1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/interrupt.h> 30 #include <linux/cpu.h> 31 #include <linux/blktrace_api.h> 32 #include <linux/fault-inject.h> 33 34 #include "blk.h" 35 36 static int __make_request(struct request_queue *q, struct bio *bio); 37 38 /* 39 * For the allocated request tables 40 */ 41 static struct kmem_cache *request_cachep; 42 43 /* 44 * For queue allocation 45 */ 46 struct kmem_cache *blk_requestq_cachep; 47 48 /* 49 * Controlling structure to kblockd 50 */ 51 static struct workqueue_struct *kblockd_workqueue; 52 53 static DEFINE_PER_CPU(struct list_head, blk_cpu_done); 54 55 static void drive_stat_acct(struct request *rq, int new_io) 56 { 57 struct hd_struct *part; 58 int rw = rq_data_dir(rq); 59 60 if (!blk_fs_request(rq) || !rq->rq_disk) 61 return; 62 63 part = get_part(rq->rq_disk, rq->sector); 64 if (!new_io) 65 __all_stat_inc(rq->rq_disk, part, merges[rw], rq->sector); 66 else { 67 disk_round_stats(rq->rq_disk); 68 rq->rq_disk->in_flight++; 69 if (part) { 70 part_round_stats(part); 71 part->in_flight++; 72 } 73 } 74 } 75 76 void blk_queue_congestion_threshold(struct request_queue *q) 77 { 78 int nr; 79 80 nr = q->nr_requests - (q->nr_requests / 8) + 1; 81 if (nr > q->nr_requests) 82 nr = q->nr_requests; 83 q->nr_congestion_on = nr; 84 85 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 86 if (nr < 1) 87 nr = 1; 88 q->nr_congestion_off = nr; 89 } 90 91 /** 92 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 93 * @bdev: device 94 * 95 * Locates the passed device's request queue and returns the address of its 96 * backing_dev_info 97 * 98 * Will return NULL if the request queue cannot be located. 99 */ 100 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 101 { 102 struct backing_dev_info *ret = NULL; 103 struct request_queue *q = bdev_get_queue(bdev); 104 105 if (q) 106 ret = &q->backing_dev_info; 107 return ret; 108 } 109 EXPORT_SYMBOL(blk_get_backing_dev_info); 110 111 void blk_rq_init(struct request_queue *q, struct request *rq) 112 { 113 memset(rq, 0, sizeof(*rq)); 114 115 INIT_LIST_HEAD(&rq->queuelist); 116 INIT_LIST_HEAD(&rq->donelist); 117 rq->q = q; 118 rq->sector = rq->hard_sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->cmd = rq->__cmd; 122 rq->tag = -1; 123 rq->ref_count = 1; 124 } 125 EXPORT_SYMBOL(blk_rq_init); 126 127 static void req_bio_endio(struct request *rq, struct bio *bio, 128 unsigned int nbytes, int error) 129 { 130 struct request_queue *q = rq->q; 131 132 if (&q->bar_rq != rq) { 133 if (error) 134 clear_bit(BIO_UPTODATE, &bio->bi_flags); 135 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 136 error = -EIO; 137 138 if (unlikely(nbytes > bio->bi_size)) { 139 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 140 __func__, nbytes, bio->bi_size); 141 nbytes = bio->bi_size; 142 } 143 144 bio->bi_size -= nbytes; 145 bio->bi_sector += (nbytes >> 9); 146 if (bio->bi_size == 0) 147 bio_endio(bio, error); 148 } else { 149 150 /* 151 * Okay, this is the barrier request in progress, just 152 * record the error; 153 */ 154 if (error && !q->orderr) 155 q->orderr = error; 156 } 157 } 158 159 void blk_dump_rq_flags(struct request *rq, char *msg) 160 { 161 int bit; 162 163 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 164 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 165 rq->cmd_flags); 166 167 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n", 168 (unsigned long long)rq->sector, 169 rq->nr_sectors, 170 rq->current_nr_sectors); 171 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n", 172 rq->bio, rq->biotail, 173 rq->buffer, rq->data, 174 rq->data_len); 175 176 if (blk_pc_request(rq)) { 177 printk(KERN_INFO " cdb: "); 178 for (bit = 0; bit < BLK_MAX_CDB; bit++) 179 printk("%02x ", rq->cmd[bit]); 180 printk("\n"); 181 } 182 } 183 EXPORT_SYMBOL(blk_dump_rq_flags); 184 185 /* 186 * "plug" the device if there are no outstanding requests: this will 187 * force the transfer to start only after we have put all the requests 188 * on the list. 189 * 190 * This is called with interrupts off and no requests on the queue and 191 * with the queue lock held. 192 */ 193 void blk_plug_device(struct request_queue *q) 194 { 195 WARN_ON(!irqs_disabled()); 196 197 /* 198 * don't plug a stopped queue, it must be paired with blk_start_queue() 199 * which will restart the queueing 200 */ 201 if (blk_queue_stopped(q)) 202 return; 203 204 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) { 205 __set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags); 206 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay); 207 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG); 208 } 209 } 210 EXPORT_SYMBOL(blk_plug_device); 211 212 /* 213 * remove the queue from the plugged list, if present. called with 214 * queue lock held and interrupts disabled. 215 */ 216 int blk_remove_plug(struct request_queue *q) 217 { 218 WARN_ON(!irqs_disabled()); 219 220 if (!test_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags)) 221 return 0; 222 223 queue_flag_clear(QUEUE_FLAG_PLUGGED, q); 224 del_timer(&q->unplug_timer); 225 return 1; 226 } 227 EXPORT_SYMBOL(blk_remove_plug); 228 229 /* 230 * remove the plug and let it rip.. 231 */ 232 void __generic_unplug_device(struct request_queue *q) 233 { 234 if (unlikely(blk_queue_stopped(q))) 235 return; 236 237 if (!blk_remove_plug(q)) 238 return; 239 240 q->request_fn(q); 241 } 242 EXPORT_SYMBOL(__generic_unplug_device); 243 244 /** 245 * generic_unplug_device - fire a request queue 246 * @q: The &struct request_queue in question 247 * 248 * Description: 249 * Linux uses plugging to build bigger requests queues before letting 250 * the device have at them. If a queue is plugged, the I/O scheduler 251 * is still adding and merging requests on the queue. Once the queue 252 * gets unplugged, the request_fn defined for the queue is invoked and 253 * transfers started. 254 **/ 255 void generic_unplug_device(struct request_queue *q) 256 { 257 if (blk_queue_plugged(q)) { 258 spin_lock_irq(q->queue_lock); 259 __generic_unplug_device(q); 260 spin_unlock_irq(q->queue_lock); 261 } 262 } 263 EXPORT_SYMBOL(generic_unplug_device); 264 265 static void blk_backing_dev_unplug(struct backing_dev_info *bdi, 266 struct page *page) 267 { 268 struct request_queue *q = bdi->unplug_io_data; 269 270 blk_unplug(q); 271 } 272 273 void blk_unplug_work(struct work_struct *work) 274 { 275 struct request_queue *q = 276 container_of(work, struct request_queue, unplug_work); 277 278 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 279 q->rq.count[READ] + q->rq.count[WRITE]); 280 281 q->unplug_fn(q); 282 } 283 284 void blk_unplug_timeout(unsigned long data) 285 { 286 struct request_queue *q = (struct request_queue *)data; 287 288 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL, 289 q->rq.count[READ] + q->rq.count[WRITE]); 290 291 kblockd_schedule_work(&q->unplug_work); 292 } 293 294 void blk_unplug(struct request_queue *q) 295 { 296 /* 297 * devices don't necessarily have an ->unplug_fn defined 298 */ 299 if (q->unplug_fn) { 300 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL, 301 q->rq.count[READ] + q->rq.count[WRITE]); 302 303 q->unplug_fn(q); 304 } 305 } 306 EXPORT_SYMBOL(blk_unplug); 307 308 /** 309 * blk_start_queue - restart a previously stopped queue 310 * @q: The &struct request_queue in question 311 * 312 * Description: 313 * blk_start_queue() will clear the stop flag on the queue, and call 314 * the request_fn for the queue if it was in a stopped state when 315 * entered. Also see blk_stop_queue(). Queue lock must be held. 316 **/ 317 void blk_start_queue(struct request_queue *q) 318 { 319 WARN_ON(!irqs_disabled()); 320 321 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 322 323 /* 324 * one level of recursion is ok and is much faster than kicking 325 * the unplug handling 326 */ 327 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { 328 queue_flag_set(QUEUE_FLAG_REENTER, q); 329 q->request_fn(q); 330 queue_flag_clear(QUEUE_FLAG_REENTER, q); 331 } else { 332 blk_plug_device(q); 333 kblockd_schedule_work(&q->unplug_work); 334 } 335 } 336 EXPORT_SYMBOL(blk_start_queue); 337 338 /** 339 * blk_stop_queue - stop a queue 340 * @q: The &struct request_queue in question 341 * 342 * Description: 343 * The Linux block layer assumes that a block driver will consume all 344 * entries on the request queue when the request_fn strategy is called. 