1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 #include <linux/bpf.h> 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/block.h> 41 42 #include "blk.h" 43 #include "blk-mq.h" 44 #include "blk-mq-sched.h" 45 #include "blk-rq-qos.h" 46 47 #ifdef CONFIG_DEBUG_FS 48 struct dentry *blk_debugfs_root; 49 #endif 50 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 56 57 DEFINE_IDA(blk_queue_ida); 58 59 /* 60 * For the allocated request tables 61 */ 62 struct kmem_cache *request_cachep; 63 64 /* 65 * For queue allocation 66 */ 67 struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 unsigned long flags; 82 83 spin_lock_irqsave(q->queue_lock, flags); 84 queue_flag_set(flag, q); 85 spin_unlock_irqrestore(q->queue_lock, flags); 86 } 87 EXPORT_SYMBOL(blk_queue_flag_set); 88 89 /** 90 * blk_queue_flag_clear - atomically clear a queue flag 91 * @flag: flag to be cleared 92 * @q: request queue 93 */ 94 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 95 { 96 unsigned long flags; 97 98 spin_lock_irqsave(q->queue_lock, flags); 99 queue_flag_clear(flag, q); 100 spin_unlock_irqrestore(q->queue_lock, flags); 101 } 102 EXPORT_SYMBOL(blk_queue_flag_clear); 103 104 /** 105 * blk_queue_flag_test_and_set - atomically test and set a queue flag 106 * @flag: flag to be set 107 * @q: request queue 108 * 109 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 110 * the flag was already set. 111 */ 112 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 113 { 114 unsigned long flags; 115 bool res; 116 117 spin_lock_irqsave(q->queue_lock, flags); 118 res = queue_flag_test_and_set(flag, q); 119 spin_unlock_irqrestore(q->queue_lock, flags); 120 121 return res; 122 } 123 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 124 125 /** 126 * blk_queue_flag_test_and_clear - atomically test and clear a queue flag 127 * @flag: flag to be cleared 128 * @q: request queue 129 * 130 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 131 * the flag was set. 132 */ 133 bool blk_queue_flag_test_and_clear(unsigned int flag, struct request_queue *q) 134 { 135 unsigned long flags; 136 bool res; 137 138 spin_lock_irqsave(q->queue_lock, flags); 139 res = queue_flag_test_and_clear(flag, q); 140 spin_unlock_irqrestore(q->queue_lock, flags); 141 142 return res; 143 } 144 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_clear); 145 146 static void blk_clear_congested(struct request_list *rl, int sync) 147 { 148 #ifdef CONFIG_CGROUP_WRITEBACK 149 clear_wb_congested(rl->blkg->wb_congested, sync); 150 #else 151 /* 152 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 153 * flip its congestion state for events on other blkcgs. 154 */ 155 if (rl == &rl->q->root_rl) 156 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 157 #endif 158 } 159 160 static void blk_set_congested(struct request_list *rl, int sync) 161 { 162 #ifdef CONFIG_CGROUP_WRITEBACK 163 set_wb_congested(rl->blkg->wb_congested, sync); 164 #else 165 /* see blk_clear_congested() */ 166 if (rl == &rl->q->root_rl) 167 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 168 #endif 169 } 170 171 void blk_queue_congestion_threshold(struct request_queue *q) 172 { 173 int nr; 174 175 nr = q->nr_requests - (q->nr_requests / 8) + 1; 176 if (nr > q->nr_requests) 177 nr = q->nr_requests; 178 q->nr_congestion_on = nr; 179 180 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 181 if (nr < 1) 182 nr = 1; 183 q->nr_congestion_off = nr; 184 } 185 186 void blk_rq_init(struct request_queue *q, struct request *rq) 187 { 188 memset(rq, 0, sizeof(*rq)); 189 190 INIT_LIST_HEAD(&rq->queuelist); 191 INIT_LIST_HEAD(&rq->timeout_list); 192 rq->cpu = -1; 193 rq->q = q; 194 rq->__sector = (sector_t) -1; 195 INIT_HLIST_NODE(&rq->hash); 196 RB_CLEAR_NODE(&rq->rb_node); 197 rq->tag = -1; 198 rq->internal_tag = -1; 199 rq->start_time_ns = ktime_get_ns(); 200 rq->part = NULL; 201 } 202 EXPORT_SYMBOL(blk_rq_init); 203 204 static const struct { 205 int errno; 206 const char *name; 207 } blk_errors[] = { 208 [BLK_STS_OK] = { 0, "" }, 209 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 210 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 211 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 212 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 213 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 214 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 215 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 216 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 217 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 218 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 219 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 220 221 /* device mapper special case, should not leak out: */ 222 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 223 224 /* everything else not covered above: */ 225 [BLK_STS_IOERR] = { -EIO, "I/O" }, 226 }; 227 228 blk_status_t errno_to_blk_status(int errno) 229 { 230 int i; 231 232 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 233 if (blk_errors[i].errno == errno) 234 return (__force blk_status_t)i; 235 } 236 237 return BLK_STS_IOERR; 238 } 239 EXPORT_SYMBOL_GPL(errno_to_blk_status); 240 241 int blk_status_to_errno(blk_status_t status) 242 { 243 int idx = (__force int)status; 244 245 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 246 return -EIO; 247 return blk_errors[idx].errno; 248 } 249 EXPORT_SYMBOL_GPL(blk_status_to_errno); 250 251 static void print_req_error(struct request *req, blk_status_t status) 252 { 253 int idx = (__force int)status; 254 255 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 256 return; 257 258 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 259 __func__, blk_errors[idx].name, req->rq_disk ? 260 req->rq_disk->disk_name : "?", 261 (unsigned long long)blk_rq_pos(req)); 262 } 263 264 static void req_bio_endio(struct request *rq, struct bio *bio, 265 unsigned int nbytes, blk_status_t error) 266 { 267 if (error) 268 bio->bi_status = error; 269 270 if (unlikely(rq->rq_flags & RQF_QUIET)) 271 bio_set_flag(bio, BIO_QUIET); 272 273 bio_advance(bio, nbytes); 274 275 /* don't actually finish bio if it's part of flush sequence */ 276 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 277 bio_endio(bio); 278 } 279 280 void blk_dump_rq_flags(struct request *rq, char *msg) 281 { 282 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 283 rq->rq_disk ? rq->rq_disk->disk_name : "?", 284 (unsigned long long) rq->cmd_flags); 285 286 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 287 (unsigned long long)blk_rq_pos(rq), 288 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 289 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 290 rq->bio, rq->biotail, blk_rq_bytes(rq)); 291 } 292 EXPORT_SYMBOL(blk_dump_rq_flags); 293 294 static void blk_delay_work(struct work_struct *work) 295 { 296 struct request_queue *q; 297 298 q = container_of(work, struct request_queue, delay_work.work); 299 spin_lock_irq(q->queue_lock); 300 __blk_run_queue(q); 301 spin_unlock_irq(q->queue_lock); 302 } 303 304 /** 305 * blk_delay_queue - restart queueing after defined interval 306 * @q: The &struct request_queue in question 307 * @msecs: Delay in msecs 308 * 309 * Description: 310 * Sometimes queueing needs to be postponed for a little while, to allow 311 * resources to come back. This function will make sure that queueing is 312 * restarted around the specified time. 313 */ 314 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 315 { 316 lockdep_assert_held(q->queue_lock); 317 WARN_ON_ONCE(q->mq_ops); 318 319 if (likely(!blk_queue_dead(q))) 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 321 msecs_to_jiffies(msecs)); 322 } 323 EXPORT_SYMBOL(blk_delay_queue); 324 325 /** 326 * blk_start_queue_async - asynchronously restart a previously stopped queue 327 * @q: The &struct request_queue in question 328 * 329 * Description: 330 * blk_start_queue_async() will clear the stop flag on the queue, and 331 * ensure that the request_fn for the queue is run from an async 332 * context. 333 **/ 334 void blk_start_queue_async(struct request_queue *q) 335 { 336 lockdep_assert_held(q->queue_lock); 337 WARN_ON_ONCE(q->mq_ops); 338 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 340 blk_run_queue_async(q); 341 } 342 EXPORT_SYMBOL(blk_start_queue_async); 343 344 /** 345 * blk_start_queue - restart a previously stopped queue 346 * @q: The &struct request_queue in question 347 * 348 * Description: 349 * blk_start_queue() will clear the stop flag on the queue, and call 350 * the request_fn for the queue if it was in a stopped state when 351 * entered. Also see blk_stop_queue(). 352 **/ 353 void blk_start_queue(struct request_queue *q) 354 { 355 lockdep_assert_held(q->queue_lock); 356 WARN_ON_ONCE(q->mq_ops); 357 358 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 359 __blk_run_queue(q); 360 } 361 EXPORT_SYMBOL(blk_start_queue); 362 363 /** 364 * blk_stop_queue - stop a queue 365 * @q: The &struct request_queue in question 366 * 367 * Description: 368 * The Linux block layer assumes that a block driver will consume all 369 * entries on the request queue when the request_fn strategy is called. 370 * Often this will not happen, because of hardware limitations (queue 371 * depth settings). If a device driver gets a 'queue full' response, 372 * or if it simply chooses not to queue more I/O at one point, it can 373 * call this function to prevent the request_fn from being called until 374 * the driver has signalled it's ready to go again. This happens by calling 375 * blk_start_queue() to restart queue operations. 376 **/ 377 void blk_stop_queue(struct request_queue *q) 378 { 379 lockdep_assert_held(q->queue_lock); 380 WARN_ON_ONCE(q->mq_ops); 381 382 cancel_delayed_work(&q->delay_work); 383 queue_flag_set(QUEUE_FLAG_STOPPED, q); 384 } 385 EXPORT_SYMBOL(blk_stop_queue); 386 387 /** 388 * blk_sync_queue - cancel any pending callbacks on a queue 389 * @q: the queue 390 * 391 * Description: 392 * The block layer may perform asynchronous callback activity 393 * on a queue, such as calling the unplug function after a timeout. 394 * A block device may call blk_sync_queue to ensure that any 395 * such activity is cancelled, thus allowing it to release resources 396 * that the callbacks might use. The caller must already have made sure 397 * that its ->make_request_fn will not re-add plugging prior to calling 398 * this function. 399 * 400 * This function does not cancel any asynchronous activity arising 401 * out of elevator or throttling code. That would require elevator_exit() 402 * and blkcg_exit_queue() to be called with queue lock initialized. 403 * 404 */ 405 void blk_sync_queue(struct request_queue *q) 406 { 407 del_timer_sync(&q->timeout); 408 cancel_work_sync(&q->timeout_work); 409 410 if (q->mq_ops) { 411 struct blk_mq_hw_ctx *hctx; 412 int i; 413 414 cancel_delayed_work_sync(&q->requeue_work); 415 queue_for_each_hw_ctx(q, hctx, i) 416 cancel_delayed_work_sync(&hctx->run_work); 417 } else { 418 cancel_delayed_work_sync(&q->delay_work); 419 } 420 } 421 EXPORT_SYMBOL(blk_sync_queue); 422 423 /** 424 * blk_set_preempt_only - set QUEUE_FLAG_PREEMPT_ONLY 425 * @q: request queue pointer 426 * 427 * Returns the previous value of the PREEMPT_ONLY flag - 0 if the flag was not 428 * set and 1 if the flag was already set. 429 */ 430 int blk_set_preempt_only(struct request_queue *q) 431 { 432 return blk_queue_flag_test_and_set(QUEUE_FLAG_PREEMPT_ONLY, q); 433 } 434 EXPORT_SYMBOL_GPL(blk_set_preempt_only); 435 436 void blk_clear_preempt_only(struct request_queue *q) 437 { 438 blk_queue_flag_clear(QUEUE_FLAG_PREEMPT_ONLY, q); 439 wake_up_all(&q->mq_freeze_wq); 440 } 441 EXPORT_SYMBOL_GPL(blk_clear_preempt_only); 442 443 /** 444 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 445 * @q: The queue to run 446 * 447 * Description: 448 * Invoke request handling on a queue if there are any pending requests. 449 * May be used to restart request handling after a request has completed. 450 * This variant runs the queue whether or not the queue has been 451 * stopped. Must be called with the queue lock held and interrupts 452 * disabled. See also @blk_run_queue. 453 */ 454 inline void __blk_run_queue_uncond(struct request_queue *q) 455 { 456 lockdep_assert_held(q->queue_lock); 457 WARN_ON_ONCE(q->mq_ops); 458 459 if (unlikely(blk_queue_dead(q))) 460 return; 461 462 /* 463 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 464 * the queue lock internally. As a result multiple threads may be 465 * running such a request function concurrently. Keep track of the 466 * number of active request_fn invocations such that blk_drain_queue() 467 * can wait until all these request_fn calls have finished. 468 */ 469 q->request_fn_active++; 470 q->request_fn(q); 471 q->request_fn_active--; 472 } 473 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 474 475 /** 476 * __blk_run_queue - run a single device queue 477 * @q: The queue to run 478 * 479 * Description: 480 * See @blk_run_queue. 481 */ 482 void __blk_run_queue(struct request_queue *q) 483 { 484 lockdep_assert_held(q->queue_lock); 485 WARN_ON_ONCE(q->mq_ops); 486 487 if (unlikely(blk_queue_stopped(q))) 488 return; 489 490 __blk_run_queue_uncond(q); 491 } 492 EXPORT_SYMBOL(__blk_run_queue); 493 494 /** 495 * blk_run_queue_async - run a single device queue in workqueue context 496 * @q: The queue to run 497 * 498 * Description: 499 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 500 * of us. 501 * 502 * Note: 503 * Since it is not allowed to run q->delay_work after blk_cleanup_queue() 504 * has canceled q->delay_work, callers must hold the queue lock to avoid 505 * race conditions between blk_cleanup_queue() and blk_run_queue_async(). 506 */ 507 void blk_run_queue_async(struct request_queue *q) 508 { 509 lockdep_assert_held(q->queue_lock); 510 WARN_ON_ONCE(q->mq_ops); 511 512 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 513 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 514 } 515 EXPORT_SYMBOL(blk_run_queue_async); 516 517 /** 518 * blk_run_queue - run a single device queue 519 * @q: The queue to run 520 * 521 * Description: 522 * Invoke request handling on this queue, if it has pending work to do. 523 * May be used to restart queueing when a request has completed. 524 */ 525 void blk_run_queue(struct request_queue *q) 526 { 527 unsigned long flags; 528 529 WARN_ON_ONCE(q->mq_ops); 530 531 spin_lock_irqsave(q->queue_lock, flags); 532 __blk_run_queue(q); 533 spin_unlock_irqrestore(q->queue_lock, flags); 534 } 535 EXPORT_SYMBOL(blk_run_queue); 536 537 void blk_put_queue(struct request_queue *q) 538 { 539 kobject_put(&q->kobj); 540 } 541 EXPORT_SYMBOL(blk_put_queue); 542 543 /** 544 * __blk_drain_queue - drain requests from request_queue 545 * @q: queue to drain 546 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 547 * 548 * Drain requests from @q. If @drain_all is set, all requests are drained. 