1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 #include "blk-mq.h" 42 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 48 49 DEFINE_IDA(blk_queue_ida); 50 51 /* 52 * For the allocated request tables 53 */ 54 struct kmem_cache *request_cachep = NULL; 55 56 /* 57 * For queue allocation 58 */ 59 struct kmem_cache *blk_requestq_cachep; 60 61 /* 62 * Controlling structure to kblockd 63 */ 64 static struct workqueue_struct *kblockd_workqueue; 65 66 void blk_queue_congestion_threshold(struct request_queue *q) 67 { 68 int nr; 69 70 nr = q->nr_requests - (q->nr_requests / 8) + 1; 71 if (nr > q->nr_requests) 72 nr = q->nr_requests; 73 q->nr_congestion_on = nr; 74 75 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 76 if (nr < 1) 77 nr = 1; 78 q->nr_congestion_off = nr; 79 } 80 81 /** 82 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 83 * @bdev: device 84 * 85 * Locates the passed device's request queue and returns the address of its 86 * backing_dev_info 87 * 88 * Will return NULL if the request queue cannot be located. 89 */ 90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 91 { 92 struct backing_dev_info *ret = NULL; 93 struct request_queue *q = bdev_get_queue(bdev); 94 95 if (q) 96 ret = &q->backing_dev_info; 97 return ret; 98 } 99 EXPORT_SYMBOL(blk_get_backing_dev_info); 100 101 void blk_rq_init(struct request_queue *q, struct request *rq) 102 { 103 memset(rq, 0, sizeof(*rq)); 104 105 INIT_LIST_HEAD(&rq->queuelist); 106 INIT_LIST_HEAD(&rq->timeout_list); 107 rq->cpu = -1; 108 rq->q = q; 109 rq->__sector = (sector_t) -1; 110 INIT_HLIST_NODE(&rq->hash); 111 RB_CLEAR_NODE(&rq->rb_node); 112 rq->cmd = rq->__cmd; 113 rq->cmd_len = BLK_MAX_CDB; 114 rq->tag = -1; 115 rq->start_time = jiffies; 116 set_start_time_ns(rq); 117 rq->part = NULL; 118 } 119 EXPORT_SYMBOL(blk_rq_init); 120 121 static void req_bio_endio(struct request *rq, struct bio *bio, 122 unsigned int nbytes, int error) 123 { 124 if (error) 125 clear_bit(BIO_UPTODATE, &bio->bi_flags); 126 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 127 error = -EIO; 128 129 if (unlikely(rq->cmd_flags & REQ_QUIET)) 130 set_bit(BIO_QUIET, &bio->bi_flags); 131 132 bio_advance(bio, nbytes); 133 134 /* don't actually finish bio if it's part of flush sequence */ 135 if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 136 bio_endio(bio, error); 137 } 138 139 void blk_dump_rq_flags(struct request *rq, char *msg) 140 { 141 int bit; 142 143 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 144 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 145 (unsigned long long) rq->cmd_flags); 146 147 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 148 (unsigned long long)blk_rq_pos(rq), 149 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 150 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 151 rq->bio, rq->biotail, blk_rq_bytes(rq)); 152 153 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 154 printk(KERN_INFO " cdb: "); 155 for (bit = 0; bit < BLK_MAX_CDB; bit++) 156 printk("%02x ", rq->cmd[bit]); 157 printk("\n"); 158 } 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue - restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue() will clear the stop flag on the queue, and call 196 * the request_fn for the queue if it was in a stopped state when 197 * entered. Also see blk_stop_queue(). Queue lock must be held. 198 **/ 199 void blk_start_queue(struct request_queue *q) 200 { 201 WARN_ON(!irqs_disabled()); 202 203 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 204 __blk_run_queue(q); 205 } 206 EXPORT_SYMBOL(blk_start_queue); 207 208 /** 209 * blk_stop_queue - stop a queue 210 * @q: The &struct request_queue in question 211 * 212 * Description: 213 * The Linux block layer assumes that a block driver will consume all 214 * entries on the request queue when the request_fn strategy is called. 215 * Often this will not happen, because of hardware limitations (queue 216 * depth settings). If a device driver gets a 'queue full' response, 217 * or if it simply chooses not to queue more I/O at one point, it can 218 * call this function to prevent the request_fn from being called until 219 * the driver has signalled it's ready to go again. This happens by calling 220 * blk_start_queue() to restart queue operations. Queue lock must be held. 221 **/ 222 void blk_stop_queue(struct request_queue *q) 223 { 224 cancel_delayed_work(&q->delay_work); 225 queue_flag_set(QUEUE_FLAG_STOPPED, q); 226 } 227 EXPORT_SYMBOL(blk_stop_queue); 228 229 /** 230 * blk_sync_queue - cancel any pending callbacks on a queue 231 * @q: the queue 232 * 233 * Description: 234 * The block layer may perform asynchronous callback activity 235 * on a queue, such as calling the unplug function after a timeout. 236 * A block device may call blk_sync_queue to ensure that any 237 * such activity is cancelled, thus allowing it to release resources 238 * that the callbacks might use. The caller must already have made sure 239 * that its ->make_request_fn will not re-add plugging prior to calling 240 * this function. 241 * 242 * This function does not cancel any asynchronous activity arising 243 * out of elevator or throttling code. That would require elevaotor_exit() 244 * and blkcg_exit_queue() to be called with queue lock initialized. 245 * 246 */ 247 void blk_sync_queue(struct request_queue *q) 248 { 249 del_timer_sync(&q->timeout); 250 251 if (q->mq_ops) { 252 struct blk_mq_hw_ctx *hctx; 253 int i; 254 255 queue_for_each_hw_ctx(q, hctx, i) { 256 cancel_delayed_work_sync(&hctx->run_work); 257 cancel_delayed_work_sync(&hctx->delay_work); 258 } 259 } else { 260 cancel_delayed_work_sync(&q->delay_work); 261 } 262 } 263 EXPORT_SYMBOL(blk_sync_queue); 264 265 /** 266 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 267 * @q: The queue to run 268 * 269 * Description: 270 * Invoke request handling on a queue if there are any pending requests. 271 * May be used to restart request handling after a request has completed. 272 * This variant runs the queue whether or not the queue has been 273 * stopped. Must be called with the queue lock held and interrupts 274 * disabled. See also @blk_run_queue. 275 */ 276 inline void __blk_run_queue_uncond(struct request_queue *q) 277 { 278 if (unlikely(blk_queue_dead(q))) 279 return; 280 281 /* 282 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 283 * the queue lock internally. As a result multiple threads may be 284 * running such a request function concurrently. Keep track of the 285 * number of active request_fn invocations such that blk_drain_queue() 286 * can wait until all these request_fn calls have finished. 287 */ 288 q->request_fn_active++; 289 q->request_fn(q); 290 q->request_fn_active--; 291 } 292 293 /** 294 * __blk_run_queue - run a single device queue 295 * @q: The queue to run 296 * 297 * Description: 298 * See @blk_run_queue. This variant must be called with the queue lock 299 * held and interrupts disabled. 300 */ 301 void __blk_run_queue(struct request_queue *q) 302 { 303 if (unlikely(blk_queue_stopped(q))) 304 return; 305 306 __blk_run_queue_uncond(q); 307 } 308 EXPORT_SYMBOL(__blk_run_queue); 309 310 /** 311 * blk_run_queue_async - run a single device queue in workqueue context 312 * @q: The queue to run 313 * 314 * Description: 315 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 316 * of us. The caller must hold the queue lock. 317 */ 318 void blk_run_queue_async(struct request_queue *q) 319 { 320 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 321 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 322 } 323 EXPORT_SYMBOL(blk_run_queue_async); 324 325 /** 326 * blk_run_queue - run a single device queue 327 * @q: The queue to run 328 * 329 * Description: 330 * Invoke request handling on this queue, if it has pending work to do. 331 * May be used to restart queueing when a request has completed. 332 */ 333 void blk_run_queue(struct request_queue *q) 334 { 335 unsigned long flags; 336 337 spin_lock_irqsave(q->queue_lock, flags); 338 __blk_run_queue(q); 339 spin_unlock_irqrestore(q->queue_lock, flags); 340 } 341 EXPORT_SYMBOL(blk_run_queue); 342 343 void blk_put_queue(struct request_queue *q) 344 { 345 kobject_put(&q->kobj); 346 } 347 EXPORT_SYMBOL(blk_put_queue); 348 349 /** 350 * __blk_drain_queue - drain requests from request_queue 351 * @q: queue to drain 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 353 * 354 * Drain requests from @q. If @drain_all is set, all requests are drained. 355 * If not, only ELVPRIV requests are drained. The caller is responsible 356 * for ensuring that no new requests which need to be drained are queued. 357 */ 358 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 359 __releases(q->queue_lock) 360 __acquires(q->queue_lock) 361 { 362 int i; 363 364 lockdep_assert_held(q->queue_lock); 365 366 while (true) { 367 bool drain = false; 368 369 /* 370 * The caller might be trying to drain @q before its 371 * elevator is initialized. 372 */ 373 if (q->elevator) 374 elv_drain_elevator(q); 375 376 blkcg_drain_queue(q); 377 378 /* 379 * This function might be called on a queue which failed 380 * driver init after queue creation or is not yet fully 381 * active yet. Some drivers (e.g. fd and loop) get unhappy 382 * in such cases. Kick queue iff dispatch queue has 383 * something on it and @q has request_fn set. 384 */ 385 if (!list_empty(&q->queue_head) && q->request_fn) 386 __blk_run_queue(q); 387 388 drain |= q->nr_rqs_elvpriv; 389 drain |= q->request_fn_active; 390 391 /* 392 * Unfortunately, requests are queued at and tracked from 393 * multiple places and there's no single counter which can 394 * be drained. Check all the queues and counters. 395 */ 396 if (drain_all) { 397 drain |= !list_empty(&q->queue_head); 398 for (i = 0; i < 2; i++) { 399 drain |= q->nr_rqs[i]; 400 drain |= q->in_flight[i]; 401 drain |= !list_empty(&q->flush_queue[i]); 402 } 403 } 404 405 if (!drain) 406 break; 407 408 spin_unlock_irq(q->queue_lock); 409 410 msleep(10); 411 412 spin_lock_irq(q->queue_lock); 413 } 414 415 /* 416 * With queue marked dead, any woken up waiter will fail the 417 * allocation path, so the wakeup chaining is lost and we're 418 * left with hung waiters. We need to wake up those waiters. 419 */ 420 if (q->request_fn) { 421 struct request_list *rl; 422 423 blk_queue_for_each_rl(rl, q) 424 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 425 wake_up_all(&rl->wait[i]); 426 } 427 } 428 429 /** 430 * blk_queue_bypass_start - enter queue bypass mode 431 * @q: queue of interest 432 * 433 * In bypass mode, only the dispatch FIFO queue of @q is used. This 434 * function makes @q enter bypass mode and drains all requests which were 435 * throttled or issued before. On return, it's guaranteed that no request 436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 437 * inside queue or RCU read lock. 438 */ 439 void blk_queue_bypass_start(struct request_queue *q) 440 { 441 spin_lock_irq(q->queue_lock); 442 q->bypass_depth++; 443 queue_flag_set(QUEUE_FLAG_BYPASS, q); 444 spin_unlock_irq(q->queue_lock); 445 446 /* 447 * Queues start drained. Skip actual draining till init is 448 * complete. This avoids lenghty delays during queue init which 449 * can happen many times during boot. 450 */ 451 if (blk_queue_init_done(q)) { 452 spin_lock_irq(q->queue_lock); 453 __blk_drain_queue(q, false); 454 spin_unlock_irq(q->queue_lock); 455 456 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 457 synchronize_rcu(); 458 } 459 } 460 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 461 462 /** 463 * blk_queue_bypass_end - leave queue bypass mode 464 * @q: queue of interest 465 * 466 * Leave bypass mode and restore the normal queueing behavior. 467 */ 468 void blk_queue_bypass_end(struct request_queue *q) 469 { 470 spin_lock_irq(q->queue_lock); 471 if (!--q->bypass_depth) 472 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 473 WARN_ON_ONCE(q->bypass_depth < 0); 474 spin_unlock_irq(q->queue_lock); 475 } 476 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 477 478 /** 479 * blk_cleanup_queue - shutdown a request queue 480 * @q: request queue to shutdown 481 * 482 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 483 * put it. All future requests will be failed immediately with -ENODEV. 