xref: /openbmc/linux/block/blk-core.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 #include <linux/part_stat.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq-sched.h"
50 #include "blk-pm.h"
51 #include "blk-cgroup.h"
52 #include "blk-throttle.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
63 
64 DEFINE_IDA(blk_queue_ida);
65 
66 /*
67  * For queue allocation
68  */
69 struct kmem_cache *blk_requestq_cachep;
70 struct kmem_cache *blk_requestq_srcu_cachep;
71 
72 /*
73  * Controlling structure to kblockd
74  */
75 static struct workqueue_struct *kblockd_workqueue;
76 
77 /**
78  * blk_queue_flag_set - atomically set a queue flag
79  * @flag: flag to be set
80  * @q: request queue
81  */
82 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
83 {
84 	set_bit(flag, &q->queue_flags);
85 }
86 EXPORT_SYMBOL(blk_queue_flag_set);
87 
88 /**
89  * blk_queue_flag_clear - atomically clear a queue flag
90  * @flag: flag to be cleared
91  * @q: request queue
92  */
93 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
94 {
95 	clear_bit(flag, &q->queue_flags);
96 }
97 EXPORT_SYMBOL(blk_queue_flag_clear);
98 
99 /**
100  * blk_queue_flag_test_and_set - atomically test and set a queue flag
101  * @flag: flag to be set
102  * @q: request queue
103  *
104  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
105  * the flag was already set.
106  */
107 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
108 {
109 	return test_and_set_bit(flag, &q->queue_flags);
110 }
111 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
112 
113 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
114 static const char *const blk_op_name[] = {
115 	REQ_OP_NAME(READ),
116 	REQ_OP_NAME(WRITE),
117 	REQ_OP_NAME(FLUSH),
118 	REQ_OP_NAME(DISCARD),
119 	REQ_OP_NAME(SECURE_ERASE),
120 	REQ_OP_NAME(ZONE_RESET),
121 	REQ_OP_NAME(ZONE_RESET_ALL),
122 	REQ_OP_NAME(ZONE_OPEN),
123 	REQ_OP_NAME(ZONE_CLOSE),
124 	REQ_OP_NAME(ZONE_FINISH),
125 	REQ_OP_NAME(ZONE_APPEND),
126 	REQ_OP_NAME(WRITE_ZEROES),
127 	REQ_OP_NAME(DRV_IN),
128 	REQ_OP_NAME(DRV_OUT),
129 };
130 #undef REQ_OP_NAME
131 
132 /**
133  * blk_op_str - Return string XXX in the REQ_OP_XXX.
134  * @op: REQ_OP_XXX.
135  *
136  * Description: Centralize block layer function to convert REQ_OP_XXX into
137  * string format. Useful in the debugging and tracing bio or request. For
138  * invalid REQ_OP_XXX it returns string "UNKNOWN".
139  */
140 inline const char *blk_op_str(unsigned int op)
141 {
142 	const char *op_str = "UNKNOWN";
143 
144 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
145 		op_str = blk_op_name[op];
146 
147 	return op_str;
148 }
149 EXPORT_SYMBOL_GPL(blk_op_str);
150 
151 static const struct {
152 	int		errno;
153 	const char	*name;
154 } blk_errors[] = {
155 	[BLK_STS_OK]		= { 0,		"" },
156 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
157 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
158 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
159 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
160 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
161 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
162 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
163 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
164 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
165 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
166 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
167 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
168 
169 	/* device mapper special case, should not leak out: */
170 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
171 
172 	/* zone device specific errors */
173 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
174 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
175 
176 	/* everything else not covered above: */
177 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
178 };
179 
180 blk_status_t errno_to_blk_status(int errno)
181 {
182 	int i;
183 
184 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 		if (blk_errors[i].errno == errno)
186 			return (__force blk_status_t)i;
187 	}
188 
189 	return BLK_STS_IOERR;
190 }
191 EXPORT_SYMBOL_GPL(errno_to_blk_status);
192 
193 int blk_status_to_errno(blk_status_t status)
194 {
195 	int idx = (__force int)status;
196 
197 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
198 		return -EIO;
199 	return blk_errors[idx].errno;
200 }
201 EXPORT_SYMBOL_GPL(blk_status_to_errno);
202 
203 const char *blk_status_to_str(blk_status_t status)
204 {
205 	int idx = (__force int)status;
206 
207 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 		return "<null>";
209 	return blk_errors[idx].name;
210 }
211 
212 /**
213  * blk_sync_queue - cancel any pending callbacks on a queue
214  * @q: the queue
215  *
216  * Description:
217  *     The block layer may perform asynchronous callback activity
218  *     on a queue, such as calling the unplug function after a timeout.
219  *     A block device may call blk_sync_queue to ensure that any
220  *     such activity is cancelled, thus allowing it to release resources
221  *     that the callbacks might use. The caller must already have made sure
222  *     that its ->submit_bio will not re-add plugging prior to calling
223  *     this function.