549 * If not, only ELVPRIV requests are drained. The caller is responsible 550 * for ensuring that no new requests which need to be drained are queued. 551 */ 552 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 553 __releases(q->queue_lock) 554 __acquires(q->queue_lock) 555 { 556 int i; 557 558 lockdep_assert_held(q->queue_lock); 559 WARN_ON_ONCE(q->mq_ops); 560 561 while (true) { 562 bool drain = false; 563 564 /* 565 * The caller might be trying to drain @q before its 566 * elevator is initialized. 567 */ 568 if (q->elevator) 569 elv_drain_elevator(q); 570 571 blkcg_drain_queue(q); 572 573 /* 574 * This function might be called on a queue which failed 575 * driver init after queue creation or is not yet fully 576 * active yet. Some drivers (e.g. fd and loop) get unhappy 577 * in such cases. Kick queue iff dispatch queue has 578 * something on it and @q has request_fn set. 579 */ 580 if (!list_empty(&q->queue_head) && q->request_fn) 581 __blk_run_queue(q); 582 583 drain |= q->nr_rqs_elvpriv; 584 drain |= q->request_fn_active; 585 586 /* 587 * Unfortunately, requests are queued at and tracked from 588 * multiple places and there's no single counter which can 589 * be drained. Check all the queues and counters. 590 */ 591 if (drain_all) { 592 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 593 drain |= !list_empty(&q->queue_head); 594 for (i = 0; i < 2; i++) { 595 drain |= q->nr_rqs[i]; 596 drain |= q->in_flight[i]; 597 if (fq) 598 drain |= !list_empty(&fq->flush_queue[i]); 599 } 600 } 601 602 if (!drain) 603 break; 604 605 spin_unlock_irq(q->queue_lock); 606 607 msleep(10); 608 609 spin_lock_irq(q->queue_lock); 610 } 611 612 /* 613 * With queue marked dead, any woken up waiter will fail the 614 * allocation path, so the wakeup chaining is lost and we're 615 * left with hung waiters. We need to wake up those waiters. 616 */ 617 if (q->request_fn) { 618 struct request_list *rl; 619 620 blk_queue_for_each_rl(rl, q) 621 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 622 wake_up_all(&rl->wait[i]); 623 } 624 } 625 626 void blk_drain_queue(struct request_queue *q) 627 { 628 spin_lock_irq(q->queue_lock); 629 __blk_drain_queue(q, true); 630 spin_unlock_irq(q->queue_lock); 631 } 632 633 /** 634 * blk_queue_bypass_start - enter queue bypass mode 635 * @q: queue of interest 636 * 637 * In bypass mode, only the dispatch FIFO queue of @q is used. This 638 * function makes @q enter bypass mode and drains all requests which were 639 * throttled or issued before. On return, it's guaranteed that no request 640 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 641 * inside queue or RCU read lock. 642 */ 643 void blk_queue_bypass_start(struct request_queue *q) 644 { 645 WARN_ON_ONCE(q->mq_ops); 646 647 spin_lock_irq(q->queue_lock); 648 q->bypass_depth++; 649 queue_flag_set(QUEUE_FLAG_BYPASS, q); 650 spin_unlock_irq(q->queue_lock); 651 652 /* 653 * Queues start drained. Skip actual draining till init is 654 * complete. This avoids lenghty delays during queue init which 655 * can happen many times during boot. 656 */ 657 if (blk_queue_init_done(q)) { 658 spin_lock_irq(q->queue_lock); 659 __blk_drain_queue(q, false); 660 spin_unlock_irq(q->queue_lock); 661 662 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 663 synchronize_rcu(); 664 } 665 } 666 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 667 668 /** 669 * blk_queue_bypass_end - leave queue bypass mode 670 * @q: queue of interest 671 * 672 * Leave bypass mode and restore the normal queueing behavior. 673 * 674 * Note: although blk_queue_bypass_start() is only called for blk-sq queues, 675 * this function is called for both blk-sq and blk-mq queues. 676 */ 677 void blk_queue_bypass_end(struct request_queue *q) 678 { 679 spin_lock_irq(q->queue_lock); 680 if (!--q->bypass_depth) 681 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 682 WARN_ON_ONCE(q->bypass_depth < 0); 683 spin_unlock_irq(q->queue_lock); 684 } 685 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 686 687 void blk_set_queue_dying(struct request_queue *q) 688 { 689 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 690 691 /* 692 * When queue DYING flag is set, we need to block new req 693 * entering queue, so we call blk_freeze_queue_start() to 694 * prevent I/O from crossing blk_queue_enter(). 695 */ 696 blk_freeze_queue_start(q); 697 698 if (q->mq_ops) 699 blk_mq_wake_waiters(q); 700 else { 701 struct request_list *rl; 702 703 spin_lock_irq(q->queue_lock); 704 blk_queue_for_each_rl(rl, q) { 705 if (rl->rq_pool) { 706 wake_up_all(&rl->wait[BLK_RW_SYNC]); 707 wake_up_all(&rl->wait[BLK_RW_ASYNC]); 708 } 709 } 710 spin_unlock_irq(q->queue_lock); 711 } 712 713 /* Make blk_queue_enter() reexamine the DYING flag. */ 714 wake_up_all(&q->mq_freeze_wq); 715 } 716 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 717 718 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */ 719 void blk_exit_queue(struct request_queue *q) 720 { 721 /* 722 * Since the I/O scheduler exit code may access cgroup information, 723 * perform I/O scheduler exit before disassociating from the block 724 * cgroup controller. 725 */ 726 if (q->elevator) { 727 ioc_clear_queue(q); 728 elevator_exit(q, q->elevator); 729 q->elevator = NULL; 730 } 731 732 /* 733 * Remove all references to @q from the block cgroup controller before 734 * restoring @q->queue_lock to avoid that restoring this pointer causes 735 * e.g. blkcg_print_blkgs() to crash. 736 */ 737 blkcg_exit_queue(q); 738 739 /* 740 * Since the cgroup code may dereference the @q->backing_dev_info 741 * pointer, only decrease its reference count after having removed the 742 * association with the block cgroup controller. 743 */ 744 bdi_put(q->backing_dev_info); 745 } 746 747 /** 748 * blk_cleanup_queue - shutdown a request queue 749 * @q: request queue to shutdown 750 * 751 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 752 * put it. All future requests will be failed immediately with -ENODEV. 753 */ 754 void blk_cleanup_queue(struct request_queue *q) 755 { 756 spinlock_t *lock = q->queue_lock; 757 758 /* mark @q DYING, no new request or merges will be allowed afterwards */ 759 mutex_lock(&q->sysfs_lock); 760 blk_set_queue_dying(q); 761 spin_lock_irq(lock); 762 763 /* 764 * A dying queue is permanently in bypass mode till released. Note 765 * that, unlike blk_queue_bypass_start(), we aren't performing 766 * synchronize_rcu() after entering bypass mode to avoid the delay 767 * as some drivers create and destroy a lot of queues while 768 * probing. This is still safe because blk_release_queue() will be 769 * called only after the queue refcnt drops to zero and nothing, 770 * RCU or not, would be traversing the queue by then. 771 */ 772 q->bypass_depth++; 773 queue_flag_set(QUEUE_FLAG_BYPASS, q); 774 775 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 776 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 777 queue_flag_set(QUEUE_FLAG_DYING, q); 778 spin_unlock_irq(lock); 779 mutex_unlock(&q->sysfs_lock); 780 781 /* 782 * Drain all requests queued before DYING marking. Set DEAD flag to 783 * prevent that q->request_fn() gets invoked after draining finished. 784 */ 785 blk_freeze_queue(q); 786 spin_lock_irq(lock); 787 queue_flag_set(QUEUE_FLAG_DEAD, q); 788 spin_unlock_irq(lock); 789 790 /* 791 * make sure all in-progress dispatch are completed because 792 * blk_freeze_queue() can only complete all requests, and 793 * dispatch may still be in-progress since we dispatch requests 794 * from more than one contexts. 795 * 796 * No need to quiesce queue if it isn't initialized yet since 797 * blk_freeze_queue() should be enough for cases of passthrough 798 * request. 799 */ 800 if (q->mq_ops && blk_queue_init_done(q)) 801 blk_mq_quiesce_queue(q); 802 803 /* for synchronous bio-based driver finish in-flight integrity i/o */ 804 blk_flush_integrity(); 805 806 /* @q won't process any more request, flush async actions */ 807 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 808 blk_sync_queue(q); 809 810 /* 811 * I/O scheduler exit is only safe after the sysfs scheduler attribute 812 * has been removed. 813 */ 814 WARN_ON_ONCE(q->kobj.state_in_sysfs); 815 816 blk_exit_queue(q); 817 818 if (q->mq_ops) 819 blk_mq_free_queue(q); 820 percpu_ref_exit(&q->q_usage_counter); 821 822 spin_lock_irq(lock); 823 if (q->queue_lock != &q->__queue_lock) 824 q->queue_lock = &q->__queue_lock; 825 spin_unlock_irq(lock); 826 827 /* @q is and will stay empty, shutdown and put */ 828 blk_put_queue(q); 829 } 830 EXPORT_SYMBOL(blk_cleanup_queue); 831 832 /* Allocate memory local to the request queue */ 833 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 834 { 835 struct request_queue *q = data; 836 837 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 838 } 839 840 static void free_request_simple(void *element, void *data) 841 { 842 kmem_cache_free(request_cachep, element); 843 } 844 845 static void *alloc_request_size(gfp_t gfp_mask, void *data) 846 { 847 struct request_queue *q = data; 848 struct request *rq; 849 850 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 851 q->node); 852 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 853 kfree(rq); 854 rq = NULL; 855 } 856 return rq; 857 } 858 859 static void free_request_size(void *element, void *data) 860 { 861 struct request_queue *q = data; 862 863 if (q->exit_rq_fn) 864 q->exit_rq_fn(q, element); 865 kfree(element); 866 } 867 868 int blk_init_rl(struct request_list *rl, struct request_queue *q, 869 gfp_t gfp_mask) 870 { 871 if (unlikely(rl->rq_pool) || q->mq_ops) 872 return 0; 873 874 rl->q = q; 875 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 876 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 877 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 878 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 879 880 if (q->cmd_size) { 881 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 882 alloc_request_size, free_request_size, 883 q, gfp_mask, q->node); 884 } else { 885 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 886 alloc_request_simple, free_request_simple, 887 q, gfp_mask, q->node); 888 } 889 if (!rl->rq_pool) 890 return -ENOMEM; 891 892 if (rl != &q->root_rl) 893 WARN_ON_ONCE(!blk_get_queue(q)); 894 895 return 0; 896 } 897 898 void blk_exit_rl(struct request_queue *q, struct request_list *rl) 899 { 900 if (rl->rq_pool) { 901 mempool_destroy(rl->rq_pool); 902 if (rl != &q->root_rl) 903 blk_put_queue(q); 904 } 905 } 906 907 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 908 { 909 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE, NULL); 910 } 911 EXPORT_SYMBOL(blk_alloc_queue); 912 913 /** 914 * blk_queue_enter() - try to increase q->q_usage_counter 915 * @q: request queue pointer 916 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 917 */ 918 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 919 { 920 const bool preempt = flags & BLK_MQ_REQ_PREEMPT; 921 922 while (true) { 923 bool success = false; 924 925 rcu_read_lock(); 926 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 927 /* 928 * The code that sets the PREEMPT_ONLY flag is 929 * responsible for ensuring that that flag is globally 930 * visible before the queue is unfrozen. 931 */ 932 if (preempt || !blk_queue_preempt_only(q)) { 933 success = true; 934 } else { 935 percpu_ref_put(&q->q_usage_counter); 936 } 937 } 938 rcu_read_unlock(); 939 940 if (success) 941 return 0; 942 943 if (flags & BLK_MQ_REQ_NOWAIT) 944 return -EBUSY; 945 946 /* 947 * read pair of barrier in blk_freeze_queue_start(), 948 * we need to order reading __PERCPU_REF_DEAD flag of 949 * .q_usage_counter and reading .mq_freeze_depth or 950 * queue dying flag, otherwise the following wait may 951 * never return if the two reads are reordered. 952 */ 953 smp_rmb(); 954 955 wait_event(q->mq_freeze_wq, 956 (atomic_read(&q->mq_freeze_depth) == 0 && 957 (preempt || !blk_queue_preempt_only(q))) || 958 blk_queue_dying(q)); 959 if (blk_queue_dying(q)) 960 return -ENODEV; 961 } 962 } 963 964 void blk_queue_exit(struct request_queue *q) 965 { 966 percpu_ref_put(&q->q_usage_counter); 967 } 968 969 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 970 { 971 struct request_queue *q = 972 container_of(ref, struct request_queue, q_usage_counter); 973 974 wake_up_all(&q->mq_freeze_wq); 975 } 976 977 static void blk_rq_timed_out_timer(struct timer_list *t) 978 { 979 struct request_queue *q = from_timer(q, t, timeout); 980 981 kblockd_schedule_work(&q->timeout_work); 982 } 983 984 /** 985 * blk_alloc_queue_node - allocate a request queue 986 * @gfp_mask: memory allocation flags 987 * @node_id: NUMA node to allocate memory from 988 * @lock: For legacy queues, pointer to a spinlock that will be used to e.g. 989 * serialize calls to the legacy .request_fn() callback. Ignored for 990 * blk-mq request queues. 991 * 992 * Note: pass the queue lock as the third argument to this function instead of 993 * setting the queue lock pointer explicitly to avoid triggering a sporadic 994 * crash in the blkcg code. This function namely calls blkcg_init_queue() and 995 * the queue lock pointer must be set before blkcg_init_queue() is called. 996 */ 997 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id, 998 spinlock_t *lock) 999 { 1000 struct request_queue *q; 1001 int ret; 1002 1003 q = kmem_cache_alloc_node(blk_requestq_cachep, 1004 gfp_mask | __GFP_ZERO, node_id); 1005 if (!q) 1006 return NULL; 1007 1008 INIT_LIST_HEAD(&q->queue_head); 1009 q->last_merge = NULL; 1010 q->end_sector = 0; 1011 q->boundary_rq = NULL; 1012 1013 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 1014 if (q->id < 0) 1015 goto fail_q; 1016 1017 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 1018 if (ret) 1019 goto fail_id; 1020 1021 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 1022 if (!q->backing_dev_info) 1023 goto fail_split; 1024 1025 q->stats = blk_alloc_queue_stats(); 1026 if (!q->stats) 1027 goto fail_stats; 1028 1029 q->backing_dev_info->ra_pages = 1030 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 1031 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 1032 q->backing_dev_info->name = "block"; 1033 q->node = node_id; 1034 1035 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 1036 laptop_mode_timer_fn, 0); 1037 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 1038 INIT_WORK(&q->timeout_work, NULL); 1039 INIT_LIST_HEAD(&q->timeout_list); 1040 INIT_LIST_HEAD(&q->icq_list); 1041 #ifdef CONFIG_BLK_CGROUP 1042 INIT_LIST_HEAD(&q->blkg_list); 1043 #endif 1044 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 1045 1046 kobject_init(&q->kobj, &blk_queue_ktype); 1047 1048 #ifdef CONFIG_BLK_DEV_IO_TRACE 1049 mutex_init(&q->blk_trace_mutex); 1050 #endif 1051 mutex_init(&q->sysfs_lock); 1052 spin_lock_init(&q->__queue_lock); 1053 1054 if (!q->mq_ops) 1055 q->queue_lock = lock ? : &q->__queue_lock; 1056 1057 /* 1058 * A queue starts its life with bypass turned on to avoid 1059 * unnecessary bypass on/off overhead and nasty surprises during 1060 * init. The initial bypass will be finished when the queue is 1061 * registered by blk_register_queue(). 