484 */ 485 void blk_cleanup_queue(struct request_queue *q) 486 { 487 spinlock_t *lock = q->queue_lock; 488 489 /* mark @q DYING, no new request or merges will be allowed afterwards */ 490 mutex_lock(&q->sysfs_lock); 491 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 492 spin_lock_irq(lock); 493 494 /* 495 * A dying queue is permanently in bypass mode till released. Note 496 * that, unlike blk_queue_bypass_start(), we aren't performing 497 * synchronize_rcu() after entering bypass mode to avoid the delay 498 * as some drivers create and destroy a lot of queues while 499 * probing. This is still safe because blk_release_queue() will be 500 * called only after the queue refcnt drops to zero and nothing, 501 * RCU or not, would be traversing the queue by then. 502 */ 503 q->bypass_depth++; 504 queue_flag_set(QUEUE_FLAG_BYPASS, q); 505 506 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 507 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 508 queue_flag_set(QUEUE_FLAG_DYING, q); 509 spin_unlock_irq(lock); 510 mutex_unlock(&q->sysfs_lock); 511 512 /* 513 * Drain all requests queued before DYING marking. Set DEAD flag to 514 * prevent that q->request_fn() gets invoked after draining finished. 515 */ 516 if (q->mq_ops) { 517 blk_mq_freeze_queue(q); 518 spin_lock_irq(lock); 519 } else { 520 spin_lock_irq(lock); 521 __blk_drain_queue(q, true); 522 } 523 queue_flag_set(QUEUE_FLAG_DEAD, q); 524 spin_unlock_irq(lock); 525 526 /* @q won't process any more request, flush async actions */ 527 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 528 blk_sync_queue(q); 529 530 spin_lock_irq(lock); 531 if (q->queue_lock != &q->__queue_lock) 532 q->queue_lock = &q->__queue_lock; 533 spin_unlock_irq(lock); 534 535 /* @q is and will stay empty, shutdown and put */ 536 blk_put_queue(q); 537 } 538 EXPORT_SYMBOL(blk_cleanup_queue); 539 540 int blk_init_rl(struct request_list *rl, struct request_queue *q, 541 gfp_t gfp_mask) 542 { 543 if (unlikely(rl->rq_pool)) 544 return 0; 545 546 rl->q = q; 547 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 548 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 549 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 550 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 551 552 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 553 mempool_free_slab, request_cachep, 554 gfp_mask, q->node); 555 if (!rl->rq_pool) 556 return -ENOMEM; 557 558 return 0; 559 } 560 561 void blk_exit_rl(struct request_list *rl) 562 { 563 if (rl->rq_pool) 564 mempool_destroy(rl->rq_pool); 565 } 566 567 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 568 { 569 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 570 } 571 EXPORT_SYMBOL(blk_alloc_queue); 572 573 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 574 { 575 struct request_queue *q; 576 int err; 577 578 q = kmem_cache_alloc_node(blk_requestq_cachep, 579 gfp_mask | __GFP_ZERO, node_id); 580 if (!q) 581 return NULL; 582 583 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 584 if (q->id < 0) 585 goto fail_q; 586 587 q->backing_dev_info.ra_pages = 588 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 589 q->backing_dev_info.state = 0; 590 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 591 q->backing_dev_info.name = "block"; 592 q->node = node_id; 593 594 err = bdi_init(&q->backing_dev_info); 595 if (err) 596 goto fail_id; 597 598 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 599 laptop_mode_timer_fn, (unsigned long) q); 600 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 601 INIT_LIST_HEAD(&q->queue_head); 602 INIT_LIST_HEAD(&q->timeout_list); 603 INIT_LIST_HEAD(&q->icq_list); 604 #ifdef CONFIG_BLK_CGROUP 605 INIT_LIST_HEAD(&q->blkg_list); 606 #endif 607 INIT_LIST_HEAD(&q->flush_queue[0]); 608 INIT_LIST_HEAD(&q->flush_queue[1]); 609 INIT_LIST_HEAD(&q->flush_data_in_flight); 610 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 611 612 kobject_init(&q->kobj, &blk_queue_ktype); 613 614 mutex_init(&q->sysfs_lock); 615 spin_lock_init(&q->__queue_lock); 616 617 /* 618 * By default initialize queue_lock to internal lock and driver can 619 * override it later if need be. 620 */ 621 q->queue_lock = &q->__queue_lock; 622 623 /* 624 * A queue starts its life with bypass turned on to avoid 625 * unnecessary bypass on/off overhead and nasty surprises during 626 * init. The initial bypass will be finished when the queue is 627 * registered by blk_register_queue(). 628 */ 629 q->bypass_depth = 1; 630 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 631 632 init_waitqueue_head(&q->mq_freeze_wq); 633 634 if (blkcg_init_queue(q)) 635 goto fail_bdi; 636 637 return q; 638 639 fail_bdi: 640 bdi_destroy(&q->backing_dev_info); 641 fail_id: 642 ida_simple_remove(&blk_queue_ida, q->id); 643 fail_q: 644 kmem_cache_free(blk_requestq_cachep, q); 645 return NULL; 646 } 647 EXPORT_SYMBOL(blk_alloc_queue_node); 648 649 /** 650 * blk_init_queue - prepare a request queue for use with a block device 651 * @rfn: The function to be called to process requests that have been 652 * placed on the queue. 653 * @lock: Request queue spin lock 654 * 655 * Description: 656 * If a block device wishes to use the standard request handling procedures, 657 * which sorts requests and coalesces adjacent requests, then it must 658 * call blk_init_queue(). The function @rfn will be called when there 659 * are requests on the queue that need to be processed. If the device 660 * supports plugging, then @rfn may not be called immediately when requests 661 * are available on the queue, but may be called at some time later instead. 662 * Plugged queues are generally unplugged when a buffer belonging to one 663 * of the requests on the queue is needed, or due to memory pressure. 664 * 665 * @rfn is not required, or even expected, to remove all requests off the 666 * queue, but only as many as it can handle at a time. If it does leave 667 * requests on the queue, it is responsible for arranging that the requests 668 * get dealt with eventually. 669 * 670 * The queue spin lock must be held while manipulating the requests on the 671 * request queue; this lock will be taken also from interrupt context, so irq 672 * disabling is needed for it. 673 * 674 * Function returns a pointer to the initialized request queue, or %NULL if 675 * it didn't succeed. 676 * 677 * Note: 678 * blk_init_queue() must be paired with a blk_cleanup_queue() call 679 * when the block device is deactivated (such as at module unload). 680 **/ 681 682 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 683 { 684 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 685 } 686 EXPORT_SYMBOL(blk_init_queue); 687 688 struct request_queue * 689 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 690 { 691 struct request_queue *uninit_q, *q; 692 693 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 694 if (!uninit_q) 695 return NULL; 696 697 q = blk_init_allocated_queue(uninit_q, rfn, lock); 698 if (!q) 699 blk_cleanup_queue(uninit_q); 700 701 return q; 702 } 703 EXPORT_SYMBOL(blk_init_queue_node); 704 705 struct request_queue * 706 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 707 spinlock_t *lock) 708 { 709 if (!q) 710 return NULL; 711 712 q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL); 713 if (!q->flush_rq) 714 return NULL; 715 716 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 717 goto fail; 718 719 q->request_fn = rfn; 720 q->prep_rq_fn = NULL; 721 q->unprep_rq_fn = NULL; 722 q->queue_flags |= QUEUE_FLAG_DEFAULT; 723 724 /* Override internal queue lock with supplied lock pointer */ 725 if (lock) 726 q->queue_lock = lock; 727 728 /* 729 * This also sets hw/phys segments, boundary and size 730 */ 731 blk_queue_make_request(q, blk_queue_bio); 732 733 q->sg_reserved_size = INT_MAX; 734 735 /* Protect q->elevator from elevator_change */ 736 mutex_lock(&q->sysfs_lock); 737 738 /* init elevator */ 739 if (elevator_init(q, NULL)) { 740 mutex_unlock(&q->sysfs_lock); 741 goto fail; 742 } 743 744 mutex_unlock(&q->sysfs_lock); 745 746 return q; 747 748 fail: 749 kfree(q->flush_rq); 750 return NULL; 751 } 752 EXPORT_SYMBOL(blk_init_allocated_queue); 753 754 bool blk_get_queue(struct request_queue *q) 755 { 756 if (likely(!blk_queue_dying(q))) { 757 __blk_get_queue(q); 758 return true; 759 } 760 761 return false; 762 } 763 EXPORT_SYMBOL(blk_get_queue); 764 765 static inline void blk_free_request(struct request_list *rl, struct request *rq) 766 { 767 if (rq->cmd_flags & REQ_ELVPRIV) { 768 elv_put_request(rl->q, rq); 769 if (rq->elv.icq) 770 put_io_context(rq->elv.icq->ioc); 771 } 772 773 mempool_free(rq, rl->rq_pool); 774 } 775 776 /* 777 * ioc_batching returns true if the ioc is a valid batching request and 778 * should be given priority access to a request. 779 */ 780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 781 { 782 if (!ioc) 783 return 0; 784 785 /* 786 * Make sure the process is able to allocate at least 1 request 787 * even if the batch times out, otherwise we could theoretically 788 * lose wakeups. 789 */ 790 return ioc->nr_batch_requests == q->nr_batching || 791 (ioc->nr_batch_requests > 0 792 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 793 } 794 795 /* 796 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 797 * will cause the process to be a "batcher" on all queues in the system. This 798 * is the behaviour we want though - once it gets a wakeup it should be given 799 * a nice run. 800 */ 801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 802 { 803 if (!ioc || ioc_batching(q, ioc)) 804 return; 805 806 ioc->nr_batch_requests = q->nr_batching; 807 ioc->last_waited = jiffies; 808 } 809 810 static void __freed_request(struct request_list *rl, int sync) 811 { 812 struct request_queue *q = rl->q; 813 814 /* 815 * bdi isn't aware of blkcg yet. As all async IOs end up root 816 * blkcg anyway, just use root blkcg state. 817 */ 818 if (rl == &q->root_rl && 819 rl->count[sync] < queue_congestion_off_threshold(q)) 820 blk_clear_queue_congested(q, sync); 821 822 if (rl->count[sync] + 1 <= q->nr_requests) { 823 if (waitqueue_active(&rl->wait[sync])) 824 wake_up(&rl->wait[sync]); 825 826 blk_clear_rl_full(rl, sync); 827 } 828 } 829 830 /* 831 * A request has just been released. Account for it, update the full and 832 * congestion status, wake up any waiters. Called under q->queue_lock. 833 */ 834 static void freed_request(struct request_list *rl, unsigned int flags) 835 { 836 struct request_queue *q = rl->q; 837 int sync = rw_is_sync(flags); 838 839 q->nr_rqs[sync]--; 840 rl->count[sync]--; 841 if (flags & REQ_ELVPRIV) 842 q->nr_rqs_elvpriv--; 843 844 __freed_request(rl, sync); 845 846 if (unlikely(rl->starved[sync ^ 1])) 847 __freed_request(rl, sync ^ 1); 848 } 849 850 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 851 { 852 struct request_list *rl; 853 854 spin_lock_irq(q->queue_lock); 855 q->nr_requests = nr; 856 blk_queue_congestion_threshold(q); 857 858 /* congestion isn't cgroup aware and follows root blkcg for now */ 859 rl = &q->root_rl; 860 861 if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q)) 862 blk_set_queue_congested(q, BLK_RW_SYNC); 863 else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q)) 864 blk_clear_queue_congested(q, BLK_RW_SYNC); 865 866 if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q)) 867 blk_set_queue_congested(q, BLK_RW_ASYNC); 868 else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q)) 869 blk_clear_queue_congested(q, BLK_RW_ASYNC); 870 871 blk_queue_for_each_rl(rl, q) { 872 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 873 blk_set_rl_full(rl, BLK_RW_SYNC); 874 } else { 875 blk_clear_rl_full(rl, BLK_RW_SYNC); 876 wake_up(&rl->wait[BLK_RW_SYNC]); 877 } 878 879 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 880 blk_set_rl_full(rl, BLK_RW_ASYNC); 881 } else { 882 blk_clear_rl_full(rl, BLK_RW_ASYNC); 883 wake_up(&rl->wait[BLK_RW_ASYNC]); 884 } 885 } 886 887 spin_unlock_irq(q->queue_lock); 888 return 0; 889 } 890 891 /* 892 * Determine if elevator data should be initialized when allocating the 893 * request associated with @bio. 894 */ 895 static bool blk_rq_should_init_elevator(struct bio *bio) 896 { 897 if (!bio) 898 return true; 899 900 /* 901 * Flush requests do not use the elevator so skip initialization. 