xref: /openbmc/linux/block/blk-core.c (revision 275876e2)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/block.h>
38 
39 #include "blk.h"
40 #include "blk-cgroup.h"
41 #include "blk-mq.h"
42 
43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
48 
49 DEFINE_IDA(blk_queue_ida);
50 
51 /*
52  * For the allocated request tables
53  */
54 struct kmem_cache *request_cachep = NULL;
55 
56 /*
57  * For queue allocation
58  */
59 struct kmem_cache *blk_requestq_cachep;
60 
61 /*
62  * Controlling structure to kblockd
63  */
64 static struct workqueue_struct *kblockd_workqueue;
65 
66 void blk_queue_congestion_threshold(struct request_queue *q)
67 {
68 	int nr;
69 
70 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
71 	if (nr > q->nr_requests)
72 		nr = q->nr_requests;
73 	q->nr_congestion_on = nr;
74 
75 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
76 	if (nr < 1)
77 		nr = 1;
78 	q->nr_congestion_off = nr;
79 }
80 
81 /**
82  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
83  * @bdev:	device
84  *
85  * Locates the passed device's request queue and returns the address of its
86  * backing_dev_info
87  *
88  * Will return NULL if the request queue cannot be located.
89  */
90 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
91 {
92 	struct backing_dev_info *ret = NULL;
93 	struct request_queue *q = bdev_get_queue(bdev);
94 
95 	if (q)
96 		ret = &q->backing_dev_info;
97 	return ret;
98 }
99 EXPORT_SYMBOL(blk_get_backing_dev_info);
100 
101 void blk_rq_init(struct request_queue *q, struct request *rq)
102 {
103 	memset(rq, 0, sizeof(*rq));
104 
105 	INIT_LIST_HEAD(&rq->queuelist);
106 	INIT_LIST_HEAD(&rq->timeout_list);
107 	rq->cpu = -1;
108 	rq->q = q;
109 	rq->__sector = (sector_t) -1;
110 	INIT_HLIST_NODE(&rq->hash);
111 	RB_CLEAR_NODE(&rq->rb_node);
112 	rq->cmd = rq->__cmd;
113 	rq->cmd_len = BLK_MAX_CDB;
114 	rq->tag = -1;
115 	rq->start_time = jiffies;
116 	set_start_time_ns(rq);
117 	rq->part = NULL;
118 }
119 EXPORT_SYMBOL(blk_rq_init);
120 
121 static void req_bio_endio(struct request *rq, struct bio *bio,
122 			  unsigned int nbytes, int error)
123 {
124 	if (error)
125 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
126 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
127 		error = -EIO;
128 
129 	if (unlikely(rq->cmd_flags & REQ_QUIET))
130 		set_bit(BIO_QUIET, &bio->bi_flags);
131 
132 	bio_advance(bio, nbytes);
133 
134 	/* don't actually finish bio if it's part of flush sequence */
135 	if (bio->bi_iter.bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
136 		bio_endio(bio, error);
137 }
138 
139 void blk_dump_rq_flags(struct request *rq, char *msg)
140 {
141 	int bit;
142 
143 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
144 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
145 		(unsigned long long) rq->cmd_flags);
146 
147 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
148 	       (unsigned long long)blk_rq_pos(rq),
149 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
150 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
151 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
152 
153 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
154 		printk(KERN_INFO "  cdb: ");
155 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
156 			printk("%02x ", rq->cmd[bit]);
157 		printk("\n");
158 	}
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161 
162 static void blk_delay_work(struct work_struct *work)
163 {
164 	struct request_queue *q;
165 
166 	q = container_of(work, struct request_queue, delay_work.work);
167 	spin_lock_irq(q->queue_lock);
168 	__blk_run_queue(q);
169 	spin_unlock_irq(q->queue_lock);
170 }
171 
172 /**
173  * blk_delay_queue - restart queueing after defined interval
174  * @q:		The &struct request_queue in question
175  * @msecs:	Delay in msecs
176  *
177  * Description:
178  *   Sometimes queueing needs to be postponed for a little while, to allow
179  *   resources to come back. This function will make sure that queueing is
180  *   restarted around the specified time. Queue lock must be held.
181  */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 	if (likely(!blk_queue_dead(q)))
185 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 				   msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189 
190 /**
191  * blk_start_queue - restart a previously stopped queue
192  * @q:    The &struct request_queue in question
193  *
194  * Description:
195  *   blk_start_queue() will clear the stop flag on the queue, and call
196  *   the request_fn for the queue if it was in a stopped state when
197  *   entered. Also see blk_stop_queue(). Queue lock must be held.
198  **/
199 void blk_start_queue(struct request_queue *q)
200 {
201 	WARN_ON(!irqs_disabled());
202 
203 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
204 	__blk_run_queue(q);
205 }
206 EXPORT_SYMBOL(blk_start_queue);
207 
208 /**
209  * blk_stop_queue - stop a queue
210  * @q:    The &struct request_queue in question
211  *
212  * Description:
213  *   The Linux block layer assumes that a block driver will consume all
214  *   entries on the request queue when the request_fn strategy is called.
215  *   Often this will not happen, because of hardware limitations (queue
216  *   depth settings). If a device driver gets a 'queue full' response,
217  *   or if it simply chooses not to queue more I/O at one point, it can
218  *   call this function to prevent the request_fn from being called until
219  *   the driver has signalled it's ready to go again. This happens by calling
220  *   blk_start_queue() to restart queue operations. Queue lock must be held.
221  **/
222 void blk_stop_queue(struct request_queue *q)
223 {
224 	cancel_delayed_work(&q->delay_work);
225 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
226 }
227 EXPORT_SYMBOL(blk_stop_queue);
228 
229 /**
230  * blk_sync_queue - cancel any pending callbacks on a queue
231  * @q: the queue
232  *
233  * Description:
234  *     The block layer may perform asynchronous callback activity
235  *     on a queue, such as calling the unplug function after a timeout.
236  *     A block device may call blk_sync_queue to ensure that any
237  *     such activity is cancelled, thus allowing it to release resources
238  *     that the callbacks might use. The caller must already have made sure
239  *     that its ->make_request_fn will not re-add plugging prior to calling
240  *     this function.
241  *
242  *     This function does not cancel any asynchronous activity arising
243  *     out of elevator or throttling code. That would require elevaotor_exit()
244  *     and blkcg_exit_queue() to be called with queue lock initialized.
245  *
246  */
247 void blk_sync_queue(struct request_queue *q)
248 {
249 	del_timer_sync(&q->timeout);
250 
251 	if (q->mq_ops) {
252 		struct blk_mq_hw_ctx *hctx;
253 		int i;
254 
255 		queue_for_each_hw_ctx(q, hctx, i) {
256 			cancel_delayed_work_sync(&hctx->run_work);
257 			cancel_delayed_work_sync(&hctx->delay_work);
258 		}
259 	} else {
260 		cancel_delayed_work_sync(&q->delay_work);
261 	}
262 }
263 EXPORT_SYMBOL(blk_sync_queue);
264 
265 /**
266  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
267  * @q:	The queue to run
268  *
269  * Description:
270  *    Invoke request handling on a queue if there are any pending requests.
271  *    May be used to restart request handling after a request has completed.
272  *    This variant runs the queue whether or not the queue has been
273  *    stopped. Must be called with the queue lock held and interrupts
274  *    disabled. See also @blk_run_queue.
275  */
276 inline void __blk_run_queue_uncond(struct request_queue *q)
277 {
278 	if (unlikely(blk_queue_dead(q)))
279 		return;
280 
281 	/*
282 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
283 	 * the queue lock internally. As a result multiple threads may be
284 	 * running such a request function concurrently. Keep track of the
285 	 * number of active request_fn invocations such that blk_drain_queue()
286 	 * can wait until all these request_fn calls have finished.
287 	 */
288 	q->request_fn_active++;
289 	q->request_fn(q);
290 	q->request_fn_active--;
291 }
292 
293 /**
294  * __blk_run_queue - run a single device queue
295  * @q:	The queue to run
296  *
297  * Description:
298  *    See @blk_run_queue. This variant must be called with the queue lock
299  *    held and interrupts disabled.
300  */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 	if (unlikely(blk_queue_stopped(q)))
304 		return;
305 
306 	__blk_run_queue_uncond(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309 
310 /**
311  * blk_run_queue_async - run a single device queue in workqueue context
312  * @q:	The queue to run
313  *
314  * Description:
315  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316  *    of us. The caller must hold the queue lock.
317  */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
321 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
322 }
323 EXPORT_SYMBOL(blk_run_queue_async);
324 
325 /**
326  * blk_run_queue - run a single device queue
327  * @q: The queue to run
328  *
329  * Description:
330  *    Invoke request handling on this queue, if it has pending work to do.
331  *    May be used to restart queueing when a request has completed.
332  */
333 void blk_run_queue(struct request_queue *q)
334 {
335 	unsigned long flags;
336 
337 	spin_lock_irqsave(q->queue_lock, flags);
338 	__blk_run_queue(q);
339 	spin_unlock_irqrestore(q->queue_lock, flags);
340 }
341 EXPORT_SYMBOL(blk_run_queue);
342 
343 void blk_put_queue(struct request_queue *q)
344 {
345 	kobject_put(&q->kobj);
346 }
347 EXPORT_SYMBOL(blk_put_queue);
348 
349 /**
350  * __blk_drain_queue - drain requests from request_queue
351  * @q: queue to drain
352  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
353  *
354  * Drain requests from @q.  If @drain_all is set, all requests are drained.
355  * If not, only ELVPRIV requests are drained.  The caller is responsible
356  * for ensuring that no new requests which need to be drained are queued.
357  */
358 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
359 	__releases(q->queue_lock)
360 	__acquires(q->queue_lock)
361 {
362 	int i;
363 
364 	lockdep_assert_held(q->queue_lock);
365 
366 	while (true) {
367 		bool drain = false;
368 
369 		/*
370 		 * The caller might be trying to drain @q before its
371 		 * elevator is initialized.
372 		 */
373 		if (q->elevator)
374 			elv_drain_elevator(q);
375 
376 		blkcg_drain_queue(q);
377 
378 		/*
379 		 * This function might be called on a queue which failed
380 		 * driver init after queue creation or is not yet fully
381 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
382 		 * in such cases.  Kick queue iff dispatch queue has
383 		 * something on it and @q has request_fn set.
384 		 */
385 		if (!list_empty(&q->queue_head) && q->request_fn)
386 			__blk_run_queue(q);
387 
388 		drain |= q->nr_rqs_elvpriv;
389 		drain |= q->request_fn_active;
390 
391 		/*
392 		 * Unfortunately, requests are queued at and tracked from
393 		 * multiple places and there's no single counter which can
394 		 * be drained.  Check all the queues and counters.
395 		 */
396 		if (drain_all) {
397 			drain |= !list_empty(&q->queue_head);
398 			for (i = 0; i < 2; i++) {
399 				drain |= q->nr_rqs[i];
400 				drain |= q->in_flight[i];
401 				drain |= !list_empty(&q->flush_queue[i]);
402 			}
403 		}
404 
405 		if (!drain)
406 			break;
407 
408 		spin_unlock_irq(q->queue_lock);
409 
410 		msleep(10);
411 
412 		spin_lock_irq(q->queue_lock);
413 	}
414 
415 	/*
416 	 * With queue marked dead, any woken up waiter will fail the
417 	 * allocation path, so the wakeup chaining is lost and we're
418 	 * left with hung waiters. We need to wake up those waiters.
419 	 */
420 	if (q->request_fn) {
421 		struct request_list *rl;
422 
423 		blk_queue_for_each_rl(rl, q)
424 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
425 				wake_up_all(&rl->wait[i]);
426 	}
427 }
428 
429 /**
430  * blk_queue_bypass_start - enter queue bypass mode
431  * @q: queue of interest
432  *
433  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
434  * function makes @q enter bypass mode and drains all requests which were
435  * throttled or issued before.  On return, it's guaranteed that no request
436  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437  * inside queue or RCU read lock.
438  */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 	spin_lock_irq(q->queue_lock);
442 	q->bypass_depth++;
443 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
444 	spin_unlock_irq(q->queue_lock);
445 
446 	/*
447 	 * Queues start drained.  Skip actual draining till init is
448 	 * complete.  This avoids lenghty delays during queue init which
449 	 * can happen many times during boot.
450 	 */
451 	if (blk_queue_init_done(q)) {
452 		spin_lock_irq(q->queue_lock);
453 		__blk_drain_queue(q, false);
454 		spin_unlock_irq(q->queue_lock);
455 
456 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
457 		synchronize_rcu();
458 	}
459 }
460 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
461 
462 /**
463  * blk_queue_bypass_end - leave queue bypass mode
464  * @q: queue of interest
465  *
466  * Leave bypass mode and restore the normal queueing behavior.
467  */
468 void blk_queue_bypass_end(struct request_queue *q)
469 {
470 	spin_lock_irq(q->queue_lock);
471 	if (!--q->bypass_depth)
472 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
473 	WARN_ON_ONCE(q->bypass_depth < 0);
474 	spin_unlock_irq(q->queue_lock);
475 }
476 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
477 
478 /**
479  * blk_cleanup_queue - shutdown a request queue
480  * @q: request queue to shutdown
481  *
482  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
483  * put it.  All future requests will be failed immediately with -ENODEV.