224  *
225  *     This function does not cancel any asynchronous activity arising
226  *     out of elevator or throttling code. That would require elevator_exit()
227  *     and blkcg_exit_queue() to be called with queue lock initialized.
228  *
229  */
230 void blk_sync_queue(struct request_queue *q)
231 {
232 	del_timer_sync(&q->timeout);
233 	cancel_work_sync(&q->timeout_work);
234 }
235 EXPORT_SYMBOL(blk_sync_queue);
236 
237 /**
238  * blk_set_pm_only - increment pm_only counter
239  * @q: request queue pointer
240  */
241 void blk_set_pm_only(struct request_queue *q)
242 {
243 	atomic_inc(&q->pm_only);
244 }
245 EXPORT_SYMBOL_GPL(blk_set_pm_only);
246 
247 void blk_clear_pm_only(struct request_queue *q)
248 {
249 	int pm_only;
250 
251 	pm_only = atomic_dec_return(&q->pm_only);
252 	WARN_ON_ONCE(pm_only < 0);
253 	if (pm_only == 0)
254 		wake_up_all(&q->mq_freeze_wq);
255 }
256 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
257 
258 /**
259  * blk_put_queue - decrement the request_queue refcount
260  * @q: the request_queue structure to decrement the refcount for
261  *
262  * Decrements the refcount of the request_queue kobject. When this reaches 0
263  * we'll have blk_release_queue() called.
264  *
265  * Context: Any context, but the last reference must not be dropped from
266  *          atomic context.
267  */
268 void blk_put_queue(struct request_queue *q)
269 {
270 	kobject_put(&q->kobj);
271 }
272 EXPORT_SYMBOL(blk_put_queue);
273 
274 void blk_queue_start_drain(struct request_queue *q)
275 {
276 	/*
277 	 * When queue DYING flag is set, we need to block new req
278 	 * entering queue, so we call blk_freeze_queue_start() to
279 	 * prevent I/O from crossing blk_queue_enter().
280 	 */
281 	blk_freeze_queue_start(q);
282 	if (queue_is_mq(q))
283 		blk_mq_wake_waiters(q);
284 	/* Make blk_queue_enter() reexamine the DYING flag. */
285 	wake_up_all(&q->mq_freeze_wq);
286 }
287 
288 /**
289  * blk_cleanup_queue - shutdown a request queue
290  * @q: request queue to shutdown
291  *
292  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
293  * put it.  All future requests will be failed immediately with -ENODEV.
294  *
295  * Context: can sleep
296  */
297 void blk_cleanup_queue(struct request_queue *q)
298 {
299 	/* cannot be called from atomic context */
300 	might_sleep();
301 
302 	WARN_ON_ONCE(blk_queue_registered(q));
303 
304 	/* mark @q DYING, no new request or merges will be allowed afterwards */
305 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
306 	blk_queue_start_drain(q);
307 
308 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
309 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
310 
311 	/*
312 	 * Drain all requests queued before DYING marking. Set DEAD flag to
313 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
314 	 * after draining finished.
315 	 */
316 	blk_freeze_queue(q);
317 
318 	/* cleanup rq qos structures for queue without disk */
319 	rq_qos_exit(q);
320 
321 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
322 
323 	blk_sync_queue(q);
324 	if (queue_is_mq(q)) {
325 		blk_mq_cancel_work_sync(q);
326 		blk_mq_exit_queue(q);
327 	}
328 
329 	/*
330 	 * In theory, request pool of sched_tags belongs to request queue.
331 	 * However, the current implementation requires tag_set for freeing
332 	 * requests, so free the pool now.
333 	 *
334 	 * Queue has become frozen, there can't be any in-queue requests, so
335 	 * it is safe to free requests now.
336 	 */
337 	mutex_lock(&q->sysfs_lock);
338 	if (q->elevator)
339 		blk_mq_sched_free_rqs(q);
340 	mutex_unlock(&q->sysfs_lock);
341 
342 	/* @q is and will stay empty, shutdown and put */
343 	blk_put_queue(q);
344 }
345 EXPORT_SYMBOL(blk_cleanup_queue);
346 
347 /**
348  * blk_queue_enter() - try to increase q->q_usage_counter
349  * @q: request queue pointer
350  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
351  */
352 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
353 {
354 	const bool pm = flags & BLK_MQ_REQ_PM;
355 
356 	while (!blk_try_enter_queue(q, pm)) {
357 		if (flags & BLK_MQ_REQ_NOWAIT)
358 			return -EBUSY;
359 
360 		/*
361 		 * read pair of barrier in blk_freeze_queue_start(), we need to
362 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
363 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
364 		 * following wait may never return if the two reads are
365 		 * reordered.
