1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/blk-cgroup.h> 38 #include <linux/t10-pi.h> 39 #include <linux/debugfs.h> 40 #include <linux/bpf.h> 41 #include <linux/psi.h> 42 #include <linux/sched/sysctl.h> 43 #include <linux/blk-crypto.h> 44 45 #define CREATE_TRACE_POINTS 46 #include <trace/events/block.h> 47 48 #include "blk.h" 49 #include "blk-mq.h" 50 #include "blk-mq-sched.h" 51 #include "blk-pm.h" 52 #include "blk-rq-qos.h" 53 54 struct dentry *blk_debugfs_root; 55 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 61 62 DEFINE_IDA(blk_queue_ida); 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 set_bit(flag, &q->queue_flags); 82 } 83 EXPORT_SYMBOL(blk_queue_flag_set); 84 85 /** 86 * blk_queue_flag_clear - atomically clear a queue flag 87 * @flag: flag to be cleared 88 * @q: request queue 89 */ 90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 91 { 92 clear_bit(flag, &q->queue_flags); 93 } 94 EXPORT_SYMBOL(blk_queue_flag_clear); 95 96 /** 97 * blk_queue_flag_test_and_set - atomically test and set a queue flag 98 * @flag: flag to be set 99 * @q: request queue 100 * 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 102 * the flag was already set. 103 */ 104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 105 { 106 return test_and_set_bit(flag, &q->queue_flags); 107 } 108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 109 110 void blk_rq_init(struct request_queue *q, struct request *rq) 111 { 112 memset(rq, 0, sizeof(*rq)); 113 114 INIT_LIST_HEAD(&rq->queuelist); 115 rq->q = q; 116 rq->__sector = (sector_t) -1; 117 INIT_HLIST_NODE(&rq->hash); 118 RB_CLEAR_NODE(&rq->rb_node); 119 rq->tag = BLK_MQ_NO_TAG; 120 rq->internal_tag = BLK_MQ_NO_TAG; 121 rq->start_time_ns = ktime_get_ns(); 122 rq->part = NULL; 123 refcount_set(&rq->ref, 1); 124 blk_crypto_rq_set_defaults(rq); 125 } 126 EXPORT_SYMBOL(blk_rq_init); 127 128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 129 static const char *const blk_op_name[] = { 130 REQ_OP_NAME(READ), 131 REQ_OP_NAME(WRITE), 132 REQ_OP_NAME(FLUSH), 133 REQ_OP_NAME(DISCARD), 134 REQ_OP_NAME(SECURE_ERASE), 135 REQ_OP_NAME(ZONE_RESET), 136 REQ_OP_NAME(ZONE_RESET_ALL), 137 REQ_OP_NAME(ZONE_OPEN), 138 REQ_OP_NAME(ZONE_CLOSE), 139 REQ_OP_NAME(ZONE_FINISH), 140 REQ_OP_NAME(ZONE_APPEND), 141 REQ_OP_NAME(WRITE_SAME), 142 REQ_OP_NAME(WRITE_ZEROES), 143 REQ_OP_NAME(SCSI_IN), 144 REQ_OP_NAME(SCSI_OUT), 145 REQ_OP_NAME(DRV_IN), 146 REQ_OP_NAME(DRV_OUT), 147 }; 148 #undef REQ_OP_NAME 149 150 /** 151 * blk_op_str - Return string XXX in the REQ_OP_XXX. 152 * @op: REQ_OP_XXX. 153 * 154 * Description: Centralize block layer function to convert REQ_OP_XXX into 155 * string format. Useful in the debugging and tracing bio or request. For 156 * invalid REQ_OP_XXX it returns string "UNKNOWN". 157 */ 158 inline const char *blk_op_str(unsigned int op) 159 { 160 const char *op_str = "UNKNOWN"; 161 162 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 163 op_str = blk_op_name[op]; 164 165 return op_str; 166 } 167 EXPORT_SYMBOL_GPL(blk_op_str); 168 169 static const struct { 170 int errno; 171 const char *name; 172 } blk_errors[] = { 173 [BLK_STS_OK] = { 0, "" }, 174 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 175 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 176 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 177 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 178 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 179 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 180 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 181 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 182 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 183 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 184 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 185 186 /* device mapper special case, should not leak out: */ 187 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 188 189 /* zone device specific errors */ 190 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 191 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 192 193 /* everything else not covered above: */ 194 [BLK_STS_IOERR] = { -EIO, "I/O" }, 195 }; 196 197 blk_status_t errno_to_blk_status(int errno) 198 { 199 int i; 200 201 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 202 if (blk_errors[i].errno == errno) 203 return (__force blk_status_t)i; 204 } 205 206 return BLK_STS_IOERR; 207 } 208 EXPORT_SYMBOL_GPL(errno_to_blk_status); 209 210 int blk_status_to_errno(blk_status_t status) 211 { 212 int idx = (__force int)status; 213 214 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 215 return -EIO; 216 return blk_errors[idx].errno; 217 } 218 EXPORT_SYMBOL_GPL(blk_status_to_errno); 219 220 static void print_req_error(struct request *req, blk_status_t status, 221 const char *caller) 222 { 223 int idx = (__force int)status; 224 225 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 226 return; 227 228 printk_ratelimited(KERN_ERR 229 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 230 "phys_seg %u prio class %u\n", 231 caller, blk_errors[idx].name, 232 req->rq_disk ? req->rq_disk->disk_name : "?", 233 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 234 req->cmd_flags & ~REQ_OP_MASK, 235 req->nr_phys_segments, 236 IOPRIO_PRIO_CLASS(req->ioprio)); 237 } 238 239 static void req_bio_endio(struct request *rq, struct bio *bio, 240 unsigned int nbytes, blk_status_t error) 241 { 242 if (error) 243 bio->bi_status = error; 244 245 if (unlikely(rq->rq_flags & RQF_QUIET)) 246 bio_set_flag(bio, BIO_QUIET); 247 248 bio_advance(bio, nbytes); 249 250 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 251 /* 252 * Partial zone append completions cannot be supported as the 253 * BIO fragments may end up not being written sequentially. 254 */ 255 if (bio->bi_iter.bi_size) 256 bio->bi_status = BLK_STS_IOERR; 257 else 258 bio->bi_iter.bi_sector = rq->__sector; 259 } 260 261 /* don't actually finish bio if it's part of flush sequence */ 262 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 263 bio_endio(bio); 264 } 265 266 void blk_dump_rq_flags(struct request *rq, char *msg) 267 { 268 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 269 rq->rq_disk ? rq->rq_disk->disk_name : "?", 270 (unsigned long long) rq->cmd_flags); 271 272 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 273 (unsigned long long)blk_rq_pos(rq), 274 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 275 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 276 rq->bio, rq->biotail, blk_rq_bytes(rq)); 277 } 278 EXPORT_SYMBOL(blk_dump_rq_flags); 279 280 /** 281 * blk_sync_queue - cancel any pending callbacks on a queue 282 * @q: the queue 283 * 284 * Description: 285 * The block layer may perform asynchronous callback activity 286 * on a queue, such as calling the unplug function after a timeout. 