345 * Often this will not happen, because of hardware limitations (queue 346 * depth settings). If a device driver gets a 'queue full' response, 347 * or if it simply chooses not to queue more I/O at one point, it can 348 * call this function to prevent the request_fn from being called until 349 * the driver has signalled it's ready to go again. This happens by calling 350 * blk_start_queue() to restart queue operations. Queue lock must be held. 351 **/ 352 void blk_stop_queue(struct request_queue *q) 353 { 354 blk_remove_plug(q); 355 queue_flag_set(QUEUE_FLAG_STOPPED, q); 356 } 357 EXPORT_SYMBOL(blk_stop_queue); 358 359 /** 360 * blk_sync_queue - cancel any pending callbacks on a queue 361 * @q: the queue 362 * 363 * Description: 364 * The block layer may perform asynchronous callback activity 365 * on a queue, such as calling the unplug function after a timeout. 366 * A block device may call blk_sync_queue to ensure that any 367 * such activity is cancelled, thus allowing it to release resources 368 * that the callbacks might use. The caller must already have made sure 369 * that its ->make_request_fn will not re-add plugging prior to calling 370 * this function. 371 * 372 */ 373 void blk_sync_queue(struct request_queue *q) 374 { 375 del_timer_sync(&q->unplug_timer); 376 kblockd_flush_work(&q->unplug_work); 377 } 378 EXPORT_SYMBOL(blk_sync_queue); 379 380 /** 381 * blk_run_queue - run a single device queue 382 * @q: The queue to run 383 */ 384 void __blk_run_queue(struct request_queue *q) 385 { 386 blk_remove_plug(q); 387 388 /* 389 * Only recurse once to avoid overrunning the stack, let the unplug 390 * handling reinvoke the handler shortly if we already got there. 391 */ 392 if (!elv_queue_empty(q)) { 393 if (!test_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) { 394 queue_flag_set(QUEUE_FLAG_REENTER, q); 395 q->request_fn(q); 396 queue_flag_clear(QUEUE_FLAG_REENTER, q); 397 } else { 398 blk_plug_device(q); 399 kblockd_schedule_work(&q->unplug_work); 400 } 401 } 402 } 403 EXPORT_SYMBOL(__blk_run_queue); 404 405 /** 406 * blk_run_queue - run a single device queue 407 * @q: The queue to run 408 */ 409 void blk_run_queue(struct request_queue *q) 410 { 411 unsigned long flags; 412 413 spin_lock_irqsave(q->queue_lock, flags); 414 __blk_run_queue(q); 415 spin_unlock_irqrestore(q->queue_lock, flags); 416 } 417 EXPORT_SYMBOL(blk_run_queue); 418 419 void blk_put_queue(struct request_queue *q) 420 { 421 kobject_put(&q->kobj); 422 } 423 424 void blk_cleanup_queue(struct request_queue *q) 425 { 426 mutex_lock(&q->sysfs_lock); 427 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 428 mutex_unlock(&q->sysfs_lock); 429 430 if (q->elevator) 431 elevator_exit(q->elevator); 432 433 blk_put_queue(q); 434 } 435 EXPORT_SYMBOL(blk_cleanup_queue); 436 437 static int blk_init_free_list(struct request_queue *q) 438 { 439 struct request_list *rl = &q->rq; 440 441 rl->count[READ] = rl->count[WRITE] = 0; 442 rl->starved[READ] = rl->starved[WRITE] = 0; 443 rl->elvpriv = 0; 444 init_waitqueue_head(&rl->wait[READ]); 445 init_waitqueue_head(&rl->wait[WRITE]); 446 447 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 448 mempool_free_slab, request_cachep, q->node); 449 450 if (!rl->rq_pool) 451 return -ENOMEM; 452 453 return 0; 454 } 455 456 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 457 { 458 return blk_alloc_queue_node(gfp_mask, -1); 459 } 460 EXPORT_SYMBOL(blk_alloc_queue); 461 462 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 463 { 464 struct request_queue *q; 465 int err; 466 467 q = kmem_cache_alloc_node(blk_requestq_cachep, 468 gfp_mask | __GFP_ZERO, node_id); 469 if (!q) 470 return NULL; 471 472 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug; 473 q->backing_dev_info.unplug_io_data = q; 474 err = bdi_init(&q->backing_dev_info); 475 if (err) { 476 kmem_cache_free(blk_requestq_cachep, q); 477 return NULL; 478 } 479 480 init_timer(&q->unplug_timer); 481 482 kobject_init(&q->kobj, &blk_queue_ktype); 483 484 mutex_init(&q->sysfs_lock); 485 486 return q; 487 } 488 EXPORT_SYMBOL(blk_alloc_queue_node); 489 490 /** 491 * blk_init_queue - prepare a request queue for use with a block device 492 * @rfn: The function to be called to process requests that have been 493 * placed on the queue. 494 * @lock: Request queue spin lock 495 * 496 * Description: 497 * If a block device wishes to use the standard request handling procedures, 498 * which sorts requests and coalesces adjacent requests, then it must 499 * call blk_init_queue(). The function @rfn will be called when there 500 * are requests on the queue that need to be processed. If the device 501 * supports plugging, then @rfn may not be called immediately when requests 502 * are available on the queue, but may be called at some time later instead. 503 * Plugged queues are generally unplugged when a buffer belonging to one 504 * of the requests on the queue is needed, or due to memory pressure. 505 * 506 * @rfn is not required, or even expected, to remove all requests off the 507 * queue, but only as many as it can handle at a time. If it does leave 508 * requests on the queue, it is responsible for arranging that the requests 509 * get dealt with eventually. 510 * 511 * The queue spin lock must be held while manipulating the requests on the 512 * request queue; this lock will be taken also from interrupt context, so irq 513 * disabling is needed for it. 514 * 515 * Function returns a pointer to the initialized request queue, or NULL if 516 * it didn't succeed. 517 * 518 * Note: 519 * blk_init_queue() must be paired with a blk_cleanup_queue() call 520 * when the block device is deactivated (such as at module unload). 