902 * This allows a request to share the flush and elevator data. 903 */ 904 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 905 return false; 906 907 return true; 908 } 909 910 /** 911 * rq_ioc - determine io_context for request allocation 912 * @bio: request being allocated is for this bio (can be %NULL) 913 * 914 * Determine io_context to use for request allocation for @bio. May return 915 * %NULL if %current->io_context doesn't exist. 916 */ 917 static struct io_context *rq_ioc(struct bio *bio) 918 { 919 #ifdef CONFIG_BLK_CGROUP 920 if (bio && bio->bi_ioc) 921 return bio->bi_ioc; 922 #endif 923 return current->io_context; 924 } 925 926 /** 927 * __get_request - get a free request 928 * @rl: request list to allocate from 929 * @rw_flags: RW and SYNC flags 930 * @bio: bio to allocate request for (can be %NULL) 931 * @gfp_mask: allocation mask 932 * 933 * Get a free request from @q. This function may fail under memory 934 * pressure or if @q is dead. 935 * 936 * Must be callled with @q->queue_lock held and, 937 * Returns %NULL on failure, with @q->queue_lock held. 938 * Returns !%NULL on success, with @q->queue_lock *not held*. 939 */ 940 static struct request *__get_request(struct request_list *rl, int rw_flags, 941 struct bio *bio, gfp_t gfp_mask) 942 { 943 struct request_queue *q = rl->q; 944 struct request *rq; 945 struct elevator_type *et = q->elevator->type; 946 struct io_context *ioc = rq_ioc(bio); 947 struct io_cq *icq = NULL; 948 const bool is_sync = rw_is_sync(rw_flags) != 0; 949 int may_queue; 950 951 if (unlikely(blk_queue_dying(q))) 952 return NULL; 953 954 may_queue = elv_may_queue(q, rw_flags); 955 if (may_queue == ELV_MQUEUE_NO) 956 goto rq_starved; 957 958 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 959 if (rl->count[is_sync]+1 >= q->nr_requests) { 960 /* 961 * The queue will fill after this allocation, so set 962 * it as full, and mark this process as "batching". 963 * This process will be allowed to complete a batch of 964 * requests, others will be blocked. 965 */ 966 if (!blk_rl_full(rl, is_sync)) { 967 ioc_set_batching(q, ioc); 968 blk_set_rl_full(rl, is_sync); 969 } else { 970 if (may_queue != ELV_MQUEUE_MUST 971 && !ioc_batching(q, ioc)) { 972 /* 973 * The queue is full and the allocating 974 * process is not a "batcher", and not 975 * exempted by the IO scheduler 976 */ 977 return NULL; 978 } 979 } 980 } 981 /* 982 * bdi isn't aware of blkcg yet. As all async IOs end up 983 * root blkcg anyway, just use root blkcg state. 984 */ 985 if (rl == &q->root_rl) 986 blk_set_queue_congested(q, is_sync); 987 } 988 989 /* 990 * Only allow batching queuers to allocate up to 50% over the defined 991 * limit of requests, otherwise we could have thousands of requests 992 * allocated with any setting of ->nr_requests 993 */ 994 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 995 return NULL; 996 997 q->nr_rqs[is_sync]++; 998 rl->count[is_sync]++; 999 rl->starved[is_sync] = 0; 1000 1001 /* 1002 * Decide whether the new request will be managed by elevator. If 1003 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 1004 * prevent the current elevator from being destroyed until the new 1005 * request is freed. This guarantees icq's won't be destroyed and 1006 * makes creating new ones safe. 1007 * 1008 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1009 * it will be created after releasing queue_lock. 1010 */ 1011 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 1012 rw_flags |= REQ_ELVPRIV; 1013 q->nr_rqs_elvpriv++; 1014 if (et->icq_cache && ioc) 1015 icq = ioc_lookup_icq(ioc, q); 1016 } 1017 1018 if (blk_queue_io_stat(q)) 1019 rw_flags |= REQ_IO_STAT; 1020 spin_unlock_irq(q->queue_lock); 1021 1022 /* allocate and init request */ 1023 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1024 if (!rq) 1025 goto fail_alloc; 1026 1027 blk_rq_init(q, rq); 1028 blk_rq_set_rl(rq, rl); 1029 rq->cmd_flags = rw_flags | REQ_ALLOCED; 1030 1031 /* init elvpriv */ 1032 if (rw_flags & REQ_ELVPRIV) { 1033 if (unlikely(et->icq_cache && !icq)) { 1034 if (ioc) 1035 icq = ioc_create_icq(ioc, q, gfp_mask); 1036 if (!icq) 1037 goto fail_elvpriv; 1038 } 1039 1040 rq->elv.icq = icq; 1041 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1042 goto fail_elvpriv; 1043 1044 /* @rq->elv.icq holds io_context until @rq is freed */ 1045 if (icq) 1046 get_io_context(icq->ioc); 1047 } 1048 out: 1049 /* 1050 * ioc may be NULL here, and ioc_batching will be false. That's 1051 * OK, if the queue is under the request limit then requests need 1052 * not count toward the nr_batch_requests limit. There will always 1053 * be some limit enforced by BLK_BATCH_TIME. 1054 */ 1055 if (ioc_batching(q, ioc)) 1056 ioc->nr_batch_requests--; 1057 1058 trace_block_getrq(q, bio, rw_flags & 1); 1059 return rq; 1060 1061 fail_elvpriv: 1062 /* 1063 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1064 * and may fail indefinitely under memory pressure and thus 1065 * shouldn't stall IO. Treat this request as !elvpriv. This will 1066 * disturb iosched and blkcg but weird is bettern than dead. 1067 */ 1068 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1069 dev_name(q->backing_dev_info.dev)); 1070 1071 rq->cmd_flags &= ~REQ_ELVPRIV; 1072 rq->elv.icq = NULL; 1073 1074 spin_lock_irq(q->queue_lock); 1075 q->nr_rqs_elvpriv--; 1076 spin_unlock_irq(q->queue_lock); 1077 goto out; 1078 1079 fail_alloc: 1080 /* 1081 * Allocation failed presumably due to memory. Undo anything we 1082 * might have messed up. 1083 * 1084 * Allocating task should really be put onto the front of the wait 1085 * queue, but this is pretty rare. 1086 */ 1087 spin_lock_irq(q->queue_lock); 1088 freed_request(rl, rw_flags); 1089 1090 /* 1091 * in the very unlikely event that allocation failed and no 1092 * requests for this direction was pending, mark us starved so that 1093 * freeing of a request in the other direction will notice 1094 * us. another possible fix would be to split the rq mempool into 1095 * READ and WRITE 1096 */ 1097 rq_starved: 1098 if (unlikely(rl->count[is_sync] == 0)) 1099 rl->starved[is_sync] = 1; 1100 return NULL; 1101 } 1102 1103 /** 1104 * get_request - get a free request 1105 * @q: request_queue to allocate request from 1106 * @rw_flags: RW and SYNC flags 1107 * @bio: bio to allocate request for (can be %NULL) 1108 * @gfp_mask: allocation mask 1109 * 1110 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1111 * function keeps retrying under memory pressure and fails iff @q is dead. 1112 * 1113 * Must be callled with @q->queue_lock held and, 1114 * Returns %NULL on failure, with @q->queue_lock held. 1115 * Returns !%NULL on success, with @q->queue_lock *not held*. 1116 */ 1117 static struct request *get_request(struct request_queue *q, int rw_flags, 1118 struct bio *bio, gfp_t gfp_mask) 1119 { 1120 const bool is_sync = rw_is_sync(rw_flags) != 0; 1121 DEFINE_WAIT(wait); 1122 struct request_list *rl; 1123 struct request *rq; 1124 1125 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1126 retry: 1127 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1128 if (rq) 1129 return rq; 1130 1131 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1132 blk_put_rl(rl); 1133 return NULL; 1134 } 1135 1136 /* wait on @rl and retry */ 1137 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1138 TASK_UNINTERRUPTIBLE); 1139 1140 trace_block_sleeprq(q, bio, rw_flags & 1); 1141 1142 spin_unlock_irq(q->queue_lock); 1143 io_schedule(); 1144 1145 /* 1146 * After sleeping, we become a "batching" process and will be able 1147 * to allocate at least one request, and up to a big batch of them 1148 * for a small period time. See ioc_batching, ioc_set_batching 1149 */ 1150 ioc_set_batching(q, current->io_context); 1151 1152 spin_lock_irq(q->queue_lock); 1153 finish_wait(&rl->wait[is_sync], &wait); 1154 1155 goto retry; 1156 } 1157 1158 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1159 gfp_t gfp_mask) 1160 { 1161 struct request *rq; 1162 1163 BUG_ON(rw != READ && rw != WRITE); 1164 1165 /* create ioc upfront */ 1166 create_io_context(gfp_mask, q->node); 1167 1168 spin_lock_irq(q->queue_lock); 1169 rq = get_request(q, rw, NULL, gfp_mask); 1170 if (!rq) 1171 spin_unlock_irq(q->queue_lock); 1172 /* q->queue_lock is unlocked at this point */ 1173 1174 return rq; 1175 } 1176 1177 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1178 { 1179 if (q->mq_ops) 1180 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1181 else 1182 return blk_old_get_request(q, rw, gfp_mask); 1183 } 1184 EXPORT_SYMBOL(blk_get_request); 1185 1186 /** 1187 * blk_make_request - given a bio, allocate a corresponding struct request. 1188 * @q: target request queue 1189 * @bio: The bio describing the memory mappings that will be submitted for IO. 1190 * It may be a chained-bio properly constructed by block/bio layer. 1191 * @gfp_mask: gfp flags to be used for memory allocation 1192 * 1193 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1194 * type commands. Where the struct request needs to be farther initialized by 1195 * the caller. It is passed a &struct bio, which describes the memory info of 1196 * the I/O transfer. 1197 * 1198 * The caller of blk_make_request must make sure that bi_io_vec 1199 * are set to describe the memory buffers. That bio_data_dir() will return 1200 * the needed direction of the request. (And all bio's in the passed bio-chain 1201 * are properly set accordingly) 1202 * 1203 * If called under none-sleepable conditions, mapped bio buffers must not 1204 * need bouncing, by calling the appropriate masked or flagged allocator, 1205 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1206 * BUG. 1207 * 1208 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1209 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1210 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1211 * completion of a bio that hasn't been submitted yet, thus resulting in a 1212 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1213 * of bio_alloc(), as that avoids the mempool deadlock. 1214 * If possible a big IO should be split into smaller parts when allocation 1215 * fails. Partial allocation should not be an error, or you risk a live-lock. 1216 */ 1217 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1218 gfp_t gfp_mask) 1219 { 1220 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1221 1222 if (unlikely(!rq)) 1223 return ERR_PTR(-ENOMEM); 1224 1225 blk_rq_set_block_pc(rq); 1226 1227 for_each_bio(bio) { 1228 struct bio *bounce_bio = bio; 1229 int ret; 1230 1231 blk_queue_bounce(q, &bounce_bio); 1232 ret = blk_rq_append_bio(q, rq, bounce_bio); 1233 if (unlikely(ret)) { 1234 blk_put_request(rq); 1235 return ERR_PTR(ret); 1236 } 1237 } 1238 1239 return rq; 1240 } 1241 EXPORT_SYMBOL(blk_make_request); 1242 1243 /** 1244 * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC 1245 * @rq: request to be initialized 1246 * 1247 */ 1248 void blk_rq_set_block_pc(struct request *rq) 1249 { 1250 rq->cmd_type = REQ_TYPE_BLOCK_PC; 1251 rq->__data_len = 0; 1252 rq->__sector = (sector_t) -1; 1253 rq->bio = rq->biotail = NULL; 1254 memset(rq->__cmd, 0, sizeof(rq->__cmd)); 1255 rq->cmd = rq->__cmd; 1256 } 1257 EXPORT_SYMBOL(blk_rq_set_block_pc); 1258 1259 /** 1260 * blk_requeue_request - put a request back on queue 1261 * @q: request queue where request should be inserted 1262 * @rq: request to be inserted 1263 * 1264 * Description: 1265 * Drivers often keep queueing requests until the hardware cannot accept 1266 * more, when that condition happens we need to put the request back 1267 * on the queue. Must be called with queue lock held. 1268 */ 1269 void blk_requeue_request(struct request_queue *q, struct request *rq) 1270 { 1271 blk_delete_timer(rq); 1272 blk_clear_rq_complete(rq); 1273 trace_block_rq_requeue(q, rq); 1274 1275 if (blk_rq_tagged(rq)) 1276 blk_queue_end_tag(q, rq); 1277 1278 BUG_ON(blk_queued_rq(rq)); 1279 1280 elv_requeue_request(q, rq); 1281 } 1282 EXPORT_SYMBOL(blk_requeue_request); 1283 1284 static void add_acct_request(struct request_queue *q, struct request *rq, 1285 int where) 1286 { 1287 blk_account_io_start(rq, true); 1288 __elv_add_request(q, rq, where); 1289 } 1290 1291 static void part_round_stats_single(int cpu, struct hd_struct *part, 1292 unsigned long now) 1293 { 1294 int inflight; 1295 1296 if (now == part->stamp) 1297 return; 1298 1299 inflight = part_in_flight(part); 1300 if (inflight) { 1301 __part_stat_add(cpu, part, time_in_queue, 1302 inflight * (now - part->stamp)); 1303 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1304 } 1305 part->stamp = now; 1306 } 1307 1308 /** 1309 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1310 * @cpu: cpu number for stats access 1311 * @part: target partition 1312 * 1313 * The average IO queue length and utilisation statistics are maintained 1314 * by observing the current state of the queue length and the amount of 1315 * time it has been in this state for. 1316 * 1317 * Normally, that accounting is done on IO completion, but that can result 1318 * in more than a second's worth of IO being accounted for within any one 1319 * second, leading to >100% utilisation. To deal with that, we call this 1320 * function to do a round-off before returning the results when reading 1321 * /proc/diskstats. This accounts immediately for all queue usage up to 1322 * the current jiffies and restarts the counters again. 