xref: /openbmc/linux/block/blk-core.c (revision 2127c01b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42 
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48 
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52 
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58 
59 DEFINE_IDA(blk_queue_ida);
60 
61 /*
62  * For queue allocation
63  */
64 struct kmem_cache *blk_requestq_cachep;
65 
66 /*
67  * Controlling structure to kblockd
68  */
69 static struct workqueue_struct *kblockd_workqueue;
70 
71 /**
72  * blk_queue_flag_set - atomically set a queue flag
73  * @flag: flag to be set
74  * @q: request queue
75  */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 	set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81 
82 /**
83  * blk_queue_flag_clear - atomically clear a queue flag
84  * @flag: flag to be cleared
85  * @q: request queue
86  */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 	clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92 
93 /**
94  * blk_queue_flag_test_and_set - atomically test and set a queue flag
95  * @flag: flag to be set
96  * @q: request queue
97  *
98  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99  * the flag was already set.
100  */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 	return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106 
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 	memset(rq, 0, sizeof(*rq));
110 
111 	INIT_LIST_HEAD(&rq->queuelist);
112 	rq->q = q;
113 	rq->__sector = (sector_t) -1;
114 	INIT_HLIST_NODE(&rq->hash);
115 	RB_CLEAR_NODE(&rq->rb_node);
116 	rq->tag = -1;
117 	rq->internal_tag = -1;
118 	rq->start_time_ns = ktime_get_ns();
119 	rq->part = NULL;
120 	refcount_set(&rq->ref, 1);
121 }
122 EXPORT_SYMBOL(blk_rq_init);
123 
124 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
125 static const char *const blk_op_name[] = {
126 	REQ_OP_NAME(READ),
127 	REQ_OP_NAME(WRITE),
128 	REQ_OP_NAME(FLUSH),
129 	REQ_OP_NAME(DISCARD),
130 	REQ_OP_NAME(SECURE_ERASE),
131 	REQ_OP_NAME(ZONE_RESET),
132 	REQ_OP_NAME(WRITE_SAME),
133 	REQ_OP_NAME(WRITE_ZEROES),
134 	REQ_OP_NAME(SCSI_IN),
135 	REQ_OP_NAME(SCSI_OUT),
136 	REQ_OP_NAME(DRV_IN),
137 	REQ_OP_NAME(DRV_OUT),
138 };
139 #undef REQ_OP_NAME
140 
141 /**
142  * blk_op_str - Return string XXX in the REQ_OP_XXX.
143  * @op: REQ_OP_XXX.
144  *
145  * Description: Centralize block layer function to convert REQ_OP_XXX into
146  * string format. Useful in the debugging and tracing bio or request. For
147  * invalid REQ_OP_XXX it returns string "UNKNOWN".
148  */
149 inline const char *blk_op_str(unsigned int op)
150 {
151 	const char *op_str = "UNKNOWN";
152 
153 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
154 		op_str = blk_op_name[op];
155 
156 	return op_str;
157 }
158 EXPORT_SYMBOL_GPL(blk_op_str);
159 
160 static const struct {
161 	int		errno;
162 	const char	*name;
163 } blk_errors[] = {
164 	[BLK_STS_OK]		= { 0,		"" },
165 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
166 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
167 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
168 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
169 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
170 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
171 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
172 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
173 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
174 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
175 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
176 
177 	/* device mapper special case, should not leak out: */
178 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
179 
180 	/* everything else not covered above: */
181 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
182 };
183 
184 blk_status_t errno_to_blk_status(int errno)
185 {
186 	int i;
187 
188 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
189 		if (blk_errors[i].errno == errno)
190 			return (__force blk_status_t)i;
191 	}
192 
193 	return BLK_STS_IOERR;
194 }
195 EXPORT_SYMBOL_GPL(errno_to_blk_status);
196 
197 int blk_status_to_errno(blk_status_t status)
198 {
199 	int idx = (__force int)status;
200 
201 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
202 		return -EIO;
203 	return blk_errors[idx].errno;
204 }
205 EXPORT_SYMBOL_GPL(blk_status_to_errno);
206 
207 static void print_req_error(struct request *req, blk_status_t status,
208 		const char *caller)
209 {
210 	int idx = (__force int)status;
211 
212 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
213 		return;
214 
215 	printk_ratelimited(KERN_ERR
216 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
217 		"phys_seg %u prio class %u\n",
218 		caller, blk_errors[idx].name,
219 		req->rq_disk ? req->rq_disk->disk_name : "?",
220 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
221 		req->cmd_flags & ~REQ_OP_MASK,
222 		req->nr_phys_segments,
223 		IOPRIO_PRIO_CLASS(req->ioprio));
224 }
225 
226 static void req_bio_endio(struct request *rq, struct bio *bio,
227 			  unsigned int nbytes, blk_status_t error)
228 {
229 	if (error)
230 		bio->bi_status = error;
231 
232 	if (unlikely(rq->rq_flags & RQF_QUIET))
233 		bio_set_flag(bio, BIO_QUIET);
234 
235 	bio_advance(bio, nbytes);
236 
237 	/* don't actually finish bio if it's part of flush sequence */
238 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
239 		bio_endio(bio);
240 }
241 
242 void blk_dump_rq_flags(struct request *rq, char *msg)
243 {
244 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
245 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
246 		(unsigned long long) rq->cmd_flags);
247 
248 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
249 	       (unsigned long long)blk_rq_pos(rq),
250 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
251 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
252 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
253 }
254 EXPORT_SYMBOL(blk_dump_rq_flags);
255 
256 /**
257  * blk_sync_queue - cancel any pending callbacks on a queue
258  * @q: the queue
259  *
260  * Description:
261  *     The block layer may perform asynchronous callback activity
262  *     on a queue, such as calling the unplug function after a timeout.
263  *     A block device may call blk_sync_queue to ensure that any
264  *     such activity is cancelled, thus allowing it to release resources
265  *     that the callbacks might use. The caller must already have made sure
266  *     that its ->make_request_fn will not re-add plugging prior to calling
267  *     this function.
268  *
269  *     This function does not cancel any asynchronous activity arising
270  *     out of elevator or throttling code. That would require elevator_exit()
271  *     and blkcg_exit_queue() to be called with queue lock initialized.
