1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 #include <linux/blk-cgroup.h> 36 #include <linux/debugfs.h> 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/block.h> 40 41 #include "blk.h" 42 #include "blk-mq.h" 43 #include "blk-mq-sched.h" 44 #include "blk-wbt.h" 45 46 #ifdef CONFIG_DEBUG_FS 47 struct dentry *blk_debugfs_root; 48 #endif 49 50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 55 56 DEFINE_IDA(blk_queue_ida); 57 58 /* 59 * For the allocated request tables 60 */ 61 struct kmem_cache *request_cachep; 62 63 /* 64 * For queue allocation 65 */ 66 struct kmem_cache *blk_requestq_cachep; 67 68 /* 69 * Controlling structure to kblockd 70 */ 71 static struct workqueue_struct *kblockd_workqueue; 72 73 static void blk_clear_congested(struct request_list *rl, int sync) 74 { 75 #ifdef CONFIG_CGROUP_WRITEBACK 76 clear_wb_congested(rl->blkg->wb_congested, sync); 77 #else 78 /* 79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't 80 * flip its congestion state for events on other blkcgs. 81 */ 82 if (rl == &rl->q->root_rl) 83 clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 84 #endif 85 } 86 87 static void blk_set_congested(struct request_list *rl, int sync) 88 { 89 #ifdef CONFIG_CGROUP_WRITEBACK 90 set_wb_congested(rl->blkg->wb_congested, sync); 91 #else 92 /* see blk_clear_congested() */ 93 if (rl == &rl->q->root_rl) 94 set_wb_congested(rl->q->backing_dev_info->wb.congested, sync); 95 #endif 96 } 97 98 void blk_queue_congestion_threshold(struct request_queue *q) 99 { 100 int nr; 101 102 nr = q->nr_requests - (q->nr_requests / 8) + 1; 103 if (nr > q->nr_requests) 104 nr = q->nr_requests; 105 q->nr_congestion_on = nr; 106 107 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 108 if (nr < 1) 109 nr = 1; 110 q->nr_congestion_off = nr; 111 } 112 113 void blk_rq_init(struct request_queue *q, struct request *rq) 114 { 115 memset(rq, 0, sizeof(*rq)); 116 117 INIT_LIST_HEAD(&rq->queuelist); 118 INIT_LIST_HEAD(&rq->timeout_list); 119 rq->cpu = -1; 120 rq->q = q; 121 rq->__sector = (sector_t) -1; 122 INIT_HLIST_NODE(&rq->hash); 123 RB_CLEAR_NODE(&rq->rb_node); 124 rq->tag = -1; 125 rq->internal_tag = -1; 126 rq->start_time = jiffies; 127 set_start_time_ns(rq); 128 rq->part = NULL; 129 } 130 EXPORT_SYMBOL(blk_rq_init); 131 132 static void req_bio_endio(struct request *rq, struct bio *bio, 133 unsigned int nbytes, int error) 134 { 135 if (error) 136 bio->bi_error = error; 137 138 if (unlikely(rq->rq_flags & RQF_QUIET)) 139 bio_set_flag(bio, BIO_QUIET); 140 141 bio_advance(bio, nbytes); 142 143 /* don't actually finish bio if it's part of flush sequence */ 144 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 145 bio_endio(bio); 146 } 147 148 void blk_dump_rq_flags(struct request *rq, char *msg) 149 { 150 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 151 rq->rq_disk ? rq->rq_disk->disk_name : "?", 152 (unsigned long long) rq->cmd_flags); 153 154 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 155 (unsigned long long)blk_rq_pos(rq), 156 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 157 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 158 rq->bio, rq->biotail, blk_rq_bytes(rq)); 159 } 160 EXPORT_SYMBOL(blk_dump_rq_flags); 161 162 static void blk_delay_work(struct work_struct *work) 163 { 164 struct request_queue *q; 165 166 q = container_of(work, struct request_queue, delay_work.work); 167 spin_lock_irq(q->queue_lock); 168 __blk_run_queue(q); 169 spin_unlock_irq(q->queue_lock); 170 } 171 172 /** 173 * blk_delay_queue - restart queueing after defined interval 174 * @q: The &struct request_queue in question 175 * @msecs: Delay in msecs 176 * 177 * Description: 178 * Sometimes queueing needs to be postponed for a little while, to allow 179 * resources to come back. This function will make sure that queueing is 180 * restarted around the specified time. Queue lock must be held. 181 */ 182 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 183 { 184 if (likely(!blk_queue_dead(q))) 185 queue_delayed_work(kblockd_workqueue, &q->delay_work, 186 msecs_to_jiffies(msecs)); 187 } 188 EXPORT_SYMBOL(blk_delay_queue); 189 190 /** 191 * blk_start_queue_async - asynchronously restart a previously stopped queue 192 * @q: The &struct request_queue in question 193 * 194 * Description: 195 * blk_start_queue_async() will clear the stop flag on the queue, and 196 * ensure that the request_fn for the queue is run from an async 197 * context. 198 **/ 199 void blk_start_queue_async(struct request_queue *q) 200 { 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 202 blk_run_queue_async(q); 203 } 204 EXPORT_SYMBOL(blk_start_queue_async); 205 206 /** 207 * blk_start_queue - restart a previously stopped queue 208 * @q: The &struct request_queue in question 209 * 210 * Description: 211 * blk_start_queue() will clear the stop flag on the queue, and call 212 * the request_fn for the queue if it was in a stopped state when 213 * entered. Also see blk_stop_queue(). Queue lock must be held. 214 **/ 215 void blk_start_queue(struct request_queue *q) 216 { 217 WARN_ON(!irqs_disabled()); 218 219 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 220 __blk_run_queue(q); 221 } 222 EXPORT_SYMBOL(blk_start_queue); 223 224 /** 225 * blk_stop_queue - stop a queue 226 * @q: The &struct request_queue in question 227 * 228 * Description: 229 * The Linux block layer assumes that a block driver will consume all 230 * entries on the request queue when the request_fn strategy is called. 231 * Often this will not happen, because of hardware limitations (queue 232 * depth settings). If a device driver gets a 'queue full' response, 233 * or if it simply chooses not to queue more I/O at one point, it can 234 * call this function to prevent the request_fn from being called until 235 * the driver has signalled it's ready to go again. This happens by calling 236 * blk_start_queue() to restart queue operations. Queue lock must be held. 237 **/ 238 void blk_stop_queue(struct request_queue *q) 239 { 240 cancel_delayed_work(&q->delay_work); 241 queue_flag_set(QUEUE_FLAG_STOPPED, q); 242 } 243 EXPORT_SYMBOL(blk_stop_queue); 244 245 /** 246 * blk_sync_queue - cancel any pending callbacks on a queue 247 * @q: the queue 248 * 249 * Description: 250 * The block layer may perform asynchronous callback activity 251 * on a queue, such as calling the unplug function after a timeout. 252 * A block device may call blk_sync_queue to ensure that any 253 * such activity is cancelled, thus allowing it to release resources 254 * that the callbacks might use. The caller must already have made sure 255 * that its ->make_request_fn will not re-add plugging prior to calling 256 * this function. 257 * 258 * This function does not cancel any asynchronous activity arising 259 * out of elevator or throttling code. That would require elevator_exit() 260 * and blkcg_exit_queue() to be called with queue lock initialized. 261 * 262 */ 263 void blk_sync_queue(struct request_queue *q) 264 { 265 del_timer_sync(&q->timeout); 266 267 if (q->mq_ops) { 268 struct blk_mq_hw_ctx *hctx; 269 int i; 270 271 queue_for_each_hw_ctx(q, hctx, i) 272 cancel_delayed_work_sync(&hctx->run_work); 273 } else { 274 cancel_delayed_work_sync(&q->delay_work); 275 } 276 } 277 EXPORT_SYMBOL(blk_sync_queue); 278 279 /** 280 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 281 * @q: The queue to run 282 * 283 * Description: 284 * Invoke request handling on a queue if there are any pending requests. 285 * May be used to restart request handling after a request has completed. 286 * This variant runs the queue whether or not the queue has been 287 * stopped. Must be called with the queue lock held and interrupts 288 * disabled. See also @blk_run_queue. 289 */ 290 inline void __blk_run_queue_uncond(struct request_queue *q) 291 { 292 if (unlikely(blk_queue_dead(q))) 293 return; 294 295 /* 296 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 297 * the queue lock internally. As a result multiple threads may be 298 * running such a request function concurrently. Keep track of the 299 * number of active request_fn invocations such that blk_drain_queue() 300 * can wait until all these request_fn calls have finished. 301 */ 302 q->request_fn_active++; 303 q->request_fn(q); 304 q->request_fn_active--; 305 } 306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond); 307 308 /** 309 * __blk_run_queue - run a single device queue 310 * @q: The queue to run 311 * 312 * Description: 313 * See @blk_run_queue. This variant must be called with the queue lock 314 * held and interrupts disabled. 315 */ 316 void __blk_run_queue(struct request_queue *q) 317 { 318 if (unlikely(blk_queue_stopped(q))) 319 return; 320 321 __blk_run_queue_uncond(q); 322 } 323 EXPORT_SYMBOL(__blk_run_queue); 324 325 /** 326 * blk_run_queue_async - run a single device queue in workqueue context 327 * @q: The queue to run 328 * 329 * Description: 330 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 331 * of us. The caller must hold the queue lock. 332 */ 333 void blk_run_queue_async(struct request_queue *q) 334 { 335 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 336 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 337 } 338 EXPORT_SYMBOL(blk_run_queue_async); 339 340 /** 341 * blk_run_queue - run a single device queue 342 * @q: The queue to run 343 * 344 * Description: 345 * Invoke request handling on this queue, if it has pending work to do. 346 * May be used to restart queueing when a request has completed. 347 */ 348 void blk_run_queue(struct request_queue *q) 349 { 350 unsigned long flags; 351 352 spin_lock_irqsave(q->queue_lock, flags); 353 __blk_run_queue(q); 354 spin_unlock_irqrestore(q->queue_lock, flags); 355 } 356 EXPORT_SYMBOL(blk_run_queue); 357 358 void blk_put_queue(struct request_queue *q) 359 { 360 kobject_put(&q->kobj); 361 } 362 EXPORT_SYMBOL(blk_put_queue); 363 364 /** 365 * __blk_drain_queue - drain requests from request_queue 366 * @q: queue to drain 367 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 368 * 369 * Drain requests from @q. If @drain_all is set, all requests are drained. 370 * If not, only ELVPRIV requests are drained. The caller is responsible 371 * for ensuring that no new requests which need to be drained are queued. 372 */ 373 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 374 __releases(q->queue_lock) 375 __acquires(q->queue_lock) 376 { 377 int i; 378 379 lockdep_assert_held(q->queue_lock); 380 381 while (true) { 382 bool drain = false; 383 384 /* 385 * The caller might be trying to drain @q before its 386 * elevator is initialized. 387 */ 388 if (q->elevator) 389 elv_drain_elevator(q); 390 391 blkcg_drain_queue(q); 392 393 /* 394 * This function might be called on a queue which failed 395 * driver init after queue creation or is not yet fully 396 * active yet. Some drivers (e.g. fd and loop) get unhappy 397 * in such cases. Kick queue iff dispatch queue has 398 * something on it and @q has request_fn set. 399 */ 400 if (!list_empty(&q->queue_head) && q->request_fn) 401 __blk_run_queue(q); 402 403 drain |= q->nr_rqs_elvpriv; 404 drain |= q->request_fn_active; 405 406 /* 407 * Unfortunately, requests are queued at and tracked from 408 * multiple places and there's no single counter which can 409 * be drained. Check all the queues and counters. 410 */ 411 if (drain_all) { 412 struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL); 413 drain |= !list_empty(&q->queue_head); 414 for (i = 0; i < 2; i++) { 415 drain |= q->nr_rqs[i]; 416 drain |= q->in_flight[i]; 417 if (fq) 418 drain |= !list_empty(&fq->flush_queue[i]); 419 } 420 } 421 422 if (!drain) 423 break; 424 425 spin_unlock_irq(q->queue_lock); 426 427 msleep(10); 428 429 spin_lock_irq(q->queue_lock); 430 } 431 432 /* 433 * With queue marked dead, any woken up waiter will fail the 434 * allocation path, so the wakeup chaining is lost and we're 435 * left with hung waiters. We need to wake up those waiters. 436 */ 437 if (q->request_fn) { 438 struct request_list *rl; 439 440 blk_queue_for_each_rl(rl, q) 441 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 442 wake_up_all(&rl->wait[i]); 443 } 444 } 445 446 /** 447 * blk_queue_bypass_start - enter queue bypass mode 448 * @q: queue of interest 449 * 450 * In bypass mode, only the dispatch FIFO queue of @q is used. This 451 * function makes @q enter bypass mode and drains all requests which were 452 * throttled or issued before. On return, it's guaranteed that no request 453 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 454 * inside queue or RCU read lock. 455 */ 456 void blk_queue_bypass_start(struct request_queue *q) 457 { 458 spin_lock_irq(q->queue_lock); 459 q->bypass_depth++; 460 queue_flag_set(QUEUE_FLAG_BYPASS, q); 461 spin_unlock_irq(q->queue_lock); 462 463 /* 464 * Queues start drained. Skip actual draining till init is 465 * complete. This avoids lenghty delays during queue init which 466 * can happen many times during boot. 467 */ 468 if (blk_queue_init_done(q)) { 469 spin_lock_irq(q->queue_lock); 470 __blk_drain_queue(q, false); 471 spin_unlock_irq(q->queue_lock); 472 473 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 474 synchronize_rcu(); 475 } 476 } 477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 478 479 /** 480 * blk_queue_bypass_end - leave queue bypass mode 481 * @q: queue of interest 482 * 483 * Leave bypass mode and restore the normal queueing behavior. 