1323 */ 1324 void part_round_stats(int cpu, struct hd_struct *part) 1325 { 1326 unsigned long now = jiffies; 1327 1328 if (part->partno) 1329 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1330 part_round_stats_single(cpu, part, now); 1331 } 1332 EXPORT_SYMBOL_GPL(part_round_stats); 1333 1334 #ifdef CONFIG_PM_RUNTIME 1335 static void blk_pm_put_request(struct request *rq) 1336 { 1337 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1338 pm_runtime_mark_last_busy(rq->q->dev); 1339 } 1340 #else 1341 static inline void blk_pm_put_request(struct request *rq) {} 1342 #endif 1343 1344 /* 1345 * queue lock must be held 1346 */ 1347 void __blk_put_request(struct request_queue *q, struct request *req) 1348 { 1349 if (unlikely(!q)) 1350 return; 1351 1352 if (q->mq_ops) { 1353 blk_mq_free_request(req); 1354 return; 1355 } 1356 1357 blk_pm_put_request(req); 1358 1359 elv_completed_request(q, req); 1360 1361 /* this is a bio leak */ 1362 WARN_ON(req->bio != NULL); 1363 1364 /* 1365 * Request may not have originated from ll_rw_blk. if not, 1366 * it didn't come out of our reserved rq pools 1367 */ 1368 if (req->cmd_flags & REQ_ALLOCED) { 1369 unsigned int flags = req->cmd_flags; 1370 struct request_list *rl = blk_rq_rl(req); 1371 1372 BUG_ON(!list_empty(&req->queuelist)); 1373 BUG_ON(ELV_ON_HASH(req)); 1374 1375 blk_free_request(rl, req); 1376 freed_request(rl, flags); 1377 blk_put_rl(rl); 1378 } 1379 } 1380 EXPORT_SYMBOL_GPL(__blk_put_request); 1381 1382 void blk_put_request(struct request *req) 1383 { 1384 struct request_queue *q = req->q; 1385 1386 if (q->mq_ops) 1387 blk_mq_free_request(req); 1388 else { 1389 unsigned long flags; 1390 1391 spin_lock_irqsave(q->queue_lock, flags); 1392 __blk_put_request(q, req); 1393 spin_unlock_irqrestore(q->queue_lock, flags); 1394 } 1395 } 1396 EXPORT_SYMBOL(blk_put_request); 1397 1398 /** 1399 * blk_add_request_payload - add a payload to a request 1400 * @rq: request to update 1401 * @page: page backing the payload 1402 * @len: length of the payload. 1403 * 1404 * This allows to later add a payload to an already submitted request by 1405 * a block driver. The driver needs to take care of freeing the payload 1406 * itself. 1407 * 1408 * Note that this is a quite horrible hack and nothing but handling of 1409 * discard requests should ever use it. 1410 */ 1411 void blk_add_request_payload(struct request *rq, struct page *page, 1412 unsigned int len) 1413 { 1414 struct bio *bio = rq->bio; 1415 1416 bio->bi_io_vec->bv_page = page; 1417 bio->bi_io_vec->bv_offset = 0; 1418 bio->bi_io_vec->bv_len = len; 1419 1420 bio->bi_iter.bi_size = len; 1421 bio->bi_vcnt = 1; 1422 bio->bi_phys_segments = 1; 1423 1424 rq->__data_len = rq->resid_len = len; 1425 rq->nr_phys_segments = 1; 1426 } 1427 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1428 1429 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1430 struct bio *bio) 1431 { 1432 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1433 1434 if (!ll_back_merge_fn(q, req, bio)) 1435 return false; 1436 1437 trace_block_bio_backmerge(q, req, bio); 1438 1439 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1440 blk_rq_set_mixed_merge(req); 1441 1442 req->biotail->bi_next = bio; 1443 req->biotail = bio; 1444 req->__data_len += bio->bi_iter.bi_size; 1445 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1446 1447 blk_account_io_start(req, false); 1448 return true; 1449 } 1450 1451 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1452 struct bio *bio) 1453 { 1454 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1455 1456 if (!ll_front_merge_fn(q, req, bio)) 1457 return false; 1458 1459 trace_block_bio_frontmerge(q, req, bio); 1460 1461 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1462 blk_rq_set_mixed_merge(req); 1463 1464 bio->bi_next = req->bio; 1465 req->bio = bio; 1466 1467 req->__sector = bio->bi_iter.bi_sector; 1468 req->__data_len += bio->bi_iter.bi_size; 1469 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1470 1471 blk_account_io_start(req, false); 1472 return true; 1473 } 1474 1475 /** 1476 * blk_attempt_plug_merge - try to merge with %current's plugged list 1477 * @q: request_queue new bio is being queued at 1478 * @bio: new bio being queued 1479 * @request_count: out parameter for number of traversed plugged requests 1480 * 1481 * Determine whether @bio being queued on @q can be merged with a request 1482 * on %current's plugged list. Returns %true if merge was successful, 1483 * otherwise %false. 1484 * 1485 * Plugging coalesces IOs from the same issuer for the same purpose without 1486 * going through @q->queue_lock. As such it's more of an issuing mechanism 1487 * than scheduling, and the request, while may have elvpriv data, is not 1488 * added on the elevator at this point. In addition, we don't have 1489 * reliable access to the elevator outside queue lock. Only check basic 1490 * merging parameters without querying the elevator. 1491 * 1492 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1493 */ 1494 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1495 unsigned int *request_count) 1496 { 1497 struct blk_plug *plug; 1498 struct request *rq; 1499 bool ret = false; 1500 struct list_head *plug_list; 1501 1502 plug = current->plug; 1503 if (!plug) 1504 goto out; 1505 *request_count = 0; 1506 1507 if (q->mq_ops) 1508 plug_list = &plug->mq_list; 1509 else 1510 plug_list = &plug->list; 1511 1512 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1513 int el_ret; 1514 1515 if (rq->q == q) 1516 (*request_count)++; 1517 1518 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1519 continue; 1520 1521 el_ret = blk_try_merge(rq, bio); 1522 if (el_ret == ELEVATOR_BACK_MERGE) { 1523 ret = bio_attempt_back_merge(q, rq, bio); 1524 if (ret) 1525 break; 1526 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1527 ret = bio_attempt_front_merge(q, rq, bio); 1528 if (ret) 1529 break; 1530 } 1531 } 1532 out: 1533 return ret; 1534 } 1535 1536 void init_request_from_bio(struct request *req, struct bio *bio) 1537 { 1538 req->cmd_type = REQ_TYPE_FS; 1539 1540 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1541 if (bio->bi_rw & REQ_RAHEAD) 1542 req->cmd_flags |= REQ_FAILFAST_MASK; 1543 1544 req->errors = 0; 1545 req->__sector = bio->bi_iter.bi_sector; 1546 req->ioprio = bio_prio(bio); 1547 blk_rq_bio_prep(req->q, req, bio); 1548 } 1549 1550 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1551 { 1552 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1553 struct blk_plug *plug; 1554 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1555 struct request *req; 1556 unsigned int request_count = 0; 1557 1558 /* 1559 * low level driver can indicate that it wants pages above a 1560 * certain limit bounced to low memory (ie for highmem, or even 1561 * ISA dma in theory) 1562 */ 1563 blk_queue_bounce(q, &bio); 1564 1565 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1566 bio_endio(bio, -EIO); 1567 return; 1568 } 1569 1570 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1571 spin_lock_irq(q->queue_lock); 1572 where = ELEVATOR_INSERT_FLUSH; 1573 goto get_rq; 1574 } 1575 1576 /* 1577 * Check if we can merge with the plugged list before grabbing 1578 * any locks. 1579 */ 1580 if (!blk_queue_nomerges(q) && 1581 blk_attempt_plug_merge(q, bio, &request_count)) 1582 return; 1583 1584 spin_lock_irq(q->queue_lock); 1585 1586 el_ret = elv_merge(q, &req, bio); 1587 if (el_ret == ELEVATOR_BACK_MERGE) { 1588 if (bio_attempt_back_merge(q, req, bio)) { 1589 elv_bio_merged(q, req, bio); 1590 if (!attempt_back_merge(q, req)) 1591 elv_merged_request(q, req, el_ret); 1592 goto out_unlock; 1593 } 1594 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1595 if (bio_attempt_front_merge(q, req, bio)) { 1596 elv_bio_merged(q, req, bio); 1597 if (!attempt_front_merge(q, req)) 1598 elv_merged_request(q, req, el_ret); 1599 goto out_unlock; 1600 } 1601 } 1602 1603 get_rq: 1604 /* 1605 * This sync check and mask will be re-done in init_request_from_bio(), 1606 * but we need to set it earlier to expose the sync flag to the 1607 * rq allocator and io schedulers. 1608 */ 1609 rw_flags = bio_data_dir(bio); 1610 if (sync) 1611 rw_flags |= REQ_SYNC; 1612 1613 /* 1614 * Grab a free request. This is might sleep but can not fail. 1615 * Returns with the queue unlocked. 1616 */ 1617 req = get_request(q, rw_flags, bio, GFP_NOIO); 1618 if (unlikely(!req)) { 1619 bio_endio(bio, -ENODEV); /* @q is dead */ 1620 goto out_unlock; 1621 } 1622 1623 /* 1624 * After dropping the lock and possibly sleeping here, our request 1625 * may now be mergeable after it had proven unmergeable (above). 1626 * We don't worry about that case for efficiency. It won't happen 1627 * often, and the elevators are able to handle it. 1628 */ 1629 init_request_from_bio(req, bio); 1630 1631 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1632 req->cpu = raw_smp_processor_id(); 1633 1634 plug = current->plug; 1635 if (plug) { 1636 /* 1637 * If this is the first request added after a plug, fire 1638 * of a plug trace. 1639 */ 1640 if (!request_count) 1641 trace_block_plug(q); 1642 else { 1643 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1644 blk_flush_plug_list(plug, false); 1645 trace_block_plug(q); 1646 } 1647 } 1648 list_add_tail(&req->queuelist, &plug->list); 1649 blk_account_io_start(req, true); 1650 } else { 1651 spin_lock_irq(q->queue_lock); 1652 add_acct_request(q, req, where); 1653 __blk_run_queue(q); 1654 out_unlock: 1655 spin_unlock_irq(q->queue_lock); 1656 } 1657 } 1658 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1659 1660 /* 1661 * If bio->bi_dev is a partition, remap the location 1662 */ 1663 static inline void blk_partition_remap(struct bio *bio) 1664 { 1665 struct block_device *bdev = bio->bi_bdev; 1666 1667 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1668 struct hd_struct *p = bdev->bd_part; 1669 1670 bio->bi_iter.bi_sector += p->start_sect; 1671 bio->bi_bdev = bdev->bd_contains; 1672 1673 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1674 bdev->bd_dev, 1675 bio->bi_iter.bi_sector - p->start_sect); 1676 } 1677 } 1678 1679 static void handle_bad_sector(struct bio *bio) 1680 { 1681 char b[BDEVNAME_SIZE]; 1682 1683 printk(KERN_INFO "attempt to access beyond end of device\n"); 1684 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1685 bdevname(bio->bi_bdev, b), 1686 bio->bi_rw, 1687 (unsigned long long)bio_end_sector(bio), 1688 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1689 1690 set_bit(BIO_EOF, &bio->bi_flags); 1691 } 1692 1693 #ifdef CONFIG_FAIL_MAKE_REQUEST 1694 1695 static DECLARE_FAULT_ATTR(fail_make_request); 1696 1697 static int __init setup_fail_make_request(char *str) 1698 { 1699 return setup_fault_attr(&fail_make_request, str); 1700 } 1701 __setup("fail_make_request=", setup_fail_make_request); 1702 1703 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1704 { 1705 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1706 } 1707 1708 static int __init fail_make_request_debugfs(void) 1709 { 1710 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1711 NULL, &fail_make_request); 1712 1713 return PTR_ERR_OR_ZERO(dir); 1714 } 1715 1716 late_initcall(fail_make_request_debugfs); 1717 1718 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1719 1720 static inline bool should_fail_request(struct hd_struct *part, 1721 unsigned int bytes) 1722 { 1723 return false; 1724 } 1725 1726 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1727 1728 /* 1729 * Check whether this bio extends beyond the end of the device. 