1062 */ 1063 q->bypass_depth = 1; 1064 queue_flag_set_unlocked(QUEUE_FLAG_BYPASS, q); 1065 1066 init_waitqueue_head(&q->mq_freeze_wq); 1067 1068 /* 1069 * Init percpu_ref in atomic mode so that it's faster to shutdown. 1070 * See blk_register_queue() for details. 1071 */ 1072 if (percpu_ref_init(&q->q_usage_counter, 1073 blk_queue_usage_counter_release, 1074 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 1075 goto fail_bdi; 1076 1077 if (blkcg_init_queue(q)) 1078 goto fail_ref; 1079 1080 return q; 1081 1082 fail_ref: 1083 percpu_ref_exit(&q->q_usage_counter); 1084 fail_bdi: 1085 blk_free_queue_stats(q->stats); 1086 fail_stats: 1087 bdi_put(q->backing_dev_info); 1088 fail_split: 1089 bioset_exit(&q->bio_split); 1090 fail_id: 1091 ida_simple_remove(&blk_queue_ida, q->id); 1092 fail_q: 1093 kmem_cache_free(blk_requestq_cachep, q); 1094 return NULL; 1095 } 1096 EXPORT_SYMBOL(blk_alloc_queue_node); 1097 1098 /** 1099 * blk_init_queue - prepare a request queue for use with a block device 1100 * @rfn: The function to be called to process requests that have been 1101 * placed on the queue. 1102 * @lock: Request queue spin lock 1103 * 1104 * Description: 1105 * If a block device wishes to use the standard request handling procedures, 1106 * which sorts requests and coalesces adjacent requests, then it must 1107 * call blk_init_queue(). The function @rfn will be called when there 1108 * are requests on the queue that need to be processed. If the device 1109 * supports plugging, then @rfn may not be called immediately when requests 1110 * are available on the queue, but may be called at some time later instead. 1111 * Plugged queues are generally unplugged when a buffer belonging to one 1112 * of the requests on the queue is needed, or due to memory pressure. 1113 * 1114 * @rfn is not required, or even expected, to remove all requests off the 1115 * queue, but only as many as it can handle at a time. If it does leave 1116 * requests on the queue, it is responsible for arranging that the requests 1117 * get dealt with eventually. 1118 * 1119 * The queue spin lock must be held while manipulating the requests on the 1120 * request queue; this lock will be taken also from interrupt context, so irq 1121 * disabling is needed for it. 1122 * 1123 * Function returns a pointer to the initialized request queue, or %NULL if 1124 * it didn't succeed. 1125 * 1126 * Note: 1127 * blk_init_queue() must be paired with a blk_cleanup_queue() call 1128 * when the block device is deactivated (such as at module unload). 1129 **/ 1130 1131 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 1132 { 1133 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 1134 } 1135 EXPORT_SYMBOL(blk_init_queue); 1136 1137 struct request_queue * 1138 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 1139 { 1140 struct request_queue *q; 1141 1142 q = blk_alloc_queue_node(GFP_KERNEL, node_id, lock); 1143 if (!q) 1144 return NULL; 1145 1146 q->request_fn = rfn; 1147 if (blk_init_allocated_queue(q) < 0) { 1148 blk_cleanup_queue(q); 1149 return NULL; 1150 } 1151 1152 return q; 1153 } 1154 EXPORT_SYMBOL(blk_init_queue_node); 1155 1156 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 1157 1158 1159 int blk_init_allocated_queue(struct request_queue *q) 1160 { 1161 WARN_ON_ONCE(q->mq_ops); 1162 1163 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 1164 if (!q->fq) 1165 return -ENOMEM; 1166 1167 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 1168 goto out_free_flush_queue; 1169 1170 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 1171 goto out_exit_flush_rq; 1172 1173 INIT_WORK(&q->timeout_work, blk_timeout_work); 1174 q->queue_flags |= QUEUE_FLAG_DEFAULT; 1175 1176 /* 1177 * This also sets hw/phys segments, boundary and size 1178 */ 1179 blk_queue_make_request(q, blk_queue_bio); 1180 1181 q->sg_reserved_size = INT_MAX; 1182 1183 if (elevator_init(q)) 1184 goto out_exit_flush_rq; 1185 return 0; 1186 1187 out_exit_flush_rq: 1188 if (q->exit_rq_fn) 1189 q->exit_rq_fn(q, q->fq->flush_rq); 1190 out_free_flush_queue: 1191 blk_free_flush_queue(q->fq); 1192 q->fq = NULL; 1193 return -ENOMEM; 1194 } 1195 EXPORT_SYMBOL(blk_init_allocated_queue); 1196 1197 bool blk_get_queue(struct request_queue *q) 1198 { 1199 if (likely(!blk_queue_dying(q))) { 1200 __blk_get_queue(q); 1201 return true; 1202 } 1203 1204 return false; 1205 } 1206 EXPORT_SYMBOL(blk_get_queue); 1207 1208 static inline void blk_free_request(struct request_list *rl, struct request *rq) 1209 { 1210 if (rq->rq_flags & RQF_ELVPRIV) { 1211 elv_put_request(rl->q, rq); 1212 if (rq->elv.icq) 1213 put_io_context(rq->elv.icq->ioc); 1214 } 1215 1216 mempool_free(rq, rl->rq_pool); 1217 } 1218 1219 /* 1220 * ioc_batching returns true if the ioc is a valid batching request and 1221 * should be given priority access to a request. 1222 */ 1223 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 1224 { 1225 if (!ioc) 1226 return 0; 1227 1228 /* 1229 * Make sure the process is able to allocate at least 1 request 1230 * even if the batch times out, otherwise we could theoretically 1231 * lose wakeups. 1232 */ 1233 return ioc->nr_batch_requests == q->nr_batching || 1234 (ioc->nr_batch_requests > 0 1235 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 1236 } 1237 1238 /* 1239 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 1240 * will cause the process to be a "batcher" on all queues in the system. This 1241 * is the behaviour we want though - once it gets a wakeup it should be given 1242 * a nice run. 1243 */ 1244 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 1245 { 1246 if (!ioc || ioc_batching(q, ioc)) 1247 return; 1248 1249 ioc->nr_batch_requests = q->nr_batching; 1250 ioc->last_waited = jiffies; 1251 } 1252 1253 static void __freed_request(struct request_list *rl, int sync) 1254 { 1255 struct request_queue *q = rl->q; 1256 1257 if (rl->count[sync] < queue_congestion_off_threshold(q)) 1258 blk_clear_congested(rl, sync); 1259 1260 if (rl->count[sync] + 1 <= q->nr_requests) { 1261 if (waitqueue_active(&rl->wait[sync])) 1262 wake_up(&rl->wait[sync]); 1263 1264 blk_clear_rl_full(rl, sync); 1265 } 1266 } 1267 1268 /* 1269 * A request has just been released. Account for it, update the full and 1270 * congestion status, wake up any waiters. Called under q->queue_lock. 1271 */ 1272 static void freed_request(struct request_list *rl, bool sync, 1273 req_flags_t rq_flags) 1274 { 1275 struct request_queue *q = rl->q; 1276 1277 q->nr_rqs[sync]--; 1278 rl->count[sync]--; 1279 if (rq_flags & RQF_ELVPRIV) 1280 q->nr_rqs_elvpriv--; 1281 1282 __freed_request(rl, sync); 1283 1284 if (unlikely(rl->starved[sync ^ 1])) 1285 __freed_request(rl, sync ^ 1); 1286 } 1287 1288 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1289 { 1290 struct request_list *rl; 1291 int on_thresh, off_thresh; 1292 1293 WARN_ON_ONCE(q->mq_ops); 1294 1295 spin_lock_irq(q->queue_lock); 1296 q->nr_requests = nr; 1297 blk_queue_congestion_threshold(q); 1298 on_thresh = queue_congestion_on_threshold(q); 1299 off_thresh = queue_congestion_off_threshold(q); 1300 1301 blk_queue_for_each_rl(rl, q) { 1302 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1303 blk_set_congested(rl, BLK_RW_SYNC); 1304 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1305 blk_clear_congested(rl, BLK_RW_SYNC); 1306 1307 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1308 blk_set_congested(rl, BLK_RW_ASYNC); 1309 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1310 blk_clear_congested(rl, BLK_RW_ASYNC); 1311 1312 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1313 blk_set_rl_full(rl, BLK_RW_SYNC); 1314 } else { 1315 blk_clear_rl_full(rl, BLK_RW_SYNC); 1316 wake_up(&rl->wait[BLK_RW_SYNC]); 1317 } 1318 1319 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1320 blk_set_rl_full(rl, BLK_RW_ASYNC); 1321 } else { 1322 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1323 wake_up(&rl->wait[BLK_RW_ASYNC]); 1324 } 1325 } 1326 1327 spin_unlock_irq(q->queue_lock); 1328 return 0; 1329 } 1330 1331 /** 1332 * __get_request - get a free request 1333 * @rl: request list to allocate from 1334 * @op: operation and flags 1335 * @bio: bio to allocate request for (can be %NULL) 1336 * @flags: BLQ_MQ_REQ_* flags 1337 * @gfp_mask: allocator flags 1338 * 1339 * Get a free request from @q. This function may fail under memory 1340 * pressure or if @q is dead. 1341 * 1342 * Must be called with @q->queue_lock held and, 1343 * Returns ERR_PTR on failure, with @q->queue_lock held. 1344 * Returns request pointer on success, with @q->queue_lock *not held*. 1345 */ 1346 static struct request *__get_request(struct request_list *rl, unsigned int op, 1347 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp_mask) 1348 { 1349 struct request_queue *q = rl->q; 1350 struct request *rq; 1351 struct elevator_type *et = q->elevator->type; 1352 struct io_context *ioc = rq_ioc(bio); 1353 struct io_cq *icq = NULL; 1354 const bool is_sync = op_is_sync(op); 1355 int may_queue; 1356 req_flags_t rq_flags = RQF_ALLOCED; 1357 1358 lockdep_assert_held(q->queue_lock); 1359 1360 if (unlikely(blk_queue_dying(q))) 1361 return ERR_PTR(-ENODEV); 1362 1363 may_queue = elv_may_queue(q, op); 1364 if (may_queue == ELV_MQUEUE_NO) 1365 goto rq_starved; 1366 1367 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1368 if (rl->count[is_sync]+1 >= q->nr_requests) { 1369 /* 1370 * The queue will fill after this allocation, so set 1371 * it as full, and mark this process as "batching". 1372 * This process will be allowed to complete a batch of 1373 * requests, others will be blocked. 1374 */ 1375 if (!blk_rl_full(rl, is_sync)) { 1376 ioc_set_batching(q, ioc); 1377 blk_set_rl_full(rl, is_sync); 1378 } else { 1379 if (may_queue != ELV_MQUEUE_MUST 1380 && !ioc_batching(q, ioc)) { 1381 /* 1382 * The queue is full and the allocating 1383 * process is not a "batcher", and not 1384 * exempted by the IO scheduler 1385 */ 1386 return ERR_PTR(-ENOMEM); 1387 } 1388 } 1389 } 1390 blk_set_congested(rl, is_sync); 1391 } 1392 1393 /* 1394 * Only allow batching queuers to allocate up to 50% over the defined 1395 * limit of requests, otherwise we could have thousands of requests 1396 * allocated with any setting of ->nr_requests 1397 */ 1398 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1399 return ERR_PTR(-ENOMEM); 1400 1401 q->nr_rqs[is_sync]++; 1402 rl->count[is_sync]++; 1403 rl->starved[is_sync] = 0; 1404 1405 /* 1406 * Decide whether the new request will be managed by elevator. If 1407 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1408 * prevent the current elevator from being destroyed until the new 1409 * request is freed. This guarantees icq's won't be destroyed and 1410 * makes creating new ones safe. 1411 * 1412 * Flush requests do not use the elevator so skip initialization. 1413 * This allows a request to share the flush and elevator data. 1414 * 1415 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1416 * it will be created after releasing queue_lock. 1417 */ 1418 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1419 rq_flags |= RQF_ELVPRIV; 1420 q->nr_rqs_elvpriv++; 1421 if (et->icq_cache && ioc) 1422 icq = ioc_lookup_icq(ioc, q); 1423 } 1424 1425 if (blk_queue_io_stat(q)) 1426 rq_flags |= RQF_IO_STAT; 1427 spin_unlock_irq(q->queue_lock); 1428 1429 /* allocate and init request */ 1430 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1431 if (!rq) 1432 goto fail_alloc; 1433 1434 blk_rq_init(q, rq); 1435 blk_rq_set_rl(rq, rl); 1436 rq->cmd_flags = op; 1437 rq->rq_flags = rq_flags; 1438 if (flags & BLK_MQ_REQ_PREEMPT) 1439 rq->rq_flags |= RQF_PREEMPT; 1440 1441 /* init elvpriv */ 1442 if (rq_flags & RQF_ELVPRIV) { 1443 if (unlikely(et->icq_cache && !icq)) { 1444 if (ioc) 1445 icq = ioc_create_icq(ioc, q, gfp_mask); 1446 if (!icq) 1447 goto fail_elvpriv; 1448 } 1449 1450 rq->elv.icq = icq; 1451 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1452 goto fail_elvpriv; 1453 1454 /* @rq->elv.icq holds io_context until @rq is freed */ 1455 if (icq) 1456 get_io_context(icq->ioc); 1457 } 1458 out: 1459 /* 1460 * ioc may be NULL here, and ioc_batching will be false. That's 1461 * OK, if the queue is under the request limit then requests need 1462 * not count toward the nr_batch_requests limit. There will always 1463 * be some limit enforced by BLK_BATCH_TIME. 1464 */ 1465 if (ioc_batching(q, ioc)) 1466 ioc->nr_batch_requests--; 1467 1468 trace_block_getrq(q, bio, op); 1469 return rq; 1470 1471 fail_elvpriv: 1472 /* 1473 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1474 * and may fail indefinitely under memory pressure and thus 1475 * shouldn't stall IO. Treat this request as !elvpriv. This will 1476 * disturb iosched and blkcg but weird is bettern than dead. 1477 */ 1478 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1479 __func__, dev_name(q->backing_dev_info->dev)); 1480 1481 rq->rq_flags &= ~RQF_ELVPRIV; 1482 rq->elv.icq = NULL; 1483 1484 spin_lock_irq(q->queue_lock); 1485 q->nr_rqs_elvpriv--; 1486 spin_unlock_irq(q->queue_lock); 1487 goto out; 1488 1489 fail_alloc: 1490 /* 1491 * Allocation failed presumably due to memory. Undo anything we 1492 * might have messed up. 1493 * 1494 * Allocating task should really be put onto the front of the wait 1495 * queue, but this is pretty rare. 1496 */ 1497 spin_lock_irq(q->queue_lock); 1498 freed_request(rl, is_sync, rq_flags); 1499 1500 /* 1501 * in the very unlikely event that allocation failed and no 1502 * requests for this direction was pending, mark us starved so that 1503 * freeing of a request in the other direction will notice 1504 * us. another possible fix would be to split the rq mempool into 1505 * READ and WRITE 1506 */ 1507 rq_starved: 1508 if (unlikely(rl->count[is_sync] == 0)) 1509 rl->starved[is_sync] = 1; 1510 return ERR_PTR(-ENOMEM); 1511 } 1512 1513 /** 1514 * get_request - get a free request 1515 * @q: request_queue to allocate request from 1516 * @op: operation and flags 1517 * @bio: bio to allocate request for (can be %NULL) 1518 * @flags: BLK_MQ_REQ_* flags. 