1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static void req_bio_endio(struct request *rq, struct bio *bio, 133 unsigned int nbytes, int error) 134 { 135 if (error) 136 bio->bi_error = error; 137 138 if (unlikely(rq->rq_flags & RQF_QUIET)) 139 bio_set_flag(bio, BIO_QUIET); 140 141 bio_advance(bio, nbytes); 142 143 /* don't actually finish bio if it's part of flush sequence */ 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 145 bio_endio(bio); 146 } 147 148 void blk_dump_rq_flags(struct request *rq, char *msg) 149 { 150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 151 rq->rq_disk ? rq->rq_disk->disk_name : "?", 152 (unsigned long long) rq->cmd_flags); 153 154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 155 (unsigned long long)blk_rq_pos(rq), 156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 157 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 158 rq->bio, rq->biotail, blk_rq_bytes(rq)); 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue_async - asynchronously restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue_async() will clear the stop flag on the queue, and 196 * ensure that the request_fn for the queue is run from an async 197 * context. 198 **/ 199 void blk_start_queue_async(struct request_queue *q) 200 { 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 202 blk_run_queue_async(q); 203 } 204 EXPORT_SYMBOL(blk_start_queue_async); 205 206 /** 207 * blk_start_queue - restart a previously stopped queue 208 * @q: The &struct request_queue in question 209 * 210 * Description: 211 * blk_start_queue() will clear the stop flag on the queue, and call 212 * the request_fn for the queue if it was in a stopped state when 213 * entered. Also see blk_stop_queue(). Queue lock must be held. 214 **/ 215 void blk_start_queue(struct request_queue *q) 216 { 217 WARN_ON(!irqs_disabled()); 218 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 220 __blk_run_queue(q); 221 } 222 EXPORT_SYMBOL(blk_start_queue); 223 224 /** 225 * blk_stop_queue - stop a queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * The Linux block layer assumes that a block driver will consume all 230 * entries on the request queue when the request_fn strategy is called. 231 * Often this will not happen, because of hardware limitations (queue 232 * depth settings). If a device driver gets a 'queue full' response, 233 * or if it simply chooses not to queue more I/O at one point, it can 234 * call this function to prevent the request_fn from being called until 235 * the driver has signalled it's ready to go again. This happens by calling 236 * blk_start_queue() to restart queue operations. Queue lock must be held. 237 **/ 238 void blk_stop_queue(struct request_queue *q) 239 { 240 cancel_delayed_work(&q->delay_work); 241 queue_flag_set(QUEUE_FLAG_STOPPED, q); 242 } 243 EXPORT_SYMBOL(blk_stop_queue); 244 245 /** 246 * blk_sync_queue - cancel any pending callbacks on a queue 247 * @q: the queue 248 * 249 * Description: 250 * The block layer may perform asynchronous callback activity 251 * on a queue, such as calling the unplug function after a timeout. 252 * A block device may call blk_sync_queue to ensure that any 253 * such activity is cancelled, thus allowing it to release resources 254 * that the callbacks might use. The caller must already have made sure 255 * that its ->make_request_fn will not re-add plugging prior to calling 256 * this function. 257 * 258 * This function does not cancel any asynchronous activity arising 259 * out of elevator or throttling code. That would require elevator_exit() 260 * and blkcg_exit_queue() to be called with queue lock initialized. 261 * 262 */ 263 void blk_sync_queue(struct request_queue *q) 264 { 265 del_timer_sync(&q->timeout); 266 267 if (q->mq_ops) { 268 struct blk_mq_hw_ctx *hctx; 269 int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) 272 cancel_delayed_work_sync(&hctx->run_work); 273 } else { 274 cancel_delayed_work_sync(&q->delay_work); 275 } 276 } 277 EXPORT_SYMBOL(blk_sync_queue); 278 279 /** 280 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 281 * @q: The queue to run 282 * 283 * Description: 284 * Invoke request handling on a queue if there are any pending requests. 285 * May be used to restart request handling after a request has completed. 286 * This variant runs the queue whether or not the queue has been 287 * stopped. Must be called with the queue lock held and interrupts 288 * disabled. See also @blk_run_queue. 289 */ 290 inline void __blk_run_queue_uncond(struct request_queue *q) 291 { 292 if (unlikely(blk_queue_dead(q))) 293 return; 294 295 /* 296 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 297 * the queue lock internally. As a result multiple threads may be 298 * running such a request function concurrently. Keep track of the 299 * number of active request_fn invocations such that blk_drain_queue() 300 * can wait until all these request_fn calls have finished. 301 */ 302 q->request_fn_active++; 303 q->request_fn(q); 304 q->request_fn_active--; 305 } 306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 307 308 /** 309 * __blk_run_queue - run a single device queue 310 * @q: The queue to run 311 * 312 * Description: 313 * See @blk_run_queue. This variant must be called with the queue lock 314 * held and interrupts disabled. 315 */ 316 void __blk_run_queue(struct request_queue *q) 317 { 318 if (unlikely(blk_queue_stopped(q))) 319 return; 320 321 __blk_run_queue_uncond(q); 322 } 323 EXPORT_SYMBOL(__blk_run_queue); 324 325 /** 326 * blk_run_queue_async - run a single device queue in workqueue context 327 * @q: The queue to run 328 * 329 * Description: 330 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 331 * of us. The caller must hold the queue lock. 332 */ 333 void blk_run_queue_async(struct request_queue *q) 334 { 335 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 336 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 337 } 338 EXPORT_SYMBOL(blk_run_queue_async); 339 340 /** 341 * blk_run_queue - run a single device queue 342 * @q: The queue to run 343 * 344 * Description: 345 * Invoke request handling on this queue, if it has pending work to do. 346 * May be used to restart queueing when a request has completed. 347 */ 348 void blk_run_queue(struct request_queue *q) 349 { 350 unsigned long flags; 351 352 spin_lock_irqsave(q->queue_lock, flags); 353 __blk_run_queue(q); 354 spin_unlock_irqrestore(q->queue_lock, flags); 355 } 356 EXPORT_SYMBOL(blk_run_queue); 357 358 void blk_put_queue(struct request_queue *q) 359 { 360 kobject_put(&q->kobj); 361 } 362 EXPORT_SYMBOL(blk_put_queue); 363 364 /** 365 * __blk_drain_queue - drain requests from request_queue 366 * @q: queue to drain 367 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 368 * 369 * Drain requests from @q. If @drain_all is set, all requests are drained. 370 * If not, only ELVPRIV requests are drained. The caller is responsible 371 * for ensuring that no new requests which need to be drained are queued. 372 */ 373 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 374 __releases(q->queue_lock) 375 __acquires(q->queue_lock) 376 { 377 int i; 378 379 lockdep_assert_held(q->queue_lock); 380 381 while (true) { 382 bool drain = false; 383 384 /* 385 * The caller might be trying to drain @q before its 386 * elevator is initialized. 387 */ 388 if (q->elevator) 389 elv_drain_elevator(q); 390 391 blkcg_drain_queue(q); 392 393 /* 394 * This function might be called on a queue which failed 395 * driver init after queue creation or is not yet fully 396 * active yet. Some drivers (e.g. fd and loop) get unhappy 397 * in such cases. Kick queue iff dispatch queue has 398 * something on it and @q has request_fn set. 399 */ 400 if (!list_empty(&q->queue_head) && q->request_fn) 401 __blk_run_queue(q); 402 403 drain |= q->nr_rqs_elvpriv; 404 drain |= q->request_fn_active; 405 406 /* 407 * Unfortunately, requests are queued at and tracked from 408 * multiple places and there's no single counter which can 409 * be drained. Check all the queues and counters. 410 */ 411 if (drain_all) { 412 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 413 drain |= !list_empty(&q->queue_head); 414 for (i = 0; i < 2; i++) { 415 drain |= q->nr_rqs[i]; 416 drain |= q->in_flight[i]; 417 if (fq) 418 drain |= !list_empty(&fq->flush_queue[i]); 419 } 420 } 421 422 if (!drain) 423 break; 424 425 spin_unlock_irq(q->queue_lock); 426 427 msleep(10); 428 429 spin_lock_irq(q->queue_lock); 430 } 431 432 /* 433 * With queue marked dead, any woken up waiter will fail the 434 * allocation path, so the wakeup chaining is lost and we're 435 * left with hung waiters. We need to wake up those waiters. 436 */ 437 if (q->request_fn) { 438 struct request_list *rl; 439 440 blk_queue_for_each_rl(rl, q) 441 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 442 wake_up_all(&rl->wait[i]); 443 } 444 } 445 446 /** 447 * blk_queue_bypass_start - enter queue bypass mode 448 * @q: queue of interest 449 * 450 * In bypass mode, only the dispatch FIFO queue of @q is used. This 451 * function makes @q enter bypass mode and drains all requests which were 452 * throttled or issued before. On return, it's guaranteed that no request 453 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 454 * inside queue or RCU read lock. 455 */ 456 void blk_queue_bypass_start(struct request_queue *q) 457 { 458 spin_lock_irq(q->queue_lock); 459 q->bypass_depth++; 460 queue_flag_set(QUEUE_FLAG_BYPASS, q); 461 spin_unlock_irq(q->queue_lock); 462 463 /* 464 * Queues start drained. Skip actual draining till init is 465 * complete. This avoids lenghty delays during queue init which 466 * can happen many times during boot. 467 */ 468 if (blk_queue_init_done(q)) { 469 spin_lock_irq(q->queue_lock); 470 __blk_drain_queue(q, false); 471 spin_unlock_irq(q->queue_lock); 472 473 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 474 synchronize_rcu(); 475 } 476 } 477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 478 479 /** 480 * blk_queue_bypass_end - leave queue bypass mode 481 * @q: queue of interest 482 * 483 * Leave bypass mode and restore the normal queueing behavior. 484 */ 485 void blk_queue_bypass_end(struct request_queue *q) 486 { 487 spin_lock_irq(q->queue_lock); 488 if (!--q->bypass_depth) 489 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 490 WARN_ON_ONCE(q->bypass_depth < 0); 491 spin_unlock_irq(q->queue_lock); 492 } 493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 494 495 void blk_set_queue_dying(struct request_queue *q) 496 { 497 spin_lock_irq(q->queue_lock); 498 queue_flag_set(QUEUE_FLAG_DYING, q); 499 spin_unlock_irq(q->queue_lock); 500 501 /* 502 * When queue DYING flag is set, we need to block new req 503 * entering queue, so we call blk_freeze_queue_start() to 504 * prevent I/O from crossing blk_queue_enter(). 505 */ 506 blk_freeze_queue_start(q); 507 508 if (q->mq_ops) 509 blk_mq_wake_waiters(q); 510 else { 511 struct request_list *rl; 512 513 spin_lock_irq(q->queue_lock); 514 blk_queue_for_each_rl(rl, q) { 515 if (rl->rq_pool) { 516 wake_up(&rl->wait[BLK_RW_SYNC]); 517 wake_up(&rl->wait[BLK_RW_ASYNC]); 518 } 519 } 520 spin_unlock_irq(q->queue_lock); 521 } 522 } 523 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 524 525 /** 526 * blk_cleanup_queue - shutdown a request queue 527 * @q: request queue to shutdown 528 * 529 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 530 * put it. All future requests will be failed immediately with -ENODEV. 531 */ 532 void blk_cleanup_queue(struct request_queue *q) 533 { 534 spinlock_t *lock = q->queue_lock; 535 536 /* mark @q DYING, no new request or merges will be allowed afterwards */ 537 mutex_lock(&q->sysfs_lock); 538 blk_set_queue_dying(q); 539 spin_lock_irq(lock); 540 541 /* 542 * A dying queue is permanently in bypass mode till released. Note 543 * that, unlike blk_queue_bypass_start(), we aren't performing 544 * synchronize_rcu() after entering bypass mode to avoid the delay 545 * as some drivers create and destroy a lot of queues while 546 * probing. This is still safe because blk_release_queue() will be 547 * called only after the queue refcnt drops to zero and nothing, 548 * RCU or not, would be traversing the queue by then. 549 */ 550 q->bypass_depth++; 551 queue_flag_set(QUEUE_FLAG_BYPASS, q); 552 553 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 554 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 555 queue_flag_set(QUEUE_FLAG_DYING, q); 556 spin_unlock_irq(lock); 557 mutex_unlock(&q->sysfs_lock); 558 559 /* 560 * Drain all requests queued before DYING marking. Set DEAD flag to 561 * prevent that q->request_fn() gets invoked after draining finished. 