287 * A block device may call blk_sync_queue to ensure that any 288 * such activity is cancelled, thus allowing it to release resources 289 * that the callbacks might use. The caller must already have made sure 290 * that its ->submit_bio will not re-add plugging prior to calling 291 * this function. 292 * 293 * This function does not cancel any asynchronous activity arising 294 * out of elevator or throttling code. That would require elevator_exit() 295 * and blkcg_exit_queue() to be called with queue lock initialized. 296 * 297 */ 298 void blk_sync_queue(struct request_queue *q) 299 { 300 del_timer_sync(&q->timeout); 301 cancel_work_sync(&q->timeout_work); 302 } 303 EXPORT_SYMBOL(blk_sync_queue); 304 305 /** 306 * blk_set_pm_only - increment pm_only counter 307 * @q: request queue pointer 308 */ 309 void blk_set_pm_only(struct request_queue *q) 310 { 311 atomic_inc(&q->pm_only); 312 } 313 EXPORT_SYMBOL_GPL(blk_set_pm_only); 314 315 void blk_clear_pm_only(struct request_queue *q) 316 { 317 int pm_only; 318 319 pm_only = atomic_dec_return(&q->pm_only); 320 WARN_ON_ONCE(pm_only < 0); 321 if (pm_only == 0) 322 wake_up_all(&q->mq_freeze_wq); 323 } 324 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 325 326 /** 327 * blk_put_queue - decrement the request_queue refcount 328 * @q: the request_queue structure to decrement the refcount for 329 * 330 * Decrements the refcount of the request_queue kobject. When this reaches 0 331 * we'll have blk_release_queue() called. 332 * 333 * Context: Any context, but the last reference must not be dropped from 334 * atomic context. 335 */ 336 void blk_put_queue(struct request_queue *q) 337 { 338 kobject_put(&q->kobj); 339 } 340 EXPORT_SYMBOL(blk_put_queue); 341 342 void blk_set_queue_dying(struct request_queue *q) 343 { 344 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 345 346 /* 347 * When queue DYING flag is set, we need to block new req 348 * entering queue, so we call blk_freeze_queue_start() to 349 * prevent I/O from crossing blk_queue_enter(). 350 */ 351 blk_freeze_queue_start(q); 352 353 if (queue_is_mq(q)) 354 blk_mq_wake_waiters(q); 355 356 /* Make blk_queue_enter() reexamine the DYING flag. */ 357 wake_up_all(&q->mq_freeze_wq); 358 } 359 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 360 361 /** 362 * blk_cleanup_queue - shutdown a request queue 363 * @q: request queue to shutdown 364 * 365 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 366 * put it. All future requests will be failed immediately with -ENODEV. 367 * 368 * Context: can sleep 369 */ 370 void blk_cleanup_queue(struct request_queue *q) 371 { 372 /* cannot be called from atomic context */ 373 might_sleep(); 374 375 WARN_ON_ONCE(blk_queue_registered(q)); 376 377 /* mark @q DYING, no new request or merges will be allowed afterwards */ 378 blk_set_queue_dying(q); 379 380 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 381 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 382 383 /* 384 * Drain all requests queued before DYING marking. Set DEAD flag to 385 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 386 * after draining finished. 387 */ 388 blk_freeze_queue(q); 389 390 rq_qos_exit(q); 391 392 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 393 394 /* for synchronous bio-based driver finish in-flight integrity i/o */ 395 blk_flush_integrity(); 396 397 /* @q won't process any more request, flush async actions */ 398 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 399 blk_sync_queue(q); 400 401 if (queue_is_mq(q)) 402 blk_mq_exit_queue(q); 403 404 /* 405 * In theory, request pool of sched_tags belongs to request queue. 406 * However, the current implementation requires tag_set for freeing 407 * requests, so free the pool now. 408 * 409 * Queue has become frozen, there can't be any in-queue requests, so 410 * it is safe to free requests now. 411 */ 412 mutex_lock(&q->sysfs_lock); 413 if (q->elevator) 414 blk_mq_sched_free_requests(q); 415 mutex_unlock(&q->sysfs_lock); 416 417 percpu_ref_exit(&q->q_usage_counter); 418 419 /* @q is and will stay empty, shutdown and put */ 420 blk_put_queue(q); 421 } 422 EXPORT_SYMBOL(blk_cleanup_queue); 423 424 /** 425 * blk_queue_enter() - try to increase q->q_usage_counter 426 * @q: request queue pointer 427 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 428 */ 429 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 430 { 431 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 432 433 while (true) { 434 bool success = false; 435 436 rcu_read_lock(); 437 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 438 /* 439 * The code that increments the pm_only counter is 440 * responsible for ensuring that that counter is 441 * globally visible before the queue is unfrozen. 442 */ 443 if (pm || !blk_queue_pm_only(q)) { 444 success = true; 445 } else { 446 percpu_ref_put(&q->q_usage_counter); 447 } 448 } 449 rcu_read_unlock(); 450 451 if (success) 452 return 0; 453 454 if (flags & BLK_MQ_REQ_NOWAIT) 455 return -EBUSY; 456 457 /* 458 * read pair of barrier in blk_freeze_queue_start(), 459 * we need to order reading __PERCPU_REF_DEAD flag of 460 * .q_usage_counter and reading .mq_freeze_depth or 461 * queue dying flag, otherwise the following wait may 462 * never return if the two reads are reordered. 