1519 * @gfp: allocator flags 1520 * 1521 * Get a free request from @q. If %BLK_MQ_REQ_NOWAIT is set in @flags, 1522 * this function keeps retrying under memory pressure and fails iff @q is dead. 1523 * 1524 * Must be called with @q->queue_lock held and, 1525 * Returns ERR_PTR on failure, with @q->queue_lock held. 1526 * Returns request pointer on success, with @q->queue_lock *not held*. 1527 */ 1528 static struct request *get_request(struct request_queue *q, unsigned int op, 1529 struct bio *bio, blk_mq_req_flags_t flags, gfp_t gfp) 1530 { 1531 const bool is_sync = op_is_sync(op); 1532 DEFINE_WAIT(wait); 1533 struct request_list *rl; 1534 struct request *rq; 1535 1536 lockdep_assert_held(q->queue_lock); 1537 WARN_ON_ONCE(q->mq_ops); 1538 1539 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1540 retry: 1541 rq = __get_request(rl, op, bio, flags, gfp); 1542 if (!IS_ERR(rq)) 1543 return rq; 1544 1545 if (op & REQ_NOWAIT) { 1546 blk_put_rl(rl); 1547 return ERR_PTR(-EAGAIN); 1548 } 1549 1550 if ((flags & BLK_MQ_REQ_NOWAIT) || unlikely(blk_queue_dying(q))) { 1551 blk_put_rl(rl); 1552 return rq; 1553 } 1554 1555 /* wait on @rl and retry */ 1556 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1557 TASK_UNINTERRUPTIBLE); 1558 1559 trace_block_sleeprq(q, bio, op); 1560 1561 spin_unlock_irq(q->queue_lock); 1562 io_schedule(); 1563 1564 /* 1565 * After sleeping, we become a "batching" process and will be able 1566 * to allocate at least one request, and up to a big batch of them 1567 * for a small period time. See ioc_batching, ioc_set_batching 1568 */ 1569 ioc_set_batching(q, current->io_context); 1570 1571 spin_lock_irq(q->queue_lock); 1572 finish_wait(&rl->wait[is_sync], &wait); 1573 1574 goto retry; 1575 } 1576 1577 /* flags: BLK_MQ_REQ_PREEMPT and/or BLK_MQ_REQ_NOWAIT. */ 1578 static struct request *blk_old_get_request(struct request_queue *q, 1579 unsigned int op, blk_mq_req_flags_t flags) 1580 { 1581 struct request *rq; 1582 gfp_t gfp_mask = flags & BLK_MQ_REQ_NOWAIT ? GFP_ATOMIC : GFP_NOIO; 1583 int ret = 0; 1584 1585 WARN_ON_ONCE(q->mq_ops); 1586 1587 /* create ioc upfront */ 1588 create_io_context(gfp_mask, q->node); 1589 1590 ret = blk_queue_enter(q, flags); 1591 if (ret) 1592 return ERR_PTR(ret); 1593 spin_lock_irq(q->queue_lock); 1594 rq = get_request(q, op, NULL, flags, gfp_mask); 1595 if (IS_ERR(rq)) { 1596 spin_unlock_irq(q->queue_lock); 1597 blk_queue_exit(q); 1598 return rq; 1599 } 1600 1601 /* q->queue_lock is unlocked at this point */ 1602 rq->__data_len = 0; 1603 rq->__sector = (sector_t) -1; 1604 rq->bio = rq->biotail = NULL; 1605 return rq; 1606 } 1607 1608 /** 1609 * blk_get_request - allocate a request 1610 * @q: request queue to allocate a request for 1611 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 1612 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 1613 */ 1614 struct request *blk_get_request(struct request_queue *q, unsigned int op, 1615 blk_mq_req_flags_t flags) 1616 { 1617 struct request *req; 1618 1619 WARN_ON_ONCE(op & REQ_NOWAIT); 1620 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 1621 1622 if (q->mq_ops) { 1623 req = blk_mq_alloc_request(q, op, flags); 1624 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 1625 q->mq_ops->initialize_rq_fn(req); 1626 } else { 1627 req = blk_old_get_request(q, op, flags); 1628 if (!IS_ERR(req) && q->initialize_rq_fn) 1629 q->initialize_rq_fn(req); 1630 } 1631 1632 return req; 1633 } 1634 EXPORT_SYMBOL(blk_get_request); 1635 1636 /** 1637 * blk_requeue_request - put a request back on queue 1638 * @q: request queue where request should be inserted 1639 * @rq: request to be inserted 1640 * 1641 * Description: 1642 * Drivers often keep queueing requests until the hardware cannot accept 1643 * more, when that condition happens we need to put the request back 1644 * on the queue. Must be called with queue lock held. 1645 */ 1646 void blk_requeue_request(struct request_queue *q, struct request *rq) 1647 { 1648 lockdep_assert_held(q->queue_lock); 1649 WARN_ON_ONCE(q->mq_ops); 1650 1651 blk_delete_timer(rq); 1652 blk_clear_rq_complete(rq); 1653 trace_block_rq_requeue(q, rq); 1654 rq_qos_requeue(q, rq); 1655 1656 if (rq->rq_flags & RQF_QUEUED) 1657 blk_queue_end_tag(q, rq); 1658 1659 BUG_ON(blk_queued_rq(rq)); 1660 1661 elv_requeue_request(q, rq); 1662 } 1663 EXPORT_SYMBOL(blk_requeue_request); 1664 1665 static void add_acct_request(struct request_queue *q, struct request *rq, 1666 int where) 1667 { 1668 blk_account_io_start(rq, true); 1669 __elv_add_request(q, rq, where); 1670 } 1671 1672 static void part_round_stats_single(struct request_queue *q, int cpu, 1673 struct hd_struct *part, unsigned long now, 1674 unsigned int inflight) 1675 { 1676 if (inflight) { 1677 __part_stat_add(cpu, part, time_in_queue, 1678 inflight * (now - part->stamp)); 1679 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1680 } 1681 part->stamp = now; 1682 } 1683 1684 /** 1685 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1686 * @q: target block queue 1687 * @cpu: cpu number for stats access 1688 * @part: target partition 1689 * 1690 * The average IO queue length and utilisation statistics are maintained 1691 * by observing the current state of the queue length and the amount of 1692 * time it has been in this state for. 1693 * 1694 * Normally, that accounting is done on IO completion, but that can result 1695 * in more than a second's worth of IO being accounted for within any one 1696 * second, leading to >100% utilisation. To deal with that, we call this 1697 * function to do a round-off before returning the results when reading 1698 * /proc/diskstats. This accounts immediately for all queue usage up to 1699 * the current jiffies and restarts the counters again. 1700 */ 1701 void part_round_stats(struct request_queue *q, int cpu, struct hd_struct *part) 1702 { 1703 struct hd_struct *part2 = NULL; 1704 unsigned long now = jiffies; 1705 unsigned int inflight[2]; 1706 int stats = 0; 1707 1708 if (part->stamp != now) 1709 stats |= 1; 1710 1711 if (part->partno) { 1712 part2 = &part_to_disk(part)->part0; 1713 if (part2->stamp != now) 1714 stats |= 2; 1715 } 1716 1717 if (!stats) 1718 return; 1719 1720 part_in_flight(q, part, inflight); 1721 1722 if (stats & 2) 1723 part_round_stats_single(q, cpu, part2, now, inflight[1]); 1724 if (stats & 1) 1725 part_round_stats_single(q, cpu, part, now, inflight[0]); 1726 } 1727 EXPORT_SYMBOL_GPL(part_round_stats); 1728 1729 #ifdef CONFIG_PM 1730 static void blk_pm_put_request(struct request *rq) 1731 { 1732 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1733 pm_runtime_mark_last_busy(rq->q->dev); 1734 } 1735 #else 1736 static inline void blk_pm_put_request(struct request *rq) {} 1737 #endif 1738 1739 void __blk_put_request(struct request_queue *q, struct request *req) 1740 { 1741 req_flags_t rq_flags = req->rq_flags; 1742 1743 if (unlikely(!q)) 1744 return; 1745 1746 if (q->mq_ops) { 1747 blk_mq_free_request(req); 1748 return; 1749 } 1750 1751 lockdep_assert_held(q->queue_lock); 1752 1753 blk_req_zone_write_unlock(req); 1754 blk_pm_put_request(req); 1755 1756 elv_completed_request(q, req); 1757 1758 /* this is a bio leak */ 1759 WARN_ON(req->bio != NULL); 1760 1761 rq_qos_done(q, req); 1762 1763 /* 1764 * Request may not have originated from ll_rw_blk. if not, 1765 * it didn't come out of our reserved rq pools 1766 */ 1767 if (rq_flags & RQF_ALLOCED) { 1768 struct request_list *rl = blk_rq_rl(req); 1769 bool sync = op_is_sync(req->cmd_flags); 1770 1771 BUG_ON(!list_empty(&req->queuelist)); 1772 BUG_ON(ELV_ON_HASH(req)); 1773 1774 blk_free_request(rl, req); 1775 freed_request(rl, sync, rq_flags); 1776 blk_put_rl(rl); 1777 blk_queue_exit(q); 1778 } 1779 } 1780 EXPORT_SYMBOL_GPL(__blk_put_request); 1781 1782 void blk_put_request(struct request *req) 1783 { 1784 struct request_queue *q = req->q; 1785 1786 if (q->mq_ops) 1787 blk_mq_free_request(req); 1788 else { 1789 unsigned long flags; 1790 1791 spin_lock_irqsave(q->queue_lock, flags); 1792 __blk_put_request(q, req); 1793 spin_unlock_irqrestore(q->queue_lock, flags); 1794 } 1795 } 1796 EXPORT_SYMBOL(blk_put_request); 1797 1798 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1799 struct bio *bio) 1800 { 1801 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1802 1803 if (!ll_back_merge_fn(q, req, bio)) 1804 return false; 1805 1806 trace_block_bio_backmerge(q, req, bio); 1807 1808 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1809 blk_rq_set_mixed_merge(req); 1810 1811 req->biotail->bi_next = bio; 1812 req->biotail = bio; 1813 req->__data_len += bio->bi_iter.bi_size; 1814 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1815 1816 blk_account_io_start(req, false); 1817 return true; 1818 } 1819 1820 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1821 struct bio *bio) 1822 { 1823 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1824 1825 if (!ll_front_merge_fn(q, req, bio)) 1826 return false; 1827 1828 trace_block_bio_frontmerge(q, req, bio); 1829 1830 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1831 blk_rq_set_mixed_merge(req); 1832 1833 bio->bi_next = req->bio; 1834 req->bio = bio; 1835 1836 req->__sector = bio->bi_iter.bi_sector; 1837 req->__data_len += bio->bi_iter.bi_size; 1838 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1839 1840 blk_account_io_start(req, false); 1841 return true; 1842 } 1843 1844 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1845 struct bio *bio) 1846 { 1847 unsigned short segments = blk_rq_nr_discard_segments(req); 1848 1849 if (segments >= queue_max_discard_segments(q)) 1850 goto no_merge; 1851 if (blk_rq_sectors(req) + bio_sectors(bio) > 1852 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1853 goto no_merge; 1854 1855 req->biotail->bi_next = bio; 1856 req->biotail = bio; 1857 req->__data_len += bio->bi_iter.bi_size; 1858 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1859 req->nr_phys_segments = segments + 1; 1860 1861 blk_account_io_start(req, false); 1862 return true; 1863 no_merge: 1864 req_set_nomerge(q, req); 1865 return false; 1866 } 1867 1868 /** 1869 * blk_attempt_plug_merge - try to merge with %current's plugged list 1870 * @q: request_queue new bio is being queued at 1871 * @bio: new bio being queued 1872 * @request_count: out parameter for number of traversed plugged requests 1873 * @same_queue_rq: pointer to &struct request that gets filled in when 1874 * another request associated with @q is found on the plug list 1875 * (optional, may be %NULL) 1876 * 1877 * Determine whether @bio being queued on @q can be merged with a request 1878 * on %current's plugged list. Returns %true if merge was successful, 1879 * otherwise %false. 1880 * 1881 * Plugging coalesces IOs from the same issuer for the same purpose without 1882 * going through @q->queue_lock. As such it's more of an issuing mechanism 1883 * than scheduling, and the request, while may have elvpriv data, is not 1884 * added on the elevator at this point. In addition, we don't have 1885 * reliable access to the elevator outside queue lock. Only check basic 1886 * merging parameters without querying the elevator. 1887 * 1888 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1889 */ 1890 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1891 unsigned int *request_count, 1892 struct request **same_queue_rq) 1893 { 1894 struct blk_plug *plug; 1895 struct request *rq; 1896 struct list_head *plug_list; 1897 1898 plug = current->plug; 1899 if (!plug) 1900 return false; 1901 *request_count = 0; 1902 1903 if (q->mq_ops) 1904 plug_list = &plug->mq_list; 1905 else 1906 plug_list = &plug->list; 1907 1908 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1909 bool merged = false; 1910 1911 if (rq->q == q) { 1912 (*request_count)++; 1913 /* 1914 * Only blk-mq multiple hardware queues case checks the 1915 * rq in the same queue, there should be only one such 1916 * rq in a queue 1917 **/ 1918 if (same_queue_rq) 1919 *same_queue_rq = rq; 1920 } 1921 1922 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1923 continue; 1924 1925 switch (blk_try_merge(rq, bio)) { 1926 case ELEVATOR_BACK_MERGE: 1927 merged = bio_attempt_back_merge(q, rq, bio); 1928 break; 1929 case ELEVATOR_FRONT_MERGE: 1930 merged = bio_attempt_front_merge(q, rq, bio); 1931 break; 1932 case ELEVATOR_DISCARD_MERGE: 1933 merged = bio_attempt_discard_merge(q, rq, bio); 1934 break; 1935 default: 1936 break; 1937 } 1938 1939 if (merged) 1940 return true; 1941 } 1942 1943 return false; 1944 } 1945 1946 unsigned int blk_plug_queued_count(struct request_queue *q) 1947 { 1948 struct blk_plug *plug; 1949 struct request *rq; 1950 struct list_head *plug_list; 1951 unsigned int ret = 0; 1952 1953 plug = current->plug; 1954 if (!plug) 1955 goto out; 1956 1957 if (q->mq_ops) 1958 plug_list = &plug->mq_list; 1959 else 1960 plug_list = &plug->list; 1961 1962 list_for_each_entry(rq, plug_list, queuelist) { 1963 if (rq->q == q) 1964 ret++; 1965 } 1966 out: 1967 return ret; 1968 } 1969 1970 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1971 { 1972 struct io_context *ioc = rq_ioc(bio); 1973 1974 if (bio->bi_opf & REQ_RAHEAD) 1975 req->cmd_flags |= REQ_FAILFAST_MASK; 1976 1977 req->__sector = bio->bi_iter.bi_sector; 1978 if (ioprio_valid(bio_prio(bio))) 1979 req->ioprio = bio_prio(bio); 1980 else if (ioc) 1981 req->ioprio = ioc->ioprio; 1982 else 1983 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1984 req->write_hint = bio->bi_write_hint; 1985 blk_rq_bio_prep(req->q, req, bio); 1986 } 1987 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1988 1989 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1990 { 1991 struct blk_plug *plug; 1992 int where = ELEVATOR_INSERT_SORT; 1993 struct request *req, *free; 1994 unsigned int request_count = 0; 1995 1996 /* 1997 * low level driver can indicate that it wants pages above a 1998 * certain limit bounced to low memory (ie for highmem, or even 1999 * ISA dma in theory) 2000 */ 2001 blk_queue_bounce(q, &bio); 2002 2003 blk_queue_split(q, &bio); 2004 2005 if (!bio_integrity_prep(bio)) 2006 return BLK_QC_T_NONE; 2007 2008 if (op_is_flush(bio->bi_opf)) { 2009 spin_lock_irq(q->queue_lock); 2010 where = ELEVATOR_INSERT_FLUSH; 2011 goto get_rq; 2012 } 2013 2014 /* 2015 * Check if we can merge with the plugged list before grabbing 2016 * any locks. 