1730 */ 1731 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1732 { 1733 sector_t maxsector; 1734 1735 if (!nr_sectors) 1736 return 0; 1737 1738 /* Test device or partition size, when known. */ 1739 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1740 if (maxsector) { 1741 sector_t sector = bio->bi_iter.bi_sector; 1742 1743 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1744 /* 1745 * This may well happen - the kernel calls bread() 1746 * without checking the size of the device, e.g., when 1747 * mounting a device. 1748 */ 1749 handle_bad_sector(bio); 1750 return 1; 1751 } 1752 } 1753 1754 return 0; 1755 } 1756 1757 static noinline_for_stack bool 1758 generic_make_request_checks(struct bio *bio) 1759 { 1760 struct request_queue *q; 1761 int nr_sectors = bio_sectors(bio); 1762 int err = -EIO; 1763 char b[BDEVNAME_SIZE]; 1764 struct hd_struct *part; 1765 1766 might_sleep(); 1767 1768 if (bio_check_eod(bio, nr_sectors)) 1769 goto end_io; 1770 1771 q = bdev_get_queue(bio->bi_bdev); 1772 if (unlikely(!q)) { 1773 printk(KERN_ERR 1774 "generic_make_request: Trying to access " 1775 "nonexistent block-device %s (%Lu)\n", 1776 bdevname(bio->bi_bdev, b), 1777 (long long) bio->bi_iter.bi_sector); 1778 goto end_io; 1779 } 1780 1781 if (likely(bio_is_rw(bio) && 1782 nr_sectors > queue_max_hw_sectors(q))) { 1783 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1784 bdevname(bio->bi_bdev, b), 1785 bio_sectors(bio), 1786 queue_max_hw_sectors(q)); 1787 goto end_io; 1788 } 1789 1790 part = bio->bi_bdev->bd_part; 1791 if (should_fail_request(part, bio->bi_iter.bi_size) || 1792 should_fail_request(&part_to_disk(part)->part0, 1793 bio->bi_iter.bi_size)) 1794 goto end_io; 1795 1796 /* 1797 * If this device has partitions, remap block n 1798 * of partition p to block n+start(p) of the disk. 1799 */ 1800 blk_partition_remap(bio); 1801 1802 if (bio_check_eod(bio, nr_sectors)) 1803 goto end_io; 1804 1805 /* 1806 * Filter flush bio's early so that make_request based 1807 * drivers without flush support don't have to worry 1808 * about them. 1809 */ 1810 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1811 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1812 if (!nr_sectors) { 1813 err = 0; 1814 goto end_io; 1815 } 1816 } 1817 1818 if ((bio->bi_rw & REQ_DISCARD) && 1819 (!blk_queue_discard(q) || 1820 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1821 err = -EOPNOTSUPP; 1822 goto end_io; 1823 } 1824 1825 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1826 err = -EOPNOTSUPP; 1827 goto end_io; 1828 } 1829 1830 /* 1831 * Various block parts want %current->io_context and lazy ioc 1832 * allocation ends up trading a lot of pain for a small amount of 1833 * memory. Just allocate it upfront. This may fail and block 1834 * layer knows how to live with it. 1835 */ 1836 create_io_context(GFP_ATOMIC, q->node); 1837 1838 if (blk_throtl_bio(q, bio)) 1839 return false; /* throttled, will be resubmitted later */ 1840 1841 trace_block_bio_queue(q, bio); 1842 return true; 1843 1844 end_io: 1845 bio_endio(bio, err); 1846 return false; 1847 } 1848 1849 /** 1850 * generic_make_request - hand a buffer to its device driver for I/O 1851 * @bio: The bio describing the location in memory and on the device. 1852 * 1853 * generic_make_request() is used to make I/O requests of block 1854 * devices. It is passed a &struct bio, which describes the I/O that needs 1855 * to be done. 1856 * 1857 * generic_make_request() does not return any status. The 1858 * success/failure status of the request, along with notification of 1859 * completion, is delivered asynchronously through the bio->bi_end_io 1860 * function described (one day) else where. 1861 * 1862 * The caller of generic_make_request must make sure that bi_io_vec 1863 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1864 * set to describe the device address, and the 1865 * bi_end_io and optionally bi_private are set to describe how 1866 * completion notification should be signaled. 1867 * 1868 * generic_make_request and the drivers it calls may use bi_next if this 1869 * bio happens to be merged with someone else, and may resubmit the bio to 1870 * a lower device by calling into generic_make_request recursively, which 1871 * means the bio should NOT be touched after the call to ->make_request_fn. 1872 */ 1873 void generic_make_request(struct bio *bio) 1874 { 1875 struct bio_list bio_list_on_stack; 1876 1877 if (!generic_make_request_checks(bio)) 1878 return; 1879 1880 /* 1881 * We only want one ->make_request_fn to be active at a time, else 1882 * stack usage with stacked devices could be a problem. So use 1883 * current->bio_list to keep a list of requests submited by a 1884 * make_request_fn function. current->bio_list is also used as a 1885 * flag to say if generic_make_request is currently active in this 1886 * task or not. If it is NULL, then no make_request is active. If 1887 * it is non-NULL, then a make_request is active, and new requests 1888 * should be added at the tail 1889 */ 1890 if (current->bio_list) { 1891 bio_list_add(current->bio_list, bio); 1892 return; 1893 } 1894 1895 /* following loop may be a bit non-obvious, and so deserves some 1896 * explanation. 1897 * Before entering the loop, bio->bi_next is NULL (as all callers 1898 * ensure that) so we have a list with a single bio. 1899 * We pretend that we have just taken it off a longer list, so 1900 * we assign bio_list to a pointer to the bio_list_on_stack, 1901 * thus initialising the bio_list of new bios to be 1902 * added. ->make_request() may indeed add some more bios 1903 * through a recursive call to generic_make_request. If it 1904 * did, we find a non-NULL value in bio_list and re-enter the loop 1905 * from the top. In this case we really did just take the bio 1906 * of the top of the list (no pretending) and so remove it from 1907 * bio_list, and call into ->make_request() again. 1908 */ 1909 BUG_ON(bio->bi_next); 1910 bio_list_init(&bio_list_on_stack); 1911 current->bio_list = &bio_list_on_stack; 1912 do { 1913 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1914 1915 q->make_request_fn(q, bio); 1916 1917 bio = bio_list_pop(current->bio_list); 1918 } while (bio); 1919 current->bio_list = NULL; /* deactivate */ 1920 } 1921 EXPORT_SYMBOL(generic_make_request); 1922 1923 /** 1924 * submit_bio - submit a bio to the block device layer for I/O 1925 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1926 * @bio: The &struct bio which describes the I/O 1927 * 1928 * submit_bio() is very similar in purpose to generic_make_request(), and 1929 * uses that function to do most of the work. Both are fairly rough 1930 * interfaces; @bio must be presetup and ready for I/O. 1931 * 1932 */ 1933 void submit_bio(int rw, struct bio *bio) 1934 { 1935 bio->bi_rw |= rw; 1936 1937 /* 1938 * If it's a regular read/write or a barrier with data attached, 1939 * go through the normal accounting stuff before submission. 1940 */ 1941 if (bio_has_data(bio)) { 1942 unsigned int count; 1943 1944 if (unlikely(rw & REQ_WRITE_SAME)) 1945 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1946 else 1947 count = bio_sectors(bio); 1948 1949 if (rw & WRITE) { 1950 count_vm_events(PGPGOUT, count); 1951 } else { 1952 task_io_account_read(bio->bi_iter.bi_size); 1953 count_vm_events(PGPGIN, count); 1954 } 1955 1956 if (unlikely(block_dump)) { 1957 char b[BDEVNAME_SIZE]; 1958 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1959 current->comm, task_pid_nr(current), 1960 (rw & WRITE) ? "WRITE" : "READ", 1961 (unsigned long long)bio->bi_iter.bi_sector, 1962 bdevname(bio->bi_bdev, b), 1963 count); 1964 } 1965 } 1966 1967 generic_make_request(bio); 1968 } 1969 EXPORT_SYMBOL(submit_bio); 1970 1971 /** 1972 * blk_rq_check_limits - Helper function to check a request for the queue limit 1973 * @q: the queue 1974 * @rq: the request being checked 1975 * 1976 * Description: 1977 * @rq may have been made based on weaker limitations of upper-level queues 1978 * in request stacking drivers, and it may violate the limitation of @q. 1979 * Since the block layer and the underlying device driver trust @rq 1980 * after it is inserted to @q, it should be checked against @q before 1981 * the insertion using this generic function. 1982 * 1983 * This function should also be useful for request stacking drivers 1984 * in some cases below, so export this function. 1985 * Request stacking drivers like request-based dm may change the queue 1986 * limits while requests are in the queue (e.g. dm's table swapping). 1987 * Such request stacking drivers should check those requests against 1988 * the new queue limits again when they dispatch those requests, 1989 * although such checkings are also done against the old queue limits 1990 * when submitting requests. 1991 */ 1992 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1993 { 1994 if (!rq_mergeable(rq)) 1995 return 0; 1996 1997 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1998 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1999 return -EIO; 2000 } 2001 2002 /* 2003 * queue's settings related to segment counting like q->bounce_pfn 2004 * may differ from that of other stacking queues. 2005 * Recalculate it to check the request correctly on this queue's 2006 * limitation. 2007 */ 2008 blk_recalc_rq_segments(rq); 2009 if (rq->nr_phys_segments > queue_max_segments(q)) { 2010 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2011 return -EIO; 2012 } 2013 2014 return 0; 2015 } 2016 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 2017 2018 /** 2019 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2020 * @q: the queue to submit the request 2021 * @rq: the request being queued 2022 */ 2023 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2024 { 2025 unsigned long flags; 2026 int where = ELEVATOR_INSERT_BACK; 2027 2028 if (blk_rq_check_limits(q, rq)) 2029 return -EIO; 2030 2031 if (rq->rq_disk && 2032 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2033 return -EIO; 2034 2035 spin_lock_irqsave(q->queue_lock, flags); 2036 if (unlikely(blk_queue_dying(q))) { 2037 spin_unlock_irqrestore(q->queue_lock, flags); 2038 return -ENODEV; 2039 } 2040 2041 /* 2042 * Submitting request must be dequeued before calling this function 2043 * because it will be linked to another request_queue 2044 */ 2045 BUG_ON(blk_queued_rq(rq)); 2046 2047 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 2048 where = ELEVATOR_INSERT_FLUSH; 2049 2050 add_acct_request(q, rq, where); 2051 if (where == ELEVATOR_INSERT_FLUSH) 2052 __blk_run_queue(q); 2053 spin_unlock_irqrestore(q->queue_lock, flags); 2054 2055 return 0; 2056 } 2057 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2058 2059 /** 2060 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2061 * @rq: request to examine 2062 * 2063 * Description: 2064 * A request could be merge of IOs which require different failure 2065 * handling. This function determines the number of bytes which 2066 * can be failed from the beginning of the request without 2067 * crossing into area which need to be retried further. 