272  *
273  */
274 void blk_sync_queue(struct request_queue *q)
275 {
276 	del_timer_sync(&q->timeout);
277 	cancel_work_sync(&q->timeout_work);
278 }
279 EXPORT_SYMBOL(blk_sync_queue);
280 
281 /**
282  * blk_set_pm_only - increment pm_only counter
283  * @q: request queue pointer
284  */
285 void blk_set_pm_only(struct request_queue *q)
286 {
287 	atomic_inc(&q->pm_only);
288 }
289 EXPORT_SYMBOL_GPL(blk_set_pm_only);
290 
291 void blk_clear_pm_only(struct request_queue *q)
292 {
293 	int pm_only;
294 
295 	pm_only = atomic_dec_return(&q->pm_only);
296 	WARN_ON_ONCE(pm_only < 0);
297 	if (pm_only == 0)
298 		wake_up_all(&q->mq_freeze_wq);
299 }
300 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
301 
302 void blk_put_queue(struct request_queue *q)
303 {
304 	kobject_put(&q->kobj);
305 }
306 EXPORT_SYMBOL(blk_put_queue);
307 
308 void blk_set_queue_dying(struct request_queue *q)
309 {
310 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
311 
312 	/*
313 	 * When queue DYING flag is set, we need to block new req
314 	 * entering queue, so we call blk_freeze_queue_start() to
315 	 * prevent I/O from crossing blk_queue_enter().
316 	 */
317 	blk_freeze_queue_start(q);
318 
319 	if (queue_is_mq(q))
320 		blk_mq_wake_waiters(q);
321 
322 	/* Make blk_queue_enter() reexamine the DYING flag. */
323 	wake_up_all(&q->mq_freeze_wq);
324 }
325 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
326 
327 /**
328  * blk_cleanup_queue - shutdown a request queue
329  * @q: request queue to shutdown
330  *
331  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
332  * put it.  All future requests will be failed immediately with -ENODEV.
333  */
334 void blk_cleanup_queue(struct request_queue *q)
335 {
336 	/* mark @q DYING, no new request or merges will be allowed afterwards */
337 	mutex_lock(&q->sysfs_lock);
338 	blk_set_queue_dying(q);
339 
340 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
341 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
342 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
343 	mutex_unlock(&q->sysfs_lock);
344 
345 	/*
346 	 * Drain all requests queued before DYING marking. Set DEAD flag to
347 	 * prevent that q->request_fn() gets invoked after draining finished.
348 	 */
349 	blk_freeze_queue(q);
350 
351 	rq_qos_exit(q);
352 
353 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
354 
355 	/* for synchronous bio-based driver finish in-flight integrity i/o */
356 	blk_flush_integrity();
357 
358 	/* @q won't process any more request, flush async actions */
359 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
360 	blk_sync_queue(q);
361 
362 	if (queue_is_mq(q))
363 		blk_mq_exit_queue(q);
364 
365 	/*
366 	 * In theory, request pool of sched_tags belongs to request queue.
367 	 * However, the current implementation requires tag_set for freeing
368 	 * requests, so free the pool now.
369 	 *
370 	 * Queue has become frozen, there can't be any in-queue requests, so
371 	 * it is safe to free requests now.
372 	 */
373 	mutex_lock(&q->sysfs_lock);
374 	if (q->elevator)
375 		blk_mq_sched_free_requests(q);
376 	mutex_unlock(&q->sysfs_lock);
377 
378 	percpu_ref_exit(&q->q_usage_counter);
379 
380 	/* @q is and will stay empty, shutdown and put */
381 	blk_put_queue(q);
382 }
383 EXPORT_SYMBOL(blk_cleanup_queue);
384 
385 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
386 {
387 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
388 }
389 EXPORT_SYMBOL(blk_alloc_queue);
390 
391 /**
392  * blk_queue_enter() - try to increase q->q_usage_counter
393  * @q: request queue pointer
394  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
395  */
396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
397 {
398 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
399 
400 	while (true) {
401 		bool success = false;
402 
403 		rcu_read_lock();
404 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
405 			/*
406 			 * The code that increments the pm_only counter is
407 			 * responsible for ensuring that that counter is
408 			 * globally visible before the queue is unfrozen.
409 			 */
410 			if (pm || !blk_queue_pm_only(q)) {
411 				success = true;
412 			} else {
413 				percpu_ref_put(&q->q_usage_counter);
414 			}
415 		}
416 		rcu_read_unlock();
417 
418 		if (success)
419 			return 0;
420 
421 		if (flags & BLK_MQ_REQ_NOWAIT)
422 			return -EBUSY;
423 
424 		/*
425 		 * read pair of barrier in blk_freeze_queue_start(),
426 		 * we need to order reading __PERCPU_REF_DEAD flag of
427 		 * .q_usage_counter and reading .mq_freeze_depth or
428 		 * queue dying flag, otherwise the following wait may
429 		 * never return if the two reads are reordered.
430 		 */
431 		smp_rmb();
432 
433 		wait_event(q->mq_freeze_wq,
434 			   (!q->mq_freeze_depth &&
435 			    (pm || (blk_pm_request_resume(q),
436 				    !blk_queue_pm_only(q)))) ||
437 			   blk_queue_dying(q));
438 		if (blk_queue_dying(q))
439 			return -ENODEV;
440 	}
441 }
442 
443 void blk_queue_exit(struct request_queue *q)
444 {
445 	percpu_ref_put(&q->q_usage_counter);
446 }
447 
448 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
449 {
450 	struct request_queue *q =
451 		container_of(ref, struct request_queue, q_usage_counter);
452 
453 	wake_up_all(&q->mq_freeze_wq);
454 }
455 
456 static void blk_rq_timed_out_timer(struct timer_list *t)
457 {
458 	struct request_queue *q = from_timer(q, t, timeout);
459 
460 	kblockd_schedule_work(&q->timeout_work);
461 }
462 
463 static void blk_timeout_work(struct work_struct *work)
464 {
465 }
466 
467 /**
468  * blk_alloc_queue_node - allocate a request queue
469  * @gfp_mask: memory allocation flags
470  * @node_id: NUMA node to allocate memory from
471  */
472 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
473 {
474 	struct request_queue *q;
475 	int ret;
476 
477 	q = kmem_cache_alloc_node(blk_requestq_cachep,
478 				gfp_mask | __GFP_ZERO, node_id);
479 	if (!q)
480 		return NULL;
481 
482 	INIT_LIST_HEAD(&q->queue_head);
483 	q->last_merge = NULL;
484 
485 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
486 	if (q->id < 0)
487 		goto fail_q;
488 
489 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
490 	if (ret)
491 		goto fail_id;
492 
493 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
494 	if (!q->backing_dev_info)
495 		goto fail_split;
496 
497 	q->stats = blk_alloc_queue_stats();
498 	if (!q->stats)
499 		goto fail_stats;
500 
501 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
502 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
503 	q->backing_dev_info->name = "block";
504 	q->node = node_id;
505 
506 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
507 		    laptop_mode_timer_fn, 0);
508 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
509 	INIT_WORK(&q->timeout_work, blk_timeout_work);
510 	INIT_LIST_HEAD(&q->icq_list);
511 #ifdef CONFIG_BLK_CGROUP
512 	INIT_LIST_HEAD(&q->blkg_list);
513 #endif
514 
515 	kobject_init(&q->kobj, &blk_queue_ktype);
516 
517 #ifdef CONFIG_BLK_DEV_IO_TRACE
518 	mutex_init(&q->blk_trace_mutex);
519 #endif
520 	mutex_init(&q->sysfs_lock);
521 	spin_lock_init(&q->queue_lock);
522 
523 	init_waitqueue_head(&q->mq_freeze_wq);
524 	mutex_init(&q->mq_freeze_lock);
525 
526 	/*
527 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
528 	 * See blk_register_queue() for details.