484  */
485 void blk_cleanup_queue(struct request_queue *q)
486 {
487 	spinlock_t *lock = q->queue_lock;
488 
489 	/* mark @q DYING, no new request or merges will be allowed afterwards */
490 	mutex_lock(&q->sysfs_lock);
491 	queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
492 	spin_lock_irq(lock);
493 
494 	/*
495 	 * A dying queue is permanently in bypass mode till released.  Note
496 	 * that, unlike blk_queue_bypass_start(), we aren't performing
497 	 * synchronize_rcu() after entering bypass mode to avoid the delay
498 	 * as some drivers create and destroy a lot of queues while
499 	 * probing.  This is still safe because blk_release_queue() will be
500 	 * called only after the queue refcnt drops to zero and nothing,
501 	 * RCU or not, would be traversing the queue by then.
502 	 */
503 	q->bypass_depth++;
504 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
505 
506 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
507 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
508 	queue_flag_set(QUEUE_FLAG_DYING, q);
509 	spin_unlock_irq(lock);
510 	mutex_unlock(&q->sysfs_lock);
511 
512 	/*
513 	 * Drain all requests queued before DYING marking. Set DEAD flag to
514 	 * prevent that q->request_fn() gets invoked after draining finished.
515 	 */
516 	if (q->mq_ops) {
517 		blk_mq_freeze_queue(q);
518 		spin_lock_irq(lock);
519 	} else {
520 		spin_lock_irq(lock);
521 		__blk_drain_queue(q, true);
522 	}
523 	queue_flag_set(QUEUE_FLAG_DEAD, q);
524 	spin_unlock_irq(lock);
525 
526 	/* @q won't process any more request, flush async actions */
527 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
528 	blk_sync_queue(q);
529 
530 	spin_lock_irq(lock);
531 	if (q->queue_lock != &q->__queue_lock)
532 		q->queue_lock = &q->__queue_lock;
533 	spin_unlock_irq(lock);
534 
535 	/* @q is and will stay empty, shutdown and put */
536 	blk_put_queue(q);
537 }
538 EXPORT_SYMBOL(blk_cleanup_queue);
539 
540 int blk_init_rl(struct request_list *rl, struct request_queue *q,
541 		gfp_t gfp_mask)
542 {
543 	if (unlikely(rl->rq_pool))
544 		return 0;
545 
546 	rl->q = q;
547 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
548 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
549 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
550 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
551 
552 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
553 					  mempool_free_slab, request_cachep,
554 					  gfp_mask, q->node);
555 	if (!rl->rq_pool)
556 		return -ENOMEM;
557 
558 	return 0;
559 }
560 
561 void blk_exit_rl(struct request_list *rl)
562 {
563 	if (rl->rq_pool)
564 		mempool_destroy(rl->rq_pool);
565 }
566 
567 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
568 {
569 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
570 }
571 EXPORT_SYMBOL(blk_alloc_queue);
572 
573 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
574 {
575 	struct request_queue *q;
576 	int err;
577 
578 	q = kmem_cache_alloc_node(blk_requestq_cachep,
579 				gfp_mask | __GFP_ZERO, node_id);
580 	if (!q)
581 		return NULL;
582 
583 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
584 	if (q->id < 0)
585 		goto fail_q;
586 
587 	q->backing_dev_info.ra_pages =
588 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
589 	q->backing_dev_info.state = 0;
590 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
591 	q->backing_dev_info.name = "block";
592 	q->node = node_id;
593 
594 	err = bdi_init(&q->backing_dev_info);
595 	if (err)
596 		goto fail_id;
597 
598 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
599 		    laptop_mode_timer_fn, (unsigned long) q);
600 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
601 	INIT_LIST_HEAD(&q->queue_head);
602 	INIT_LIST_HEAD(&q->timeout_list);
603 	INIT_LIST_HEAD(&q->icq_list);
604 #ifdef CONFIG_BLK_CGROUP
605 	INIT_LIST_HEAD(&q->blkg_list);
606 #endif
607 	INIT_LIST_HEAD(&q->flush_queue[0]);
608 	INIT_LIST_HEAD(&q->flush_queue[1]);
609 	INIT_LIST_HEAD(&q->flush_data_in_flight);
610 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
611 
612 	kobject_init(&q->kobj, &blk_queue_ktype);
613 
614 	mutex_init(&q->sysfs_lock);
615 	spin_lock_init(&q->__queue_lock);
616 
617 	/*
618 	 * By default initialize queue_lock to internal lock and driver can
619 	 * override it later if need be.
620 	 */
621 	q->queue_lock = &q->__queue_lock;
622 
623 	/*
624 	 * A queue starts its life with bypass turned on to avoid
625 	 * unnecessary bypass on/off overhead and nasty surprises during
626 	 * init.  The initial bypass will be finished when the queue is
627 	 * registered by blk_register_queue().
628 	 */
629 	q->bypass_depth = 1;
630 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
631 
632 	init_waitqueue_head(&q->mq_freeze_wq);
633 
634 	if (blkcg_init_queue(q))
635 		goto fail_bdi;
636 
637 	return q;
638 
639 fail_bdi:
640 	bdi_destroy(&q->backing_dev_info);
641 fail_id:
642 	ida_simple_remove(&blk_queue_ida, q->id);
643 fail_q:
644 	kmem_cache_free(blk_requestq_cachep, q);
645 	return NULL;
646 }
647 EXPORT_SYMBOL(blk_alloc_queue_node);
648 
649 /**
650  * blk_init_queue  - prepare a request queue for use with a block device
651  * @rfn:  The function to be called to process requests that have been
652  *        placed on the queue.
653  * @lock: Request queue spin lock
654  *
655  * Description:
656  *    If a block device wishes to use the standard request handling procedures,
657  *    which sorts requests and coalesces adjacent requests, then it must
658  *    call blk_init_queue().  The function @rfn will be called when there
659  *    are requests on the queue that need to be processed.  If the device
660  *    supports plugging, then @rfn may not be called immediately when requests
661  *    are available on the queue, but may be called at some time later instead.
662  *    Plugged queues are generally unplugged when a buffer belonging to one
663  *    of the requests on the queue is needed, or due to memory pressure.
664  *
665  *    @rfn is not required, or even expected, to remove all requests off the
666  *    queue, but only as many as it can handle at a time.  If it does leave
667  *    requests on the queue, it is responsible for arranging that the requests
668  *    get dealt with eventually.
669  *
670  *    The queue spin lock must be held while manipulating the requests on the
671  *    request queue; this lock will be taken also from interrupt context, so irq
672  *    disabling is needed for it.
673  *
674  *    Function returns a pointer to the initialized request queue, or %NULL if
675  *    it didn't succeed.
676  *
677  * Note:
678  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
679  *    when the block device is deactivated (such as at module unload).
680  **/
681 
682 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
683 {
684 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
685 }
686 EXPORT_SYMBOL(blk_init_queue);
687 
688 struct request_queue *
689 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
690 {
691 	struct request_queue *uninit_q, *q;
692 
693 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
694 	if (!uninit_q)
695 		return NULL;
696 
697 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
698 	if (!q)
699 		blk_cleanup_queue(uninit_q);
700 
701 	return q;
702 }
703 EXPORT_SYMBOL(blk_init_queue_node);
704 
705 struct request_queue *
706 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
707 			 spinlock_t *lock)
708 {
709 	if (!q)
710 		return NULL;
711 
712 	q->flush_rq = kzalloc(sizeof(struct request), GFP_KERNEL);
713 	if (!q->flush_rq)
714 		return NULL;
715 
716 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
717 		goto fail;
718 
719 	q->request_fn		= rfn;
720 	q->prep_rq_fn		= NULL;
721 	q->unprep_rq_fn		= NULL;
722 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
723 
724 	/* Override internal queue lock with supplied lock pointer */
725 	if (lock)
726 		q->queue_lock		= lock;
727 
728 	/*
729 	 * This also sets hw/phys segments, boundary and size
730 	 */
731 	blk_queue_make_request(q, blk_queue_bio);
732 
733 	q->sg_reserved_size = INT_MAX;
734 
735 	/* Protect q->elevator from elevator_change */
736 	mutex_lock(&q->sysfs_lock);
737 
738 	/* init elevator */
739 	if (elevator_init(q, NULL)) {
740 		mutex_unlock(&q->sysfs_lock);
741 		goto fail;
742 	}
743 
744 	mutex_unlock(&q->sysfs_lock);
745 
746 	return q;
747 
748 fail:
749 	kfree(q->flush_rq);
750 	return NULL;
751 }
752 EXPORT_SYMBOL(blk_init_allocated_queue);
753 
754 bool blk_get_queue(struct request_queue *q)
755 {
756 	if (likely(!blk_queue_dying(q))) {
757 		__blk_get_queue(q);
758 		return true;
759 	}
760 
761 	return false;
762 }
763 EXPORT_SYMBOL(blk_get_queue);
764 
765 static inline void blk_free_request(struct request_list *rl, struct request *rq)
766 {
767 	if (rq->cmd_flags & REQ_ELVPRIV) {
768 		elv_put_request(rl->q, rq);
769 		if (rq->elv.icq)
770 			put_io_context(rq->elv.icq->ioc);
771 	}
772 
773 	mempool_free(rq, rl->rq_pool);
774 }
775 
776 /*
777  * ioc_batching returns true if the ioc is a valid batching request and
778  * should be given priority access to a request.
779  */
780 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
781 {
782 	if (!ioc)
783 		return 0;
784 
785 	/*
786 	 * Make sure the process is able to allocate at least 1 request
787 	 * even if the batch times out, otherwise we could theoretically
788 	 * lose wakeups.
789 	 */
790 	return ioc->nr_batch_requests == q->nr_batching ||
791 		(ioc->nr_batch_requests > 0
792 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
793 }
794 
795 /*
796  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
797  * will cause the process to be a "batcher" on all queues in the system. This
798  * is the behaviour we want though - once it gets a wakeup it should be given
799  * a nice run.
800  */
801 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
802 {
803 	if (!ioc || ioc_batching(q, ioc))
804 		return;
805 
806 	ioc->nr_batch_requests = q->nr_batching;
807 	ioc->last_waited = jiffies;
808 }
809 
810 static void __freed_request(struct request_list *rl, int sync)
811 {
812 	struct request_queue *q = rl->q;
813 
814 	/*
815 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
816 	 * blkcg anyway, just use root blkcg state.
817 	 */
818 	if (rl == &q->root_rl &&
819 	    rl->count[sync] < queue_congestion_off_threshold(q))
820 		blk_clear_queue_congested(q, sync);
821 
822 	if (rl->count[sync] + 1 <= q->nr_requests) {
823 		if (waitqueue_active(&rl->wait[sync]))
824 			wake_up(&rl->wait[sync]);
825 
826 		blk_clear_rl_full(rl, sync);
827 	}
828 }
829 
830 /*
831  * A request has just been released.  Account for it, update the full and
832  * congestion status, wake up any waiters.   Called under q->queue_lock.
833  */
834 static void freed_request(struct request_list *rl, unsigned int flags)
835 {
836 	struct request_queue *q = rl->q;
837 	int sync = rw_is_sync(flags);
838 
839 	q->nr_rqs[sync]--;
840 	rl->count[sync]--;
841 	if (flags & REQ_ELVPRIV)
842 		q->nr_rqs_elvpriv--;
843 
844 	__freed_request(rl, sync);
845 
846 	if (unlikely(rl->starved[sync ^ 1]))
847 		__freed_request(rl, sync ^ 1);
848 }
849 
850 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
851 {
852 	struct request_list *rl;
853 
854 	spin_lock_irq(q->queue_lock);
855 	q->nr_requests = nr;
856 	blk_queue_congestion_threshold(q);
857 
858 	/* congestion isn't cgroup aware and follows root blkcg for now */
859 	rl = &q->root_rl;
860 
861 	if (rl->count[BLK_RW_SYNC] >= queue_congestion_on_threshold(q))
862 		blk_set_queue_congested(q, BLK_RW_SYNC);
863 	else if (rl->count[BLK_RW_SYNC] < queue_congestion_off_threshold(q))
864 		blk_clear_queue_congested(q, BLK_RW_SYNC);
865 
866 	if (rl->count[BLK_RW_ASYNC] >= queue_congestion_on_threshold(q))
867 		blk_set_queue_congested(q, BLK_RW_ASYNC);
868 	else if (rl->count[BLK_RW_ASYNC] < queue_congestion_off_threshold(q))
869 		blk_clear_queue_congested(q, BLK_RW_ASYNC);
870 
871 	blk_queue_for_each_rl(rl, q) {
872 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
873 			blk_set_rl_full(rl, BLK_RW_SYNC);
874 		} else {
875 			blk_clear_rl_full(rl, BLK_RW_SYNC);
876 			wake_up(&rl->wait[BLK_RW_SYNC]);
877 		}
878 
879 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
880 			blk_set_rl_full(rl, BLK_RW_ASYNC);
881 		} else {
882 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
883 			wake_up(&rl->wait[BLK_RW_ASYNC]);
884 		}
885 	}
886 
887 	spin_unlock_irq(q->queue_lock);
888 	return 0;
889 }
890 
891 /*
892  * Determine if elevator data should be initialized when allocating the
893  * request associated with @bio.