562 */ 563 blk_freeze_queue(q); 564 spin_lock_irq(lock); 565 if (!q->mq_ops) 566 __blk_drain_queue(q, true); 567 queue_flag_set(QUEUE_FLAG_DEAD, q); 568 spin_unlock_irq(lock); 569 570 /* for synchronous bio-based driver finish in-flight integrity i/o */ 571 blk_flush_integrity(); 572 573 /* @q won't process any more request, flush async actions */ 574 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 575 blk_sync_queue(q); 576 577 if (q->mq_ops) 578 blk_mq_free_queue(q); 579 percpu_ref_exit(&q->q_usage_counter); 580 581 spin_lock_irq(lock); 582 if (q->queue_lock != &q->__queue_lock) 583 q->queue_lock = &q->__queue_lock; 584 spin_unlock_irq(lock); 585 586 /* @q is and will stay empty, shutdown and put */ 587 blk_put_queue(q); 588 } 589 EXPORT_SYMBOL(blk_cleanup_queue); 590 591 /* Allocate memory local to the request queue */ 592 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 593 { 594 struct request_queue *q = data; 595 596 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 597 } 598 599 static void free_request_simple(void *element, void *data) 600 { 601 kmem_cache_free(request_cachep, element); 602 } 603 604 static void *alloc_request_size(gfp_t gfp_mask, void *data) 605 { 606 struct request_queue *q = data; 607 struct request *rq; 608 609 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 610 q->node); 611 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 612 kfree(rq); 613 rq = NULL; 614 } 615 return rq; 616 } 617 618 static void free_request_size(void *element, void *data) 619 { 620 struct request_queue *q = data; 621 622 if (q->exit_rq_fn) 623 q->exit_rq_fn(q, element); 624 kfree(element); 625 } 626 627 int blk_init_rl(struct request_list *rl, struct request_queue *q, 628 gfp_t gfp_mask) 629 { 630 if (unlikely(rl->rq_pool)) 631 return 0; 632 633 rl->q = q; 634 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 635 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 636 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 637 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 638 639 if (q->cmd_size) { 640 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 641 alloc_request_size, free_request_size, 642 q, gfp_mask, q->node); 643 } else { 644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 645 alloc_request_simple, free_request_simple, 646 q, gfp_mask, q->node); 647 } 648 if (!rl->rq_pool) 649 return -ENOMEM; 650 651 return 0; 652 } 653 654 void blk_exit_rl(struct request_list *rl) 655 { 656 if (rl->rq_pool) 657 mempool_destroy(rl->rq_pool); 658 } 659 660 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 661 { 662 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 663 } 664 EXPORT_SYMBOL(blk_alloc_queue); 665 666 int blk_queue_enter(struct request_queue *q, bool nowait) 667 { 668 while (true) { 669 int ret; 670 671 if (percpu_ref_tryget_live(&q->q_usage_counter)) 672 return 0; 673 674 if (nowait) 675 return -EBUSY; 676 677 /* 678 * read pair of barrier in blk_freeze_queue_start(), 679 * we need to order reading __PERCPU_REF_DEAD flag of 680 * .q_usage_counter and reading .mq_freeze_depth or 681 * queue dying flag, otherwise the following wait may 682 * never return if the two reads are reordered. 683 */ 684 smp_rmb(); 685 686 ret = wait_event_interruptible(q->mq_freeze_wq, 687 !atomic_read(&q->mq_freeze_depth) || 688 blk_queue_dying(q)); 689 if (blk_queue_dying(q)) 690 return -ENODEV; 691 if (ret) 692 return ret; 693 } 694 } 695 696 void blk_queue_exit(struct request_queue *q) 697 { 698 percpu_ref_put(&q->q_usage_counter); 699 } 700 701 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 702 { 703 struct request_queue *q = 704 container_of(ref, struct request_queue, q_usage_counter); 705 706 wake_up_all(&q->mq_freeze_wq); 707 } 708 709 static void blk_rq_timed_out_timer(unsigned long data) 710 { 711 struct request_queue *q = (struct request_queue *)data; 712 713 kblockd_schedule_work(&q->timeout_work); 714 } 715 716 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 717 { 718 struct request_queue *q; 719 720 q = kmem_cache_alloc_node(blk_requestq_cachep, 721 gfp_mask | __GFP_ZERO, node_id); 722 if (!q) 723 return NULL; 724 725 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 726 if (q->id < 0) 727 goto fail_q; 728 729 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 730 if (!q->bio_split) 731 goto fail_id; 732 733 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 734 if (!q->backing_dev_info) 735 goto fail_split; 736 737 q->stats = blk_alloc_queue_stats(); 738 if (!q->stats) 739 goto fail_stats; 740 741 q->backing_dev_info->ra_pages = 742 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 743 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 744 q->backing_dev_info->name = "block"; 745 q->node = node_id; 746 747 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 748 laptop_mode_timer_fn, (unsigned long) q); 749 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 750 INIT_LIST_HEAD(&q->queue_head); 751 INIT_LIST_HEAD(&q->timeout_list); 752 INIT_LIST_HEAD(&q->icq_list); 753 #ifdef CONFIG_BLK_CGROUP 754 INIT_LIST_HEAD(&q->blkg_list); 755 #endif 756 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 757 758 kobject_init(&q->kobj, &blk_queue_ktype); 759 760 mutex_init(&q->sysfs_lock); 761 spin_lock_init(&q->__queue_lock); 762 763 /* 764 * By default initialize queue_lock to internal lock and driver can 765 * override it later if need be. 766 */ 767 q->queue_lock = &q->__queue_lock; 768 769 /* 770 * A queue starts its life with bypass turned on to avoid 771 * unnecessary bypass on/off overhead and nasty surprises during 772 * init. The initial bypass will be finished when the queue is 773 * registered by blk_register_queue(). 774 */ 775 q->bypass_depth = 1; 776 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 777 778 init_waitqueue_head(&q->mq_freeze_wq); 779 780 /* 781 * Init percpu_ref in atomic mode so that it's faster to shutdown. 782 * See blk_register_queue() for details. 783 */ 784 if (percpu_ref_init(&q->q_usage_counter, 785 blk_queue_usage_counter_release, 786 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 787 goto fail_bdi; 788 789 if (blkcg_init_queue(q)) 790 goto fail_ref; 791 792 return q; 793 794 fail_ref: 795 percpu_ref_exit(&q->q_usage_counter); 796 fail_bdi: 797 blk_free_queue_stats(q->stats); 798 fail_stats: 799 bdi_put(q->backing_dev_info); 800 fail_split: 801 bioset_free(q->bio_split); 802 fail_id: 803 ida_simple_remove(&blk_queue_ida, q->id); 804 fail_q: 805 kmem_cache_free(blk_requestq_cachep, q); 806 return NULL; 807 } 808 EXPORT_SYMBOL(blk_alloc_queue_node); 809 810 /** 811 * blk_init_queue - prepare a request queue for use with a block device 812 * @rfn: The function to be called to process requests that have been 813 * placed on the queue. 814 * @lock: Request queue spin lock 815 * 816 * Description: 817 * If a block device wishes to use the standard request handling procedures, 818 * which sorts requests and coalesces adjacent requests, then it must 819 * call blk_init_queue(). The function @rfn will be called when there 820 * are requests on the queue that need to be processed. If the device 821 * supports plugging, then @rfn may not be called immediately when requests 822 * are available on the queue, but may be called at some time later instead. 823 * Plugged queues are generally unplugged when a buffer belonging to one 824 * of the requests on the queue is needed, or due to memory pressure. 825 * 826 * @rfn is not required, or even expected, to remove all requests off the 827 * queue, but only as many as it can handle at a time. If it does leave 828 * requests on the queue, it is responsible for arranging that the requests 829 * get dealt with eventually. 830 * 831 * The queue spin lock must be held while manipulating the requests on the 832 * request queue; this lock will be taken also from interrupt context, so irq 833 * disabling is needed for it. 834 * 835 * Function returns a pointer to the initialized request queue, or %NULL if 836 * it didn't succeed. 837 * 838 * Note: 839 * blk_init_queue() must be paired with a blk_cleanup_queue() call 840 * when the block device is deactivated (such as at module unload). 841 **/ 842 843 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 844 { 845 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 846 } 847 EXPORT_SYMBOL(blk_init_queue); 848 849 struct request_queue * 850 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 851 { 852 struct request_queue *q; 853 854 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 855 if (!q) 856 return NULL; 857 858 q->request_fn = rfn; 859 if (lock) 860 q->queue_lock = lock; 861 if (blk_init_allocated_queue(q) < 0) { 862 blk_cleanup_queue(q); 863 return NULL; 864 } 865 866 return q; 867 } 868 EXPORT_SYMBOL(blk_init_queue_node); 869 870 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 871 872 873 int blk_init_allocated_queue(struct request_queue *q) 874 { 875 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 876 if (!q->fq) 877 return -ENOMEM; 878 879 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 880 goto out_free_flush_queue; 881 882 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 883 goto out_exit_flush_rq; 884 885 INIT_WORK(&q->timeout_work, blk_timeout_work); 886 q->queue_flags |= QUEUE_FLAG_DEFAULT; 887 888 /* 889 * This also sets hw/phys segments, boundary and size 890 */ 891 blk_queue_make_request(q, blk_queue_bio); 892 893 q->sg_reserved_size = INT_MAX; 894 895 /* Protect q->elevator from elevator_change */ 896 mutex_lock(&q->sysfs_lock); 897 898 /* init elevator */ 899 if (elevator_init(q, NULL)) { 900 mutex_unlock(&q->sysfs_lock); 901 goto out_exit_flush_rq; 902 } 903 904 mutex_unlock(&q->sysfs_lock); 905 return 0; 906 907 out_exit_flush_rq: 908 if (q->exit_rq_fn) 909 q->exit_rq_fn(q, q->fq->flush_rq); 910 out_free_flush_queue: 911 blk_free_flush_queue(q->fq); 912 return -ENOMEM; 913 } 914 EXPORT_SYMBOL(blk_init_allocated_queue); 915 916 bool blk_get_queue(struct request_queue *q) 917 { 918 if (likely(!blk_queue_dying(q))) { 919 __blk_get_queue(q); 920 return true; 921 } 922 923 return false; 924 } 925 EXPORT_SYMBOL(blk_get_queue); 926 927 static inline void blk_free_request(struct request_list *rl, struct request *rq) 928 { 929 if (rq->rq_flags & RQF_ELVPRIV) { 930 elv_put_request(rl->q, rq); 931 if (rq->elv.icq) 932 put_io_context(rq->elv.icq->ioc); 933 } 934 935 mempool_free(rq, rl->rq_pool); 936 } 937 938 /* 939 * ioc_batching returns true if the ioc is a valid batching request and 940 * should be given priority access to a request. 941 */ 942 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 943 { 944 if (!ioc) 945 return 0; 946 947 /* 948 * Make sure the process is able to allocate at least 1 request 949 * even if the batch times out, otherwise we could theoretically 950 * lose wakeups. 