529 	 */
530 	if (percpu_ref_init(&q->q_usage_counter,
531 				blk_queue_usage_counter_release,
532 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
533 		goto fail_bdi;
534 
535 	if (blkcg_init_queue(q))
536 		goto fail_ref;
537 
538 	return q;
539 
540 fail_ref:
541 	percpu_ref_exit(&q->q_usage_counter);
542 fail_bdi:
543 	blk_free_queue_stats(q->stats);
544 fail_stats:
545 	bdi_put(q->backing_dev_info);
546 fail_split:
547 	bioset_exit(&q->bio_split);
548 fail_id:
549 	ida_simple_remove(&blk_queue_ida, q->id);
550 fail_q:
551 	kmem_cache_free(blk_requestq_cachep, q);
552 	return NULL;
553 }
554 EXPORT_SYMBOL(blk_alloc_queue_node);
555 
556 bool blk_get_queue(struct request_queue *q)
557 {
558 	if (likely(!blk_queue_dying(q))) {
559 		__blk_get_queue(q);
560 		return true;
561 	}
562 
563 	return false;
564 }
565 EXPORT_SYMBOL(blk_get_queue);
566 
567 /**
568  * blk_get_request - allocate a request
569  * @q: request queue to allocate a request for
570  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
571  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
572  */
573 struct request *blk_get_request(struct request_queue *q, unsigned int op,
574 				blk_mq_req_flags_t flags)
575 {
576 	struct request *req;
577 
578 	WARN_ON_ONCE(op & REQ_NOWAIT);
579 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
580 
581 	req = blk_mq_alloc_request(q, op, flags);
582 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
583 		q->mq_ops->initialize_rq_fn(req);
584 
585 	return req;
586 }
587 EXPORT_SYMBOL(blk_get_request);
588 
589 void blk_put_request(struct request *req)
590 {
591 	blk_mq_free_request(req);
592 }
593 EXPORT_SYMBOL(blk_put_request);
594 
595 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
596 		unsigned int nr_segs)
597 {
598 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
599 
600 	if (!ll_back_merge_fn(req, bio, nr_segs))
601 		return false;
602 
603 	trace_block_bio_backmerge(req->q, req, bio);
604 
605 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
606 		blk_rq_set_mixed_merge(req);
607 
608 	req->biotail->bi_next = bio;
609 	req->biotail = bio;
610 	req->__data_len += bio->bi_iter.bi_size;
611 
612 	blk_account_io_start(req, false);
613 	return true;
614 }
615 
616 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
617 		unsigned int nr_segs)
618 {
619 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
620 
621 	if (!ll_front_merge_fn(req, bio, nr_segs))
622 		return false;
623 
624 	trace_block_bio_frontmerge(req->q, req, bio);
625 
626 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
627 		blk_rq_set_mixed_merge(req);
628 
629 	bio->bi_next = req->bio;
630 	req->bio = bio;
631 
632 	req->__sector = bio->bi_iter.bi_sector;
633 	req->__data_len += bio->bi_iter.bi_size;
634 
635 	blk_account_io_start(req, false);
636 	return true;
637 }
638 
639 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
640 		struct bio *bio)
641 {
642 	unsigned short segments = blk_rq_nr_discard_segments(req);
643 
644 	if (segments >= queue_max_discard_segments(q))
645 		goto no_merge;
646 	if (blk_rq_sectors(req) + bio_sectors(bio) >
647 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
648 		goto no_merge;
649 
650 	req->biotail->bi_next = bio;
651 	req->biotail = bio;
652 	req->__data_len += bio->bi_iter.bi_size;
653 	req->nr_phys_segments = segments + 1;
654 
655 	blk_account_io_start(req, false);
656 	return true;
657 no_merge:
658 	req_set_nomerge(q, req);
659 	return false;
660 }
661 
662 /**
663  * blk_attempt_plug_merge - try to merge with %current's plugged list
664  * @q: request_queue new bio is being queued at
665  * @bio: new bio being queued
666  * @nr_segs: number of segments in @bio
667  * @same_queue_rq: pointer to &struct request that gets filled in when
668  * another request associated with @q is found on the plug list
669  * (optional, may be %NULL)
670  *
671  * Determine whether @bio being queued on @q can be merged with a request
672  * on %current's plugged list.  Returns %true if merge was successful,
673  * otherwise %false.
674  *
675  * Plugging coalesces IOs from the same issuer for the same purpose without
676  * going through @q->queue_lock.  As such it's more of an issuing mechanism
677  * than scheduling, and the request, while may have elvpriv data, is not
678  * added on the elevator at this point.  In addition, we don't have
679  * reliable access to the elevator outside queue lock.  Only check basic
680  * merging parameters without querying the elevator.
681  *
682  * Caller must ensure !blk_queue_nomerges(q) beforehand.