894  */
895 static bool blk_rq_should_init_elevator(struct bio *bio)
896 {
897 	if (!bio)
898 		return true;
899 
900 	/*
901 	 * Flush requests do not use the elevator so skip initialization.
902 	 * This allows a request to share the flush and elevator data.
903 	 */
904 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
905 		return false;
906 
907 	return true;
908 }
909 
910 /**
911  * rq_ioc - determine io_context for request allocation
912  * @bio: request being allocated is for this bio (can be %NULL)
913  *
914  * Determine io_context to use for request allocation for @bio.  May return
915  * %NULL if %current->io_context doesn't exist.
916  */
917 static struct io_context *rq_ioc(struct bio *bio)
918 {
919 #ifdef CONFIG_BLK_CGROUP
920 	if (bio && bio->bi_ioc)
921 		return bio->bi_ioc;
922 #endif
923 	return current->io_context;
924 }
925 
926 /**
927  * __get_request - get a free request
928  * @rl: request list to allocate from
929  * @rw_flags: RW and SYNC flags
930  * @bio: bio to allocate request for (can be %NULL)
931  * @gfp_mask: allocation mask
932  *
933  * Get a free request from @q.  This function may fail under memory
934  * pressure or if @q is dead.
935  *
936  * Must be callled with @q->queue_lock held and,
937  * Returns %NULL on failure, with @q->queue_lock held.
938  * Returns !%NULL on success, with @q->queue_lock *not held*.
939  */
940 static struct request *__get_request(struct request_list *rl, int rw_flags,
941 				     struct bio *bio, gfp_t gfp_mask)
942 {
943 	struct request_queue *q = rl->q;
944 	struct request *rq;
945 	struct elevator_type *et = q->elevator->type;
946 	struct io_context *ioc = rq_ioc(bio);
947 	struct io_cq *icq = NULL;
948 	const bool is_sync = rw_is_sync(rw_flags) != 0;
949 	int may_queue;
950 
951 	if (unlikely(blk_queue_dying(q)))
952 		return NULL;
953 
954 	may_queue = elv_may_queue(q, rw_flags);
955 	if (may_queue == ELV_MQUEUE_NO)
956 		goto rq_starved;
957 
958 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
959 		if (rl->count[is_sync]+1 >= q->nr_requests) {
960 			/*
961 			 * The queue will fill after this allocation, so set
962 			 * it as full, and mark this process as "batching".
963 			 * This process will be allowed to complete a batch of
964 			 * requests, others will be blocked.
965 			 */
966 			if (!blk_rl_full(rl, is_sync)) {
967 				ioc_set_batching(q, ioc);
968 				blk_set_rl_full(rl, is_sync);
969 			} else {
970 				if (may_queue != ELV_MQUEUE_MUST
971 						&& !ioc_batching(q, ioc)) {
972 					/*
973 					 * The queue is full and the allocating
974 					 * process is not a "batcher", and not
975 					 * exempted by the IO scheduler
976 					 */
977 					return NULL;
978 				}
979 			}
980 		}
981 		/*
982 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
983 		 * root blkcg anyway, just use root blkcg state.
984 		 */
985 		if (rl == &q->root_rl)
986 			blk_set_queue_congested(q, is_sync);
987 	}
988 
989 	/*
990 	 * Only allow batching queuers to allocate up to 50% over the defined
991 	 * limit of requests, otherwise we could have thousands of requests
992 	 * allocated with any setting of ->nr_requests
993 	 */
994 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
995 		return NULL;
996 
997 	q->nr_rqs[is_sync]++;
998 	rl->count[is_sync]++;
999 	rl->starved[is_sync] = 0;
1000 
1001 	/*
1002 	 * Decide whether the new request will be managed by elevator.  If
1003 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
1004 	 * prevent the current elevator from being destroyed until the new
1005 	 * request is freed.  This guarantees icq's won't be destroyed and
1006 	 * makes creating new ones safe.
1007 	 *
1008 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1009 	 * it will be created after releasing queue_lock.
1010 	 */
1011 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
1012 		rw_flags |= REQ_ELVPRIV;
1013 		q->nr_rqs_elvpriv++;
1014 		if (et->icq_cache && ioc)
1015 			icq = ioc_lookup_icq(ioc, q);
1016 	}
1017 
1018 	if (blk_queue_io_stat(q))
1019 		rw_flags |= REQ_IO_STAT;
1020 	spin_unlock_irq(q->queue_lock);
1021 
1022 	/* allocate and init request */
1023 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1024 	if (!rq)
1025 		goto fail_alloc;
1026 
1027 	blk_rq_init(q, rq);
1028 	blk_rq_set_rl(rq, rl);
1029 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
1030 
1031 	/* init elvpriv */
1032 	if (rw_flags & REQ_ELVPRIV) {
1033 		if (unlikely(et->icq_cache && !icq)) {
1034 			if (ioc)
1035 				icq = ioc_create_icq(ioc, q, gfp_mask);
1036 			if (!icq)
1037 				goto fail_elvpriv;
1038 		}
1039 
1040 		rq->elv.icq = icq;
1041 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1042 			goto fail_elvpriv;
1043 
1044 		/* @rq->elv.icq holds io_context until @rq is freed */
1045 		if (icq)
1046 			get_io_context(icq->ioc);
1047 	}
1048 out:
1049 	/*
1050 	 * ioc may be NULL here, and ioc_batching will be false. That's
1051 	 * OK, if the queue is under the request limit then requests need
1052 	 * not count toward the nr_batch_requests limit. There will always
1053 	 * be some limit enforced by BLK_BATCH_TIME.
1054 	 */
1055 	if (ioc_batching(q, ioc))
1056 		ioc->nr_batch_requests--;
1057 
1058 	trace_block_getrq(q, bio, rw_flags & 1);
1059 	return rq;
1060 
1061 fail_elvpriv:
1062 	/*
1063 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1064 	 * and may fail indefinitely under memory pressure and thus
1065 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1066 	 * disturb iosched and blkcg but weird is bettern than dead.
1067 	 */
1068 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1069 			   dev_name(q->backing_dev_info.dev));
1070 
1071 	rq->cmd_flags &= ~REQ_ELVPRIV;
1072 	rq->elv.icq = NULL;
1073 
1074 	spin_lock_irq(q->queue_lock);
1075 	q->nr_rqs_elvpriv--;
1076 	spin_unlock_irq(q->queue_lock);
1077 	goto out;
1078 
1079 fail_alloc:
1080 	/*
1081 	 * Allocation failed presumably due to memory. Undo anything we
1082 	 * might have messed up.
1083 	 *
1084 	 * Allocating task should really be put onto the front of the wait
1085 	 * queue, but this is pretty rare.
1086 	 */
1087 	spin_lock_irq(q->queue_lock);
1088 	freed_request(rl, rw_flags);
1089 
1090 	/*
1091 	 * in the very unlikely event that allocation failed and no
1092 	 * requests for this direction was pending, mark us starved so that
1093 	 * freeing of a request in the other direction will notice
1094 	 * us. another possible fix would be to split the rq mempool into
1095 	 * READ and WRITE
1096 	 */
1097 rq_starved:
1098 	if (unlikely(rl->count[is_sync] == 0))
1099 		rl->starved[is_sync] = 1;
1100 	return NULL;
1101 }
1102 
1103 /**
1104  * get_request - get a free request
1105  * @q: request_queue to allocate request from
1106  * @rw_flags: RW and SYNC flags
1107  * @bio: bio to allocate request for (can be %NULL)
1108  * @gfp_mask: allocation mask
1109  *
1110  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1111  * function keeps retrying under memory pressure and fails iff @q is dead.
1112  *
1113  * Must be callled with @q->queue_lock held and,
1114  * Returns %NULL on failure, with @q->queue_lock held.
1115  * Returns !%NULL on success, with @q->queue_lock *not held*.
1116  */
1117 static struct request *get_request(struct request_queue *q, int rw_flags,
1118 				   struct bio *bio, gfp_t gfp_mask)
1119 {
1120 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1121 	DEFINE_WAIT(wait);
1122 	struct request_list *rl;
1123 	struct request *rq;
1124 
1125 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1126 retry:
1127 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1128 	if (rq)
1129 		return rq;
1130 
1131 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
1132 		blk_put_rl(rl);
1133 		return NULL;
1134 	}
1135 
1136 	/* wait on @rl and retry */
1137 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1138 				  TASK_UNINTERRUPTIBLE);
1139 
1140 	trace_block_sleeprq(q, bio, rw_flags & 1);
1141 
1142 	spin_unlock_irq(q->queue_lock);
1143 	io_schedule();
1144 
1145 	/*
1146 	 * After sleeping, we become a "batching" process and will be able
1147 	 * to allocate at least one request, and up to a big batch of them
1148 	 * for a small period time.  See ioc_batching, ioc_set_batching
1149 	 */
1150 	ioc_set_batching(q, current->io_context);
1151 
1152 	spin_lock_irq(q->queue_lock);
1153 	finish_wait(&rl->wait[is_sync], &wait);
1154 
1155 	goto retry;
1156 }
1157 
1158 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1159 		gfp_t gfp_mask)
1160 {
1161 	struct request *rq;
1162 
1163 	BUG_ON(rw != READ && rw != WRITE);
1164 
1165 	/* create ioc upfront */
1166 	create_io_context(gfp_mask, q->node);
1167 
1168 	spin_lock_irq(q->queue_lock);
1169 	rq = get_request(q, rw, NULL, gfp_mask);
1170 	if (!rq)
1171 		spin_unlock_irq(q->queue_lock);
1172 	/* q->queue_lock is unlocked at this point */
1173 
1174 	return rq;
1175 }
1176 
1177 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1178 {
1179 	if (q->mq_ops)
1180 		return blk_mq_alloc_request(q, rw, gfp_mask, false);
1181 	else
1182 		return blk_old_get_request(q, rw, gfp_mask);
1183 }
1184 EXPORT_SYMBOL(blk_get_request);
1185 
1186 /**
1187  * blk_make_request - given a bio, allocate a corresponding struct request.
1188  * @q: target request queue
1189  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1190  *        It may be a chained-bio properly constructed by block/bio layer.
1191  * @gfp_mask: gfp flags to be used for memory allocation
1192  *
1193  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1194  * type commands. Where the struct request needs to be farther initialized by
1195  * the caller. It is passed a &struct bio, which describes the memory info of
1196  * the I/O transfer.
1197  *
1198  * The caller of blk_make_request must make sure that bi_io_vec
1199  * are set to describe the memory buffers. That bio_data_dir() will return
1200  * the needed direction of the request. (And all bio's in the passed bio-chain
1201  * are properly set accordingly)
1202  *
1203  * If called under none-sleepable conditions, mapped bio buffers must not
1204  * need bouncing, by calling the appropriate masked or flagged allocator,
1205  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1206  * BUG.
1207  *
1208  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1209  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1210  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1211  * completion of a bio that hasn't been submitted yet, thus resulting in a
1212  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1213  * of bio_alloc(), as that avoids the mempool deadlock.
1214  * If possible a big IO should be split into smaller parts when allocation
1215  * fails. Partial allocation should not be an error, or you risk a live-lock.
1216  */
1217 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1218 				 gfp_t gfp_mask)
1219 {
1220 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1221 
1222 	if (unlikely(!rq))
1223 		return ERR_PTR(-ENOMEM);
1224 
1225 	blk_rq_set_block_pc(rq);
1226 
1227 	for_each_bio(bio) {
1228 		struct bio *bounce_bio = bio;
1229 		int ret;
1230 
1231 		blk_queue_bounce(q, &bounce_bio);
1232 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1233 		if (unlikely(ret)) {
1234 			blk_put_request(rq);
1235 			return ERR_PTR(ret);
1236 		}
1237 	}
1238 
1239 	return rq;
1240 }
1241 EXPORT_SYMBOL(blk_make_request);
1242 
1243 /**
1244  * blk_rq_set_block_pc - initialize a requeest to type BLOCK_PC
1245  * @rq:		request to be initialized
1246  *
1247  */
1248 void blk_rq_set_block_pc(struct request *rq)
1249 {
1250 	rq->cmd_type = REQ_TYPE_BLOCK_PC;
1251 	rq->__data_len = 0;
1252 	rq->__sector = (sector_t) -1;
1253 	rq->bio = rq->biotail = NULL;
1254 	memset(rq->__cmd, 0, sizeof(rq->__cmd));
1255 	rq->cmd = rq->__cmd;
1256 }
1257 EXPORT_SYMBOL(blk_rq_set_block_pc);
1258 
1259 /**
1260  * blk_requeue_request - put a request back on queue
1261  * @q:		request queue where request should be inserted
1262  * @rq:		request to be inserted
1263  *
1264  * Description:
1265  *    Drivers often keep queueing requests until the hardware cannot accept
1266  *    more, when that condition happens we need to put the request back
1267  *    on the queue. Must be called with queue lock held.