2068 * 2069 * Return: 2070 * The number of bytes to fail. 2071 * 2072 * Context: 2073 * queue_lock must be held. 2074 */ 2075 unsigned int blk_rq_err_bytes(const struct request *rq) 2076 { 2077 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2078 unsigned int bytes = 0; 2079 struct bio *bio; 2080 2081 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 2082 return blk_rq_bytes(rq); 2083 2084 /* 2085 * Currently the only 'mixing' which can happen is between 2086 * different fastfail types. We can safely fail portions 2087 * which have all the failfast bits that the first one has - 2088 * the ones which are at least as eager to fail as the first 2089 * one. 2090 */ 2091 for (bio = rq->bio; bio; bio = bio->bi_next) { 2092 if ((bio->bi_rw & ff) != ff) 2093 break; 2094 bytes += bio->bi_iter.bi_size; 2095 } 2096 2097 /* this could lead to infinite loop */ 2098 BUG_ON(blk_rq_bytes(rq) && !bytes); 2099 return bytes; 2100 } 2101 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2102 2103 void blk_account_io_completion(struct request *req, unsigned int bytes) 2104 { 2105 if (blk_do_io_stat(req)) { 2106 const int rw = rq_data_dir(req); 2107 struct hd_struct *part; 2108 int cpu; 2109 2110 cpu = part_stat_lock(); 2111 part = req->part; 2112 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2113 part_stat_unlock(); 2114 } 2115 } 2116 2117 void blk_account_io_done(struct request *req) 2118 { 2119 /* 2120 * Account IO completion. flush_rq isn't accounted as a 2121 * normal IO on queueing nor completion. Accounting the 2122 * containing request is enough. 2123 */ 2124 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2125 unsigned long duration = jiffies - req->start_time; 2126 const int rw = rq_data_dir(req); 2127 struct hd_struct *part; 2128 int cpu; 2129 2130 cpu = part_stat_lock(); 2131 part = req->part; 2132 2133 part_stat_inc(cpu, part, ios[rw]); 2134 part_stat_add(cpu, part, ticks[rw], duration); 2135 part_round_stats(cpu, part); 2136 part_dec_in_flight(part, rw); 2137 2138 hd_struct_put(part); 2139 part_stat_unlock(); 2140 } 2141 } 2142 2143 #ifdef CONFIG_PM_RUNTIME 2144 /* 2145 * Don't process normal requests when queue is suspended 2146 * or in the process of suspending/resuming 2147 */ 2148 static struct request *blk_pm_peek_request(struct request_queue *q, 2149 struct request *rq) 2150 { 2151 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2152 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2153 return NULL; 2154 else 2155 return rq; 2156 } 2157 #else 2158 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2159 struct request *rq) 2160 { 2161 return rq; 2162 } 2163 #endif 2164 2165 void blk_account_io_start(struct request *rq, bool new_io) 2166 { 2167 struct hd_struct *part; 2168 int rw = rq_data_dir(rq); 2169 int cpu; 2170 2171 if (!blk_do_io_stat(rq)) 2172 return; 2173 2174 cpu = part_stat_lock(); 2175 2176 if (!new_io) { 2177 part = rq->part; 2178 part_stat_inc(cpu, part, merges[rw]); 2179 } else { 2180 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2181 if (!hd_struct_try_get(part)) { 2182 /* 2183 * The partition is already being removed, 2184 * the request will be accounted on the disk only 2185 * 2186 * We take a reference on disk->part0 although that 2187 * partition will never be deleted, so we can treat 2188 * it as any other partition. 2189 */ 2190 part = &rq->rq_disk->part0; 2191 hd_struct_get(part); 2192 } 2193 part_round_stats(cpu, part); 2194 part_inc_in_flight(part, rw); 2195 rq->part = part; 2196 } 2197 2198 part_stat_unlock(); 2199 } 2200 2201 /** 2202 * blk_peek_request - peek at the top of a request queue 2203 * @q: request queue to peek at 2204 * 2205 * Description: 2206 * Return the request at the top of @q. The returned request 2207 * should be started using blk_start_request() before LLD starts 2208 * processing it. 2209 * 2210 * Return: 2211 * Pointer to the request at the top of @q if available. Null 2212 * otherwise. 2213 * 2214 * Context: 2215 * queue_lock must be held. 2216 */ 2217 struct request *blk_peek_request(struct request_queue *q) 2218 { 2219 struct request *rq; 2220 int ret; 2221 2222 while ((rq = __elv_next_request(q)) != NULL) { 2223 2224 rq = blk_pm_peek_request(q, rq); 2225 if (!rq) 2226 break; 2227 2228 if (!(rq->cmd_flags & REQ_STARTED)) { 2229 /* 2230 * This is the first time the device driver 2231 * sees this request (possibly after 2232 * requeueing). Notify IO scheduler. 2233 */ 2234 if (rq->cmd_flags & REQ_SORTED) 2235 elv_activate_rq(q, rq); 2236 2237 /* 2238 * just mark as started even if we don't start 2239 * it, a request that has been delayed should 2240 * not be passed by new incoming requests 2241 */ 2242 rq->cmd_flags |= REQ_STARTED; 2243 trace_block_rq_issue(q, rq); 2244 } 2245 2246 if (!q->boundary_rq || q->boundary_rq == rq) { 2247 q->end_sector = rq_end_sector(rq); 2248 q->boundary_rq = NULL; 2249 } 2250 2251 if (rq->cmd_flags & REQ_DONTPREP) 2252 break; 2253 2254 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2255 /* 2256 * make sure space for the drain appears we 2257 * know we can do this because max_hw_segments 2258 * has been adjusted to be one fewer than the 2259 * device can handle 2260 */ 2261 rq->nr_phys_segments++; 2262 } 2263 2264 if (!q->prep_rq_fn) 2265 break; 2266 2267 ret = q->prep_rq_fn(q, rq); 2268 if (ret == BLKPREP_OK) { 2269 break; 2270 } else if (ret == BLKPREP_DEFER) { 2271 /* 2272 * the request may have been (partially) prepped. 2273 * we need to keep this request in the front to 2274 * avoid resource deadlock. REQ_STARTED will 2275 * prevent other fs requests from passing this one. 2276 */ 2277 if (q->dma_drain_size && blk_rq_bytes(rq) && 2278 !(rq->cmd_flags & REQ_DONTPREP)) { 2279 /* 2280 * remove the space for the drain we added 2281 * so that we don't add it again 2282 */ 2283 --rq->nr_phys_segments; 2284 } 2285 2286 rq = NULL; 2287 break; 2288 } else if (ret == BLKPREP_KILL) { 2289 rq->cmd_flags |= REQ_QUIET; 2290 /* 2291 * Mark this request as started so we don't trigger 2292 * any debug logic in the end I/O path. 2293 */ 2294 blk_start_request(rq); 2295 __blk_end_request_all(rq, -EIO); 2296 } else { 2297 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2298 break; 2299 } 2300 } 2301 2302 return rq; 2303 } 2304 EXPORT_SYMBOL(blk_peek_request); 2305 2306 void blk_dequeue_request(struct request *rq) 2307 { 2308 struct request_queue *q = rq->q; 2309 2310 BUG_ON(list_empty(&rq->queuelist)); 2311 BUG_ON(ELV_ON_HASH(rq)); 2312 2313 list_del_init(&rq->queuelist); 2314 2315 /* 2316 * the time frame between a request being removed from the lists 2317 * and to it is freed is accounted as io that is in progress at 2318 * the driver side. 2319 */ 2320 if (blk_account_rq(rq)) { 2321 q->in_flight[rq_is_sync(rq)]++; 2322 set_io_start_time_ns(rq); 2323 } 2324 } 2325 2326 /** 2327 * blk_start_request - start request processing on the driver 2328 * @req: request to dequeue 2329 * 2330 * Description: 2331 * Dequeue @req and start timeout timer on it. This hands off the 2332 * request to the driver. 2333 * 2334 * Block internal functions which don't want to start timer should 2335 * call blk_dequeue_request(). 2336 * 2337 * Context: 2338 * queue_lock must be held. 2339 */ 2340 void blk_start_request(struct request *req) 2341 { 2342 blk_dequeue_request(req); 2343 2344 /* 2345 * We are now handing the request to the hardware, initialize 2346 * resid_len to full count and add the timeout handler. 2347 */ 2348 req->resid_len = blk_rq_bytes(req); 2349 if (unlikely(blk_bidi_rq(req))) 2350 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2351 2352 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2353 blk_add_timer(req); 2354 } 2355 EXPORT_SYMBOL(blk_start_request); 2356 2357 /** 2358 * blk_fetch_request - fetch a request from a request queue 2359 * @q: request queue to fetch a request from 2360 * 2361 * Description: 2362 * Return the request at the top of @q. The request is started on 2363 * return and LLD can start processing it immediately. 2364 * 2365 * Return: 2366 * Pointer to the request at the top of @q if available. Null 2367 * otherwise. 2368 * 2369 * Context: 2370 * queue_lock must be held. 2371 */ 2372 struct request *blk_fetch_request(struct request_queue *q) 2373 { 2374 struct request *rq; 2375 2376 rq = blk_peek_request(q); 2377 if (rq) 2378 blk_start_request(rq); 2379 return rq; 2380 } 2381 EXPORT_SYMBOL(blk_fetch_request); 2382 2383 /** 2384 * blk_update_request - Special helper function for request stacking drivers 2385 * @req: the request being processed 2386 * @error: %0 for success, < %0 for error 2387 * @nr_bytes: number of bytes to complete @req 2388 * 2389 * Description: 2390 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2391 * the request structure even if @req doesn't have leftover. 2392 * If @req has leftover, sets it up for the next range of segments. 2393 * 2394 * This special helper function is only for request stacking drivers 2395 * (e.g. request-based dm) so that they can handle partial completion. 2396 * Actual device drivers should use blk_end_request instead. 2397 * 2398 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2399 * %false return from this function. 2400 * 2401 * Return: 2402 * %false - this request doesn't have any more data 2403 * %true - this request has more data 2404 **/ 2405 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2406 { 2407 int total_bytes; 2408 2409 if (!req->bio) 2410 return false; 2411 2412 trace_block_rq_complete(req->q, req, nr_bytes); 2413 2414 /* 2415 * For fs requests, rq is just carrier of independent bio's 2416 * and each partial completion should be handled separately. 2417 * Reset per-request error on each partial completion. 2418 * 2419 * TODO: tj: This is too subtle. It would be better to let 2420 * low level drivers do what they see fit. 2421 */ 2422 if (req->cmd_type == REQ_TYPE_FS) 2423 req->errors = 0; 2424 2425 if (error && req->cmd_type == REQ_TYPE_FS && 2426 !(req->cmd_flags & REQ_QUIET)) { 2427 char *error_type; 2428 2429 switch (error) { 2430 case -ENOLINK: 2431 error_type = "recoverable transport"; 2432 break; 2433 case -EREMOTEIO: 2434 error_type = "critical target"; 2435 break; 2436 case -EBADE: 2437 error_type = "critical nexus"; 2438 break; 2439 case -ETIMEDOUT: 2440 error_type = "timeout"; 2441 break; 2442 case -ENOSPC: 2443 error_type = "critical space allocation"; 2444 break; 2445 case -ENODATA: 2446 error_type = "critical medium"; 2447 break; 2448 case -EIO: 2449 default: 2450 error_type = "I/O"; 2451 break; 2452 } 2453 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2454 error_type, req->rq_disk ? 2455 req->rq_disk->disk_name : "?", 2456 (unsigned long long)blk_rq_pos(req)); 2457 2458 } 2459 2460 blk_account_io_completion(req, nr_bytes); 2461 2462 total_bytes = 0; 2463 while (req->bio) { 2464 struct bio *bio = req->bio; 2465 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2466 2467 if (bio_bytes == bio->bi_iter.bi_size) 2468 req->bio = bio->bi_next; 2469 2470 req_bio_endio(req, bio, bio_bytes, error); 2471 2472 total_bytes += bio_bytes; 2473 nr_bytes -= bio_bytes; 2474 2475 if (!nr_bytes) 2476 break; 2477 } 2478 2479 /* 2480 * completely done 2481 */ 2482 if (!req->bio) { 2483 /* 2484 * Reset counters so that the request stacking driver 2485 * can find how many bytes remain in the request 2486 * later. 2487 */ 2488 req->__data_len = 0; 2489 return false; 2490 } 2491 2492 req->__data_len -= total_bytes; 2493 2494 /* update sector only for requests with clear definition of sector */ 2495 if (req->cmd_type == REQ_TYPE_FS) 2496 req->__sector += total_bytes >> 9; 2497 2498 /* mixed attributes always follow the first bio */ 2499 if (req->cmd_flags & REQ_MIXED_MERGE) { 2500 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2501 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2502 } 2503 2504 /* 2505 * If total number of sectors is less than the first segment 2506 * size, something has gone terribly wrong. 