484 */ 485 void blk_queue_bypass_end(struct request_queue *q) 486 { 487 spin_lock_irq(q->queue_lock); 488 if (!--q->bypass_depth) 489 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 490 WARN_ON_ONCE(q->bypass_depth < 0); 491 spin_unlock_irq(q->queue_lock); 492 } 493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 494 495 void blk_set_queue_dying(struct request_queue *q) 496 { 497 spin_lock_irq(q->queue_lock); 498 queue_flag_set(QUEUE_FLAG_DYING, q); 499 spin_unlock_irq(q->queue_lock); 500 501 /* 502 * When queue DYING flag is set, we need to block new req 503 * entering queue, so we call blk_freeze_queue_start() to 504 * prevent I/O from crossing blk_queue_enter(). 505 */ 506 blk_freeze_queue_start(q); 507 508 if (q->mq_ops) 509 blk_mq_wake_waiters(q); 510 else { 511 struct request_list *rl; 512 513 spin_lock_irq(q->queue_lock); 514 blk_queue_for_each_rl(rl, q) { 515 if (rl->rq_pool) { 516 wake_up(&rl->wait[BLK_RW_SYNC]); 517 wake_up(&rl->wait[BLK_RW_ASYNC]); 518 } 519 } 520 spin_unlock_irq(q->queue_lock); 521 } 522 } 523 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 524 525 /** 526 * blk_cleanup_queue - shutdown a request queue 527 * @q: request queue to shutdown 528 * 529 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 530 * put it. All future requests will be failed immediately with -ENODEV. 531 */ 532 void blk_cleanup_queue(struct request_queue *q) 533 { 534 spinlock_t *lock = q->queue_lock; 535 536 /* mark @q DYING, no new request or merges will be allowed afterwards */ 537 mutex_lock(&q->sysfs_lock); 538 blk_set_queue_dying(q); 539 spin_lock_irq(lock); 540 541 /* 542 * A dying queue is permanently in bypass mode till released. Note 543 * that, unlike blk_queue_bypass_start(), we aren't performing 544 * synchronize_rcu() after entering bypass mode to avoid the delay 545 * as some drivers create and destroy a lot of queues while 546 * probing. This is still safe because blk_release_queue() will be 547 * called only after the queue refcnt drops to zero and nothing, 548 * RCU or not, would be traversing the queue by then. 549 */ 550 q->bypass_depth++; 551 queue_flag_set(QUEUE_FLAG_BYPASS, q); 552 553 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 554 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 555 queue_flag_set(QUEUE_FLAG_DYING, q); 556 spin_unlock_irq(lock); 557 mutex_unlock(&q->sysfs_lock); 558 559 /* 560 * Drain all requests queued before DYING marking. Set DEAD flag to 561 * prevent that q->request_fn() gets invoked after draining finished. 562 */ 563 blk_freeze_queue(q); 564 if (!q->mq_ops) { 565 spin_lock_irq(lock); 566 __blk_drain_queue(q, true); 567 } else { 568 blk_mq_debugfs_unregister_mq(q); 569 spin_lock_irq(lock); 570 } 571 queue_flag_set(QUEUE_FLAG_DEAD, q); 572 spin_unlock_irq(lock); 573 574 /* for synchronous bio-based driver finish in-flight integrity i/o */ 575 blk_flush_integrity(); 576 577 /* @q won't process any more request, flush async actions */ 578 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 579 blk_sync_queue(q); 580 581 if (q->mq_ops) 582 blk_mq_free_queue(q); 583 percpu_ref_exit(&q->q_usage_counter); 584 585 spin_lock_irq(lock); 586 if (q->queue_lock != &q->__queue_lock) 587 q->queue_lock = &q->__queue_lock; 588 spin_unlock_irq(lock); 589 590 /* @q is and will stay empty, shutdown and put */ 591 blk_put_queue(q); 592 } 593 EXPORT_SYMBOL(blk_cleanup_queue); 594 595 /* Allocate memory local to the request queue */ 596 static void *alloc_request_simple(gfp_t gfp_mask, void *data) 597 { 598 struct request_queue *q = data; 599 600 return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node); 601 } 602 603 static void free_request_simple(void *element, void *data) 604 { 605 kmem_cache_free(request_cachep, element); 606 } 607 608 static void *alloc_request_size(gfp_t gfp_mask, void *data) 609 { 610 struct request_queue *q = data; 611 struct request *rq; 612 613 rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask, 614 q->node); 615 if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) { 616 kfree(rq); 617 rq = NULL; 618 } 619 return rq; 620 } 621 622 static void free_request_size(void *element, void *data) 623 { 624 struct request_queue *q = data; 625 626 if (q->exit_rq_fn) 627 q->exit_rq_fn(q, element); 628 kfree(element); 629 } 630 631 int blk_init_rl(struct request_list *rl, struct request_queue *q, 632 gfp_t gfp_mask) 633 { 634 if (unlikely(rl->rq_pool)) 635 return 0; 636 637 rl->q = q; 638 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 639 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 640 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 641 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 642 643 if (q->cmd_size) { 644 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 645 alloc_request_size, free_request_size, 646 q, gfp_mask, q->node); 647 } else { 648 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, 649 alloc_request_simple, free_request_simple, 650 q, gfp_mask, q->node); 651 } 652 if (!rl->rq_pool) 653 return -ENOMEM; 654 655 return 0; 656 } 657 658 void blk_exit_rl(struct request_list *rl) 659 { 660 if (rl->rq_pool) 661 mempool_destroy(rl->rq_pool); 662 } 663 664 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 665 { 666 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 667 } 668 EXPORT_SYMBOL(blk_alloc_queue); 669 670 int blk_queue_enter(struct request_queue *q, bool nowait) 671 { 672 while (true) { 673 int ret; 674 675 if (percpu_ref_tryget_live(&q->q_usage_counter)) 676 return 0; 677 678 if (nowait) 679 return -EBUSY; 680 681 /* 682 * read pair of barrier in blk_freeze_queue_start(), 683 * we need to order reading __PERCPU_REF_DEAD flag of 684 * .q_usage_counter and reading .mq_freeze_depth or 685 * queue dying flag, otherwise the following wait may 686 * never return if the two reads are reordered. 687 */ 688 smp_rmb(); 689 690 ret = wait_event_interruptible(q->mq_freeze_wq, 691 !atomic_read(&q->mq_freeze_depth) || 692 blk_queue_dying(q)); 693 if (blk_queue_dying(q)) 694 return -ENODEV; 695 if (ret) 696 return ret; 697 } 698 } 699 700 void blk_queue_exit(struct request_queue *q) 701 { 702 percpu_ref_put(&q->q_usage_counter); 703 } 704 705 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 706 { 707 struct request_queue *q = 708 container_of(ref, struct request_queue, q_usage_counter); 709 710 wake_up_all(&q->mq_freeze_wq); 711 } 712 713 static void blk_rq_timed_out_timer(unsigned long data) 714 { 715 struct request_queue *q = (struct request_queue *)data; 716 717 kblockd_schedule_work(&q->timeout_work); 718 } 719 720 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 721 { 722 struct request_queue *q; 723 724 q = kmem_cache_alloc_node(blk_requestq_cachep, 725 gfp_mask | __GFP_ZERO, node_id); 726 if (!q) 727 return NULL; 728 729 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 730 if (q->id < 0) 731 goto fail_q; 732 733 q->bio_split = bioset_create(BIO_POOL_SIZE, 0); 734 if (!q->bio_split) 735 goto fail_id; 736 737 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 738 if (!q->backing_dev_info) 739 goto fail_split; 740 741 q->stats = blk_alloc_queue_stats(); 742 if (!q->stats) 743 goto fail_stats; 744 745 q->backing_dev_info->ra_pages = 746 (VM_MAX_READAHEAD * 1024) / PAGE_SIZE; 747 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 748 q->backing_dev_info->name = "block"; 749 q->node = node_id; 750 751 setup_timer(&q->backing_dev_info->laptop_mode_wb_timer, 752 laptop_mode_timer_fn, (unsigned long) q); 753 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 754 INIT_LIST_HEAD(&q->queue_head); 755 INIT_LIST_HEAD(&q->timeout_list); 756 INIT_LIST_HEAD(&q->icq_list); 757 #ifdef CONFIG_BLK_CGROUP 758 INIT_LIST_HEAD(&q->blkg_list); 759 #endif 760 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 761 762 kobject_init(&q->kobj, &blk_queue_ktype); 763 764 mutex_init(&q->sysfs_lock); 765 spin_lock_init(&q->__queue_lock); 766 767 /* 768 * By default initialize queue_lock to internal lock and driver can 769 * override it later if need be. 770 */ 771 q->queue_lock = &q->__queue_lock; 772 773 /* 774 * A queue starts its life with bypass turned on to avoid 775 * unnecessary bypass on/off overhead and nasty surprises during 776 * init. The initial bypass will be finished when the queue is 777 * registered by blk_register_queue(). 778 */ 779 q->bypass_depth = 1; 780 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 781 782 init_waitqueue_head(&q->mq_freeze_wq); 783 784 /* 785 * Init percpu_ref in atomic mode so that it's faster to shutdown. 786 * See blk_register_queue() for details. 787 */ 788 if (percpu_ref_init(&q->q_usage_counter, 789 blk_queue_usage_counter_release, 790 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 791 goto fail_bdi; 792 793 if (blkcg_init_queue(q)) 794 goto fail_ref; 795 796 return q; 797 798 fail_ref: 799 percpu_ref_exit(&q->q_usage_counter); 800 fail_bdi: 801 blk_free_queue_stats(q->stats); 802 fail_stats: 803 bdi_put(q->backing_dev_info); 804 fail_split: 805 bioset_free(q->bio_split); 806 fail_id: 807 ida_simple_remove(&blk_queue_ida, q->id); 808 fail_q: 809 kmem_cache_free(blk_requestq_cachep, q); 810 return NULL; 811 } 812 EXPORT_SYMBOL(blk_alloc_queue_node); 813 814 /** 815 * blk_init_queue - prepare a request queue for use with a block device 816 * @rfn: The function to be called to process requests that have been 817 * placed on the queue. 818 * @lock: Request queue spin lock 819 * 820 * Description: 821 * If a block device wishes to use the standard request handling procedures, 822 * which sorts requests and coalesces adjacent requests, then it must 823 * call blk_init_queue(). The function @rfn will be called when there 824 * are requests on the queue that need to be processed. If the device 825 * supports plugging, then @rfn may not be called immediately when requests 826 * are available on the queue, but may be called at some time later instead. 827 * Plugged queues are generally unplugged when a buffer belonging to one 828 * of the requests on the queue is needed, or due to memory pressure. 829 * 830 * @rfn is not required, or even expected, to remove all requests off the 831 * queue, but only as many as it can handle at a time. If it does leave 832 * requests on the queue, it is responsible for arranging that the requests 833 * get dealt with eventually. 834 * 835 * The queue spin lock must be held while manipulating the requests on the 836 * request queue; this lock will be taken also from interrupt context, so irq 837 * disabling is needed for it. 838 * 839 * Function returns a pointer to the initialized request queue, or %NULL if 840 * it didn't succeed. 841 * 842 * Note: 843 * blk_init_queue() must be paired with a blk_cleanup_queue() call 844 * when the block device is deactivated (such as at module unload). 845 **/ 846 847 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 848 { 849 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 850 } 851 EXPORT_SYMBOL(blk_init_queue); 852 853 struct request_queue * 854 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 855 { 856 struct request_queue *q; 857 858 q = blk_alloc_queue_node(GFP_KERNEL, node_id); 859 if (!q) 860 return NULL; 861 862 q->request_fn = rfn; 863 if (lock) 864 q->queue_lock = lock; 865 if (blk_init_allocated_queue(q) < 0) { 866 blk_cleanup_queue(q); 867 return NULL; 868 } 869 870 return q; 871 } 872 EXPORT_SYMBOL(blk_init_queue_node); 873 874 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio); 875 876 877 int blk_init_allocated_queue(struct request_queue *q) 878 { 879 q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size); 880 if (!q->fq) 881 return -ENOMEM; 882 883 if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL)) 884 goto out_free_flush_queue; 885 886 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 887 goto out_exit_flush_rq; 888 889 INIT_WORK(&q->timeout_work, blk_timeout_work); 890 q->queue_flags |= QUEUE_FLAG_DEFAULT; 891 892 /* 893 * This also sets hw/phys segments, boundary and size 894 */ 895 blk_queue_make_request(q, blk_queue_bio); 896 897 q->sg_reserved_size = INT_MAX; 898 899 /* Protect q->elevator from elevator_change */ 900 mutex_lock(&q->sysfs_lock); 901 902 /* init elevator */ 903 if (elevator_init(q, NULL)) { 904 mutex_unlock(&q->sysfs_lock); 905 goto out_exit_flush_rq; 906 } 907 908 mutex_unlock(&q->sysfs_lock); 909 return 0; 910 911 out_exit_flush_rq: 912 if (q->exit_rq_fn) 913 q->exit_rq_fn(q, q->fq->flush_rq); 914 out_free_flush_queue: 915 blk_free_flush_queue(q->fq); 916 return -ENOMEM; 917 } 918 EXPORT_SYMBOL(blk_init_allocated_queue); 919 920 bool blk_get_queue(struct request_queue *q) 921 { 922 if (likely(!blk_queue_dying(q))) { 923 __blk_get_queue(q); 924 return true; 925 } 926 927 return false; 928 } 929 EXPORT_SYMBOL(blk_get_queue); 930 931 static inline void blk_free_request(struct request_list *rl, struct request *rq) 932 { 933 if (rq->rq_flags & RQF_ELVPRIV) { 934 elv_put_request(rl->q, rq); 935 if (rq->elv.icq) 936 put_io_context(rq->elv.icq->ioc); 937 } 938 939 mempool_free(rq, rl->rq_pool); 940 } 941 942 /* 943 * ioc_batching returns true if the ioc is a valid batching request and 944 * should be given priority access to a request. 