xref: /openbmc/linux/block/blk-core.c (revision 1c2dd16a)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
21 #include <linux/mm.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
40 
41 #include "blk.h"
42 #include "blk-mq.h"
43 #include "blk-mq-sched.h"
44 #include "blk-wbt.h"
45 
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry *blk_debugfs_root;
48 #endif
49 
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
55 
56 DEFINE_IDA(blk_queue_ida);
57 
58 /*
59  * For the allocated request tables
60  */
61 struct kmem_cache *request_cachep;
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 static void blk_clear_congested(struct request_list *rl, int sync)
74 {
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 	clear_wb_congested(rl->blkg->wb_congested, sync);
77 #else
78 	/*
79 	 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 	 * flip its congestion state for events on other blkcgs.
81 	 */
82 	if (rl == &rl->q->root_rl)
83 		clear_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
84 #endif
85 }
86 
87 static void blk_set_congested(struct request_list *rl, int sync)
88 {
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 	set_wb_congested(rl->blkg->wb_congested, sync);
91 #else
92 	/* see blk_clear_congested() */
93 	if (rl == &rl->q->root_rl)
94 		set_wb_congested(rl->q->backing_dev_info->wb.congested, sync);
95 #endif
96 }
97 
98 void blk_queue_congestion_threshold(struct request_queue *q)
99 {
100 	int nr;
101 
102 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
103 	if (nr > q->nr_requests)
104 		nr = q->nr_requests;
105 	q->nr_congestion_on = nr;
106 
107 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
108 	if (nr < 1)
109 		nr = 1;
110 	q->nr_congestion_off = nr;
111 }
112 
113 void blk_rq_init(struct request_queue *q, struct request *rq)
114 {
115 	memset(rq, 0, sizeof(*rq));
116 
117 	INIT_LIST_HEAD(&rq->queuelist);
118 	INIT_LIST_HEAD(&rq->timeout_list);
119 	rq->cpu = -1;
120 	rq->q = q;
121 	rq->__sector = (sector_t) -1;
122 	INIT_HLIST_NODE(&rq->hash);
123 	RB_CLEAR_NODE(&rq->rb_node);
124 	rq->tag = -1;
125 	rq->internal_tag = -1;
126 	rq->start_time = jiffies;
127 	set_start_time_ns(rq);
128 	rq->part = NULL;
129 }
130 EXPORT_SYMBOL(blk_rq_init);
131 
132 static void req_bio_endio(struct request *rq, struct bio *bio,
133 			  unsigned int nbytes, int error)
134 {
135 	if (error)
136 		bio->bi_error = error;
137 
138 	if (unlikely(rq->rq_flags & RQF_QUIET))
139 		bio_set_flag(bio, BIO_QUIET);
140 
141 	bio_advance(bio, nbytes);
142 
143 	/* don't actually finish bio if it's part of flush sequence */
144 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
145 		bio_endio(bio);
146 }
147 
148 void blk_dump_rq_flags(struct request *rq, char *msg)
149 {
150 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
151 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
152 		(unsigned long long) rq->cmd_flags);
153 
154 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
155 	       (unsigned long long)blk_rq_pos(rq),
156 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
157 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
158 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
159 }
160 EXPORT_SYMBOL(blk_dump_rq_flags);
161 
162 static void blk_delay_work(struct work_struct *work)
163 {
164 	struct request_queue *q;
165 
166 	q = container_of(work, struct request_queue, delay_work.work);
167 	spin_lock_irq(q->queue_lock);
168 	__blk_run_queue(q);
169 	spin_unlock_irq(q->queue_lock);
170 }
171 
172 /**
173  * blk_delay_queue - restart queueing after defined interval
174  * @q:		The &struct request_queue in question
175  * @msecs:	Delay in msecs
176  *
177  * Description:
178  *   Sometimes queueing needs to be postponed for a little while, to allow
179  *   resources to come back. This function will make sure that queueing is
180  *   restarted around the specified time. Queue lock must be held.