366 		 */
367 		smp_rmb();
368 		wait_event(q->mq_freeze_wq,
369 			   (!q->mq_freeze_depth &&
370 			    blk_pm_resume_queue(pm, q)) ||
371 			   blk_queue_dying(q));
372 		if (blk_queue_dying(q))
373 			return -ENODEV;
374 	}
375 
376 	return 0;
377 }
378 
379 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
380 {
381 	while (!blk_try_enter_queue(q, false)) {
382 		struct gendisk *disk = bio->bi_bdev->bd_disk;
383 
384 		if (bio->bi_opf & REQ_NOWAIT) {
385 			if (test_bit(GD_DEAD, &disk->state))
386 				goto dead;
387 			bio_wouldblock_error(bio);
388 			return -EBUSY;
389 		}
390 
391 		/*
392 		 * read pair of barrier in blk_freeze_queue_start(), we need to
393 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
394 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
395 		 * following wait may never return if the two reads are
396 		 * reordered.
397 		 */
398 		smp_rmb();
399 		wait_event(q->mq_freeze_wq,
400 			   (!q->mq_freeze_depth &&
401 			    blk_pm_resume_queue(false, q)) ||
402 			   test_bit(GD_DEAD, &disk->state));
403 		if (test_bit(GD_DEAD, &disk->state))
404 			goto dead;
405 	}
406 
407 	return 0;
408 dead:
409 	bio_io_error(bio);
410 	return -ENODEV;
411 }
412 
413 void blk_queue_exit(struct request_queue *q)
414 {
415 	percpu_ref_put(&q->q_usage_counter);
416 }
417 
418 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
419 {
420 	struct request_queue *q =
421 		container_of(ref, struct request_queue, q_usage_counter);
422 
423 	wake_up_all(&q->mq_freeze_wq);
424 }
425 
426 static void blk_rq_timed_out_timer(struct timer_list *t)
427 {
428 	struct request_queue *q = from_timer(q, t, timeout);
429 
430 	kblockd_schedule_work(&q->timeout_work);
431 }
432 
433 static void blk_timeout_work(struct work_struct *work)
434 {
435 }
436 
437 struct request_queue *blk_alloc_queue(int node_id, bool alloc_srcu)
438 {
439 	struct request_queue *q;
440 	int ret;
441 
442 	q = kmem_cache_alloc_node(blk_get_queue_kmem_cache(alloc_srcu),
443 			GFP_KERNEL | __GFP_ZERO, node_id);
444 	if (!q)
445 		return NULL;
446 
447 	if (alloc_srcu) {
448 		blk_queue_flag_set(QUEUE_FLAG_HAS_SRCU, q);
449 		if (init_srcu_struct(q->srcu) != 0)
450 			goto fail_q;
451 	}
452 
453 	q->last_merge = NULL;
454 
455 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
456 	if (q->id < 0)
457 		goto fail_srcu;
458 
459 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0);
460 	if (ret)
461 		goto fail_id;
462 
463 	q->stats = blk_alloc_queue_stats();
464 	if (!q->stats)
465 		goto fail_split;
466 
467 	q->node = node_id;
468 
469 	atomic_set(&q->nr_active_requests_shared_tags, 0);
470 
471 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
472 	INIT_WORK(&q->timeout_work, blk_timeout_work);
473 	INIT_LIST_HEAD(&q->icq_list);
474 
475 	kobject_init(&q->kobj, &blk_queue_ktype);
476 
477 	mutex_init(&q->debugfs_mutex);
478 	mutex_init(&q->sysfs_lock);
479 	mutex_init(&q->sysfs_dir_lock);
480 	spin_lock_init(&q->queue_lock);
481 
482 	init_waitqueue_head(&q->mq_freeze_wq);
483 	mutex_init(&q->mq_freeze_lock);
484 
485 	/*
486 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
487 	 * See blk_register_queue() for details.
488 	 */
489 	if (percpu_ref_init(&q->q_usage_counter,
490 				blk_queue_usage_counter_release,
491 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
492 		goto fail_stats;
493 
494 	blk_queue_dma_alignment(q, 511);
495 	blk_set_default_limits(&q->limits);
496 	q->nr_requests = BLKDEV_DEFAULT_RQ;
497 
498 	return q;
499 
500 fail_stats:
501 	blk_free_queue_stats(q->stats);
502 fail_split:
503 	bioset_exit(&q->bio_split);
504 fail_id:
505 	ida_simple_remove(&blk_queue_ida, q->id);
506 fail_srcu:
507 	if (alloc_srcu)
508 		cleanup_srcu_struct(q->srcu);
509 fail_q:
510 	kmem_cache_free(blk_get_queue_kmem_cache(alloc_srcu), q);
511 	return NULL;
512 }
513 
514 /**
515  * blk_get_queue - increment the request_queue refcount
516  * @q: the request_queue structure to increment the refcount for
517  *
518  * Increment the refcount of the request_queue kobject.
519  *
520  * Context: Any context.