1268  */
1269 void blk_requeue_request(struct request_queue *q, struct request *rq)
1270 {
1271 	blk_delete_timer(rq);
1272 	blk_clear_rq_complete(rq);
1273 	trace_block_rq_requeue(q, rq);
1274 
1275 	if (blk_rq_tagged(rq))
1276 		blk_queue_end_tag(q, rq);
1277 
1278 	BUG_ON(blk_queued_rq(rq));
1279 
1280 	elv_requeue_request(q, rq);
1281 }
1282 EXPORT_SYMBOL(blk_requeue_request);
1283 
1284 static void add_acct_request(struct request_queue *q, struct request *rq,
1285 			     int where)
1286 {
1287 	blk_account_io_start(rq, true);
1288 	__elv_add_request(q, rq, where);
1289 }
1290 
1291 static void part_round_stats_single(int cpu, struct hd_struct *part,
1292 				    unsigned long now)
1293 {
1294 	int inflight;
1295 
1296 	if (now == part->stamp)
1297 		return;
1298 
1299 	inflight = part_in_flight(part);
1300 	if (inflight) {
1301 		__part_stat_add(cpu, part, time_in_queue,
1302 				inflight * (now - part->stamp));
1303 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1304 	}
1305 	part->stamp = now;
1306 }
1307 
1308 /**
1309  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1310  * @cpu: cpu number for stats access
1311  * @part: target partition
1312  *
1313  * The average IO queue length and utilisation statistics are maintained
1314  * by observing the current state of the queue length and the amount of
1315  * time it has been in this state for.
1316  *
1317  * Normally, that accounting is done on IO completion, but that can result
1318  * in more than a second's worth of IO being accounted for within any one
1319  * second, leading to >100% utilisation.  To deal with that, we call this
1320  * function to do a round-off before returning the results when reading
1321  * /proc/diskstats.  This accounts immediately for all queue usage up to
1322  * the current jiffies and restarts the counters again.
1323  */
1324 void part_round_stats(int cpu, struct hd_struct *part)
1325 {
1326 	unsigned long now = jiffies;
1327 
1328 	if (part->partno)
1329 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1330 	part_round_stats_single(cpu, part, now);
1331 }
1332 EXPORT_SYMBOL_GPL(part_round_stats);
1333 
1334 #ifdef CONFIG_PM_RUNTIME
1335 static void blk_pm_put_request(struct request *rq)
1336 {
1337 	if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1338 		pm_runtime_mark_last_busy(rq->q->dev);
1339 }
1340 #else
1341 static inline void blk_pm_put_request(struct request *rq) {}
1342 #endif
1343 
1344 /*
1345  * queue lock must be held
1346  */
1347 void __blk_put_request(struct request_queue *q, struct request *req)
1348 {
1349 	if (unlikely(!q))
1350 		return;
1351 
1352 	if (q->mq_ops) {
1353 		blk_mq_free_request(req);
1354 		return;
1355 	}
1356 
1357 	blk_pm_put_request(req);
1358 
1359 	elv_completed_request(q, req);
1360 
1361 	/* this is a bio leak */
1362 	WARN_ON(req->bio != NULL);
1363 
1364 	/*
1365 	 * Request may not have originated from ll_rw_blk. if not,
1366 	 * it didn't come out of our reserved rq pools
1367 	 */
1368 	if (req->cmd_flags & REQ_ALLOCED) {
1369 		unsigned int flags = req->cmd_flags;
1370 		struct request_list *rl = blk_rq_rl(req);
1371 
1372 		BUG_ON(!list_empty(&req->queuelist));
1373 		BUG_ON(ELV_ON_HASH(req));
1374 
1375 		blk_free_request(rl, req);
1376 		freed_request(rl, flags);
1377 		blk_put_rl(rl);
1378 	}
1379 }
1380 EXPORT_SYMBOL_GPL(__blk_put_request);
1381 
1382 void blk_put_request(struct request *req)
1383 {
1384 	struct request_queue *q = req->q;
1385 
1386 	if (q->mq_ops)
1387 		blk_mq_free_request(req);
1388 	else {
1389 		unsigned long flags;
1390 
1391 		spin_lock_irqsave(q->queue_lock, flags);
1392 		__blk_put_request(q, req);
1393 		spin_unlock_irqrestore(q->queue_lock, flags);
1394 	}
1395 }
1396 EXPORT_SYMBOL(blk_put_request);
1397 
1398 /**
1399  * blk_add_request_payload - add a payload to a request
1400  * @rq: request to update
1401  * @page: page backing the payload
1402  * @len: length of the payload.
1403  *
1404  * This allows to later add a payload to an already submitted request by
1405  * a block driver.  The driver needs to take care of freeing the payload
1406  * itself.
1407  *
1408  * Note that this is a quite horrible hack and nothing but handling of
1409  * discard requests should ever use it.
1410  */
1411 void blk_add_request_payload(struct request *rq, struct page *page,
1412 		unsigned int len)
1413 {
1414 	struct bio *bio = rq->bio;
1415 
1416 	bio->bi_io_vec->bv_page = page;
1417 	bio->bi_io_vec->bv_offset = 0;
1418 	bio->bi_io_vec->bv_len = len;
1419 
1420 	bio->bi_iter.bi_size = len;
1421 	bio->bi_vcnt = 1;
1422 	bio->bi_phys_segments = 1;
1423 
1424 	rq->__data_len = rq->resid_len = len;
1425 	rq->nr_phys_segments = 1;
1426 }
1427 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1428 
1429 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1430 			    struct bio *bio)
1431 {
1432 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1433 
1434 	if (!ll_back_merge_fn(q, req, bio))
1435 		return false;
1436 
1437 	trace_block_bio_backmerge(q, req, bio);
1438 
1439 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1440 		blk_rq_set_mixed_merge(req);
1441 
1442 	req->biotail->bi_next = bio;
1443 	req->biotail = bio;
1444 	req->__data_len += bio->bi_iter.bi_size;
1445 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1446 
1447 	blk_account_io_start(req, false);
1448 	return true;
1449 }
1450 
1451 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1452 			     struct bio *bio)
1453 {
1454 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1455 
1456 	if (!ll_front_merge_fn(q, req, bio))
1457 		return false;
1458 
1459 	trace_block_bio_frontmerge(q, req, bio);
1460 
1461 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1462 		blk_rq_set_mixed_merge(req);
1463 
1464 	bio->bi_next = req->bio;
1465 	req->bio = bio;
1466 
1467 	req->__sector = bio->bi_iter.bi_sector;
1468 	req->__data_len += bio->bi_iter.bi_size;
1469 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1470 
1471 	blk_account_io_start(req, false);
1472 	return true;
1473 }
1474 
1475 /**
1476  * blk_attempt_plug_merge - try to merge with %current's plugged list
1477  * @q: request_queue new bio is being queued at
1478  * @bio: new bio being queued
1479  * @request_count: out parameter for number of traversed plugged requests
1480  *
1481  * Determine whether @bio being queued on @q can be merged with a request
1482  * on %current's plugged list.  Returns %true if merge was successful,
1483  * otherwise %false.
1484  *
1485  * Plugging coalesces IOs from the same issuer for the same purpose without
1486  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1487  * than scheduling, and the request, while may have elvpriv data, is not
1488  * added on the elevator at this point.  In addition, we don't have
1489  * reliable access to the elevator outside queue lock.  Only check basic
1490  * merging parameters without querying the elevator.
1491  *
1492  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1493  */
1494 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1495 			    unsigned int *request_count)
1496 {
1497 	struct blk_plug *plug;
1498 	struct request *rq;
1499 	bool ret = false;
1500 	struct list_head *plug_list;
1501 
1502 	plug = current->plug;
1503 	if (!plug)
1504 		goto out;
1505 	*request_count = 0;
1506 
1507 	if (q->mq_ops)
1508 		plug_list = &plug->mq_list;
1509 	else
1510 		plug_list = &plug->list;
1511 
1512 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1513 		int el_ret;
1514 
1515 		if (rq->q == q)
1516 			(*request_count)++;
1517 
1518 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1519 			continue;
1520 
1521 		el_ret = blk_try_merge(rq, bio);
1522 		if (el_ret == ELEVATOR_BACK_MERGE) {
1523 			ret = bio_attempt_back_merge(q, rq, bio);
1524 			if (ret)
1525 				break;
1526 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1527 			ret = bio_attempt_front_merge(q, rq, bio);
1528 			if (ret)
1529 				break;
1530 		}
1531 	}
1532 out:
1533 	return ret;
1534 }
1535 
1536 void init_request_from_bio(struct request *req, struct bio *bio)
1537 {
1538 	req->cmd_type = REQ_TYPE_FS;
1539 
1540 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1541 	if (bio->bi_rw & REQ_RAHEAD)
1542 		req->cmd_flags |= REQ_FAILFAST_MASK;
1543 
1544 	req->errors = 0;
1545 	req->__sector = bio->bi_iter.bi_sector;
1546 	req->ioprio = bio_prio(bio);
1547 	blk_rq_bio_prep(req->q, req, bio);
1548 }
1549 
1550 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1551 {
1552 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1553 	struct blk_plug *plug;
1554 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1555 	struct request *req;
1556 	unsigned int request_count = 0;
1557 
1558 	/*
1559 	 * low level driver can indicate that it wants pages above a
1560 	 * certain limit bounced to low memory (ie for highmem, or even
1561 	 * ISA dma in theory)
1562 	 */
1563 	blk_queue_bounce(q, &bio);
1564 
1565 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1566 		bio_endio(bio, -EIO);
1567 		return;
1568 	}
1569 
1570 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1571 		spin_lock_irq(q->queue_lock);
1572 		where = ELEVATOR_INSERT_FLUSH;
1573 		goto get_rq;
1574 	}
1575 
1576 	/*
1577 	 * Check if we can merge with the plugged list before grabbing
1578 	 * any locks.
1579 	 */
1580 	if (!blk_queue_nomerges(q) &&
1581 	    blk_attempt_plug_merge(q, bio, &request_count))
1582 		return;
1583 
1584 	spin_lock_irq(q->queue_lock);
1585 
1586 	el_ret = elv_merge(q, &req, bio);
1587 	if (el_ret == ELEVATOR_BACK_MERGE) {
1588 		if (bio_attempt_back_merge(q, req, bio)) {
1589 			elv_bio_merged(q, req, bio);
1590 			if (!attempt_back_merge(q, req))
1591 				elv_merged_request(q, req, el_ret);
1592 			goto out_unlock;
1593 		}
1594 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1595 		if (bio_attempt_front_merge(q, req, bio)) {
1596 			elv_bio_merged(q, req, bio);
1597 			if (!attempt_front_merge(q, req))
1598 				elv_merged_request(q, req, el_ret);
1599 			goto out_unlock;
1600 		}
1601 	}
1602 
1603 get_rq:
1604 	/*
1605 	 * This sync check and mask will be re-done in init_request_from_bio(),
1606 	 * but we need to set it earlier to expose the sync flag to the
1607 	 * rq allocator and io schedulers.
1608 	 */
1609 	rw_flags = bio_data_dir(bio);
1610 	if (sync)
1611 		rw_flags |= REQ_SYNC;
1612 
1613 	/*
1614 	 * Grab a free request. This is might sleep but can not fail.
1615 	 * Returns with the queue unlocked.
1616 	 */
1617 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1618 	if (unlikely(!req)) {
1619 		bio_endio(bio, -ENODEV);	/* @q is dead */
1620 		goto out_unlock;
1621 	}
1622 
1623 	/*
1624 	 * After dropping the lock and possibly sleeping here, our request
1625 	 * may now be mergeable after it had proven unmergeable (above).
1626 	 * We don't worry about that case for efficiency. It won't happen
1627 	 * often, and the elevators are able to handle it.
1628 	 */
1629 	init_request_from_bio(req, bio);
1630 
1631 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1632 		req->cpu = raw_smp_processor_id();
1633 
1634 	plug = current->plug;
1635 	if (plug) {
1636 		/*
1637 		 * If this is the first request added after a plug, fire
1638 		 * of a plug trace.