521 **/ 522 523 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 524 { 525 return blk_init_queue_node(rfn, lock, -1); 526 } 527 EXPORT_SYMBOL(blk_init_queue); 528 529 struct request_queue * 530 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 531 { 532 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id); 533 534 if (!q) 535 return NULL; 536 537 q->node = node_id; 538 if (blk_init_free_list(q)) { 539 kmem_cache_free(blk_requestq_cachep, q); 540 return NULL; 541 } 542 543 /* 544 * if caller didn't supply a lock, they get per-queue locking with 545 * our embedded lock 546 */ 547 if (!lock) { 548 spin_lock_init(&q->__queue_lock); 549 lock = &q->__queue_lock; 550 } 551 552 q->request_fn = rfn; 553 q->prep_rq_fn = NULL; 554 q->unplug_fn = generic_unplug_device; 555 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER); 556 q->queue_lock = lock; 557 558 blk_queue_segment_boundary(q, 0xffffffff); 559 560 blk_queue_make_request(q, __make_request); 561 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE); 562 563 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS); 564 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS); 565 566 q->sg_reserved_size = INT_MAX; 567 568 /* 569 * all done 570 */ 571 if (!elevator_init(q, NULL)) { 572 blk_queue_congestion_threshold(q); 573 return q; 574 } 575 576 blk_put_queue(q); 577 return NULL; 578 } 579 EXPORT_SYMBOL(blk_init_queue_node); 580 581 int blk_get_queue(struct request_queue *q) 582 { 583 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) { 584 kobject_get(&q->kobj); 585 return 0; 586 } 587 588 return 1; 589 } 590 591 static inline void blk_free_request(struct request_queue *q, struct request *rq) 592 { 593 if (rq->cmd_flags & REQ_ELVPRIV) 594 elv_put_request(q, rq); 595 mempool_free(rq, q->rq.rq_pool); 596 } 597 598 static struct request * 599 blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask) 600 { 601 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask); 602 603 if (!rq) 604 return NULL; 605 606 blk_rq_init(q, rq); 607 608 /* 609 * first three bits are identical in rq->cmd_flags and bio->bi_rw, 610 * see bio.h and blkdev.h 611 */ 612 rq->cmd_flags = rw | REQ_ALLOCED; 613 614 if (priv) { 615 if (unlikely(elv_set_request(q, rq, gfp_mask))) { 616 mempool_free(rq, q->rq.rq_pool); 617 return NULL; 618 } 619 rq->cmd_flags |= REQ_ELVPRIV; 620 } 621 622 return rq; 623 } 624 625 /* 626 * ioc_batching returns true if the ioc is a valid batching request and 627 * should be given priority access to a request. 628 */ 629 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 630 { 631 if (!ioc) 632 return 0; 633 634 /* 635 * Make sure the process is able to allocate at least 1 request 636 * even if the batch times out, otherwise we could theoretically 637 * lose wakeups. 638 */ 639 return ioc->nr_batch_requests == q->nr_batching || 640 (ioc->nr_batch_requests > 0 641 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 642 } 643 644 /* 645 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 646 * will cause the process to be a "batcher" on all queues in the system. This 647 * is the behaviour we want though - once it gets a wakeup it should be given 648 * a nice run. 649 */ 650 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 651 { 652 if (!ioc || ioc_batching(q, ioc)) 653 return; 654 655 ioc->nr_batch_requests = q->nr_batching; 656 ioc->last_waited = jiffies; 657 } 658 659 static void __freed_request(struct request_queue *q, int rw) 660 { 661 struct request_list *rl = &q->rq; 662 663 if (rl->count[rw] < queue_congestion_off_threshold(q)) 664 blk_clear_queue_congested(q, rw); 665 666 if (rl->count[rw] + 1 <= q->nr_requests) { 667 if (waitqueue_active(&rl->wait[rw])) 668 wake_up(&rl->wait[rw]); 669 670 blk_clear_queue_full(q, rw); 671 } 672 } 673 674 /* 675 * A request has just been released. Account for it, update the full and 676 * congestion status, wake up any waiters. Called under q->queue_lock. 677 */ 678 static void freed_request(struct request_queue *q, int rw, int priv) 679 { 680 struct request_list *rl = &q->rq; 681 682 rl->count[rw]--; 683 if (priv) 684 rl->elvpriv--; 685 686 __freed_request(q, rw); 687 688 if (unlikely(rl->starved[rw ^ 1])) 689 __freed_request(q, rw ^ 1); 690 } 691 692 #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist) 693 /* 694 * Get a free request, queue_lock must be held. 695 * Returns NULL on failure, with queue_lock held. 696 * Returns !NULL on success, with queue_lock *not held*. 697 */ 698 static struct request *get_request(struct request_queue *q, int rw_flags, 699 struct bio *bio, gfp_t gfp_mask) 700 { 701 struct request *rq = NULL; 702 struct request_list *rl = &q->rq; 703 struct io_context *ioc = NULL; 704 const int rw = rw_flags & 0x01; 705 int may_queue, priv; 706 707 may_queue = elv_may_queue(q, rw_flags); 708 if (may_queue == ELV_MQUEUE_NO) 709 goto rq_starved; 710 711 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) { 712 if (rl->count[rw]+1 >= q->nr_requests) { 713 ioc = current_io_context(GFP_ATOMIC, q->node); 714 /* 715 * The queue will fill after this allocation, so set 716 * it as full, and mark this process as "batching". 717 * This process will be allowed to complete a batch of 718 * requests, others will be blocked. 719 */ 720 if (!blk_queue_full(q, rw)) { 721 ioc_set_batching(q, ioc); 722 blk_set_queue_full(q, rw); 723 } else { 724 if (may_queue != ELV_MQUEUE_MUST 725 && !ioc_batching(q, ioc)) { 726 /* 727 * The queue is full and the allocating 728 * process is not a "batcher", and not 729 * exempted by the IO scheduler 730 */ 731 goto out; 732 } 733 } 734 } 735 blk_set_queue_congested(q, rw); 736 } 737 738 /* 739 * Only allow batching queuers to allocate up to 50% over the defined 740 * limit of requests, otherwise we could have thousands of requests 741 * allocated with any setting of ->nr_requests 742 */ 743 if (rl->count[rw] >= (3 * q->nr_requests / 2)) 744 goto out; 745 746 rl->count[rw]++; 747 rl->starved[rw] = 0; 748 749 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags); 750 if (priv) 751 rl->elvpriv++; 752 753 spin_unlock_irq(q->queue_lock); 754 755 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask); 756 if (unlikely(!rq)) { 757 /* 758 * Allocation failed presumably due to memory. Undo anything 759 * we might have messed up. 760 * 761 * Allocating task should really be put onto the front of the 762 * wait queue, but this is pretty rare. 763 */ 764 spin_lock_irq(q->queue_lock); 765 freed_request(q, rw, priv); 766 767 /* 768 * in the very unlikely event that allocation failed and no 769 * requests for this direction was pending, mark us starved 770 * so that freeing of a request in the other direction will 771 * notice us. another possible fix would be to split the 772 * rq mempool into READ and WRITE 773 */ 774 rq_starved: 775 if (unlikely(rl->count[rw] == 0)) 776 rl->starved[rw] = 1; 777 778 goto out; 779 } 780 781 /* 782 * ioc may be NULL here, and ioc_batching will be false. That's 783 * OK, if the queue is under the request limit then requests need 784 * not count toward the nr_batch_requests limit. There will always 785 * be some limit enforced by BLK_BATCH_TIME. 786 */ 787 if (ioc_batching(q, ioc)) 788 ioc->nr_batch_requests--; 789 790 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ); 791 out: 792 return rq; 793 } 794 795 /* 796 * No available requests for this queue, unplug the device and wait for some 797 * requests to become available. 798 * 799 * Called with q->queue_lock held, and returns with it unlocked. 