683  */
684 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
685 		unsigned int nr_segs, struct request **same_queue_rq)
686 {
687 	struct blk_plug *plug;
688 	struct request *rq;
689 	struct list_head *plug_list;
690 
691 	plug = blk_mq_plug(q, bio);
692 	if (!plug)
693 		return false;
694 
695 	plug_list = &plug->mq_list;
696 
697 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
698 		bool merged = false;
699 
700 		if (rq->q == q && same_queue_rq) {
701 			/*
702 			 * Only blk-mq multiple hardware queues case checks the
703 			 * rq in the same queue, there should be only one such
704 			 * rq in a queue
705 			 **/
706 			*same_queue_rq = rq;
707 		}
708 
709 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
710 			continue;
711 
712 		switch (blk_try_merge(rq, bio)) {
713 		case ELEVATOR_BACK_MERGE:
714 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
715 			break;
716 		case ELEVATOR_FRONT_MERGE:
717 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
718 			break;
719 		case ELEVATOR_DISCARD_MERGE:
720 			merged = bio_attempt_discard_merge(q, rq, bio);
721 			break;
722 		default:
723 			break;
724 		}
725 
726 		if (merged)
727 			return true;
728 	}
729 
730 	return false;
731 }
732 
733 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
734 {
735 	char b[BDEVNAME_SIZE];
736 
737 	printk(KERN_INFO "attempt to access beyond end of device\n");
738 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
739 			bio_devname(bio, b), bio->bi_opf,
740 			(unsigned long long)bio_end_sector(bio),
741 			(long long)maxsector);
742 }
743 
744 #ifdef CONFIG_FAIL_MAKE_REQUEST
745 
746 static DECLARE_FAULT_ATTR(fail_make_request);
747 
748 static int __init setup_fail_make_request(char *str)
749 {
750 	return setup_fault_attr(&fail_make_request, str);
751 }
752 __setup("fail_make_request=", setup_fail_make_request);
753 
754 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
755 {
756 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
757 }
758 
759 static int __init fail_make_request_debugfs(void)
760 {
761 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
762 						NULL, &fail_make_request);
763 
764 	return PTR_ERR_OR_ZERO(dir);
765 }
766 
767 late_initcall(fail_make_request_debugfs);
768 
769 #else /* CONFIG_FAIL_MAKE_REQUEST */
770 
771 static inline bool should_fail_request(struct hd_struct *part,
772 					unsigned int bytes)
773 {
774 	return false;
775 }
776 
777 #endif /* CONFIG_FAIL_MAKE_REQUEST */
778 
779 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
780 {
781 	const int op = bio_op(bio);
782 
783 	if (part->policy && op_is_write(op)) {
784 		char b[BDEVNAME_SIZE];
785 
786 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
787 			return false;
788 
789 		WARN_ONCE(1,
790 		       "generic_make_request: Trying to write "
791 			"to read-only block-device %s (partno %d)\n",
792 			bio_devname(bio, b), part->partno);
793 		/* Older lvm-tools actually trigger this */
794 		return false;
795 	}
796 
797 	return false;
798 }
799 
800 static noinline int should_fail_bio(struct bio *bio)
801 {
802 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
803 		return -EIO;
804 	return 0;
805 }
806 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
807 
808 /*
809  * Check whether this bio extends beyond the end of the device or partition.
810  * This may well happen - the kernel calls bread() without checking the size of
811  * the device, e.g., when mounting a file system.
812  */
813 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
814 {
815 	unsigned int nr_sectors = bio_sectors(bio);
816 
817 	if (nr_sectors && maxsector &&
818 	    (nr_sectors > maxsector ||
819 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
820 		handle_bad_sector(bio, maxsector);
821 		return -EIO;
822 	}
823 	return 0;
824 }
825 
826 /*
827  * Remap block n of partition p to block n+start(p) of the disk.
828  */
829 static inline int blk_partition_remap(struct bio *bio)
830 {
831 	struct hd_struct *p;
832 	int ret = -EIO;
833 
834 	rcu_read_lock();
835 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
836 	if (unlikely(!p))
837 		goto out;
838 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
839 		goto out;
840 	if (unlikely(bio_check_ro(bio, p)))
841 		goto out;
842 
843 	/*
844 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
845 	 * Include a test for the reset op code and perform the remap if needed.
846 	 */
847 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
848 		if (bio_check_eod(bio, part_nr_sects_read(p)))
849 			goto out;
850 		bio->bi_iter.bi_sector += p->start_sect;
851 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
852 				      bio->bi_iter.bi_sector - p->start_sect);
853 	}
854 	bio->bi_partno = 0;
855 	ret = 0;
856 out:
857 	rcu_read_unlock();
858 	return ret;
859 }
860 
861 static noinline_for_stack bool
862 generic_make_request_checks(struct bio *bio)
863 {
864 	struct request_queue *q;
865 	int nr_sectors = bio_sectors(bio);
866 	blk_status_t status = BLK_STS_IOERR;
867 	char b[BDEVNAME_SIZE];
868 
869 	might_sleep();
870 
871 	q = bio->bi_disk->queue;
872 	if (unlikely(!q)) {
873 		printk(KERN_ERR
874 		       "generic_make_request: Trying to access "
875 			"nonexistent block-device %s (%Lu)\n",
876 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
877 		goto end_io;
878 	}
879 
880 	/*
881 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
882 	 * if queue is not a request based queue.
883 	 */
884 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
885 		goto not_supported;
886 
887 	if (should_fail_bio(bio))
888 		goto end_io;
889 
890 	if (bio->bi_partno) {
891 		if (unlikely(blk_partition_remap(bio)))
892 			goto end_io;
893 	} else {
894 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
895 			goto end_io;
896 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
897 			goto end_io;
898 	}
899 
900 	/*
901 	 * Filter flush bio's early so that make_request based
902 	 * drivers without flush support don't have to worry
903 	 * about them.
904 	 */
905 	if (op_is_flush(bio->bi_opf) &&
906 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
907 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
908 		if (!nr_sectors) {
909 			status = BLK_STS_OK;
910 			goto end_io;
911 		}
912 	}
913 
914 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
915 		bio->bi_opf &= ~REQ_HIPRI;
916 
917 	switch (bio_op(bio)) {
918 	case REQ_OP_DISCARD:
919 		if (!blk_queue_discard(q))
920 			goto not_supported;
921 		break;
922 	case REQ_OP_SECURE_ERASE:
923 		if (!blk_queue_secure_erase(q))
924 			goto not_supported;
925 		break;
926 	case REQ_OP_WRITE_SAME:
927 		if (!q->limits.max_write_same_sectors)
928 			goto not_supported;
929 		break;
930 	case REQ_OP_ZONE_RESET:
931 		if (!blk_queue_is_zoned(q))
932 			goto not_supported;
933 		break;
934 	case REQ_OP_WRITE_ZEROES:
935 		if (!q->limits.max_write_zeroes_sectors)
936 			goto not_supported;
937 		break;
938 	default:
939 		break;
940 	}
941 
942 	/*
943 	 * Various block parts want %current->io_context and lazy ioc
944 	 * allocation ends up trading a lot of pain for a small amount of
945 	 * memory.  Just allocate it upfront.  This may fail and block
946 	 * layer knows how to live with it.
947 	 */
948 	create_io_context(GFP_ATOMIC, q->node);
949 
950 	if (!blkcg_bio_issue_check(q, bio))
951 		return false;
952 
953 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
954 		trace_block_bio_queue(q, bio);
955 		/* Now that enqueuing has been traced, we need to trace
956 		 * completion as well.
957 		 */
958 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
959 	}
960 	return true;
961 
962 not_supported:
963 	status = BLK_STS_NOTSUPP;
964 end_io:
965 	bio->bi_status = status;
966 	bio_endio(bio);
967 	return false;
968 }
969 
970 /**
971  * generic_make_request - hand a buffer to its device driver for I/O
972  * @bio:  The bio describing the location in memory and on the device.