463 */ 464 smp_rmb(); 465 466 wait_event(q->mq_freeze_wq, 467 (!q->mq_freeze_depth && 468 (pm || (blk_pm_request_resume(q), 469 !blk_queue_pm_only(q)))) || 470 blk_queue_dying(q)); 471 if (blk_queue_dying(q)) 472 return -ENODEV; 473 } 474 } 475 476 static inline int bio_queue_enter(struct bio *bio) 477 { 478 struct request_queue *q = bio->bi_disk->queue; 479 bool nowait = bio->bi_opf & REQ_NOWAIT; 480 int ret; 481 482 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 483 if (unlikely(ret)) { 484 if (nowait && !blk_queue_dying(q)) 485 bio_wouldblock_error(bio); 486 else 487 bio_io_error(bio); 488 } 489 490 return ret; 491 } 492 493 void blk_queue_exit(struct request_queue *q) 494 { 495 percpu_ref_put(&q->q_usage_counter); 496 } 497 498 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 499 { 500 struct request_queue *q = 501 container_of(ref, struct request_queue, q_usage_counter); 502 503 wake_up_all(&q->mq_freeze_wq); 504 } 505 506 static void blk_rq_timed_out_timer(struct timer_list *t) 507 { 508 struct request_queue *q = from_timer(q, t, timeout); 509 510 kblockd_schedule_work(&q->timeout_work); 511 } 512 513 static void blk_timeout_work(struct work_struct *work) 514 { 515 } 516 517 struct request_queue *blk_alloc_queue(int node_id) 518 { 519 struct request_queue *q; 520 int ret; 521 522 q = kmem_cache_alloc_node(blk_requestq_cachep, 523 GFP_KERNEL | __GFP_ZERO, node_id); 524 if (!q) 525 return NULL; 526 527 q->last_merge = NULL; 528 529 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 530 if (q->id < 0) 531 goto fail_q; 532 533 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 534 if (ret) 535 goto fail_id; 536 537 q->backing_dev_info = bdi_alloc(node_id); 538 if (!q->backing_dev_info) 539 goto fail_split; 540 541 q->stats = blk_alloc_queue_stats(); 542 if (!q->stats) 543 goto fail_stats; 544 545 q->node = node_id; 546 547 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 548 549 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 550 laptop_mode_timer_fn, 0); 551 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 552 INIT_WORK(&q->timeout_work, blk_timeout_work); 553 INIT_LIST_HEAD(&q->icq_list); 554 #ifdef CONFIG_BLK_CGROUP 555 INIT_LIST_HEAD(&q->blkg_list); 556 #endif 557 558 kobject_init(&q->kobj, &blk_queue_ktype); 559 560 mutex_init(&q->debugfs_mutex); 561 mutex_init(&q->sysfs_lock); 562 mutex_init(&q->sysfs_dir_lock); 563 spin_lock_init(&q->queue_lock); 564 565 init_waitqueue_head(&q->mq_freeze_wq); 566 mutex_init(&q->mq_freeze_lock); 567 568 /* 569 * Init percpu_ref in atomic mode so that it's faster to shutdown. 570 * See blk_register_queue() for details. 571 */ 572 if (percpu_ref_init(&q->q_usage_counter, 573 blk_queue_usage_counter_release, 574 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 575 goto fail_bdi; 576 577 if (blkcg_init_queue(q)) 578 goto fail_ref; 579 580 blk_queue_dma_alignment(q, 511); 581 blk_set_default_limits(&q->limits); 582 q->nr_requests = BLKDEV_MAX_RQ; 583 584 return q; 585 586 fail_ref: 587 percpu_ref_exit(&q->q_usage_counter); 588 fail_bdi: 589 blk_free_queue_stats(q->stats); 590 fail_stats: 591 bdi_put(q->backing_dev_info); 592 fail_split: 593 bioset_exit(&q->bio_split); 594 fail_id: 595 ida_simple_remove(&blk_queue_ida, q->id); 596 fail_q: 597 kmem_cache_free(blk_requestq_cachep, q); 598 return NULL; 599 } 600 EXPORT_SYMBOL(blk_alloc_queue); 601 602 /** 603 * blk_get_queue - increment the request_queue refcount 604 * @q: the request_queue structure to increment the refcount for 605 * 606 * Increment the refcount of the request_queue kobject. 607 * 608 * Context: Any context. 609 */ 610 bool blk_get_queue(struct request_queue *q) 611 { 612 if (likely(!blk_queue_dying(q))) { 613 __blk_get_queue(q); 614 return true; 615 } 616 617 return false; 618 } 619 EXPORT_SYMBOL(blk_get_queue); 620 621 /** 622 * blk_get_request - allocate a request 623 * @q: request queue to allocate a request for 624 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 625 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 626 */ 627 struct request *blk_get_request(struct request_queue *q, unsigned int op, 628 blk_mq_req_flags_t flags) 629 { 630 struct request *req; 631 632 WARN_ON_ONCE(op & REQ_NOWAIT); 633 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 634 635 req = blk_mq_alloc_request(q, op, flags); 636 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 637 q->mq_ops->initialize_rq_fn(req); 638 639 return req; 640 } 641 EXPORT_SYMBOL(blk_get_request); 642 643 void blk_put_request(struct request *req) 644 { 645 blk_mq_free_request(req); 646 } 647 EXPORT_SYMBOL(blk_put_request); 648 649 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 650 { 651 char b[BDEVNAME_SIZE]; 652 653 pr_info_ratelimited("attempt to access beyond end of device\n" 654 "%s: rw=%d, want=%llu, limit=%llu\n", 655 bio_devname(bio, b), bio->bi_opf, 656 bio_end_sector(bio), maxsector); 657 } 658 659 #ifdef CONFIG_FAIL_MAKE_REQUEST 660 661 static DECLARE_FAULT_ATTR(fail_make_request); 662 663 static int __init setup_fail_make_request(char *str) 664 { 665 return setup_fault_attr(&fail_make_request, str); 666 } 667 __setup("fail_make_request=", setup_fail_make_request); 668 669 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 670 { 671 return part->make_it_fail && should_fail(&fail_make_request, bytes); 672 } 673 674 static int __init fail_make_request_debugfs(void) 675 { 676 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 677 NULL, &fail_make_request); 678 679 return PTR_ERR_OR_ZERO(dir); 680 } 681 682 late_initcall(fail_make_request_debugfs); 683 684 #else /* CONFIG_FAIL_MAKE_REQUEST */ 685 686 static inline bool should_fail_request(struct hd_struct *part, 687 unsigned int bytes) 688 { 689 return false; 690 } 691 692 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 693 694 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 695 { 696 const int op = bio_op(bio); 697 698 if (part->policy && op_is_write(op)) { 699 char b[BDEVNAME_SIZE]; 700 701 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 702 return false; 703 704 WARN_ONCE(1, 705 "Trying to write to read-only block-device %s (partno %d)\n", 706 bio_devname(bio, b), part->partno); 707 /* Older lvm-tools actually trigger this */ 708 return false; 709 } 710 711 return false; 712 } 713 714 static noinline int should_fail_bio(struct bio *bio) 715 { 716 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 717 return -EIO; 718 return 0; 719 } 720 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 721 722 /* 723 * Check whether this bio extends beyond the end of the device or partition. 724 * This may well happen - the kernel calls bread() without checking the size of 725 * the device, e.g., when mounting a file system. 