945 */ 946 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 947 { 948 if (!ioc) 949 return 0; 950 951 /* 952 * Make sure the process is able to allocate at least 1 request 953 * even if the batch times out, otherwise we could theoretically 954 * lose wakeups. 955 */ 956 return ioc->nr_batch_requests == q->nr_batching || 957 (ioc->nr_batch_requests > 0 958 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 959 } 960 961 /* 962 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 963 * will cause the process to be a "batcher" on all queues in the system. This 964 * is the behaviour we want though - once it gets a wakeup it should be given 965 * a nice run. 966 */ 967 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 968 { 969 if (!ioc || ioc_batching(q, ioc)) 970 return; 971 972 ioc->nr_batch_requests = q->nr_batching; 973 ioc->last_waited = jiffies; 974 } 975 976 static void __freed_request(struct request_list *rl, int sync) 977 { 978 struct request_queue *q = rl->q; 979 980 if (rl->count[sync] < queue_congestion_off_threshold(q)) 981 blk_clear_congested(rl, sync); 982 983 if (rl->count[sync] + 1 <= q->nr_requests) { 984 if (waitqueue_active(&rl->wait[sync])) 985 wake_up(&rl->wait[sync]); 986 987 blk_clear_rl_full(rl, sync); 988 } 989 } 990 991 /* 992 * A request has just been released. Account for it, update the full and 993 * congestion status, wake up any waiters. Called under q->queue_lock. 994 */ 995 static void freed_request(struct request_list *rl, bool sync, 996 req_flags_t rq_flags) 997 { 998 struct request_queue *q = rl->q; 999 1000 q->nr_rqs[sync]--; 1001 rl->count[sync]--; 1002 if (rq_flags & RQF_ELVPRIV) 1003 q->nr_rqs_elvpriv--; 1004 1005 __freed_request(rl, sync); 1006 1007 if (unlikely(rl->starved[sync ^ 1])) 1008 __freed_request(rl, sync ^ 1); 1009 } 1010 1011 int blk_update_nr_requests(struct request_queue *q, unsigned int nr) 1012 { 1013 struct request_list *rl; 1014 int on_thresh, off_thresh; 1015 1016 spin_lock_irq(q->queue_lock); 1017 q->nr_requests = nr; 1018 blk_queue_congestion_threshold(q); 1019 on_thresh = queue_congestion_on_threshold(q); 1020 off_thresh = queue_congestion_off_threshold(q); 1021 1022 blk_queue_for_each_rl(rl, q) { 1023 if (rl->count[BLK_RW_SYNC] >= on_thresh) 1024 blk_set_congested(rl, BLK_RW_SYNC); 1025 else if (rl->count[BLK_RW_SYNC] < off_thresh) 1026 blk_clear_congested(rl, BLK_RW_SYNC); 1027 1028 if (rl->count[BLK_RW_ASYNC] >= on_thresh) 1029 blk_set_congested(rl, BLK_RW_ASYNC); 1030 else if (rl->count[BLK_RW_ASYNC] < off_thresh) 1031 blk_clear_congested(rl, BLK_RW_ASYNC); 1032 1033 if (rl->count[BLK_RW_SYNC] >= q->nr_requests) { 1034 blk_set_rl_full(rl, BLK_RW_SYNC); 1035 } else { 1036 blk_clear_rl_full(rl, BLK_RW_SYNC); 1037 wake_up(&rl->wait[BLK_RW_SYNC]); 1038 } 1039 1040 if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) { 1041 blk_set_rl_full(rl, BLK_RW_ASYNC); 1042 } else { 1043 blk_clear_rl_full(rl, BLK_RW_ASYNC); 1044 wake_up(&rl->wait[BLK_RW_ASYNC]); 1045 } 1046 } 1047 1048 spin_unlock_irq(q->queue_lock); 1049 return 0; 1050 } 1051 1052 /** 1053 * __get_request - get a free request 1054 * @rl: request list to allocate from 1055 * @op: operation and flags 1056 * @bio: bio to allocate request for (can be %NULL) 1057 * @gfp_mask: allocation mask 1058 * 1059 * Get a free request from @q. This function may fail under memory 1060 * pressure or if @q is dead. 1061 * 1062 * Must be called with @q->queue_lock held and, 1063 * Returns ERR_PTR on failure, with @q->queue_lock held. 1064 * Returns request pointer on success, with @q->queue_lock *not held*. 1065 */ 1066 static struct request *__get_request(struct request_list *rl, unsigned int op, 1067 struct bio *bio, gfp_t gfp_mask) 1068 { 1069 struct request_queue *q = rl->q; 1070 struct request *rq; 1071 struct elevator_type *et = q->elevator->type; 1072 struct io_context *ioc = rq_ioc(bio); 1073 struct io_cq *icq = NULL; 1074 const bool is_sync = op_is_sync(op); 1075 int may_queue; 1076 req_flags_t rq_flags = RQF_ALLOCED; 1077 1078 if (unlikely(blk_queue_dying(q))) 1079 return ERR_PTR(-ENODEV); 1080 1081 may_queue = elv_may_queue(q, op); 1082 if (may_queue == ELV_MQUEUE_NO) 1083 goto rq_starved; 1084 1085 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 1086 if (rl->count[is_sync]+1 >= q->nr_requests) { 1087 /* 1088 * The queue will fill after this allocation, so set 1089 * it as full, and mark this process as "batching". 1090 * This process will be allowed to complete a batch of 1091 * requests, others will be blocked. 1092 */ 1093 if (!blk_rl_full(rl, is_sync)) { 1094 ioc_set_batching(q, ioc); 1095 blk_set_rl_full(rl, is_sync); 1096 } else { 1097 if (may_queue != ELV_MQUEUE_MUST 1098 && !ioc_batching(q, ioc)) { 1099 /* 1100 * The queue is full and the allocating 1101 * process is not a "batcher", and not 1102 * exempted by the IO scheduler 1103 */ 1104 return ERR_PTR(-ENOMEM); 1105 } 1106 } 1107 } 1108 blk_set_congested(rl, is_sync); 1109 } 1110 1111 /* 1112 * Only allow batching queuers to allocate up to 50% over the defined 1113 * limit of requests, otherwise we could have thousands of requests 1114 * allocated with any setting of ->nr_requests 1115 */ 1116 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 1117 return ERR_PTR(-ENOMEM); 1118 1119 q->nr_rqs[is_sync]++; 1120 rl->count[is_sync]++; 1121 rl->starved[is_sync] = 0; 1122 1123 /* 1124 * Decide whether the new request will be managed by elevator. If 1125 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will 1126 * prevent the current elevator from being destroyed until the new 1127 * request is freed. This guarantees icq's won't be destroyed and 1128 * makes creating new ones safe. 1129 * 1130 * Flush requests do not use the elevator so skip initialization. 1131 * This allows a request to share the flush and elevator data. 1132 * 1133 * Also, lookup icq while holding queue_lock. If it doesn't exist, 1134 * it will be created after releasing queue_lock. 1135 */ 1136 if (!op_is_flush(op) && !blk_queue_bypass(q)) { 1137 rq_flags |= RQF_ELVPRIV; 1138 q->nr_rqs_elvpriv++; 1139 if (et->icq_cache && ioc) 1140 icq = ioc_lookup_icq(ioc, q); 1141 } 1142 1143 if (blk_queue_io_stat(q)) 1144 rq_flags |= RQF_IO_STAT; 1145 spin_unlock_irq(q->queue_lock); 1146 1147 /* allocate and init request */ 1148 rq = mempool_alloc(rl->rq_pool, gfp_mask); 1149 if (!rq) 1150 goto fail_alloc; 1151 1152 blk_rq_init(q, rq); 1153 blk_rq_set_rl(rq, rl); 1154 rq->cmd_flags = op; 1155 rq->rq_flags = rq_flags; 1156 1157 /* init elvpriv */ 1158 if (rq_flags & RQF_ELVPRIV) { 1159 if (unlikely(et->icq_cache && !icq)) { 1160 if (ioc) 1161 icq = ioc_create_icq(ioc, q, gfp_mask); 1162 if (!icq) 1163 goto fail_elvpriv; 1164 } 1165 1166 rq->elv.icq = icq; 1167 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 1168 goto fail_elvpriv; 1169 1170 /* @rq->elv.icq holds io_context until @rq is freed */ 1171 if (icq) 1172 get_io_context(icq->ioc); 1173 } 1174 out: 1175 /* 1176 * ioc may be NULL here, and ioc_batching will be false. That's 1177 * OK, if the queue is under the request limit then requests need 1178 * not count toward the nr_batch_requests limit. There will always 1179 * be some limit enforced by BLK_BATCH_TIME. 1180 */ 1181 if (ioc_batching(q, ioc)) 1182 ioc->nr_batch_requests--; 1183 1184 trace_block_getrq(q, bio, op); 1185 return rq; 1186 1187 fail_elvpriv: 1188 /* 1189 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 1190 * and may fail indefinitely under memory pressure and thus 1191 * shouldn't stall IO. Treat this request as !elvpriv. This will 1192 * disturb iosched and blkcg but weird is bettern than dead. 1193 */ 1194 printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n", 1195 __func__, dev_name(q->backing_dev_info->dev)); 1196 1197 rq->rq_flags &= ~RQF_ELVPRIV; 1198 rq->elv.icq = NULL; 1199 1200 spin_lock_irq(q->queue_lock); 1201 q->nr_rqs_elvpriv--; 1202 spin_unlock_irq(q->queue_lock); 1203 goto out; 1204 1205 fail_alloc: 1206 /* 1207 * Allocation failed presumably due to memory. Undo anything we 1208 * might have messed up. 1209 * 1210 * Allocating task should really be put onto the front of the wait 1211 * queue, but this is pretty rare. 1212 */ 1213 spin_lock_irq(q->queue_lock); 1214 freed_request(rl, is_sync, rq_flags); 1215 1216 /* 1217 * in the very unlikely event that allocation failed and no 1218 * requests for this direction was pending, mark us starved so that 1219 * freeing of a request in the other direction will notice 1220 * us. another possible fix would be to split the rq mempool into 1221 * READ and WRITE 1222 */ 1223 rq_starved: 1224 if (unlikely(rl->count[is_sync] == 0)) 1225 rl->starved[is_sync] = 1; 1226 return ERR_PTR(-ENOMEM); 1227 } 1228 1229 /** 1230 * get_request - get a free request 1231 * @q: request_queue to allocate request from 1232 * @op: operation and flags 1233 * @bio: bio to allocate request for (can be %NULL) 1234 * @gfp_mask: allocation mask 1235 * 1236 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask, 1237 * this function keeps retrying under memory pressure and fails iff @q is dead. 1238 * 1239 * Must be called with @q->queue_lock held and, 1240 * Returns ERR_PTR on failure, with @q->queue_lock held. 1241 * Returns request pointer on success, with @q->queue_lock *not held*. 1242 */ 1243 static struct request *get_request(struct request_queue *q, unsigned int op, 1244 struct bio *bio, gfp_t gfp_mask) 1245 { 1246 const bool is_sync = op_is_sync(op); 1247 DEFINE_WAIT(wait); 1248 struct request_list *rl; 1249 struct request *rq; 1250 1251 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1252 retry: 1253 rq = __get_request(rl, op, bio, gfp_mask); 1254 if (!IS_ERR(rq)) 1255 return rq; 1256 1257 if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) { 1258 blk_put_rl(rl); 1259 return rq; 1260 } 1261 1262 /* wait on @rl and retry */ 1263 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1264 TASK_UNINTERRUPTIBLE); 1265 1266 trace_block_sleeprq(q, bio, op); 1267 1268 spin_unlock_irq(q->queue_lock); 1269 io_schedule(); 1270 1271 /* 1272 * After sleeping, we become a "batching" process and will be able 1273 * to allocate at least one request, and up to a big batch of them 1274 * for a small period time. See ioc_batching, ioc_set_batching 1275 */ 1276 ioc_set_batching(q, current->io_context); 1277 1278 spin_lock_irq(q->queue_lock); 1279 finish_wait(&rl->wait[is_sync], &wait); 1280 1281 goto retry; 1282 } 1283 1284 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1285 gfp_t gfp_mask) 1286 { 1287 struct request *rq; 1288 1289 /* create ioc upfront */ 1290 create_io_context(gfp_mask, q->node); 1291 1292 spin_lock_irq(q->queue_lock); 1293 rq = get_request(q, rw, NULL, gfp_mask); 1294 if (IS_ERR(rq)) { 1295 spin_unlock_irq(q->queue_lock); 1296 return rq; 1297 } 1298 1299 /* q->queue_lock is unlocked at this point */ 1300 rq->__data_len = 0; 1301 rq->__sector = (sector_t) -1; 1302 rq->bio = rq->biotail = NULL; 1303 return rq; 1304 } 1305 1306 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1307 { 1308 if (q->mq_ops) 1309 return blk_mq_alloc_request(q, rw, 1310 (gfp_mask & __GFP_DIRECT_RECLAIM) ? 