521  */
522 bool blk_get_queue(struct request_queue *q)
523 {
524 	if (likely(!blk_queue_dying(q))) {
525 		__blk_get_queue(q);
526 		return true;
527 	}
528 
529 	return false;
530 }
531 EXPORT_SYMBOL(blk_get_queue);
532 
533 #ifdef CONFIG_FAIL_MAKE_REQUEST
534 
535 static DECLARE_FAULT_ATTR(fail_make_request);
536 
537 static int __init setup_fail_make_request(char *str)
538 {
539 	return setup_fault_attr(&fail_make_request, str);
540 }
541 __setup("fail_make_request=", setup_fail_make_request);
542 
543 bool should_fail_request(struct block_device *part, unsigned int bytes)
544 {
545 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
546 }
547 
548 static int __init fail_make_request_debugfs(void)
549 {
550 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
551 						NULL, &fail_make_request);
552 
553 	return PTR_ERR_OR_ZERO(dir);
554 }
555 
556 late_initcall(fail_make_request_debugfs);
557 #endif /* CONFIG_FAIL_MAKE_REQUEST */
558 
559 static inline bool bio_check_ro(struct bio *bio)
560 {
561 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
562 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
563 			return false;
564 		pr_warn("Trying to write to read-only block-device %pg\n",
565 			bio->bi_bdev);
566 		/* Older lvm-tools actually trigger this */
567 		return false;
568 	}
569 
570 	return false;
571 }
572 
573 static noinline int should_fail_bio(struct bio *bio)
574 {
575 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
576 		return -EIO;
577 	return 0;
578 }
579 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
580 
581 /*
582  * Check whether this bio extends beyond the end of the device or partition.
583  * This may well happen - the kernel calls bread() without checking the size of
584  * the device, e.g., when mounting a file system.
585  */
586 static inline int bio_check_eod(struct bio *bio)
587 {
588 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
589 	unsigned int nr_sectors = bio_sectors(bio);
590 
591 	if (nr_sectors && maxsector &&
592 	    (nr_sectors > maxsector ||
593 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
594 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
595 				    "%pg: rw=%d, want=%llu, limit=%llu\n",
596 				    current->comm,
597 				    bio->bi_bdev, bio->bi_opf,
598 				    bio_end_sector(bio), maxsector);
599 		return -EIO;
600 	}
601 	return 0;
602 }
603 
604 /*
605  * Remap block n of partition p to block n+start(p) of the disk.
606  */
607 static int blk_partition_remap(struct bio *bio)
608 {
609 	struct block_device *p = bio->bi_bdev;
610 
611 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
612 		return -EIO;
613 	if (bio_sectors(bio)) {
614 		bio->bi_iter.bi_sector += p->bd_start_sect;
615 		trace_block_bio_remap(bio, p->bd_dev,
616 				      bio->bi_iter.bi_sector -
617 				      p->bd_start_sect);
618 	}
619 	bio_set_flag(bio, BIO_REMAPPED);
620 	return 0;
621 }
622 
623 /*
624  * Check write append to a zoned block device.
625  */
626 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
627 						 struct bio *bio)
628 {
629 	sector_t pos = bio->bi_iter.bi_sector;
630 	int nr_sectors = bio_sectors(bio);
631 
632 	/* Only applicable to zoned block devices */
633 	if (!blk_queue_is_zoned(q))
634 		return BLK_STS_NOTSUPP;
635 
636 	/* The bio sector must point to the start of a sequential zone */
637 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
638 	    !blk_queue_zone_is_seq(q, pos))
639 		return BLK_STS_IOERR;
640 
641 	/*
642 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
643 	 * split and could result in non-contiguous sectors being written in
644 	 * different zones.
645 	 */
646 	if (nr_sectors > q->limits.chunk_sectors)
647 		return BLK_STS_IOERR;
648 
649 	/* Make sure the BIO is small enough and will not get split */
650 	if (nr_sectors > q->limits.max_zone_append_sectors)
651 		return BLK_STS_IOERR;
652 
653 	bio->bi_opf |= REQ_NOMERGE;
654 
655 	return BLK_STS_OK;
656 }
657 
658 static void __submit_bio(struct bio *bio)
659 {
660 	struct gendisk *disk = bio->bi_bdev->bd_disk;
661 
662 	if (unlikely(!blk_crypto_bio_prep(&bio)))
663 		return;
664 
665 	if (!disk->fops->submit_bio) {
666 		blk_mq_submit_bio(bio);
667 	} else if (likely(bio_queue_enter(bio) == 0)) {
668 		disk->fops->submit_bio(bio);
669 		blk_queue_exit(disk->queue);
670 	}
671 }
672 
673 /*
674  * The loop in this function may be a bit non-obvious, and so deserves some
675  * explanation:
676  *
677  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
678  *    that), so we have a list with a single bio.
679  *  - We pretend that we have just taken it off a longer list, so we assign
680  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
681  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
682  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
683  *    non-NULL value in bio_list and re-enter the loop from the top.
684  *  - In this case we really did just take the bio of the top of the list (no
685  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
686  *    again.
687  *
688  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
689  * bio_list_on_stack[1] contains bios that were submitted before the current
690  *	->submit_bio, but that haven't been processed yet.
691  */
692 static void __submit_bio_noacct(struct bio *bio)
693 {
694 	struct bio_list bio_list_on_stack[2];
695 
696 	BUG_ON(bio->bi_next);
697 
698 	bio_list_init(&bio_list_on_stack[0]);
699 	current->bio_list = bio_list_on_stack;
700 
701 	do {
702 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
703 		struct bio_list lower, same;
704 
705 		/*
706 		 * Create a fresh bio_list for all subordinate requests.
