 } 2814 2815 static struct request *elv_next_request(struct request_queue *q) 2816 { 2817 struct request *rq; 2818 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2819 2820 WARN_ON_ONCE(q->mq_ops); 2821 2822 while (1) { 2823 list_for_each_entry(rq, &q->queue_head, queuelist) { 2824 if (blk_pm_allow_request(rq)) 2825 return rq; 2826 2827 if (rq->rq_flags & RQF_SOFTBARRIER) 2828 break; 2829 } 2830 2831 /* 2832 * Flush request is running and flush request isn't queueable 2833 * in the drive, we can hold the queue till flush request is 2834 * finished. Even we don't do this, driver can't dispatch next 2835 * requests and will requeue them. And this can improve 2836 * throughput too. For example, we have request flush1, write1, 2837 * flush 2. flush1 is dispatched, then queue is hold, write1 2838 * isn't inserted to queue. After flush1 is finished, flush2 2839 * will be dispatched. Since disk cache is already clean, 2840 * flush2 will be finished very soon, so looks like flush2 is 2841 * folded to flush1. 2842 * Since the queue is hold, a flag is set to indicate the queue 2843 * should be restarted later. Please see flush_end_io() for 2844 * details. 2845 */ 2846 if (fq->flush_pending_idx != fq->flush_running_idx && 2847 !queue_flush_queueable(q)) { 2848 fq->flush_queue_delayed = 1; 2849 return NULL; 2850 } 2851 if (unlikely(blk_queue_bypass(q)) || 2852 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2853 return NULL; 2854 } 2855 } 2856 2857 /** 2858 * blk_peek_request - peek at the top of a request queue 2859 * @q: request queue to peek at 2860 * 2861 * Description: 2862 * Return the request at the top of @q. The returned request 2863 * should be started using blk_start_request() before LLD starts 2864 * processing it. 2865 * 2866 * Return: 2867 * Pointer to the request at the top of @q if available. Null 2868 * otherwise. 2869 */ 2870 struct request *blk_peek_request(struct request_queue *q) 2871 { 2872 struct request *rq; 2873 int ret; 2874 2875 lockdep_assert_held(q->queue_lock); 2876 WARN_ON_ONCE(q->mq_ops); 2877 2878 while ((rq = elv_next_request(q)) != NULL) { 2879 if (!(rq->rq_flags & RQF_STARTED)) { 2880 /* 2881 * This is the first time the device driver 2882 * sees this request (possibly after 2883 * requeueing). Notify IO scheduler. 2884 */ 2885 if (rq->rq_flags & RQF_SORTED) 2886 elv_activate_rq(q, rq); 2887 2888 /* 2889 * just mark as started even if we don't start 2890 * it, a request that has been delayed should 2891 * not be passed by new incoming requests 2892 */ 2893 rq->rq_flags |= RQF_STARTED; 2894 trace_block_rq_issue(q, rq); 2895 } 2896 2897 if (!q->boundary_rq || q->boundary_rq == rq) { 2898 q->end_sector = rq_end_sector(rq); 2899 q->boundary_rq = NULL; 2900 } 2901 2902 if (rq->rq_flags & RQF_DONTPREP) 2903 break; 2904 2905 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2906 /* 2907 * make sure space for the drain appears we 2908 * know we can do this because max_hw_segments 2909 * has been adjusted to be one fewer than the 2910 * device can handle 2911 */ 2912 rq->nr_phys_segments++; 2913 } 2914 2915 if (!q->prep_rq_fn) 2916 break; 2917 2918 ret = q->prep_rq_fn(q, rq); 2919 if (ret == BLKPREP_OK) { 2920 break; 2921 } else if (ret == BLKPREP_DEFER) { 2922 /* 2923 * the request may have been (partially) prepped. 2924 * we need to keep this request in the front to 2925 * avoid resource deadlock. RQF_STARTED will 2926 * prevent other fs requests from passing this one. 2927 */ 2928 if (q->dma_drain_size && blk_rq_bytes(rq) && 2929 !(rq->rq_flags & RQF_DONTPREP)) { 2930 /* 2931 * remove the space for the drain we added 2932 * so that we don't add it again 2933 */ 2934 --rq->nr_phys_segments; 2935 } 2936 2937 rq = NULL; 2938 break; 2939 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2940 rq->rq_flags |= RQF_QUIET; 2941 /* 2942 * Mark this request as started so we don't trigger 2943 * any debug logic in the end I/O path. 2944 */ 2945 blk_start_request(rq); 2946 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2947 BLK_STS_TARGET : BLK_STS_IOERR); 2948 } else { 2949 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2950 break; 2951 } 2952 } 2953 2954 return rq; 2955 } 2956 EXPORT_SYMBOL(blk_peek_request); 2957 2958 static void blk_dequeue_request(struct request *rq) 2959 { 2960 struct request_queue *q = rq->q; 2961 2962 BUG_ON(list_empty(&rq->queuelist)); 2963 BUG_ON(ELV_ON_HASH(rq)); 2964 2965 list_del_init(&rq->queuelist); 2966 2967 /* 2968 * the time frame between a request being removed from the lists 2969 * and to it is freed is accounted as io that is in progress at 2970 * the driver side. 2971 */ 2972 if (blk_account_rq(rq)) 2973 q->in_flight[rq_is_sync(rq)]++; 2974 } 2975 2976 /** 2977 * blk_start_request - start request processing on the driver 2978 * @req: request to dequeue 2979 * 2980 * Description: 2981 * Dequeue @req and start timeout timer on it. This hands off the 2982 * request to the driver. 