1311 0 : BLK_MQ_REQ_NOWAIT); 1312 else 1313 return blk_old_get_request(q, rw, gfp_mask); 1314 } 1315 EXPORT_SYMBOL(blk_get_request); 1316 1317 /** 1318 * blk_requeue_request - put a request back on queue 1319 * @q: request queue where request should be inserted 1320 * @rq: request to be inserted 1321 * 1322 * Description: 1323 * Drivers often keep queueing requests until the hardware cannot accept 1324 * more, when that condition happens we need to put the request back 1325 * on the queue. Must be called with queue lock held. 1326 */ 1327 void blk_requeue_request(struct request_queue *q, struct request *rq) 1328 { 1329 blk_delete_timer(rq); 1330 blk_clear_rq_complete(rq); 1331 trace_block_rq_requeue(q, rq); 1332 wbt_requeue(q->rq_wb, &rq->issue_stat); 1333 1334 if (rq->rq_flags & RQF_QUEUED) 1335 blk_queue_end_tag(q, rq); 1336 1337 BUG_ON(blk_queued_rq(rq)); 1338 1339 elv_requeue_request(q, rq); 1340 } 1341 EXPORT_SYMBOL(blk_requeue_request); 1342 1343 static void add_acct_request(struct request_queue *q, struct request *rq, 1344 int where) 1345 { 1346 blk_account_io_start(rq, true); 1347 __elv_add_request(q, rq, where); 1348 } 1349 1350 static void part_round_stats_single(int cpu, struct hd_struct *part, 1351 unsigned long now) 1352 { 1353 int inflight; 1354 1355 if (now == part->stamp) 1356 return; 1357 1358 inflight = part_in_flight(part); 1359 if (inflight) { 1360 __part_stat_add(cpu, part, time_in_queue, 1361 inflight * (now - part->stamp)); 1362 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1363 } 1364 part->stamp = now; 1365 } 1366 1367 /** 1368 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1369 * @cpu: cpu number for stats access 1370 * @part: target partition 1371 * 1372 * The average IO queue length and utilisation statistics are maintained 1373 * by observing the current state of the queue length and the amount of 1374 * time it has been in this state for. 1375 * 1376 * Normally, that accounting is done on IO completion, but that can result 1377 * in more than a second's worth of IO being accounted for within any one 1378 * second, leading to >100% utilisation. To deal with that, we call this 1379 * function to do a round-off before returning the results when reading 1380 * /proc/diskstats. This accounts immediately for all queue usage up to 1381 * the current jiffies and restarts the counters again. 1382 */ 1383 void part_round_stats(int cpu, struct hd_struct *part) 1384 { 1385 unsigned long now = jiffies; 1386 1387 if (part->partno) 1388 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1389 part_round_stats_single(cpu, part, now); 1390 } 1391 EXPORT_SYMBOL_GPL(part_round_stats); 1392 1393 #ifdef CONFIG_PM 1394 static void blk_pm_put_request(struct request *rq) 1395 { 1396 if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending) 1397 pm_runtime_mark_last_busy(rq->q->dev); 1398 } 1399 #else 1400 static inline void blk_pm_put_request(struct request *rq) {} 1401 #endif 1402 1403 /* 1404 * queue lock must be held 1405 */ 1406 void __blk_put_request(struct request_queue *q, struct request *req) 1407 { 1408 req_flags_t rq_flags = req->rq_flags; 1409 1410 if (unlikely(!q)) 1411 return; 1412 1413 if (q->mq_ops) { 1414 blk_mq_free_request(req); 1415 return; 1416 } 1417 1418 blk_pm_put_request(req); 1419 1420 elv_completed_request(q, req); 1421 1422 /* this is a bio leak */ 1423 WARN_ON(req->bio != NULL); 1424 1425 wbt_done(q->rq_wb, &req->issue_stat); 1426 1427 /* 1428 * Request may not have originated from ll_rw_blk. if not, 1429 * it didn't come out of our reserved rq pools 1430 */ 1431 if (rq_flags & RQF_ALLOCED) { 1432 struct request_list *rl = blk_rq_rl(req); 1433 bool sync = op_is_sync(req->cmd_flags); 1434 1435 BUG_ON(!list_empty(&req->queuelist)); 1436 BUG_ON(ELV_ON_HASH(req)); 1437 1438 blk_free_request(rl, req); 1439 freed_request(rl, sync, rq_flags); 1440 blk_put_rl(rl); 1441 } 1442 } 1443 EXPORT_SYMBOL_GPL(__blk_put_request); 1444 1445 void blk_put_request(struct request *req) 1446 { 1447 struct request_queue *q = req->q; 1448 1449 if (q->mq_ops) 1450 blk_mq_free_request(req); 1451 else { 1452 unsigned long flags; 1453 1454 spin_lock_irqsave(q->queue_lock, flags); 1455 __blk_put_request(q, req); 1456 spin_unlock_irqrestore(q->queue_lock, flags); 1457 } 1458 } 1459 EXPORT_SYMBOL(blk_put_request); 1460 1461 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1462 struct bio *bio) 1463 { 1464 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1465 1466 if (!ll_back_merge_fn(q, req, bio)) 1467 return false; 1468 1469 trace_block_bio_backmerge(q, req, bio); 1470 1471 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1472 blk_rq_set_mixed_merge(req); 1473 1474 req->biotail->bi_next = bio; 1475 req->biotail = bio; 1476 req->__data_len += bio->bi_iter.bi_size; 1477 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1478 1479 blk_account_io_start(req, false); 1480 return true; 1481 } 1482 1483 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1484 struct bio *bio) 1485 { 1486 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 1487 1488 if (!ll_front_merge_fn(q, req, bio)) 1489 return false; 1490 1491 trace_block_bio_frontmerge(q, req, bio); 1492 1493 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1494 blk_rq_set_mixed_merge(req); 1495 1496 bio->bi_next = req->bio; 1497 req->bio = bio; 1498 1499 req->__sector = bio->bi_iter.bi_sector; 1500 req->__data_len += bio->bi_iter.bi_size; 1501 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1502 1503 blk_account_io_start(req, false); 1504 return true; 1505 } 1506 1507 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 1508 struct bio *bio) 1509 { 1510 unsigned short segments = blk_rq_nr_discard_segments(req); 1511 1512 if (segments >= queue_max_discard_segments(q)) 1513 goto no_merge; 1514 if (blk_rq_sectors(req) + bio_sectors(bio) > 1515 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 1516 goto no_merge; 1517 1518 req->biotail->bi_next = bio; 1519 req->biotail = bio; 1520 req->__data_len += bio->bi_iter.bi_size; 1521 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1522 req->nr_phys_segments = segments + 1; 1523 1524 blk_account_io_start(req, false); 1525 return true; 1526 no_merge: 1527 req_set_nomerge(q, req); 1528 return false; 1529 } 1530 1531 /** 1532 * blk_attempt_plug_merge - try to merge with %current's plugged list 1533 * @q: request_queue new bio is being queued at 1534 * @bio: new bio being queued 1535 * @request_count: out parameter for number of traversed plugged requests 1536 * @same_queue_rq: pointer to &struct request that gets filled in when 1537 * another request associated with @q is found on the plug list 1538 * (optional, may be %NULL) 1539 * 1540 * Determine whether @bio being queued on @q can be merged with a request 1541 * on %current's plugged list. Returns %true if merge was successful, 1542 * otherwise %false. 1543 * 1544 * Plugging coalesces IOs from the same issuer for the same purpose without 1545 * going through @q->queue_lock. As such it's more of an issuing mechanism 1546 * than scheduling, and the request, while may have elvpriv data, is not 1547 * added on the elevator at this point. In addition, we don't have 1548 * reliable access to the elevator outside queue lock. Only check basic 1549 * merging parameters without querying the elevator. 1550 * 1551 * Caller must ensure !blk_queue_nomerges(q) beforehand. 1552 */ 1553 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1554 unsigned int *request_count, 1555 struct request **same_queue_rq) 1556 { 1557 struct blk_plug *plug; 1558 struct request *rq; 1559 struct list_head *plug_list; 1560 1561 plug = current->plug; 1562 if (!plug) 1563 return false; 1564 *request_count = 0; 1565 1566 if (q->mq_ops) 1567 plug_list = &plug->mq_list; 1568 else 1569 plug_list = &plug->list; 1570 1571 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1572 bool merged = false; 1573 1574 if (rq->q == q) { 1575 (*request_count)++; 1576 /* 1577 * Only blk-mq multiple hardware queues case checks the 1578 * rq in the same queue, there should be only one such 1579 * rq in a queue 1580 **/ 1581 if (same_queue_rq) 1582 *same_queue_rq = rq; 1583 } 1584 1585 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1586 continue; 1587 1588 switch (blk_try_merge(rq, bio)) { 1589 case ELEVATOR_BACK_MERGE: 1590 merged = bio_attempt_back_merge(q, rq, bio); 1591 break; 1592 case ELEVATOR_FRONT_MERGE: 1593 merged = bio_attempt_front_merge(q, rq, bio); 1594 break; 1595 case ELEVATOR_DISCARD_MERGE: 1596 merged = bio_attempt_discard_merge(q, rq, bio); 1597 break; 1598 default: 1599 break; 1600 } 1601 1602 if (merged) 1603 return true; 1604 } 1605 1606 return false; 1607 } 1608 1609 unsigned int blk_plug_queued_count(struct request_queue *q) 1610 { 1611 struct blk_plug *plug; 1612 struct request *rq; 1613 struct list_head *plug_list; 1614 unsigned int ret = 0; 1615 1616 plug = current->plug; 1617 if (!plug) 1618 goto out; 1619 1620 if (q->mq_ops) 1621 plug_list = &plug->mq_list; 1622 else 1623 plug_list = &plug->list; 1624 1625 list_for_each_entry(rq, plug_list, queuelist) { 1626 if (rq->q == q) 1627 ret++; 1628 } 1629 out: 1630 return ret; 1631 } 1632 1633 void blk_init_request_from_bio(struct request *req, struct bio *bio) 1634 { 1635 struct io_context *ioc = rq_ioc(bio); 1636 1637 if (bio->bi_opf & REQ_RAHEAD) 1638 req->cmd_flags |= REQ_FAILFAST_MASK; 1639 1640 req->__sector = bio->bi_iter.bi_sector; 1641 if (ioprio_valid(bio_prio(bio))) 1642 req->ioprio = bio_prio(bio); 1643 else if (ioc) 1644 req->ioprio = ioc->ioprio; 1645 else 1646 req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0); 1647 blk_rq_bio_prep(req->q, req, bio); 1648 } 1649 EXPORT_SYMBOL_GPL(blk_init_request_from_bio); 1650 1651 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio) 1652 { 1653 struct blk_plug *plug; 1654 int where = ELEVATOR_INSERT_SORT; 1655 struct request *req, *free; 1656 unsigned int request_count = 0; 1657 unsigned int wb_acct; 1658 1659 /* 1660 * low level driver can indicate that it wants pages above a 1661 * certain limit bounced to low memory (ie for highmem, or even 1662 * ISA dma in theory) 1663 */ 1664 blk_queue_bounce(q, &bio); 1665 1666 blk_queue_split(q, &bio, q->bio_split); 1667 1668 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1669 bio->bi_error = -EIO; 1670 bio_endio(bio); 1671 return BLK_QC_T_NONE; 1672 } 1673 1674 if (op_is_flush(bio->bi_opf)) { 1675 spin_lock_irq(q->queue_lock); 1676 where = ELEVATOR_INSERT_FLUSH; 1677 goto get_rq; 1678 } 1679 1680 /* 1681 * Check if we can merge with the plugged list before grabbing 1682 * any locks. 1683 */ 1684 if (!blk_queue_nomerges(q)) { 1685 if (blk_attempt_plug_merge(q, bio, &request_count, NULL)) 1686 return BLK_QC_T_NONE; 1687 } else 1688 request_count = blk_plug_queued_count(q); 1689 1690 spin_lock_irq(q->queue_lock); 1691 1692 switch (elv_merge(q, &req, bio)) { 1693 case ELEVATOR_BACK_MERGE: 1694 if (!bio_attempt_back_merge(q, req, bio)) 1695 break; 1696 elv_bio_merged(q, req, bio); 1697 free = attempt_back_merge(q, req); 1698 if (free) 1699 __blk_put_request(q, free); 1700 else 1701 elv_merged_request(q, req, ELEVATOR_BACK_MERGE); 1702 goto out_unlock; 1703 case ELEVATOR_FRONT_MERGE: 1704 if (!bio_attempt_front_merge(q, req, bio)) 1705 break; 1706 elv_bio_merged(q, req, bio); 1707 free = attempt_front_merge(q, req); 1708 if (free) 1709 __blk_put_request(q, free); 1710 else 1711 elv_merged_request(q, req, ELEVATOR_FRONT_MERGE); 1712 goto out_unlock; 1713 default: 1714 break; 1715 } 1716 1717 get_rq: 1718 wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock); 1719 1720 /* 1721 * Grab a free request. This is might sleep but can not fail. 1722 * Returns with the queue unlocked. 1723 */ 1724 req = get_request(q, bio->bi_opf, bio, GFP_NOIO); 1725 if (IS_ERR(req)) { 1726 __wbt_done(q->rq_wb, wb_acct); 1727 bio->bi_error = PTR_ERR(req); 1728 bio_endio(bio); 1729 goto out_unlock; 1730 } 1731 1732 wbt_track(&req->issue_stat, wb_acct); 1733 1734 /* 1735 * After dropping the lock and possibly sleeping here, our request 1736 * may now be mergeable after it had proven unmergeable (above). 1737 * We don't worry about that case for efficiency. It won't happen 1738 * often, and the elevators are able to handle it. 1739 */ 1740 blk_init_request_from_bio(req, bio); 1741 1742 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1743 req->cpu = raw_smp_processor_id(); 1744 1745 plug = current->plug; 1746 if (plug) { 1747 /* 1748 * If this is the first request added after a plug, fire 1749 * of a plug trace. 1750 * 1751 * @request_count may become stale because of schedule 1752 * out, so check plug list again. 1753 */ 1754 if (!request_count || list_empty(&plug->list)) 1755 trace_block_plug(q); 1756 else { 1757 struct request *last = list_entry_rq(plug->list.prev); 1758 if (request_count >= BLK_MAX_REQUEST_COUNT || 1759 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) { 1760 blk_flush_plug_list(plug, false); 1761 trace_block_plug(q); 1762 } 1763 } 1764 list_add_tail(&req->queuelist, &plug->list); 1765 blk_account_io_start(req, true); 1766 } else { 1767 spin_lock_irq(q->queue_lock); 1768 add_acct_request(q, req, where); 1769 __blk_run_queue(q); 1770 out_unlock: 1771 spin_unlock_irq(q->queue_lock); 1772 } 1773 1774 return BLK_QC_T_NONE; 1775 } 1776 1777 /* 1778 * If bio->bi_dev is a partition, remap the location 1779 */ 1780 static inline void blk_partition_remap(struct bio *bio) 1781 { 1782 struct block_device *bdev = bio->bi_bdev; 1783 1784 /* 1785 * Zone reset does not include bi_size so bio_sectors() is always 0. 