1639 		 */
1640 		if (!request_count)
1641 			trace_block_plug(q);
1642 		else {
1643 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1644 				blk_flush_plug_list(plug, false);
1645 				trace_block_plug(q);
1646 			}
1647 		}
1648 		list_add_tail(&req->queuelist, &plug->list);
1649 		blk_account_io_start(req, true);
1650 	} else {
1651 		spin_lock_irq(q->queue_lock);
1652 		add_acct_request(q, req, where);
1653 		__blk_run_queue(q);
1654 out_unlock:
1655 		spin_unlock_irq(q->queue_lock);
1656 	}
1657 }
1658 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1659 
1660 /*
1661  * If bio->bi_dev is a partition, remap the location
1662  */
1663 static inline void blk_partition_remap(struct bio *bio)
1664 {
1665 	struct block_device *bdev = bio->bi_bdev;
1666 
1667 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1668 		struct hd_struct *p = bdev->bd_part;
1669 
1670 		bio->bi_iter.bi_sector += p->start_sect;
1671 		bio->bi_bdev = bdev->bd_contains;
1672 
1673 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1674 				      bdev->bd_dev,
1675 				      bio->bi_iter.bi_sector - p->start_sect);
1676 	}
1677 }
1678 
1679 static void handle_bad_sector(struct bio *bio)
1680 {
1681 	char b[BDEVNAME_SIZE];
1682 
1683 	printk(KERN_INFO "attempt to access beyond end of device\n");
1684 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1685 			bdevname(bio->bi_bdev, b),
1686 			bio->bi_rw,
1687 			(unsigned long long)bio_end_sector(bio),
1688 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1689 
1690 	set_bit(BIO_EOF, &bio->bi_flags);
1691 }
1692 
1693 #ifdef CONFIG_FAIL_MAKE_REQUEST
1694 
1695 static DECLARE_FAULT_ATTR(fail_make_request);
1696 
1697 static int __init setup_fail_make_request(char *str)
1698 {
1699 	return setup_fault_attr(&fail_make_request, str);
1700 }
1701 __setup("fail_make_request=", setup_fail_make_request);
1702 
1703 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1704 {
1705 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1706 }
1707 
1708 static int __init fail_make_request_debugfs(void)
1709 {
1710 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1711 						NULL, &fail_make_request);
1712 
1713 	return PTR_ERR_OR_ZERO(dir);
1714 }
1715 
1716 late_initcall(fail_make_request_debugfs);
1717 
1718 #else /* CONFIG_FAIL_MAKE_REQUEST */
1719 
1720 static inline bool should_fail_request(struct hd_struct *part,
1721 					unsigned int bytes)
1722 {
1723 	return false;
1724 }
1725 
1726 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1727 
1728 /*
1729  * Check whether this bio extends beyond the end of the device.
1730  */
1731 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1732 {
1733 	sector_t maxsector;
1734 
1735 	if (!nr_sectors)
1736 		return 0;
1737 
1738 	/* Test device or partition size, when known. */
1739 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1740 	if (maxsector) {
1741 		sector_t sector = bio->bi_iter.bi_sector;
1742 
1743 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1744 			/*
1745 			 * This may well happen - the kernel calls bread()
1746 			 * without checking the size of the device, e.g., when
1747 			 * mounting a device.
1748 			 */
1749 			handle_bad_sector(bio);
1750 			return 1;
1751 		}
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static noinline_for_stack bool
1758 generic_make_request_checks(struct bio *bio)
1759 {
1760 	struct request_queue *q;
1761 	int nr_sectors = bio_sectors(bio);
1762 	int err = -EIO;
1763 	char b[BDEVNAME_SIZE];
1764 	struct hd_struct *part;
1765 
1766 	might_sleep();
1767 
1768 	if (bio_check_eod(bio, nr_sectors))
1769 		goto end_io;
1770 
1771 	q = bdev_get_queue(bio->bi_bdev);
1772 	if (unlikely(!q)) {
1773 		printk(KERN_ERR
1774 		       "generic_make_request: Trying to access "
1775 			"nonexistent block-device %s (%Lu)\n",
1776 			bdevname(bio->bi_bdev, b),
1777 			(long long) bio->bi_iter.bi_sector);
1778 		goto end_io;
1779 	}
1780 
1781 	if (likely(bio_is_rw(bio) &&
1782 		   nr_sectors > queue_max_hw_sectors(q))) {
1783 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1784 		       bdevname(bio->bi_bdev, b),
1785 		       bio_sectors(bio),
1786 		       queue_max_hw_sectors(q));
1787 		goto end_io;
1788 	}
1789 
1790 	part = bio->bi_bdev->bd_part;
1791 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1792 	    should_fail_request(&part_to_disk(part)->part0,
1793 				bio->bi_iter.bi_size))
1794 		goto end_io;
1795 
1796 	/*
1797 	 * If this device has partitions, remap block n
1798 	 * of partition p to block n+start(p) of the disk.
1799 	 */
1800 	blk_partition_remap(bio);
1801 
1802 	if (bio_check_eod(bio, nr_sectors))
1803 		goto end_io;
1804 
1805 	/*
1806 	 * Filter flush bio's early so that make_request based
1807 	 * drivers without flush support don't have to worry
1808 	 * about them.
1809 	 */
1810 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1811 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1812 		if (!nr_sectors) {
1813 			err = 0;
1814 			goto end_io;
1815 		}
1816 	}
1817 
1818 	if ((bio->bi_rw & REQ_DISCARD) &&
1819 	    (!blk_queue_discard(q) ||
1820 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1821 		err = -EOPNOTSUPP;
1822 		goto end_io;
1823 	}
1824 
1825 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1826 		err = -EOPNOTSUPP;
1827 		goto end_io;
1828 	}
1829 
1830 	/*
1831 	 * Various block parts want %current->io_context and lazy ioc
1832 	 * allocation ends up trading a lot of pain for a small amount of
1833 	 * memory.  Just allocate it upfront.  This may fail and block
1834 	 * layer knows how to live with it.
1835 	 */
1836 	create_io_context(GFP_ATOMIC, q->node);
1837 
1838 	if (blk_throtl_bio(q, bio))
1839 		return false;	/* throttled, will be resubmitted later */
1840 
1841 	trace_block_bio_queue(q, bio);
1842 	return true;
1843 
1844 end_io:
1845 	bio_endio(bio, err);
1846 	return false;
1847 }
1848 
1849 /**
1850  * generic_make_request - hand a buffer to its device driver for I/O
1851  * @bio:  The bio describing the location in memory and on the device.
1852  *
1853  * generic_make_request() is used to make I/O requests of block
1854  * devices. It is passed a &struct bio, which describes the I/O that needs
1855  * to be done.
1856  *
1857  * generic_make_request() does not return any status.  The
1858  * success/failure status of the request, along with notification of
1859  * completion, is delivered asynchronously through the bio->bi_end_io
1860  * function described (one day) else where.
1861  *
1862  * The caller of generic_make_request must make sure that bi_io_vec
1863  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1864  * set to describe the device address, and the
1865  * bi_end_io and optionally bi_private are set to describe how
1866  * completion notification should be signaled.
1867  *
1868  * generic_make_request and the drivers it calls may use bi_next if this
1869  * bio happens to be merged with someone else, and may resubmit the bio to
1870  * a lower device by calling into generic_make_request recursively, which
1871  * means the bio should NOT be touched after the call to ->make_request_fn.
1872  */
1873 void generic_make_request(struct bio *bio)
1874 {
1875 	struct bio_list bio_list_on_stack;
1876 
1877 	if (!generic_make_request_checks(bio))
1878 		return;
1879 
1880 	/*
1881 	 * We only want one ->make_request_fn to be active at a time, else
1882 	 * stack usage with stacked devices could be a problem.  So use
1883 	 * current->bio_list to keep a list of requests submited by a
1884 	 * make_request_fn function.  current->bio_list is also used as a
1885 	 * flag to say if generic_make_request is currently active in this
1886 	 * task or not.  If it is NULL, then no make_request is active.  If
1887 	 * it is non-NULL, then a make_request is active, and new requests
1888 	 * should be added at the tail
1889 	 */
1890 	if (current->bio_list) {
1891 		bio_list_add(current->bio_list, bio);
1892 		return;
1893 	}
1894 
1895 	/* following loop may be a bit non-obvious, and so deserves some
1896 	 * explanation.
1897 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1898 	 * ensure that) so we have a list with a single bio.
1899 	 * We pretend that we have just taken it off a longer list, so
1900 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1901 	 * thus initialising the bio_list of new bios to be
1902 	 * added.  ->make_request() may indeed add some more bios
1903 	 * through a recursive call to generic_make_request.  If it
1904 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1905 	 * from the top.  In this case we really did just take the bio
1906 	 * of the top of the list (no pretending) and so remove it from
1907 	 * bio_list, and call into ->make_request() again.
1908 	 */
1909 	BUG_ON(bio->bi_next);
1910 	bio_list_init(&bio_list_on_stack);
1911 	current->bio_list = &bio_list_on_stack;
1912 	do {
1913 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1914 
1915 		q->make_request_fn(q, bio);
1916 
1917 		bio = bio_list_pop(current->bio_list);
1918 	} while (bio);
1919 	current->bio_list = NULL; /* deactivate */
1920 }
1921 EXPORT_SYMBOL(generic_make_request);
1922 
1923 /**
1924  * submit_bio - submit a bio to the block device layer for I/O
1925  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1926  * @bio: The &struct bio which describes the I/O
1927  *
1928  * submit_bio() is very similar in purpose to generic_make_request(), and
1929  * uses that function to do most of the work. Both are fairly rough
1930  * interfaces; @bio must be presetup and ready for I/O.
1931  *
1932  */
1933 void submit_bio(int rw, struct bio *bio)
1934 {
1935 	bio->bi_rw |= rw;
1936 
1937 	/*
1938 	 * If it's a regular read/write or a barrier with data attached,
1939 	 * go through the normal accounting stuff before submission.
1940 	 */
1941 	if (bio_has_data(bio)) {
1942 		unsigned int count;
1943 
1944 		if (unlikely(rw & REQ_WRITE_SAME))
1945 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1946 		else
1947 			count = bio_sectors(bio);
1948 
1949 		if (rw & WRITE) {
1950 			count_vm_events(PGPGOUT, count);
1951 		} else {
1952 			task_io_account_read(bio->bi_iter.bi_size);
1953 			count_vm_events(PGPGIN, count);
1954 		}
1955 
1956 		if (unlikely(block_dump)) {
1957 			char b[BDEVNAME_SIZE];
1958 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1959 			current->comm, task_pid_nr(current),
1960 				(rw & WRITE) ? "WRITE" : "READ",
1961 				(unsigned long long)bio->bi_iter.bi_sector,
1962 				bdevname(bio->bi_bdev, b),
1963 				count);
1964 		}
1965 	}
1966 
1967 	generic_make_request(bio);
1968 }
1969 EXPORT_SYMBOL(submit_bio);
1970 
1971 /**
1972  * blk_rq_check_limits - Helper function to check a request for the queue limit
1973  * @q:  the queue
1974  * @rq: the request being checked
1975  *
1976  * Description:
1977  *    @rq may have been made based on weaker limitations of upper-level queues
1978  *    in request stacking drivers, and it may violate the limitation of @q.
1979  *    Since the block layer and the underlying device driver trust @rq
1980  *    after it is inserted to @q, it should be checked against @q before
1981  *    the insertion using this generic function.
1982  *
1983  *    This function should also be useful for request stacking drivers
1984  *    in some cases below, so export this function.
1985  *    Request stacking drivers like request-based dm may change the queue
1986  *    limits while requests are in the queue (e.g. dm's table swapping).
1987  *    Such request stacking drivers should check those requests against
1988  *    the new queue limits again when they dispatch those requests,
1989  *    although such checkings are also done against the old queue limits
1990  *    when submitting requests.
1991  */
1992 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1993 {
1994 	if (!rq_mergeable(rq))
1995 		return 0;
1996 
1997 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1998 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1999 		return -EIO;
2000 	}
2001 
2002 	/*
2003 	 * queue's settings related to segment counting like q->bounce_pfn
2004 	 * may differ from that of other stacking queues.
2005 	 * Recalculate it to check the request correctly on this queue's
2006 	 * limitation.
2007 	 */
2008 	blk_recalc_rq_segments(rq);
2009 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2010 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2011 		return -EIO;
2012 	}
2013 
2014 	return 0;
2015 }
2016 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
2017 
2018 /**
2019  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2020  * @q:  the queue to submit the request
2021  * @rq: the request being queued
2022  */
2023 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2024 {
2025 	unsigned long flags;
2026 	int where = ELEVATOR_INSERT_BACK;
2027 
2028 	if (blk_rq_check_limits(q, rq))
2029 		return -EIO;
2030 
2031 	if (rq->rq_disk &&
2032 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2033 		return -EIO;
2034 
2035 	spin_lock_irqsave(q->queue_lock, flags);
2036 	if (unlikely(blk_queue_dying(q))) {
2037 		spin_unlock_irqrestore(q->queue_lock, flags);
2038 		return -ENODEV;
2039 	}
2040 
2041 	/*
2042 	 * Submitting request must be dequeued before calling this function
2043 	 * because it will be linked to another request_queue
2044 	 */
2045 	BUG_ON(blk_queued_rq(rq));
2046 
2047 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
2048 		where = ELEVATOR_INSERT_FLUSH;
2049 
2050 	add_acct_request(q, rq, where);
2051 	if (where == ELEVATOR_INSERT_FLUSH)
2052 		__blk_run_queue(q);
2053 	spin_unlock_irqrestore(q->queue_lock, flags);
2054 
2055 	return 0;
2056 }
2057 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2058 
2059 /**
2060  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2061  * @rq: request to examine
2062  *
2063  * Description:
2064  *     A request could be merge of IOs which require different failure
2065  *     handling.  This function determines the number of bytes which
2066  *     can be failed from the beginning of the request without
2067  *     crossing into area which need to be retried further.
2068  *
2069  * Return:
2070  *     The number of bytes to fail.
2071  *
2072  * Context:
2073  *     queue_lock must be held.