726 */ 727 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 728 { 729 unsigned int nr_sectors = bio_sectors(bio); 730 731 if (nr_sectors && maxsector && 732 (nr_sectors > maxsector || 733 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 734 handle_bad_sector(bio, maxsector); 735 return -EIO; 736 } 737 return 0; 738 } 739 740 /* 741 * Remap block n of partition p to block n+start(p) of the disk. 742 */ 743 static inline int blk_partition_remap(struct bio *bio) 744 { 745 struct hd_struct *p; 746 int ret = -EIO; 747 748 rcu_read_lock(); 749 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 750 if (unlikely(!p)) 751 goto out; 752 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 753 goto out; 754 if (unlikely(bio_check_ro(bio, p))) 755 goto out; 756 757 if (bio_sectors(bio)) { 758 if (bio_check_eod(bio, part_nr_sects_read(p))) 759 goto out; 760 bio->bi_iter.bi_sector += p->start_sect; 761 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 762 bio->bi_iter.bi_sector - p->start_sect); 763 } 764 bio->bi_partno = 0; 765 ret = 0; 766 out: 767 rcu_read_unlock(); 768 return ret; 769 } 770 771 /* 772 * Check write append to a zoned block device. 773 */ 774 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 775 struct bio *bio) 776 { 777 sector_t pos = bio->bi_iter.bi_sector; 778 int nr_sectors = bio_sectors(bio); 779 780 /* Only applicable to zoned block devices */ 781 if (!blk_queue_is_zoned(q)) 782 return BLK_STS_NOTSUPP; 783 784 /* The bio sector must point to the start of a sequential zone */ 785 if (pos & (blk_queue_zone_sectors(q) - 1) || 786 !blk_queue_zone_is_seq(q, pos)) 787 return BLK_STS_IOERR; 788 789 /* 790 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 791 * split and could result in non-contiguous sectors being written in 792 * different zones. 793 */ 794 if (nr_sectors > q->limits.chunk_sectors) 795 return BLK_STS_IOERR; 796 797 /* Make sure the BIO is small enough and will not get split */ 798 if (nr_sectors > q->limits.max_zone_append_sectors) 799 return BLK_STS_IOERR; 800 801 bio->bi_opf |= REQ_NOMERGE; 802 803 return BLK_STS_OK; 804 } 805 806 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 807 { 808 struct request_queue *q = bio->bi_disk->queue; 809 blk_status_t status = BLK_STS_IOERR; 810 struct blk_plug *plug; 811 812 might_sleep(); 813 814 plug = blk_mq_plug(q, bio); 815 if (plug && plug->nowait) 816 bio->bi_opf |= REQ_NOWAIT; 817 818 /* 819 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 820 * if queue does not support NOWAIT. 821 */ 822 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 823 goto not_supported; 824 825 if (should_fail_bio(bio)) 826 goto end_io; 827 828 if (bio->bi_partno) { 829 if (unlikely(blk_partition_remap(bio))) 830 goto end_io; 831 } else { 832 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 833 goto end_io; 834 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 835 goto end_io; 836 } 837 838 /* 839 * Filter flush bio's early so that bio based drivers without flush 840 * support don't have to worry about them. 841 */ 842 if (op_is_flush(bio->bi_opf) && 843 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 844 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 845 if (!bio_sectors(bio)) { 846 status = BLK_STS_OK; 847 goto end_io; 848 } 849 } 850 851 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 852 bio->bi_opf &= ~REQ_HIPRI; 853 854 switch (bio_op(bio)) { 855 case REQ_OP_DISCARD: 856 if (!blk_queue_discard(q)) 857 goto not_supported; 858 break; 859 case REQ_OP_SECURE_ERASE: 860 if (!blk_queue_secure_erase(q)) 861 goto not_supported; 862 break; 863 case REQ_OP_WRITE_SAME: 864 if (!q->limits.max_write_same_sectors) 865 goto not_supported; 866 break; 867 case REQ_OP_ZONE_APPEND: 868 status = blk_check_zone_append(q, bio); 869 if (status != BLK_STS_OK) 870 goto end_io; 871 break; 872 case REQ_OP_ZONE_RESET: 873 case REQ_OP_ZONE_OPEN: 874 case REQ_OP_ZONE_CLOSE: 875 case REQ_OP_ZONE_FINISH: 876 if (!blk_queue_is_zoned(q)) 877 goto not_supported; 878 break; 879 case REQ_OP_ZONE_RESET_ALL: 880 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 881 goto not_supported; 882 break; 883 case REQ_OP_WRITE_ZEROES: 884 if (!q->limits.max_write_zeroes_sectors) 885 goto not_supported; 886 break; 887 default: 888 break; 889 } 890 891 /* 892 * Various block parts want %current->io_context, so allocate it up 893 * front rather than dealing with lots of pain to allocate it only 894 * where needed. This may fail and the block layer knows how to live 895 * with it. 896 */ 897 if (unlikely(!current->io_context)) 898 create_task_io_context(current, GFP_ATOMIC, q->node); 899 900 if (blk_throtl_bio(bio)) { 901 blkcg_bio_issue_init(bio); 902 return false; 903 } 904 905 blk_cgroup_bio_start(bio); 906 blkcg_bio_issue_init(bio); 907 908 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 909 trace_block_bio_queue(q, bio); 910 /* Now that enqueuing has been traced, we need to trace 911 * completion as well. 912 */ 913 bio_set_flag(bio, BIO_TRACE_COMPLETION); 914 } 915 return true; 916 917 not_supported: 918 status = BLK_STS_NOTSUPP; 919 end_io: 920 bio->bi_status = status; 921 bio_endio(bio); 922 return false; 923 } 924 925 static blk_qc_t __submit_bio(struct bio *bio) 926 { 927 struct gendisk *disk = bio->bi_disk; 928 blk_qc_t ret = BLK_QC_T_NONE; 929 930 if (blk_crypto_bio_prep(&bio)) { 931 if (!disk->fops->submit_bio) 932 return blk_mq_submit_bio(bio); 933 ret = disk->fops->submit_bio(bio); 934 } 935 blk_queue_exit(disk->queue); 936 return ret; 937 } 938 939 /* 940 * The loop in this function may be a bit non-obvious, and so deserves some 941 * explanation: 942 * 943 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 944 * that), so we have a list with a single bio. 945 * - We pretend that we have just taken it off a longer list, so we assign 946 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 947 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 948 * bios through a recursive call to submit_bio_noacct. If it did, we find a 949 * non-NULL value in bio_list and re-enter the loop from the top. 950 * - In this case we really did just take the bio of the top of the list (no 951 * pretending) and so remove it from bio_list, and call into ->submit_bio() 952 * again. 953 * 954 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 955 * bio_list_on_stack[1] contains bios that were submitted before the current 956 * ->submit_bio_bio, but that haven't been processed yet. 957 */ 958 static blk_qc_t __submit_bio_noacct(struct bio *bio) 959 { 960 struct bio_list bio_list_on_stack[2]; 961 blk_qc_t ret = BLK_QC_T_NONE; 962 963 BUG_ON(bio->bi_next); 964 965 bio_list_init(&bio_list_on_stack[0]); 966 current->bio_list = bio_list_on_stack; 967 968 do { 969 struct request_queue *q = bio->bi_disk->queue; 970 struct bio_list lower, same; 971 972 if (unlikely(bio_queue_enter(bio) != 0)) 973 continue; 974 975 /* 976 * Create a fresh bio_list for all subordinate requests. 