1786 * Include a test for the reset op code and perform the remap if needed. 1787 */ 1788 if (bdev != bdev->bd_contains && 1789 (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) { 1790 struct hd_struct *p = bdev->bd_part; 1791 1792 bio->bi_iter.bi_sector += p->start_sect; 1793 bio->bi_bdev = bdev->bd_contains; 1794 1795 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1796 bdev->bd_dev, 1797 bio->bi_iter.bi_sector - p->start_sect); 1798 } 1799 } 1800 1801 static void handle_bad_sector(struct bio *bio) 1802 { 1803 char b[BDEVNAME_SIZE]; 1804 1805 printk(KERN_INFO "attempt to access beyond end of device\n"); 1806 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 1807 bdevname(bio->bi_bdev, b), 1808 bio->bi_opf, 1809 (unsigned long long)bio_end_sector(bio), 1810 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1811 } 1812 1813 #ifdef CONFIG_FAIL_MAKE_REQUEST 1814 1815 static DECLARE_FAULT_ATTR(fail_make_request); 1816 1817 static int __init setup_fail_make_request(char *str) 1818 { 1819 return setup_fault_attr(&fail_make_request, str); 1820 } 1821 __setup("fail_make_request=", setup_fail_make_request); 1822 1823 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1824 { 1825 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1826 } 1827 1828 static int __init fail_make_request_debugfs(void) 1829 { 1830 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1831 NULL, &fail_make_request); 1832 1833 return PTR_ERR_OR_ZERO(dir); 1834 } 1835 1836 late_initcall(fail_make_request_debugfs); 1837 1838 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1839 1840 static inline bool should_fail_request(struct hd_struct *part, 1841 unsigned int bytes) 1842 { 1843 return false; 1844 } 1845 1846 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1847 1848 /* 1849 * Check whether this bio extends beyond the end of the device. 1850 */ 1851 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1852 { 1853 sector_t maxsector; 1854 1855 if (!nr_sectors) 1856 return 0; 1857 1858 /* Test device or partition size, when known. */ 1859 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1860 if (maxsector) { 1861 sector_t sector = bio->bi_iter.bi_sector; 1862 1863 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1864 /* 1865 * This may well happen - the kernel calls bread() 1866 * without checking the size of the device, e.g., when 1867 * mounting a device. 1868 */ 1869 handle_bad_sector(bio); 1870 return 1; 1871 } 1872 } 1873 1874 return 0; 1875 } 1876 1877 static noinline_for_stack bool 1878 generic_make_request_checks(struct bio *bio) 1879 { 1880 struct request_queue *q; 1881 int nr_sectors = bio_sectors(bio); 1882 int err = -EIO; 1883 char b[BDEVNAME_SIZE]; 1884 struct hd_struct *part; 1885 1886 might_sleep(); 1887 1888 if (bio_check_eod(bio, nr_sectors)) 1889 goto end_io; 1890 1891 q = bdev_get_queue(bio->bi_bdev); 1892 if (unlikely(!q)) { 1893 printk(KERN_ERR 1894 "generic_make_request: Trying to access " 1895 "nonexistent block-device %s (%Lu)\n", 1896 bdevname(bio->bi_bdev, b), 1897 (long long) bio->bi_iter.bi_sector); 1898 goto end_io; 1899 } 1900 1901 part = bio->bi_bdev->bd_part; 1902 if (should_fail_request(part, bio->bi_iter.bi_size) || 1903 should_fail_request(&part_to_disk(part)->part0, 1904 bio->bi_iter.bi_size)) 1905 goto end_io; 1906 1907 /* 1908 * If this device has partitions, remap block n 1909 * of partition p to block n+start(p) of the disk. 1910 */ 1911 blk_partition_remap(bio); 1912 1913 if (bio_check_eod(bio, nr_sectors)) 1914 goto end_io; 1915 1916 /* 1917 * Filter flush bio's early so that make_request based 1918 * drivers without flush support don't have to worry 1919 * about them. 1920 */ 1921 if (op_is_flush(bio->bi_opf) && 1922 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 1923 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 1924 if (!nr_sectors) { 1925 err = 0; 1926 goto end_io; 1927 } 1928 } 1929 1930 switch (bio_op(bio)) { 1931 case REQ_OP_DISCARD: 1932 if (!blk_queue_discard(q)) 1933 goto not_supported; 1934 break; 1935 case REQ_OP_SECURE_ERASE: 1936 if (!blk_queue_secure_erase(q)) 1937 goto not_supported; 1938 break; 1939 case REQ_OP_WRITE_SAME: 1940 if (!bdev_write_same(bio->bi_bdev)) 1941 goto not_supported; 1942 break; 1943 case REQ_OP_ZONE_REPORT: 1944 case REQ_OP_ZONE_RESET: 1945 if (!bdev_is_zoned(bio->bi_bdev)) 1946 goto not_supported; 1947 break; 1948 case REQ_OP_WRITE_ZEROES: 1949 if (!bdev_write_zeroes_sectors(bio->bi_bdev)) 1950 goto not_supported; 1951 break; 1952 default: 1953 break; 1954 } 1955 1956 /* 1957 * Various block parts want %current->io_context and lazy ioc 1958 * allocation ends up trading a lot of pain for a small amount of 1959 * memory. Just allocate it upfront. This may fail and block 1960 * layer knows how to live with it. 1961 */ 1962 create_io_context(GFP_ATOMIC, q->node); 1963 1964 if (!blkcg_bio_issue_check(q, bio)) 1965 return false; 1966 1967 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 1968 trace_block_bio_queue(q, bio); 1969 /* Now that enqueuing has been traced, we need to trace 1970 * completion as well. 1971 */ 1972 bio_set_flag(bio, BIO_TRACE_COMPLETION); 1973 } 1974 return true; 1975 1976 not_supported: 1977 err = -EOPNOTSUPP; 1978 end_io: 1979 bio->bi_error = err; 1980 bio_endio(bio); 1981 return false; 1982 } 1983 1984 /** 1985 * generic_make_request - hand a buffer to its device driver for I/O 1986 * @bio: The bio describing the location in memory and on the device. 1987 * 1988 * generic_make_request() is used to make I/O requests of block 1989 * devices. It is passed a &struct bio, which describes the I/O that needs 1990 * to be done. 1991 * 1992 * generic_make_request() does not return any status. The 1993 * success/failure status of the request, along with notification of 1994 * completion, is delivered asynchronously through the bio->bi_end_io 1995 * function described (one day) else where. 1996 * 1997 * The caller of generic_make_request must make sure that bi_io_vec 1998 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1999 * set to describe the device address, and the 2000 * bi_end_io and optionally bi_private are set to describe how 2001 * completion notification should be signaled. 2002 * 2003 * generic_make_request and the drivers it calls may use bi_next if this 2004 * bio happens to be merged with someone else, and may resubmit the bio to 2005 * a lower device by calling into generic_make_request recursively, which 2006 * means the bio should NOT be touched after the call to ->make_request_fn. 2007 */ 2008 blk_qc_t generic_make_request(struct bio *bio) 2009 { 2010 /* 2011 * bio_list_on_stack[0] contains bios submitted by the current 2012 * make_request_fn. 2013 * bio_list_on_stack[1] contains bios that were submitted before 2014 * the current make_request_fn, but that haven't been processed 2015 * yet. 2016 */ 2017 struct bio_list bio_list_on_stack[2]; 2018 blk_qc_t ret = BLK_QC_T_NONE; 2019 2020 if (!generic_make_request_checks(bio)) 2021 goto out; 2022 2023 /* 2024 * We only want one ->make_request_fn to be active at a time, else 2025 * stack usage with stacked devices could be a problem. So use 2026 * current->bio_list to keep a list of requests submited by a 2027 * make_request_fn function. current->bio_list is also used as a 2028 * flag to say if generic_make_request is currently active in this 2029 * task or not. If it is NULL, then no make_request is active. If 2030 * it is non-NULL, then a make_request is active, and new requests 2031 * should be added at the tail 2032 */ 2033 if (current->bio_list) { 2034 bio_list_add(¤t->bio_list[0], bio); 2035 goto out; 2036 } 2037 2038 /* following loop may be a bit non-obvious, and so deserves some 2039 * explanation. 2040 * Before entering the loop, bio->bi_next is NULL (as all callers 2041 * ensure that) so we have a list with a single bio. 2042 * We pretend that we have just taken it off a longer list, so 2043 * we assign bio_list to a pointer to the bio_list_on_stack, 2044 * thus initialising the bio_list of new bios to be 2045 * added. ->make_request() may indeed add some more bios 2046 * through a recursive call to generic_make_request. If it 2047 * did, we find a non-NULL value in bio_list and re-enter the loop 2048 * from the top. In this case we really did just take the bio 2049 * of the top of the list (no pretending) and so remove it from 2050 * bio_list, and call into ->make_request() again. 2051 */ 2052 BUG_ON(bio->bi_next); 2053 bio_list_init(&bio_list_on_stack[0]); 2054 current->bio_list = bio_list_on_stack; 2055 do { 2056 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 2057 2058 if (likely(blk_queue_enter(q, false) == 0)) { 2059 struct bio_list lower, same; 2060 2061 /* Create a fresh bio_list for all subordinate requests */ 2062 bio_list_on_stack[1] = bio_list_on_stack[0]; 2063 bio_list_init(&bio_list_on_stack[0]); 2064 ret = q->make_request_fn(q, bio); 2065 2066 blk_queue_exit(q); 2067 2068 /* sort new bios into those for a lower level 2069 * and those for the same level 2070 */ 2071 bio_list_init(&lower); 2072 bio_list_init(&same); 2073 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 2074 if (q == bdev_get_queue(bio->bi_bdev)) 2075 bio_list_add(&same, bio); 2076 else 2077 bio_list_add(&lower, bio); 2078 /* now assemble so we handle the lowest level first */ 2079 bio_list_merge(&bio_list_on_stack[0], &lower); 2080 bio_list_merge(&bio_list_on_stack[0], &same); 2081 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 2082 } else { 2083 bio_io_error(bio); 2084 } 2085 bio = bio_list_pop(&bio_list_on_stack[0]); 2086 } while (bio); 2087 current->bio_list = NULL; /* deactivate */ 2088 2089 out: 2090 return ret; 2091 } 2092 EXPORT_SYMBOL(generic_make_request); 2093 2094 /** 2095 * submit_bio - submit a bio to the block device layer for I/O 2096 * @bio: The &struct bio which describes the I/O 2097 * 2098 * submit_bio() is very similar in purpose to generic_make_request(), and 2099 * uses that function to do most of the work. Both are fairly rough 2100 * interfaces; @bio must be presetup and ready for I/O. 2101 * 2102 */ 2103 blk_qc_t submit_bio(struct bio *bio) 2104 { 2105 /* 2106 * If it's a regular read/write or a barrier with data attached, 2107 * go through the normal accounting stuff before submission. 2108 */ 2109 if (bio_has_data(bio)) { 2110 unsigned int count; 2111 2112 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 2113 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 2114 else 2115 count = bio_sectors(bio); 2116 2117 if (op_is_write(bio_op(bio))) { 2118 count_vm_events(PGPGOUT, count); 2119 } else { 2120 task_io_account_read(bio->bi_iter.bi_size); 2121 count_vm_events(PGPGIN, count); 2122 } 2123 2124 if (unlikely(block_dump)) { 2125 char b[BDEVNAME_SIZE]; 2126 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 2127 current->comm, task_pid_nr(current), 2128 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 2129 (unsigned long long)bio->bi_iter.bi_sector, 2130 bdevname(bio->bi_bdev, b), 2131 count); 2132 } 2133 } 2134 2135 return generic_make_request(bio); 2136 } 2137 EXPORT_SYMBOL(submit_bio); 2138 2139 /** 2140 * blk_cloned_rq_check_limits - Helper function to check a cloned request 2141 * for new the queue limits 2142 * @q: the queue 2143 * @rq: the request being checked 2144 * 2145 * Description: 2146 * @rq may have been made based on weaker limitations of upper-level queues 2147 * in request stacking drivers, and it may violate the limitation of @q. 2148 * Since the block layer and the underlying device driver trust @rq 2149 * after it is inserted to @q, it should be checked against @q before 2150 * the insertion using this generic function. 2151 * 2152 * Request stacking drivers like request-based dm may change the queue 2153 * limits when retrying requests on other queues. Those requests need 2154 * to be checked against the new queue limits again during dispatch. 2155 */ 2156 static int blk_cloned_rq_check_limits(struct request_queue *q, 2157 struct request *rq) 2158 { 2159 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 2160 printk(KERN_ERR "%s: over max size limit.\n", __func__); 2161 return -EIO; 2162 } 2163 2164 /* 2165 * queue's settings related to segment counting like q->bounce_pfn 2166 * may differ from that of other stacking queues. 2167 * Recalculate it to check the request correctly on this queue's 2168 * limitation. 