2017 */ 2018 if (!blk_queue_nomerges(q)) { 2019 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 2020 return BLK_QC_T_NONE; 2021 } else 2022 request_count = blk_plug_queued_count(q); 2023 2024 spin_lock_irq(q->queue_lock); 2025 2026 switch (elv_merge(q, &req, bio)) { 2027 case ELEVATOR_BACK_MERGE: 2028 if (!bio_attempt_back_merge(q, req, bio)) 2029 break; 2030 elv_bio_merged(q, req, bio); 2031 free = attempt_back_merge(q, req); 2032 if (free) 2033 __blk_put_request(q, free); 2034 else 2035 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 2036 goto out_unlock; 2037 case ELEVATOR_FRONT_MERGE: 2038 if (!bio_attempt_front_merge(q, req, bio)) 2039 break; 2040 elv_bio_merged(q, req, bio); 2041 free = attempt_front_merge(q, req); 2042 if (free) 2043 __blk_put_request(q, free); 2044 else 2045 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 2046 goto out_unlock; 2047 default: 2048 break; 2049 } 2050 2051 get_rq: 2052 rq_qos_throttle(q, bio, q->queue_lock); 2053 2054 /* 2055 * Grab a free request. This is might sleep but can not fail. 2056 * Returns with the queue unlocked. 2057 */ 2058 blk_queue_enter_live(q); 2059 req = get_request(q, bio->bi_opf, bio, 0, GFP_NOIO); 2060 if (IS_ERR(req)) { 2061 blk_queue_exit(q); 2062 rq_qos_cleanup(q, bio); 2063 if (PTR_ERR(req) == -ENOMEM) 2064 bio->bi_status = BLK_STS_RESOURCE; 2065 else 2066 bio->bi_status = BLK_STS_IOERR; 2067 bio_endio(bio); 2068 goto out_unlock; 2069 } 2070 2071 rq_qos_track(q, req, bio); 2072 2073 /* 2074 * After dropping the lock and possibly sleeping here, our request 2075 * may now be mergeable after it had proven unmergeable (above). 2076 * We don't worry about that case for efficiency. It won't happen 2077 * often, and the elevators are able to handle it. 2078 */ 2079 blk_init_request_from_bio(req, bio); 2080 2081 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 2082 req->cpu = raw_smp_processor_id(); 2083 2084 plug = current->plug; 2085 if (plug) { 2086 /* 2087 * If this is the first request added after a plug, fire 2088 * of a plug trace. 2089 * 2090 * @request_count may become stale because of schedule 2091 * out, so check plug list again. 2092 */ 2093 if (!request_count || list_empty(&plug->list)) 2094 trace_block_plug(q); 2095 else { 2096 struct request *last = list_entry_rq(plug->list.prev); 2097 if (request_count >= BLK_MAX_REQUEST_COUNT || 2098 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 2099 blk_flush_plug_list(plug, false); 2100 trace_block_plug(q); 2101 } 2102 } 2103 list_add_tail(&req->queuelist, &plug->list); 2104 blk_account_io_start(req, true); 2105 } else { 2106 spin_lock_irq(q->queue_lock); 2107 add_acct_request(q, req, where); 2108 __blk_run_queue(q); 2109 out_unlock: 2110 spin_unlock_irq(q->queue_lock); 2111 } 2112 2113 return BLK_QC_T_NONE; 2114 } 2115 2116 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 2117 { 2118 char b[BDEVNAME_SIZE]; 2119 2120 printk(KERN_INFO "attempt to access beyond end of device\n"); 2121 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 2122 bio_devname(bio, b), bio->bi_opf, 2123 (unsigned long long)bio_end_sector(bio), 2124 (long long)maxsector); 2125 } 2126 2127 #ifdef CONFIG_FAIL_MAKE_REQUEST 2128 2129 static DECLARE_FAULT_ATTR(fail_make_request); 2130 2131 static int __init setup_fail_make_request(char *str) 2132 { 2133 return setup_fault_attr(&fail_make_request, str); 2134 } 2135 __setup("fail_make_request=", setup_fail_make_request); 2136 2137 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 2138 { 2139 return part->make_it_fail && should_fail(&fail_make_request, bytes); 2140 } 2141 2142 static int __init fail_make_request_debugfs(void) 2143 { 2144 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 2145 NULL, &fail_make_request); 2146 2147 return PTR_ERR_OR_ZERO(dir); 2148 } 2149 2150 late_initcall(fail_make_request_debugfs); 2151 2152 #else /* CONFIG_FAIL_MAKE_REQUEST */ 2153 2154 static inline bool should_fail_request(struct hd_struct *part, 2155 unsigned int bytes) 2156 { 2157 return false; 2158 } 2159 2160 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 2161 2162 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 2163 { 2164 const int op = bio_op(bio); 2165 2166 if (part->policy && op_is_write(op)) { 2167 char b[BDEVNAME_SIZE]; 2168 2169 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 2170 return false; 2171 2172 WARN_ONCE(1, 2173 "generic_make_request: Trying to write " 2174 "to read-only block-device %s (partno %d)\n", 2175 bio_devname(bio, b), part->partno); 2176 /* Older lvm-tools actually trigger this */ 2177 return false; 2178 } 2179 2180 return false; 2181 } 2182 2183 static noinline int should_fail_bio(struct bio *bio) 2184 { 2185 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 2186 return -EIO; 2187 return 0; 2188 } 2189 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 2190 2191 /* 2192 * Check whether this bio extends beyond the end of the device or partition. 2193 * This may well happen - the kernel calls bread() without checking the size of 2194 * the device, e.g., when mounting a file system. 2195 */ 2196 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 2197 { 2198 unsigned int nr_sectors = bio_sectors(bio); 2199 2200 if (nr_sectors && maxsector && 2201 (nr_sectors > maxsector || 2202 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 2203 handle_bad_sector(bio, maxsector); 2204 return -EIO; 2205 } 2206 return 0; 2207 } 2208 2209 /* 2210 * Remap block n of partition p to block n+start(p) of the disk. 2211 */ 2212 static inline int blk_partition_remap(struct bio *bio) 2213 { 2214 struct hd_struct *p; 2215 int ret = -EIO; 2216 2217 rcu_read_lock(); 2218 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 2219 if (unlikely(!p)) 2220 goto out; 2221 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 2222 goto out; 2223 if (unlikely(bio_check_ro(bio, p))) 2224 goto out; 2225 2226 /* 2227 * Zone reset does not include bi_size so bio_sectors() is always 0. 2228 * Include a test for the reset op code and perform the remap if needed. 2229 */ 2230 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 2231 if (bio_check_eod(bio, part_nr_sects_read(p))) 2232 goto out; 2233 bio->bi_iter.bi_sector += p->start_sect; 2234 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 2235 bio->bi_iter.bi_sector - p->start_sect); 2236 } 2237 bio->bi_partno = 0; 2238 ret = 0; 2239 out: 2240 rcu_read_unlock(); 2241 return ret; 2242 } 2243 2244 static noinline_for_stack bool 2245 generic_make_request_checks(struct bio *bio) 2246 { 2247 struct request_queue *q; 2248 int nr_sectors = bio_sectors(bio); 2249 blk_status_t status = BLK_STS_IOERR; 2250 char b[BDEVNAME_SIZE]; 2251 2252 might_sleep(); 2253 2254 q = bio->bi_disk->queue; 2255 if (unlikely(!q)) { 2256 printk(KERN_ERR 2257 "generic_make_request: Trying to access " 2258 "nonexistent block-device %s (%Lu)\n", 2259 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 2260 goto end_io; 2261 } 2262 2263 /* 2264 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 2265 * if queue is not a request based queue. 2266 */ 2267 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_rq_based(q)) 2268 goto not_supported; 2269 2270 if (should_fail_bio(bio)) 2271 goto end_io; 2272 2273 if (bio->bi_partno) { 2274 if (unlikely(blk_partition_remap(bio))) 2275 goto end_io; 2276 } else { 2277 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 2278 goto end_io; 2279 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 2280 goto end_io; 2281 } 2282 2283 /* 2284 * Filter flush bio's early so that make_request based 2285 * drivers without flush support don't have to worry 2286 * about them. 2287 */ 2288 if (op_is_flush(bio->bi_opf) && 2289 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 2290 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 2291 if (!nr_sectors) { 2292 status = BLK_STS_OK; 2293 goto end_io; 2294 } 2295 } 2296 2297 switch (bio_op(bio)) { 2298 case REQ_OP_DISCARD: 2299 if (!blk_queue_discard(q)) 2300 goto not_supported; 2301 break; 2302 case REQ_OP_SECURE_ERASE: 2303 if (!blk_queue_secure_erase(q)) 2304 goto not_supported; 2305 break; 2306 case REQ_OP_WRITE_SAME: 2307 if (!q->limits.max_write_same_sectors) 2308 goto not_supported; 2309 break; 2310 case REQ_OP_ZONE_REPORT: 2311 case REQ_OP_ZONE_RESET: 2312 if (!blk_queue_is_zoned(q)) 2313 goto not_supported; 2314 break; 2315 case REQ_OP_WRITE_ZEROES: 2316 if (!q->limits.max_write_zeroes_sectors) 2317 goto not_supported; 2318 break; 2319 default: 2320 break; 2321 } 2322 2323 /* 2324 * Various block parts want %current->io_context and lazy ioc 2325 * allocation ends up trading a lot of pain for a small amount of 2326 * memory. Just allocate it upfront. This may fail and block 2327 * layer knows how to live with it. 2328 */ 2329 create_io_context(GFP_ATOMIC, q->node); 2330 2331 if (!blkcg_bio_issue_check(q, bio)) 2332 return false; 2333 2334 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 2335 trace_block_bio_queue(q, bio); 2336 /* Now that enqueuing has been traced, we need to trace 2337 * completion as well. 2338 */ 2339 bio_set_flag(bio, BIO_TRACE_COMPLETION); 2340 } 2341 return true; 2342 2343 not_supported: 2344 status = BLK_STS_NOTSUPP; 2345 end_io: 2346 bio->bi_status = status; 2347 bio_endio(bio); 2348 return false; 2349 } 2350 2351 /** 2352 * generic_make_request - hand a buffer to its device driver for I/O 2353 * @bio: The bio describing the location in memory and on the device. 2354 * 2355 * generic_make_request() is used to make I/O requests of block 2356 * devices. It is passed a &struct bio, which describes the I/O that needs 2357 * to be done. 2358 * 2359 * generic_make_request() does not return any status. The 2360 * success/failure status of the request, along with notification of 2361 * completion, is delivered asynchronously through the bio->bi_end_io 2362 * function described (one day) else where. 2363 * 2364 * The caller of generic_make_request must make sure that bi_io_vec 2365 * are set to describe the memory buffer, and that bi_dev and bi_sector are 2366 * set to describe the device address, and the 2367 * bi_end_io and optionally bi_private are set to describe how 2368 * completion notification should be signaled. 2369 * 2370 * generic_make_request and the drivers it calls may use bi_next if this 2371 * bio happens to be merged with someone else, and may resubmit the bio to 2372 * a lower device by calling into generic_make_request recursively, which 2373 * means the bio should NOT be touched after the call to ->make_request_fn. 2374 */ 2375 blk_qc_t generic_make_request(struct bio *bio) 2376 { 2377 /* 2378 * bio_list_on_stack[0] contains bios submitted by the current 2379 * make_request_fn. 2380 * bio_list_on_stack[1] contains bios that were submitted before 2381 * the current make_request_fn, but that haven't been processed 2382 * yet. 2383 */ 2384 struct bio_list bio_list_on_stack[2]; 2385 blk_mq_req_flags_t flags = 0; 2386 struct request_queue *q = bio->bi_disk->queue; 2387 blk_qc_t ret = BLK_QC_T_NONE; 2388 2389 if (bio->bi_opf & REQ_NOWAIT) 2390 flags = BLK_MQ_REQ_NOWAIT; 2391 if (bio_flagged(bio, BIO_QUEUE_ENTERED)) 2392 blk_queue_enter_live(q); 2393 else if (blk_queue_enter(q, flags) < 0) { 2394 if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT)) 2395 bio_wouldblock_error(bio); 2396 else 2397 bio_io_error(bio); 2398 return ret; 2399 } 2400 2401 if (!generic_make_request_checks(bio)) 2402 goto out; 2403 2404 /* 2405 * We only want one ->make_request_fn to be active at a time, else 2406 * stack usage with stacked devices could be a problem. So use 2407 * current->bio_list to keep a list of requests submited by a 2408 * make_request_fn function. current->bio_list is also used as a 2409 * flag to say if generic_make_request is currently active in this 2410 * task or not. If it is NULL, then no make_request is active. If 2411 * it is non-NULL, then a make_request is active, and new requests 2412 * should be added at the tail 2413 */ 2414 if (current->bio_list) { 2415 bio_list_add(¤t->bio_list[0], bio); 2416 goto out; 2417 } 2418 2419 /* following loop may be a bit non-obvious, and so deserves some 2420 * explanation. 2421 * Before entering the loop, bio->bi_next is NULL (as all callers 2422 * ensure that) so we have a list with a single bio. 2423 * We pretend that we have just taken it off a longer list, so 2424 * we assign bio_list to a pointer to the bio_list_on_stack, 2425 * thus initialising the bio_list of new bios to be 2426 * added. ->make_request() may indeed add some more bios 2427 * through a recursive call to generic_make_request. If it 2428 * did, we find a non-NULL value in bio_list and re-enter the loop 2429 * from the top. In this case we really did just take the bio 2430 * of the top of the list (no pretending) and so remove it from 2431 * bio_list, and call into ->make_request() again. 2432 */ 2433 BUG_ON(bio->bi_next); 2434 bio_list_init(&bio_list_on_stack[0]); 2435 current->bio_list = bio_list_on_stack; 2436 do { 2437 bool enter_succeeded = true; 2438 2439 if (unlikely(q != bio->bi_disk->queue)) { 2440 if (q) 2441 blk_queue_exit(q); 2442 q = bio->bi_disk->queue; 2443 flags = 0; 2444 if (bio->bi_opf & REQ_NOWAIT) 2445 flags = BLK_MQ_REQ_NOWAIT; 2446 if (blk_queue_enter(q, flags) < 0) { 2447 enter_succeeded = false; 2448 q = NULL; 2449 } 2450 } 2451 2452 if (enter_succeeded) { 2453 struct bio_list lower, same; 2454 2455 /* Create a fresh bio_list for all subordinate requests */ 2456 bio_list_on_stack[1] = bio_list_on_stack[0]; 2457 bio_list_init(&bio_list_on_stack[0]); 2458 ret = q->make_request_fn(q, bio); 2459 2460 /* sort new bios into those for a lower level 2461 * and those for the same level 2462 */ 2463 bio_list_init(&lower); 2464 bio_list_init(&same); 2465 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2466 if (q == bio->bi_disk->queue) 2467 bio_list_add(&same, bio); 2468 else 2469 bio_list_add(&lower, bio); 2470 /* now assemble so we handle the lowest level first */ 2471 bio_list_merge(&bio_list_on_stack[0], &lower); 2472 bio_list_merge(&bio_list_on_stack[0], &same); 2473 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2474 } else { 2475 if (unlikely(!blk_queue_dying(q) && 2476 (bio->bi_opf & REQ_NOWAIT))) 2477 bio_wouldblock_error(bio); 2478 else 2479 bio_io_error(bio); 2480 } 2481 bio = bio_list_pop(&bio_list_on_stack[0]); 2482 } while (bio); 2483 current->bio_list = NULL; /* deactivate */ 2484 2485 out: 2486 if (q) 2487 blk_queue_exit(q); 2488 return ret; 2489 } 2490 EXPORT_SYMBOL(generic_make_request); 2491 2492 /** 2493 * direct_make_request - hand a buffer directly to its device driver for I/O 2494 * @bio: The bio describing the location in memory and on the device. 2495 * 2496 * This function behaves like generic_make_request(), but does not protect 2497 * against recursion. Must only be used if the called driver is known 2498 * to not call generic_make_request (or direct_make_request) again from 2499 * its make_request function. (Calling direct_make_request again from 2500 * a workqueue is perfectly fine as that doesn't recurse). 