951 */ 952 return ioc->nr_batch_requests == q->nr_batching || 953 (ioc->nr_batch_requests > 0 954 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 955 } 956 957 /* 958 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 959 * will cause the process to be a "batcher" on all queues in the system. This 960 * is the behaviour we want though - once it gets a wakeup it should be given 961 * a nice run. 962 */ 963 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 964 { 965 if (!ioc || ioc_batching(q, ioc)) 966 return; 967 968 ioc->nr_batch_requests = q->nr_batching; 969 ioc->last_waited = jiffies; 970 } 971 972 static void __freed_request(struct request_list *rl, int sync) 973 { 974 struct request_queue *q = rl->q; 975 976 if (rl->count[sync] < queue_congestion_off_threshold(q)) 977 blk_clear_congested(rl, sync); 978 979 if (rl->count[sync] + 1 <= q->nr_requests) { 980 if (waitqueue_active(&rl->wait[sync])) 981 wake_up(&rl->wait[sync]); 982 983 blk_clear_rl_full(rl, sync); 984 } 985 } 986 987 /* 988 * A request has just been released. Account for it, update the full and 989 * congestion status, wake up any waiters. Called under q->queue_lock. 990 */ 991 static void freed_request(struct request_list *rl, bool sync, 992 req_flags_t rq_flags) 993 { 994 struct request_queue *q = rl->q; 995 996 q->nr_rqs[sync]--; 997 rl->count[sync]--; 998 if (rq_flags & RQF_ELVPRIV) 999 q->nr_rqs_elvpriv--; 1000 1001 __freed_request(rl, sync); 1002 1003 if (unlikely(rl->starved[sync ^ 1])) 1004 __freed_request(rl, sync ^ 1); 1005 } 1006 1007 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1008 { 1009 struct request_list *rl; 1010 int on_thresh, off_thresh; 1011 1012 spin_lock_irq(q->queue_lock); 1013 q->nr_requests = nr; 1014 blk_queue_congestion_threshold(q); 1015 on_thresh = queue_congestion_on_threshold(q); 1016 off_thresh = queue_congestion_off_threshold(q); 1017 1018 blk_queue_for_each_rl(rl, q) { 1019 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1020 blk_set_congested(rl, BLK_RW_SYNC); 1021 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1022 blk_clear_congested(rl, BLK_RW_SYNC); 1023 1024 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1025 blk_set_congested(rl, BLK_RW_ASYNC); 1026 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1027 blk_clear_congested(rl, BLK_RW_ASYNC); 1028 1029 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1030 blk_set_rl_full(rl, BLK_RW_SYNC); 1031 } else { 1032 blk_clear_rl_full(rl, BLK_RW_SYNC); 1033 wake_up(&rl->wait[BLK_RW_SYNC]); 1034 } 1035 1036 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1037 blk_set_rl_full(rl, BLK_RW_ASYNC); 1038 } else { 1039 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1040 wake_up(&rl->wait[BLK_RW_ASYNC]); 1041 } 1042 } 1043 1044 spin_unlock_irq(q->queue_lock); 1045 return 0; 1046 } 1047 1048 /** 1049 * __get_request - get a free request 1050 * @rl: request list to allocate from 1051 * @op: operation and flags 1052 * @bio: bio to allocate request for (can be %NULL) 1053 * @gfp_mask: allocation mask 1054 * 1055 * Get a free request from @q. This function may fail under memory 1056 * pressure or if @q is dead. 1057 * 1058 * Must be called with @q->queue_lock held and, 1059 * Returns ERR_PTR on failure, with @q->queue_lock held. 1060 * Returns request pointer on success, with @q->queue_lock *not held*. 1061 */ 1062 static struct request *__get_request(struct request_list *rl, unsigned int op, 1063 struct bio *bio, gfp_t gfp_mask) 1064 { 1065 struct request_queue *q = rl->q; 1066 struct request *rq; 1067 struct elevator_type *et = q->elevator->type; 1068 struct io_context *ioc = rq_ioc(bio); 1069 struct io_cq *icq = NULL; 1070 const bool is_sync = op_is_sync(op); 1071 int may_queue; 1072 req_flags_t rq_flags = RQF_ALLOCED; 1073 1074 if (unlikely(blk_queue_dying(q))) 1075 return ERR_PTR(-ENODEV); 1076 1077 may_queue = elv_may_queue(q, op); 1078 if (may_queue == ELV_MQUEUE_NO) 1079 goto rq_starved; 1080 1081 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1082 if (rl->count[is_sync]+1 >= q->nr_requests) { 1083 /* 1084 * The queue will fill after this allocation, so set 1085 * it as full, and mark this process as "batching". 1086 * This process will be allowed to complete a batch of 1087 * requests, others will be blocked. 1088 */ 1089 if (!blk_rl_full(rl, is_sync)) { 1090 ioc_set_batching(q, ioc); 1091 blk_set_rl_full(rl, is_sync); 1092 } else { 1093 if (may_queue != ELV_MQUEUE_MUST 1094 && !ioc_batching(q, ioc)) { 1095 /* 1096 * The queue is full and the allocating 1097 * process is not a "batcher", and not 1098 * exempted by the IO scheduler 1099 */ 1100 return ERR_PTR(-ENOMEM); 1101 } 1102 } 1103 } 1104 blk_set_congested(rl, is_sync); 1105 } 1106 1107 /* 1108 * Only allow batching queuers to allocate up to 50% over the defined 1109 * limit of requests, otherwise we could have thousands of requests 1110 * allocated with any setting of ->nr_requests 1111 */ 1112 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1113 return ERR_PTR(-ENOMEM); 1114 1115 q->nr_rqs[is_sync]++; 1116 rl->count[is_sync]++; 1117 rl->starved[is_sync] = 0; 1118 1119 /* 1120 * Decide whether the new request will be managed by elevator. If 1121 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1122 * prevent the current elevator from being destroyed until the new 1123 * request is freed. This guarantees icq's won't be destroyed and 1124 * makes creating new ones safe. 1125 * 1126 * Flush requests do not use the elevator so skip initialization. 1127 * This allows a request to share the flush and elevator data. 1128 * 1129 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1130 * it will be created after releasing queue_lock. 1131 */ 1132 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1133 rq_flags |= RQF_ELVPRIV; 1134 q->nr_rqs_elvpriv++; 1135 if (et->icq_cache && ioc) 1136 icq = ioc_lookup_icq(ioc, q); 1137 } 1138 1139 if (blk_queue_io_stat(q)) 1140 rq_flags |= RQF_IO_STAT; 1141 spin_unlock_irq(q->queue_lock); 1142 1143 /* allocate and init request */ 1144 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1145 if (!rq) 1146 goto fail_alloc; 1147 1148 blk_rq_init(q, rq); 1149 blk_rq_set_rl(rq, rl); 1150 rq->cmd_flags = op; 1151 rq->rq_flags = rq_flags; 1152 1153 /* init elvpriv */ 1154 if (rq_flags & RQF_ELVPRIV) { 1155 if (unlikely(et->icq_cache && !icq)) { 1156 if (ioc) 1157 icq = ioc_create_icq(ioc, q, gfp_mask); 1158 if (!icq) 1159 goto fail_elvpriv; 1160 } 1161 1162 rq->elv.icq = icq; 1163 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1164 goto fail_elvpriv; 1165 1166 /* @rq->elv.icq holds io_context until @rq is freed */ 1167 if (icq) 1168 get_io_context(icq->ioc); 1169 } 1170 out: 1171 /* 1172 * ioc may be NULL here, and ioc_batching will be false. That's 1173 * OK, if the queue is under the request limit then requests need 1174 * not count toward the nr_batch_requests limit. There will always 1175 * be some limit enforced by BLK_BATCH_TIME. 1176 */ 1177 if (ioc_batching(q, ioc)) 1178 ioc->nr_batch_requests--; 1179 1180 trace_block_getrq(q, bio, op); 1181 return rq; 1182 1183 fail_elvpriv: 1184 /* 1185 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1186 * and may fail indefinitely under memory pressure and thus 1187 * shouldn't stall IO. Treat this request as !elvpriv. This will 1188 * disturb iosched and blkcg but weird is bettern than dead. 1189 */ 1190 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1191 __func__, dev_name(q->backing_dev_info->dev)); 1192 1193 rq->rq_flags &= ~RQF_ELVPRIV; 1194 rq->elv.icq = NULL; 1195 1196 spin_lock_irq(q->queue_lock); 1197 q->nr_rqs_elvpriv--; 1198 spin_unlock_irq(q->queue_lock); 1199 goto out; 1200 1201 fail_alloc: 1202 /* 1203 * Allocation failed presumably due to memory. Undo anything we 1204 * might have messed up. 1205 * 1206 * Allocating task should really be put onto the front of the wait 1207 * queue, but this is pretty rare. 1208 */ 1209 spin_lock_irq(q->queue_lock); 1210 freed_request(rl, is_sync, rq_flags); 1211 1212 /* 1213 * in the very unlikely event that allocation failed and no 1214 * requests for this direction was pending, mark us starved so that 1215 * freeing of a request in the other direction will notice 1216 * us. another possible fix would be to split the rq mempool into 1217 * READ and WRITE 1218 */ 1219 rq_starved: 1220 if (unlikely(rl->count[is_sync] == 0)) 1221 rl->starved[is_sync] = 1; 1222 return ERR_PTR(-ENOMEM); 1223 } 1224 1225 /** 1226 * get_request - get a free request 1227 * @q: request_queue to allocate request from 1228 * @op: operation and flags 1229 * @bio: bio to allocate request for (can be %NULL) 1230 * @gfp_mask: allocation mask 1231 * 1232 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1233 * this function keeps retrying under memory pressure and fails iff @q is dead. 1234 * 1235 * Must be called with @q->queue_lock held and, 1236 * Returns ERR_PTR on failure, with @q->queue_lock held. 1237 * Returns request pointer on success, with @q->queue_lock *not held*. 1238 */ 1239 static struct request *get_request(struct request_queue *q, unsigned int op, 1240 struct bio *bio, gfp_t gfp_mask) 1241 { 1242 const bool is_sync = op_is_sync(op); 1243 DEFINE_WAIT(wait); 1244 struct request_list *rl; 1245 struct request *rq; 1246 1247 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1248 retry: 1249 rq = __get_request(rl, op, bio, gfp_mask); 1250 if (!IS_ERR(rq)) 1251 return rq; 1252 1253 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1254 blk_put_rl(rl); 1255 return rq; 1256 } 1257 1258 /* wait on @rl and retry */ 1259 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1260 TASK_UNINTERRUPTIBLE); 1261 1262 trace_block_sleeprq(q, bio, op); 1263 1264 spin_unlock_irq(q->queue_lock); 1265 io_schedule(); 1266 1267 /* 1268 * After sleeping, we become a "batching" process and will be able 1269 * to allocate at least one request, and up to a big batch of them 1270 * for a small period time. See ioc_batching, ioc_set_batching 1271 */ 1272 ioc_set_batching(q, current->io_context); 1273 1274 spin_lock_irq(q->queue_lock); 1275 finish_wait(&rl->wait[is_sync], &wait); 1276 1277 goto retry; 1278 } 1279 1280 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1281 gfp_t gfp_mask) 1282 { 1283 struct request *rq; 1284 1285 /* create ioc upfront */ 1286 create_io_context(gfp_mask, q->node); 1287 1288 spin_lock_irq(q->queue_lock); 1289 rq = get_request(q, rw, NULL, gfp_mask); 1290 if (IS_ERR(rq)) { 1291 spin_unlock_irq(q->queue_lock); 1292 return rq; 1293 } 1294 1295 /* q->queue_lock is unlocked at this point */ 1296 rq->__data_len = 0; 1297 rq->__sector = (sector_t) -1; 1298 rq->bio = rq->biotail = NULL; 1299 return rq; 1300 } 1301 1302 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1303 { 1304 if (q->mq_ops) 1305 return blk_mq_alloc_request(q, rw, 1306 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1307 0 : BLK_MQ_REQ_NOWAIT); 1308 else 1309 return blk_old_get_request(q, rw, gfp_mask); 1310 } 1311 EXPORT_SYMBOL(blk_get_request); 1312 1313 /** 1314 * blk_requeue_request - put a request back on queue 1315 * @q: request queue where request should be inserted 1316 * @rq: request to be inserted 1317 * 1318 * Description: 1319 * Drivers often keep queueing requests until the hardware cannot accept 1320 * more, when that condition happens we need to put the request back 1321 * on the queue. Must be called with queue lock held. 1322 */ 1323 void blk_requeue_request(struct request_queue *q, struct request *rq) 1324 { 1325 blk_delete_timer(rq); 1326 blk_clear_rq_complete(rq); 1327 trace_block_rq_requeue(q, rq); 1328 wbt_requeue(q->rq_wb, &rq->issue_stat); 1329 1330 if (rq->rq_flags & RQF_QUEUED) 1331 blk_queue_end_tag(q, rq); 1332 1333 BUG_ON(blk_queued_rq(rq)); 1334 1335 elv_requeue_request(q, rq); 1336 } 1337 EXPORT_SYMBOL(blk_requeue_request); 1338 1339 static void add_acct_request(struct request_queue *q, struct request *rq, 1340 int where) 1341 { 1342 blk_account_io_start(rq, true); 1343 __elv_add_request(q, rq, where); 1344 } 1345 1346 static void part_round_stats_single(int cpu, struct hd_struct *part, 1347 unsigned long now) 1348 { 1349 int inflight; 1350 1351 if (now == part->stamp) 1352 return; 1353 1354 inflight = part_in_flight(part); 1355 if (inflight) { 1356 __part_stat_add(cpu, part, time_in_queue, 1357 inflight * (now - part->stamp)); 1358 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1359 } 1360 part->stamp = now; 1361 } 1362 1363 /** 1364 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1365 * @cpu: cpu number for stats access 1366 * @part: target partition 1367 * 1368 * The average IO queue length and utilisation statistics are maintained 1369 * by observing the current state of the queue length and the amount of 1370 * time it has been in this state for. 1371 * 1372 * Normally, that accounting is done on IO completion, but that can result 1373 * in more than a second's worth of IO being accounted for within any one 1374 * second, leading to >100% utilisation. To deal with that, we call this 1375 * function to do a round-off before returning the results when reading 1376 * /proc/diskstats. This accounts immediately for all queue usage up to 1377 * the current jiffies and restarts the counters again. 