2074  */
2075 unsigned int blk_rq_err_bytes(const struct request *rq)
2076 {
2077 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2078 	unsigned int bytes = 0;
2079 	struct bio *bio;
2080 
2081 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2082 		return blk_rq_bytes(rq);
2083 
2084 	/*
2085 	 * Currently the only 'mixing' which can happen is between
2086 	 * different fastfail types.  We can safely fail portions
2087 	 * which have all the failfast bits that the first one has -
2088 	 * the ones which are at least as eager to fail as the first
2089 	 * one.
2090 	 */
2091 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2092 		if ((bio->bi_rw & ff) != ff)
2093 			break;
2094 		bytes += bio->bi_iter.bi_size;
2095 	}
2096 
2097 	/* this could lead to infinite loop */
2098 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2099 	return bytes;
2100 }
2101 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2102 
2103 void blk_account_io_completion(struct request *req, unsigned int bytes)
2104 {
2105 	if (blk_do_io_stat(req)) {
2106 		const int rw = rq_data_dir(req);
2107 		struct hd_struct *part;
2108 		int cpu;
2109 
2110 		cpu = part_stat_lock();
2111 		part = req->part;
2112 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2113 		part_stat_unlock();
2114 	}
2115 }
2116 
2117 void blk_account_io_done(struct request *req)
2118 {
2119 	/*
2120 	 * Account IO completion.  flush_rq isn't accounted as a
2121 	 * normal IO on queueing nor completion.  Accounting the
2122 	 * containing request is enough.
2123 	 */
2124 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2125 		unsigned long duration = jiffies - req->start_time;
2126 		const int rw = rq_data_dir(req);
2127 		struct hd_struct *part;
2128 		int cpu;
2129 
2130 		cpu = part_stat_lock();
2131 		part = req->part;
2132 
2133 		part_stat_inc(cpu, part, ios[rw]);
2134 		part_stat_add(cpu, part, ticks[rw], duration);
2135 		part_round_stats(cpu, part);
2136 		part_dec_in_flight(part, rw);
2137 
2138 		hd_struct_put(part);
2139 		part_stat_unlock();
2140 	}
2141 }
2142 
2143 #ifdef CONFIG_PM_RUNTIME
2144 /*
2145  * Don't process normal requests when queue is suspended
2146  * or in the process of suspending/resuming
2147  */
2148 static struct request *blk_pm_peek_request(struct request_queue *q,
2149 					   struct request *rq)
2150 {
2151 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2152 	    (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2153 		return NULL;
2154 	else
2155 		return rq;
2156 }
2157 #else
2158 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2159 						  struct request *rq)
2160 {
2161 	return rq;
2162 }
2163 #endif
2164 
2165 void blk_account_io_start(struct request *rq, bool new_io)
2166 {
2167 	struct hd_struct *part;
2168 	int rw = rq_data_dir(rq);
2169 	int cpu;
2170 
2171 	if (!blk_do_io_stat(rq))
2172 		return;
2173 
2174 	cpu = part_stat_lock();
2175 
2176 	if (!new_io) {
2177 		part = rq->part;
2178 		part_stat_inc(cpu, part, merges[rw]);
2179 	} else {
2180 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2181 		if (!hd_struct_try_get(part)) {
2182 			/*
2183 			 * The partition is already being removed,
2184 			 * the request will be accounted on the disk only
2185 			 *
2186 			 * We take a reference on disk->part0 although that
2187 			 * partition will never be deleted, so we can treat
2188 			 * it as any other partition.
2189 			 */
2190 			part = &rq->rq_disk->part0;
2191 			hd_struct_get(part);
2192 		}
2193 		part_round_stats(cpu, part);
2194 		part_inc_in_flight(part, rw);
2195 		rq->part = part;
2196 	}
2197 
2198 	part_stat_unlock();
2199 }
2200 
2201 /**
2202  * blk_peek_request - peek at the top of a request queue
2203  * @q: request queue to peek at
2204  *
2205  * Description:
2206  *     Return the request at the top of @q.  The returned request
2207  *     should be started using blk_start_request() before LLD starts
2208  *     processing it.
2209  *
2210  * Return:
2211  *     Pointer to the request at the top of @q if available.  Null
2212  *     otherwise.
2213  *
2214  * Context:
2215  *     queue_lock must be held.
2216  */
2217 struct request *blk_peek_request(struct request_queue *q)
2218 {
2219 	struct request *rq;
2220 	int ret;
2221 
2222 	while ((rq = __elv_next_request(q)) != NULL) {
2223 
2224 		rq = blk_pm_peek_request(q, rq);
2225 		if (!rq)
2226 			break;
2227 
2228 		if (!(rq->cmd_flags & REQ_STARTED)) {
2229 			/*
2230 			 * This is the first time the device driver
2231 			 * sees this request (possibly after
2232 			 * requeueing).  Notify IO scheduler.
2233 			 */
2234 			if (rq->cmd_flags & REQ_SORTED)
2235 				elv_activate_rq(q, rq);
2236 
2237 			/*
2238 			 * just mark as started even if we don't start
2239 			 * it, a request that has been delayed should
2240 			 * not be passed by new incoming requests
2241 			 */
2242 			rq->cmd_flags |= REQ_STARTED;
2243 			trace_block_rq_issue(q, rq);
2244 		}
2245 
2246 		if (!q->boundary_rq || q->boundary_rq == rq) {
2247 			q->end_sector = rq_end_sector(rq);
2248 			q->boundary_rq = NULL;
2249 		}
2250 
2251 		if (rq->cmd_flags & REQ_DONTPREP)
2252 			break;
2253 
2254 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2255 			/*
2256 			 * make sure space for the drain appears we
2257 			 * know we can do this because max_hw_segments
2258 			 * has been adjusted to be one fewer than the
2259 			 * device can handle
2260 			 */
2261 			rq->nr_phys_segments++;
2262 		}
2263 
2264 		if (!q->prep_rq_fn)
2265 			break;
2266 
2267 		ret = q->prep_rq_fn(q, rq);
2268 		if (ret == BLKPREP_OK) {
2269 			break;
2270 		} else if (ret == BLKPREP_DEFER) {
2271 			/*
2272 			 * the request may have been (partially) prepped.
2273 			 * we need to keep this request in the front to
2274 			 * avoid resource deadlock.  REQ_STARTED will
2275 			 * prevent other fs requests from passing this one.
2276 			 */
2277 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2278 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2279 				/*
2280 				 * remove the space for the drain we added
2281 				 * so that we don't add it again
2282 				 */
2283 				--rq->nr_phys_segments;
2284 			}
2285 
2286 			rq = NULL;
2287 			break;
2288 		} else if (ret == BLKPREP_KILL) {
2289 			rq->cmd_flags |= REQ_QUIET;
2290 			/*
2291 			 * Mark this request as started so we don't trigger
2292 			 * any debug logic in the end I/O path.
2293 			 */
2294 			blk_start_request(rq);
2295 			__blk_end_request_all(rq, -EIO);
2296 		} else {
2297 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2298 			break;
2299 		}
2300 	}
2301 
2302 	return rq;
2303 }
2304 EXPORT_SYMBOL(blk_peek_request);
2305 
2306 void blk_dequeue_request(struct request *rq)
2307 {
2308 	struct request_queue *q = rq->q;
2309 
2310 	BUG_ON(list_empty(&rq->queuelist));
2311 	BUG_ON(ELV_ON_HASH(rq));
2312 
2313 	list_del_init(&rq->queuelist);
2314 
2315 	/*
2316 	 * the time frame between a request being removed from the lists
2317 	 * and to it is freed is accounted as io that is in progress at
2318 	 * the driver side.
2319 	 */
2320 	if (blk_account_rq(rq)) {
2321 		q->in_flight[rq_is_sync(rq)]++;
2322 		set_io_start_time_ns(rq);
2323 	}
2324 }
2325 
2326 /**
2327  * blk_start_request - start request processing on the driver
2328  * @req: request to dequeue
2329  *
2330  * Description:
2331  *     Dequeue @req and start timeout timer on it.  This hands off the
2332  *     request to the driver.
2333  *
2334  *     Block internal functions which don't want to start timer should
2335  *     call blk_dequeue_request().
2336  *
2337  * Context:
2338  *     queue_lock must be held.
2339  */
2340 void blk_start_request(struct request *req)
2341 {
2342 	blk_dequeue_request(req);
2343 
2344 	/*
2345 	 * We are now handing the request to the hardware, initialize
2346 	 * resid_len to full count and add the timeout handler.
2347 	 */
2348 	req->resid_len = blk_rq_bytes(req);
2349 	if (unlikely(blk_bidi_rq(req)))
2350 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2351 
2352 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2353 	blk_add_timer(req);
2354 }
2355 EXPORT_SYMBOL(blk_start_request);
2356 
2357 /**
2358  * blk_fetch_request - fetch a request from a request queue
2359  * @q: request queue to fetch a request from
2360  *
2361  * Description:
2362  *     Return the request at the top of @q.  The request is started on
2363  *     return and LLD can start processing it immediately.
2364  *
2365  * Return:
2366  *     Pointer to the request at the top of @q if available.  Null
2367  *     otherwise.
2368  *
2369  * Context:
2370  *     queue_lock must be held.
2371  */
2372 struct request *blk_fetch_request(struct request_queue *q)
2373 {
2374 	struct request *rq;
2375 
2376 	rq = blk_peek_request(q);
2377 	if (rq)
2378 		blk_start_request(rq);
2379 	return rq;
2380 }
2381 EXPORT_SYMBOL(blk_fetch_request);
2382 
2383 /**
2384  * blk_update_request - Special helper function for request stacking drivers
2385  * @req:      the request being processed
2386  * @error:    %0 for success, < %0 for error
2387  * @nr_bytes: number of bytes to complete @req
2388  *
2389  * Description:
2390  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2391  *     the request structure even if @req doesn't have leftover.
2392  *     If @req has leftover, sets it up for the next range of segments.
2393  *
2394  *     This special helper function is only for request stacking drivers
2395  *     (e.g. request-based dm) so that they can handle partial completion.
2396  *     Actual device drivers should use blk_end_request instead.
2397  *
2398  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2399  *     %false return from this function.
2400  *
2401  * Return:
2402  *     %false - this request doesn't have any more data
2403  *     %true  - this request has more data
2404  **/
2405 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2406 {
2407 	int total_bytes;
2408 
2409 	if (!req->bio)
2410 		return false;
2411 
2412 	trace_block_rq_complete(req->q, req, nr_bytes);
2413 
2414 	/*
2415 	 * For fs requests, rq is just carrier of independent bio's
2416 	 * and each partial completion should be handled separately.
2417 	 * Reset per-request error on each partial completion.
2418 	 *
2419 	 * TODO: tj: This is too subtle.  It would be better to let
2420 	 * low level drivers do what they see fit.
2421 	 */
2422 	if (req->cmd_type == REQ_TYPE_FS)
2423 		req->errors = 0;
2424 
2425 	if (error && req->cmd_type == REQ_TYPE_FS &&
2426 	    !(req->cmd_flags & REQ_QUIET)) {
2427 		char *error_type;
2428 
2429 		switch (error) {
2430 		case -ENOLINK:
2431 			error_type = "recoverable transport";
2432 			break;
2433 		case -EREMOTEIO:
2434 			error_type = "critical target";
2435 			break;
2436 		case -EBADE:
2437 			error_type = "critical nexus";
2438 			break;
2439 		case -ETIMEDOUT:
2440 			error_type = "timeout";
2441 			break;
2442 		case -ENOSPC:
2443 			error_type = "critical space allocation";
2444 			break;
2445 		case -ENODATA:
2446 			error_type = "critical medium";
2447 			break;
2448 		case -EIO:
2449 		default:
2450 			error_type = "I/O";
2451 			break;
2452 		}
2453 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2454 				   error_type, req->rq_disk ?
2455 				   req->rq_disk->disk_name : "?",
2456 				   (unsigned long long)blk_rq_pos(req));
2457 
2458 	}
2459 
2460 	blk_account_io_completion(req, nr_bytes);
2461 
2462 	total_bytes = 0;
2463 	while (req->bio) {
2464 		struct bio *bio = req->bio;
2465 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2466 
2467 		if (bio_bytes == bio->bi_iter.bi_size)
2468 			req->bio = bio->bi_next;
2469 
2470 		req_bio_endio(req, bio, bio_bytes, error);
2471 
2472 		total_bytes += bio_bytes;
2473 		nr_bytes -= bio_bytes;
2474 
2475 		if (!nr_bytes)
2476 			break;
2477 	}
2478 
2479 	/*
2480 	 * completely done
2481 	 */
2482 	if (!req->bio) {
2483 		/*
2484 		 * Reset counters so that the request stacking driver
2485 		 * can find how many bytes remain in the request
2486 		 * later.
2487 		 */
2488 		req->__data_len = 0;
2489 		return false;
2490 	}
2491 
2492 	req->__data_len -= total_bytes;
2493 
2494 	/* update sector only for requests with clear definition of sector */
2495 	if (req->cmd_type == REQ_TYPE_FS)
2496 		req->__sector += total_bytes >> 9;
2497 
2498 	/* mixed attributes always follow the first bio */
2499 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2500 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2501 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2502 	}
2503 
2504 	/*
2505 	 * If total number of sectors is less than the first segment
2506 	 * size, something has gone terribly wrong.