707 		 */
708 		bio_list_on_stack[1] = bio_list_on_stack[0];
709 		bio_list_init(&bio_list_on_stack[0]);
710 
711 		__submit_bio(bio);
712 
713 		/*
714 		 * Sort new bios into those for a lower level and those for the
715 		 * same level.
716 		 */
717 		bio_list_init(&lower);
718 		bio_list_init(&same);
719 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
720 			if (q == bdev_get_queue(bio->bi_bdev))
721 				bio_list_add(&same, bio);
722 			else
723 				bio_list_add(&lower, bio);
724 
725 		/*
726 		 * Now assemble so we handle the lowest level first.
727 		 */
728 		bio_list_merge(&bio_list_on_stack[0], &lower);
729 		bio_list_merge(&bio_list_on_stack[0], &same);
730 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
731 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
732 
733 	current->bio_list = NULL;
734 }
735 
736 static void __submit_bio_noacct_mq(struct bio *bio)
737 {
738 	struct bio_list bio_list[2] = { };
739 
740 	current->bio_list = bio_list;
741 
742 	do {
743 		__submit_bio(bio);
744 	} while ((bio = bio_list_pop(&bio_list[0])));
745 
746 	current->bio_list = NULL;
747 }
748 
749 void submit_bio_noacct_nocheck(struct bio *bio)
750 {
751 	/*
752 	 * We only want one ->submit_bio to be active at a time, else stack
753 	 * usage with stacked devices could be a problem.  Use current->bio_list
754 	 * to collect a list of requests submited by a ->submit_bio method while
755 	 * it is active, and then process them after it returned.
756 	 */
757 	if (current->bio_list)
758 		bio_list_add(&current->bio_list[0], bio);
759 	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
760 		__submit_bio_noacct_mq(bio);
761 	else
762 		__submit_bio_noacct(bio);
763 }
764 
765 /**
766  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
767  * @bio:  The bio describing the location in memory and on the device.
768  *
769  * This is a version of submit_bio() that shall only be used for I/O that is
770  * resubmitted to lower level drivers by stacking block drivers.  All file
771  * systems and other upper level users of the block layer should use
772  * submit_bio() instead.
773  */
774 void submit_bio_noacct(struct bio *bio)
775 {
776 	struct block_device *bdev = bio->bi_bdev;
777 	struct request_queue *q = bdev_get_queue(bdev);
778 	blk_status_t status = BLK_STS_IOERR;
779 	struct blk_plug *plug;
780 
781 	might_sleep();
782 
783 	plug = blk_mq_plug(q, bio);
784 	if (plug && plug->nowait)
785 		bio->bi_opf |= REQ_NOWAIT;
786 
787 	/*
788 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
789 	 * if queue does not support NOWAIT.
790 	 */
791 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
792 		goto not_supported;
793 
794 	if (should_fail_bio(bio))
795 		goto end_io;
796 	if (unlikely(bio_check_ro(bio)))
797 		goto end_io;
798 	if (!bio_flagged(bio, BIO_REMAPPED)) {
799 		if (unlikely(bio_check_eod(bio)))
800 			goto end_io;
801 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
802 			goto end_io;
803 	}
804 
805 	/*
806 	 * Filter flush bio's early so that bio based drivers without flush
807 	 * support don't have to worry about them.
808 	 */
809 	if (op_is_flush(bio->bi_opf) &&
810 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
811 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
812 		if (!bio_sectors(bio)) {
813 			status = BLK_STS_OK;
814 			goto end_io;
815 		}
816 	}
817 
818 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
819 		bio_clear_polled(bio);
820 
821 	switch (bio_op(bio)) {
822 	case REQ_OP_DISCARD:
823 		if (!blk_queue_discard(q))
824 			goto not_supported;
825 		break;
826 	case REQ_OP_SECURE_ERASE:
827 		if (!blk_queue_secure_erase(q))
828 			goto not_supported;
829 		break;
830 	case REQ_OP_ZONE_APPEND:
831 		status = blk_check_zone_append(q, bio);
832 		if (status != BLK_STS_OK)
833 			goto end_io;
834 		break;
835 	case REQ_OP_ZONE_RESET:
836 	case REQ_OP_ZONE_OPEN:
837 	case REQ_OP_ZONE_CLOSE:
838 	case REQ_OP_ZONE_FINISH:
839 		if (!blk_queue_is_zoned(q))
840 			goto not_supported;
841 		break;
842 	case REQ_OP_ZONE_RESET_ALL:
843 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
844 			goto not_supported;
845 		break;
846 	case REQ_OP_WRITE_ZEROES:
847 		if (!q->limits.max_write_zeroes_sectors)
848 			goto not_supported;
849 		break;
850 	default:
851 		break;
852 	}
853 
854 	if (blk_throtl_bio(bio))
855 		return;
856 
857 	blk_cgroup_bio_start(bio);
858 	blkcg_bio_issue_init(bio);
859 
860 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
861 		trace_block_bio_queue(bio);
862 		/* Now that enqueuing has been traced, we need to trace
863 		 * completion as well.