1378 */ 1379 void part_round_stats(int cpu, struct hd_struct *part) 1380 { 1381 unsigned long now = jiffies; 1382 1383 if (part->partno) 1384 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1385 part_round_stats_single(cpu, part, now); 1386 } 1387 EXPORT_SYMBOL_GPL(part_round_stats); 1388 1389 #ifdef CONFIG_PM 1390 static void blk_pm_put_request(struct request *rq) 1391 { 1392 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1393 pm_runtime_mark_last_busy(rq->q->dev); 1394 } 1395 #else 1396 static inline void blk_pm_put_request(struct request *rq) {} 1397 #endif 1398 1399 /* 1400 * queue lock must be held 1401 */ 1402 void __blk_put_request(struct request_queue *q, struct request *req) 1403 { 1404 req_flags_t rq_flags = req->rq_flags; 1405 1406 if (unlikely(!q)) 1407 return; 1408 1409 if (q->mq_ops) { 1410 blk_mq_free_request(req); 1411 return; 1412 } 1413 1414 blk_pm_put_request(req); 1415 1416 elv_completed_request(q, req); 1417 1418 /* this is a bio leak */ 1419 WARN_ON(req->bio != NULL); 1420 1421 wbt_done(q->rq_wb, &req->issue_stat); 1422 1423 /* 1424 * Request may not have originated from ll_rw_blk. if not, 1425 * it didn't come out of our reserved rq pools 1426 */ 1427 if (rq_flags & RQF_ALLOCED) { 1428 struct request_list *rl = blk_rq_rl(req); 1429 bool sync = op_is_sync(req->cmd_flags); 1430 1431 BUG_ON(!list_empty(&req->queuelist)); 1432 BUG_ON(ELV_ON_HASH(req)); 1433 1434 blk_free_request(rl, req); 1435 freed_request(rl, sync, rq_flags); 1436 blk_put_rl(rl); 1437 } 1438 } 1439 EXPORT_SYMBOL_GPL(__blk_put_request); 1440 1441 void blk_put_request(struct request *req) 1442 { 1443 struct request_queue *q = req->q; 1444 1445 if (q->mq_ops) 1446 blk_mq_free_request(req); 1447 else { 1448 unsigned long flags; 1449 1450 spin_lock_irqsave(q->queue_lock, flags); 1451 __blk_put_request(q, req); 1452 spin_unlock_irqrestore(q->queue_lock, flags); 1453 } 1454 } 1455 EXPORT_SYMBOL(blk_put_request); 1456 1457 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1458 struct bio *bio) 1459 { 1460 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1461 1462 if (!ll_back_merge_fn(q, req, bio)) 1463 return false; 1464 1465 trace_block_bio_backmerge(q, req, bio); 1466 1467 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1468 blk_rq_set_mixed_merge(req); 1469 1470 req->biotail->bi_next = bio; 1471 req->biotail = bio; 1472 req->__data_len += bio->bi_iter.bi_size; 1473 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1474 1475 blk_account_io_start(req, false); 1476 return true; 1477 } 1478 1479 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1480 struct bio *bio) 1481 { 1482 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1483 1484 if (!ll_front_merge_fn(q, req, bio)) 1485 return false; 1486 1487 trace_block_bio_frontmerge(q, req, bio); 1488 1489 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1490 blk_rq_set_mixed_merge(req); 1491 1492 bio->bi_next = req->bio; 1493 req->bio = bio; 1494 1495 req->__sector = bio->bi_iter.bi_sector; 1496 req->__data_len += bio->bi_iter.bi_size; 1497 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1498 1499 blk_account_io_start(req, false); 1500 return true; 1501 } 1502 1503 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1504 struct bio *bio) 1505 { 1506 unsigned short segments = blk_rq_nr_discard_segments(req); 1507 1508 if (segments >= queue_max_discard_segments(q)) 1509 goto no_merge; 1510 if (blk_rq_sectors(req) + bio_sectors(bio) > 1511 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1512 goto no_merge; 1513 1514 req->biotail->bi_next = bio; 1515 req->biotail = bio; 1516 req->__data_len += bio->bi_iter.bi_size; 1517 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1518 req->nr_phys_segments = segments + 1; 1519 1520 blk_account_io_start(req, false); 1521 return true; 1522 no_merge: 1523 req_set_nomerge(q, req); 1524 return false; 1525 } 1526 1527 /** 1528 * blk_attempt_plug_merge - try to merge with %current's plugged list 1529 * @q: request_queue new bio is being queued at 1530 * @bio: new bio being queued 1531 * @request_count: out parameter for number of traversed plugged requests 1532 * @same_queue_rq: pointer to &struct request that gets filled in when 1533 * another request associated with @q is found on the plug list 1534 * (optional, may be %NULL) 1535 * 1536 * Determine whether @bio being queued on @q can be merged with a request 1537 * on %current's plugged list. Returns %true if merge was successful, 1538 * otherwise %false. 1539 * 1540 * Plugging coalesces IOs from the same issuer for the same purpose without 1541 * going through @q->queue_lock. As such it's more of an issuing mechanism 1542 * than scheduling, and the request, while may have elvpriv data, is not 1543 * added on the elevator at this point. In addition, we don't have 1544 * reliable access to the elevator outside queue lock. Only check basic 1545 * merging parameters without querying the elevator. 1546 * 1547 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1548 */ 1549 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1550 unsigned int *request_count, 1551 struct request **same_queue_rq) 1552 { 1553 struct blk_plug *plug; 1554 struct request *rq; 1555 struct list_head *plug_list; 1556 1557 plug = current->plug; 1558 if (!plug) 1559 return false; 1560 *request_count = 0; 1561 1562 if (q->mq_ops) 1563 plug_list = &plug->mq_list; 1564 else 1565 plug_list = &plug->list; 1566 1567 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1568 bool merged = false; 1569 1570 if (rq->q == q) { 1571 (*request_count)++; 1572 /* 1573 * Only blk-mq multiple hardware queues case checks the 1574 * rq in the same queue, there should be only one such 1575 * rq in a queue 1576 **/ 1577 if (same_queue_rq) 1578 *same_queue_rq = rq; 1579 } 1580 1581 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1582 continue; 1583 1584 switch (blk_try_merge(rq, bio)) { 1585 case ELEVATOR_BACK_MERGE: 1586 merged = bio_attempt_back_merge(q, rq, bio); 1587 break; 1588 case ELEVATOR_FRONT_MERGE: 1589 merged = bio_attempt_front_merge(q, rq, bio); 1590 break; 1591 case ELEVATOR_DISCARD_MERGE: 1592 merged = bio_attempt_discard_merge(q, rq, bio); 1593 break; 1594 default: 1595 break; 1596 } 1597 1598 if (merged) 1599 return true; 1600 } 1601 1602 return false; 1603 } 1604 1605 unsigned int blk_plug_queued_count(struct request_queue *q) 1606 { 1607 struct blk_plug *plug; 1608 struct request *rq; 1609 struct list_head *plug_list; 1610 unsigned int ret = 0; 1611 1612 plug = current->plug; 1613 if (!plug) 1614 goto out; 1615 1616 if (q->mq_ops) 1617 plug_list = &plug->mq_list; 1618 else 1619 plug_list = &plug->list; 1620 1621 list_for_each_entry(rq, plug_list, queuelist) { 1622 if (rq->q == q) 1623 ret++; 1624 } 1625 out: 1626 return ret; 1627 } 1628 1629 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1630 { 1631 struct io_context *ioc = rq_ioc(bio); 1632 1633 if (bio->bi_opf & REQ_RAHEAD) 1634 req->cmd_flags |= REQ_FAILFAST_MASK; 1635 1636 req->__sector = bio->bi_iter.bi_sector; 1637 if (ioprio_valid(bio_prio(bio))) 1638 req->ioprio = bio_prio(bio); 1639 else if (ioc) 1640 req->ioprio = ioc->ioprio; 1641 else 1642 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1643 blk_rq_bio_prep(req->q, req, bio); 1644 } 1645 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1646 1647 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1648 { 1649 struct blk_plug *plug; 1650 int where = ELEVATOR_INSERT_SORT; 1651 struct request *req, *free; 1652 unsigned int request_count = 0; 1653 unsigned int wb_acct; 1654 1655 /* 1656 * low level driver can indicate that it wants pages above a 1657 * certain limit bounced to low memory (ie for highmem, or even 1658 * ISA dma in theory) 1659 */ 1660 blk_queue_bounce(q, &bio); 1661 1662 blk_queue_split(q, &bio, q->bio_split); 1663 1664 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1665 bio->bi_error = -EIO; 1666 bio_endio(bio); 1667 return BLK_QC_T_NONE; 1668 } 1669 1670 if (op_is_flush(bio->bi_opf)) { 1671 spin_lock_irq(q->queue_lock); 1672 where = ELEVATOR_INSERT_FLUSH; 1673 goto get_rq; 1674 } 1675 1676 /* 1677 * Check if we can merge with the plugged list before grabbing 1678 * any locks. 1679 */ 1680 if (!blk_queue_nomerges(q)) { 1681 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1682 return BLK_QC_T_NONE; 1683 } else 1684 request_count = blk_plug_queued_count(q); 1685 1686 spin_lock_irq(q->queue_lock); 1687 1688 switch (elv_merge(q, &req, bio)) { 1689 case ELEVATOR_BACK_MERGE: 1690 if (!bio_attempt_back_merge(q, req, bio)) 1691 break; 1692 elv_bio_merged(q, req, bio); 1693 free = attempt_back_merge(q, req); 1694 if (free) 1695 __blk_put_request(q, free); 1696 else 1697 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1698 goto out_unlock; 1699 case ELEVATOR_FRONT_MERGE: 1700 if (!bio_attempt_front_merge(q, req, bio)) 1701 break; 1702 elv_bio_merged(q, req, bio); 1703 free = attempt_front_merge(q, req); 1704 if (free) 1705 __blk_put_request(q, free); 1706 else 1707 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1708 goto out_unlock; 1709 default: 1710 break; 1711 } 1712 1713 get_rq: 1714 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1715 1716 /* 1717 * Grab a free request. This is might sleep but can not fail. 1718 * Returns with the queue unlocked. 1719 */ 1720 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1721 if (IS_ERR(req)) { 1722 __wbt_done(q->rq_wb, wb_acct); 1723 bio->bi_error = PTR_ERR(req); 1724 bio_endio(bio); 1725 goto out_unlock; 1726 } 1727 1728 wbt_track(&req->issue_stat, wb_acct); 1729 1730 /* 1731 * After dropping the lock and possibly sleeping here, our request 1732 * may now be mergeable after it had proven unmergeable (above). 1733 * We don't worry about that case for efficiency. It won't happen 1734 * often, and the elevators are able to handle it. 1735 */ 1736 blk_init_request_from_bio(req, bio); 1737 1738 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1739 req->cpu = raw_smp_processor_id(); 1740 1741 plug = current->plug; 1742 if (plug) { 1743 /* 1744 * If this is the first request added after a plug, fire 1745 * of a plug trace. 1746 * 1747 * @request_count may become stale because of schedule 1748 * out, so check plug list again. 1749 */ 1750 if (!request_count || list_empty(&plug->list)) 1751 trace_block_plug(q); 1752 else { 1753 struct request *last = list_entry_rq(plug->list.prev); 1754 if (request_count >= BLK_MAX_REQUEST_COUNT || 1755 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1756 blk_flush_plug_list(plug, false); 1757 trace_block_plug(q); 1758 } 1759 } 1760 list_add_tail(&req->queuelist, &plug->list); 1761 blk_account_io_start(req, true); 1762 } else { 1763 spin_lock_irq(q->queue_lock); 1764 add_acct_request(q, req, where); 1765 __blk_run_queue(q); 1766 out_unlock: 1767 spin_unlock_irq(q->queue_lock); 1768 } 1769 1770 return BLK_QC_T_NONE; 1771 } 1772 1773 /* 1774 * If bio->bi_dev is a partition, remap the location 1775 */ 1776 static inline void blk_partition_remap(struct bio *bio) 1777 { 1778 struct block_device *bdev = bio->bi_bdev; 1779 1780 /* 1781 * Zone reset does not include bi_size so bio_sectors() is always 0. 1782 * Include a test for the reset op code and perform the remap if needed. 1783 */ 1784 if (bdev != bdev->bd_contains && 1785 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1786 struct hd_struct *p = bdev->bd_part; 1787 1788 bio->bi_iter.bi_sector += p->start_sect; 1789 bio->bi_bdev = bdev->bd_contains; 1790 1791 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1792 bdev->bd_dev, 1793 bio->bi_iter.bi_sector - p->start_sect); 1794 } 1795 } 1796 1797 static void handle_bad_sector(struct bio *bio) 1798 { 1799 char b[BDEVNAME_SIZE]; 1800 1801 printk(KERN_INFO "attempt to access beyond end of device\n"); 1802 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1803 bdevname(bio->bi_bdev, b), 1804 bio->bi_opf, 1805 (unsigned long long)bio_end_sector(bio), 1806 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1807 } 1808 1809 #ifdef CONFIG_FAIL_MAKE_REQUEST 1810 1811 static DECLARE_FAULT_ATTR(fail_make_request); 1812 1813 static int __init setup_fail_make_request(char *str) 1814 { 1815 return setup_fault_attr(&fail_make_request, str); 1816 } 1817 __setup("fail_make_request=", setup_fail_make_request); 1818 1819 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1820 { 1821 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1822 } 1823 1824 static int __init fail_make_request_debugfs(void) 1825 { 1826 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1827 NULL, &fail_make_request); 1828 1829 return PTR_ERR_OR_ZERO(dir); 1830 } 1831 1832 late_initcall(fail_make_request_debugfs); 1833 1834 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1835 1836 static inline bool should_fail_request(struct hd_struct *part, 1837 unsigned int bytes) 1838 { 1839 return false; 1840 } 1841 1842 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1843 1844 /* 1845 * Check whether this bio extends beyond the end of the device. 