2507 */ 2508 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2509 blk_dump_rq_flags(req, "request botched"); 2510 req->__data_len = blk_rq_cur_bytes(req); 2511 } 2512 2513 /* recalculate the number of segments */ 2514 blk_recalc_rq_segments(req); 2515 2516 return true; 2517 } 2518 EXPORT_SYMBOL_GPL(blk_update_request); 2519 2520 static bool blk_update_bidi_request(struct request *rq, int error, 2521 unsigned int nr_bytes, 2522 unsigned int bidi_bytes) 2523 { 2524 if (blk_update_request(rq, error, nr_bytes)) 2525 return true; 2526 2527 /* Bidi request must be completed as a whole */ 2528 if (unlikely(blk_bidi_rq(rq)) && 2529 blk_update_request(rq->next_rq, error, bidi_bytes)) 2530 return true; 2531 2532 if (blk_queue_add_random(rq->q)) 2533 add_disk_randomness(rq->rq_disk); 2534 2535 return false; 2536 } 2537 2538 /** 2539 * blk_unprep_request - unprepare a request 2540 * @req: the request 2541 * 2542 * This function makes a request ready for complete resubmission (or 2543 * completion). It happens only after all error handling is complete, 2544 * so represents the appropriate moment to deallocate any resources 2545 * that were allocated to the request in the prep_rq_fn. The queue 2546 * lock is held when calling this. 2547 */ 2548 void blk_unprep_request(struct request *req) 2549 { 2550 struct request_queue *q = req->q; 2551 2552 req->cmd_flags &= ~REQ_DONTPREP; 2553 if (q->unprep_rq_fn) 2554 q->unprep_rq_fn(q, req); 2555 } 2556 EXPORT_SYMBOL_GPL(blk_unprep_request); 2557 2558 /* 2559 * queue lock must be held 2560 */ 2561 void blk_finish_request(struct request *req, int error) 2562 { 2563 if (blk_rq_tagged(req)) 2564 blk_queue_end_tag(req->q, req); 2565 2566 BUG_ON(blk_queued_rq(req)); 2567 2568 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2569 laptop_io_completion(&req->q->backing_dev_info); 2570 2571 blk_delete_timer(req); 2572 2573 if (req->cmd_flags & REQ_DONTPREP) 2574 blk_unprep_request(req); 2575 2576 blk_account_io_done(req); 2577 2578 if (req->end_io) 2579 req->end_io(req, error); 2580 else { 2581 if (blk_bidi_rq(req)) 2582 __blk_put_request(req->next_rq->q, req->next_rq); 2583 2584 __blk_put_request(req->q, req); 2585 } 2586 } 2587 EXPORT_SYMBOL(blk_finish_request); 2588 2589 /** 2590 * blk_end_bidi_request - Complete a bidi request 2591 * @rq: the request to complete 2592 * @error: %0 for success, < %0 for error 2593 * @nr_bytes: number of bytes to complete @rq 2594 * @bidi_bytes: number of bytes to complete @rq->next_rq 2595 * 2596 * Description: 2597 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2598 * Drivers that supports bidi can safely call this member for any 2599 * type of request, bidi or uni. In the later case @bidi_bytes is 2600 * just ignored. 2601 * 2602 * Return: 2603 * %false - we are done with this request 2604 * %true - still buffers pending for this request 2605 **/ 2606 static bool blk_end_bidi_request(struct request *rq, int error, 2607 unsigned int nr_bytes, unsigned int bidi_bytes) 2608 { 2609 struct request_queue *q = rq->q; 2610 unsigned long flags; 2611 2612 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2613 return true; 2614 2615 spin_lock_irqsave(q->queue_lock, flags); 2616 blk_finish_request(rq, error); 2617 spin_unlock_irqrestore(q->queue_lock, flags); 2618 2619 return false; 2620 } 2621 2622 /** 2623 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2624 * @rq: the request to complete 2625 * @error: %0 for success, < %0 for error 2626 * @nr_bytes: number of bytes to complete @rq 2627 * @bidi_bytes: number of bytes to complete @rq->next_rq 2628 * 2629 * Description: 2630 * Identical to blk_end_bidi_request() except that queue lock is 2631 * assumed to be locked on entry and remains so on return. 2632 * 2633 * Return: 2634 * %false - we are done with this request 2635 * %true - still buffers pending for this request 2636 **/ 2637 bool __blk_end_bidi_request(struct request *rq, int error, 2638 unsigned int nr_bytes, unsigned int bidi_bytes) 2639 { 2640 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2641 return true; 2642 2643 blk_finish_request(rq, error); 2644 2645 return false; 2646 } 2647 2648 /** 2649 * blk_end_request - Helper function for drivers to complete the request. 2650 * @rq: the request being processed 2651 * @error: %0 for success, < %0 for error 2652 * @nr_bytes: number of bytes to complete 2653 * 2654 * Description: 2655 * Ends I/O on a number of bytes attached to @rq. 2656 * If @rq has leftover, sets it up for the next range of segments. 2657 * 2658 * Return: 2659 * %false - we are done with this request 2660 * %true - still buffers pending for this request 2661 **/ 2662 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2663 { 2664 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2665 } 2666 EXPORT_SYMBOL(blk_end_request); 2667 2668 /** 2669 * blk_end_request_all - Helper function for drives to finish the request. 2670 * @rq: the request to finish 2671 * @error: %0 for success, < %0 for error 2672 * 2673 * Description: 2674 * Completely finish @rq. 2675 */ 2676 void blk_end_request_all(struct request *rq, int error) 2677 { 2678 bool pending; 2679 unsigned int bidi_bytes = 0; 2680 2681 if (unlikely(blk_bidi_rq(rq))) 2682 bidi_bytes = blk_rq_bytes(rq->next_rq); 2683 2684 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2685 BUG_ON(pending); 2686 } 2687 EXPORT_SYMBOL(blk_end_request_all); 2688 2689 /** 2690 * blk_end_request_cur - Helper function to finish the current request chunk. 2691 * @rq: the request to finish the current chunk for 2692 * @error: %0 for success, < %0 for error 2693 * 2694 * Description: 2695 * Complete the current consecutively mapped chunk from @rq. 2696 * 2697 * Return: 2698 * %false - we are done with this request 2699 * %true - still buffers pending for this request 2700 */ 2701 bool blk_end_request_cur(struct request *rq, int error) 2702 { 2703 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2704 } 2705 EXPORT_SYMBOL(blk_end_request_cur); 2706 2707 /** 2708 * blk_end_request_err - Finish a request till the next failure boundary. 2709 * @rq: the request to finish till the next failure boundary for 2710 * @error: must be negative errno 2711 * 2712 * Description: 2713 * Complete @rq till the next failure boundary. 2714 * 2715 * Return: 2716 * %false - we are done with this request 2717 * %true - still buffers pending for this request 2718 */ 2719 bool blk_end_request_err(struct request *rq, int error) 2720 { 2721 WARN_ON(error >= 0); 2722 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2723 } 2724 EXPORT_SYMBOL_GPL(blk_end_request_err); 2725 2726 /** 2727 * __blk_end_request - Helper function for drivers to complete the request. 2728 * @rq: the request being processed 2729 * @error: %0 for success, < %0 for error 2730 * @nr_bytes: number of bytes to complete 2731 * 2732 * Description: 2733 * Must be called with queue lock held unlike blk_end_request(). 2734 * 2735 * Return: 2736 * %false - we are done with this request 2737 * %true - still buffers pending for this request 2738 **/ 2739 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2740 { 2741 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2742 } 2743 EXPORT_SYMBOL(__blk_end_request); 2744 2745 /** 2746 * __blk_end_request_all - Helper function for drives to finish the request. 2747 * @rq: the request to finish 2748 * @error: %0 for success, < %0 for error 2749 * 2750 * Description: 2751 * Completely finish @rq. Must be called with queue lock held. 2752 */ 2753 void __blk_end_request_all(struct request *rq, int error) 2754 { 2755 bool pending; 2756 unsigned int bidi_bytes = 0; 2757 2758 if (unlikely(blk_bidi_rq(rq))) 2759 bidi_bytes = blk_rq_bytes(rq->next_rq); 2760 2761 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2762 BUG_ON(pending); 2763 } 2764 EXPORT_SYMBOL(__blk_end_request_all); 2765 2766 /** 2767 * __blk_end_request_cur - Helper function to finish the current request chunk. 2768 * @rq: the request to finish the current chunk for 2769 * @error: %0 for success, < %0 for error 2770 * 2771 * Description: 2772 * Complete the current consecutively mapped chunk from @rq. Must 2773 * be called with queue lock held. 2774 * 2775 * Return: 2776 * %false - we are done with this request 2777 * %true - still buffers pending for this request 2778 */ 2779 bool __blk_end_request_cur(struct request *rq, int error) 2780 { 2781 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2782 } 2783 EXPORT_SYMBOL(__blk_end_request_cur); 2784 2785 /** 2786 * __blk_end_request_err - Finish a request till the next failure boundary. 2787 * @rq: the request to finish till the next failure boundary for 2788 * @error: must be negative errno 2789 * 2790 * Description: 2791 * Complete @rq till the next failure boundary. Must be called 2792 * with queue lock held. 2793 * 2794 * Return: 2795 * %false - we are done with this request 2796 * %true - still buffers pending for this request 2797 */ 2798 bool __blk_end_request_err(struct request *rq, int error) 2799 { 2800 WARN_ON(error >= 0); 2801 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2802 } 2803 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2804 2805 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2806 struct bio *bio) 2807 { 2808 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2809 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2810 2811 if (bio_has_data(bio)) 2812 rq->nr_phys_segments = bio_phys_segments(q, bio); 2813 2814 rq->__data_len = bio->bi_iter.bi_size; 2815 rq->bio = rq->biotail = bio; 2816 2817 if (bio->bi_bdev) 2818 rq->rq_disk = bio->bi_bdev->bd_disk; 2819 } 2820 2821 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2822 /** 2823 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2824 * @rq: the request to be flushed 2825 * 2826 * Description: 2827 * Flush all pages in @rq. 2828 */ 2829 void rq_flush_dcache_pages(struct request *rq) 2830 { 2831 struct req_iterator iter; 2832 struct bio_vec bvec; 2833 2834 rq_for_each_segment(bvec, rq, iter) 2835 flush_dcache_page(bvec.bv_page); 2836 } 2837 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2838 #endif 2839 2840 /** 2841 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2842 * @q : the queue of the device being checked 2843 * 2844 * Description: 2845 * Check if underlying low-level drivers of a device are busy. 2846 * If the drivers want to export their busy state, they must set own 2847 * exporting function using blk_queue_lld_busy() first. 2848 * 2849 * Basically, this function is used only by request stacking drivers 2850 * to stop dispatching requests to underlying devices when underlying 2851 * devices are busy. This behavior helps more I/O merging on the queue 2852 * of the request stacking driver and prevents I/O throughput regression 2853 * on burst I/O load. 2854 * 2855 * Return: 2856 * 0 - Not busy (The request stacking driver should dispatch request) 2857 * 1 - Busy (The request stacking driver should stop dispatching request) 2858 */ 2859 int blk_lld_busy(struct request_queue *q) 2860 { 2861 if (q->lld_busy_fn) 2862 return q->lld_busy_fn(q); 2863 2864 return 0; 2865 } 2866 EXPORT_SYMBOL_GPL(blk_lld_busy); 2867 2868 /** 2869 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2870 * @rq: the clone request to be cleaned up 2871 * 2872 * Description: 2873 * Free all bios in @rq for a cloned request. 2874 */ 2875 void blk_rq_unprep_clone(struct request *rq) 2876 { 2877 struct bio *bio; 2878 2879 while ((bio = rq->bio) != NULL) { 2880 rq->bio = bio->bi_next; 2881 2882 bio_put(bio); 2883 } 2884 } 2885 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2886 2887 /* 2888 * Copy attributes of the original request to the clone request. 2889 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2890 */ 2891 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2892 { 2893 dst->cpu = src->cpu; 2894 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2895 dst->cmd_type = src->cmd_type; 2896 dst->__sector = blk_rq_pos(src); 2897 dst->__data_len = blk_rq_bytes(src); 2898 dst->nr_phys_segments = src->nr_phys_segments; 2899 dst->ioprio = src->ioprio; 2900 dst->extra_len = src->extra_len; 2901 } 2902 2903 /** 2904 * blk_rq_prep_clone - Helper function to setup clone request 2905 * @rq: the request to be setup 2906 * @rq_src: original request to be cloned 2907 * @bs: bio_set that bios for clone are allocated from 2908 * @gfp_mask: memory allocation mask for bio 2909 * @bio_ctr: setup function to be called for each clone bio. 2910 * Returns %0 for success, non %0 for failure. 2911 * @data: private data to be passed to @bio_ctr 2912 * 2913 * Description: 2914 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2915 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 2916 * are not copied, and copying such parts is the caller's responsibility. 2917 * Also, pages which the original bios are pointing to are not copied 2918 * and the cloned bios just point same pages. 