977 */ 978 bio_list_on_stack[1] = bio_list_on_stack[0]; 979 bio_list_init(&bio_list_on_stack[0]); 980 981 ret = __submit_bio(bio); 982 983 /* 984 * Sort new bios into those for a lower level and those for the 985 * same level. 986 */ 987 bio_list_init(&lower); 988 bio_list_init(&same); 989 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 990 if (q == bio->bi_disk->queue) 991 bio_list_add(&same, bio); 992 else 993 bio_list_add(&lower, bio); 994 995 /* 996 * Now assemble so we handle the lowest level first. 997 */ 998 bio_list_merge(&bio_list_on_stack[0], &lower); 999 bio_list_merge(&bio_list_on_stack[0], &same); 1000 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1001 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 1002 1003 current->bio_list = NULL; 1004 return ret; 1005 } 1006 1007 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 1008 { 1009 struct bio_list bio_list[2] = { }; 1010 blk_qc_t ret = BLK_QC_T_NONE; 1011 1012 current->bio_list = bio_list; 1013 1014 do { 1015 struct gendisk *disk = bio->bi_disk; 1016 1017 if (unlikely(bio_queue_enter(bio) != 0)) 1018 continue; 1019 1020 if (!blk_crypto_bio_prep(&bio)) { 1021 blk_queue_exit(disk->queue); 1022 ret = BLK_QC_T_NONE; 1023 continue; 1024 } 1025 1026 ret = blk_mq_submit_bio(bio); 1027 } while ((bio = bio_list_pop(&bio_list[0]))); 1028 1029 current->bio_list = NULL; 1030 return ret; 1031 } 1032 1033 /** 1034 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1035 * @bio: The bio describing the location in memory and on the device. 1036 * 1037 * This is a version of submit_bio() that shall only be used for I/O that is 1038 * resubmitted to lower level drivers by stacking block drivers. All file 1039 * systems and other upper level users of the block layer should use 1040 * submit_bio() instead. 1041 */ 1042 blk_qc_t submit_bio_noacct(struct bio *bio) 1043 { 1044 if (!submit_bio_checks(bio)) 1045 return BLK_QC_T_NONE; 1046 1047 /* 1048 * We only want one ->submit_bio to be active at a time, else stack 1049 * usage with stacked devices could be a problem. Use current->bio_list 1050 * to collect a list of requests submited by a ->submit_bio method while 1051 * it is active, and then process them after it returned. 1052 */ 1053 if (current->bio_list) { 1054 bio_list_add(¤t->bio_list[0], bio); 1055 return BLK_QC_T_NONE; 1056 } 1057 1058 if (!bio->bi_disk->fops->submit_bio) 1059 return __submit_bio_noacct_mq(bio); 1060 return __submit_bio_noacct(bio); 1061 } 1062 EXPORT_SYMBOL(submit_bio_noacct); 1063 1064 /** 1065 * submit_bio - submit a bio to the block device layer for I/O 1066 * @bio: The &struct bio which describes the I/O 1067 * 1068 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1069 * fully set up &struct bio that describes the I/O that needs to be done. The 1070 * bio will be send to the device described by the bi_disk and bi_partno fields. 1071 * 1072 * The success/failure status of the request, along with notification of 1073 * completion, is delivered asynchronously through the ->bi_end_io() callback 1074 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1075 * been called. 1076 */ 1077 blk_qc_t submit_bio(struct bio *bio) 1078 { 1079 if (blkcg_punt_bio_submit(bio)) 1080 return BLK_QC_T_NONE; 1081 1082 /* 1083 * If it's a regular read/write or a barrier with data attached, 1084 * go through the normal accounting stuff before submission. 1085 */ 1086 if (bio_has_data(bio)) { 1087 unsigned int count; 1088 1089 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1090 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1091 else 1092 count = bio_sectors(bio); 1093 1094 if (op_is_write(bio_op(bio))) { 1095 count_vm_events(PGPGOUT, count); 1096 } else { 1097 task_io_account_read(bio->bi_iter.bi_size); 1098 count_vm_events(PGPGIN, count); 1099 } 1100 1101 if (unlikely(block_dump)) { 1102 char b[BDEVNAME_SIZE]; 1103 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1104 current->comm, task_pid_nr(current), 1105 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1106 (unsigned long long)bio->bi_iter.bi_sector, 1107 bio_devname(bio, b), count); 1108 } 1109 } 1110 1111 /* 1112 * If we're reading data that is part of the userspace workingset, count 1113 * submission time as memory stall. When the device is congested, or 1114 * the submitting cgroup IO-throttled, submission can be a significant 1115 * part of overall IO time. 1116 */ 1117 if (unlikely(bio_op(bio) == REQ_OP_READ && 1118 bio_flagged(bio, BIO_WORKINGSET))) { 1119 unsigned long pflags; 1120 blk_qc_t ret; 1121 1122 psi_memstall_enter(&pflags); 1123 ret = submit_bio_noacct(bio); 1124 psi_memstall_leave(&pflags); 1125 1126 return ret; 1127 } 1128 1129 return submit_bio_noacct(bio); 1130 } 1131 EXPORT_SYMBOL(submit_bio); 1132 1133 /** 1134 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1135 * for the new queue limits 1136 * @q: the queue 1137 * @rq: the request being checked 1138 * 1139 * Description: 1140 * @rq may have been made based on weaker limitations of upper-level queues 1141 * in request stacking drivers, and it may violate the limitation of @q. 1142 * Since the block layer and the underlying device driver trust @rq 1143 * after it is inserted to @q, it should be checked against @q before 1144 * the insertion using this generic function. 1145 * 1146 * Request stacking drivers like request-based dm may change the queue 1147 * limits when retrying requests on other queues. Those requests need 1148 * to be checked against the new queue limits again during dispatch. 1149 */ 1150 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1151 struct request *rq) 1152 { 1153 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1154 1155 if (blk_rq_sectors(rq) > max_sectors) { 1156 /* 1157 * SCSI device does not have a good way to return if 1158 * Write Same/Zero is actually supported. If a device rejects 1159 * a non-read/write command (discard, write same,etc.) the 1160 * low-level device driver will set the relevant queue limit to 1161 * 0 to prevent blk-lib from issuing more of the offending 1162 * operations. Commands queued prior to the queue limit being 1163 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1164 * errors being propagated to upper layers. 1165 */ 1166 if (max_sectors == 0) 1167 return BLK_STS_NOTSUPP; 1168 1169 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1170 __func__, blk_rq_sectors(rq), max_sectors); 1171 return BLK_STS_IOERR; 1172 } 1173 1174 /* 1175 * queue's settings related to segment counting like q->bounce_pfn 1176 * may differ from that of other stacking queues. 