1846 */ 1847 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1848 { 1849 sector_t maxsector; 1850 1851 if (!nr_sectors) 1852 return 0; 1853 1854 /* Test device or partition size, when known. */ 1855 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1856 if (maxsector) { 1857 sector_t sector = bio->bi_iter.bi_sector; 1858 1859 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1860 /* 1861 * This may well happen - the kernel calls bread() 1862 * without checking the size of the device, e.g., when 1863 * mounting a device. 1864 */ 1865 handle_bad_sector(bio); 1866 return 1; 1867 } 1868 } 1869 1870 return 0; 1871 } 1872 1873 static noinline_for_stack bool 1874 generic_make_request_checks(struct bio *bio) 1875 { 1876 struct request_queue *q; 1877 int nr_sectors = bio_sectors(bio); 1878 int err = -EIO; 1879 char b[BDEVNAME_SIZE]; 1880 struct hd_struct *part; 1881 1882 might_sleep(); 1883 1884 if (bio_check_eod(bio, nr_sectors)) 1885 goto end_io; 1886 1887 q = bdev_get_queue(bio->bi_bdev); 1888 if (unlikely(!q)) { 1889 printk(KERN_ERR 1890 "generic_make_request: Trying to access " 1891 "nonexistent block-device %s (%Lu)\n", 1892 bdevname(bio->bi_bdev, b), 1893 (long long) bio->bi_iter.bi_sector); 1894 goto end_io; 1895 } 1896 1897 part = bio->bi_bdev->bd_part; 1898 if (should_fail_request(part, bio->bi_iter.bi_size) || 1899 should_fail_request(&part_to_disk(part)->part0, 1900 bio->bi_iter.bi_size)) 1901 goto end_io; 1902 1903 /* 1904 * If this device has partitions, remap block n 1905 * of partition p to block n+start(p) of the disk. 1906 */ 1907 blk_partition_remap(bio); 1908 1909 if (bio_check_eod(bio, nr_sectors)) 1910 goto end_io; 1911 1912 /* 1913 * Filter flush bio's early so that make_request based 1914 * drivers without flush support don't have to worry 1915 * about them. 1916 */ 1917 if (op_is_flush(bio->bi_opf) && 1918 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1919 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1920 if (!nr_sectors) { 1921 err = 0; 1922 goto end_io; 1923 } 1924 } 1925 1926 switch (bio_op(bio)) { 1927 case REQ_OP_DISCARD: 1928 if (!blk_queue_discard(q)) 1929 goto not_supported; 1930 break; 1931 case REQ_OP_SECURE_ERASE: 1932 if (!blk_queue_secure_erase(q)) 1933 goto not_supported; 1934 break; 1935 case REQ_OP_WRITE_SAME: 1936 if (!bdev_write_same(bio->bi_bdev)) 1937 goto not_supported; 1938 break; 1939 case REQ_OP_ZONE_REPORT: 1940 case REQ_OP_ZONE_RESET: 1941 if (!bdev_is_zoned(bio->bi_bdev)) 1942 goto not_supported; 1943 break; 1944 case REQ_OP_WRITE_ZEROES: 1945 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 1946 goto not_supported; 1947 break; 1948 default: 1949 break; 1950 } 1951 1952 /* 1953 * Various block parts want %current->io_context and lazy ioc 1954 * allocation ends up trading a lot of pain for a small amount of 1955 * memory. Just allocate it upfront. This may fail and block 1956 * layer knows how to live with it. 1957 */ 1958 create_io_context(GFP_ATOMIC, q->node); 1959 1960 if (!blkcg_bio_issue_check(q, bio)) 1961 return false; 1962 1963 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1964 trace_block_bio_queue(q, bio); 1965 /* Now that enqueuing has been traced, we need to trace 1966 * completion as well. 1967 */ 1968 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1969 } 1970 return true; 1971 1972 not_supported: 1973 err = -EOPNOTSUPP; 1974 end_io: 1975 bio->bi_error = err; 1976 bio_endio(bio); 1977 return false; 1978 } 1979 1980 /** 1981 * generic_make_request - hand a buffer to its device driver for I/O 1982 * @bio: The bio describing the location in memory and on the device. 1983 * 1984 * generic_make_request() is used to make I/O requests of block 1985 * devices. It is passed a &struct bio, which describes the I/O that needs 1986 * to be done. 1987 * 1988 * generic_make_request() does not return any status. The 1989 * success/failure status of the request, along with notification of 1990 * completion, is delivered asynchronously through the bio->bi_end_io 1991 * function described (one day) else where. 1992 * 1993 * The caller of generic_make_request must make sure that bi_io_vec 1994 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1995 * set to describe the device address, and the 1996 * bi_end_io and optionally bi_private are set to describe how 1997 * completion notification should be signaled. 1998 * 1999 * generic_make_request and the drivers it calls may use bi_next if this 2000 * bio happens to be merged with someone else, and may resubmit the bio to 2001 * a lower device by calling into generic_make_request recursively, which 2002 * means the bio should NOT be touched after the call to ->make_request_fn. 2003 */ 2004 blk_qc_t generic_make_request(struct bio *bio) 2005 { 2006 /* 2007 * bio_list_on_stack[0] contains bios submitted by the current 2008 * make_request_fn. 2009 * bio_list_on_stack[1] contains bios that were submitted before 2010 * the current make_request_fn, but that haven't been processed 2011 * yet. 2012 */ 2013 struct bio_list bio_list_on_stack[2]; 2014 blk_qc_t ret = BLK_QC_T_NONE; 2015 2016 if (!generic_make_request_checks(bio)) 2017 goto out; 2018 2019 /* 2020 * We only want one ->make_request_fn to be active at a time, else 2021 * stack usage with stacked devices could be a problem. So use 2022 * current->bio_list to keep a list of requests submited by a 2023 * make_request_fn function. current->bio_list is also used as a 2024 * flag to say if generic_make_request is currently active in this 2025 * task or not. If it is NULL, then no make_request is active. If 2026 * it is non-NULL, then a make_request is active, and new requests 2027 * should be added at the tail 2028 */ 2029 if (current->bio_list) { 2030 bio_list_add(¤t->bio_list[0], bio); 2031 goto out; 2032 } 2033 2034 /* following loop may be a bit non-obvious, and so deserves some 2035 * explanation. 2036 * Before entering the loop, bio->bi_next is NULL (as all callers 2037 * ensure that) so we have a list with a single bio. 2038 * We pretend that we have just taken it off a longer list, so 2039 * we assign bio_list to a pointer to the bio_list_on_stack, 2040 * thus initialising the bio_list of new bios to be 2041 * added. ->make_request() may indeed add some more bios 2042 * through a recursive call to generic_make_request. If it 2043 * did, we find a non-NULL value in bio_list and re-enter the loop 2044 * from the top. In this case we really did just take the bio 2045 * of the top of the list (no pretending) and so remove it from 2046 * bio_list, and call into ->make_request() again. 2047 */ 2048 BUG_ON(bio->bi_next); 2049 bio_list_init(&bio_list_on_stack[0]); 2050 current->bio_list = bio_list_on_stack; 2051 do { 2052 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2053 2054 if (likely(blk_queue_enter(q, false) == 0)) { 2055 struct bio_list lower, same; 2056 2057 /* Create a fresh bio_list for all subordinate requests */ 2058 bio_list_on_stack[1] = bio_list_on_stack[0]; 2059 bio_list_init(&bio_list_on_stack[0]); 2060 ret = q->make_request_fn(q, bio); 2061 2062 blk_queue_exit(q); 2063 2064 /* sort new bios into those for a lower level 2065 * and those for the same level 2066 */ 2067 bio_list_init(&lower); 2068 bio_list_init(&same); 2069 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2070 if (q == bdev_get_queue(bio->bi_bdev)) 2071 bio_list_add(&same, bio); 2072 else 2073 bio_list_add(&lower, bio); 2074 /* now assemble so we handle the lowest level first */ 2075 bio_list_merge(&bio_list_on_stack[0], &lower); 2076 bio_list_merge(&bio_list_on_stack[0], &same); 2077 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2078 } else { 2079 bio_io_error(bio); 2080 } 2081 bio = bio_list_pop(&bio_list_on_stack[0]); 2082 } while (bio); 2083 current->bio_list = NULL; /* deactivate */ 2084 2085 out: 2086 return ret; 2087 } 2088 EXPORT_SYMBOL(generic_make_request); 2089 2090 /** 2091 * submit_bio - submit a bio to the block device layer for I/O 2092 * @bio: The &struct bio which describes the I/O 2093 * 2094 * submit_bio() is very similar in purpose to generic_make_request(), and 2095 * uses that function to do most of the work. Both are fairly rough 2096 * interfaces; @bio must be presetup and ready for I/O. 2097 * 2098 */ 2099 blk_qc_t submit_bio(struct bio *bio) 2100 { 2101 /* 2102 * If it's a regular read/write or a barrier with data attached, 2103 * go through the normal accounting stuff before submission. 2104 */ 2105 if (bio_has_data(bio)) { 2106 unsigned int count; 2107 2108 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2109 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2110 else 2111 count = bio_sectors(bio); 2112 2113 if (op_is_write(bio_op(bio))) { 2114 count_vm_events(PGPGOUT, count); 2115 } else { 2116 task_io_account_read(bio->bi_iter.bi_size); 2117 count_vm_events(PGPGIN, count); 2118 } 2119 2120 if (unlikely(block_dump)) { 2121 char b[BDEVNAME_SIZE]; 2122 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2123 current->comm, task_pid_nr(current), 2124 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2125 (unsigned long long)bio->bi_iter.bi_sector, 2126 bdevname(bio->bi_bdev, b), 2127 count); 2128 } 2129 } 2130 2131 return generic_make_request(bio); 2132 } 2133 EXPORT_SYMBOL(submit_bio); 2134 2135 /** 2136 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2137 * for new the queue limits 2138 * @q: the queue 2139 * @rq: the request being checked 2140 * 2141 * Description: 2142 * @rq may have been made based on weaker limitations of upper-level queues 2143 * in request stacking drivers, and it may violate the limitation of @q. 2144 * Since the block layer and the underlying device driver trust @rq 2145 * after it is inserted to @q, it should be checked against @q before 2146 * the insertion using this generic function. 2147 * 2148 * Request stacking drivers like request-based dm may change the queue 2149 * limits when retrying requests on other queues. Those requests need 2150 * to be checked against the new queue limits again during dispatch. 2151 */ 2152 static int blk_cloned_rq_check_limits(struct request_queue *q, 2153 struct request *rq) 2154 { 2155 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2156 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2157 return -EIO; 2158 } 2159 2160 /* 2161 * queue's settings related to segment counting like q->bounce_pfn 2162 * may differ from that of other stacking queues. 2163 * Recalculate it to check the request correctly on this queue's 2164 * limitation. 2165 */ 2166 blk_recalc_rq_segments(rq); 2167 if (rq->nr_phys_segments > queue_max_segments(q)) { 2168 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2169 return -EIO; 2170 } 2171 2172 return 0; 2173 } 2174 2175 /** 2176 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2177 * @q: the queue to submit the request 2178 * @rq: the request being queued 2179 */ 2180 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2181 { 2182 unsigned long flags; 2183 int where = ELEVATOR_INSERT_BACK; 2184 2185 if (blk_cloned_rq_check_limits(q, rq)) 2186 return -EIO; 2187 2188 if (rq->rq_disk && 2189 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2190 return -EIO; 2191 2192 if (q->mq_ops) { 2193 if (blk_queue_io_stat(q)) 2194 blk_account_io_start(rq, true); 2195 blk_mq_sched_insert_request(rq, false, true, false, false); 2196 return 0; 2197 } 2198 2199 spin_lock_irqsave(q->queue_lock, flags); 2200 if (unlikely(blk_queue_dying(q))) { 2201 spin_unlock_irqrestore(q->queue_lock, flags); 2202 return -ENODEV; 2203 } 2204 2205 /* 2206 * Submitting request must be dequeued before calling this function 2207 * because it will be linked to another request_queue 2208 */ 2209 BUG_ON(blk_queued_rq(rq)); 2210 2211 if (op_is_flush(rq->cmd_flags)) 2212 where = ELEVATOR_INSERT_FLUSH; 2213 2214 add_acct_request(q, rq, where); 2215 if (where == ELEVATOR_INSERT_FLUSH) 2216 __blk_run_queue(q); 2217 spin_unlock_irqrestore(q->queue_lock, flags); 2218 2219 return 0; 2220 } 2221 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2222 2223 /** 2224 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2225 * @rq: request to examine 2226 * 2227 * Description: 2228 * A request could be merge of IOs which require different failure 2229 * handling. This function determines the number of bytes which 2230 * can be failed from the beginning of the request without 2231 * crossing into area which need to be retried further. 