973  *
974  * generic_make_request() is used to make I/O requests of block
975  * devices. It is passed a &struct bio, which describes the I/O that needs
976  * to be done.
977  *
978  * generic_make_request() does not return any status.  The
979  * success/failure status of the request, along with notification of
980  * completion, is delivered asynchronously through the bio->bi_end_io
981  * function described (one day) else where.
982  *
983  * The caller of generic_make_request must make sure that bi_io_vec
984  * are set to describe the memory buffer, and that bi_dev and bi_sector are
985  * set to describe the device address, and the
986  * bi_end_io and optionally bi_private are set to describe how
987  * completion notification should be signaled.
988  *
989  * generic_make_request and the drivers it calls may use bi_next if this
990  * bio happens to be merged with someone else, and may resubmit the bio to
991  * a lower device by calling into generic_make_request recursively, which
992  * means the bio should NOT be touched after the call to ->make_request_fn.
993  */
994 blk_qc_t generic_make_request(struct bio *bio)
995 {
996 	/*
997 	 * bio_list_on_stack[0] contains bios submitted by the current
998 	 * make_request_fn.
999 	 * bio_list_on_stack[1] contains bios that were submitted before
1000 	 * the current make_request_fn, but that haven't been processed
1001 	 * yet.
1002 	 */
1003 	struct bio_list bio_list_on_stack[2];
1004 	blk_qc_t ret = BLK_QC_T_NONE;
1005 
1006 	if (!generic_make_request_checks(bio))
1007 		goto out;
1008 
1009 	/*
1010 	 * We only want one ->make_request_fn to be active at a time, else
1011 	 * stack usage with stacked devices could be a problem.  So use
1012 	 * current->bio_list to keep a list of requests submited by a
1013 	 * make_request_fn function.  current->bio_list is also used as a
1014 	 * flag to say if generic_make_request is currently active in this
1015 	 * task or not.  If it is NULL, then no make_request is active.  If
1016 	 * it is non-NULL, then a make_request is active, and new requests
1017 	 * should be added at the tail
1018 	 */
1019 	if (current->bio_list) {
1020 		bio_list_add(&current->bio_list[0], bio);
1021 		goto out;
1022 	}
1023 
1024 	/* following loop may be a bit non-obvious, and so deserves some
1025 	 * explanation.
1026 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1027 	 * ensure that) so we have a list with a single bio.
1028 	 * We pretend that we have just taken it off a longer list, so
1029 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1030 	 * thus initialising the bio_list of new bios to be
1031 	 * added.  ->make_request() may indeed add some more bios
1032 	 * through a recursive call to generic_make_request.  If it
1033 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1034 	 * from the top.  In this case we really did just take the bio
1035 	 * of the top of the list (no pretending) and so remove it from
1036 	 * bio_list, and call into ->make_request() again.
1037 	 */
1038 	BUG_ON(bio->bi_next);
1039 	bio_list_init(&bio_list_on_stack[0]);
1040 	current->bio_list = bio_list_on_stack;
1041 	do {
1042 		struct request_queue *q = bio->bi_disk->queue;
1043 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1044 			BLK_MQ_REQ_NOWAIT : 0;
1045 
1046 		if (likely(blk_queue_enter(q, flags) == 0)) {
1047 			struct bio_list lower, same;
1048 
1049 			/* Create a fresh bio_list for all subordinate requests */
1050 			bio_list_on_stack[1] = bio_list_on_stack[0];
1051 			bio_list_init(&bio_list_on_stack[0]);
1052 			ret = q->make_request_fn(q, bio);
1053 
1054 			blk_queue_exit(q);
1055 
1056 			/* sort new bios into those for a lower level
1057 			 * and those for the same level
1058 			 */
1059 			bio_list_init(&lower);
1060 			bio_list_init(&same);
1061 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1062 				if (q == bio->bi_disk->queue)
1063 					bio_list_add(&same, bio);
1064 				else
1065 					bio_list_add(&lower, bio);
1066 			/* now assemble so we handle the lowest level first */
1067 			bio_list_merge(&bio_list_on_stack[0], &lower);
1068 			bio_list_merge(&bio_list_on_stack[0], &same);
1069 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1070 		} else {
1071 			if (unlikely(!blk_queue_dying(q) &&
1072 					(bio->bi_opf & REQ_NOWAIT)))
1073 				bio_wouldblock_error(bio);
1074 			else
1075 				bio_io_error(bio);
1076 		}
1077 		bio = bio_list_pop(&bio_list_on_stack[0]);
1078 	} while (bio);
1079 	current->bio_list = NULL; /* deactivate */
1080 
1081 out:
1082 	return ret;
1083 }
1084 EXPORT_SYMBOL(generic_make_request);
1085 
1086 /**
1087  * direct_make_request - hand a buffer directly to its device driver for I/O
1088  * @bio:  The bio describing the location in memory and on the device.
1089  *
1090  * This function behaves like generic_make_request(), but does not protect
1091  * against recursion.  Must only be used if the called driver is known
1092  * to not call generic_make_request (or direct_make_request) again from
1093  * its make_request function.  (Calling direct_make_request again from
1094  * a workqueue is perfectly fine as that doesn't recurse).
1095  */
1096 blk_qc_t direct_make_request(struct bio *bio)
1097 {
1098 	struct request_queue *q = bio->bi_disk->queue;
1099 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1100 	blk_qc_t ret;
1101 
1102 	if (!generic_make_request_checks(bio))
1103 		return BLK_QC_T_NONE;
1104 
1105 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1106 		if (nowait && !blk_queue_dying(q))
1107 			bio->bi_status = BLK_STS_AGAIN;
1108 		else
1109 			bio->bi_status = BLK_STS_IOERR;
1110 		bio_endio(bio);
1111 		return BLK_QC_T_NONE;
1112 	}
1113 
1114 	ret = q->make_request_fn(q, bio);
1115 	blk_queue_exit(q);
1116 	return ret;
1117 }
1118 EXPORT_SYMBOL_GPL(direct_make_request);
1119 
1120 /**
1121  * submit_bio - submit a bio to the block device layer for I/O
1122  * @bio: The &struct bio which describes the I/O
1123  *
1124  * submit_bio() is very similar in purpose to generic_make_request(), and
1125  * uses that function to do most of the work. Both are fairly rough
1126  * interfaces; @bio must be presetup and ready for I/O.