800 */ 801 static struct request *get_request_wait(struct request_queue *q, int rw_flags, 802 struct bio *bio) 803 { 804 const int rw = rw_flags & 0x01; 805 struct request *rq; 806 807 rq = get_request(q, rw_flags, bio, GFP_NOIO); 808 while (!rq) { 809 DEFINE_WAIT(wait); 810 struct request_list *rl = &q->rq; 811 812 prepare_to_wait_exclusive(&rl->wait[rw], &wait, 813 TASK_UNINTERRUPTIBLE); 814 815 rq = get_request(q, rw_flags, bio, GFP_NOIO); 816 817 if (!rq) { 818 struct io_context *ioc; 819 820 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ); 821 822 __generic_unplug_device(q); 823 spin_unlock_irq(q->queue_lock); 824 io_schedule(); 825 826 /* 827 * After sleeping, we become a "batching" process and 828 * will be able to allocate at least one request, and 829 * up to a big batch of them for a small period time. 830 * See ioc_batching, ioc_set_batching 831 */ 832 ioc = current_io_context(GFP_NOIO, q->node); 833 ioc_set_batching(q, ioc); 834 835 spin_lock_irq(q->queue_lock); 836 } 837 finish_wait(&rl->wait[rw], &wait); 838 } 839 840 return rq; 841 } 842 843 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 844 { 845 struct request *rq; 846 847 BUG_ON(rw != READ && rw != WRITE); 848 849 spin_lock_irq(q->queue_lock); 850 if (gfp_mask & __GFP_WAIT) { 851 rq = get_request_wait(q, rw, NULL); 852 } else { 853 rq = get_request(q, rw, NULL, gfp_mask); 854 if (!rq) 855 spin_unlock_irq(q->queue_lock); 856 } 857 /* q->queue_lock is unlocked at this point */ 858 859 return rq; 860 } 861 EXPORT_SYMBOL(blk_get_request); 862 863 /** 864 * blk_start_queueing - initiate dispatch of requests to device 865 * @q: request queue to kick into gear 866 * 867 * This is basically a helper to remove the need to know whether a queue 868 * is plugged or not if someone just wants to initiate dispatch of requests 869 * for this queue. 870 * 871 * The queue lock must be held with interrupts disabled. 872 */ 873 void blk_start_queueing(struct request_queue *q) 874 { 875 if (!blk_queue_plugged(q)) 876 q->request_fn(q); 877 else 878 __generic_unplug_device(q); 879 } 880 EXPORT_SYMBOL(blk_start_queueing); 881 882 /** 883 * blk_requeue_request - put a request back on queue 884 * @q: request queue where request should be inserted 885 * @rq: request to be inserted 886 * 887 * Description: 888 * Drivers often keep queueing requests until the hardware cannot accept 889 * more, when that condition happens we need to put the request back 890 * on the queue. Must be called with queue lock held. 891 */ 892 void blk_requeue_request(struct request_queue *q, struct request *rq) 893 { 894 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE); 895 896 if (blk_rq_tagged(rq)) 897 blk_queue_end_tag(q, rq); 898 899 elv_requeue_request(q, rq); 900 } 901 EXPORT_SYMBOL(blk_requeue_request); 902 903 /** 904 * blk_insert_request - insert a special request in to a request queue 905 * @q: request queue where request should be inserted 906 * @rq: request to be inserted 907 * @at_head: insert request at head or tail of queue 908 * @data: private data 909 * 910 * Description: 911 * Many block devices need to execute commands asynchronously, so they don't 912 * block the whole kernel from preemption during request execution. This is 913 * accomplished normally by inserting aritficial requests tagged as 914 * REQ_SPECIAL in to the corresponding request queue, and letting them be 915 * scheduled for actual execution by the request queue. 916 * 917 * We have the option of inserting the head or the tail of the queue. 918 * Typically we use the tail for new ioctls and so forth. We use the head 919 * of the queue for things like a QUEUE_FULL message from a device, or a 920 * host that is unable to accept a particular command. 921 */ 922 void blk_insert_request(struct request_queue *q, struct request *rq, 923 int at_head, void *data) 924 { 925 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK; 926 unsigned long flags; 927 928 /* 929 * tell I/O scheduler that this isn't a regular read/write (ie it 930 * must not attempt merges on this) and that it acts as a soft 931 * barrier 932 */ 933 rq->cmd_type = REQ_TYPE_SPECIAL; 934 rq->cmd_flags |= REQ_SOFTBARRIER; 935 936 rq->special = data; 937 938 spin_lock_irqsave(q->queue_lock, flags); 939 940 /* 941 * If command is tagged, release the tag 942 */ 943 if (blk_rq_tagged(rq)) 944 blk_queue_end_tag(q, rq); 945 946 drive_stat_acct(rq, 1); 947 __elv_add_request(q, rq, where, 0); 948 blk_start_queueing(q); 949 spin_unlock_irqrestore(q->queue_lock, flags); 950 } 951 EXPORT_SYMBOL(blk_insert_request); 952 953 /* 954 * add-request adds a request to the linked list. 955 * queue lock is held and interrupts disabled, as we muck with the 956 * request queue list. 957 */ 958 static inline void add_request(struct request_queue *q, struct request *req) 959 { 960 drive_stat_acct(req, 1); 961 962 /* 963 * elevator indicated where it wants this request to be 964 * inserted at elevator_merge time 965 */ 966 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0); 967 } 968 969 /* 970 * disk_round_stats() - Round off the performance stats on a struct 971 * disk_stats. 972 * 973 * The average IO queue length and utilisation statistics are maintained 974 * by observing the current state of the queue length and the amount of 975 * time it has been in this state for. 976 * 977 * Normally, that accounting is done on IO completion, but that can result 978 * in more than a second's worth of IO being accounted for within any one 979 * second, leading to >100% utilisation. To deal with that, we call this 980 * function to do a round-off before returning the results when reading 981 * /proc/diskstats. This accounts immediately for all queue usage up to 982 * the current jiffies and restarts the counters again. 983 */ 984 void disk_round_stats(struct gendisk *disk) 985 { 986 unsigned long now = jiffies; 987 988 if (now == disk->stamp) 989 return; 990 991 if (disk->in_flight) { 992 __disk_stat_add(disk, time_in_queue, 993 disk->in_flight * (now - disk->stamp)); 994 __disk_stat_add(disk, io_ticks, (now - disk->stamp)); 995 } 996 disk->stamp = now; 997 } 998 EXPORT_SYMBOL_GPL(disk_round_stats); 999 1000 void part_round_stats(struct hd_struct *part) 1001 { 1002 unsigned long now = jiffies; 1003 1004 if (now == part->stamp) 1005 return; 1006 1007 if (part->in_flight) { 1008 __part_stat_add(part, time_in_queue, 1009 part->in_flight * (now - part->stamp)); 1010 __part_stat_add(part, io_ticks, (now - part->stamp)); 1011 } 1012 part->stamp = now; 1013 } 1014 1015 /* 1016 * queue lock must be held 1017 */ 1018 void __blk_put_request(struct request_queue *q, struct request *req) 1019 { 1020 if (unlikely(!q)) 1021 return; 1022 if (unlikely(--req->ref_count)) 1023 return; 1024 1025 elv_completed_request(q, req); 1026 1027 /* 1028 * Request may not have originated from ll_rw_blk. if not, 1029 * it didn't come out of our reserved rq pools 1030 */ 1031 if (req->cmd_flags & REQ_ALLOCED) { 1032 int rw = rq_data_dir(req); 1033 int priv = req->cmd_flags & REQ_ELVPRIV; 1034 1035 BUG_ON(!list_empty(&req->queuelist)); 1036 BUG_ON(!hlist_unhashed(&req->hash)); 1037 1038 blk_free_request(q, req); 1039 freed_request(q, rw, priv); 1040 } 1041 } 1042 EXPORT_SYMBOL_GPL(__blk_put_request); 1043 1044 void blk_put_request(struct request *req) 1045 { 1046 unsigned long flags; 1047 struct request_queue *q = req->q; 1048 1049 /* 1050 * Gee, IDE calls in w/ NULL q. Fix IDE and remove the 1051 * following if (q) test. 1052 */ 1053 if (q) { 1054 spin_lock_irqsave(q->queue_lock, flags); 1055 __blk_put_request(q, req); 1056 spin_unlock_irqrestore(q->queue_lock, flags); 1057 } 1058 } 1059 EXPORT_SYMBOL(blk_put_request); 1060 1061 void init_request_from_bio(struct request *req, struct bio *bio) 1062 { 1063 req->cmd_type = REQ_TYPE_FS; 1064 1065 /* 1066 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST) 1067 */ 1068 if (bio_rw_ahead(bio) || bio_failfast(bio)) 1069 req->cmd_flags |= REQ_FAILFAST; 1070 1071 /* 1072 * REQ_BARRIER implies no merging, but lets make it explicit 1073 */ 1074 if (unlikely(bio_barrier(bio))) 1075 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE); 1076 1077 if (bio_sync(bio)) 1078 req->cmd_flags |= REQ_RW_SYNC; 