2983 */ 2984 void blk_start_request(struct request *req) 2985 { 2986 lockdep_assert_held(req->q->queue_lock); 2987 WARN_ON_ONCE(req->q->mq_ops); 2988 2989 blk_dequeue_request(req); 2990 2991 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2992 req->io_start_time_ns = ktime_get_ns(); 2993 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2994 req->throtl_size = blk_rq_sectors(req); 2995 #endif 2996 req->rq_flags |= RQF_STATS; 2997 rq_qos_issue(req->q, req); 2998 } 2999 3000 BUG_ON(blk_rq_is_complete(req)); 3001 blk_add_timer(req); 3002 } 3003 EXPORT_SYMBOL(blk_start_request); 3004 3005 /** 3006 * blk_fetch_request - fetch a request from a request queue 3007 * @q: request queue to fetch a request from 3008 * 3009 * Description: 3010 * Return the request at the top of @q. The request is started on 3011 * return and LLD can start processing it immediately. 3012 * 3013 * Return: 3014 * Pointer to the request at the top of @q if available. Null 3015 * otherwise. 3016 */ 3017 struct request *blk_fetch_request(struct request_queue *q) 3018 { 3019 struct request *rq; 3020 3021 lockdep_assert_held(q->queue_lock); 3022 WARN_ON_ONCE(q->mq_ops); 3023 3024 rq = blk_peek_request(q); 3025 if (rq) 3026 blk_start_request(rq); 3027 return rq; 3028 } 3029 EXPORT_SYMBOL(blk_fetch_request); 3030 3031 /* 3032 * Steal bios from a request and add them to a bio list. 3033 * The request must not have been partially completed before. 3034 */ 3035 void blk_steal_bios(struct bio_list *list, struct request *rq) 3036 { 3037 if (rq->bio) { 3038 if (list->tail) 3039 list->tail->bi_next = rq->bio; 3040 else 3041 list->head = rq->bio; 3042 list->tail = rq->biotail; 3043 3044 rq->bio = NULL; 3045 rq->biotail = NULL; 3046 } 3047 3048 rq->__data_len = 0; 3049 } 3050 EXPORT_SYMBOL_GPL(blk_steal_bios); 3051 3052 /** 3053 * blk_update_request - Special helper function for request stacking drivers 3054 * @req: the request being processed 3055 * @error: block status code 3056 * @nr_bytes: number of bytes to complete @req 3057 * 3058 * Description: 3059 * Ends I/O on a number of bytes attached to @req, but doesn't complete 3060 * the request structure even if @req doesn't have leftover. 3061 * If @req has leftover, sets it up for the next range of segments. 3062 * 3063 * This special helper function is only for request stacking drivers 3064 * (e.g. request-based dm) so that they can handle partial completion. 3065 * Actual device drivers should use blk_end_request instead. 3066 * 3067 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 3068 * %false return from this function. 3069 * 3070 * Note: 3071 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 3072 * blk_rq_bytes() and in blk_update_request(). 3073 * 3074 * Return: 3075 * %false - this request doesn't have any more data 3076 * %true - this request has more data 3077 **/ 3078 bool blk_update_request(struct request *req, blk_status_t error, 3079 unsigned int nr_bytes) 3080 { 3081 int total_bytes; 3082 3083 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 3084 3085 if (!req->bio) 3086 return false; 3087 3088 if (unlikely(error && !blk_rq_is_passthrough(req) && 3089 !(req->rq_flags & RQF_QUIET))) 3090 print_req_error(req, error); 3091 3092 blk_account_io_completion(req, nr_bytes); 3093 3094 total_bytes = 0; 3095 while (req->bio) { 3096 struct bio *bio = req->bio; 3097 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 3098 3099 if (bio_bytes == bio->bi_iter.bi_size) 3100 req->bio = bio->bi_next; 3101 3102 /* Completion has already been traced */ 3103 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 3104 req_bio_endio(req, bio, bio_bytes, error); 3105 3106 total_bytes += bio_bytes; 3107 nr_bytes -= bio_bytes; 3108 3109 if (!nr_bytes) 3110 break; 3111 } 3112 3113 /* 3114 * completely done 3115 */ 3116 if (!req->bio) { 3117 /* 3118 * Reset counters so that the request stacking driver 3119 * can find how many bytes remain in the request 3120 * later. 