1127  *
1128  */
1129 blk_qc_t submit_bio(struct bio *bio)
1130 {
1131 	if (blkcg_punt_bio_submit(bio))
1132 		return BLK_QC_T_NONE;
1133 
1134 	/*
1135 	 * If it's a regular read/write or a barrier with data attached,
1136 	 * go through the normal accounting stuff before submission.
1137 	 */
1138 	if (bio_has_data(bio)) {
1139 		unsigned int count;
1140 
1141 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1142 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1143 		else
1144 			count = bio_sectors(bio);
1145 
1146 		if (op_is_write(bio_op(bio))) {
1147 			count_vm_events(PGPGOUT, count);
1148 		} else {
1149 			task_io_account_read(bio->bi_iter.bi_size);
1150 			count_vm_events(PGPGIN, count);
1151 		}
1152 
1153 		if (unlikely(block_dump)) {
1154 			char b[BDEVNAME_SIZE];
1155 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1156 			current->comm, task_pid_nr(current),
1157 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1158 				(unsigned long long)bio->bi_iter.bi_sector,
1159 				bio_devname(bio, b), count);
1160 		}
1161 	}
1162 
1163 	return generic_make_request(bio);
1164 }
1165 EXPORT_SYMBOL(submit_bio);
1166 
1167 /**
1168  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1169  *                              for new the queue limits
1170  * @q:  the queue
1171  * @rq: the request being checked
1172  *
1173  * Description:
1174  *    @rq may have been made based on weaker limitations of upper-level queues
1175  *    in request stacking drivers, and it may violate the limitation of @q.
1176  *    Since the block layer and the underlying device driver trust @rq
1177  *    after it is inserted to @q, it should be checked against @q before
1178  *    the insertion using this generic function.
1179  *
1180  *    Request stacking drivers like request-based dm may change the queue
1181  *    limits when retrying requests on other queues. Those requests need
1182  *    to be checked against the new queue limits again during dispatch.
1183  */
1184 static int blk_cloned_rq_check_limits(struct request_queue *q,
1185 				      struct request *rq)
1186 {
1187 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1188 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1189 			__func__, blk_rq_sectors(rq),
1190 			blk_queue_get_max_sectors(q, req_op(rq)));
1191 		return -EIO;
1192 	}
1193 
1194 	/*
1195 	 * queue's settings related to segment counting like q->bounce_pfn
1196 	 * may differ from that of other stacking queues.
1197 	 * Recalculate it to check the request correctly on this queue's
1198 	 * limitation.
1199 	 */
1200 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1201 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1202 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1203 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1204 		return -EIO;
1205 	}
1206 
1207 	return 0;
1208 }
1209 
1210 /**
1211  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1212  * @q:  the queue to submit the request
1213  * @rq: the request being queued
1214  */
1215 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1216 {
1217 	if (blk_cloned_rq_check_limits(q, rq))
1218 		return BLK_STS_IOERR;
1219 
1220 	if (rq->rq_disk &&
1221 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1222 		return BLK_STS_IOERR;
1223 
1224 	if (blk_queue_io_stat(q))
1225 		blk_account_io_start(rq, true);
1226 
1227 	/*
1228 	 * Since we have a scheduler attached on the top device,
1229 	 * bypass a potential scheduler on the bottom device for
1230 	 * insert.
1231 	 */
1232 	return blk_mq_request_issue_directly(rq, true);
1233 }
1234 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1235 
1236 /**
1237  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1238  * @rq: request to examine
1239  *
1240  * Description:
1241  *     A request could be merge of IOs which require different failure
1242  *     handling.  This function determines the number of bytes which
1243  *     can be failed from the beginning of the request without
1244  *     crossing into area which need to be retried further.
1245  *
1246  * Return:
1247  *     The number of bytes to fail.
1248  */
1249 unsigned int blk_rq_err_bytes(const struct request *rq)
1250 {
1251 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1252 	unsigned int bytes = 0;
1253 	struct bio *bio;
1254 
1255 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1256 		return blk_rq_bytes(rq);
1257 
1258 	/*
1259 	 * Currently the only 'mixing' which can happen is between
1260 	 * different fastfail types.  We can safely fail portions
1261 	 * which have all the failfast bits that the first one has -
1262 	 * the ones which are at least as eager to fail as the first
1263 	 * one.
1264 	 */
1265 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1266 		if ((bio->bi_opf & ff) != ff)
1267 			break;
1268 		bytes += bio->bi_iter.bi_size;
1269 	}
1270 
1271 	/* this could lead to infinite loop */
1272 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1273 	return bytes;
1274 }
1275 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1276 
1277 void blk_account_io_completion(struct request *req, unsigned int bytes)
1278 {
1279 	if (blk_do_io_stat(req)) {
1280 		const int sgrp = op_stat_group(req_op(req));
1281 		struct hd_struct *part;
1282 
1283 		part_stat_lock();
1284 		part = req->part;
1285 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1286 		part_stat_unlock();
1287 	}
1288 }
1289 
1290 void blk_account_io_done(struct request *req, u64 now)
1291 {
1292 	/*
1293 	 * Account IO completion.  flush_rq isn't accounted as a
1294 	 * normal IO on queueing nor completion.  Accounting the
1295 	 * containing request is enough.
1296 	 */
1297 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1298 		const int sgrp = op_stat_group(req_op(req));
1299 		struct hd_struct *part;
1300 
1301 		part_stat_lock();
1302 		part = req->part;
1303 
1304 		update_io_ticks(part, jiffies);
1305 		part_stat_inc(part, ios[sgrp]);
1306 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1307 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1308 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1309 
1310 		hd_struct_put(part);
1311 		part_stat_unlock();
1312 	}
1313 }
1314 
1315 void blk_account_io_start(struct request *rq, bool new_io)
1316 {
1317 	struct hd_struct *part;
1318 	int rw = rq_data_dir(rq);
1319 
1320 	if (!blk_do_io_stat(rq))
1321 		return;
1322 
1323 	part_stat_lock();
1324 
1325 	if (!new_io) {
1326 		part = rq->part;
1327 		part_stat_inc(part, merges[rw]);
1328 	} else {
1329 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1330 		if (!hd_struct_try_get(part)) {
1331 			/*
1332 			 * The partition is already being removed,
1333 			 * the request will be accounted on the disk only
1334 			 *
1335 			 * We take a reference on disk->part0 although that
1336 			 * partition will never be deleted, so we can treat
1337 			 * it as any other partition.
1338 			 */
1339 			part = &rq->rq_disk->part0;
1340 			hd_struct_get(part);
1341 		}
1342 		part_inc_in_flight(rq->q, part, rw);
1343 		rq->part = part;
1344 	}
1345 
1346 	update_io_ticks(part, jiffies);
1347 
1348 	part_stat_unlock();
1349 }
1350 
1351 /*
1352  * Steal bios from a request and add them to a bio list.