1079 if (bio_rw_meta(bio)) 1080 req->cmd_flags |= REQ_RW_META; 1081 1082 req->errors = 0; 1083 req->hard_sector = req->sector = bio->bi_sector; 1084 req->ioprio = bio_prio(bio); 1085 req->start_time = jiffies; 1086 blk_rq_bio_prep(req->q, req, bio); 1087 } 1088 1089 static int __make_request(struct request_queue *q, struct bio *bio) 1090 { 1091 struct request *req; 1092 int el_ret, nr_sectors, barrier, err; 1093 const unsigned short prio = bio_prio(bio); 1094 const int sync = bio_sync(bio); 1095 int rw_flags; 1096 1097 nr_sectors = bio_sectors(bio); 1098 1099 /* 1100 * low level driver can indicate that it wants pages above a 1101 * certain limit bounced to low memory (ie for highmem, or even 1102 * ISA dma in theory) 1103 */ 1104 blk_queue_bounce(q, &bio); 1105 1106 barrier = bio_barrier(bio); 1107 if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) { 1108 err = -EOPNOTSUPP; 1109 goto end_io; 1110 } 1111 1112 spin_lock_irq(q->queue_lock); 1113 1114 if (unlikely(barrier) || elv_queue_empty(q)) 1115 goto get_rq; 1116 1117 el_ret = elv_merge(q, &req, bio); 1118 switch (el_ret) { 1119 case ELEVATOR_BACK_MERGE: 1120 BUG_ON(!rq_mergeable(req)); 1121 1122 if (!ll_back_merge_fn(q, req, bio)) 1123 break; 1124 1125 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE); 1126 1127 req->biotail->bi_next = bio; 1128 req->biotail = bio; 1129 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1130 req->ioprio = ioprio_best(req->ioprio, prio); 1131 drive_stat_acct(req, 0); 1132 if (!attempt_back_merge(q, req)) 1133 elv_merged_request(q, req, el_ret); 1134 goto out; 1135 1136 case ELEVATOR_FRONT_MERGE: 1137 BUG_ON(!rq_mergeable(req)); 1138 1139 if (!ll_front_merge_fn(q, req, bio)) 1140 break; 1141 1142 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE); 1143 1144 bio->bi_next = req->bio; 1145 req->bio = bio; 1146 1147 /* 1148 * may not be valid. if the low level driver said 1149 * it didn't need a bounce buffer then it better 1150 * not touch req->buffer either... 1151 */ 1152 req->buffer = bio_data(bio); 1153 req->current_nr_sectors = bio_cur_sectors(bio); 1154 req->hard_cur_sectors = req->current_nr_sectors; 1155 req->sector = req->hard_sector = bio->bi_sector; 1156 req->nr_sectors = req->hard_nr_sectors += nr_sectors; 1157 req->ioprio = ioprio_best(req->ioprio, prio); 1158 drive_stat_acct(req, 0); 1159 if (!attempt_front_merge(q, req)) 1160 elv_merged_request(q, req, el_ret); 1161 goto out; 1162 1163 /* ELV_NO_MERGE: elevator says don't/can't merge. */ 1164 default: 1165 ; 1166 } 1167 1168 get_rq: 1169 /* 1170 * This sync check and mask will be re-done in init_request_from_bio(), 1171 * but we need to set it earlier to expose the sync flag to the 1172 * rq allocator and io schedulers. 1173 */ 1174 rw_flags = bio_data_dir(bio); 1175 if (sync) 1176 rw_flags |= REQ_RW_SYNC; 1177 1178 /* 1179 * Grab a free request. This is might sleep but can not fail. 1180 * Returns with the queue unlocked. 1181 */ 1182 req = get_request_wait(q, rw_flags, bio); 1183 1184 /* 1185 * After dropping the lock and possibly sleeping here, our request 1186 * may now be mergeable after it had proven unmergeable (above). 1187 * We don't worry about that case for efficiency. It won't happen 1188 * often, and the elevators are able to handle it. 1189 */ 1190 init_request_from_bio(req, bio); 1191 1192 spin_lock_irq(q->queue_lock); 1193 if (elv_queue_empty(q)) 1194 blk_plug_device(q); 1195 add_request(q, req); 1196 out: 1197 if (sync) 1198 __generic_unplug_device(q); 1199 1200 spin_unlock_irq(q->queue_lock); 1201 return 0; 1202 1203 end_io: 1204 bio_endio(bio, err); 1205 return 0; 1206 } 1207 1208 /* 1209 * If bio->bi_dev is a partition, remap the location 1210 */ 1211 static inline void blk_partition_remap(struct bio *bio) 1212 { 1213 struct block_device *bdev = bio->bi_bdev; 1214 1215 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1216 struct hd_struct *p = bdev->bd_part; 1217 1218 bio->bi_sector += p->start_sect; 1219 bio->bi_bdev = bdev->bd_contains; 1220 1221 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio, 1222 bdev->bd_dev, bio->bi_sector, 1223 bio->bi_sector - p->start_sect); 1224 } 1225 } 1226 1227 static void handle_bad_sector(struct bio *bio) 1228 { 1229 char b[BDEVNAME_SIZE]; 1230 1231 printk(KERN_INFO "attempt to access beyond end of device\n"); 1232 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1233 bdevname(bio->bi_bdev, b), 1234 bio->bi_rw, 1235 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1236 (long long)(bio->bi_bdev->bd_inode->i_size >> 9)); 1237 1238 set_bit(BIO_EOF, &bio->bi_flags); 1239 } 1240 1241 #ifdef CONFIG_FAIL_MAKE_REQUEST 1242 1243 static DECLARE_FAULT_ATTR(fail_make_request); 1244 1245 static int __init setup_fail_make_request(char *str) 1246 { 1247 return setup_fault_attr(&fail_make_request, str); 1248 } 1249 __setup("fail_make_request=", setup_fail_make_request); 1250 1251 static int should_fail_request(struct bio *bio) 1252 { 1253 if ((bio->bi_bdev->bd_disk->flags & GENHD_FL_FAIL) || 1254 (bio->bi_bdev->bd_part && bio->bi_bdev->bd_part->make_it_fail)) 1255 return should_fail(&fail_make_request, bio->bi_size); 1256 1257 return 0; 1258 } 1259 1260 static int __init fail_make_request_debugfs(void) 1261 { 1262 return init_fault_attr_dentries(&fail_make_request, 1263 "fail_make_request"); 1264 } 1265 1266 late_initcall(fail_make_request_debugfs); 1267 1268 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1269 1270 static inline int should_fail_request(struct bio *bio) 1271 { 1272 return 0; 1273 } 1274 1275 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1276 1277 /* 1278 * Check whether this bio extends beyond the end of the device. 1279 */ 1280 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1281 { 1282 sector_t maxsector; 1283 1284 if (!nr_sectors) 1285 return 0; 1286 1287 /* Test device or partition size, when known. */ 1288 maxsector = bio->bi_bdev->bd_inode->i_size >> 9; 1289 if (maxsector) { 1290 sector_t sector = bio->bi_sector; 1291 1292 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1293 /* 1294 * This may well happen - the kernel calls bread() 1295 * without checking the size of the device, e.g., when 1296 * mounting a device. 1297 */ 1298 handle_bad_sector(bio); 1299 return 1; 1300 } 1301 } 1302 1303 return 0; 1304 } 1305 1306 /** 1307 * generic_make_request: hand a buffer to its device driver for I/O 1308 * @bio: The bio describing the location in memory and on the device. 1309 * 1310 * generic_make_request() is used to make I/O requests of block 1311 * devices. It is passed a &struct bio, which describes the I/O that needs 1312 * to be done. 1313 * 1314 * generic_make_request() does not return any status. The 1315 * success/failure status of the request, along with notification of 1316 * completion, is delivered asynchronously through the bio->bi_end_io 1317 * function described (one day) else where. 1318 * 1319 * The caller of generic_make_request must make sure that bi_io_vec 1320 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1321 * set to describe the device address, and the 1322 * bi_end_io and optionally bi_private are set to describe how 1323 * completion notification should be signaled. 1324 * 1325 * generic_make_request and the drivers it calls may use bi_next if this 1326 * bio happens to be merged with someone else, and may change bi_dev and 1327 * bi_sector for remaps as it sees fit. So the values of these fields 1328 * should NOT be depended on after the call to generic_make_request. 