3121 */ 3122 req->__data_len = 0; 3123 return false; 3124 } 3125 3126 req->__data_len -= total_bytes; 3127 3128 /* update sector only for requests with clear definition of sector */ 3129 if (!blk_rq_is_passthrough(req)) 3130 req->__sector += total_bytes >> 9; 3131 3132 /* mixed attributes always follow the first bio */ 3133 if (req->rq_flags & RQF_MIXED_MERGE) { 3134 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3135 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3136 } 3137 3138 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3139 /* 3140 * If total number of sectors is less than the first segment 3141 * size, something has gone terribly wrong. 3142 */ 3143 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3144 blk_dump_rq_flags(req, "request botched"); 3145 req->__data_len = blk_rq_cur_bytes(req); 3146 } 3147 3148 /* recalculate the number of segments */ 3149 blk_recalc_rq_segments(req); 3150 } 3151 3152 return true; 3153 } 3154 EXPORT_SYMBOL_GPL(blk_update_request); 3155 3156 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3157 unsigned int nr_bytes, 3158 unsigned int bidi_bytes) 3159 { 3160 if (blk_update_request(rq, error, nr_bytes)) 3161 return true; 3162 3163 /* Bidi request must be completed as a whole */ 3164 if (unlikely(blk_bidi_rq(rq)) && 3165 blk_update_request(rq->next_rq, error, bidi_bytes)) 3166 return true; 3167 3168 if (blk_queue_add_random(rq->q)) 3169 add_disk_randomness(rq->rq_disk); 3170 3171 return false; 3172 } 3173 3174 /** 3175 * blk_unprep_request - unprepare a request 3176 * @req: the request 3177 * 3178 * This function makes a request ready for complete resubmission (or 3179 * completion). It happens only after all error handling is complete, 3180 * so represents the appropriate moment to deallocate any resources 3181 * that were allocated to the request in the prep_rq_fn. The queue 3182 * lock is held when calling this. 3183 */ 3184 void blk_unprep_request(struct request *req) 3185 { 3186 struct request_queue *q = req->q; 3187 3188 req->rq_flags &= ~RQF_DONTPREP; 3189 if (q->unprep_rq_fn) 3190 q->unprep_rq_fn(q, req); 3191 } 3192 EXPORT_SYMBOL_GPL(blk_unprep_request); 3193 3194 void blk_finish_request(struct request *req, blk_status_t error) 3195 { 3196 struct request_queue *q = req->q; 3197 u64 now = ktime_get_ns(); 3198 3199 lockdep_assert_held(req->q->queue_lock); 3200 WARN_ON_ONCE(q->mq_ops); 3201 3202 if (req->rq_flags & RQF_STATS) 3203 blk_stat_add(req, now); 3204 3205 if (req->rq_flags & RQF_QUEUED) 3206 blk_queue_end_tag(q, req); 3207 3208 BUG_ON(blk_queued_rq(req)); 3209 3210 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3211 laptop_io_completion(req->q->backing_dev_info); 3212 3213 blk_delete_timer(req); 3214 3215 if (req->rq_flags & RQF_DONTPREP) 3216 blk_unprep_request(req); 3217 3218 blk_account_io_done(req, now); 3219 3220 if (req->end_io) { 3221 rq_qos_done(q, req); 3222 req->end_io(req, error); 3223 } else { 3224 if (blk_bidi_rq(req)) 3225 __blk_put_request(req->next_rq->q, req->next_rq); 3226 3227 __blk_put_request(q, req); 3228 } 3229 } 3230 EXPORT_SYMBOL(blk_finish_request); 3231 3232 /** 3233 * blk_end_bidi_request - Complete a bidi request 3234 * @rq: the request to complete 3235 * @error: block status code 3236 * @nr_bytes: number of bytes to complete @rq 3237 * @bidi_bytes: number of bytes to complete @rq->next_rq 3238 * 3239 * Description: 3240 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3241 * Drivers that supports bidi can safely call this member for any 3242 * type of request, bidi or uni. In the later case @bidi_bytes is 3243 * just ignored. 3244 * 3245 * Return: 3246 * %false - we are done with this request 3247 * %true - still buffers pending for this request 3248 **/ 3249 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3250 unsigned int nr_bytes, unsigned int bidi_bytes) 3251 { 3252 struct request_queue *q = rq->q; 3253 unsigned long flags; 3254 3255 WARN_ON_ONCE(q->mq_ops); 3256 3257 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3258 return true; 3259 3260 spin_lock_irqsave(q->queue_lock, flags); 3261 blk_finish_request(rq, error); 3262 spin_unlock_irqrestore(q->queue_lock, flags); 3263 3264 return false; 3265 } 3266 3267 /** 3268 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3269 * @rq: the request to complete 3270 * @error: block status code 3271 * @nr_bytes: number of bytes to complete @rq 3272 * @bidi_bytes: number of bytes to complete @rq->next_rq 3273 * 3274 * Description: 3275 * Identical to blk_end_bidi_request() except that queue lock is 3276 * assumed to be locked on entry and remains so on return. 