181  */
182 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
183 {
184 	if (likely(!blk_queue_dead(q)))
185 		queue_delayed_work(kblockd_workqueue, &q->delay_work,
186 				   msecs_to_jiffies(msecs));
187 }
188 EXPORT_SYMBOL(blk_delay_queue);
189 
190 /**
191  * blk_start_queue_async - asynchronously restart a previously stopped queue
192  * @q:    The &struct request_queue in question
193  *
194  * Description:
195  *   blk_start_queue_async() will clear the stop flag on the queue, and
196  *   ensure that the request_fn for the queue is run from an async
197  *   context.
198  **/
199 void blk_start_queue_async(struct request_queue *q)
200 {
201 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
202 	blk_run_queue_async(q);
203 }
204 EXPORT_SYMBOL(blk_start_queue_async);
205 
206 /**
207  * blk_start_queue - restart a previously stopped queue
208  * @q:    The &struct request_queue in question
209  *
210  * Description:
211  *   blk_start_queue() will clear the stop flag on the queue, and call
212  *   the request_fn for the queue if it was in a stopped state when
213  *   entered. Also see blk_stop_queue(). Queue lock must be held.
214  **/
215 void blk_start_queue(struct request_queue *q)
216 {
217 	WARN_ON(!irqs_disabled());
218 
219 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
220 	__blk_run_queue(q);
221 }
222 EXPORT_SYMBOL(blk_start_queue);
223 
224 /**
225  * blk_stop_queue - stop a queue
226  * @q:    The &struct request_queue in question
227  *
228  * Description:
229  *   The Linux block layer assumes that a block driver will consume all
230  *   entries on the request queue when the request_fn strategy is called.
231  *   Often this will not happen, because of hardware limitations (queue
232  *   depth settings). If a device driver gets a 'queue full' response,
233  *   or if it simply chooses not to queue more I/O at one point, it can
234  *   call this function to prevent the request_fn from being called until
235  *   the driver has signalled it's ready to go again. This happens by calling
236  *   blk_start_queue() to restart queue operations. Queue lock must be held.
237  **/
238 void blk_stop_queue(struct request_queue *q)
239 {
240 	cancel_delayed_work(&q->delay_work);
241 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
242 }
243 EXPORT_SYMBOL(blk_stop_queue);
244 
245 /**
246  * blk_sync_queue - cancel any pending callbacks on a queue
247  * @q: the queue
248  *
249  * Description:
250  *     The block layer may perform asynchronous callback activity
251  *     on a queue, such as calling the unplug function after a timeout.
252  *     A block device may call blk_sync_queue to ensure that any
253  *     such activity is cancelled, thus allowing it to release resources
254  *     that the callbacks might use. The caller must already have made sure
255  *     that its ->make_request_fn will not re-add plugging prior to calling
256  *     this function.
257  *
258  *     This function does not cancel any asynchronous activity arising
259  *     out of elevator or throttling code. That would require elevator_exit()
260  *     and blkcg_exit_queue() to be called with queue lock initialized.
261  *
262  */
263 void blk_sync_queue(struct request_queue *q)
264 {
265 	del_timer_sync(&q->timeout);
266 
267 	if (q->mq_ops) {
268 		struct blk_mq_hw_ctx *hctx;
269 		int i;
270 
271 		queue_for_each_hw_ctx(q, hctx, i)
272 			cancel_delayed_work_sync(&hctx->run_work);
273 	} else {
274 		cancel_delayed_work_sync(&q->delay_work);
275 	}
276 }
277 EXPORT_SYMBOL(blk_sync_queue);
278 
279 /**
280  * __blk_run_queue_uncond - run a queue whether or not it has been stopped
281  * @q:	The queue to run
282  *
283  * Description:
284  *    Invoke request handling on a queue if there are any pending requests.
285  *    May be used to restart request handling after a request has completed.
286  *    This variant runs the queue whether or not the queue has been
287  *    stopped. Must be called with the queue lock held and interrupts
288  *    disabled. See also @blk_run_queue.
289  */
290 inline void __blk_run_queue_uncond(struct request_queue *q)
291 {
292 	if (unlikely(blk_queue_dead(q)))
293 		return;
294 
295 	/*
296 	 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
297 	 * the queue lock internally. As a result multiple threads may be
298 	 * running such a request function concurrently. Keep track of the
299 	 * number of active request_fn invocations such that blk_drain_queue()
300 	 * can wait until all these request_fn calls have finished.