1329 */ 1330 static inline void __generic_make_request(struct bio *bio) 1331 { 1332 struct request_queue *q; 1333 sector_t old_sector; 1334 int ret, nr_sectors = bio_sectors(bio); 1335 dev_t old_dev; 1336 int err = -EIO; 1337 1338 might_sleep(); 1339 1340 if (bio_check_eod(bio, nr_sectors)) 1341 goto end_io; 1342 1343 /* 1344 * Resolve the mapping until finished. (drivers are 1345 * still free to implement/resolve their own stacking 1346 * by explicitly returning 0) 1347 * 1348 * NOTE: we don't repeat the blk_size check for each new device. 1349 * Stacking drivers are expected to know what they are doing. 1350 */ 1351 old_sector = -1; 1352 old_dev = 0; 1353 do { 1354 char b[BDEVNAME_SIZE]; 1355 1356 q = bdev_get_queue(bio->bi_bdev); 1357 if (!q) { 1358 printk(KERN_ERR 1359 "generic_make_request: Trying to access " 1360 "nonexistent block-device %s (%Lu)\n", 1361 bdevname(bio->bi_bdev, b), 1362 (long long) bio->bi_sector); 1363 end_io: 1364 bio_endio(bio, err); 1365 break; 1366 } 1367 1368 if (unlikely(nr_sectors > q->max_hw_sectors)) { 1369 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1370 bdevname(bio->bi_bdev, b), 1371 bio_sectors(bio), 1372 q->max_hw_sectors); 1373 goto end_io; 1374 } 1375 1376 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) 1377 goto end_io; 1378 1379 if (should_fail_request(bio)) 1380 goto end_io; 1381 1382 /* 1383 * If this device has partitions, remap block n 1384 * of partition p to block n+start(p) of the disk. 1385 */ 1386 blk_partition_remap(bio); 1387 1388 if (old_sector != -1) 1389 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector, 1390 old_sector); 1391 1392 blk_add_trace_bio(q, bio, BLK_TA_QUEUE); 1393 1394 old_sector = bio->bi_sector; 1395 old_dev = bio->bi_bdev->bd_dev; 1396 1397 if (bio_check_eod(bio, nr_sectors)) 1398 goto end_io; 1399 if (bio_empty_barrier(bio) && !q->prepare_flush_fn) { 1400 err = -EOPNOTSUPP; 1401 goto end_io; 1402 } 1403 1404 ret = q->make_request_fn(q, bio); 1405 } while (ret); 1406 } 1407 1408 /* 1409 * We only want one ->make_request_fn to be active at a time, 1410 * else stack usage with stacked devices could be a problem. 1411 * So use current->bio_{list,tail} to keep a list of requests 1412 * submited by a make_request_fn function. 1413 * current->bio_tail is also used as a flag to say if 1414 * generic_make_request is currently active in this task or not. 1415 * If it is NULL, then no make_request is active. If it is non-NULL, 1416 * then a make_request is active, and new requests should be added 1417 * at the tail 1418 */ 1419 void generic_make_request(struct bio *bio) 1420 { 1421 if (current->bio_tail) { 1422 /* make_request is active */ 1423 *(current->bio_tail) = bio; 1424 bio->bi_next = NULL; 1425 current->bio_tail = &bio->bi_next; 1426 return; 1427 } 1428 /* following loop may be a bit non-obvious, and so deserves some 1429 * explanation. 1430 * Before entering the loop, bio->bi_next is NULL (as all callers 1431 * ensure that) so we have a list with a single bio. 1432 * We pretend that we have just taken it off a longer list, so 1433 * we assign bio_list to the next (which is NULL) and bio_tail 1434 * to &bio_list, thus initialising the bio_list of new bios to be 1435 * added. __generic_make_request may indeed add some more bios 1436 * through a recursive call to generic_make_request. If it 1437 * did, we find a non-NULL value in bio_list and re-enter the loop 1438 * from the top. In this case we really did just take the bio 1439 * of the top of the list (no pretending) and so fixup bio_list and 1440 * bio_tail or bi_next, and call into __generic_make_request again. 1441 * 1442 * The loop was structured like this to make only one call to 1443 * __generic_make_request (which is important as it is large and 1444 * inlined) and to keep the structure simple. 1445 */ 1446 BUG_ON(bio->bi_next); 1447 do { 1448 current->bio_list = bio->bi_next; 1449 if (bio->bi_next == NULL) 1450 current->bio_tail = ¤t->bio_list; 1451 else 1452 bio->bi_next = NULL; 1453 __generic_make_request(bio); 1454 bio = current->bio_list; 1455 } while (bio); 1456 current->bio_tail = NULL; /* deactivate */ 1457 } 1458 EXPORT_SYMBOL(generic_make_request); 1459 1460 /** 1461 * submit_bio: submit a bio to the block device layer for I/O 1462 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1463 * @bio: The &struct bio which describes the I/O 1464 * 1465 * submit_bio() is very similar in purpose to generic_make_request(), and 1466 * uses that function to do most of the work. Both are fairly rough 1467 * interfaces, @bio must be presetup and ready for I/O. 1468 * 1469 */ 1470 void submit_bio(int rw, struct bio *bio) 1471 { 1472 int count = bio_sectors(bio); 1473 1474 bio->bi_rw |= rw; 1475 1476 /* 1477 * If it's a regular read/write or a barrier with data attached, 1478 * go through the normal accounting stuff before submission. 1479 */ 1480 if (!bio_empty_barrier(bio)) { 1481 1482 BIO_BUG_ON(!bio->bi_size); 1483 BIO_BUG_ON(!bio->bi_io_vec); 1484 1485 if (rw & WRITE) { 1486 count_vm_events(PGPGOUT, count); 1487 } else { 1488 task_io_account_read(bio->bi_size); 1489 count_vm_events(PGPGIN, count); 1490 } 1491 1492 if (unlikely(block_dump)) { 1493 char b[BDEVNAME_SIZE]; 1494 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n", 1495 current->comm, task_pid_nr(current), 1496 (rw & WRITE) ? "WRITE" : "READ", 1497 (unsigned long long)bio->bi_sector, 1498 bdevname(bio->bi_bdev, b)); 1499 } 1500 } 1501 1502 generic_make_request(bio); 1503 } 1504 EXPORT_SYMBOL(submit_bio); 1505 1506 /** 1507 * __end_that_request_first - end I/O on a request 1508 * @req: the request being processed 1509 * @error: 0 for success, < 0 for error 1510 * @nr_bytes: number of bytes to complete 1511 * 1512 * Description: 1513 * Ends I/O on a number of bytes attached to @req, and sets it up 1514 * for the next range of segments (if any) in the cluster. 1515 * 1516 * Return: 1517 * 0 - we are done with this request, call end_that_request_last() 1518 * 1 - still buffers pending for this request 1519 **/ 1520 static int __end_that_request_first(struct request *req, int error, 1521 int nr_bytes) 1522 { 1523 int total_bytes, bio_nbytes, next_idx = 0; 1524 struct bio *bio; 1525 1526 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE); 1527 1528 /* 1529 * for a REQ_BLOCK_PC request, we want to carry any eventual 1530 * sense key with us all the way through 1531 */ 1532 if (!blk_pc_request(req)) 1533 req->errors = 0; 1534 1535 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) { 1536 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n", 1537 req->rq_disk ? req->rq_disk->disk_name : "?", 1538 (unsigned long long)req->sector); 1539 } 1540 1541 if (blk_fs_request(req) && req->rq_disk) { 1542 struct hd_struct *part = get_part(req->rq_disk, req->sector); 1543 const int rw = rq_data_dir(req); 1544 1545 all_stat_add(req->rq_disk, part, sectors[rw], 1546 nr_bytes >> 9, req->sector); 1547 } 1548 1549 total_bytes = bio_nbytes = 0; 1550 while ((bio = req->bio) != NULL) { 1551 int nbytes; 1552 1553 /* 1554 * For an empty barrier request, the low level driver must 1555 * store a potential error location in ->sector. We pass 1556 * that back up in ->bi_sector. 