3277 * 3278 * Return: 3279 * %false - we are done with this request 3280 * %true - still buffers pending for this request 3281 **/ 3282 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3283 unsigned int nr_bytes, unsigned int bidi_bytes) 3284 { 3285 lockdep_assert_held(rq->q->queue_lock); 3286 WARN_ON_ONCE(rq->q->mq_ops); 3287 3288 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3289 return true; 3290 3291 blk_finish_request(rq, error); 3292 3293 return false; 3294 } 3295 3296 /** 3297 * blk_end_request - Helper function for drivers to complete the request. 3298 * @rq: the request being processed 3299 * @error: block status code 3300 * @nr_bytes: number of bytes to complete 3301 * 3302 * Description: 3303 * Ends I/O on a number of bytes attached to @rq. 3304 * If @rq has leftover, sets it up for the next range of segments. 3305 * 3306 * Return: 3307 * %false - we are done with this request 3308 * %true - still buffers pending for this request 3309 **/ 3310 bool blk_end_request(struct request *rq, blk_status_t error, 3311 unsigned int nr_bytes) 3312 { 3313 WARN_ON_ONCE(rq->q->mq_ops); 3314 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3315 } 3316 EXPORT_SYMBOL(blk_end_request); 3317 3318 /** 3319 * blk_end_request_all - Helper function for drives to finish the request. 3320 * @rq: the request to finish 3321 * @error: block status code 3322 * 3323 * Description: 3324 * Completely finish @rq. 3325 */ 3326 void blk_end_request_all(struct request *rq, blk_status_t error) 3327 { 3328 bool pending; 3329 unsigned int bidi_bytes = 0; 3330 3331 if (unlikely(blk_bidi_rq(rq))) 3332 bidi_bytes = blk_rq_bytes(rq->next_rq); 3333 3334 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3335 BUG_ON(pending); 3336 } 3337 EXPORT_SYMBOL(blk_end_request_all); 3338 3339 /** 3340 * __blk_end_request - Helper function for drivers to complete the request. 3341 * @rq: the request being processed 3342 * @error: block status code 3343 * @nr_bytes: number of bytes to complete 3344 * 3345 * Description: 3346 * Must be called with queue lock held unlike blk_end_request(). 3347 * 3348 * Return: 3349 * %false - we are done with this request 3350 * %true - still buffers pending for this request 3351 **/ 3352 bool __blk_end_request(struct request *rq, blk_status_t error, 3353 unsigned int nr_bytes) 3354 { 3355 lockdep_assert_held(rq->q->queue_lock); 3356 WARN_ON_ONCE(rq->q->mq_ops); 3357 3358 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3359 } 3360 EXPORT_SYMBOL(__blk_end_request); 3361 3362 /** 3363 * __blk_end_request_all - Helper function for drives to finish the request. 3364 * @rq: the request to finish 3365 * @error: block status code 3366 * 3367 * Description: 3368 * Completely finish @rq. Must be called with queue lock held. 3369 */ 3370 void __blk_end_request_all(struct request *rq, blk_status_t error) 3371 { 3372 bool pending; 3373 unsigned int bidi_bytes = 0; 3374 3375 lockdep_assert_held(rq->q->queue_lock); 3376 WARN_ON_ONCE(rq->q->mq_ops); 3377 3378 if (unlikely(blk_bidi_rq(rq))) 3379 bidi_bytes = blk_rq_bytes(rq->next_rq); 3380 3381 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3382 BUG_ON(pending); 3383 } 3384 EXPORT_SYMBOL(__blk_end_request_all); 3385 3386 /** 3387 * __blk_end_request_cur - Helper function to finish the current request chunk. 