301 	 */
302 	q->request_fn_active++;
303 	q->request_fn(q);
304 	q->request_fn_active--;
305 }
306 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond);
307 
308 /**
309  * __blk_run_queue - run a single device queue
310  * @q:	The queue to run
311  *
312  * Description:
313  *    See @blk_run_queue. This variant must be called with the queue lock
314  *    held and interrupts disabled.
315  */
316 void __blk_run_queue(struct request_queue *q)
317 {
318 	if (unlikely(blk_queue_stopped(q)))
319 		return;
320 
321 	__blk_run_queue_uncond(q);
322 }
323 EXPORT_SYMBOL(__blk_run_queue);
324 
325 /**
326  * blk_run_queue_async - run a single device queue in workqueue context
327  * @q:	The queue to run
328  *
329  * Description:
330  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
331  *    of us. The caller must hold the queue lock.
332  */
333 void blk_run_queue_async(struct request_queue *q)
334 {
335 	if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
336 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
337 }
338 EXPORT_SYMBOL(blk_run_queue_async);
339 
340 /**
341  * blk_run_queue - run a single device queue
342  * @q: The queue to run
343  *
344  * Description:
345  *    Invoke request handling on this queue, if it has pending work to do.
346  *    May be used to restart queueing when a request has completed.
347  */
348 void blk_run_queue(struct request_queue *q)
349 {
350 	unsigned long flags;
351 
352 	spin_lock_irqsave(q->queue_lock, flags);
353 	__blk_run_queue(q);
354 	spin_unlock_irqrestore(q->queue_lock, flags);
355 }
356 EXPORT_SYMBOL(blk_run_queue);
357 
358 void blk_put_queue(struct request_queue *q)
359 {
360 	kobject_put(&q->kobj);
361 }
362 EXPORT_SYMBOL(blk_put_queue);
363 
364 /**
365  * __blk_drain_queue - drain requests from request_queue
366  * @q: queue to drain
367  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
368  *
369  * Drain requests from @q.  If @drain_all is set, all requests are drained.
370  * If not, only ELVPRIV requests are drained.  The caller is responsible
371  * for ensuring that no new requests which need to be drained are queued.
372  */
373 static void __blk_drain_queue(struct request_queue *q, bool drain_all)
374 	__releases(q->queue_lock)
375 	__acquires(q->queue_lock)
376 {
377 	int i;
378 
379 	lockdep_assert_held(q->queue_lock);
380 
381 	while (true) {
382 		bool drain = false;
383 
384 		/*
385 		 * The caller might be trying to drain @q before its
386 		 * elevator is initialized.
387 		 */
388 		if (q->elevator)
389 			elv_drain_elevator(q);
390 
391 		blkcg_drain_queue(q);
392 
393 		/*
394 		 * This function might be called on a queue which failed
395 		 * driver init after queue creation or is not yet fully
396 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
397 		 * in such cases.  Kick queue iff dispatch queue has
398 		 * something on it and @q has request_fn set.
399 		 */
400 		if (!list_empty(&q->queue_head) && q->request_fn)
401 			__blk_run_queue(q);
402 
403 		drain |= q->nr_rqs_elvpriv;
404 		drain |= q->request_fn_active;
405 
406 		/*
407 		 * Unfortunately, requests are queued at and tracked from
408 		 * multiple places and there's no single counter which can
409 		 * be drained.  Check all the queues and counters.
410 		 */
411 		if (drain_all) {
412 			struct blk_flush_queue *fq = blk_get_flush_queue(q, NULL);
413 			drain |= !list_empty(&q->queue_head);
414 			for (i = 0; i < 2; i++) {
415 				drain |= q->nr_rqs[i];
416 				drain |= q->in_flight[i];
417 				if (fq)
418 				    drain |= !list_empty(&fq->flush_queue[i]);
419 			}
420 		}
421 
422 		if (!drain)
423 			break;
424 
425 		spin_unlock_irq(q->queue_lock);
426 
427 		msleep(10);
428 
429 		spin_lock_irq(q->queue_lock);
430 	}
431 
432 	/*
433 	 * With queue marked dead, any woken up waiter will fail the
434 	 * allocation path, so the wakeup chaining is lost and we're
435 	 * left with hung waiters. We need to wake up those waiters.