2501 */ 2502 blk_qc_t direct_make_request(struct bio *bio) 2503 { 2504 struct request_queue *q = bio->bi_disk->queue; 2505 bool nowait = bio->bi_opf & REQ_NOWAIT; 2506 blk_qc_t ret; 2507 2508 if (!generic_make_request_checks(bio)) 2509 return BLK_QC_T_NONE; 2510 2511 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 2512 if (nowait && !blk_queue_dying(q)) 2513 bio->bi_status = BLK_STS_AGAIN; 2514 else 2515 bio->bi_status = BLK_STS_IOERR; 2516 bio_endio(bio); 2517 return BLK_QC_T_NONE; 2518 } 2519 2520 ret = q->make_request_fn(q, bio); 2521 blk_queue_exit(q); 2522 return ret; 2523 } 2524 EXPORT_SYMBOL_GPL(direct_make_request); 2525 2526 /** 2527 * submit_bio - submit a bio to the block device layer for I/O 2528 * @bio: The &struct bio which describes the I/O 2529 * 2530 * submit_bio() is very similar in purpose to generic_make_request(), and 2531 * uses that function to do most of the work. Both are fairly rough 2532 * interfaces; @bio must be presetup and ready for I/O. 2533 * 2534 */ 2535 blk_qc_t submit_bio(struct bio *bio) 2536 { 2537 /* 2538 * If it's a regular read/write or a barrier with data attached, 2539 * go through the normal accounting stuff before submission. 2540 */ 2541 if (bio_has_data(bio)) { 2542 unsigned int count; 2543 2544 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2545 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 2546 else 2547 count = bio_sectors(bio); 2548 2549 if (op_is_write(bio_op(bio))) { 2550 count_vm_events(PGPGOUT, count); 2551 } else { 2552 task_io_account_read(bio->bi_iter.bi_size); 2553 count_vm_events(PGPGIN, count); 2554 } 2555 2556 if (unlikely(block_dump)) { 2557 char b[BDEVNAME_SIZE]; 2558 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2559 current->comm, task_pid_nr(current), 2560 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2561 (unsigned long long)bio->bi_iter.bi_sector, 2562 bio_devname(bio, b), count); 2563 } 2564 } 2565 2566 return generic_make_request(bio); 2567 } 2568 EXPORT_SYMBOL(submit_bio); 2569 2570 bool blk_poll(struct request_queue *q, blk_qc_t cookie) 2571 { 2572 if (!q->poll_fn || !blk_qc_t_valid(cookie)) 2573 return false; 2574 2575 if (current->plug) 2576 blk_flush_plug_list(current->plug, false); 2577 return q->poll_fn(q, cookie); 2578 } 2579 EXPORT_SYMBOL_GPL(blk_poll); 2580 2581 /** 2582 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2583 * for new the queue limits 2584 * @q: the queue 2585 * @rq: the request being checked 2586 * 2587 * Description: 2588 * @rq may have been made based on weaker limitations of upper-level queues 2589 * in request stacking drivers, and it may violate the limitation of @q. 2590 * Since the block layer and the underlying device driver trust @rq 2591 * after it is inserted to @q, it should be checked against @q before 2592 * the insertion using this generic function. 2593 * 2594 * Request stacking drivers like request-based dm may change the queue 2595 * limits when retrying requests on other queues. Those requests need 2596 * to be checked against the new queue limits again during dispatch. 2597 */ 2598 static int blk_cloned_rq_check_limits(struct request_queue *q, 2599 struct request *rq) 2600 { 2601 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2602 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2603 return -EIO; 2604 } 2605 2606 /* 2607 * queue's settings related to segment counting like q->bounce_pfn 2608 * may differ from that of other stacking queues. 2609 * Recalculate it to check the request correctly on this queue's 2610 * limitation. 2611 */ 2612 blk_recalc_rq_segments(rq); 2613 if (rq->nr_phys_segments > queue_max_segments(q)) { 2614 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2615 return -EIO; 2616 } 2617 2618 return 0; 2619 } 2620 2621 /** 2622 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2623 * @q: the queue to submit the request 2624 * @rq: the request being queued 2625 */ 2626 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2627 { 2628 unsigned long flags; 2629 int where = ELEVATOR_INSERT_BACK; 2630 2631 if (blk_cloned_rq_check_limits(q, rq)) 2632 return BLK_STS_IOERR; 2633 2634 if (rq->rq_disk && 2635 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2636 return BLK_STS_IOERR; 2637 2638 if (q->mq_ops) { 2639 if (blk_queue_io_stat(q)) 2640 blk_account_io_start(rq, true); 2641 /* 2642 * Since we have a scheduler attached on the top device, 2643 * bypass a potential scheduler on the bottom device for 2644 * insert. 2645 */ 2646 return blk_mq_request_issue_directly(rq); 2647 } 2648 2649 spin_lock_irqsave(q->queue_lock, flags); 2650 if (unlikely(blk_queue_dying(q))) { 2651 spin_unlock_irqrestore(q->queue_lock, flags); 2652 return BLK_STS_IOERR; 2653 } 2654 2655 /* 2656 * Submitting request must be dequeued before calling this function 2657 * because it will be linked to another request_queue 2658 */ 2659 BUG_ON(blk_queued_rq(rq)); 2660 2661 if (op_is_flush(rq->cmd_flags)) 2662 where = ELEVATOR_INSERT_FLUSH; 2663 2664 add_acct_request(q, rq, where); 2665 if (where == ELEVATOR_INSERT_FLUSH) 2666 __blk_run_queue(q); 2667 spin_unlock_irqrestore(q->queue_lock, flags); 2668 2669 return BLK_STS_OK; 2670 } 2671 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2672 2673 /** 2674 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2675 * @rq: request to examine 2676 * 2677 * Description: 2678 * A request could be merge of IOs which require different failure 2679 * handling. This function determines the number of bytes which 2680 * can be failed from the beginning of the request without 2681 * crossing into area which need to be retried further. 2682 * 2683 * Return: 2684 * The number of bytes to fail. 2685 */ 2686 unsigned int blk_rq_err_bytes(const struct request *rq) 2687 { 2688 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2689 unsigned int bytes = 0; 2690 struct bio *bio; 2691 2692 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2693 return blk_rq_bytes(rq); 2694 2695 /* 2696 * Currently the only 'mixing' which can happen is between 2697 * different fastfail types. We can safely fail portions 2698 * which have all the failfast bits that the first one has - 2699 * the ones which are at least as eager to fail as the first 2700 * one. 2701 */ 2702 for (bio = rq->bio; bio; bio = bio->bi_next) { 2703 if ((bio->bi_opf & ff) != ff) 2704 break; 2705 bytes += bio->bi_iter.bi_size; 2706 } 2707 2708 /* this could lead to infinite loop */ 2709 BUG_ON(blk_rq_bytes(rq) && !bytes); 2710 return bytes; 2711 } 2712 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2713 2714 void blk_account_io_completion(struct request *req, unsigned int bytes) 2715 { 2716 if (blk_do_io_stat(req)) { 2717 const int sgrp = op_stat_group(req_op(req)); 2718 struct hd_struct *part; 2719 int cpu; 2720 2721 cpu = part_stat_lock(); 2722 part = req->part; 2723 part_stat_add(cpu, part, sectors[sgrp], bytes >> 9); 2724 part_stat_unlock(); 2725 } 2726 } 2727 2728 void blk_account_io_done(struct request *req, u64 now) 2729 { 2730 /* 2731 * Account IO completion. flush_rq isn't accounted as a 2732 * normal IO on queueing nor completion. Accounting the 2733 * containing request is enough. 2734 */ 2735 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2736 const int sgrp = op_stat_group(req_op(req)); 2737 struct hd_struct *part; 2738 int cpu; 2739 2740 cpu = part_stat_lock(); 2741 part = req->part; 2742 2743 part_stat_inc(cpu, part, ios[sgrp]); 2744 part_stat_add(cpu, part, nsecs[sgrp], now - req->start_time_ns); 2745 part_round_stats(req->q, cpu, part); 2746 part_dec_in_flight(req->q, part, rq_data_dir(req)); 2747 2748 hd_struct_put(part); 2749 part_stat_unlock(); 2750 } 2751 } 2752 2753 #ifdef CONFIG_PM 2754 /* 2755 * Don't process normal requests when queue is suspended 2756 * or in the process of suspending/resuming 2757 */ 2758 static bool blk_pm_allow_request(struct request *rq) 2759 { 2760 switch (rq->q->rpm_status) { 2761 case RPM_RESUMING: 2762 case RPM_SUSPENDING: 2763 return rq->rq_flags & RQF_PM; 2764 case RPM_SUSPENDED: 2765 return false; 2766 default: 2767 return true; 2768 } 2769 } 2770 #else 2771 static bool blk_pm_allow_request(struct request *rq) 2772 { 2773 return true; 2774 } 2775 #endif 2776 2777 void blk_account_io_start(struct request *rq, bool new_io) 2778 { 2779 struct hd_struct *part; 2780 int rw = rq_data_dir(rq); 2781 int cpu; 2782 2783 if (!blk_do_io_stat(rq)) 2784 return; 2785 2786 cpu = part_stat_lock(); 2787 2788 if (!new_io) { 2789 part = rq->part; 2790 part_stat_inc(cpu, part, merges[rw]); 2791 } else { 2792 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2793 if (!hd_struct_try_get(part)) { 2794 /* 2795 * The partition is already being removed, 2796 * the request will be accounted on the disk only 2797 * 2798 * We take a reference on disk->part0 although that 2799 * partition will never be deleted, so we can treat 2800 * it as any other partition. 2801 */ 2802 part = &rq->rq_disk->part0; 2803 hd_struct_get(part); 2804 } 2805 part_round_stats(rq->q, cpu, part); 2806 part_inc_in_flight(rq->q, part, rw); 2807 rq->part = part; 2808 } 2809 2810 part_stat_unlock(); 2811 } 2812 2813 static struct request *elv_next_request(struct request_queue *q) 2814 { 2815 struct request *rq; 2816 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 2817 2818 WARN_ON_ONCE(q->mq_ops); 2819 2820 while (1) { 2821 list_for_each_entry(rq, &q->queue_head, queuelist) { 2822 if (blk_pm_allow_request(rq)) 2823 return rq; 2824 2825 if (rq->rq_flags & RQF_SOFTBARRIER) 2826 break; 2827 } 2828 2829 /* 2830 * Flush request is running and flush request isn't queueable 2831 * in the drive, we can hold the queue till flush request is 2832 * finished. Even we don't do this, driver can't dispatch next 2833 * requests and will requeue them. And this can improve 2834 * throughput too. For example, we have request flush1, write1, 2835 * flush 2. flush1 is dispatched, then queue is hold, write1 2836 * isn't inserted to queue. After flush1 is finished, flush2 2837 * will be dispatched. Since disk cache is already clean, 2838 * flush2 will be finished very soon, so looks like flush2 is 2839 * folded to flush1. 2840 * Since the queue is hold, a flag is set to indicate the queue 2841 * should be restarted later. Please see flush_end_io() for 2842 * details. 2843 */ 2844 if (fq->flush_pending_idx != fq->flush_running_idx && 2845 !queue_flush_queueable(q)) { 2846 fq->flush_queue_delayed = 1; 2847 return NULL; 2848 } 2849 if (unlikely(blk_queue_bypass(q)) || 2850 !q->elevator->type->ops.sq.elevator_dispatch_fn(q, 0)) 2851 return NULL; 2852 } 2853 } 2854 2855 /** 2856 * blk_peek_request - peek at the top of a request queue 2857 * @q: request queue to peek at 2858 * 2859 * Description: 2860 * Return the request at the top of @q. The returned request 2861 * should be started using blk_start_request() before LLD starts 2862 * processing it. 2863 * 2864 * Return: 2865 * Pointer to the request at the top of @q if available. Null 2866 * otherwise. 2867 */ 2868 struct request *blk_peek_request(struct request_queue *q) 2869 { 2870 struct request *rq; 2871 int ret; 2872 2873 lockdep_assert_held(q->queue_lock); 2874 WARN_ON_ONCE(q->mq_ops); 2875 2876 while ((rq = elv_next_request(q)) != NULL) { 2877 if (!(rq->rq_flags & RQF_STARTED)) { 2878 /* 2879 * This is the first time the device driver 2880 * sees this request (possibly after 2881 * requeueing). Notify IO scheduler. 2882 */ 2883 if (rq->rq_flags & RQF_SORTED) 2884 elv_activate_rq(q, rq); 2885 2886 /* 2887 * just mark as started even if we don't start 2888 * it, a request that has been delayed should 2889 * not be passed by new incoming requests 2890 */ 2891 rq->rq_flags |= RQF_STARTED; 2892 trace_block_rq_issue(q, rq); 2893 } 2894 2895 if (!q->boundary_rq || q->boundary_rq == rq) { 2896 q->end_sector = rq_end_sector(rq); 2897 q->boundary_rq = NULL; 2898 } 2899 2900 if (rq->rq_flags & RQF_DONTPREP) 2901 break; 2902 2903 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2904 /* 2905 * make sure space for the drain appears we 2906 * know we can do this because max_hw_segments 2907 * has been adjusted to be one fewer than the 2908 * device can handle 2909 */ 2910 rq->nr_phys_segments++; 2911 } 2912 2913 if (!q->prep_rq_fn) 2914 break; 2915 2916 ret = q->prep_rq_fn(q, rq); 2917 if (ret == BLKPREP_OK) { 2918 break; 2919 } else if (ret == BLKPREP_DEFER) { 2920 /* 2921 * the request may have been (partially) prepped. 2922 * we need to keep this request in the front to 2923 * avoid resource deadlock. RQF_STARTED will 2924 * prevent other fs requests from passing this one. 2925 */ 2926 if (q->dma_drain_size && blk_rq_bytes(rq) && 2927 !(rq->rq_flags & RQF_DONTPREP)) { 2928 /* 2929 * remove the space for the drain we added 2930 * so that we don't add it again 2931 */ 2932 --rq->nr_phys_segments; 2933 } 2934 2935 rq = NULL; 2936 break; 2937 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2938 rq->rq_flags |= RQF_QUIET; 2939 /* 2940 * Mark this request as started so we don't trigger 2941 * any debug logic in the end I/O path. 2942 */ 2943 blk_start_request(rq); 2944 __blk_end_request_all(rq, ret == BLKPREP_INVALID ? 2945 BLK_STS_TARGET : BLK_STS_IOERR); 2946 } else { 2947 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2948 break; 2949 } 2950 } 2951 2952 return rq; 2953 } 2954 EXPORT_SYMBOL(blk_peek_request); 2955 2956 static void blk_dequeue_request(struct request *rq) 2957 { 2958 struct request_queue *q = rq->q; 2959 2960 BUG_ON(list_empty(&rq->queuelist)); 2961 BUG_ON(ELV_ON_HASH(rq)); 2962 2963 list_del_init(&rq->queuelist); 2964 2965 /* 2966 * the time frame between a request being removed from the lists 2967 * and to it is freed is accounted as io that is in progress at 2968 * the driver side. 2969 */ 2970 if (blk_account_rq(rq)) 2971 q->in_flight[rq_is_sync(rq)]++; 2972 } 2973 2974 /** 2975 * blk_start_request - start request processing on the driver 2976 * @req: request to dequeue 2977 * 2978 * Description: 2979 * Dequeue @req and start timeout timer on it. This hands off the 2980 * request to the driver. 2981 */ 2982 void blk_start_request(struct request *req) 2983 { 2984 lockdep_assert_held(req->q->queue_lock); 2985 WARN_ON_ONCE(req->q->mq_ops); 2986 2987 blk_dequeue_request(req); 2988 2989 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2990 req->io_start_time_ns = ktime_get_ns(); 2991 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW 2992 req->throtl_size = blk_rq_sectors(req); 2993 #endif 2994 req->rq_flags |= RQF_STATS; 2995 rq_qos_issue(req->q, req); 2996 } 2997 2998 BUG_ON(blk_rq_is_complete(req)); 2999 blk_add_timer(req); 3000 } 3001 EXPORT_SYMBOL(blk_start_request); 3002 3003 /** 3004 * blk_fetch_request - fetch a request from a request queue 3005 * @q: request queue to fetch a request from 3006 * 3007 * Description: 3008 * Return the request at the top of @q. The request is started on 3009 * return and LLD can start processing it immediately. 