1353  * The request must not have been partially completed before.
1354  */
1355 void blk_steal_bios(struct bio_list *list, struct request *rq)
1356 {
1357 	if (rq->bio) {
1358 		if (list->tail)
1359 			list->tail->bi_next = rq->bio;
1360 		else
1361 			list->head = rq->bio;
1362 		list->tail = rq->biotail;
1363 
1364 		rq->bio = NULL;
1365 		rq->biotail = NULL;
1366 	}
1367 
1368 	rq->__data_len = 0;
1369 }
1370 EXPORT_SYMBOL_GPL(blk_steal_bios);
1371 
1372 /**
1373  * blk_update_request - Special helper function for request stacking drivers
1374  * @req:      the request being processed
1375  * @error:    block status code
1376  * @nr_bytes: number of bytes to complete @req
1377  *
1378  * Description:
1379  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1380  *     the request structure even if @req doesn't have leftover.
1381  *     If @req has leftover, sets it up for the next range of segments.
1382  *
1383  *     This special helper function is only for request stacking drivers
1384  *     (e.g. request-based dm) so that they can handle partial completion.
1385  *     Actual device drivers should use blk_mq_end_request instead.
1386  *
1387  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1388  *     %false return from this function.
1389  *
1390  * Note:
1391  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1392  *	blk_rq_bytes() and in blk_update_request().
1393  *
1394  * Return:
1395  *     %false - this request doesn't have any more data
1396  *     %true  - this request has more data
1397  **/
1398 bool blk_update_request(struct request *req, blk_status_t error,
1399 		unsigned int nr_bytes)
1400 {
1401 	int total_bytes;
1402 
1403 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1404 
1405 	if (!req->bio)
1406 		return false;
1407 
1408 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1409 		     !(req->rq_flags & RQF_QUIET)))
1410 		print_req_error(req, error, __func__);
1411 
1412 	blk_account_io_completion(req, nr_bytes);
1413 
1414 	total_bytes = 0;
1415 	while (req->bio) {
1416 		struct bio *bio = req->bio;
1417 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1418 
1419 		if (bio_bytes == bio->bi_iter.bi_size)
1420 			req->bio = bio->bi_next;
1421 
1422 		/* Completion has already been traced */
1423 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1424 		req_bio_endio(req, bio, bio_bytes, error);
1425 
1426 		total_bytes += bio_bytes;
1427 		nr_bytes -= bio_bytes;
1428 
1429 		if (!nr_bytes)
1430 			break;
1431 	}
1432 
1433 	/*
1434 	 * completely done
1435 	 */
1436 	if (!req->bio) {
1437 		/*
1438 		 * Reset counters so that the request stacking driver
1439 		 * can find how many bytes remain in the request
1440 		 * later.
1441 		 */
1442 		req->__data_len = 0;
1443 		return false;
1444 	}
1445 
1446 	req->__data_len -= total_bytes;
1447 
1448 	/* update sector only for requests with clear definition of sector */
1449 	if (!blk_rq_is_passthrough(req))
1450 		req->__sector += total_bytes >> 9;
1451 
1452 	/* mixed attributes always follow the first bio */
1453 	if (req->rq_flags & RQF_MIXED_MERGE) {
1454 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1455 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1456 	}
1457 
1458 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1459 		/*
1460 		 * If total number of sectors is less than the first segment
1461 		 * size, something has gone terribly wrong.
1462 		 */
1463 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1464 			blk_dump_rq_flags(req, "request botched");
1465 			req->__data_len = blk_rq_cur_bytes(req);
1466 		}
1467 
1468 		/* recalculate the number of segments */
1469 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1470 	}
1471 
1472 	return true;
1473 }
1474 EXPORT_SYMBOL_GPL(blk_update_request);
1475 
1476 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1477 /**
1478  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1479  * @rq: the request to be flushed
1480  *
1481  * Description:
1482  *     Flush all pages in @rq.
1483  */
1484 void rq_flush_dcache_pages(struct request *rq)
1485 {
1486 	struct req_iterator iter;
1487 	struct bio_vec bvec;
1488 
1489 	rq_for_each_segment(bvec, rq, iter)
1490 		flush_dcache_page(bvec.bv_page);
1491 }
1492 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1493 #endif
1494 
1495 /**
1496  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1497  * @q : the queue of the device being checked
1498  *
1499  * Description:
1500  *    Check if underlying low-level drivers of a device are busy.
1501  *    If the drivers want to export their busy state, they must set own
1502  *    exporting function using blk_queue_lld_busy() first.
1503  *
1504  *    Basically, this function is used only by request stacking drivers
1505  *    to stop dispatching requests to underlying devices when underlying
1506  *    devices are busy.  This behavior helps more I/O merging on the queue
1507  *    of the request stacking driver and prevents I/O throughput regression
1508  *    on burst I/O load.
1509  *
1510  * Return:
1511  *    0 - Not busy (The request stacking driver should dispatch request)
1512  *    1 - Busy (The request stacking driver should stop dispatching request)
1513  */
1514 int blk_lld_busy(struct request_queue *q)
1515 {
1516 	if (queue_is_mq(q) && q->mq_ops->busy)
1517 		return q->mq_ops->busy(q);
1518 
1519 	return 0;
1520 }
1521 EXPORT_SYMBOL_GPL(blk_lld_busy);
1522 
1523 /**
1524  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1525  * @rq: the clone request to be cleaned up
1526  *
1527  * Description:
1528  *     Free all bios in @rq for a cloned request.
1529  */
1530 void blk_rq_unprep_clone(struct request *rq)
1531 {
1532 	struct bio *bio;
1533 
1534 	while ((bio = rq->bio) != NULL) {
1535 		rq->bio = bio->bi_next;
1536 
1537 		bio_put(bio);
1538 	}
1539 }
1540 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1541 
1542 /*
1543  * Copy attributes of the original request to the clone request.
1544  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1545  */
1546 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1547 {
1548 	dst->__sector = blk_rq_pos(src);
1549 	dst->__data_len = blk_rq_bytes(src);
1550 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1551 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1552 		dst->special_vec = src->special_vec;
1553 	}
1554 	dst->nr_phys_segments = src->nr_phys_segments;
1555 	dst->ioprio = src->ioprio;
1556 	dst->extra_len = src->extra_len;
1557 }
1558 
1559 /**
1560  * blk_rq_prep_clone - Helper function to setup clone request
1561  * @rq: the request to be setup
1562  * @rq_src: original request to be cloned
1563  * @bs: bio_set that bios for clone are allocated from
1564  * @gfp_mask: memory allocation mask for bio
1565  * @bio_ctr: setup function to be called for each clone bio.