2507 	 */
2508 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2509 		blk_dump_rq_flags(req, "request botched");
2510 		req->__data_len = blk_rq_cur_bytes(req);
2511 	}
2512 
2513 	/* recalculate the number of segments */
2514 	blk_recalc_rq_segments(req);
2515 
2516 	return true;
2517 }
2518 EXPORT_SYMBOL_GPL(blk_update_request);
2519 
2520 static bool blk_update_bidi_request(struct request *rq, int error,
2521 				    unsigned int nr_bytes,
2522 				    unsigned int bidi_bytes)
2523 {
2524 	if (blk_update_request(rq, error, nr_bytes))
2525 		return true;
2526 
2527 	/* Bidi request must be completed as a whole */
2528 	if (unlikely(blk_bidi_rq(rq)) &&
2529 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2530 		return true;
2531 
2532 	if (blk_queue_add_random(rq->q))
2533 		add_disk_randomness(rq->rq_disk);
2534 
2535 	return false;
2536 }
2537 
2538 /**
2539  * blk_unprep_request - unprepare a request
2540  * @req:	the request
2541  *
2542  * This function makes a request ready for complete resubmission (or
2543  * completion).  It happens only after all error handling is complete,
2544  * so represents the appropriate moment to deallocate any resources
2545  * that were allocated to the request in the prep_rq_fn.  The queue
2546  * lock is held when calling this.
2547  */
2548 void blk_unprep_request(struct request *req)
2549 {
2550 	struct request_queue *q = req->q;
2551 
2552 	req->cmd_flags &= ~REQ_DONTPREP;
2553 	if (q->unprep_rq_fn)
2554 		q->unprep_rq_fn(q, req);
2555 }
2556 EXPORT_SYMBOL_GPL(blk_unprep_request);
2557 
2558 /*
2559  * queue lock must be held
2560  */
2561 void blk_finish_request(struct request *req, int error)
2562 {
2563 	if (blk_rq_tagged(req))
2564 		blk_queue_end_tag(req->q, req);
2565 
2566 	BUG_ON(blk_queued_rq(req));
2567 
2568 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2569 		laptop_io_completion(&req->q->backing_dev_info);
2570 
2571 	blk_delete_timer(req);
2572 
2573 	if (req->cmd_flags & REQ_DONTPREP)
2574 		blk_unprep_request(req);
2575 
2576 	blk_account_io_done(req);
2577 
2578 	if (req->end_io)
2579 		req->end_io(req, error);
2580 	else {
2581 		if (blk_bidi_rq(req))
2582 			__blk_put_request(req->next_rq->q, req->next_rq);
2583 
2584 		__blk_put_request(req->q, req);
2585 	}
2586 }
2587 EXPORT_SYMBOL(blk_finish_request);
2588 
2589 /**
2590  * blk_end_bidi_request - Complete a bidi request
2591  * @rq:         the request to complete
2592  * @error:      %0 for success, < %0 for error
2593  * @nr_bytes:   number of bytes to complete @rq
2594  * @bidi_bytes: number of bytes to complete @rq->next_rq
2595  *
2596  * Description:
2597  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2598  *     Drivers that supports bidi can safely call this member for any
2599  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2600  *     just ignored.
2601  *
2602  * Return:
2603  *     %false - we are done with this request
2604  *     %true  - still buffers pending for this request
2605  **/
2606 static bool blk_end_bidi_request(struct request *rq, int error,
2607 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2608 {
2609 	struct request_queue *q = rq->q;
2610 	unsigned long flags;
2611 
2612 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2613 		return true;
2614 
2615 	spin_lock_irqsave(q->queue_lock, flags);
2616 	blk_finish_request(rq, error);
2617 	spin_unlock_irqrestore(q->queue_lock, flags);
2618 
2619 	return false;
2620 }
2621 
2622 /**
2623  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2624  * @rq:         the request to complete
2625  * @error:      %0 for success, < %0 for error
2626  * @nr_bytes:   number of bytes to complete @rq
2627  * @bidi_bytes: number of bytes to complete @rq->next_rq
2628  *
2629  * Description:
2630  *     Identical to blk_end_bidi_request() except that queue lock is
2631  *     assumed to be locked on entry and remains so on return.
2632  *
2633  * Return:
2634  *     %false - we are done with this request
2635  *     %true  - still buffers pending for this request
2636  **/
2637 bool __blk_end_bidi_request(struct request *rq, int error,
2638 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2639 {
2640 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2641 		return true;
2642 
2643 	blk_finish_request(rq, error);
2644 
2645 	return false;
2646 }
2647 
2648 /**
2649  * blk_end_request - Helper function for drivers to complete the request.
2650  * @rq:       the request being processed
2651  * @error:    %0 for success, < %0 for error
2652  * @nr_bytes: number of bytes to complete
2653  *
2654  * Description:
2655  *     Ends I/O on a number of bytes attached to @rq.
2656  *     If @rq has leftover, sets it up for the next range of segments.
2657  *
2658  * Return:
2659  *     %false - we are done with this request
2660  *     %true  - still buffers pending for this request
2661  **/
2662 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2663 {
2664 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2665 }
2666 EXPORT_SYMBOL(blk_end_request);
2667 
2668 /**
2669  * blk_end_request_all - Helper function for drives to finish the request.
2670  * @rq: the request to finish
2671  * @error: %0 for success, < %0 for error
2672  *
2673  * Description:
2674  *     Completely finish @rq.
2675  */
2676 void blk_end_request_all(struct request *rq, int error)
2677 {
2678 	bool pending;
2679 	unsigned int bidi_bytes = 0;
2680 
2681 	if (unlikely(blk_bidi_rq(rq)))
2682 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2683 
2684 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2685 	BUG_ON(pending);
2686 }
2687 EXPORT_SYMBOL(blk_end_request_all);
2688 
2689 /**
2690  * blk_end_request_cur - Helper function to finish the current request chunk.
2691  * @rq: the request to finish the current chunk for
2692  * @error: %0 for success, < %0 for error
2693  *
2694  * Description:
2695  *     Complete the current consecutively mapped chunk from @rq.
2696  *
2697  * Return:
2698  *     %false - we are done with this request
2699  *     %true  - still buffers pending for this request
2700  */
2701 bool blk_end_request_cur(struct request *rq, int error)
2702 {
2703 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2704 }
2705 EXPORT_SYMBOL(blk_end_request_cur);
2706 
2707 /**
2708  * blk_end_request_err - Finish a request till the next failure boundary.
2709  * @rq: the request to finish till the next failure boundary for
2710  * @error: must be negative errno
2711  *
2712  * Description:
2713  *     Complete @rq till the next failure boundary.
2714  *
2715  * Return:
2716  *     %false - we are done with this request
2717  *     %true  - still buffers pending for this request
2718  */
2719 bool blk_end_request_err(struct request *rq, int error)
2720 {
2721 	WARN_ON(error >= 0);
2722 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2723 }
2724 EXPORT_SYMBOL_GPL(blk_end_request_err);
2725 
2726 /**
2727  * __blk_end_request - Helper function for drivers to complete the request.
2728  * @rq:       the request being processed
2729  * @error:    %0 for success, < %0 for error
2730  * @nr_bytes: number of bytes to complete
2731  *
2732  * Description:
2733  *     Must be called with queue lock held unlike blk_end_request().
2734  *
2735  * Return:
2736  *     %false - we are done with this request
2737  *     %true  - still buffers pending for this request
2738  **/
2739 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2740 {
2741 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2742 }
2743 EXPORT_SYMBOL(__blk_end_request);
2744 
2745 /**
2746  * __blk_end_request_all - Helper function for drives to finish the request.
2747  * @rq: the request to finish
2748  * @error: %0 for success, < %0 for error
2749  *
2750  * Description:
2751  *     Completely finish @rq.  Must be called with queue lock held.
2752  */
2753 void __blk_end_request_all(struct request *rq, int error)
2754 {
2755 	bool pending;
2756 	unsigned int bidi_bytes = 0;
2757 
2758 	if (unlikely(blk_bidi_rq(rq)))
2759 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2760 
2761 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2762 	BUG_ON(pending);
2763 }
2764 EXPORT_SYMBOL(__blk_end_request_all);
2765 
2766 /**
2767  * __blk_end_request_cur - Helper function to finish the current request chunk.
2768  * @rq: the request to finish the current chunk for
2769  * @error: %0 for success, < %0 for error
2770  *
2771  * Description:
2772  *     Complete the current consecutively mapped chunk from @rq.  Must
2773  *     be called with queue lock held.
2774  *
2775  * Return:
2776  *     %false - we are done with this request
2777  *     %true  - still buffers pending for this request
2778  */
2779 bool __blk_end_request_cur(struct request *rq, int error)
2780 {
2781 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2782 }
2783 EXPORT_SYMBOL(__blk_end_request_cur);
2784 
2785 /**
2786  * __blk_end_request_err - Finish a request till the next failure boundary.
2787  * @rq: the request to finish till the next failure boundary for
2788  * @error: must be negative errno
2789  *
2790  * Description:
2791  *     Complete @rq till the next failure boundary.  Must be called
2792  *     with queue lock held.
2793  *
2794  * Return:
2795  *     %false - we are done with this request
2796  *     %true  - still buffers pending for this request
2797  */
2798 bool __blk_end_request_err(struct request *rq, int error)
2799 {
2800 	WARN_ON(error >= 0);
2801 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2802 }
2803 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2804 
2805 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2806 		     struct bio *bio)
2807 {
2808 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2809 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2810 
2811 	if (bio_has_data(bio))
2812 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2813 
2814 	rq->__data_len = bio->bi_iter.bi_size;
2815 	rq->bio = rq->biotail = bio;
2816 
2817 	if (bio->bi_bdev)
2818 		rq->rq_disk = bio->bi_bdev->bd_disk;
2819 }
2820 
2821 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2822 /**
2823  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2824  * @rq: the request to be flushed
2825  *
2826  * Description:
2827  *     Flush all pages in @rq.
2828  */
2829 void rq_flush_dcache_pages(struct request *rq)
2830 {
2831 	struct req_iterator iter;
2832 	struct bio_vec bvec;
2833 
2834 	rq_for_each_segment(bvec, rq, iter)
2835 		flush_dcache_page(bvec.bv_page);
2836 }
2837 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2838 #endif
2839 
2840 /**
2841  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2842  * @q : the queue of the device being checked
2843  *
2844  * Description:
2845  *    Check if underlying low-level drivers of a device are busy.
2846  *    If the drivers want to export their busy state, they must set own
2847  *    exporting function using blk_queue_lld_busy() first.
2848  *
2849  *    Basically, this function is used only by request stacking drivers
2850  *    to stop dispatching requests to underlying devices when underlying
2851  *    devices are busy.  This behavior helps more I/O merging on the queue
2852  *    of the request stacking driver and prevents I/O throughput regression
2853  *    on burst I/O load.
2854  *
2855  * Return:
2856  *    0 - Not busy (The request stacking driver should dispatch request)
2857  *    1 - Busy (The request stacking driver should stop dispatching request)
2858  */
2859 int blk_lld_busy(struct request_queue *q)
2860 {
2861 	if (q->lld_busy_fn)
2862 		return q->lld_busy_fn(q);
2863 
2864 	return 0;
2865 }
2866 EXPORT_SYMBOL_GPL(blk_lld_busy);
2867 
2868 /**
2869  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2870  * @rq: the clone request to be cleaned up
2871  *
2872  * Description:
2873  *     Free all bios in @rq for a cloned request.
2874  */
2875 void blk_rq_unprep_clone(struct request *rq)
2876 {
2877 	struct bio *bio;
2878 
2879 	while ((bio = rq->bio) != NULL) {
2880 		rq->bio = bio->bi_next;
2881 
2882 		bio_put(bio);
2883 	}
2884 }
2885 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2886 
2887 /*
2888  * Copy attributes of the original request to the clone request.
2889  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2890  */
2891 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2892 {
2893 	dst->cpu = src->cpu;
2894 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2895 	dst->cmd_type = src->cmd_type;
2896 	dst->__sector = blk_rq_pos(src);
2897 	dst->__data_len = blk_rq_bytes(src);
2898 	dst->nr_phys_segments = src->nr_phys_segments;
2899 	dst->ioprio = src->ioprio;
2900 	dst->extra_len = src->extra_len;
2901 }
2902 
2903 /**
2904  * blk_rq_prep_clone - Helper function to setup clone request
2905  * @rq: the request to be setup
2906  * @rq_src: original request to be cloned
2907  * @bs: bio_set that bios for clone are allocated from
2908  * @gfp_mask: memory allocation mask for bio
2909  * @bio_ctr: setup function to be called for each clone bio.
2910  *           Returns %0 for success, non %0 for failure.
2911  * @data: private data to be passed to @bio_ctr
2912  *
2913  * Description:
2914  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2915  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
2916  *     are not copied, and copying such parts is the caller's responsibility.
2917  *     Also, pages which the original bios are pointing to are not copied
2918  *     and the cloned bios just point same pages.