2232 * 2233 * Return: 2234 * The number of bytes to fail. 2235 * 2236 * Context: 2237 * queue_lock must be held. 2238 */ 2239 unsigned int blk_rq_err_bytes(const struct request *rq) 2240 { 2241 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2242 unsigned int bytes = 0; 2243 struct bio *bio; 2244 2245 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2246 return blk_rq_bytes(rq); 2247 2248 /* 2249 * Currently the only 'mixing' which can happen is between 2250 * different fastfail types. We can safely fail portions 2251 * which have all the failfast bits that the first one has - 2252 * the ones which are at least as eager to fail as the first 2253 * one. 2254 */ 2255 for (bio = rq->bio; bio; bio = bio->bi_next) { 2256 if ((bio->bi_opf & ff) != ff) 2257 break; 2258 bytes += bio->bi_iter.bi_size; 2259 } 2260 2261 /* this could lead to infinite loop */ 2262 BUG_ON(blk_rq_bytes(rq) && !bytes); 2263 return bytes; 2264 } 2265 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2266 2267 void blk_account_io_completion(struct request *req, unsigned int bytes) 2268 { 2269 if (blk_do_io_stat(req)) { 2270 const int rw = rq_data_dir(req); 2271 struct hd_struct *part; 2272 int cpu; 2273 2274 cpu = part_stat_lock(); 2275 part = req->part; 2276 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2277 part_stat_unlock(); 2278 } 2279 } 2280 2281 void blk_account_io_done(struct request *req) 2282 { 2283 /* 2284 * Account IO completion. flush_rq isn't accounted as a 2285 * normal IO on queueing nor completion. Accounting the 2286 * containing request is enough. 2287 */ 2288 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2289 unsigned long duration = jiffies - req->start_time; 2290 const int rw = rq_data_dir(req); 2291 struct hd_struct *part; 2292 int cpu; 2293 2294 cpu = part_stat_lock(); 2295 part = req->part; 2296 2297 part_stat_inc(cpu, part, ios[rw]); 2298 part_stat_add(cpu, part, ticks[rw], duration); 2299 part_round_stats(cpu, part); 2300 part_dec_in_flight(part, rw); 2301 2302 hd_struct_put(part); 2303 part_stat_unlock(); 2304 } 2305 } 2306 2307 #ifdef CONFIG_PM 2308 /* 2309 * Don't process normal requests when queue is suspended 2310 * or in the process of suspending/resuming 2311 */ 2312 static struct request *blk_pm_peek_request(struct request_queue *q, 2313 struct request *rq) 2314 { 2315 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2316 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2317 return NULL; 2318 else 2319 return rq; 2320 } 2321 #else 2322 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2323 struct request *rq) 2324 { 2325 return rq; 2326 } 2327 #endif 2328 2329 void blk_account_io_start(struct request *rq, bool new_io) 2330 { 2331 struct hd_struct *part; 2332 int rw = rq_data_dir(rq); 2333 int cpu; 2334 2335 if (!blk_do_io_stat(rq)) 2336 return; 2337 2338 cpu = part_stat_lock(); 2339 2340 if (!new_io) { 2341 part = rq->part; 2342 part_stat_inc(cpu, part, merges[rw]); 2343 } else { 2344 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2345 if (!hd_struct_try_get(part)) { 2346 /* 2347 * The partition is already being removed, 2348 * the request will be accounted on the disk only 2349 * 2350 * We take a reference on disk->part0 although that 2351 * partition will never be deleted, so we can treat 2352 * it as any other partition. 2353 */ 2354 part = &rq->rq_disk->part0; 2355 hd_struct_get(part); 2356 } 2357 part_round_stats(cpu, part); 2358 part_inc_in_flight(part, rw); 2359 rq->part = part; 2360 } 2361 2362 part_stat_unlock(); 2363 } 2364 2365 /** 2366 * blk_peek_request - peek at the top of a request queue 2367 * @q: request queue to peek at 2368 * 2369 * Description: 2370 * Return the request at the top of @q. The returned request 2371 * should be started using blk_start_request() before LLD starts 2372 * processing it. 2373 * 2374 * Return: 2375 * Pointer to the request at the top of @q if available. Null 2376 * otherwise. 2377 * 2378 * Context: 2379 * queue_lock must be held. 2380 */ 2381 struct request *blk_peek_request(struct request_queue *q) 2382 { 2383 struct request *rq; 2384 int ret; 2385 2386 while ((rq = __elv_next_request(q)) != NULL) { 2387 2388 rq = blk_pm_peek_request(q, rq); 2389 if (!rq) 2390 break; 2391 2392 if (!(rq->rq_flags & RQF_STARTED)) { 2393 /* 2394 * This is the first time the device driver 2395 * sees this request (possibly after 2396 * requeueing). Notify IO scheduler. 2397 */ 2398 if (rq->rq_flags & RQF_SORTED) 2399 elv_activate_rq(q, rq); 2400 2401 /* 2402 * just mark as started even if we don't start 2403 * it, a request that has been delayed should 2404 * not be passed by new incoming requests 2405 */ 2406 rq->rq_flags |= RQF_STARTED; 2407 trace_block_rq_issue(q, rq); 2408 } 2409 2410 if (!q->boundary_rq || q->boundary_rq == rq) { 2411 q->end_sector = rq_end_sector(rq); 2412 q->boundary_rq = NULL; 2413 } 2414 2415 if (rq->rq_flags & RQF_DONTPREP) 2416 break; 2417 2418 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2419 /* 2420 * make sure space for the drain appears we 2421 * know we can do this because max_hw_segments 2422 * has been adjusted to be one fewer than the 2423 * device can handle 2424 */ 2425 rq->nr_phys_segments++; 2426 } 2427 2428 if (!q->prep_rq_fn) 2429 break; 2430 2431 ret = q->prep_rq_fn(q, rq); 2432 if (ret == BLKPREP_OK) { 2433 break; 2434 } else if (ret == BLKPREP_DEFER) { 2435 /* 2436 * the request may have been (partially) prepped. 2437 * we need to keep this request in the front to 2438 * avoid resource deadlock. RQF_STARTED will 2439 * prevent other fs requests from passing this one. 2440 */ 2441 if (q->dma_drain_size && blk_rq_bytes(rq) && 2442 !(rq->rq_flags & RQF_DONTPREP)) { 2443 /* 2444 * remove the space for the drain we added 2445 * so that we don't add it again 2446 */ 2447 --rq->nr_phys_segments; 2448 } 2449 2450 rq = NULL; 2451 break; 2452 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2453 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2454 2455 rq->rq_flags |= RQF_QUIET; 2456 /* 2457 * Mark this request as started so we don't trigger 2458 * any debug logic in the end I/O path. 2459 */ 2460 blk_start_request(rq); 2461 __blk_end_request_all(rq, err); 2462 } else { 2463 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2464 break; 2465 } 2466 } 2467 2468 return rq; 2469 } 2470 EXPORT_SYMBOL(blk_peek_request); 2471 2472 void blk_dequeue_request(struct request *rq) 2473 { 2474 struct request_queue *q = rq->q; 2475 2476 BUG_ON(list_empty(&rq->queuelist)); 2477 BUG_ON(ELV_ON_HASH(rq)); 2478 2479 list_del_init(&rq->queuelist); 2480 2481 /* 2482 * the time frame between a request being removed from the lists 2483 * and to it is freed is accounted as io that is in progress at 2484 * the driver side. 2485 */ 2486 if (blk_account_rq(rq)) { 2487 q->in_flight[rq_is_sync(rq)]++; 2488 set_io_start_time_ns(rq); 2489 } 2490 } 2491 2492 /** 2493 * blk_start_request - start request processing on the driver 2494 * @req: request to dequeue 2495 * 2496 * Description: 2497 * Dequeue @req and start timeout timer on it. This hands off the 2498 * request to the driver. 2499 * 2500 * Block internal functions which don't want to start timer should 2501 * call blk_dequeue_request(). 2502 * 2503 * Context: 2504 * queue_lock must be held. 2505 */ 2506 void blk_start_request(struct request *req) 2507 { 2508 blk_dequeue_request(req); 2509 2510 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2511 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2512 req->rq_flags |= RQF_STATS; 2513 wbt_issue(req->q->rq_wb, &req->issue_stat); 2514 } 2515 2516 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2517 blk_add_timer(req); 2518 } 2519 EXPORT_SYMBOL(blk_start_request); 2520 2521 /** 2522 * blk_fetch_request - fetch a request from a request queue 2523 * @q: request queue to fetch a request from 2524 * 2525 * Description: 2526 * Return the request at the top of @q. The request is started on 2527 * return and LLD can start processing it immediately. 2528 * 2529 * Return: 2530 * Pointer to the request at the top of @q if available. Null 2531 * otherwise. 2532 * 2533 * Context: 2534 * queue_lock must be held. 2535 */ 2536 struct request *blk_fetch_request(struct request_queue *q) 2537 { 2538 struct request *rq; 2539 2540 rq = blk_peek_request(q); 2541 if (rq) 2542 blk_start_request(rq); 2543 return rq; 2544 } 2545 EXPORT_SYMBOL(blk_fetch_request); 2546 2547 /** 2548 * blk_update_request - Special helper function for request stacking drivers 2549 * @req: the request being processed 2550 * @error: %0 for success, < %0 for error 2551 * @nr_bytes: number of bytes to complete @req 2552 * 2553 * Description: 2554 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2555 * the request structure even if @req doesn't have leftover. 2556 * If @req has leftover, sets it up for the next range of segments. 2557 * 2558 * This special helper function is only for request stacking drivers 2559 * (e.g. request-based dm) so that they can handle partial completion. 2560 * Actual device drivers should use blk_end_request instead. 2561 * 2562 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2563 * %false return from this function. 2564 * 2565 * Return: 2566 * %false - this request doesn't have any more data 2567 * %true - this request has more data 2568 **/ 2569 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2570 { 2571 int total_bytes; 2572 2573 trace_block_rq_complete(req, error, nr_bytes); 2574 2575 if (!req->bio) 2576 return false; 2577 2578 if (error && !blk_rq_is_passthrough(req) && 2579 !(req->rq_flags & RQF_QUIET)) { 2580 char *error_type; 2581 2582 switch (error) { 2583 case -ENOLINK: 2584 error_type = "recoverable transport"; 2585 break; 2586 case -EREMOTEIO: 2587 error_type = "critical target"; 2588 break; 2589 case -EBADE: 2590 error_type = "critical nexus"; 2591 break; 2592 case -ETIMEDOUT: 2593 error_type = "timeout"; 2594 break; 2595 case -ENOSPC: 2596 error_type = "critical space allocation"; 2597 break; 2598 case -ENODATA: 2599 error_type = "critical medium"; 2600 break; 2601 case -EIO: 2602 default: 2603 error_type = "I/O"; 2604 break; 2605 } 2606 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2607 __func__, error_type, req->rq_disk ? 2608 req->rq_disk->disk_name : "?", 2609 (unsigned long long)blk_rq_pos(req)); 2610 2611 } 2612 2613 blk_account_io_completion(req, nr_bytes); 2614 2615 total_bytes = 0; 2616 while (req->bio) { 2617 struct bio *bio = req->bio; 2618 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2619 2620 if (bio_bytes == bio->bi_iter.bi_size) 2621 req->bio = bio->bi_next; 2622 2623 /* Completion has already been traced */ 2624 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2625 req_bio_endio(req, bio, bio_bytes, error); 2626 2627 total_bytes += bio_bytes; 2628 nr_bytes -= bio_bytes; 2629 2630 if (!nr_bytes) 2631 break; 2632 } 2633 2634 /* 2635 * completely done 2636 */ 2637 if (!req->bio) { 2638 /* 2639 * Reset counters so that the request stacking driver 2640 * can find how many bytes remain in the request 2641 * later. 2642 */ 2643 req->__data_len = 0; 2644 return false; 2645 } 2646 2647 req->__data_len -= total_bytes; 2648 2649 /* update sector only for requests with clear definition of sector */ 2650 if (!blk_rq_is_passthrough(req)) 2651 req->__sector += total_bytes >> 9; 2652 2653 /* mixed attributes always follow the first bio */ 2654 if (req->rq_flags & RQF_MIXED_MERGE) { 2655 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2656 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2657 } 2658 2659 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 2660 /* 2661 * If total number of sectors is less than the first segment 2662 * size, something has gone terribly wrong. 