1177 * Recalculate it to check the request correctly on this queue's 1178 * limitation. 1179 */ 1180 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1181 if (rq->nr_phys_segments > queue_max_segments(q)) { 1182 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1183 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1184 return BLK_STS_IOERR; 1185 } 1186 1187 return BLK_STS_OK; 1188 } 1189 1190 /** 1191 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1192 * @q: the queue to submit the request 1193 * @rq: the request being queued 1194 */ 1195 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1196 { 1197 blk_status_t ret; 1198 1199 ret = blk_cloned_rq_check_limits(q, rq); 1200 if (ret != BLK_STS_OK) 1201 return ret; 1202 1203 if (rq->rq_disk && 1204 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1205 return BLK_STS_IOERR; 1206 1207 if (blk_crypto_insert_cloned_request(rq)) 1208 return BLK_STS_IOERR; 1209 1210 if (blk_queue_io_stat(q)) 1211 blk_account_io_start(rq); 1212 1213 /* 1214 * Since we have a scheduler attached on the top device, 1215 * bypass a potential scheduler on the bottom device for 1216 * insert. 1217 */ 1218 return blk_mq_request_issue_directly(rq, true); 1219 } 1220 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1221 1222 /** 1223 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1224 * @rq: request to examine 1225 * 1226 * Description: 1227 * A request could be merge of IOs which require different failure 1228 * handling. This function determines the number of bytes which 1229 * can be failed from the beginning of the request without 1230 * crossing into area which need to be retried further. 1231 * 1232 * Return: 1233 * The number of bytes to fail. 1234 */ 1235 unsigned int blk_rq_err_bytes(const struct request *rq) 1236 { 1237 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1238 unsigned int bytes = 0; 1239 struct bio *bio; 1240 1241 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1242 return blk_rq_bytes(rq); 1243 1244 /* 1245 * Currently the only 'mixing' which can happen is between 1246 * different fastfail types. We can safely fail portions 1247 * which have all the failfast bits that the first one has - 1248 * the ones which are at least as eager to fail as the first 1249 * one. 1250 */ 1251 for (bio = rq->bio; bio; bio = bio->bi_next) { 1252 if ((bio->bi_opf & ff) != ff) 1253 break; 1254 bytes += bio->bi_iter.bi_size; 1255 } 1256 1257 /* this could lead to infinite loop */ 1258 BUG_ON(blk_rq_bytes(rq) && !bytes); 1259 return bytes; 1260 } 1261 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1262 1263 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end) 1264 { 1265 unsigned long stamp; 1266 again: 1267 stamp = READ_ONCE(part->stamp); 1268 if (unlikely(stamp != now)) { 1269 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) 1270 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1271 } 1272 if (part->partno) { 1273 part = &part_to_disk(part)->part0; 1274 goto again; 1275 } 1276 } 1277 1278 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1279 { 1280 if (req->part && blk_do_io_stat(req)) { 1281 const int sgrp = op_stat_group(req_op(req)); 1282 struct hd_struct *part; 1283 1284 part_stat_lock(); 1285 part = req->part; 1286 part_stat_add(part, sectors[sgrp], bytes >> 9); 1287 part_stat_unlock(); 1288 } 1289 } 1290 1291 void blk_account_io_done(struct request *req, u64 now) 1292 { 1293 /* 1294 * Account IO completion. flush_rq isn't accounted as a 1295 * normal IO on queueing nor completion. Accounting the 1296 * containing request is enough. 1297 */ 1298 if (req->part && blk_do_io_stat(req) && 1299 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1300 const int sgrp = op_stat_group(req_op(req)); 1301 struct hd_struct *part; 1302 1303 part_stat_lock(); 1304 part = req->part; 1305 1306 update_io_ticks(part, jiffies, true); 1307 part_stat_inc(part, ios[sgrp]); 1308 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1309 part_stat_unlock(); 1310 1311 hd_struct_put(part); 1312 } 1313 } 1314 1315 void blk_account_io_start(struct request *rq) 1316 { 1317 if (!blk_do_io_stat(rq)) 1318 return; 1319 1320 rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1321 1322 part_stat_lock(); 1323 update_io_ticks(rq->part, jiffies, false); 1324 part_stat_unlock(); 1325 } 1326 1327 static unsigned long __part_start_io_acct(struct hd_struct *part, 1328 unsigned int sectors, unsigned int op) 1329 { 1330 const int sgrp = op_stat_group(op); 1331 unsigned long now = READ_ONCE(jiffies); 1332 1333 part_stat_lock(); 1334 update_io_ticks(part, now, false); 1335 part_stat_inc(part, ios[sgrp]); 1336 part_stat_add(part, sectors[sgrp], sectors); 1337 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1338 part_stat_unlock(); 1339 1340 return now; 1341 } 1342 1343 unsigned long part_start_io_acct(struct gendisk *disk, struct hd_struct **part, 1344 struct bio *bio) 1345 { 1346 *part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector); 1347 1348 return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio)); 1349 } 1350 EXPORT_SYMBOL_GPL(part_start_io_acct); 1351 1352 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1353 unsigned int op) 1354 { 1355 return __part_start_io_acct(&disk->part0, sectors, op); 1356 } 1357 EXPORT_SYMBOL(disk_start_io_acct); 1358 1359 static void __part_end_io_acct(struct hd_struct *part, unsigned int op, 1360 unsigned long start_time) 1361 { 1362 const int sgrp = op_stat_group(op); 1363 unsigned long now = READ_ONCE(jiffies); 1364 unsigned long duration = now - start_time; 1365 1366 part_stat_lock(); 1367 update_io_ticks(part, now, true); 1368 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1369 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1370 part_stat_unlock(); 1371 } 1372 1373 void part_end_io_acct(struct hd_struct *part, struct bio *bio, 1374 unsigned long start_time) 1375 { 1376 __part_end_io_acct(part, bio_op(bio), start_time); 1377 hd_struct_put(part); 1378 } 1379 EXPORT_SYMBOL_GPL(part_end_io_acct); 1380 1381 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1382 unsigned long start_time) 1383 { 1384 __part_end_io_acct(&disk->part0, op, start_time); 1385 } 1386 EXPORT_SYMBOL(disk_end_io_acct); 1387 1388 /* 1389 * Steal bios from a request and add them to a bio list. 1390 * The request must not have been partially completed before. 