3388 * @rq: the request to finish the current chunk for 3389 * @error: block status code 3390 * 3391 * Description: 3392 * Complete the current consecutively mapped chunk from @rq. Must 3393 * be called with queue lock held. 3394 * 3395 * Return: 3396 * %false - we are done with this request 3397 * %true - still buffers pending for this request 3398 */ 3399 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3400 { 3401 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3402 } 3403 EXPORT_SYMBOL(__blk_end_request_cur); 3404 3405 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3406 struct bio *bio) 3407 { 3408 if (bio_has_data(bio)) 3409 rq->nr_phys_segments = bio_phys_segments(q, bio); 3410 else if (bio_op(bio) == REQ_OP_DISCARD) 3411 rq->nr_phys_segments = 1; 3412 3413 rq->__data_len = bio->bi_iter.bi_size; 3414 rq->bio = rq->biotail = bio; 3415 3416 if (bio->bi_disk) 3417 rq->rq_disk = bio->bi_disk; 3418 } 3419 3420 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3421 /** 3422 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3423 * @rq: the request to be flushed 3424 * 3425 * Description: 3426 * Flush all pages in @rq. 3427 */ 3428 void rq_flush_dcache_pages(struct request *rq) 3429 { 3430 struct req_iterator iter; 3431 struct bio_vec bvec; 3432 3433 rq_for_each_segment(bvec, rq, iter) 3434 flush_dcache_page(bvec.bv_page); 3435 } 3436 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3437 #endif 3438 3439 /** 3440 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3441 * @q : the queue of the device being checked 3442 * 3443 * Description: 3444 * Check if underlying low-level drivers of a device are busy. 3445 * If the drivers want to export their busy state, they must set own 3446 * exporting function using blk_queue_lld_busy() first. 3447 * 3448 * Basically, this function is used only by request stacking drivers 3449 * to stop dispatching requests to underlying devices when underlying 3450 * devices are busy. This behavior helps more I/O merging on the queue 3451 * of the request stacking driver and prevents I/O throughput regression 3452 * on burst I/O load. 3453 * 3454 * Return: 3455 * 0 - Not busy (The request stacking driver should dispatch request) 3456 * 1 - Busy (The request stacking driver should stop dispatching request) 3457 */ 3458 int blk_lld_busy(struct request_queue *q) 3459 { 3460 if (q->lld_busy_fn) 3461 return q->lld_busy_fn(q); 3462 3463 return 0; 3464 } 3465 EXPORT_SYMBOL_GPL(blk_lld_busy); 3466 3467 /** 3468 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3469 * @rq: the clone request to be cleaned up 3470 * 3471 * Description: 3472 * Free all bios in @rq for a cloned request. 3473 */ 3474 void blk_rq_unprep_clone(struct request *rq) 3475 { 3476 struct bio *bio; 3477 3478 while ((bio = rq->bio) != NULL) { 3479 rq->bio = bio->bi_next; 3480 3481 bio_put(bio); 3482 } 3483 } 3484 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3485 3486 /* 3487 * Copy attributes of the original request to the clone request. 3488 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3489 */ 3490 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3491 { 3492 dst->cpu = src->cpu; 3493 dst->__sector = blk_rq_pos(src); 3494 dst->__data_len = blk_rq_bytes(src); 3495 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3496 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 3497 dst->special_vec = src->special_vec; 3498 } 3499 dst->nr_phys_segments = src->nr_phys_segments; 3500 dst->ioprio = src->ioprio; 3501 dst->extra_len = src->extra_len; 3502 } 3503 3504 /** 3505 * blk_rq_prep_clone - Helper function to setup clone request 3506 * @rq: the request to be setup 3507 * @rq_src: original request to be cloned 3508 * @bs: bio_set that bios for clone are allocated from 3509 * @gfp_mask: memory allocation mask for bio 3510 * @bio_ctr: setup function to be called for each clone bio. 3511 * Returns %0 for success, non %0 for failure. 3512 * @data: private data to be passed to @bio_ctr 3513 * 3514 * Description: 3515 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3516 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3517 * are not copied, and copying such parts is the caller's responsibility. 3518 * Also, pages which the original bios are pointing to are not copied 3519 * and the cloned bios just point same pages. 3520 * So cloned bios must be completed before original bios, which means 3521 * the caller must complete @rq before @rq_src. 3522 */ 3523 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3524 struct bio_set *bs, gfp_t gfp_mask, 3525 int (*bio_ctr)(struct bio *, struct bio *, void *), 3526 void *data) 3527 { 3528 struct bio *bio, *bio_src; 3529 3530 if (!bs) 3531 bs = &fs_bio_set; 3532 3533 __rq_for_each_bio(bio_src, rq_src) { 3534 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3535 if (!bio) 3536 goto free_and_out; 3537 3538 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3539 goto free_and_out; 3540 3541 if (rq->bio) { 3542 rq->biotail->bi_next = bio; 3543 rq->biotail = bio; 3544 } else 3545 rq->bio = rq->biotail = bio; 3546 } 3547 3548 __blk_rq_prep_clone(rq, rq_src); 3549 3550 return 0; 3551 3552 free_and_out: 3553 if (bio) 3554 bio_put(bio); 3555 blk_rq_unprep_clone(rq); 3556 3557 return -ENOMEM; 3558 } 3559 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3560 3561 int kblockd_schedule_work(struct work_struct *work) 3562 { 3563 return queue_work(kblockd_workqueue, work); 3564 } 3565 EXPORT_SYMBOL(kblockd_schedule_work); 3566 3567 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3568 { 3569 return queue_work_on(cpu, kblockd_workqueue, work); 3570 } 3571 EXPORT_SYMBOL(kblockd_schedule_work_on); 3572 3573 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3574 unsigned long delay) 3575 { 3576 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3577 } 3578 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3579 3580 /** 3581 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3582 * @plug: The &struct blk_plug that needs to be initialized 3583 * 3584 * Description: 3585 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3586 * pending I/O should the task end up blocking between blk_start_plug() and 3587 * blk_finish_plug(). This is important from a performance perspective, but 3588 * also ensures that we don't deadlock. For instance, if the task is blocking 3589 * for a memory allocation, memory reclaim could end up wanting to free a 3590 * page belonging to that request that is currently residing in our private 3591 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3592 * this kind of deadlock. 3593 */ 3594 void blk_start_plug(struct blk_plug *plug) 3595 { 3596 struct task_struct *tsk = current; 3597 3598 /* 3599 * If this is a nested plug, don't actually assign it. 3600 */ 3601 if (tsk->plug) 3602 return; 3603 3604 INIT_LIST_HEAD(&plug->list); 3605 INIT_LIST_HEAD(&plug->mq_list); 3606 INIT_LIST_HEAD(&plug->cb_list); 3607 /* 3608 * Store ordering should not be needed here, since a potential 3609 * preempt will imply a full memory barrier 3610 */ 3611 tsk->plug = plug; 3612 } 3613 EXPORT_SYMBOL(blk_start_plug); 3614 3615 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3616 { 3617 struct request *rqa = container_of(a, struct request, queuelist); 3618 struct request *rqb = container_of(b, struct request, queuelist); 3619 3620 return !(rqa->q < rqb->q || 3621 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3622 } 3623 3624 /* 3625 * If 'from_schedule' is true, then postpone the dispatch of requests 3626 * until a safe kblockd context. We due this to avoid accidental big 3627 * additional stack usage in driver dispatch, in places where the originally 3628 * plugger did not intend it. 3629 */ 3630 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3631 bool from_schedule) 3632 __releases(q->queue_lock) 3633 { 3634 lockdep_assert_held(q->queue_lock); 3635 3636 trace_block_unplug(q, depth, !from_schedule); 3637 3638 if (from_schedule) 3639 blk_run_queue_async(q); 3640 else 3641 __blk_run_queue(q); 3642 spin_unlock_irq(q->queue_lock); 3643 } 3644 3645 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3646 { 3647 LIST_HEAD(callbacks); 3648 3649 while (!list_empty(&plug->cb_list)) { 3650 list_splice_init(&plug->cb_list, &callbacks); 3651 3652 while (!list_empty(&callbacks)) { 3653 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3654 struct blk_plug_cb, 3655 list); 3656 list_del(&cb->list); 3657 cb->callback(cb, from_schedule); 3658 } 3659 } 3660 } 3661 3662 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3663 int size) 3664 { 3665 struct blk_plug *plug = current->plug; 3666 struct blk_plug_cb *cb; 3667 3668 if (!plug) 3669 return NULL; 3670 3671 list_for_each_entry(cb, &plug->cb_list, list) 3672 if (cb->callback == unplug && cb->data == data) 3673 return cb; 3674 3675 /* Not currently on the callback list */ 3676 BUG_ON(size < sizeof(*cb)); 3677 cb = kzalloc(size, GFP_ATOMIC); 3678 if (cb) { 3679 cb->data = data; 3680 cb->callback = unplug; 3681 list_add(&cb->list, &plug->cb_list); 3682 } 3683 return cb; 3684 } 3685 EXPORT_SYMBOL(blk_check_plugged); 3686 3687 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3688 { 3689 struct request_queue *q; 3690 struct request *rq; 3691 LIST_HEAD(list); 3692 unsigned int depth; 3693 3694 flush_plug_callbacks(plug, from_schedule); 3695 3696 if (!list_empty(&plug->mq_list)) 3697 blk_mq_flush_plug_list(plug, from_schedule); 3698 3699 if (list_empty(&plug->list)) 3700 return; 3701 3702 list_splice_init(&plug->list, &list); 3703 3704 list_sort(NULL, &list, plug_rq_cmp); 3705 3706 q = NULL; 3707 depth = 0; 3708 3709 while (!list_empty(&list)) { 3710 rq = list_entry_rq(list.next); 3711 list_del_init(&rq->queuelist); 3712 BUG_ON(!rq->q); 3713 if (rq->q != q) { 3714 /* 3715 * This drops the queue lock 3716 */ 3717 if (q) 3718 queue_unplugged(q, depth, from_schedule); 3719 q = rq->q; 3720 depth = 0; 3721 spin_lock_irq(q->queue_lock); 3722 } 3723 3724 /* 3725 * Short-circuit if @q is dead 3726 */ 3727 if (unlikely(blk_queue_dying(q))) { 3728 __blk_end_request_all(rq, BLK_STS_IOERR); 3729 continue; 3730 } 3731 3732 /* 3733 * rq is already accounted, so use raw insert 3734 */ 3735 if (op_is_flush(rq->cmd_flags)) 3736 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3737 else 3738 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3739 3740 depth++; 3741 } 3742 3743 /* 3744 * This drops the queue lock 3745 */ 3746 if (q) 3747 queue_unplugged(q, depth, from_schedule); 3748 } 3749 3750 void blk_finish_plug(struct blk_plug *plug) 3751 { 3752 if (plug != current->plug) 3753 return; 3754 blk_flush_plug_list(plug, false); 3755 3756 current->plug = NULL; 3757 } 3758 EXPORT_SYMBOL(blk_finish_plug); 3759 3760 #ifdef CONFIG_PM 3761 /** 3762 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3763 * @q: the queue of the device 3764 * @dev: the device the queue belongs to 3765 * 3766 * Description: 3767 * Initialize runtime-PM-related fields for @q and start auto suspend for 3768 * @dev. Drivers that want to take advantage of request-based runtime PM 3769 * should call this function after @dev has been initialized, and its 3770 * request queue @q has been allocated, and runtime PM for it can not happen 3771 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3772 * cases, driver should call this function before any I/O has taken place. 3773 * 3774 * This function takes care of setting up using auto suspend for the device, 3775 * the autosuspend delay is set to -1 to make runtime suspend impossible 3776 * until an updated value is either set by user or by driver. Drivers do 3777 * not need to touch other autosuspend settings. 3778 * 3779 * The block layer runtime PM is request based, so only works for drivers 3780 * that use request as their IO unit instead of those directly use bio's. 3781 */ 3782 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3783 { 3784 /* Don't enable runtime PM for blk-mq until it is ready */ 3785 if (q->mq_ops) { 3786 pm_runtime_disable(dev); 3787 return; 3788 } 3789 3790 q->dev = dev; 3791 q->rpm_status = RPM_ACTIVE; 3792 pm_runtime_set_autosuspend_delay(q->dev, -1); 3793 pm_runtime_use_autosuspend(q->dev); 3794 } 3795 EXPORT_SYMBOL(blk_pm_runtime_init); 3796 3797 /** 3798 * blk_pre_runtime_suspend - Pre runtime suspend check 3799 * @q: the queue of the device 3800 * 3801 * Description: 3802 * This function will check if runtime suspend is allowed for the device 3803 * by examining if there are any requests pending in the queue. If there 3804 * are requests pending, the device can not be runtime suspended; otherwise, 3805 * the queue's status will be updated to SUSPENDING and the driver can 3806 * proceed to suspend the device. 3807 * 3808 * For the not allowed case, we mark last busy for the device so that 3809 * runtime PM core will try to autosuspend it some time later. 3810 * 3811 * This function should be called near the start of the device's 3812 * runtime_suspend callback. 3813 * 3814 * Return: 3815 * 0 - OK to runtime suspend the device 3816 * -EBUSY - Device should not be runtime suspended 3817 */ 3818 int blk_pre_runtime_suspend(struct request_queue *q) 3819 { 3820 int ret = 0; 3821 3822 if (!q->dev) 3823 return ret; 3824 3825 spin_lock_irq(q->queue_lock); 3826 if (q->nr_pending) { 3827 ret = -EBUSY; 3828 pm_runtime_mark_last_busy(q->dev); 3829 } else { 3830 q->rpm_status = RPM_SUSPENDING; 3831 } 3832 spin_unlock_irq(q->queue_lock); 3833 return ret; 3834 } 3835 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3836 3837 /** 3838 * blk_post_runtime_suspend - Post runtime suspend processing 3839 * @q: the queue of the device 3840 * @err: return value of the device's runtime_suspend function 3841 * 3842 * Description: 3843 * Update the queue's runtime status according to the return value of the 3844 * device's runtime suspend function and mark last busy for the device so 3845 * that PM core will try to auto suspend the device at a later time. 3846 * 3847 * This function should be called near the end of the device's 3848 * runtime_suspend callback. 