2663 */ 2664 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2665 blk_dump_rq_flags(req, "request botched"); 2666 req->__data_len = blk_rq_cur_bytes(req); 2667 } 2668 2669 /* recalculate the number of segments */ 2670 blk_recalc_rq_segments(req); 2671 } 2672 2673 return true; 2674 } 2675 EXPORT_SYMBOL_GPL(blk_update_request); 2676 2677 static bool blk_update_bidi_request(struct request *rq, int error, 2678 unsigned int nr_bytes, 2679 unsigned int bidi_bytes) 2680 { 2681 if (blk_update_request(rq, error, nr_bytes)) 2682 return true; 2683 2684 /* Bidi request must be completed as a whole */ 2685 if (unlikely(blk_bidi_rq(rq)) && 2686 blk_update_request(rq->next_rq, error, bidi_bytes)) 2687 return true; 2688 2689 if (blk_queue_add_random(rq->q)) 2690 add_disk_randomness(rq->rq_disk); 2691 2692 return false; 2693 } 2694 2695 /** 2696 * blk_unprep_request - unprepare a request 2697 * @req: the request 2698 * 2699 * This function makes a request ready for complete resubmission (or 2700 * completion). It happens only after all error handling is complete, 2701 * so represents the appropriate moment to deallocate any resources 2702 * that were allocated to the request in the prep_rq_fn. The queue 2703 * lock is held when calling this. 2704 */ 2705 void blk_unprep_request(struct request *req) 2706 { 2707 struct request_queue *q = req->q; 2708 2709 req->rq_flags &= ~RQF_DONTPREP; 2710 if (q->unprep_rq_fn) 2711 q->unprep_rq_fn(q, req); 2712 } 2713 EXPORT_SYMBOL_GPL(blk_unprep_request); 2714 2715 /* 2716 * queue lock must be held 2717 */ 2718 void blk_finish_request(struct request *req, int error) 2719 { 2720 struct request_queue *q = req->q; 2721 2722 if (req->rq_flags & RQF_STATS) 2723 blk_stat_add(req); 2724 2725 if (req->rq_flags & RQF_QUEUED) 2726 blk_queue_end_tag(q, req); 2727 2728 BUG_ON(blk_queued_rq(req)); 2729 2730 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2731 laptop_io_completion(req->q->backing_dev_info); 2732 2733 blk_delete_timer(req); 2734 2735 if (req->rq_flags & RQF_DONTPREP) 2736 blk_unprep_request(req); 2737 2738 blk_account_io_done(req); 2739 2740 if (req->end_io) { 2741 wbt_done(req->q->rq_wb, &req->issue_stat); 2742 req->end_io(req, error); 2743 } else { 2744 if (blk_bidi_rq(req)) 2745 __blk_put_request(req->next_rq->q, req->next_rq); 2746 2747 __blk_put_request(q, req); 2748 } 2749 } 2750 EXPORT_SYMBOL(blk_finish_request); 2751 2752 /** 2753 * blk_end_bidi_request - Complete a bidi request 2754 * @rq: the request to complete 2755 * @error: %0 for success, < %0 for error 2756 * @nr_bytes: number of bytes to complete @rq 2757 * @bidi_bytes: number of bytes to complete @rq->next_rq 2758 * 2759 * Description: 2760 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2761 * Drivers that supports bidi can safely call this member for any 2762 * type of request, bidi or uni. In the later case @bidi_bytes is 2763 * just ignored. 2764 * 2765 * Return: 2766 * %false - we are done with this request 2767 * %true - still buffers pending for this request 2768 **/ 2769 static bool blk_end_bidi_request(struct request *rq, int error, 2770 unsigned int nr_bytes, unsigned int bidi_bytes) 2771 { 2772 struct request_queue *q = rq->q; 2773 unsigned long flags; 2774 2775 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2776 return true; 2777 2778 spin_lock_irqsave(q->queue_lock, flags); 2779 blk_finish_request(rq, error); 2780 spin_unlock_irqrestore(q->queue_lock, flags); 2781 2782 return false; 2783 } 2784 2785 /** 2786 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2787 * @rq: the request to complete 2788 * @error: %0 for success, < %0 for error 2789 * @nr_bytes: number of bytes to complete @rq 2790 * @bidi_bytes: number of bytes to complete @rq->next_rq 2791 * 2792 * Description: 2793 * Identical to blk_end_bidi_request() except that queue lock is 2794 * assumed to be locked on entry and remains so on return. 2795 * 2796 * Return: 2797 * %false - we are done with this request 2798 * %true - still buffers pending for this request 2799 **/ 2800 static bool __blk_end_bidi_request(struct request *rq, int error, 2801 unsigned int nr_bytes, unsigned int bidi_bytes) 2802 { 2803 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2804 return true; 2805 2806 blk_finish_request(rq, error); 2807 2808 return false; 2809 } 2810 2811 /** 2812 * blk_end_request - Helper function for drivers to complete the request. 2813 * @rq: the request being processed 2814 * @error: %0 for success, < %0 for error 2815 * @nr_bytes: number of bytes to complete 2816 * 2817 * Description: 2818 * Ends I/O on a number of bytes attached to @rq. 2819 * If @rq has leftover, sets it up for the next range of segments. 2820 * 2821 * Return: 2822 * %false - we are done with this request 2823 * %true - still buffers pending for this request 2824 **/ 2825 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2826 { 2827 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2828 } 2829 EXPORT_SYMBOL(blk_end_request); 2830 2831 /** 2832 * blk_end_request_all - Helper function for drives to finish the request. 2833 * @rq: the request to finish 2834 * @error: %0 for success, < %0 for error 2835 * 2836 * Description: 2837 * Completely finish @rq. 2838 */ 2839 void blk_end_request_all(struct request *rq, int error) 2840 { 2841 bool pending; 2842 unsigned int bidi_bytes = 0; 2843 2844 if (unlikely(blk_bidi_rq(rq))) 2845 bidi_bytes = blk_rq_bytes(rq->next_rq); 2846 2847 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2848 BUG_ON(pending); 2849 } 2850 EXPORT_SYMBOL(blk_end_request_all); 2851 2852 /** 2853 * __blk_end_request - Helper function for drivers to complete the request. 2854 * @rq: the request being processed 2855 * @error: %0 for success, < %0 for error 2856 * @nr_bytes: number of bytes to complete 2857 * 2858 * Description: 2859 * Must be called with queue lock held unlike blk_end_request(). 2860 * 2861 * Return: 2862 * %false - we are done with this request 2863 * %true - still buffers pending for this request 2864 **/ 2865 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2866 { 2867 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2868 } 2869 EXPORT_SYMBOL(__blk_end_request); 2870 2871 /** 2872 * __blk_end_request_all - Helper function for drives to finish the request. 2873 * @rq: the request to finish 2874 * @error: %0 for success, < %0 for error 2875 * 2876 * Description: 2877 * Completely finish @rq. Must be called with queue lock held. 2878 */ 2879 void __blk_end_request_all(struct request *rq, int error) 2880 { 2881 bool pending; 2882 unsigned int bidi_bytes = 0; 2883 2884 if (unlikely(blk_bidi_rq(rq))) 2885 bidi_bytes = blk_rq_bytes(rq->next_rq); 2886 2887 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2888 BUG_ON(pending); 2889 } 2890 EXPORT_SYMBOL(__blk_end_request_all); 2891 2892 /** 2893 * __blk_end_request_cur - Helper function to finish the current request chunk. 2894 * @rq: the request to finish the current chunk for 2895 * @error: %0 for success, < %0 for error 2896 * 2897 * Description: 2898 * Complete the current consecutively mapped chunk from @rq. Must 2899 * be called with queue lock held. 2900 * 2901 * Return: 2902 * %false - we are done with this request 2903 * %true - still buffers pending for this request 2904 */ 2905 bool __blk_end_request_cur(struct request *rq, int error) 2906 { 2907 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2908 } 2909 EXPORT_SYMBOL(__blk_end_request_cur); 2910 2911 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2912 struct bio *bio) 2913 { 2914 if (bio_has_data(bio)) 2915 rq->nr_phys_segments = bio_phys_segments(q, bio); 2916 2917 rq->__data_len = bio->bi_iter.bi_size; 2918 rq->bio = rq->biotail = bio; 2919 2920 if (bio->bi_bdev) 2921 rq->rq_disk = bio->bi_bdev->bd_disk; 2922 } 2923 2924 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2925 /** 2926 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2927 * @rq: the request to be flushed 2928 * 2929 * Description: 2930 * Flush all pages in @rq. 2931 */ 2932 void rq_flush_dcache_pages(struct request *rq) 2933 { 2934 struct req_iterator iter; 2935 struct bio_vec bvec; 2936 2937 rq_for_each_segment(bvec, rq, iter) 2938 flush_dcache_page(bvec.bv_page); 2939 } 2940 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2941 #endif 2942 2943 /** 2944 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2945 * @q : the queue of the device being checked 2946 * 2947 * Description: 2948 * Check if underlying low-level drivers of a device are busy. 2949 * If the drivers want to export their busy state, they must set own 2950 * exporting function using blk_queue_lld_busy() first. 2951 * 2952 * Basically, this function is used only by request stacking drivers 2953 * to stop dispatching requests to underlying devices when underlying 2954 * devices are busy. This behavior helps more I/O merging on the queue 2955 * of the request stacking driver and prevents I/O throughput regression 2956 * on burst I/O load. 2957 * 2958 * Return: 2959 * 0 - Not busy (The request stacking driver should dispatch request) 2960 * 1 - Busy (The request stacking driver should stop dispatching request) 2961 */ 2962 int blk_lld_busy(struct request_queue *q) 2963 { 2964 if (q->lld_busy_fn) 2965 return q->lld_busy_fn(q); 2966 2967 return 0; 2968 } 2969 EXPORT_SYMBOL_GPL(blk_lld_busy); 2970 2971 /** 2972 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2973 * @rq: the clone request to be cleaned up 2974 * 2975 * Description: 2976 * Free all bios in @rq for a cloned request. 2977 */ 2978 void blk_rq_unprep_clone(struct request *rq) 2979 { 2980 struct bio *bio; 2981 2982 while ((bio = rq->bio) != NULL) { 2983 rq->bio = bio->bi_next; 2984 2985 bio_put(bio); 2986 } 2987 } 2988 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2989 2990 /* 2991 * Copy attributes of the original request to the clone request. 2992 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2993 */ 2994 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2995 { 2996 dst->cpu = src->cpu; 2997 dst->__sector = blk_rq_pos(src); 2998 dst->__data_len = blk_rq_bytes(src); 2999 dst->nr_phys_segments = src->nr_phys_segments; 3000 dst->ioprio = src->ioprio; 3001 dst->extra_len = src->extra_len; 3002 } 3003 3004 /** 3005 * blk_rq_prep_clone - Helper function to setup clone request 3006 * @rq: the request to be setup 3007 * @rq_src: original request to be cloned 3008 * @bs: bio_set that bios for clone are allocated from 3009 * @gfp_mask: memory allocation mask for bio 3010 * @bio_ctr: setup function to be called for each clone bio. 3011 * Returns %0 for success, non %0 for failure. 3012 * @data: private data to be passed to @bio_ctr 3013 * 3014 * Description: 3015 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3016 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3017 * are not copied, and copying such parts is the caller's responsibility. 3018 * Also, pages which the original bios are pointing to are not copied 3019 * and the cloned bios just point same pages. 3020 * So cloned bios must be completed before original bios, which means 3021 * the caller must complete @rq before @rq_src. 3022 */ 3023 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3024 struct bio_set *bs, gfp_t gfp_mask, 3025 int (*bio_ctr)(struct bio *, struct bio *, void *), 3026 void *data) 3027 { 3028 struct bio *bio, *bio_src; 3029 3030 if (!bs) 3031 bs = fs_bio_set; 3032 3033 __rq_for_each_bio(bio_src, rq_src) { 3034 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3035 if (!bio) 3036 goto free_and_out; 3037 3038 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3039 goto free_and_out; 3040 3041 if (rq->bio) { 3042 rq->biotail->bi_next = bio; 3043 rq->biotail = bio; 3044 } else 3045 rq->bio = rq->biotail = bio; 3046 } 3047 3048 __blk_rq_prep_clone(rq, rq_src); 3049 3050 return 0; 3051 3052 free_and_out: 3053 if (bio) 3054 bio_put(bio); 3055 blk_rq_unprep_clone(rq); 3056 3057 return -ENOMEM; 3058 } 3059 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3060 3061 int kblockd_schedule_work(struct work_struct *work) 3062 { 3063 return queue_work(kblockd_workqueue, work); 3064 } 3065 EXPORT_SYMBOL(kblockd_schedule_work); 3066 3067 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3068 { 3069 return queue_work_on(cpu, kblockd_workqueue, work); 3070 } 3071 EXPORT_SYMBOL(kblockd_schedule_work_on); 3072 3073 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3074 unsigned long delay) 3075 { 3076 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3077 } 3078 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3079 3080 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3081 unsigned long delay) 3082 { 3083 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3084 } 3085 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3086 3087 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3088 unsigned long delay) 3089 { 3090 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3091 } 3092 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3093 3094 /** 3095 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3096 * @plug: The &struct blk_plug that needs to be initialized 3097 * 3098 * Description: 3099 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3100 * pending I/O should the task end up blocking between blk_start_plug() and 3101 * blk_finish_plug(). This is important from a performance perspective, but 3102 * also ensures that we don't deadlock. For instance, if the task is blocking 3103 * for a memory allocation, memory reclaim could end up wanting to free a 3104 * page belonging to that request that is currently residing in our private 3105 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3106 * this kind of deadlock. 