1391 */ 1392 void blk_steal_bios(struct bio_list *list, struct request *rq) 1393 { 1394 if (rq->bio) { 1395 if (list->tail) 1396 list->tail->bi_next = rq->bio; 1397 else 1398 list->head = rq->bio; 1399 list->tail = rq->biotail; 1400 1401 rq->bio = NULL; 1402 rq->biotail = NULL; 1403 } 1404 1405 rq->__data_len = 0; 1406 } 1407 EXPORT_SYMBOL_GPL(blk_steal_bios); 1408 1409 /** 1410 * blk_update_request - Special helper function for request stacking drivers 1411 * @req: the request being processed 1412 * @error: block status code 1413 * @nr_bytes: number of bytes to complete @req 1414 * 1415 * Description: 1416 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1417 * the request structure even if @req doesn't have leftover. 1418 * If @req has leftover, sets it up for the next range of segments. 1419 * 1420 * This special helper function is only for request stacking drivers 1421 * (e.g. request-based dm) so that they can handle partial completion. 1422 * Actual device drivers should use blk_mq_end_request instead. 1423 * 1424 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1425 * %false return from this function. 1426 * 1427 * Note: 1428 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1429 * blk_rq_bytes() and in blk_update_request(). 1430 * 1431 * Return: 1432 * %false - this request doesn't have any more data 1433 * %true - this request has more data 1434 **/ 1435 bool blk_update_request(struct request *req, blk_status_t error, 1436 unsigned int nr_bytes) 1437 { 1438 int total_bytes; 1439 1440 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1441 1442 if (!req->bio) 1443 return false; 1444 1445 #ifdef CONFIG_BLK_DEV_INTEGRITY 1446 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1447 error == BLK_STS_OK) 1448 req->q->integrity.profile->complete_fn(req, nr_bytes); 1449 #endif 1450 1451 if (unlikely(error && !blk_rq_is_passthrough(req) && 1452 !(req->rq_flags & RQF_QUIET))) 1453 print_req_error(req, error, __func__); 1454 1455 blk_account_io_completion(req, nr_bytes); 1456 1457 total_bytes = 0; 1458 while (req->bio) { 1459 struct bio *bio = req->bio; 1460 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1461 1462 if (bio_bytes == bio->bi_iter.bi_size) 1463 req->bio = bio->bi_next; 1464 1465 /* Completion has already been traced */ 1466 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1467 req_bio_endio(req, bio, bio_bytes, error); 1468 1469 total_bytes += bio_bytes; 1470 nr_bytes -= bio_bytes; 1471 1472 if (!nr_bytes) 1473 break; 1474 } 1475 1476 /* 1477 * completely done 1478 */ 1479 if (!req->bio) { 1480 /* 1481 * Reset counters so that the request stacking driver 1482 * can find how many bytes remain in the request 1483 * later. 1484 */ 1485 req->__data_len = 0; 1486 return false; 1487 } 1488 1489 req->__data_len -= total_bytes; 1490 1491 /* update sector only for requests with clear definition of sector */ 1492 if (!blk_rq_is_passthrough(req)) 1493 req->__sector += total_bytes >> 9; 1494 1495 /* mixed attributes always follow the first bio */ 1496 if (req->rq_flags & RQF_MIXED_MERGE) { 1497 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1498 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1499 } 1500 1501 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1502 /* 1503 * If total number of sectors is less than the first segment 1504 * size, something has gone terribly wrong. 1505 */ 1506 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1507 blk_dump_rq_flags(req, "request botched"); 1508 req->__data_len = blk_rq_cur_bytes(req); 1509 } 1510 1511 /* recalculate the number of segments */ 1512 req->nr_phys_segments = blk_recalc_rq_segments(req); 1513 } 1514 1515 return true; 1516 } 1517 EXPORT_SYMBOL_GPL(blk_update_request); 1518 1519 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1520 /** 1521 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1522 * @rq: the request to be flushed 1523 * 1524 * Description: 1525 * Flush all pages in @rq. 1526 */ 1527 void rq_flush_dcache_pages(struct request *rq) 1528 { 1529 struct req_iterator iter; 1530 struct bio_vec bvec; 1531 1532 rq_for_each_segment(bvec, rq, iter) 1533 flush_dcache_page(bvec.bv_page); 1534 } 1535 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1536 #endif 1537 1538 /** 1539 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1540 * @q : the queue of the device being checked 1541 * 1542 * Description: 1543 * Check if underlying low-level drivers of a device are busy. 1544 * If the drivers want to export their busy state, they must set own 1545 * exporting function using blk_queue_lld_busy() first. 1546 * 1547 * Basically, this function is used only by request stacking drivers 1548 * to stop dispatching requests to underlying devices when underlying 1549 * devices are busy. This behavior helps more I/O merging on the queue 1550 * of the request stacking driver and prevents I/O throughput regression 1551 * on burst I/O load. 1552 * 1553 * Return: 1554 * 0 - Not busy (The request stacking driver should dispatch request) 1555 * 1 - Busy (The request stacking driver should stop dispatching request) 1556 */ 1557 int blk_lld_busy(struct request_queue *q) 1558 { 1559 if (queue_is_mq(q) && q->mq_ops->busy) 1560 return q->mq_ops->busy(q); 1561 1562 return 0; 1563 } 1564 EXPORT_SYMBOL_GPL(blk_lld_busy); 1565 1566 /** 1567 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1568 * @rq: the clone request to be cleaned up 1569 * 1570 * Description: 1571 * Free all bios in @rq for a cloned request. 1572 */ 1573 void blk_rq_unprep_clone(struct request *rq) 1574 { 1575 struct bio *bio; 1576 1577 while ((bio = rq->bio) != NULL) { 1578 rq->bio = bio->bi_next; 1579 1580 bio_put(bio); 1581 } 1582 } 1583 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1584 1585 /** 1586 * blk_rq_prep_clone - Helper function to setup clone request 1587 * @rq: the request to be setup 1588 * @rq_src: original request to be cloned 1589 * @bs: bio_set that bios for clone are allocated from 1590 * @gfp_mask: memory allocation mask for bio 1591 * @bio_ctr: setup function to be called for each clone bio. 1592 * Returns %0 for success, non %0 for failure. 1593 * @data: private data to be passed to @bio_ctr 1594 * 1595 * Description: 1596 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1597 * Also, pages which the original bios are pointing to are not copied 1598 * and the cloned bios just point same pages. 