1557 */ 1558 if (blk_empty_barrier(req)) 1559 bio->bi_sector = req->sector; 1560 1561 if (nr_bytes >= bio->bi_size) { 1562 req->bio = bio->bi_next; 1563 nbytes = bio->bi_size; 1564 req_bio_endio(req, bio, nbytes, error); 1565 next_idx = 0; 1566 bio_nbytes = 0; 1567 } else { 1568 int idx = bio->bi_idx + next_idx; 1569 1570 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) { 1571 blk_dump_rq_flags(req, "__end_that"); 1572 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 1573 __func__, bio->bi_idx, bio->bi_vcnt); 1574 break; 1575 } 1576 1577 nbytes = bio_iovec_idx(bio, idx)->bv_len; 1578 BIO_BUG_ON(nbytes > bio->bi_size); 1579 1580 /* 1581 * not a complete bvec done 1582 */ 1583 if (unlikely(nbytes > nr_bytes)) { 1584 bio_nbytes += nr_bytes; 1585 total_bytes += nr_bytes; 1586 break; 1587 } 1588 1589 /* 1590 * advance to the next vector 1591 */ 1592 next_idx++; 1593 bio_nbytes += nbytes; 1594 } 1595 1596 total_bytes += nbytes; 1597 nr_bytes -= nbytes; 1598 1599 bio = req->bio; 1600 if (bio) { 1601 /* 1602 * end more in this run, or just return 'not-done' 1603 */ 1604 if (unlikely(nr_bytes <= 0)) 1605 break; 1606 } 1607 } 1608 1609 /* 1610 * completely done 1611 */ 1612 if (!req->bio) 1613 return 0; 1614 1615 /* 1616 * if the request wasn't completed, update state 1617 */ 1618 if (bio_nbytes) { 1619 req_bio_endio(req, bio, bio_nbytes, error); 1620 bio->bi_idx += next_idx; 1621 bio_iovec(bio)->bv_offset += nr_bytes; 1622 bio_iovec(bio)->bv_len -= nr_bytes; 1623 } 1624 1625 blk_recalc_rq_sectors(req, total_bytes >> 9); 1626 blk_recalc_rq_segments(req); 1627 return 1; 1628 } 1629 1630 /* 1631 * splice the completion data to a local structure and hand off to 1632 * process_completion_queue() to complete the requests 1633 */ 1634 static void blk_done_softirq(struct softirq_action *h) 1635 { 1636 struct list_head *cpu_list, local_list; 1637 1638 local_irq_disable(); 1639 cpu_list = &__get_cpu_var(blk_cpu_done); 1640 list_replace_init(cpu_list, &local_list); 1641 local_irq_enable(); 1642 1643 while (!list_empty(&local_list)) { 1644 struct request *rq; 1645 1646 rq = list_entry(local_list.next, struct request, donelist); 1647 list_del_init(&rq->donelist); 1648 rq->q->softirq_done_fn(rq); 1649 } 1650 } 1651 1652 static int __cpuinit blk_cpu_notify(struct notifier_block *self, 1653 unsigned long action, void *hcpu) 1654 { 1655 /* 1656 * If a CPU goes away, splice its entries to the current CPU 1657 * and trigger a run of the softirq 1658 */ 1659 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 1660 int cpu = (unsigned long) hcpu; 1661 1662 local_irq_disable(); 1663 list_splice_init(&per_cpu(blk_cpu_done, cpu), 1664 &__get_cpu_var(blk_cpu_done)); 1665 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1666 local_irq_enable(); 1667 } 1668 1669 return NOTIFY_OK; 1670 } 1671 1672 1673 static struct notifier_block blk_cpu_notifier __cpuinitdata = { 1674 .notifier_call = blk_cpu_notify, 1675 }; 1676 1677 /** 1678 * blk_complete_request - end I/O on a request 1679 * @req: the request being processed 1680 * 1681 * Description: 1682 * Ends all I/O on a request. It does not handle partial completions, 1683 * unless the driver actually implements this in its completion callback 1684 * through requeueing. The actual completion happens out-of-order, 1685 * through a softirq handler. The user must have registered a completion 1686 * callback through blk_queue_softirq_done(). 1687 **/ 1688 1689 void blk_complete_request(struct request *req) 1690 { 1691 struct list_head *cpu_list; 1692 unsigned long flags; 1693 1694 BUG_ON(!req->q->softirq_done_fn); 1695 1696 local_irq_save(flags); 1697 1698 cpu_list = &__get_cpu_var(blk_cpu_done); 1699 list_add_tail(&req->donelist, cpu_list); 1700 raise_softirq_irqoff(BLOCK_SOFTIRQ); 1701 1702 local_irq_restore(flags); 1703 } 1704 EXPORT_SYMBOL(blk_complete_request); 1705 1706 /* 1707 * queue lock must be held 1708 */ 1709 static void end_that_request_last(struct request *req, int error) 1710 { 1711 struct gendisk *disk = req->rq_disk; 1712 1713 if (blk_rq_tagged(req)) 1714 blk_queue_end_tag(req->q, req); 1715 1716 if (blk_queued_rq(req)) 1717 blkdev_dequeue_request(req); 1718 1719 if (unlikely(laptop_mode) && blk_fs_request(req)) 1720 laptop_io_completion(); 1721 1722 /* 1723 * Account IO completion. bar_rq isn't accounted as a normal 1724 * IO on queueing nor completion. Accounting the containing 1725 * request is enough. 1726 */ 1727 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) { 1728 unsigned long duration = jiffies - req->start_time; 1729 const int rw = rq_data_dir(req); 1730 struct hd_struct *part = get_part(disk, req->sector); 1731 1732 __all_stat_inc(disk, part, ios[rw], req->sector); 1733 __all_stat_add(disk, part, ticks[rw], duration, req->sector); 1734 disk_round_stats(disk); 1735 disk->in_flight--; 1736 if (part) { 1737 part_round_stats(part); 1738 part->in_flight--; 1739 } 1740 } 1741 1742 if (req->end_io) 1743 req->end_io(req, error); 1744 else { 1745 if (blk_bidi_rq(req)) 1746 __blk_put_request(req->next_rq->q, req->next_rq); 1747 1748 __blk_put_request(req->q, req); 1749 } 1750 } 1751 1752 static inline void __end_request(struct request *rq, int uptodate, 1753 unsigned int nr_bytes) 1754 { 1755 int error = 0; 1756 1757 if (uptodate <= 0) 1758 error = uptodate ? uptodate : -EIO; 1759 1760 __blk_end_request(rq, error, nr_bytes); 1761 } 1762 1763 /** 1764 * blk_rq_bytes - Returns bytes left to complete in the entire request 1765 * @rq: the request being processed 1766 **/ 1767 unsigned int blk_rq_bytes(struct request *rq) 1768 { 1769 if (blk_fs_request(rq)) 1770 return rq->hard_nr_sectors << 9; 1771 1772 return rq->data_len; 1773 } 1774 EXPORT_SYMBOL_GPL(blk_rq_bytes); 1775 1776 /** 1777 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment 1778 * @rq: the request being processed 1779 **/ 1780 unsigned int blk_rq_cur_bytes(struct request *rq) 1781 { 1782 if (blk_fs_request(rq)) 1783 return rq->current_nr_sectors << 9; 1784 1785 if (rq->bio) 1786 return rq->bio->bi_size; 1787 1788 return rq->data_len; 1789 } 1790 EXPORT_SYMBOL_GPL(blk_rq_cur_bytes); 1791 1792 /** 1793 * end_queued_request - end all I/O on a queued request 1794 * @rq: the request being processed 1795 * @uptodate: error value or 0/1 uptodate flag 1796 * 1797 * Description: 1798 * Ends all I/O on a request, and removes it from the block layer queues. 1799 * Not suitable for normal IO completion, unless the driver still has 1800 * the request attached to the block layer. 1801 * 1802 **/ 1803 void end_queued_request(struct request *rq, int uptodate) 1804 { 1805 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1806 } 1807 EXPORT_SYMBOL(end_queued_request); 1808 1809 /** 1810 * end_dequeued_request - end all I/O on a dequeued request 1811 * @rq: the request being processed 1812 * @uptodate: error value or 0/1 uptodate flag 1813 * 1814 * Description: 1815 * Ends all I/O on a request. The request must already have been 1816 * dequeued using blkdev_dequeue_request(), as is normally the case 1817 * for most drivers. 1818 * 1819 **/ 1820 void end_dequeued_request(struct request *rq, int uptodate) 1821 { 1822 __end_request(rq, uptodate, blk_rq_bytes(rq)); 1823 } 1824 EXPORT_SYMBOL(end_dequeued_request); 1825 1826 1827 /** 1828 * end_request - end I/O on the current segment of the request 1829 * @req: the request being processed 1830 * @uptodate: error value or 0/1 uptodate flag 1831 * 1832 * Description: 1833 * Ends I/O on the current segment of a request. If that is the only 1834 * remaining segment, the request is also completed and freed. 1835 * 1836 * This is a remnant of how older block drivers handled IO completions. 