2169 */ 2170 blk_recalc_rq_segments(rq); 2171 if (rq->nr_phys_segments > queue_max_segments(q)) { 2172 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 2173 return -EIO; 2174 } 2175 2176 return 0; 2177 } 2178 2179 /** 2180 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 2181 * @q: the queue to submit the request 2182 * @rq: the request being queued 2183 */ 2184 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 2185 { 2186 unsigned long flags; 2187 int where = ELEVATOR_INSERT_BACK; 2188 2189 if (blk_cloned_rq_check_limits(q, rq)) 2190 return -EIO; 2191 2192 if (rq->rq_disk && 2193 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 2194 return -EIO; 2195 2196 if (q->mq_ops) { 2197 if (blk_queue_io_stat(q)) 2198 blk_account_io_start(rq, true); 2199 blk_mq_sched_insert_request(rq, false, true, false, false); 2200 return 0; 2201 } 2202 2203 spin_lock_irqsave(q->queue_lock, flags); 2204 if (unlikely(blk_queue_dying(q))) { 2205 spin_unlock_irqrestore(q->queue_lock, flags); 2206 return -ENODEV; 2207 } 2208 2209 /* 2210 * Submitting request must be dequeued before calling this function 2211 * because it will be linked to another request_queue 2212 */ 2213 BUG_ON(blk_queued_rq(rq)); 2214 2215 if (op_is_flush(rq->cmd_flags)) 2216 where = ELEVATOR_INSERT_FLUSH; 2217 2218 add_acct_request(q, rq, where); 2219 if (where == ELEVATOR_INSERT_FLUSH) 2220 __blk_run_queue(q); 2221 spin_unlock_irqrestore(q->queue_lock, flags); 2222 2223 return 0; 2224 } 2225 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 2226 2227 /** 2228 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 2229 * @rq: request to examine 2230 * 2231 * Description: 2232 * A request could be merge of IOs which require different failure 2233 * handling. This function determines the number of bytes which 2234 * can be failed from the beginning of the request without 2235 * crossing into area which need to be retried further. 2236 * 2237 * Return: 2238 * The number of bytes to fail. 2239 * 2240 * Context: 2241 * queue_lock must be held. 2242 */ 2243 unsigned int blk_rq_err_bytes(const struct request *rq) 2244 { 2245 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 2246 unsigned int bytes = 0; 2247 struct bio *bio; 2248 2249 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 2250 return blk_rq_bytes(rq); 2251 2252 /* 2253 * Currently the only 'mixing' which can happen is between 2254 * different fastfail types. We can safely fail portions 2255 * which have all the failfast bits that the first one has - 2256 * the ones which are at least as eager to fail as the first 2257 * one. 2258 */ 2259 for (bio = rq->bio; bio; bio = bio->bi_next) { 2260 if ((bio->bi_opf & ff) != ff) 2261 break; 2262 bytes += bio->bi_iter.bi_size; 2263 } 2264 2265 /* this could lead to infinite loop */ 2266 BUG_ON(blk_rq_bytes(rq) && !bytes); 2267 return bytes; 2268 } 2269 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2270 2271 void blk_account_io_completion(struct request *req, unsigned int bytes) 2272 { 2273 if (blk_do_io_stat(req)) { 2274 const int rw = rq_data_dir(req); 2275 struct hd_struct *part; 2276 int cpu; 2277 2278 cpu = part_stat_lock(); 2279 part = req->part; 2280 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2281 part_stat_unlock(); 2282 } 2283 } 2284 2285 void blk_account_io_done(struct request *req) 2286 { 2287 /* 2288 * Account IO completion. flush_rq isn't accounted as a 2289 * normal IO on queueing nor completion. Accounting the 2290 * containing request is enough. 2291 */ 2292 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 2293 unsigned long duration = jiffies - req->start_time; 2294 const int rw = rq_data_dir(req); 2295 struct hd_struct *part; 2296 int cpu; 2297 2298 cpu = part_stat_lock(); 2299 part = req->part; 2300 2301 part_stat_inc(cpu, part, ios[rw]); 2302 part_stat_add(cpu, part, ticks[rw], duration); 2303 part_round_stats(cpu, part); 2304 part_dec_in_flight(part, rw); 2305 2306 hd_struct_put(part); 2307 part_stat_unlock(); 2308 } 2309 } 2310 2311 #ifdef CONFIG_PM 2312 /* 2313 * Don't process normal requests when queue is suspended 2314 * or in the process of suspending/resuming 2315 */ 2316 static struct request *blk_pm_peek_request(struct request_queue *q, 2317 struct request *rq) 2318 { 2319 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2320 (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM)))) 2321 return NULL; 2322 else 2323 return rq; 2324 } 2325 #else 2326 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2327 struct request *rq) 2328 { 2329 return rq; 2330 } 2331 #endif 2332 2333 void blk_account_io_start(struct request *rq, bool new_io) 2334 { 2335 struct hd_struct *part; 2336 int rw = rq_data_dir(rq); 2337 int cpu; 2338 2339 if (!blk_do_io_stat(rq)) 2340 return; 2341 2342 cpu = part_stat_lock(); 2343 2344 if (!new_io) { 2345 part = rq->part; 2346 part_stat_inc(cpu, part, merges[rw]); 2347 } else { 2348 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2349 if (!hd_struct_try_get(part)) { 2350 /* 2351 * The partition is already being removed, 2352 * the request will be accounted on the disk only 2353 * 2354 * We take a reference on disk->part0 although that 2355 * partition will never be deleted, so we can treat 2356 * it as any other partition. 2357 */ 2358 part = &rq->rq_disk->part0; 2359 hd_struct_get(part); 2360 } 2361 part_round_stats(cpu, part); 2362 part_inc_in_flight(part, rw); 2363 rq->part = part; 2364 } 2365 2366 part_stat_unlock(); 2367 } 2368 2369 /** 2370 * blk_peek_request - peek at the top of a request queue 2371 * @q: request queue to peek at 2372 * 2373 * Description: 2374 * Return the request at the top of @q. The returned request 2375 * should be started using blk_start_request() before LLD starts 2376 * processing it. 2377 * 2378 * Return: 2379 * Pointer to the request at the top of @q if available. Null 2380 * otherwise. 2381 * 2382 * Context: 2383 * queue_lock must be held. 2384 */ 2385 struct request *blk_peek_request(struct request_queue *q) 2386 { 2387 struct request *rq; 2388 int ret; 2389 2390 while ((rq = __elv_next_request(q)) != NULL) { 2391 2392 rq = blk_pm_peek_request(q, rq); 2393 if (!rq) 2394 break; 2395 2396 if (!(rq->rq_flags & RQF_STARTED)) { 2397 /* 2398 * This is the first time the device driver 2399 * sees this request (possibly after 2400 * requeueing). Notify IO scheduler. 2401 */ 2402 if (rq->rq_flags & RQF_SORTED) 2403 elv_activate_rq(q, rq); 2404 2405 /* 2406 * just mark as started even if we don't start 2407 * it, a request that has been delayed should 2408 * not be passed by new incoming requests 2409 */ 2410 rq->rq_flags |= RQF_STARTED; 2411 trace_block_rq_issue(q, rq); 2412 } 2413 2414 if (!q->boundary_rq || q->boundary_rq == rq) { 2415 q->end_sector = rq_end_sector(rq); 2416 q->boundary_rq = NULL; 2417 } 2418 2419 if (rq->rq_flags & RQF_DONTPREP) 2420 break; 2421 2422 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2423 /* 2424 * make sure space for the drain appears we 2425 * know we can do this because max_hw_segments 2426 * has been adjusted to be one fewer than the 2427 * device can handle 2428 */ 2429 rq->nr_phys_segments++; 2430 } 2431 2432 if (!q->prep_rq_fn) 2433 break; 2434 2435 ret = q->prep_rq_fn(q, rq); 2436 if (ret == BLKPREP_OK) { 2437 break; 2438 } else if (ret == BLKPREP_DEFER) { 2439 /* 2440 * the request may have been (partially) prepped. 2441 * we need to keep this request in the front to 2442 * avoid resource deadlock. RQF_STARTED will 2443 * prevent other fs requests from passing this one. 2444 */ 2445 if (q->dma_drain_size && blk_rq_bytes(rq) && 2446 !(rq->rq_flags & RQF_DONTPREP)) { 2447 /* 2448 * remove the space for the drain we added 2449 * so that we don't add it again 2450 */ 2451 --rq->nr_phys_segments; 2452 } 2453 2454 rq = NULL; 2455 break; 2456 } else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) { 2457 int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO; 2458 2459 rq->rq_flags |= RQF_QUIET; 2460 /* 2461 * Mark this request as started so we don't trigger 2462 * any debug logic in the end I/O path. 2463 */ 2464 blk_start_request(rq); 2465 __blk_end_request_all(rq, err); 2466 } else { 2467 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2468 break; 2469 } 2470 } 2471 2472 return rq; 2473 } 2474 EXPORT_SYMBOL(blk_peek_request); 2475 2476 void blk_dequeue_request(struct request *rq) 2477 { 2478 struct request_queue *q = rq->q; 2479 2480 BUG_ON(list_empty(&rq->queuelist)); 2481 BUG_ON(ELV_ON_HASH(rq)); 2482 2483 list_del_init(&rq->queuelist); 2484 2485 /* 2486 * the time frame between a request being removed from the lists 2487 * and to it is freed is accounted as io that is in progress at 2488 * the driver side. 2489 */ 2490 if (blk_account_rq(rq)) { 2491 q->in_flight[rq_is_sync(rq)]++; 2492 set_io_start_time_ns(rq); 2493 } 2494 } 2495 2496 /** 2497 * blk_start_request - start request processing on the driver 2498 * @req: request to dequeue 2499 * 2500 * Description: 2501 * Dequeue @req and start timeout timer on it. This hands off the 2502 * request to the driver. 2503 * 2504 * Block internal functions which don't want to start timer should 2505 * call blk_dequeue_request(). 2506 * 2507 * Context: 2508 * queue_lock must be held. 2509 */ 2510 void blk_start_request(struct request *req) 2511 { 2512 blk_dequeue_request(req); 2513 2514 if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) { 2515 blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req)); 2516 req->rq_flags |= RQF_STATS; 2517 wbt_issue(req->q->rq_wb, &req->issue_stat); 2518 } 2519 2520 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2521 blk_add_timer(req); 2522 } 2523 EXPORT_SYMBOL(blk_start_request); 2524 2525 /** 2526 * blk_fetch_request - fetch a request from a request queue 2527 * @q: request queue to fetch a request from 2528 * 2529 * Description: 2530 * Return the request at the top of @q. The request is started on 2531 * return and LLD can start processing it immediately. 2532 * 2533 * Return: 2534 * Pointer to the request at the top of @q if available. Null 2535 * otherwise. 2536 * 2537 * Context: 2538 * queue_lock must be held. 2539 */ 2540 struct request *blk_fetch_request(struct request_queue *q) 2541 { 2542 struct request *rq; 2543 2544 rq = blk_peek_request(q); 2545 if (rq) 2546 blk_start_request(rq); 2547 return rq; 2548 } 2549 EXPORT_SYMBOL(blk_fetch_request); 2550 2551 /** 2552 * blk_update_request - Special helper function for request stacking drivers 2553 * @req: the request being processed 2554 * @error: %0 for success, < %0 for error 2555 * @nr_bytes: number of bytes to complete @req 2556 * 2557 * Description: 2558 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2559 * the request structure even if @req doesn't have leftover. 2560 * If @req has leftover, sets it up for the next range of segments. 2561 * 2562 * This special helper function is only for request stacking drivers 2563 * (e.g. request-based dm) so that they can handle partial completion. 2564 * Actual device drivers should use blk_end_request instead. 2565 * 2566 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2567 * %false return from this function. 2568 * 2569 * Return: 2570 * %false - this request doesn't have any more data 2571 * %true - this request has more data 2572 **/ 2573 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2574 { 2575 int total_bytes; 2576 2577 trace_block_rq_complete(req, error, nr_bytes); 2578 2579 if (!req->bio) 2580 return false; 2581 2582 if (error && !blk_rq_is_passthrough(req) && 2583 !(req->rq_flags & RQF_QUIET)) { 2584 char *error_type; 2585 2586 switch (error) { 2587 case -ENOLINK: 2588 error_type = "recoverable transport"; 2589 break; 2590 case -EREMOTEIO: 2591 error_type = "critical target"; 2592 break; 2593 case -EBADE: 2594 error_type = "critical nexus"; 2595 break; 2596 case -ETIMEDOUT: 2597 error_type = "timeout"; 2598 break; 2599 case -ENOSPC: 2600 error_type = "critical space allocation"; 2601 break; 2602 case -ENODATA: 2603 error_type = "critical medium"; 2604 break; 2605 case -EIO: 2606 default: 2607 error_type = "I/O"; 2608 break; 2609 } 2610 printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n", 2611 __func__, error_type, req->rq_disk ? 2612 req->rq_disk->disk_name : "?", 2613 (unsigned long long)blk_rq_pos(req)); 2614 2615 } 2616 2617 blk_account_io_completion(req, nr_bytes); 2618 2619 total_bytes = 0; 2620 while (req->bio) { 2621 struct bio *bio = req->bio; 2622 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 2623 2624 if (bio_bytes == bio->bi_iter.bi_size) 2625 req->bio = bio->bi_next; 2626 2627 /* Completion has already been traced */ 2628 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 2629 req_bio_endio(req, bio, bio_bytes, error); 2630 2631 total_bytes += bio_bytes; 2632 nr_bytes -= bio_bytes; 2633 2634 if (!nr_bytes) 2635 break; 2636 } 2637 2638 /* 2639 * completely done 2640 */ 2641 if (!req->bio) { 2642 /* 2643 * Reset counters so that the request stacking driver 2644 * can find how many bytes remain in the request 2645 * later. 