2919 * So cloned bios must be completed before original bios, which means 2920 * the caller must complete @rq before @rq_src. 2921 */ 2922 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2923 struct bio_set *bs, gfp_t gfp_mask, 2924 int (*bio_ctr)(struct bio *, struct bio *, void *), 2925 void *data) 2926 { 2927 struct bio *bio, *bio_src; 2928 2929 if (!bs) 2930 bs = fs_bio_set; 2931 2932 blk_rq_init(NULL, rq); 2933 2934 __rq_for_each_bio(bio_src, rq_src) { 2935 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2936 if (!bio) 2937 goto free_and_out; 2938 2939 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2940 goto free_and_out; 2941 2942 if (rq->bio) { 2943 rq->biotail->bi_next = bio; 2944 rq->biotail = bio; 2945 } else 2946 rq->bio = rq->biotail = bio; 2947 } 2948 2949 __blk_rq_prep_clone(rq, rq_src); 2950 2951 return 0; 2952 2953 free_and_out: 2954 if (bio) 2955 bio_put(bio); 2956 blk_rq_unprep_clone(rq); 2957 2958 return -ENOMEM; 2959 } 2960 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2961 2962 int kblockd_schedule_work(struct work_struct *work) 2963 { 2964 return queue_work(kblockd_workqueue, work); 2965 } 2966 EXPORT_SYMBOL(kblockd_schedule_work); 2967 2968 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 2969 unsigned long delay) 2970 { 2971 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2972 } 2973 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2974 2975 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 2976 unsigned long delay) 2977 { 2978 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 2979 } 2980 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 2981 2982 /** 2983 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2984 * @plug: The &struct blk_plug that needs to be initialized 2985 * 2986 * Description: 2987 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2988 * pending I/O should the task end up blocking between blk_start_plug() and 2989 * blk_finish_plug(). This is important from a performance perspective, but 2990 * also ensures that we don't deadlock. For instance, if the task is blocking 2991 * for a memory allocation, memory reclaim could end up wanting to free a 2992 * page belonging to that request that is currently residing in our private 2993 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2994 * this kind of deadlock. 2995 */ 2996 void blk_start_plug(struct blk_plug *plug) 2997 { 2998 struct task_struct *tsk = current; 2999 3000 INIT_LIST_HEAD(&plug->list); 3001 INIT_LIST_HEAD(&plug->mq_list); 3002 INIT_LIST_HEAD(&plug->cb_list); 3003 3004 /* 3005 * If this is a nested plug, don't actually assign it. It will be 3006 * flushed on its own. 3007 */ 3008 if (!tsk->plug) { 3009 /* 3010 * Store ordering should not be needed here, since a potential 3011 * preempt will imply a full memory barrier 3012 */ 3013 tsk->plug = plug; 3014 } 3015 } 3016 EXPORT_SYMBOL(blk_start_plug); 3017 3018 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3019 { 3020 struct request *rqa = container_of(a, struct request, queuelist); 3021 struct request *rqb = container_of(b, struct request, queuelist); 3022 3023 return !(rqa->q < rqb->q || 3024 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3025 } 3026 3027 /* 3028 * If 'from_schedule' is true, then postpone the dispatch of requests 3029 * until a safe kblockd context. We due this to avoid accidental big 3030 * additional stack usage in driver dispatch, in places where the originally 3031 * plugger did not intend it. 3032 */ 3033 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3034 bool from_schedule) 3035 __releases(q->queue_lock) 3036 { 3037 trace_block_unplug(q, depth, !from_schedule); 3038 3039 if (from_schedule) 3040 blk_run_queue_async(q); 3041 else 3042 __blk_run_queue(q); 3043 spin_unlock(q->queue_lock); 3044 } 3045 3046 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3047 { 3048 LIST_HEAD(callbacks); 3049 3050 while (!list_empty(&plug->cb_list)) { 3051 list_splice_init(&plug->cb_list, &callbacks); 3052 3053 while (!list_empty(&callbacks)) { 3054 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3055 struct blk_plug_cb, 3056 list); 3057 list_del(&cb->list); 3058 cb->callback(cb, from_schedule); 3059 } 3060 } 3061 } 3062 3063 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3064 int size) 3065 { 3066 struct blk_plug *plug = current->plug; 3067 struct blk_plug_cb *cb; 3068 3069 if (!plug) 3070 return NULL; 3071 3072 list_for_each_entry(cb, &plug->cb_list, list) 3073 if (cb->callback == unplug && cb->data == data) 3074 return cb; 3075 3076 /* Not currently on the callback list */ 3077 BUG_ON(size < sizeof(*cb)); 3078 cb = kzalloc(size, GFP_ATOMIC); 3079 if (cb) { 3080 cb->data = data; 3081 cb->callback = unplug; 3082 list_add(&cb->list, &plug->cb_list); 3083 } 3084 return cb; 3085 } 3086 EXPORT_SYMBOL(blk_check_plugged); 3087 3088 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3089 { 3090 struct request_queue *q; 3091 unsigned long flags; 3092 struct request *rq; 3093 LIST_HEAD(list); 3094 unsigned int depth; 3095 3096 flush_plug_callbacks(plug, from_schedule); 3097 3098 if (!list_empty(&plug->mq_list)) 3099 blk_mq_flush_plug_list(plug, from_schedule); 3100 3101 if (list_empty(&plug->list)) 3102 return; 3103 3104 list_splice_init(&plug->list, &list); 3105 3106 list_sort(NULL, &list, plug_rq_cmp); 3107 3108 q = NULL; 3109 depth = 0; 3110 3111 /* 3112 * Save and disable interrupts here, to avoid doing it for every 3113 * queue lock we have to take. 3114 */ 3115 local_irq_save(flags); 3116 while (!list_empty(&list)) { 3117 rq = list_entry_rq(list.next); 3118 list_del_init(&rq->queuelist); 3119 BUG_ON(!rq->q); 3120 if (rq->q != q) { 3121 /* 3122 * This drops the queue lock 3123 */ 3124 if (q) 3125 queue_unplugged(q, depth, from_schedule); 3126 q = rq->q; 3127 depth = 0; 3128 spin_lock(q->queue_lock); 3129 } 3130 3131 /* 3132 * Short-circuit if @q is dead 3133 */ 3134 if (unlikely(blk_queue_dying(q))) { 3135 __blk_end_request_all(rq, -ENODEV); 3136 continue; 3137 } 3138 3139 /* 3140 * rq is already accounted, so use raw insert 3141 */ 3142 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3143 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3144 else 3145 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3146 3147 depth++; 3148 } 3149 3150 /* 3151 * This drops the queue lock 3152 */ 3153 if (q) 3154 queue_unplugged(q, depth, from_schedule); 3155 3156 local_irq_restore(flags); 3157 } 3158 3159 void blk_finish_plug(struct blk_plug *plug) 3160 { 3161 blk_flush_plug_list(plug, false); 3162 3163 if (plug == current->plug) 3164 current->plug = NULL; 3165 } 3166 EXPORT_SYMBOL(blk_finish_plug); 3167 3168 #ifdef CONFIG_PM_RUNTIME 3169 /** 3170 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3171 * @q: the queue of the device 3172 * @dev: the device the queue belongs to 3173 * 3174 * Description: 3175 * Initialize runtime-PM-related fields for @q and start auto suspend for 3176 * @dev. Drivers that want to take advantage of request-based runtime PM 3177 * should call this function after @dev has been initialized, and its 3178 * request queue @q has been allocated, and runtime PM for it can not happen 3179 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3180 * cases, driver should call this function before any I/O has taken place. 3181 * 3182 * This function takes care of setting up using auto suspend for the device, 3183 * the autosuspend delay is set to -1 to make runtime suspend impossible 3184 * until an updated value is either set by user or by driver. Drivers do 3185 * not need to touch other autosuspend settings. 3186 * 3187 * The block layer runtime PM is request based, so only works for drivers 3188 * that use request as their IO unit instead of those directly use bio's. 3189 */ 3190 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3191 { 3192 q->dev = dev; 3193 q->rpm_status = RPM_ACTIVE; 3194 pm_runtime_set_autosuspend_delay(q->dev, -1); 3195 pm_runtime_use_autosuspend(q->dev); 3196 } 3197 EXPORT_SYMBOL(blk_pm_runtime_init); 3198 3199 /** 3200 * blk_pre_runtime_suspend - Pre runtime suspend check 3201 * @q: the queue of the device 3202 * 3203 * Description: 3204 * This function will check if runtime suspend is allowed for the device 3205 * by examining if there are any requests pending in the queue. If there 3206 * are requests pending, the device can not be runtime suspended; otherwise, 3207 * the queue's status will be updated to SUSPENDING and the driver can 3208 * proceed to suspend the device. 3209 * 3210 * For the not allowed case, we mark last busy for the device so that 3211 * runtime PM core will try to autosuspend it some time later. 3212 * 3213 * This function should be called near the start of the device's 3214 * runtime_suspend callback. 3215 * 3216 * Return: 3217 * 0 - OK to runtime suspend the device 3218 * -EBUSY - Device should not be runtime suspended 3219 */ 3220 int blk_pre_runtime_suspend(struct request_queue *q) 3221 { 3222 int ret = 0; 3223 3224 spin_lock_irq(q->queue_lock); 3225 if (q->nr_pending) { 3226 ret = -EBUSY; 3227 pm_runtime_mark_last_busy(q->dev); 3228 } else { 3229 q->rpm_status = RPM_SUSPENDING; 3230 } 3231 spin_unlock_irq(q->queue_lock); 3232 return ret; 3233 } 3234 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3235 3236 /** 3237 * blk_post_runtime_suspend - Post runtime suspend processing 3238 * @q: the queue of the device 3239 * @err: return value of the device's runtime_suspend function 3240 * 3241 * Description: 3242 * Update the queue's runtime status according to the return value of the 3243 * device's runtime suspend function and mark last busy for the device so 3244 * that PM core will try to auto suspend the device at a later time. 3245 * 3246 * This function should be called near the end of the device's 3247 * runtime_suspend callback. 3248 */ 3249 void blk_post_runtime_suspend(struct request_queue *q, int err) 3250 { 3251 spin_lock_irq(q->queue_lock); 3252 if (!err) { 3253 q->rpm_status = RPM_SUSPENDED; 3254 } else { 3255 q->rpm_status = RPM_ACTIVE; 3256 pm_runtime_mark_last_busy(q->dev); 3257 } 3258 spin_unlock_irq(q->queue_lock); 3259 } 3260 EXPORT_SYMBOL(blk_post_runtime_suspend); 3261 3262 /** 3263 * blk_pre_runtime_resume - Pre runtime resume processing 3264 * @q: the queue of the device 3265 * 3266 * Description: 3267 * Update the queue's runtime status to RESUMING in preparation for the 3268 * runtime resume of the device. 3269 * 3270 * This function should be called near the start of the device's 3271 * runtime_resume callback. 3272 */ 3273 void blk_pre_runtime_resume(struct request_queue *q) 3274 { 3275 spin_lock_irq(q->queue_lock); 3276 q->rpm_status = RPM_RESUMING; 3277 spin_unlock_irq(q->queue_lock); 3278 } 3279 EXPORT_SYMBOL(blk_pre_runtime_resume); 3280 3281 /** 3282 * blk_post_runtime_resume - Post runtime resume processing 3283 * @q: the queue of the device 3284 * @err: return value of the device's runtime_resume function 3285 * 3286 * Description: 3287 * Update the queue's runtime status according to the return value of the 3288 * device's runtime_resume function. If it is successfully resumed, process 3289 * the requests that are queued into the device's queue when it is resuming 3290 * and then mark last busy and initiate autosuspend for it. 3291 * 3292 * This function should be called near the end of the device's 3293 * runtime_resume callback. 3294 */ 3295 void blk_post_runtime_resume(struct request_queue *q, int err) 3296 { 3297 spin_lock_irq(q->queue_lock); 3298 if (!err) { 3299 q->rpm_status = RPM_ACTIVE; 3300 __blk_run_queue(q); 3301 pm_runtime_mark_last_busy(q->dev); 3302 pm_request_autosuspend(q->dev); 3303 } else { 3304 q->rpm_status = RPM_SUSPENDED; 3305 } 3306 spin_unlock_irq(q->queue_lock); 3307 } 3308 EXPORT_SYMBOL(blk_post_runtime_resume); 3309 #endif 3310 3311 int __init blk_dev_init(void) 3312 { 3313 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3314 sizeof(((struct request *)0)->cmd_flags)); 3315 3316 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3317 kblockd_workqueue = alloc_workqueue("kblockd", 3318 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3319 if (!kblockd_workqueue) 3320 panic("Failed to create kblockd\n"); 3321 3322 request_cachep = kmem_cache_create("blkdev_requests", 3323 sizeof(struct request), 0, SLAB_PANIC, NULL); 3324 3325 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3326 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3327 3328 return 0; 3329 } 3330