2919  *     So cloned bios must be completed before original bios, which means
2920  *     the caller must complete @rq before @rq_src.
2921  */
2922 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2923 		      struct bio_set *bs, gfp_t gfp_mask,
2924 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2925 		      void *data)
2926 {
2927 	struct bio *bio, *bio_src;
2928 
2929 	if (!bs)
2930 		bs = fs_bio_set;
2931 
2932 	blk_rq_init(NULL, rq);
2933 
2934 	__rq_for_each_bio(bio_src, rq_src) {
2935 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2936 		if (!bio)
2937 			goto free_and_out;
2938 
2939 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2940 			goto free_and_out;
2941 
2942 		if (rq->bio) {
2943 			rq->biotail->bi_next = bio;
2944 			rq->biotail = bio;
2945 		} else
2946 			rq->bio = rq->biotail = bio;
2947 	}
2948 
2949 	__blk_rq_prep_clone(rq, rq_src);
2950 
2951 	return 0;
2952 
2953 free_and_out:
2954 	if (bio)
2955 		bio_put(bio);
2956 	blk_rq_unprep_clone(rq);
2957 
2958 	return -ENOMEM;
2959 }
2960 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2961 
2962 int kblockd_schedule_work(struct work_struct *work)
2963 {
2964 	return queue_work(kblockd_workqueue, work);
2965 }
2966 EXPORT_SYMBOL(kblockd_schedule_work);
2967 
2968 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
2969 				  unsigned long delay)
2970 {
2971 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2972 }
2973 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2974 
2975 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2976 				     unsigned long delay)
2977 {
2978 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
2979 }
2980 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
2981 
2982 /**
2983  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2984  * @plug:	The &struct blk_plug that needs to be initialized
2985  *
2986  * Description:
2987  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2988  *   pending I/O should the task end up blocking between blk_start_plug() and
2989  *   blk_finish_plug(). This is important from a performance perspective, but
2990  *   also ensures that we don't deadlock. For instance, if the task is blocking
2991  *   for a memory allocation, memory reclaim could end up wanting to free a
2992  *   page belonging to that request that is currently residing in our private
2993  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2994  *   this kind of deadlock.
2995  */
2996 void blk_start_plug(struct blk_plug *plug)
2997 {
2998 	struct task_struct *tsk = current;
2999 
3000 	INIT_LIST_HEAD(&plug->list);
3001 	INIT_LIST_HEAD(&plug->mq_list);
3002 	INIT_LIST_HEAD(&plug->cb_list);
3003 
3004 	/*
3005 	 * If this is a nested plug, don't actually assign it. It will be
3006 	 * flushed on its own.
3007 	 */
3008 	if (!tsk->plug) {
3009 		/*
3010 		 * Store ordering should not be needed here, since a potential
3011 		 * preempt will imply a full memory barrier
3012 		 */
3013 		tsk->plug = plug;
3014 	}
3015 }
3016 EXPORT_SYMBOL(blk_start_plug);
3017 
3018 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3019 {
3020 	struct request *rqa = container_of(a, struct request, queuelist);
3021 	struct request *rqb = container_of(b, struct request, queuelist);
3022 
3023 	return !(rqa->q < rqb->q ||
3024 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3025 }
3026 
3027 /*
3028  * If 'from_schedule' is true, then postpone the dispatch of requests
3029  * until a safe kblockd context. We due this to avoid accidental big
3030  * additional stack usage in driver dispatch, in places where the originally
3031  * plugger did not intend it.
3032  */
3033 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3034 			    bool from_schedule)
3035 	__releases(q->queue_lock)
3036 {
3037 	trace_block_unplug(q, depth, !from_schedule);
3038 
3039 	if (from_schedule)
3040 		blk_run_queue_async(q);
3041 	else
3042 		__blk_run_queue(q);
3043 	spin_unlock(q->queue_lock);
3044 }
3045 
3046 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3047 {
3048 	LIST_HEAD(callbacks);
3049 
3050 	while (!list_empty(&plug->cb_list)) {
3051 		list_splice_init(&plug->cb_list, &callbacks);
3052 
3053 		while (!list_empty(&callbacks)) {
3054 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3055 							  struct blk_plug_cb,
3056 							  list);
3057 			list_del(&cb->list);
3058 			cb->callback(cb, from_schedule);
3059 		}
3060 	}
3061 }
3062 
3063 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3064 				      int size)
3065 {
3066 	struct blk_plug *plug = current->plug;
3067 	struct blk_plug_cb *cb;
3068 
3069 	if (!plug)
3070 		return NULL;
3071 
3072 	list_for_each_entry(cb, &plug->cb_list, list)
3073 		if (cb->callback == unplug && cb->data == data)
3074 			return cb;
3075 
3076 	/* Not currently on the callback list */
3077 	BUG_ON(size < sizeof(*cb));
3078 	cb = kzalloc(size, GFP_ATOMIC);
3079 	if (cb) {
3080 		cb->data = data;
3081 		cb->callback = unplug;
3082 		list_add(&cb->list, &plug->cb_list);
3083 	}
3084 	return cb;
3085 }
3086 EXPORT_SYMBOL(blk_check_plugged);
3087 
3088 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3089 {
3090 	struct request_queue *q;
3091 	unsigned long flags;
3092 	struct request *rq;
3093 	LIST_HEAD(list);
3094 	unsigned int depth;
3095 
3096 	flush_plug_callbacks(plug, from_schedule);
3097 
3098 	if (!list_empty(&plug->mq_list))
3099 		blk_mq_flush_plug_list(plug, from_schedule);
3100 
3101 	if (list_empty(&plug->list))
3102 		return;
3103 
3104 	list_splice_init(&plug->list, &list);
3105 
3106 	list_sort(NULL, &list, plug_rq_cmp);
3107 
3108 	q = NULL;
3109 	depth = 0;
3110 
3111 	/*
3112 	 * Save and disable interrupts here, to avoid doing it for every
3113 	 * queue lock we have to take.
3114 	 */
3115 	local_irq_save(flags);
3116 	while (!list_empty(&list)) {
3117 		rq = list_entry_rq(list.next);
3118 		list_del_init(&rq->queuelist);
3119 		BUG_ON(!rq->q);
3120 		if (rq->q != q) {
3121 			/*
3122 			 * This drops the queue lock
3123 			 */
3124 			if (q)
3125 				queue_unplugged(q, depth, from_schedule);
3126 			q = rq->q;
3127 			depth = 0;
3128 			spin_lock(q->queue_lock);
3129 		}
3130 
3131 		/*
3132 		 * Short-circuit if @q is dead
3133 		 */
3134 		if (unlikely(blk_queue_dying(q))) {
3135 			__blk_end_request_all(rq, -ENODEV);
3136 			continue;
3137 		}
3138 
3139 		/*
3140 		 * rq is already accounted, so use raw insert
3141 		 */
3142 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3143 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3144 		else
3145 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3146 
3147 		depth++;
3148 	}
3149 
3150 	/*
3151 	 * This drops the queue lock
3152 	 */
3153 	if (q)
3154 		queue_unplugged(q, depth, from_schedule);
3155 
3156 	local_irq_restore(flags);
3157 }
3158 
3159 void blk_finish_plug(struct blk_plug *plug)
3160 {
3161 	blk_flush_plug_list(plug, false);
3162 
3163 	if (plug == current->plug)
3164 		current->plug = NULL;
3165 }
3166 EXPORT_SYMBOL(blk_finish_plug);
3167 
3168 #ifdef CONFIG_PM_RUNTIME
3169 /**
3170  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3171  * @q: the queue of the device
3172  * @dev: the device the queue belongs to
3173  *
3174  * Description:
3175  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3176  *    @dev. Drivers that want to take advantage of request-based runtime PM
3177  *    should call this function after @dev has been initialized, and its
3178  *    request queue @q has been allocated, and runtime PM for it can not happen
3179  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3180  *    cases, driver should call this function before any I/O has taken place.
3181  *
3182  *    This function takes care of setting up using auto suspend for the device,
3183  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3184  *    until an updated value is either set by user or by driver. Drivers do
3185  *    not need to touch other autosuspend settings.
3186  *
3187  *    The block layer runtime PM is request based, so only works for drivers
3188  *    that use request as their IO unit instead of those directly use bio's.
3189  */
3190 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3191 {
3192 	q->dev = dev;
3193 	q->rpm_status = RPM_ACTIVE;
3194 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3195 	pm_runtime_use_autosuspend(q->dev);
3196 }
3197 EXPORT_SYMBOL(blk_pm_runtime_init);
3198 
3199 /**
3200  * blk_pre_runtime_suspend - Pre runtime suspend check
3201  * @q: the queue of the device
3202  *
3203  * Description:
3204  *    This function will check if runtime suspend is allowed for the device
3205  *    by examining if there are any requests pending in the queue. If there
3206  *    are requests pending, the device can not be runtime suspended; otherwise,
3207  *    the queue's status will be updated to SUSPENDING and the driver can
3208  *    proceed to suspend the device.
3209  *
3210  *    For the not allowed case, we mark last busy for the device so that
3211  *    runtime PM core will try to autosuspend it some time later.
3212  *
3213  *    This function should be called near the start of the device's
3214  *    runtime_suspend callback.
3215  *
3216  * Return:
3217  *    0		- OK to runtime suspend the device
3218  *    -EBUSY	- Device should not be runtime suspended
3219  */
3220 int blk_pre_runtime_suspend(struct request_queue *q)
3221 {
3222 	int ret = 0;
3223 
3224 	spin_lock_irq(q->queue_lock);
3225 	if (q->nr_pending) {
3226 		ret = -EBUSY;
3227 		pm_runtime_mark_last_busy(q->dev);
3228 	} else {
3229 		q->rpm_status = RPM_SUSPENDING;
3230 	}
3231 	spin_unlock_irq(q->queue_lock);
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3235 
3236 /**
3237  * blk_post_runtime_suspend - Post runtime suspend processing
3238  * @q: the queue of the device
3239  * @err: return value of the device's runtime_suspend function
3240  *
3241  * Description:
3242  *    Update the queue's runtime status according to the return value of the
3243  *    device's runtime suspend function and mark last busy for the device so
3244  *    that PM core will try to auto suspend the device at a later time.
3245  *
3246  *    This function should be called near the end of the device's
3247  *    runtime_suspend callback.
3248  */
3249 void blk_post_runtime_suspend(struct request_queue *q, int err)
3250 {
3251 	spin_lock_irq(q->queue_lock);
3252 	if (!err) {
3253 		q->rpm_status = RPM_SUSPENDED;
3254 	} else {
3255 		q->rpm_status = RPM_ACTIVE;
3256 		pm_runtime_mark_last_busy(q->dev);
3257 	}
3258 	spin_unlock_irq(q->queue_lock);
3259 }
3260 EXPORT_SYMBOL(blk_post_runtime_suspend);
3261 
3262 /**
3263  * blk_pre_runtime_resume - Pre runtime resume processing
3264  * @q: the queue of the device
3265  *
3266  * Description:
3267  *    Update the queue's runtime status to RESUMING in preparation for the
3268  *    runtime resume of the device.
3269  *
3270  *    This function should be called near the start of the device's
3271  *    runtime_resume callback.
3272  */
3273 void blk_pre_runtime_resume(struct request_queue *q)
3274 {
3275 	spin_lock_irq(q->queue_lock);
3276 	q->rpm_status = RPM_RESUMING;
3277 	spin_unlock_irq(q->queue_lock);
3278 }
3279 EXPORT_SYMBOL(blk_pre_runtime_resume);
3280 
3281 /**
3282  * blk_post_runtime_resume - Post runtime resume processing
3283  * @q: the queue of the device
3284  * @err: return value of the device's runtime_resume function
3285  *
3286  * Description:
3287  *    Update the queue's runtime status according to the return value of the
3288  *    device's runtime_resume function. If it is successfully resumed, process
3289  *    the requests that are queued into the device's queue when it is resuming
3290  *    and then mark last busy and initiate autosuspend for it.
3291  *
3292  *    This function should be called near the end of the device's
3293  *    runtime_resume callback.
3294  */
3295 void blk_post_runtime_resume(struct request_queue *q, int err)
3296 {
3297 	spin_lock_irq(q->queue_lock);
3298 	if (!err) {
3299 		q->rpm_status = RPM_ACTIVE;
3300 		__blk_run_queue(q);
3301 		pm_runtime_mark_last_busy(q->dev);
3302 		pm_request_autosuspend(q->dev);
3303 	} else {
3304 		q->rpm_status = RPM_SUSPENDED;
3305 	}
3306 	spin_unlock_irq(q->queue_lock);
3307 }
3308 EXPORT_SYMBOL(blk_post_runtime_resume);
3309 #endif
3310 
3311 int __init blk_dev_init(void)
3312 {
3313 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3314 			sizeof(((struct request *)0)->cmd_flags));
3315 
3316 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3317 	kblockd_workqueue = alloc_workqueue("kblockd",
3318 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3319 	if (!kblockd_workqueue)
3320 		panic("Failed to create kblockd\n");
3321 
3322 	request_cachep = kmem_cache_create("blkdev_requests",
3323 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3324 
3325 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3326 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3327 
3328 	return 0;
3329 }
3330