2646 */ 2647 req->__data_len = 0; 2648 return false; 2649 } 2650 2651 WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD); 2652 2653 req->__data_len -= total_bytes; 2654 2655 /* update sector only for requests with clear definition of sector */ 2656 if (!blk_rq_is_passthrough(req)) 2657 req->__sector += total_bytes >> 9; 2658 2659 /* mixed attributes always follow the first bio */ 2660 if (req->rq_flags & RQF_MIXED_MERGE) { 2661 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2662 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 2663 } 2664 2665 /* 2666 * If total number of sectors is less than the first segment 2667 * size, something has gone terribly wrong. 2668 */ 2669 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2670 blk_dump_rq_flags(req, "request botched"); 2671 req->__data_len = blk_rq_cur_bytes(req); 2672 } 2673 2674 /* recalculate the number of segments */ 2675 blk_recalc_rq_segments(req); 2676 2677 return true; 2678 } 2679 EXPORT_SYMBOL_GPL(blk_update_request); 2680 2681 static bool blk_update_bidi_request(struct request *rq, int error, 2682 unsigned int nr_bytes, 2683 unsigned int bidi_bytes) 2684 { 2685 if (blk_update_request(rq, error, nr_bytes)) 2686 return true; 2687 2688 /* Bidi request must be completed as a whole */ 2689 if (unlikely(blk_bidi_rq(rq)) && 2690 blk_update_request(rq->next_rq, error, bidi_bytes)) 2691 return true; 2692 2693 if (blk_queue_add_random(rq->q)) 2694 add_disk_randomness(rq->rq_disk); 2695 2696 return false; 2697 } 2698 2699 /** 2700 * blk_unprep_request - unprepare a request 2701 * @req: the request 2702 * 2703 * This function makes a request ready for complete resubmission (or 2704 * completion). It happens only after all error handling is complete, 2705 * so represents the appropriate moment to deallocate any resources 2706 * that were allocated to the request in the prep_rq_fn. The queue 2707 * lock is held when calling this. 2708 */ 2709 void blk_unprep_request(struct request *req) 2710 { 2711 struct request_queue *q = req->q; 2712 2713 req->rq_flags &= ~RQF_DONTPREP; 2714 if (q->unprep_rq_fn) 2715 q->unprep_rq_fn(q, req); 2716 } 2717 EXPORT_SYMBOL_GPL(blk_unprep_request); 2718 2719 /* 2720 * queue lock must be held 2721 */ 2722 void blk_finish_request(struct request *req, int error) 2723 { 2724 struct request_queue *q = req->q; 2725 2726 if (req->rq_flags & RQF_STATS) 2727 blk_stat_add(req); 2728 2729 if (req->rq_flags & RQF_QUEUED) 2730 blk_queue_end_tag(q, req); 2731 2732 BUG_ON(blk_queued_rq(req)); 2733 2734 if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req)) 2735 laptop_io_completion(req->q->backing_dev_info); 2736 2737 blk_delete_timer(req); 2738 2739 if (req->rq_flags & RQF_DONTPREP) 2740 blk_unprep_request(req); 2741 2742 blk_account_io_done(req); 2743 2744 if (req->end_io) { 2745 wbt_done(req->q->rq_wb, &req->issue_stat); 2746 req->end_io(req, error); 2747 } else { 2748 if (blk_bidi_rq(req)) 2749 __blk_put_request(req->next_rq->q, req->next_rq); 2750 2751 __blk_put_request(q, req); 2752 } 2753 } 2754 EXPORT_SYMBOL(blk_finish_request); 2755 2756 /** 2757 * blk_end_bidi_request - Complete a bidi request 2758 * @rq: the request to complete 2759 * @error: %0 for success, < %0 for error 2760 * @nr_bytes: number of bytes to complete @rq 2761 * @bidi_bytes: number of bytes to complete @rq->next_rq 2762 * 2763 * Description: 2764 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2765 * Drivers that supports bidi can safely call this member for any 2766 * type of request, bidi or uni. In the later case @bidi_bytes is 2767 * just ignored. 2768 * 2769 * Return: 2770 * %false - we are done with this request 2771 * %true - still buffers pending for this request 2772 **/ 2773 static bool blk_end_bidi_request(struct request *rq, int error, 2774 unsigned int nr_bytes, unsigned int bidi_bytes) 2775 { 2776 struct request_queue *q = rq->q; 2777 unsigned long flags; 2778 2779 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2780 return true; 2781 2782 spin_lock_irqsave(q->queue_lock, flags); 2783 blk_finish_request(rq, error); 2784 spin_unlock_irqrestore(q->queue_lock, flags); 2785 2786 return false; 2787 } 2788 2789 /** 2790 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2791 * @rq: the request to complete 2792 * @error: %0 for success, < %0 for error 2793 * @nr_bytes: number of bytes to complete @rq 2794 * @bidi_bytes: number of bytes to complete @rq->next_rq 2795 * 2796 * Description: 2797 * Identical to blk_end_bidi_request() except that queue lock is 2798 * assumed to be locked on entry and remains so on return. 2799 * 2800 * Return: 2801 * %false - we are done with this request 2802 * %true - still buffers pending for this request 2803 **/ 2804 static bool __blk_end_bidi_request(struct request *rq, int error, 2805 unsigned int nr_bytes, unsigned int bidi_bytes) 2806 { 2807 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2808 return true; 2809 2810 blk_finish_request(rq, error); 2811 2812 return false; 2813 } 2814 2815 /** 2816 * blk_end_request - Helper function for drivers to complete the request. 2817 * @rq: the request being processed 2818 * @error: %0 for success, < %0 for error 2819 * @nr_bytes: number of bytes to complete 2820 * 2821 * Description: 2822 * Ends I/O on a number of bytes attached to @rq. 2823 * If @rq has leftover, sets it up for the next range of segments. 2824 * 2825 * Return: 2826 * %false - we are done with this request 2827 * %true - still buffers pending for this request 2828 **/ 2829 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2830 { 2831 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2832 } 2833 EXPORT_SYMBOL(blk_end_request); 2834 2835 /** 2836 * blk_end_request_all - Helper function for drives to finish the request. 2837 * @rq: the request to finish 2838 * @error: %0 for success, < %0 for error 2839 * 2840 * Description: 2841 * Completely finish @rq. 2842 */ 2843 void blk_end_request_all(struct request *rq, int error) 2844 { 2845 bool pending; 2846 unsigned int bidi_bytes = 0; 2847 2848 if (unlikely(blk_bidi_rq(rq))) 2849 bidi_bytes = blk_rq_bytes(rq->next_rq); 2850 2851 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2852 BUG_ON(pending); 2853 } 2854 EXPORT_SYMBOL(blk_end_request_all); 2855 2856 /** 2857 * __blk_end_request - Helper function for drivers to complete the request. 2858 * @rq: the request being processed 2859 * @error: %0 for success, < %0 for error 2860 * @nr_bytes: number of bytes to complete 2861 * 2862 * Description: 2863 * Must be called with queue lock held unlike blk_end_request(). 2864 * 2865 * Return: 2866 * %false - we are done with this request 2867 * %true - still buffers pending for this request 2868 **/ 2869 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2870 { 2871 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2872 } 2873 EXPORT_SYMBOL(__blk_end_request); 2874 2875 /** 2876 * __blk_end_request_all - Helper function for drives to finish the request. 2877 * @rq: the request to finish 2878 * @error: %0 for success, < %0 for error 2879 * 2880 * Description: 2881 * Completely finish @rq. Must be called with queue lock held. 2882 */ 2883 void __blk_end_request_all(struct request *rq, int error) 2884 { 2885 bool pending; 2886 unsigned int bidi_bytes = 0; 2887 2888 if (unlikely(blk_bidi_rq(rq))) 2889 bidi_bytes = blk_rq_bytes(rq->next_rq); 2890 2891 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2892 BUG_ON(pending); 2893 } 2894 EXPORT_SYMBOL(__blk_end_request_all); 2895 2896 /** 2897 * __blk_end_request_cur - Helper function to finish the current request chunk. 2898 * @rq: the request to finish the current chunk for 2899 * @error: %0 for success, < %0 for error 2900 * 2901 * Description: 2902 * Complete the current consecutively mapped chunk from @rq. Must 2903 * be called with queue lock held. 2904 * 2905 * Return: 2906 * %false - we are done with this request 2907 * %true - still buffers pending for this request 2908 */ 2909 bool __blk_end_request_cur(struct request *rq, int error) 2910 { 2911 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2912 } 2913 EXPORT_SYMBOL(__blk_end_request_cur); 2914 2915 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2916 struct bio *bio) 2917 { 2918 if (bio_has_data(bio)) 2919 rq->nr_phys_segments = bio_phys_segments(q, bio); 2920 2921 rq->__data_len = bio->bi_iter.bi_size; 2922 rq->bio = rq->biotail = bio; 2923 2924 if (bio->bi_bdev) 2925 rq->rq_disk = bio->bi_bdev->bd_disk; 2926 } 2927 2928 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2929 /** 2930 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2931 * @rq: the request to be flushed 2932 * 2933 * Description: 2934 * Flush all pages in @rq. 2935 */ 2936 void rq_flush_dcache_pages(struct request *rq) 2937 { 2938 struct req_iterator iter; 2939 struct bio_vec bvec; 2940 2941 rq_for_each_segment(bvec, rq, iter) 2942 flush_dcache_page(bvec.bv_page); 2943 } 2944 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2945 #endif 2946 2947 /** 2948 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2949 * @q : the queue of the device being checked 2950 * 2951 * Description: 2952 * Check if underlying low-level drivers of a device are busy. 2953 * If the drivers want to export their busy state, they must set own 2954 * exporting function using blk_queue_lld_busy() first. 2955 * 2956 * Basically, this function is used only by request stacking drivers 2957 * to stop dispatching requests to underlying devices when underlying 2958 * devices are busy. This behavior helps more I/O merging on the queue 2959 * of the request stacking driver and prevents I/O throughput regression 2960 * on burst I/O load. 2961 * 2962 * Return: 2963 * 0 - Not busy (The request stacking driver should dispatch request) 2964 * 1 - Busy (The request stacking driver should stop dispatching request) 2965 */ 2966 int blk_lld_busy(struct request_queue *q) 2967 { 2968 if (q->lld_busy_fn) 2969 return q->lld_busy_fn(q); 2970 2971 return 0; 2972 } 2973 EXPORT_SYMBOL_GPL(blk_lld_busy); 2974 2975 /** 2976 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2977 * @rq: the clone request to be cleaned up 2978 * 2979 * Description: 2980 * Free all bios in @rq for a cloned request. 2981 */ 2982 void blk_rq_unprep_clone(struct request *rq) 2983 { 2984 struct bio *bio; 2985 2986 while ((bio = rq->bio) != NULL) { 2987 rq->bio = bio->bi_next; 2988 2989 bio_put(bio); 2990 } 2991 } 2992 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2993 2994 /* 2995 * Copy attributes of the original request to the clone request. 2996 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 2997 */ 2998 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2999 { 3000 dst->cpu = src->cpu; 3001 dst->__sector = blk_rq_pos(src); 3002 dst->__data_len = blk_rq_bytes(src); 3003 dst->nr_phys_segments = src->nr_phys_segments; 3004 dst->ioprio = src->ioprio; 3005 dst->extra_len = src->extra_len; 3006 } 3007 3008 /** 3009 * blk_rq_prep_clone - Helper function to setup clone request 3010 * @rq: the request to be setup 3011 * @rq_src: original request to be cloned 3012 * @bs: bio_set that bios for clone are allocated from 3013 * @gfp_mask: memory allocation mask for bio 3014 * @bio_ctr: setup function to be called for each clone bio. 3015 * Returns %0 for success, non %0 for failure. 3016 * @data: private data to be passed to @bio_ctr 3017 * 3018 * Description: 3019 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 3020 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 3021 * are not copied, and copying such parts is the caller's responsibility. 3022 * Also, pages which the original bios are pointing to are not copied 3023 * and the cloned bios just point same pages. 3024 * So cloned bios must be completed before original bios, which means 3025 * the caller must complete @rq before @rq_src. 3026 */ 3027 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 3028 struct bio_set *bs, gfp_t gfp_mask, 3029 int (*bio_ctr)(struct bio *, struct bio *, void *), 3030 void *data) 3031 { 3032 struct bio *bio, *bio_src; 3033 3034 if (!bs) 3035 bs = fs_bio_set; 3036 3037 __rq_for_each_bio(bio_src, rq_src) { 3038 bio = bio_clone_fast(bio_src, gfp_mask, bs); 3039 if (!bio) 3040 goto free_and_out; 3041 3042 if (bio_ctr && bio_ctr(bio, bio_src, data)) 3043 goto free_and_out; 3044 3045 if (rq->bio) { 3046 rq->biotail->bi_next = bio; 3047 rq->biotail = bio; 3048 } else 3049 rq->bio = rq->biotail = bio; 3050 } 3051 3052 __blk_rq_prep_clone(rq, rq_src); 3053 3054 return 0; 3055 3056 free_and_out: 3057 if (bio) 3058 bio_put(bio); 3059 blk_rq_unprep_clone(rq); 3060 3061 return -ENOMEM; 3062 } 3063 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 3064 3065 int kblockd_schedule_work(struct work_struct *work) 3066 { 3067 return queue_work(kblockd_workqueue, work); 3068 } 3069 EXPORT_SYMBOL(kblockd_schedule_work); 3070 3071 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 3072 { 3073 return queue_work_on(cpu, kblockd_workqueue, work); 3074 } 3075 EXPORT_SYMBOL(kblockd_schedule_work_on); 3076 3077 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 3078 unsigned long delay) 3079 { 3080 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3081 } 3082 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 3083 3084 int kblockd_schedule_delayed_work(struct delayed_work *dwork, 3085 unsigned long delay) 3086 { 3087 return queue_delayed_work(kblockd_workqueue, dwork, delay); 3088 } 3089 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 3090 3091 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork, 3092 unsigned long delay) 3093 { 3094 return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 3095 } 3096 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on); 3097 3098 /** 3099 * blk_start_plug - initialize blk_plug and track it inside the task_struct 3100 * @plug: The &struct blk_plug that needs to be initialized 3101 * 3102 * Description: 3103 * Tracking blk_plug inside the task_struct will help with auto-flushing the 3104 * pending I/O should the task end up blocking between blk_start_plug() and 3105 * blk_finish_plug(). This is important from a performance perspective, but 3106 * also ensures that we don't deadlock. For instance, if the task is blocking 3107 * for a memory allocation, memory reclaim could end up wanting to free a 3108 * page belonging to that request that is currently residing in our private 3109 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 3110 * this kind of deadlock. 