3849 */ 3850 void blk_post_runtime_suspend(struct request_queue *q, int err) 3851 { 3852 if (!q->dev) 3853 return; 3854 3855 spin_lock_irq(q->queue_lock); 3856 if (!err) { 3857 q->rpm_status = RPM_SUSPENDED; 3858 } else { 3859 q->rpm_status = RPM_ACTIVE; 3860 pm_runtime_mark_last_busy(q->dev); 3861 } 3862 spin_unlock_irq(q->queue_lock); 3863 } 3864 EXPORT_SYMBOL(blk_post_runtime_suspend); 3865 3866 /** 3867 * blk_pre_runtime_resume - Pre runtime resume processing 3868 * @q: the queue of the device 3869 * 3870 * Description: 3871 * Update the queue's runtime status to RESUMING in preparation for the 3872 * runtime resume of the device. 3873 * 3874 * This function should be called near the start of the device's 3875 * runtime_resume callback. 3876 */ 3877 void blk_pre_runtime_resume(struct request_queue *q) 3878 { 3879 if (!q->dev) 3880 return; 3881 3882 spin_lock_irq(q->queue_lock); 3883 q->rpm_status = RPM_RESUMING; 3884 spin_unlock_irq(q->queue_lock); 3885 } 3886 EXPORT_SYMBOL(blk_pre_runtime_resume); 3887 3888 /** 3889 * blk_post_runtime_resume - Post runtime resume processing 3890 * @q: the queue of the device 3891 * @err: return value of the device's runtime_resume function 3892 * 3893 * Description: 3894 * Update the queue's runtime status according to the return value of the 3895 * device's runtime_resume function. If it is successfully resumed, process 3896 * the requests that are queued into the device's queue when it is resuming 3897 * and then mark last busy and initiate autosuspend for it. 3898 * 3899 * This function should be called near the end of the device's 3900 * runtime_resume callback. 3901 */ 3902 void blk_post_runtime_resume(struct request_queue *q, int err) 3903 { 3904 if (!q->dev) 3905 return; 3906 3907 spin_lock_irq(q->queue_lock); 3908 if (!err) { 3909 q->rpm_status = RPM_ACTIVE; 3910 __blk_run_queue(q); 3911 pm_runtime_mark_last_busy(q->dev); 3912 pm_request_autosuspend(q->dev); 3913 } else { 3914 q->rpm_status = RPM_SUSPENDED; 3915 } 3916 spin_unlock_irq(q->queue_lock); 3917 } 3918 EXPORT_SYMBOL(blk_post_runtime_resume); 3919 3920 /** 3921 * blk_set_runtime_active - Force runtime status of the queue to be active 3922 * @q: the queue of the device 3923 * 3924 * If the device is left runtime suspended during system suspend the resume 3925 * hook typically resumes the device and corrects runtime status 3926 * accordingly. However, that does not affect the queue runtime PM status 3927 * which is still "suspended". This prevents processing requests from the 3928 * queue. 3929 * 3930 * This function can be used in driver's resume hook to correct queue 3931 * runtime PM status and re-enable peeking requests from the queue. It 3932 * should be called before first request is added to the queue. 3933 */ 3934 void blk_set_runtime_active(struct request_queue *q) 3935 { 3936 spin_lock_irq(q->queue_lock); 3937 q->rpm_status = RPM_ACTIVE; 3938 pm_runtime_mark_last_busy(q->dev); 3939 pm_request_autosuspend(q->dev); 3940 spin_unlock_irq(q->queue_lock); 3941 } 3942 EXPORT_SYMBOL(blk_set_runtime_active); 3943 #endif 3944 3945 int __init blk_dev_init(void) 3946 { 3947 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3948 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3949 FIELD_SIZEOF(struct request, cmd_flags)); 3950 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3951 FIELD_SIZEOF(struct bio, bi_opf)); 3952 3953 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3954 kblockd_workqueue = alloc_workqueue("kblockd", 3955 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3956 if (!kblockd_workqueue) 3957 panic("Failed to create kblockd\n"); 3958 3959 request_cachep = kmem_cache_create("blkdev_requests", 3960 sizeof(struct request), 0, SLAB_PANIC, NULL); 3961 3962 blk_requestq_cachep = kmem_cache_create("request_queue", 3963 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3964 3965 #ifdef CONFIG_DEBUG_FS 3966 blk_debugfs_root = debugfs_create_dir("block", NULL); 3967 #endif 3968 3969 return 0; 3970 } 3971