1837 * Modern drivers typically end IO on the full request in one go, unless 1838 * they have a residual value to account for. For that case this function 1839 * isn't really useful, unless the residual just happens to be the 1840 * full current segment. In other words, don't use this function in new 1841 * code. Either use end_request_completely(), or the 1842 * end_that_request_chunk() (along with end_that_request_last()) for 1843 * partial completions. 1844 * 1845 **/ 1846 void end_request(struct request *req, int uptodate) 1847 { 1848 __end_request(req, uptodate, req->hard_cur_sectors << 9); 1849 } 1850 EXPORT_SYMBOL(end_request); 1851 1852 /** 1853 * blk_end_io - Generic end_io function to complete a request. 1854 * @rq: the request being processed 1855 * @error: 0 for success, < 0 for error 1856 * @nr_bytes: number of bytes to complete @rq 1857 * @bidi_bytes: number of bytes to complete @rq->next_rq 1858 * @drv_callback: function called between completion of bios in the request 1859 * and completion of the request. 1860 * If the callback returns non 0, this helper returns without 1861 * completion of the request. 1862 * 1863 * Description: 1864 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1865 * If @rq has leftover, sets it up for the next range of segments. 1866 * 1867 * Return: 1868 * 0 - we are done with this request 1869 * 1 - this request is not freed yet, it still has pending buffers. 1870 **/ 1871 static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes, 1872 unsigned int bidi_bytes, 1873 int (drv_callback)(struct request *)) 1874 { 1875 struct request_queue *q = rq->q; 1876 unsigned long flags = 0UL; 1877 1878 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1879 if (__end_that_request_first(rq, error, nr_bytes)) 1880 return 1; 1881 1882 /* Bidi request must be completed as a whole */ 1883 if (blk_bidi_rq(rq) && 1884 __end_that_request_first(rq->next_rq, error, bidi_bytes)) 1885 return 1; 1886 } 1887 1888 /* Special feature for tricky drivers */ 1889 if (drv_callback && drv_callback(rq)) 1890 return 1; 1891 1892 add_disk_randomness(rq->rq_disk); 1893 1894 spin_lock_irqsave(q->queue_lock, flags); 1895 end_that_request_last(rq, error); 1896 spin_unlock_irqrestore(q->queue_lock, flags); 1897 1898 return 0; 1899 } 1900 1901 /** 1902 * blk_end_request - Helper function for drivers to complete the request. 1903 * @rq: the request being processed 1904 * @error: 0 for success, < 0 for error 1905 * @nr_bytes: number of bytes to complete 1906 * 1907 * Description: 1908 * Ends I/O on a number of bytes attached to @rq. 1909 * If @rq has leftover, sets it up for the next range of segments. 1910 * 1911 * Return: 1912 * 0 - we are done with this request 1913 * 1 - still buffers pending for this request 1914 **/ 1915 int blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1916 { 1917 return blk_end_io(rq, error, nr_bytes, 0, NULL); 1918 } 1919 EXPORT_SYMBOL_GPL(blk_end_request); 1920 1921 /** 1922 * __blk_end_request - Helper function for drivers to complete the request. 1923 * @rq: the request being processed 1924 * @error: 0 for success, < 0 for error 1925 * @nr_bytes: number of bytes to complete 1926 * 1927 * Description: 1928 * Must be called with queue lock held unlike blk_end_request(). 1929 * 1930 * Return: 1931 * 0 - we are done with this request 1932 * 1 - still buffers pending for this request 1933 **/ 1934 int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 1935 { 1936 if (blk_fs_request(rq) || blk_pc_request(rq)) { 1937 if (__end_that_request_first(rq, error, nr_bytes)) 1938 return 1; 1939 } 1940 1941 add_disk_randomness(rq->rq_disk); 1942 1943 end_that_request_last(rq, error); 1944 1945 return 0; 1946 } 1947 EXPORT_SYMBOL_GPL(__blk_end_request); 1948 1949 /** 1950 * blk_end_bidi_request - Helper function for drivers to complete bidi request. 1951 * @rq: the bidi request being processed 1952 * @error: 0 for success, < 0 for error 1953 * @nr_bytes: number of bytes to complete @rq 1954 * @bidi_bytes: number of bytes to complete @rq->next_rq 1955 * 1956 * Description: 1957 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 1958 * 1959 * Return: 1960 * 0 - we are done with this request 1961 * 1 - still buffers pending for this request 1962 **/ 1963 int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes, 1964 unsigned int bidi_bytes) 1965 { 1966 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL); 1967 } 1968 EXPORT_SYMBOL_GPL(blk_end_bidi_request); 1969 1970 /** 1971 * blk_end_request_callback - Special helper function for tricky drivers 1972 * @rq: the request being processed 1973 * @error: 0 for success, < 0 for error 1974 * @nr_bytes: number of bytes to complete 1975 * @drv_callback: function called between completion of bios in the request 1976 * and completion of the request. 1977 * If the callback returns non 0, this helper returns without 1978 * completion of the request. 1979 * 1980 * Description: 1981 * Ends I/O on a number of bytes attached to @rq. 1982 * If @rq has leftover, sets it up for the next range of segments. 1983 * 1984 * This special helper function is used only for existing tricky drivers. 1985 * (e.g. cdrom_newpc_intr() of ide-cd) 1986 * This interface will be removed when such drivers are rewritten. 1987 * Don't use this interface in other places anymore. 1988 * 1989 * Return: 1990 * 0 - we are done with this request 1991 * 1 - this request is not freed yet. 1992 * this request still has pending buffers or 1993 * the driver doesn't want to finish this request yet. 1994 **/ 1995 int blk_end_request_callback(struct request *rq, int error, 1996 unsigned int nr_bytes, 1997 int (drv_callback)(struct request *)) 1998 { 1999 return blk_end_io(rq, error, nr_bytes, 0, drv_callback); 2000 } 2001 EXPORT_SYMBOL_GPL(blk_end_request_callback); 2002 2003 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2004 struct bio *bio) 2005 { 2006 /* first two bits are identical in rq->cmd_flags and bio->bi_rw */ 2007 rq->cmd_flags |= (bio->bi_rw & 3); 2008 2009 rq->nr_phys_segments = bio_phys_segments(q, bio); 2010 rq->nr_hw_segments = bio_hw_segments(q, bio); 2011 rq->current_nr_sectors = bio_cur_sectors(bio); 2012 rq->hard_cur_sectors = rq->current_nr_sectors; 2013 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio); 2014 rq->buffer = bio_data(bio); 2015 rq->data_len = bio->bi_size; 2016 2017 rq->bio = rq->biotail = bio; 2018 2019 if (bio->bi_bdev) 2020 rq->rq_disk = bio->bi_bdev->bd_disk; 2021 } 2022 2023 int kblockd_schedule_work(struct work_struct *work) 2024 { 2025 return queue_work(kblockd_workqueue, work); 2026 } 2027 EXPORT_SYMBOL(kblockd_schedule_work); 2028 2029 void kblockd_flush_work(struct work_struct *work) 2030 { 2031 cancel_work_sync(work); 2032 } 2033 EXPORT_SYMBOL(kblockd_flush_work); 2034 2035 int __init blk_dev_init(void) 2036 { 2037 int i; 2038 2039 kblockd_workqueue = create_workqueue("kblockd"); 2040 if (!kblockd_workqueue) 2041 panic("Failed to create kblockd\n"); 2042 2043 request_cachep = kmem_cache_create("blkdev_requests", 2044 sizeof(struct request), 0, SLAB_PANIC, NULL); 2045 2046 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 2047 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 2048 2049 for_each_possible_cpu(i) 2050 INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i)); 2051 2052 open_softirq(BLOCK_SOFTIRQ, blk_done_softirq, NULL); 2053 register_hotcpu_notifier(&blk_cpu_notifier); 2054 2055 return 0; 2056 } 2057 2058