3111 */ 3112 void blk_start_plug(struct blk_plug *plug) 3113 { 3114 struct task_struct *tsk = current; 3115 3116 /* 3117 * If this is a nested plug, don't actually assign it. 3118 */ 3119 if (tsk->plug) 3120 return; 3121 3122 INIT_LIST_HEAD(&plug->list); 3123 INIT_LIST_HEAD(&plug->mq_list); 3124 INIT_LIST_HEAD(&plug->cb_list); 3125 /* 3126 * Store ordering should not be needed here, since a potential 3127 * preempt will imply a full memory barrier 3128 */ 3129 tsk->plug = plug; 3130 } 3131 EXPORT_SYMBOL(blk_start_plug); 3132 3133 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 3134 { 3135 struct request *rqa = container_of(a, struct request, queuelist); 3136 struct request *rqb = container_of(b, struct request, queuelist); 3137 3138 return !(rqa->q < rqb->q || 3139 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 3140 } 3141 3142 /* 3143 * If 'from_schedule' is true, then postpone the dispatch of requests 3144 * until a safe kblockd context. We due this to avoid accidental big 3145 * additional stack usage in driver dispatch, in places where the originally 3146 * plugger did not intend it. 3147 */ 3148 static void queue_unplugged(struct request_queue *q, unsigned int depth, 3149 bool from_schedule) 3150 __releases(q->queue_lock) 3151 { 3152 trace_block_unplug(q, depth, !from_schedule); 3153 3154 if (from_schedule) 3155 blk_run_queue_async(q); 3156 else 3157 __blk_run_queue(q); 3158 spin_unlock(q->queue_lock); 3159 } 3160 3161 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 3162 { 3163 LIST_HEAD(callbacks); 3164 3165 while (!list_empty(&plug->cb_list)) { 3166 list_splice_init(&plug->cb_list, &callbacks); 3167 3168 while (!list_empty(&callbacks)) { 3169 struct blk_plug_cb *cb = list_first_entry(&callbacks, 3170 struct blk_plug_cb, 3171 list); 3172 list_del(&cb->list); 3173 cb->callback(cb, from_schedule); 3174 } 3175 } 3176 } 3177 3178 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 3179 int size) 3180 { 3181 struct blk_plug *plug = current->plug; 3182 struct blk_plug_cb *cb; 3183 3184 if (!plug) 3185 return NULL; 3186 3187 list_for_each_entry(cb, &plug->cb_list, list) 3188 if (cb->callback == unplug && cb->data == data) 3189 return cb; 3190 3191 /* Not currently on the callback list */ 3192 BUG_ON(size < sizeof(*cb)); 3193 cb = kzalloc(size, GFP_ATOMIC); 3194 if (cb) { 3195 cb->data = data; 3196 cb->callback = unplug; 3197 list_add(&cb->list, &plug->cb_list); 3198 } 3199 return cb; 3200 } 3201 EXPORT_SYMBOL(blk_check_plugged); 3202 3203 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3204 { 3205 struct request_queue *q; 3206 unsigned long flags; 3207 struct request *rq; 3208 LIST_HEAD(list); 3209 unsigned int depth; 3210 3211 flush_plug_callbacks(plug, from_schedule); 3212 3213 if (!list_empty(&plug->mq_list)) 3214 blk_mq_flush_plug_list(plug, from_schedule); 3215 3216 if (list_empty(&plug->list)) 3217 return; 3218 3219 list_splice_init(&plug->list, &list); 3220 3221 list_sort(NULL, &list, plug_rq_cmp); 3222 3223 q = NULL; 3224 depth = 0; 3225 3226 /* 3227 * Save and disable interrupts here, to avoid doing it for every 3228 * queue lock we have to take. 3229 */ 3230 local_irq_save(flags); 3231 while (!list_empty(&list)) { 3232 rq = list_entry_rq(list.next); 3233 list_del_init(&rq->queuelist); 3234 BUG_ON(!rq->q); 3235 if (rq->q != q) { 3236 /* 3237 * This drops the queue lock 3238 */ 3239 if (q) 3240 queue_unplugged(q, depth, from_schedule); 3241 q = rq->q; 3242 depth = 0; 3243 spin_lock(q->queue_lock); 3244 } 3245 3246 /* 3247 * Short-circuit if @q is dead 3248 */ 3249 if (unlikely(blk_queue_dying(q))) { 3250 __blk_end_request_all(rq, -ENODEV); 3251 continue; 3252 } 3253 3254 /* 3255 * rq is already accounted, so use raw insert 3256 */ 3257 if (op_is_flush(rq->cmd_flags)) 3258 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3259 else 3260 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3261 3262 depth++; 3263 } 3264 3265 /* 3266 * This drops the queue lock 3267 */ 3268 if (q) 3269 queue_unplugged(q, depth, from_schedule); 3270 3271 local_irq_restore(flags); 3272 } 3273 3274 void blk_finish_plug(struct blk_plug *plug) 3275 { 3276 if (plug != current->plug) 3277 return; 3278 blk_flush_plug_list(plug, false); 3279 3280 current->plug = NULL; 3281 } 3282 EXPORT_SYMBOL(blk_finish_plug); 3283 3284 #ifdef CONFIG_PM 3285 /** 3286 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3287 * @q: the queue of the device 3288 * @dev: the device the queue belongs to 3289 * 3290 * Description: 3291 * Initialize runtime-PM-related fields for @q and start auto suspend for 3292 * @dev. Drivers that want to take advantage of request-based runtime PM 3293 * should call this function after @dev has been initialized, and its 3294 * request queue @q has been allocated, and runtime PM for it can not happen 3295 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3296 * cases, driver should call this function before any I/O has taken place. 3297 * 3298 * This function takes care of setting up using auto suspend for the device, 3299 * the autosuspend delay is set to -1 to make runtime suspend impossible 3300 * until an updated value is either set by user or by driver. Drivers do 3301 * not need to touch other autosuspend settings. 3302 * 3303 * The block layer runtime PM is request based, so only works for drivers 3304 * that use request as their IO unit instead of those directly use bio's. 3305 */ 3306 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3307 { 3308 q->dev = dev; 3309 q->rpm_status = RPM_ACTIVE; 3310 pm_runtime_set_autosuspend_delay(q->dev, -1); 3311 pm_runtime_use_autosuspend(q->dev); 3312 } 3313 EXPORT_SYMBOL(blk_pm_runtime_init); 3314 3315 /** 3316 * blk_pre_runtime_suspend - Pre runtime suspend check 3317 * @q: the queue of the device 3318 * 3319 * Description: 3320 * This function will check if runtime suspend is allowed for the device 3321 * by examining if there are any requests pending in the queue. If there 3322 * are requests pending, the device can not be runtime suspended; otherwise, 3323 * the queue's status will be updated to SUSPENDING and the driver can 3324 * proceed to suspend the device. 3325 * 3326 * For the not allowed case, we mark last busy for the device so that 3327 * runtime PM core will try to autosuspend it some time later. 3328 * 3329 * This function should be called near the start of the device's 3330 * runtime_suspend callback. 3331 * 3332 * Return: 3333 * 0 - OK to runtime suspend the device 3334 * -EBUSY - Device should not be runtime suspended 3335 */ 3336 int blk_pre_runtime_suspend(struct request_queue *q) 3337 { 3338 int ret = 0; 3339 3340 if (!q->dev) 3341 return ret; 3342 3343 spin_lock_irq(q->queue_lock); 3344 if (q->nr_pending) { 3345 ret = -EBUSY; 3346 pm_runtime_mark_last_busy(q->dev); 3347 } else { 3348 q->rpm_status = RPM_SUSPENDING; 3349 } 3350 spin_unlock_irq(q->queue_lock); 3351 return ret; 3352 } 3353 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3354 3355 /** 3356 * blk_post_runtime_suspend - Post runtime suspend processing 3357 * @q: the queue of the device 3358 * @err: return value of the device's runtime_suspend function 3359 * 3360 * Description: 3361 * Update the queue's runtime status according to the return value of the 3362 * device's runtime suspend function and mark last busy for the device so 3363 * that PM core will try to auto suspend the device at a later time. 3364 * 3365 * This function should be called near the end of the device's 3366 * runtime_suspend callback. 3367 */ 3368 void blk_post_runtime_suspend(struct request_queue *q, int err) 3369 { 3370 if (!q->dev) 3371 return; 3372 3373 spin_lock_irq(q->queue_lock); 3374 if (!err) { 3375 q->rpm_status = RPM_SUSPENDED; 3376 } else { 3377 q->rpm_status = RPM_ACTIVE; 3378 pm_runtime_mark_last_busy(q->dev); 3379 } 3380 spin_unlock_irq(q->queue_lock); 3381 } 3382 EXPORT_SYMBOL(blk_post_runtime_suspend); 3383 3384 /** 3385 * blk_pre_runtime_resume - Pre runtime resume processing 3386 * @q: the queue of the device 3387 * 3388 * Description: 3389 * Update the queue's runtime status to RESUMING in preparation for the 3390 * runtime resume of the device. 3391 * 3392 * This function should be called near the start of the device's 3393 * runtime_resume callback. 3394 */ 3395 void blk_pre_runtime_resume(struct request_queue *q) 3396 { 3397 if (!q->dev) 3398 return; 3399 3400 spin_lock_irq(q->queue_lock); 3401 q->rpm_status = RPM_RESUMING; 3402 spin_unlock_irq(q->queue_lock); 3403 } 3404 EXPORT_SYMBOL(blk_pre_runtime_resume); 3405 3406 /** 3407 * blk_post_runtime_resume - Post runtime resume processing 3408 * @q: the queue of the device 3409 * @err: return value of the device's runtime_resume function 3410 * 3411 * Description: 3412 * Update the queue's runtime status according to the return value of the 3413 * device's runtime_resume function. If it is successfully resumed, process 3414 * the requests that are queued into the device's queue when it is resuming 3415 * and then mark last busy and initiate autosuspend for it. 3416 * 3417 * This function should be called near the end of the device's 3418 * runtime_resume callback. 3419 */ 3420 void blk_post_runtime_resume(struct request_queue *q, int err) 3421 { 3422 if (!q->dev) 3423 return; 3424 3425 spin_lock_irq(q->queue_lock); 3426 if (!err) { 3427 q->rpm_status = RPM_ACTIVE; 3428 __blk_run_queue(q); 3429 pm_runtime_mark_last_busy(q->dev); 3430 pm_request_autosuspend(q->dev); 3431 } else { 3432 q->rpm_status = RPM_SUSPENDED; 3433 } 3434 spin_unlock_irq(q->queue_lock); 3435 } 3436 EXPORT_SYMBOL(blk_post_runtime_resume); 3437 3438 /** 3439 * blk_set_runtime_active - Force runtime status of the queue to be active 3440 * @q: the queue of the device 3441 * 3442 * If the device is left runtime suspended during system suspend the resume 3443 * hook typically resumes the device and corrects runtime status 3444 * accordingly. However, that does not affect the queue runtime PM status 3445 * which is still "suspended". This prevents processing requests from the 3446 * queue. 3447 * 3448 * This function can be used in driver's resume hook to correct queue 3449 * runtime PM status and re-enable peeking requests from the queue. It 3450 * should be called before first request is added to the queue. 3451 */ 3452 void blk_set_runtime_active(struct request_queue *q) 3453 { 3454 spin_lock_irq(q->queue_lock); 3455 q->rpm_status = RPM_ACTIVE; 3456 pm_runtime_mark_last_busy(q->dev); 3457 pm_request_autosuspend(q->dev); 3458 spin_unlock_irq(q->queue_lock); 3459 } 3460 EXPORT_SYMBOL(blk_set_runtime_active); 3461 #endif 3462 3463 int __init blk_dev_init(void) 3464 { 3465 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 3466 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3467 FIELD_SIZEOF(struct request, cmd_flags)); 3468 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 3469 FIELD_SIZEOF(struct bio, bi_opf)); 3470 3471 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3472 kblockd_workqueue = alloc_workqueue("kblockd", 3473 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3474 if (!kblockd_workqueue) 3475 panic("Failed to create kblockd\n"); 3476 3477 request_cachep = kmem_cache_create("blkdev_requests", 3478 sizeof(struct request), 0, SLAB_PANIC, NULL); 3479 3480 blk_requestq_cachep = kmem_cache_create("request_queue", 3481 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3482 3483 #ifdef CONFIG_DEBUG_FS 3484 blk_debugfs_root = debugfs_create_dir("block", NULL); 3485 #endif 3486 3487 return 0; 3488 } 3489