3010 * 3011 * Return: 3012 * Pointer to the request at the top of @q if available. Null 3013 * otherwise. 3014 */ 3015 struct request *blk_fetch_request(struct request_queue *q) 3016 { 3017 struct request *rq; 3018 3019 lockdep_assert_held(q->queue_lock); 3020 WARN_ON_ONCE(q->mq_ops); 3021 3022 rq = blk_peek_request(q); 3023 if (rq) 3024 blk_start_request(rq); 3025 return rq; 3026 } 3027 EXPORT_SYMBOL(blk_fetch_request); 3028 3029 /* 3030 * Steal bios from a request and add them to a bio list. 3031 * The request must not have been partially completed before. 3032 */ 3033 void blk_steal_bios(struct bio_list *list, struct request *rq) 3034 { 3035 if (rq->bio) { 3036 if (list->tail) 3037 list->tail->bi_next = rq->bio; 3038 else 3039 list->head = rq->bio; 3040 list->tail = rq->biotail; 3041 3042 rq->bio = NULL; 3043 rq->biotail = NULL; 3044 } 3045 3046 rq->__data_len = 0; 3047 } 3048 EXPORT_SYMBOL_GPL(blk_steal_bios); 3049 3050 /** 3051 * blk_update_request - Special helper function for request stacking drivers 3052 * @req: the request being processed 3053 * @error: block status code 3054 * @nr_bytes: number of bytes to complete @req 3055 * 3056 * Description: 3057 * Ends I/O on a number of bytes attached to @req, but doesn't complete 3058 * the request structure even if @req doesn't have leftover. 3059 * If @req has leftover, sets it up for the next range of segments. 3060 * 3061 * This special helper function is only for request stacking drivers 3062 * (e.g. request-based dm) so that they can handle partial completion. 3063 * Actual device drivers should use blk_end_request instead. 3064 * 3065 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 3066 * %false return from this function. 3067 * 3068 * Note: 3069 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 3070 * blk_rq_bytes() and in blk_update_request(). 3071 * 3072 * Return: 3073 * %false - this request doesn't have any more data 3074 * %true - this request has more data 3075 **/ 3076 bool blk_update_request(struct request *req, blk_status_t error, 3077 unsigned int nr_bytes) 3078 { 3079 int total_bytes; 3080 3081 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 3082 3083 if (!req->bio) 3084 return false; 3085 3086 if (unlikely(error && !blk_rq_is_passthrough(req) && 3087 !(req->rq_flags & RQF_QUIET))) 3088 print_req_error(req, error); 3089 3090 blk_account_io_completion(req, nr_bytes); 3091 3092 total_bytes = 0; 3093 while (req->bio) { 3094 struct bio *bio = req->bio; 3095 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 3096 3097 if (bio_bytes == bio->bi_iter.bi_size) 3098 req->bio = bio->bi_next; 3099 3100 /* Completion has already been traced */ 3101 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 3102 req_bio_endio(req, bio, bio_bytes, error); 3103 3104 total_bytes += bio_bytes; 3105 nr_bytes -= bio_bytes; 3106 3107 if (!nr_bytes) 3108 break; 3109 } 3110 3111 /* 3112 * completely done 3113 */ 3114 if (!req->bio) { 3115 /* 3116 * Reset counters so that the request stacking driver 3117 * can find how many bytes remain in the request 3118 * later. 3119 */ 3120 req->__data_len = 0; 3121 return false; 3122 } 3123 3124 req->__data_len -= total_bytes; 3125 3126 /* update sector only for requests with clear definition of sector */ 3127 if (!blk_rq_is_passthrough(req)) 3128 req->__sector += total_bytes >> 9; 3129 3130 /* mixed attributes always follow the first bio */ 3131 if (req->rq_flags & RQF_MIXED_MERGE) { 3132 req->cmd_flags &= ~REQ_FAILFAST_MASK; 3133 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 3134 } 3135 3136 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 3137 /* 3138 * If total number of sectors is less than the first segment 3139 * size, something has gone terribly wrong. 3140 */ 3141 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 3142 blk_dump_rq_flags(req, "request botched"); 3143 req->__data_len = blk_rq_cur_bytes(req); 3144 } 3145 3146 /* recalculate the number of segments */ 3147 blk_recalc_rq_segments(req); 3148 } 3149 3150 return true; 3151 } 3152 EXPORT_SYMBOL_GPL(blk_update_request); 3153 3154 static bool blk_update_bidi_request(struct request *rq, blk_status_t error, 3155 unsigned int nr_bytes, 3156 unsigned int bidi_bytes) 3157 { 3158 if (blk_update_request(rq, error, nr_bytes)) 3159 return true; 3160 3161 /* Bidi request must be completed as a whole */ 3162 if (unlikely(blk_bidi_rq(rq)) && 3163 blk_update_request(rq->next_rq, error, bidi_bytes)) 3164 return true; 3165 3166 if (blk_queue_add_random(rq->q)) 3167 add_disk_randomness(rq->rq_disk); 3168 3169 return false; 3170 } 3171 3172 /** 3173 * blk_unprep_request - unprepare a request 3174 * @req: the request 3175 * 3176 * This function makes a request ready for complete resubmission (or 3177 * completion). It happens only after all error handling is complete, 3178 * so represents the appropriate moment to deallocate any resources 3179 * that were allocated to the request in the prep_rq_fn. The queue 3180 * lock is held when calling this. 3181 */ 3182 void blk_unprep_request(struct request *req) 3183 { 3184 struct request_queue *q = req->q; 3185 3186 req->rq_flags &= ~RQF_DONTPREP; 3187 if (q->unprep_rq_fn) 3188 q->unprep_rq_fn(q, req); 3189 } 3190 EXPORT_SYMBOL_GPL(blk_unprep_request); 3191 3192 void blk_finish_request(struct request *req, blk_status_t error) 3193 { 3194 struct request_queue *q = req->q; 3195 u64 now = ktime_get_ns(); 3196 3197 lockdep_assert_held(req->q->queue_lock); 3198 WARN_ON_ONCE(q->mq_ops); 3199 3200 if (req->rq_flags & RQF_STATS) 3201 blk_stat_add(req, now); 3202 3203 if (req->rq_flags & RQF_QUEUED) 3204 blk_queue_end_tag(q, req); 3205 3206 BUG_ON(blk_queued_rq(req)); 3207 3208 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 3209 laptop_io_completion(req->q->backing_dev_info); 3210 3211 blk_delete_timer(req); 3212 3213 if (req->rq_flags & RQF_DONTPREP) 3214 blk_unprep_request(req); 3215 3216 blk_account_io_done(req, now); 3217 3218 if (req->end_io) { 3219 rq_qos_done(q, req); 3220 req->end_io(req, error); 3221 } else { 3222 if (blk_bidi_rq(req)) 3223 __blk_put_request(req->next_rq->q, req->next_rq); 3224 3225 __blk_put_request(q, req); 3226 } 3227 } 3228 EXPORT_SYMBOL(blk_finish_request); 3229 3230 /** 3231 * blk_end_bidi_request - Complete a bidi request 3232 * @rq: the request to complete 3233 * @error: block status code 3234 * @nr_bytes: number of bytes to complete @rq 3235 * @bidi_bytes: number of bytes to complete @rq->next_rq 3236 * 3237 * Description: 3238 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 3239 * Drivers that supports bidi can safely call this member for any 3240 * type of request, bidi or uni. In the later case @bidi_bytes is 3241 * just ignored. 3242 * 3243 * Return: 3244 * %false - we are done with this request 3245 * %true - still buffers pending for this request 3246 **/ 3247 static bool blk_end_bidi_request(struct request *rq, blk_status_t error, 3248 unsigned int nr_bytes, unsigned int bidi_bytes) 3249 { 3250 struct request_queue *q = rq->q; 3251 unsigned long flags; 3252 3253 WARN_ON_ONCE(q->mq_ops); 3254 3255 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3256 return true; 3257 3258 spin_lock_irqsave(q->queue_lock, flags); 3259 blk_finish_request(rq, error); 3260 spin_unlock_irqrestore(q->queue_lock, flags); 3261 3262 return false; 3263 } 3264 3265 /** 3266 * __blk_end_bidi_request - Complete a bidi request with queue lock held 3267 * @rq: the request to complete 3268 * @error: block status code 3269 * @nr_bytes: number of bytes to complete @rq 3270 * @bidi_bytes: number of bytes to complete @rq->next_rq 3271 * 3272 * Description: 3273 * Identical to blk_end_bidi_request() except that queue lock is 3274 * assumed to be locked on entry and remains so on return. 3275 * 3276 * Return: 3277 * %false - we are done with this request 3278 * %true - still buffers pending for this request 3279 **/ 3280 static bool __blk_end_bidi_request(struct request *rq, blk_status_t error, 3281 unsigned int nr_bytes, unsigned int bidi_bytes) 3282 { 3283 lockdep_assert_held(rq->q->queue_lock); 3284 WARN_ON_ONCE(rq->q->mq_ops); 3285 3286 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 3287 return true; 3288 3289 blk_finish_request(rq, error); 3290 3291 return false; 3292 } 3293 3294 /** 3295 * blk_end_request - Helper function for drivers to complete the request. 3296 * @rq: the request being processed 3297 * @error: block status code 3298 * @nr_bytes: number of bytes to complete 3299 * 3300 * Description: 3301 * Ends I/O on a number of bytes attached to @rq. 3302 * If @rq has leftover, sets it up for the next range of segments. 3303 * 3304 * Return: 3305 * %false - we are done with this request 3306 * %true - still buffers pending for this request 3307 **/ 3308 bool blk_end_request(struct request *rq, blk_status_t error, 3309 unsigned int nr_bytes) 3310 { 3311 WARN_ON_ONCE(rq->q->mq_ops); 3312 return blk_end_bidi_request(rq, error, nr_bytes, 0); 3313 } 3314 EXPORT_SYMBOL(blk_end_request); 3315 3316 /** 3317 * blk_end_request_all - Helper function for drives to finish the request. 3318 * @rq: the request to finish 3319 * @error: block status code 3320 * 3321 * Description: 3322 * Completely finish @rq. 3323 */ 3324 void blk_end_request_all(struct request *rq, blk_status_t error) 3325 { 3326 bool pending; 3327 unsigned int bidi_bytes = 0; 3328 3329 if (unlikely(blk_bidi_rq(rq))) 3330 bidi_bytes = blk_rq_bytes(rq->next_rq); 3331 3332 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3333 BUG_ON(pending); 3334 } 3335 EXPORT_SYMBOL(blk_end_request_all); 3336 3337 /** 3338 * __blk_end_request - Helper function for drivers to complete the request. 3339 * @rq: the request being processed 3340 * @error: block status code 3341 * @nr_bytes: number of bytes to complete 3342 * 3343 * Description: 3344 * Must be called with queue lock held unlike blk_end_request(). 3345 * 3346 * Return: 3347 * %false - we are done with this request 3348 * %true - still buffers pending for this request 3349 **/ 3350 bool __blk_end_request(struct request *rq, blk_status_t error, 3351 unsigned int nr_bytes) 3352 { 3353 lockdep_assert_held(rq->q->queue_lock); 3354 WARN_ON_ONCE(rq->q->mq_ops); 3355 3356 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 3357 } 3358 EXPORT_SYMBOL(__blk_end_request); 3359 3360 /** 3361 * __blk_end_request_all - Helper function for drives to finish the request. 3362 * @rq: the request to finish 3363 * @error: block status code 3364 * 3365 * Description: 3366 * Completely finish @rq. Must be called with queue lock held. 3367 */ 3368 void __blk_end_request_all(struct request *rq, blk_status_t error) 3369 { 3370 bool pending; 3371 unsigned int bidi_bytes = 0; 3372 3373 lockdep_assert_held(rq->q->queue_lock); 3374 WARN_ON_ONCE(rq->q->mq_ops); 3375 3376 if (unlikely(blk_bidi_rq(rq))) 3377 bidi_bytes = blk_rq_bytes(rq->next_rq); 3378 3379 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 3380 BUG_ON(pending); 3381 } 3382 EXPORT_SYMBOL(__blk_end_request_all); 3383 3384 /** 3385 * __blk_end_request_cur - Helper function to finish the current request chunk. 3386 * @rq: the request to finish the current chunk for 3387 * @error: block status code 3388 * 3389 * Description: 3390 * Complete the current consecutively mapped chunk from @rq. Must 3391 * be called with queue lock held. 3392 * 3393 * Return: 3394 * %false - we are done with this request 3395 * %true - still buffers pending for this request 3396 */ 3397 bool __blk_end_request_cur(struct request *rq, blk_status_t error) 3398 { 3399 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 3400 } 3401 EXPORT_SYMBOL(__blk_end_request_cur); 3402 3403 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 3404 struct bio *bio) 3405 { 3406 if (bio_has_data(bio)) 3407 rq->nr_phys_segments = bio_phys_segments(q, bio); 3408 else if (bio_op(bio) == REQ_OP_DISCARD) 3409 rq->nr_phys_segments = 1; 3410 3411 rq->__data_len = bio->bi_iter.bi_size; 3412 rq->bio = rq->biotail = bio; 3413 3414 if (bio->bi_disk) 3415 rq->rq_disk = bio->bi_disk; 3416 } 3417 3418 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 3419 /** 3420 * rq_flush_dcache_pages - Helper function to flush all pages in a request 3421 * @rq: the request to be flushed 3422 * 3423 * Description: 3424 * Flush all pages in @rq. 3425 */ 3426 void rq_flush_dcache_pages(struct request *rq) 3427 { 3428 struct req_iterator iter; 3429 struct bio_vec bvec; 3430 3431 rq_for_each_segment(bvec, rq, iter) 3432 flush_dcache_page(bvec.bv_page); 3433 } 3434 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 3435 #endif 3436 3437 /** 3438 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 3439 * @q : the queue of the device being checked 3440 * 3441 * Description: 3442 * Check if underlying low-level drivers of a device are busy. 3443 * If the drivers want to export their busy state, they must set own 3444 * exporting function using blk_queue_lld_busy() first. 3445 * 3446 * Basically, this function is used only by request stacking drivers 3447 * to stop dispatching requests to underlying devices when underlying 3448 * devices are busy. This behavior helps more I/O merging on the queue 3449 * of the request stacking driver and prevents I/O throughput regression 3450 * on burst I/O load. 3451 * 3452 * Return: 3453 * 0 - Not busy (The request stacking driver should dispatch request) 3454 * 1 - Busy (The request stacking driver should stop dispatching request) 3455 */ 3456 int blk_lld_busy(struct request_queue *q) 3457 { 3458 if (q->lld_busy_fn) 3459 return q->lld_busy_fn(q); 3460 3461 return 0; 3462 } 3463 EXPORT_SYMBOL_GPL(blk_lld_busy); 3464 3465 /** 3466 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 3467 * @rq: the clone request to be cleaned up 3468 * 3469 * Description: 3470 * Free all bios in @rq for a cloned request. 3471 */ 3472 void blk_rq_unprep_clone(struct request *rq) 3473 { 3474 struct bio *bio; 3475 3476 while ((bio = rq->bio) != NULL) { 3477 rq->bio = bio->bi_next; 3478 3479 bio_put(bio); 3480 } 3481 } 3482 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 3483 3484 /* 3485 * Copy attributes of the original request to the clone request. 