1599 * So cloned bios must be completed before original bios, which means 1600 * the caller must complete @rq before @rq_src. 1601 */ 1602 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1603 struct bio_set *bs, gfp_t gfp_mask, 1604 int (*bio_ctr)(struct bio *, struct bio *, void *), 1605 void *data) 1606 { 1607 struct bio *bio, *bio_src; 1608 1609 if (!bs) 1610 bs = &fs_bio_set; 1611 1612 __rq_for_each_bio(bio_src, rq_src) { 1613 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1614 if (!bio) 1615 goto free_and_out; 1616 1617 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1618 goto free_and_out; 1619 1620 if (rq->bio) { 1621 rq->biotail->bi_next = bio; 1622 rq->biotail = bio; 1623 } else { 1624 rq->bio = rq->biotail = bio; 1625 } 1626 bio = NULL; 1627 } 1628 1629 /* Copy attributes of the original request to the clone request. */ 1630 rq->__sector = blk_rq_pos(rq_src); 1631 rq->__data_len = blk_rq_bytes(rq_src); 1632 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1633 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1634 rq->special_vec = rq_src->special_vec; 1635 } 1636 rq->nr_phys_segments = rq_src->nr_phys_segments; 1637 rq->ioprio = rq_src->ioprio; 1638 1639 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1640 goto free_and_out; 1641 1642 return 0; 1643 1644 free_and_out: 1645 if (bio) 1646 bio_put(bio); 1647 blk_rq_unprep_clone(rq); 1648 1649 return -ENOMEM; 1650 } 1651 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1652 1653 int kblockd_schedule_work(struct work_struct *work) 1654 { 1655 return queue_work(kblockd_workqueue, work); 1656 } 1657 EXPORT_SYMBOL(kblockd_schedule_work); 1658 1659 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1660 unsigned long delay) 1661 { 1662 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1663 } 1664 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1665 1666 /** 1667 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1668 * @plug: The &struct blk_plug that needs to be initialized 1669 * 1670 * Description: 1671 * blk_start_plug() indicates to the block layer an intent by the caller 1672 * to submit multiple I/O requests in a batch. The block layer may use 1673 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1674 * is called. However, the block layer may choose to submit requests 1675 * before a call to blk_finish_plug() if the number of queued I/Os 1676 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1677 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1678 * the task schedules (see below). 1679 * 1680 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1681 * pending I/O should the task end up blocking between blk_start_plug() and 1682 * blk_finish_plug(). This is important from a performance perspective, but 1683 * also ensures that we don't deadlock. For instance, if the task is blocking 1684 * for a memory allocation, memory reclaim could end up wanting to free a 1685 * page belonging to that request that is currently residing in our private 1686 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1687 * this kind of deadlock. 1688 */ 1689 void blk_start_plug(struct blk_plug *plug) 1690 { 1691 struct task_struct *tsk = current; 1692 1693 /* 1694 * If this is a nested plug, don't actually assign it. 1695 */ 1696 if (tsk->plug) 1697 return; 1698 1699 INIT_LIST_HEAD(&plug->mq_list); 1700 INIT_LIST_HEAD(&plug->cb_list); 1701 plug->rq_count = 0; 1702 plug->multiple_queues = false; 1703 plug->nowait = false; 1704 1705 /* 1706 * Store ordering should not be needed here, since a potential 1707 * preempt will imply a full memory barrier 1708 */ 1709 tsk->plug = plug; 1710 } 1711 EXPORT_SYMBOL(blk_start_plug); 1712 1713 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1714 { 1715 LIST_HEAD(callbacks); 1716 1717 while (!list_empty(&plug->cb_list)) { 1718 list_splice_init(&plug->cb_list, &callbacks); 1719 1720 while (!list_empty(&callbacks)) { 1721 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1722 struct blk_plug_cb, 1723 list); 1724 list_del(&cb->list); 1725 cb->callback(cb, from_schedule); 1726 } 1727 } 1728 } 1729 1730 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1731 int size) 1732 { 1733 struct blk_plug *plug = current->plug; 1734 struct blk_plug_cb *cb; 1735 1736 if (!plug) 1737 return NULL; 1738 1739 list_for_each_entry(cb, &plug->cb_list, list) 1740 if (cb->callback == unplug && cb->data == data) 1741 return cb; 1742 1743 /* Not currently on the callback list */ 1744 BUG_ON(size < sizeof(*cb)); 1745 cb = kzalloc(size, GFP_ATOMIC); 1746 if (cb) { 1747 cb->data = data; 1748 cb->callback = unplug; 1749 list_add(&cb->list, &plug->cb_list); 1750 } 1751 return cb; 1752 } 1753 EXPORT_SYMBOL(blk_check_plugged); 1754 1755 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1756 { 1757 flush_plug_callbacks(plug, from_schedule); 1758 1759 if (!list_empty(&plug->mq_list)) 1760 blk_mq_flush_plug_list(plug, from_schedule); 1761 } 1762 1763 /** 1764 * blk_finish_plug - mark the end of a batch of submitted I/O 1765 * @plug: The &struct blk_plug passed to blk_start_plug() 1766 * 1767 * Description: 1768 * Indicate that a batch of I/O submissions is complete. This function 1769 * must be paired with an initial call to blk_start_plug(). The intent 1770 * is to allow the block layer to optimize I/O submission. See the 1771 * documentation for blk_start_plug() for more information. 1772 */ 1773 void blk_finish_plug(struct blk_plug *plug) 1774 { 1775 if (plug != current->plug) 1776 return; 1777 blk_flush_plug_list(plug, false); 1778 1779 current->plug = NULL; 1780 } 1781 EXPORT_SYMBOL(blk_finish_plug); 1782 1783 void blk_io_schedule(void) 1784 { 1785 /* Prevent hang_check timer from firing at us during very long I/O */ 1786 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1787 1788 if (timeout) 1789 io_schedule_timeout(timeout); 1790 else 1791 io_schedule(); 1792 } 1793 EXPORT_SYMBOL_GPL(blk_io_schedule); 1794 1795 int __init blk_dev_init(void) 1796 { 1797 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1798 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1799 sizeof_field(struct request, cmd_flags)); 1800 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1801 sizeof_field(struct bio, bi_opf)); 1802 1803 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1804 kblockd_workqueue = alloc_workqueue("kblockd", 1805 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1806 if (!kblockd_workqueue) 1807 panic("Failed to create kblockd\n"); 1808 1809 blk_requestq_cachep = kmem_cache_create("request_queue", 1810 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1811 1812 blk_debugfs_root = debugfs_create_dir("block", NULL); 1813 1814 return 0; 1815 } 1816