864 		 */
865 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
866 	}
867 	submit_bio_noacct_nocheck(bio);
868 	return;
869 
870 not_supported:
871 	status = BLK_STS_NOTSUPP;
872 end_io:
873 	bio->bi_status = status;
874 	bio_endio(bio);
875 }
876 EXPORT_SYMBOL(submit_bio_noacct);
877 
878 /**
879  * submit_bio - submit a bio to the block device layer for I/O
880  * @bio: The &struct bio which describes the I/O
881  *
882  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
883  * fully set up &struct bio that describes the I/O that needs to be done.  The
884  * bio will be send to the device described by the bi_bdev field.
885  *
886  * The success/failure status of the request, along with notification of
887  * completion, is delivered asynchronously through the ->bi_end_io() callback
888  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
889  * been called.
890  */
891 void submit_bio(struct bio *bio)
892 {
893 	if (blkcg_punt_bio_submit(bio))
894 		return;
895 
896 	/*
897 	 * If it's a regular read/write or a barrier with data attached,
898 	 * go through the normal accounting stuff before submission.
899 	 */
900 	if (bio_has_data(bio)) {
901 		unsigned int count = bio_sectors(bio);
902 
903 		if (op_is_write(bio_op(bio))) {
904 			count_vm_events(PGPGOUT, count);
905 		} else {
906 			task_io_account_read(bio->bi_iter.bi_size);
907 			count_vm_events(PGPGIN, count);
908 		}
909 	}
910 
911 	/*
912 	 * If we're reading data that is part of the userspace workingset, count
913 	 * submission time as memory stall.  When the device is congested, or
914 	 * the submitting cgroup IO-throttled, submission can be a significant
915 	 * part of overall IO time.
916 	 */
917 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
918 	    bio_flagged(bio, BIO_WORKINGSET))) {
919 		unsigned long pflags;
920 
921 		psi_memstall_enter(&pflags);
922 		submit_bio_noacct(bio);
923 		psi_memstall_leave(&pflags);
924 		return;
925 	}
926 
927 	submit_bio_noacct(bio);
928 }
929 EXPORT_SYMBOL(submit_bio);
930 
931 /**
932  * bio_poll - poll for BIO completions
933  * @bio: bio to poll for
934  * @iob: batches of IO
935  * @flags: BLK_POLL_* flags that control the behavior
936  *
937  * Poll for completions on queue associated with the bio. Returns number of
938  * completed entries found.
939  *
940  * Note: the caller must either be the context that submitted @bio, or
941  * be in a RCU critical section to prevent freeing of @bio.
942  */
943 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
944 {
945 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
946 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
947 	int ret = 0;
948 
949 	if (cookie == BLK_QC_T_NONE ||
950 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
951 		return 0;
952 
953 	blk_flush_plug(current->plug, false);
954 
955 	if (blk_queue_enter(q, BLK_MQ_REQ_NOWAIT))
956 		return 0;
957 	if (queue_is_mq(q)) {
958 		ret = blk_mq_poll(q, cookie, iob, flags);
959 	} else {
960 		struct gendisk *disk = q->disk;
961 
962 		if (disk && disk->fops->poll_bio)
963 			ret = disk->fops->poll_bio(bio, iob, flags);
964 	}
965 	blk_queue_exit(q);
966 	return ret;
967 }
968 EXPORT_SYMBOL_GPL(bio_poll);
969 
970 /*
971  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
972  * in iocb->private, and cleared before freeing the bio.
973  */
974 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
975 		    unsigned int flags)
976 {
977 	struct bio *bio;
978 	int ret = 0;
979 
980 	/*
981 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
982 	 * point to a freshly allocated bio at this point.  If that happens
983 	 * we have a few cases to consider:
984 	 *
985 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
986 	 *     simply nothing in this case
987 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
988 	 *     this and return 0
989 	 *  3) the bio points to a poll capable device, including but not
990 	 *     limited to the one that the original bio pointed to.  In this
991 	 *     case we will call into the actual poll method and poll for I/O,
992 	 *     even if we don't need to, but it won't cause harm either.
993 	 *
994 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
995 	 * is still allocated. Because partitions hold a reference to the whole
996 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
997 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
998 	 * are still valid as well.