3486 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 3487 */ 3488 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 3489 { 3490 dst->cpu = src->cpu; 3491 dst->__sector = blk_rq_pos(src); 3492 dst->__data_len = blk_rq_bytes(src); 3493 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 3494 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 3495 dst->special_vec = src->special_vec; 3496 } 3497 dst->nr_phys_segments = src->nr_phys_segments; 3498 dst->ioprio = src->ioprio; 3499 dst->extra_len = src->extra_len; 3500 } 3501 3502 /** 3503 * blk_rq_prep_clone - Helper function to setup clone request 3504 * @rq: the request to be setup 3505 * @rq_src: original request to be cloned 3506 * @bs: bio_set that bios for clone are allocated from 3507 * @gfp_mask: memory allocation mask for bio 3508 * @bio_ctr: setup function to be called for each clone bio. 3509 * Returns %0 for success, non %0 for failure. 3510 * @data: private data to be passed to @bio_ctr 3511 * 3512 * Description: 3513 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3514 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3515 * are not copied, and copying such parts is the caller's responsibility. 3516 * Also, pages which the original bios are pointing to are not copied 3517 * and the cloned bios just point same pages. 3518 * So cloned bios must be completed before original bios, which means 3519 * the caller must complete @rq before @rq_src. 3520 */ 3521 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3522 struct bio_set *bs, gfp_t gfp_mask, 3523 int (*bio_ctr)(struct bio *, struct bio *, void *), 3524 void *data) 3525 { 3526 struct bio *bio, *bio_src; 3527 3528 if (!bs) 3529 bs = &fs_bio_set; 3530 3531 __rq_for_each_bio(bio_src, rq_src) { 3532 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3533 if (!bio) 3534 goto free_and_out; 3535 3536 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3537 goto free_and_out; 3538 3539 if (rq->bio) { 3540 rq->biotail->bi_next = bio; 3541 rq->biotail = bio; 3542 } else 3543 rq->bio = rq->biotail = bio; 3544 } 3545 3546 __blk_rq_prep_clone(rq, rq_src); 3547 3548 return 0; 3549 3550 free_and_out: 3551 if (bio) 3552 bio_put(bio); 3553 blk_rq_unprep_clone(rq); 3554 3555 return -ENOMEM; 3556 } 3557 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3558 3559 int kblockd_schedule_work(struct work_struct *work) 3560 { 3561 return queue_work(kblockd_workqueue, work); 3562 } 3563 EXPORT_SYMBOL(kblockd_schedule_work); 3564 3565 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3566 { 3567 return queue_work_on(cpu, kblockd_workqueue, work); 3568 } 3569 EXPORT_SYMBOL(kblockd_schedule_work_on); 3570 3571 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3572 unsigned long delay) 3573 { 3574 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3575 } 3576 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3577 3578 /** 3579 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3580 * @plug: The &struct blk_plug that needs to be initialized 3581 * 3582 * Description: 3583 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3584 * pending I/O should the task end up blocking between blk_start_plug() and 3585 * blk_finish_plug(). This is important from a performance perspective, but 3586 * also ensures that we don't deadlock. For instance, if the task is blocking 3587 * for a memory allocation, memory reclaim could end up wanting to free a 3588 * page belonging to that request that is currently residing in our private 3589 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3590 * this kind of deadlock. 3591 */ 3592 void blk_start_plug(struct blk_plug *plug) 3593 { 3594 struct task_struct *tsk = current; 3595 3596 /* 3597 * If this is a nested plug, don't actually assign it. 3598 */ 3599 if (tsk->plug) 3600 return; 3601 3602 INIT_LIST_HEAD(&plug->list); 3603 INIT_LIST_HEAD(&plug->mq_list); 3604 INIT_LIST_HEAD(&plug->cb_list); 3605 /* 3606 * Store ordering should not be needed here, since a potential 3607 * preempt will imply a full memory barrier 3608 */ 3609 tsk->plug = plug; 3610 } 3611 EXPORT_SYMBOL(blk_start_plug); 3612 3613 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3614 { 3615 struct request *rqa = container_of(a, struct request, queuelist); 3616 struct request *rqb = container_of(b, struct request, queuelist); 3617 3618 return !(rqa->q < rqb->q || 3619 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3620 } 3621 3622 /* 3623 * If 'from_schedule' is true, then postpone the dispatch of requests 3624 * until a safe kblockd context. We due this to avoid accidental big 3625 * additional stack usage in driver dispatch, in places where the originally 3626 * plugger did not intend it. 3627 */ 3628 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3629 bool from_schedule) 3630 __releases(q->queue_lock) 3631 { 3632 lockdep_assert_held(q->queue_lock); 3633 3634 trace_block_unplug(q, depth, !from_schedule); 3635 3636 if (from_schedule) 3637 blk_run_queue_async(q); 3638 else 3639 __blk_run_queue(q); 3640 spin_unlock_irq(q->queue_lock); 3641 } 3642 3643 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3644 { 3645 LIST_HEAD(callbacks); 3646 3647 while (!list_empty(&plug->cb_list)) { 3648 list_splice_init(&plug->cb_list, &callbacks); 3649 3650 while (!list_empty(&callbacks)) { 3651 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3652 struct blk_plug_cb, 3653 list); 3654 list_del(&cb->list); 3655 cb->callback(cb, from_schedule); 3656 } 3657 } 3658 } 3659 3660 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3661 int size) 3662 { 3663 struct blk_plug *plug = current->plug; 3664 struct blk_plug_cb *cb; 3665 3666 if (!plug) 3667 return NULL; 3668 3669 list_for_each_entry(cb, &plug->cb_list, list) 3670 if (cb->callback == unplug && cb->data == data) 3671 return cb; 3672 3673 /* Not currently on the callback list */ 3674 BUG_ON(size < sizeof(*cb)); 3675 cb = kzalloc(size, GFP_ATOMIC); 3676 if (cb) { 3677 cb->data = data; 3678 cb->callback = unplug; 3679 list_add(&cb->list, &plug->cb_list); 3680 } 3681 return cb; 3682 } 3683 EXPORT_SYMBOL(blk_check_plugged); 3684 3685 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3686 { 3687 struct request_queue *q; 3688 struct request *rq; 3689 LIST_HEAD(list); 3690 unsigned int depth; 3691 3692 flush_plug_callbacks(plug, from_schedule); 3693 3694 if (!list_empty(&plug->mq_list)) 3695 blk_mq_flush_plug_list(plug, from_schedule); 3696 3697 if (list_empty(&plug->list)) 3698 return; 3699 3700 list_splice_init(&plug->list, &list); 3701 3702 list_sort(NULL, &list, plug_rq_cmp); 3703 3704 q = NULL; 3705 depth = 0; 3706 3707 while (!list_empty(&list)) { 3708 rq = list_entry_rq(list.next); 3709 list_del_init(&rq->queuelist); 3710 BUG_ON(!rq->q); 3711 if (rq->q != q) { 3712 /* 3713 * This drops the queue lock 3714 */ 3715 if (q) 3716 queue_unplugged(q, depth, from_schedule); 3717 q = rq->q; 3718 depth = 0; 3719 spin_lock_irq(q->queue_lock); 3720 } 3721 3722 /* 3723 * Short-circuit if @q is dead 3724 */ 3725 if (unlikely(blk_queue_dying(q))) { 3726 __blk_end_request_all(rq, BLK_STS_IOERR); 3727 continue; 3728 } 3729 3730 /* 3731 * rq is already accounted, so use raw insert 3732 */ 3733 if (op_is_flush(rq->cmd_flags)) 3734 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3735 else 3736 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3737 3738 depth++; 3739 } 3740 3741 /* 3742 * This drops the queue lock 3743 */ 3744 if (q) 3745 queue_unplugged(q, depth, from_schedule); 3746 } 3747 3748 void blk_finish_plug(struct blk_plug *plug) 3749 { 3750 if (plug != current->plug) 3751 return; 3752 blk_flush_plug_list(plug, false); 3753 3754 current->plug = NULL; 3755 } 3756 EXPORT_SYMBOL(blk_finish_plug); 3757 3758 #ifdef CONFIG_PM 3759 /** 3760 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3761 * @q: the queue of the device 3762 * @dev: the device the queue belongs to 3763 * 3764 * Description: 3765 * Initialize runtime-PM-related fields for @q and start auto suspend for 3766 * @dev. Drivers that want to take advantage of request-based runtime PM 3767 * should call this function after @dev has been initialized, and its 3768 * request queue @q has been allocated, and runtime PM for it can not happen 3769 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3770 * cases, driver should call this function before any I/O has taken place. 3771 * 3772 * This function takes care of setting up using auto suspend for the device, 3773 * the autosuspend delay is set to -1 to make runtime suspend impossible 3774 * until an updated value is either set by user or by driver. Drivers do 3775 * not need to touch other autosuspend settings. 3776 * 3777 * The block layer runtime PM is request based, so only works for drivers 3778 * that use request as their IO unit instead of those directly use bio's. 3779 */ 3780 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3781 { 3782 /* Don't enable runtime PM for blk-mq until it is ready */ 3783 if (q->mq_ops) { 3784 pm_runtime_disable(dev); 3785 return; 3786 } 3787 3788 q->dev = dev; 3789 q->rpm_status = RPM_ACTIVE; 3790 pm_runtime_set_autosuspend_delay(q->dev, -1); 3791 pm_runtime_use_autosuspend(q->dev); 3792 } 3793 EXPORT_SYMBOL(blk_pm_runtime_init); 3794 3795 /** 3796 * blk_pre_runtime_suspend - Pre runtime suspend check 3797 * @q: the queue of the device 3798 * 3799 * Description: 3800 * This function will check if runtime suspend is allowed for the device 3801 * by examining if there are any requests pending in the queue. If there 3802 * are requests pending, the device can not be runtime suspended; otherwise, 3803 * the queue's status will be updated to SUSPENDING and the driver can 3804 * proceed to suspend the device. 3805 * 3806 * For the not allowed case, we mark last busy for the device so that 3807 * runtime PM core will try to autosuspend it some time later. 3808 * 3809 * This function should be called near the start of the device's 3810 * runtime_suspend callback. 3811 * 3812 * Return: 3813 * 0 - OK to runtime suspend the device 3814 * -EBUSY - Device should not be runtime suspended 3815 */ 3816 int blk_pre_runtime_suspend(struct request_queue *q) 3817 { 3818 int ret = 0; 3819 3820 if (!q->dev) 3821 return ret; 3822 3823 spin_lock_irq(q->queue_lock); 3824 if (q->nr_pending) { 3825 ret = -EBUSY; 3826 pm_runtime_mark_last_busy(q->dev); 3827 } else { 3828 q->rpm_status = RPM_SUSPENDING; 3829 } 3830 spin_unlock_irq(q->queue_lock); 3831 return ret; 3832 } 3833 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3834 3835 /** 3836 * blk_post_runtime_suspend - Post runtime suspend processing 3837 * @q: the queue of the device 3838 * @err: return value of the device's runtime_suspend function 3839 * 3840 * Description: 3841 * Update the queue's runtime status according to the return value of the 3842 * device's runtime suspend function and mark last busy for the device so 3843 * that PM core will try to auto suspend the device at a later time. 3844 * 3845 * This function should be called near the end of the device's 3846 * runtime_suspend callback. 3847 */ 3848 void blk_post_runtime_suspend(struct request_queue *q, int err) 3849 { 3850 if (!q->dev) 3851 return; 3852 3853 spin_lock_irq(q->queue_lock); 3854 if (!err) { 3855 q->rpm_status = RPM_SUSPENDED; 3856 } else { 3857 q->rpm_status = RPM_ACTIVE; 3858 pm_runtime_mark_last_busy(q->dev); 3859 } 3860 spin_unlock_irq(q->queue_lock); 3861 } 3862 EXPORT_SYMBOL(blk_post_runtime_suspend); 3863 3864 /** 3865 * blk_pre_runtime_resume - Pre runtime resume processing 3866 * @q: the queue of the device 3867 * 3868 * Description: 3869 * Update the queue's runtime status to RESUMING in preparation for the 3870 * runtime resume of the device. 3871 * 3872 * This function should be called near the start of the device's 3873 * runtime_resume callback. 3874 */ 3875 void blk_pre_runtime_resume(struct request_queue *q) 3876 { 3877 if (!q->dev) 3878 return; 3879 3880 spin_lock_irq(q->queue_lock); 3881 q->rpm_status = RPM_RESUMING; 3882 spin_unlock_irq(q->queue_lock); 3883 } 3884 EXPORT_SYMBOL(blk_pre_runtime_resume); 3885 3886 /** 3887 * blk_post_runtime_resume - Post runtime resume processing 3888 * @q: the queue of the device 3889 * @err: return value of the device's runtime_resume function 3890 * 3891 * Description: 3892 * Update the queue's runtime status according to the return value of the 3893 * device's runtime_resume function. If it is successfully resumed, process 3894 * the requests that are queued into the device's queue when it is resuming 3895 * and then mark last busy and initiate autosuspend for it. 3896 * 3897 * This function should be called near the end of the device's 3898 * runtime_resume callback. 3899 */ 3900 void blk_post_runtime_resume(struct request_queue *q, int err) 3901 { 3902 if (!q->dev) 3903 return; 3904 3905 spin_lock_irq(q->queue_lock); 3906 if (!err) { 3907 q->rpm_status = RPM_ACTIVE; 3908 __blk_run_queue(q); 3909 pm_runtime_mark_last_busy(q->dev); 3910 pm_request_autosuspend(q->dev); 3911 } else { 3912 q->rpm_status = RPM_SUSPENDED; 3913 } 3914 spin_unlock_irq(q->queue_lock); 3915 } 3916 EXPORT_SYMBOL(blk_post_runtime_resume); 3917 3918 /** 3919 * blk_set_runtime_active - Force runtime status of the queue to be active 3920 * @q: the queue of the device 3921 * 3922 * If the device is left runtime suspended during system suspend the resume 3923 * hook typically resumes the device and corrects runtime status 3924 * accordingly. However, that does not affect the queue runtime PM status 3925 * which is still "suspended". This prevents processing requests from the 3926 * queue. 3927 * 3928 * This function can be used in driver's resume hook to correct queue 3929 * runtime PM status and re-enable peeking requests from the queue. It 3930 * should be called before first request is added to the queue. 3931 */ 3932 void blk_set_runtime_active(struct request_queue *q) 3933 { 3934 spin_lock_irq(q->queue_lock); 3935 q->rpm_status = RPM_ACTIVE; 3936 pm_runtime_mark_last_busy(q->dev); 3937 pm_request_autosuspend(q->dev); 3938 spin_unlock_irq(q->queue_lock); 3939 } 3940 EXPORT_SYMBOL(blk_set_runtime_active); 3941 #endif 3942 3943 int __init blk_dev_init(void) 3944 { 3945 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3946 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3947 FIELD_SIZEOF(struct request, cmd_flags)); 3948 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3949 FIELD_SIZEOF(struct bio, bi_opf)); 3950 3951 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3952 kblockd_workqueue = alloc_workqueue("kblockd", 3953 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3954 if (!kblockd_workqueue) 3955 panic("Failed to create kblockd\n"); 3956 3957 request_cachep = kmem_cache_create("blkdev_requests", 3958 sizeof(struct request), 0, SLAB_PANIC, NULL); 3959 3960 blk_requestq_cachep = kmem_cache_create("request_queue", 3961 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3962 3963 #ifdef CONFIG_DEBUG_FS 3964 blk_debugfs_root = debugfs_create_dir("block", NULL); 3965 #endif 3966 3967 return 0; 3968 } 3969