1566  *           Returns %0 for success, non %0 for failure.
1567  * @data: private data to be passed to @bio_ctr
1568  *
1569  * Description:
1570  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1571  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1572  *     are not copied, and copying such parts is the caller's responsibility.
1573  *     Also, pages which the original bios are pointing to are not copied
1574  *     and the cloned bios just point same pages.
1575  *     So cloned bios must be completed before original bios, which means
1576  *     the caller must complete @rq before @rq_src.
1577  */
1578 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1579 		      struct bio_set *bs, gfp_t gfp_mask,
1580 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1581 		      void *data)
1582 {
1583 	struct bio *bio, *bio_src;
1584 
1585 	if (!bs)
1586 		bs = &fs_bio_set;
1587 
1588 	__rq_for_each_bio(bio_src, rq_src) {
1589 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1590 		if (!bio)
1591 			goto free_and_out;
1592 
1593 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1594 			goto free_and_out;
1595 
1596 		if (rq->bio) {
1597 			rq->biotail->bi_next = bio;
1598 			rq->biotail = bio;
1599 		} else
1600 			rq->bio = rq->biotail = bio;
1601 	}
1602 
1603 	__blk_rq_prep_clone(rq, rq_src);
1604 
1605 	return 0;
1606 
1607 free_and_out:
1608 	if (bio)
1609 		bio_put(bio);
1610 	blk_rq_unprep_clone(rq);
1611 
1612 	return -ENOMEM;
1613 }
1614 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1615 
1616 int kblockd_schedule_work(struct work_struct *work)
1617 {
1618 	return queue_work(kblockd_workqueue, work);
1619 }
1620 EXPORT_SYMBOL(kblockd_schedule_work);
1621 
1622 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1623 {
1624 	return queue_work_on(cpu, kblockd_workqueue, work);
1625 }
1626 EXPORT_SYMBOL(kblockd_schedule_work_on);
1627 
1628 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1629 				unsigned long delay)
1630 {
1631 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1632 }
1633 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1634 
1635 /**
1636  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1637  * @plug:	The &struct blk_plug that needs to be initialized
1638  *
1639  * Description:
1640  *   blk_start_plug() indicates to the block layer an intent by the caller
1641  *   to submit multiple I/O requests in a batch.  The block layer may use
1642  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1643  *   is called.  However, the block layer may choose to submit requests
1644  *   before a call to blk_finish_plug() if the number of queued I/Os
1645  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1646  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1647  *   the task schedules (see below).
1648  *
1649  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1650  *   pending I/O should the task end up blocking between blk_start_plug() and
1651  *   blk_finish_plug(). This is important from a performance perspective, but
1652  *   also ensures that we don't deadlock. For instance, if the task is blocking
1653  *   for a memory allocation, memory reclaim could end up wanting to free a
1654  *   page belonging to that request that is currently residing in our private
1655  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1656  *   this kind of deadlock.
1657  */
1658 void blk_start_plug(struct blk_plug *plug)
1659 {
1660 	struct task_struct *tsk = current;
1661 
1662 	/*
1663 	 * If this is a nested plug, don't actually assign it.
1664 	 */
1665 	if (tsk->plug)
1666 		return;
1667 
1668 	INIT_LIST_HEAD(&plug->mq_list);
1669 	INIT_LIST_HEAD(&plug->cb_list);
1670 	plug->rq_count = 0;
1671 	plug->multiple_queues = false;
1672 
1673 	/*
1674 	 * Store ordering should not be needed here, since a potential
1675 	 * preempt will imply a full memory barrier
1676 	 */
1677 	tsk->plug = plug;
1678 }
1679 EXPORT_SYMBOL(blk_start_plug);
1680 
1681 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1682 {
1683 	LIST_HEAD(callbacks);
1684 
1685 	while (!list_empty(&plug->cb_list)) {
1686 		list_splice_init(&plug->cb_list, &callbacks);
1687 
1688 		while (!list_empty(&callbacks)) {
1689 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1690 							  struct blk_plug_cb,
1691 							  list);
1692 			list_del(&cb->list);
1693 			cb->callback(cb, from_schedule);
1694 		}
1695 	}
1696 }
1697 
1698 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1699 				      int size)
1700 {
1701 	struct blk_plug *plug = current->plug;
1702 	struct blk_plug_cb *cb;
1703 
1704 	if (!plug)
1705 		return NULL;
1706 
1707 	list_for_each_entry(cb, &plug->cb_list, list)
1708 		if (cb->callback == unplug && cb->data == data)
1709 			return cb;
1710 
1711 	/* Not currently on the callback list */
1712 	BUG_ON(size < sizeof(*cb));
1713 	cb = kzalloc(size, GFP_ATOMIC);
1714 	if (cb) {
1715 		cb->data = data;
1716 		cb->callback = unplug;
1717 		list_add(&cb->list, &plug->cb_list);
1718 	}
1719 	return cb;
1720 }
1721 EXPORT_SYMBOL(blk_check_plugged);
1722 
1723 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1724 {
1725 	flush_plug_callbacks(plug, from_schedule);
1726 
1727 	if (!list_empty(&plug->mq_list))
1728 		blk_mq_flush_plug_list(plug, from_schedule);
1729 }
1730 
1731 /**
1732  * blk_finish_plug - mark the end of a batch of submitted I/O
1733  * @plug:	The &struct blk_plug passed to blk_start_plug()
1734  *
1735  * Description:
1736  * Indicate that a batch of I/O submissions is complete.  This function
1737  * must be paired with an initial call to blk_start_plug().  The intent
1738  * is to allow the block layer to optimize I/O submission.  See the
1739  * documentation for blk_start_plug() for more information.
1740  */
1741 void blk_finish_plug(struct blk_plug *plug)
1742 {
1743 	if (plug != current->plug)
1744 		return;
1745 	blk_flush_plug_list(plug, false);
1746 
1747 	current->plug = NULL;
1748 }
1749 EXPORT_SYMBOL(blk_finish_plug);
1750 
1751 int __init blk_dev_init(void)
1752 {
1753 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1754 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1755 			FIELD_SIZEOF(struct request, cmd_flags));
1756 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1757 			FIELD_SIZEOF(struct bio, bi_opf));
1758 
1759 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1760 	kblockd_workqueue = alloc_workqueue("kblockd",
1761 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1762 	if (!kblockd_workqueue)
1763 		panic("Failed to create kblockd\n");
1764 
1765 	blk_requestq_cachep = kmem_cache_create("request_queue",
1766 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1767 
1768 #ifdef CONFIG_DEBUG_FS
1769 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1770 #endif
1771 
1772 	return 0;
1773 }
1774