999 	 */
1000 	rcu_read_lock();
1001 	bio = READ_ONCE(kiocb->private);
1002 	if (bio && bio->bi_bdev)
1003 		ret = bio_poll(bio, iob, flags);
1004 	rcu_read_unlock();
1005 
1006 	return ret;
1007 }
1008 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
1009 
1010 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
1011 {
1012 	unsigned long stamp;
1013 again:
1014 	stamp = READ_ONCE(part->bd_stamp);
1015 	if (unlikely(time_after(now, stamp))) {
1016 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1017 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1018 	}
1019 	if (part->bd_partno) {
1020 		part = bdev_whole(part);
1021 		goto again;
1022 	}
1023 }
1024 
1025 static unsigned long __part_start_io_acct(struct block_device *part,
1026 					  unsigned int sectors, unsigned int op,
1027 					  unsigned long start_time)
1028 {
1029 	const int sgrp = op_stat_group(op);
1030 
1031 	part_stat_lock();
1032 	update_io_ticks(part, start_time, false);
1033 	part_stat_inc(part, ios[sgrp]);
1034 	part_stat_add(part, sectors[sgrp], sectors);
1035 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1036 	part_stat_unlock();
1037 
1038 	return start_time;
1039 }
1040 
1041 /**
1042  * bio_start_io_acct_time - start I/O accounting for bio based drivers
1043  * @bio:	bio to start account for
1044  * @start_time:	start time that should be passed back to bio_end_io_acct().
1045  */
1046 void bio_start_io_acct_time(struct bio *bio, unsigned long start_time)
1047 {
1048 	__part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1049 			     bio_op(bio), start_time);
1050 }
1051 EXPORT_SYMBOL_GPL(bio_start_io_acct_time);
1052 
1053 /**
1054  * bio_start_io_acct - start I/O accounting for bio based drivers
1055  * @bio:	bio to start account for
1056  *
1057  * Returns the start time that should be passed back to bio_end_io_acct().
1058  */
1059 unsigned long bio_start_io_acct(struct bio *bio)
1060 {
1061 	return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio),
1062 				    bio_op(bio), jiffies);
1063 }
1064 EXPORT_SYMBOL_GPL(bio_start_io_acct);
1065 
1066 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1067 				 unsigned int op)
1068 {
1069 	return __part_start_io_acct(disk->part0, sectors, op, jiffies);
1070 }
1071 EXPORT_SYMBOL(disk_start_io_acct);
1072 
1073 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1074 			       unsigned long start_time)
1075 {
1076 	const int sgrp = op_stat_group(op);
1077 	unsigned long now = READ_ONCE(jiffies);
1078 	unsigned long duration = now - start_time;
1079 
1080 	part_stat_lock();
1081 	update_io_ticks(part, now, true);
1082 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1083 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1084 	part_stat_unlock();
1085 }
1086 
1087 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1088 		struct block_device *orig_bdev)
1089 {
1090 	__part_end_io_acct(orig_bdev, bio_op(bio), start_time);
1091 }
1092 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1093 
1094 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1095 		      unsigned long start_time)
1096 {
1097 	__part_end_io_acct(disk->part0, op, start_time);
1098 }
1099 EXPORT_SYMBOL(disk_end_io_acct);
1100 
1101 /**
1102  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1103  * @q : the queue of the device being checked
1104  *
1105  * Description:
1106  *    Check if underlying low-level drivers of a device are busy.
1107  *    If the drivers want to export their busy state, they must set own
1108  *    exporting function using blk_queue_lld_busy() first.
1109  *
1110  *    Basically, this function is used only by request stacking drivers
1111  *    to stop dispatching requests to underlying devices when underlying
1112  *    devices are busy.  This behavior helps more I/O merging on the queue
1113  *    of the request stacking driver and prevents I/O throughput regression
1114  *    on burst I/O load.
1115  *
1116  * Return:
1117  *    0 - Not busy (The request stacking driver should dispatch request)
1118  *    1 - Busy (The request stacking driver should stop dispatching request)
1119  */
1120 int blk_lld_busy(struct request_queue *q)
1121 {
1122 	if (queue_is_mq(q) && q->mq_ops->busy)
1123 		return q->mq_ops->busy(q);
1124 
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL_GPL(blk_lld_busy);
1128 
1129 int kblockd_schedule_work(struct work_struct *work)
1130 {
1131 	return queue_work(kblockd_workqueue, work);
1132 }
1133 EXPORT_SYMBOL(kblockd_schedule_work);
1134 
1135 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1136 				unsigned long delay)
1137 {
1138 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1139 }
1140 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1141 
1142 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1143 {
1144 	struct task_struct *tsk = current;
1145 
1146 	/*
1147 	 * If this is a nested plug, don't actually assign it.
1148 	 */
1149 	if (tsk->plug)
1150 		return;
1151 
1152 	plug->mq_list = NULL;
1153 	plug->cached_rq = NULL;
1154 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1155 	plug->rq_count = 0;
1156 	plug->multiple_queues = false;
1157 	plug->has_elevator = false;
1158 	plug->nowait = false;
1159 	INIT_LIST_HEAD(&plug->cb_list);
1160 
1161 	/*
1162 	 * Store ordering should not be needed here, since a potential
1163 	 * preempt will imply a full memory barrier
1164 	 */
1165 	tsk->plug = plug;
1166 }
1167 
1168 /**
1169  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1170  * @plug:	The &struct blk_plug that needs to be initialized
1171  *
1172  * Description:
1173  *   blk_start_plug() indicates to the block layer an intent by the caller
1174  *   to submit multiple I/O requests in a batch.  The block layer may use
1175  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1176  *   is called.  However, the block layer may choose to submit requests
1177  *   before a call to blk_finish_plug() if the number of queued I/Os
1178  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1179  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1180  *   the task schedules (see below).