3107 */ 3108 void blk_start_plug(struct blk_plug *plug) 3109 { 3110 struct task_struct *tsk = current; 3111 3112 /* 3113 * If this is a nested plug, don't actually assign it. 3114 */ 3115 if (tsk->plug) 3116 return; 3117 3118 INIT_LIST_HEAD(&plug->list); 3119 INIT_LIST_HEAD(&plug->mq_list); 3120 INIT_LIST_HEAD(&plug->cb_list); 3121 /* 3122 * Store ordering should not be needed here, since a potential 3123 * preempt will imply a full memory barrier 3124 */ 3125 tsk->plug = plug; 3126 } 3127 EXPORT_SYMBOL(blk_start_plug); 3128 3129 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3130 { 3131 struct request *rqa = container_of(a, struct request, queuelist); 3132 struct request *rqb = container_of(b, struct request, queuelist); 3133 3134 return !(rqa->q < rqb->q || 3135 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3136 } 3137 3138 /* 3139 * If 'from_schedule' is true, then postpone the dispatch of requests 3140 * until a safe kblockd context. We due this to avoid accidental big 3141 * additional stack usage in driver dispatch, in places where the originally 3142 * plugger did not intend it. 3143 */ 3144 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3145 bool from_schedule) 3146 __releases(q->queue_lock) 3147 { 3148 trace_block_unplug(q, depth, !from_schedule); 3149 3150 if (from_schedule) 3151 blk_run_queue_async(q); 3152 else 3153 __blk_run_queue(q); 3154 spin_unlock(q->queue_lock); 3155 } 3156 3157 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3158 { 3159 LIST_HEAD(callbacks); 3160 3161 while (!list_empty(&plug->cb_list)) { 3162 list_splice_init(&plug->cb_list, &callbacks); 3163 3164 while (!list_empty(&callbacks)) { 3165 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3166 struct blk_plug_cb, 3167 list); 3168 list_del(&cb->list); 3169 cb->callback(cb, from_schedule); 3170 } 3171 } 3172 } 3173 3174 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3175 int size) 3176 { 3177 struct blk_plug *plug = current->plug; 3178 struct blk_plug_cb *cb; 3179 3180 if (!plug) 3181 return NULL; 3182 3183 list_for_each_entry(cb, &plug->cb_list, list) 3184 if (cb->callback == unplug && cb->data == data) 3185 return cb; 3186 3187 /* Not currently on the callback list */ 3188 BUG_ON(size < sizeof(*cb)); 3189 cb = kzalloc(size, GFP_ATOMIC); 3190 if (cb) { 3191 cb->data = data; 3192 cb->callback = unplug; 3193 list_add(&cb->list, &plug->cb_list); 3194 } 3195 return cb; 3196 } 3197 EXPORT_SYMBOL(blk_check_plugged); 3198 3199 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3200 { 3201 struct request_queue *q; 3202 unsigned long flags; 3203 struct request *rq; 3204 LIST_HEAD(list); 3205 unsigned int depth; 3206 3207 flush_plug_callbacks(plug, from_schedule); 3208 3209 if (!list_empty(&plug->mq_list)) 3210 blk_mq_flush_plug_list(plug, from_schedule); 3211 3212 if (list_empty(&plug->list)) 3213 return; 3214 3215 list_splice_init(&plug->list, &list); 3216 3217 list_sort(NULL, &list, plug_rq_cmp); 3218 3219 q = NULL; 3220 depth = 0; 3221 3222 /* 3223 * Save and disable interrupts here, to avoid doing it for every 3224 * queue lock we have to take. 3225 */ 3226 local_irq_save(flags); 3227 while (!list_empty(&list)) { 3228 rq = list_entry_rq(list.next); 3229 list_del_init(&rq->queuelist); 3230 BUG_ON(!rq->q); 3231 if (rq->q != q) { 3232 /* 3233 * This drops the queue lock 3234 */ 3235 if (q) 3236 queue_unplugged(q, depth, from_schedule); 3237 q = rq->q; 3238 depth = 0; 3239 spin_lock(q->queue_lock); 3240 } 3241 3242 /* 3243 * Short-circuit if @q is dead 3244 */ 3245 if (unlikely(blk_queue_dying(q))) { 3246 __blk_end_request_all(rq, -ENODEV); 3247 continue; 3248 } 3249 3250 /* 3251 * rq is already accounted, so use raw insert 3252 */ 3253 if (op_is_flush(rq->cmd_flags)) 3254 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3255 else 3256 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3257 3258 depth++; 3259 } 3260 3261 /* 3262 * This drops the queue lock 3263 */ 3264 if (q) 3265 queue_unplugged(q, depth, from_schedule); 3266 3267 local_irq_restore(flags); 3268 } 3269 3270 void blk_finish_plug(struct blk_plug *plug) 3271 { 3272 if (plug != current->plug) 3273 return; 3274 blk_flush_plug_list(plug, false); 3275 3276 current->plug = NULL; 3277 } 3278 EXPORT_SYMBOL(blk_finish_plug); 3279 3280 #ifdef CONFIG_PM 3281 /** 3282 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3283 * @q: the queue of the device 3284 * @dev: the device the queue belongs to 3285 * 3286 * Description: 3287 * Initialize runtime-PM-related fields for @q and start auto suspend for 3288 * @dev. Drivers that want to take advantage of request-based runtime PM 3289 * should call this function after @dev has been initialized, and its 3290 * request queue @q has been allocated, and runtime PM for it can not happen 3291 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3292 * cases, driver should call this function before any I/O has taken place. 3293 * 3294 * This function takes care of setting up using auto suspend for the device, 3295 * the autosuspend delay is set to -1 to make runtime suspend impossible 3296 * until an updated value is either set by user or by driver. Drivers do 3297 * not need to touch other autosuspend settings. 3298 * 3299 * The block layer runtime PM is request based, so only works for drivers 3300 * that use request as their IO unit instead of those directly use bio's. 3301 */ 3302 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3303 { 3304 q->dev = dev; 3305 q->rpm_status = RPM_ACTIVE; 3306 pm_runtime_set_autosuspend_delay(q->dev, -1); 3307 pm_runtime_use_autosuspend(q->dev); 3308 } 3309 EXPORT_SYMBOL(blk_pm_runtime_init); 3310 3311 /** 3312 * blk_pre_runtime_suspend - Pre runtime suspend check 3313 * @q: the queue of the device 3314 * 3315 * Description: 3316 * This function will check if runtime suspend is allowed for the device 3317 * by examining if there are any requests pending in the queue. If there 3318 * are requests pending, the device can not be runtime suspended; otherwise, 3319 * the queue's status will be updated to SUSPENDING and the driver can 3320 * proceed to suspend the device. 3321 * 3322 * For the not allowed case, we mark last busy for the device so that 3323 * runtime PM core will try to autosuspend it some time later. 3324 * 3325 * This function should be called near the start of the device's 3326 * runtime_suspend callback. 3327 * 3328 * Return: 3329 * 0 - OK to runtime suspend the device 3330 * -EBUSY - Device should not be runtime suspended 3331 */ 3332 int blk_pre_runtime_suspend(struct request_queue *q) 3333 { 3334 int ret = 0; 3335 3336 if (!q->dev) 3337 return ret; 3338 3339 spin_lock_irq(q->queue_lock); 3340 if (q->nr_pending) { 3341 ret = -EBUSY; 3342 pm_runtime_mark_last_busy(q->dev); 3343 } else { 3344 q->rpm_status = RPM_SUSPENDING; 3345 } 3346 spin_unlock_irq(q->queue_lock); 3347 return ret; 3348 } 3349 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3350 3351 /** 3352 * blk_post_runtime_suspend - Post runtime suspend processing 3353 * @q: the queue of the device 3354 * @err: return value of the device's runtime_suspend function 3355 * 3356 * Description: 3357 * Update the queue's runtime status according to the return value of the 3358 * device's runtime suspend function and mark last busy for the device so 3359 * that PM core will try to auto suspend the device at a later time. 3360 * 3361 * This function should be called near the end of the device's 3362 * runtime_suspend callback. 3363 */ 3364 void blk_post_runtime_suspend(struct request_queue *q, int err) 3365 { 3366 if (!q->dev) 3367 return; 3368 3369 spin_lock_irq(q->queue_lock); 3370 if (!err) { 3371 q->rpm_status = RPM_SUSPENDED; 3372 } else { 3373 q->rpm_status = RPM_ACTIVE; 3374 pm_runtime_mark_last_busy(q->dev); 3375 } 3376 spin_unlock_irq(q->queue_lock); 3377 } 3378 EXPORT_SYMBOL(blk_post_runtime_suspend); 3379 3380 /** 3381 * blk_pre_runtime_resume - Pre runtime resume processing 3382 * @q: the queue of the device 3383 * 3384 * Description: 3385 * Update the queue's runtime status to RESUMING in preparation for the 3386 * runtime resume of the device. 3387 * 3388 * This function should be called near the start of the device's 3389 * runtime_resume callback. 3390 */ 3391 void blk_pre_runtime_resume(struct request_queue *q) 3392 { 3393 if (!q->dev) 3394 return; 3395 3396 spin_lock_irq(q->queue_lock); 3397 q->rpm_status = RPM_RESUMING; 3398 spin_unlock_irq(q->queue_lock); 3399 } 3400 EXPORT_SYMBOL(blk_pre_runtime_resume); 3401 3402 /** 3403 * blk_post_runtime_resume - Post runtime resume processing 3404 * @q: the queue of the device 3405 * @err: return value of the device's runtime_resume function 3406 * 3407 * Description: 3408 * Update the queue's runtime status according to the return value of the 3409 * device's runtime_resume function. If it is successfully resumed, process 3410 * the requests that are queued into the device's queue when it is resuming 3411 * and then mark last busy and initiate autosuspend for it. 3412 * 3413 * This function should be called near the end of the device's 3414 * runtime_resume callback. 3415 */ 3416 void blk_post_runtime_resume(struct request_queue *q, int err) 3417 { 3418 if (!q->dev) 3419 return; 3420 3421 spin_lock_irq(q->queue_lock); 3422 if (!err) { 3423 q->rpm_status = RPM_ACTIVE; 3424 __blk_run_queue(q); 3425 pm_runtime_mark_last_busy(q->dev); 3426 pm_request_autosuspend(q->dev); 3427 } else { 3428 q->rpm_status = RPM_SUSPENDED; 3429 } 3430 spin_unlock_irq(q->queue_lock); 3431 } 3432 EXPORT_SYMBOL(blk_post_runtime_resume); 3433 3434 /** 3435 * blk_set_runtime_active - Force runtime status of the queue to be active 3436 * @q: the queue of the device 3437 * 3438 * If the device is left runtime suspended during system suspend the resume 3439 * hook typically resumes the device and corrects runtime status 3440 * accordingly. However, that does not affect the queue runtime PM status 3441 * which is still "suspended". This prevents processing requests from the 3442 * queue. 3443 * 3444 * This function can be used in driver's resume hook to correct queue 3445 * runtime PM status and re-enable peeking requests from the queue. It 3446 * should be called before first request is added to the queue. 3447 */ 3448 void blk_set_runtime_active(struct request_queue *q) 3449 { 3450 spin_lock_irq(q->queue_lock); 3451 q->rpm_status = RPM_ACTIVE; 3452 pm_runtime_mark_last_busy(q->dev); 3453 pm_request_autosuspend(q->dev); 3454 spin_unlock_irq(q->queue_lock); 3455 } 3456 EXPORT_SYMBOL(blk_set_runtime_active); 3457 #endif 3458 3459 int __init blk_dev_init(void) 3460 { 3461 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3462 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3463 FIELD_SIZEOF(struct request, cmd_flags)); 3464 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3465 FIELD_SIZEOF(struct bio, bi_opf)); 3466 3467 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3468 kblockd_workqueue = alloc_workqueue("kblockd", 3469 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3470 if (!kblockd_workqueue) 3471 panic("Failed to create kblockd\n"); 3472 3473 request_cachep = kmem_cache_create("blkdev_requests", 3474 sizeof(struct request), 0, SLAB_PANIC, NULL); 3475 3476 blk_requestq_cachep = kmem_cache_create("request_queue", 3477 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3478 3479 #ifdef CONFIG_DEBUG_FS 3480 blk_debugfs_root = debugfs_create_dir("block", NULL); 3481 #endif 3482 3483 return 0; 3484 } 3485