1181  *
1182  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1183  *   pending I/O should the task end up blocking between blk_start_plug() and
1184  *   blk_finish_plug(). This is important from a performance perspective, but
1185  *   also ensures that we don't deadlock. For instance, if the task is blocking
1186  *   for a memory allocation, memory reclaim could end up wanting to free a
1187  *   page belonging to that request that is currently residing in our private
1188  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1189  *   this kind of deadlock.
1190  */
1191 void blk_start_plug(struct blk_plug *plug)
1192 {
1193 	blk_start_plug_nr_ios(plug, 1);
1194 }
1195 EXPORT_SYMBOL(blk_start_plug);
1196 
1197 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1198 {
1199 	LIST_HEAD(callbacks);
1200 
1201 	while (!list_empty(&plug->cb_list)) {
1202 		list_splice_init(&plug->cb_list, &callbacks);
1203 
1204 		while (!list_empty(&callbacks)) {
1205 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1206 							  struct blk_plug_cb,
1207 							  list);
1208 			list_del(&cb->list);
1209 			cb->callback(cb, from_schedule);
1210 		}
1211 	}
1212 }
1213 
1214 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1215 				      int size)
1216 {
1217 	struct blk_plug *plug = current->plug;
1218 	struct blk_plug_cb *cb;
1219 
1220 	if (!plug)
1221 		return NULL;
1222 
1223 	list_for_each_entry(cb, &plug->cb_list, list)
1224 		if (cb->callback == unplug && cb->data == data)
1225 			return cb;
1226 
1227 	/* Not currently on the callback list */
1228 	BUG_ON(size < sizeof(*cb));
1229 	cb = kzalloc(size, GFP_ATOMIC);
1230 	if (cb) {
1231 		cb->data = data;
1232 		cb->callback = unplug;
1233 		list_add(&cb->list, &plug->cb_list);
1234 	}
1235 	return cb;
1236 }
1237 EXPORT_SYMBOL(blk_check_plugged);
1238 
1239 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1240 {
1241 	if (!list_empty(&plug->cb_list))
1242 		flush_plug_callbacks(plug, from_schedule);
1243 	if (!rq_list_empty(plug->mq_list))
1244 		blk_mq_flush_plug_list(plug, from_schedule);
1245 	/*
1246 	 * Unconditionally flush out cached requests, even if the unplug
1247 	 * event came from schedule. Since we know hold references to the
1248 	 * queue for cached requests, we don't want a blocked task holding
1249 	 * up a queue freeze/quiesce event.
1250 	 */
1251 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1252 		blk_mq_free_plug_rqs(plug);
1253 }
1254 
1255 /**
1256  * blk_finish_plug - mark the end of a batch of submitted I/O
1257  * @plug:	The &struct blk_plug passed to blk_start_plug()
1258  *
1259  * Description:
1260  * Indicate that a batch of I/O submissions is complete.  This function
1261  * must be paired with an initial call to blk_start_plug().  The intent
1262  * is to allow the block layer to optimize I/O submission.  See the
1263  * documentation for blk_start_plug() for more information.
1264  */
1265 void blk_finish_plug(struct blk_plug *plug)
1266 {
1267 	if (plug == current->plug) {
1268 		__blk_flush_plug(plug, false);
1269 		current->plug = NULL;
1270 	}
1271 }
1272 EXPORT_SYMBOL(blk_finish_plug);
1273 
1274 void blk_io_schedule(void)
1275 {
1276 	/* Prevent hang_check timer from firing at us during very long I/O */
1277 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1278 
1279 	if (timeout)
1280 		io_schedule_timeout(timeout);
1281 	else
1282 		io_schedule();
1283 }
1284 EXPORT_SYMBOL_GPL(blk_io_schedule);
1285 
1286 int __init blk_dev_init(void)
1287 {
1288 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1289 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1290 			sizeof_field(struct request, cmd_flags));
1291 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1292 			sizeof_field(struct bio, bi_opf));
1293 	BUILD_BUG_ON(ALIGN(offsetof(struct request_queue, srcu),
1294 			   __alignof__(struct request_queue)) !=
1295 		     sizeof(struct request_queue));
1296 
1297 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1298 	kblockd_workqueue = alloc_workqueue("kblockd",
1299 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1300 	if (!kblockd_workqueue)
1301 		panic("Failed to create kblockd\n");
1302 
1303 	blk_requestq_cachep = kmem_cache_create("request_queue",
1304 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1305 
1306 	blk_requestq_srcu_cachep = kmem_cache_create("request_queue_srcu",
1307 			sizeof(struct request_queue) +
1308 			sizeof(struct srcu_struct), 0, SLAB_PANIC, NULL);
1309 
1310 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1311 
1312 	return 0;
1313 }
1314