436 	 */
437 	if (q->request_fn) {
438 		struct request_list *rl;
439 
440 		blk_queue_for_each_rl(rl, q)
441 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
442 				wake_up_all(&rl->wait[i]);
443 	}
444 }
445 
446 /**
447  * blk_queue_bypass_start - enter queue bypass mode
448  * @q: queue of interest
449  *
450  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
451  * function makes @q enter bypass mode and drains all requests which were
452  * throttled or issued before.  On return, it's guaranteed that no request
453  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
454  * inside queue or RCU read lock.
455  */
456 void blk_queue_bypass_start(struct request_queue *q)
457 {
458 	spin_lock_irq(q->queue_lock);
459 	q->bypass_depth++;
460 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
461 	spin_unlock_irq(q->queue_lock);
462 
463 	/*
464 	 * Queues start drained.  Skip actual draining till init is
465 	 * complete.  This avoids lenghty delays during queue init which
466 	 * can happen many times during boot.
467 	 */
468 	if (blk_queue_init_done(q)) {
469 		spin_lock_irq(q->queue_lock);
470 		__blk_drain_queue(q, false);
471 		spin_unlock_irq(q->queue_lock);
472 
473 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
474 		synchronize_rcu();
475 	}
476 }
477 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
478 
479 /**
480  * blk_queue_bypass_end - leave queue bypass mode
481  * @q: queue of interest
482  *
483  * Leave bypass mode and restore the normal queueing behavior.
484  */
485 void blk_queue_bypass_end(struct request_queue *q)
486 {
487 	spin_lock_irq(q->queue_lock);
488 	if (!--q->bypass_depth)
489 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
490 	WARN_ON_ONCE(q->bypass_depth < 0);
491 	spin_unlock_irq(q->queue_lock);
492 }
493 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
494 
495 void blk_set_queue_dying(struct request_queue *q)
496 {
497 	spin_lock_irq(q->queue_lock);
498 	queue_flag_set(QUEUE_FLAG_DYING, q);
499 	spin_unlock_irq(q->queue_lock);
500 
501 	/*
502 	 * When queue DYING flag is set, we need to block new req
503 	 * entering queue, so we call blk_freeze_queue_start() to
504 	 * prevent I/O from crossing blk_queue_enter().
505 	 */
506 	blk_freeze_queue_start(q);
507 
508 	if (q->mq_ops)
509 		blk_mq_wake_waiters(q);
510 	else {
511 		struct request_list *rl;
512 
513 		spin_lock_irq(q->queue_lock);
514 		blk_queue_for_each_rl(rl, q) {
515 			if (rl->rq_pool) {
516 				wake_up(&rl->wait[BLK_RW_SYNC]);
517 				wake_up(&rl->wait[BLK_RW_ASYNC]);
518 			}
519 		}
520 		spin_unlock_irq(q->queue_lock);
521 	}
522 }
523 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
524 
525 /**
526  * blk_cleanup_queue - shutdown a request queue
527  * @q: request queue to shutdown
528  *
529  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
530  * put it.  All future requests will be failed immediately with -ENODEV.
531  */
532 void blk_cleanup_queue(struct request_queue *q)
533 {
534 	spinlock_t *lock = q->queue_lock;
535 
536 	/* mark @q DYING, no new request or merges will be allowed afterwards */
537 	mutex_lock(&q->sysfs_lock);
538 	blk_set_queue_dying(q);
539 	spin_lock_irq(lock);
540 
541 	/*
542 	 * A dying queue is permanently in bypass mode till released.  Note
543 	 * that, unlike blk_queue_bypass_start(), we aren't performing
544 	 * synchronize_rcu() after entering bypass mode to avoid the delay
545 	 * as some drivers create and destroy a lot of queues while
546 	 * probing.  This is still safe because blk_release_queue() will be
547 	 * called only after the queue refcnt drops to zero and nothing,
548 	 * RCU or not, would be traversing the queue by then.
549 	 */
550 	q->bypass_depth++;
551 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
552 
553 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
554 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
555 	queue_flag_set(QUEUE_FLAG_DYING, q);
556 	spin_unlock_irq(lock);
557 	mutex_unlock(&q->sysfs_lock);
558 
559 	/*
560 	 * Drain all requests queued before DYING marking. Set DEAD flag to
561 	 * prevent that q->request_fn() gets invoked after draining finished.
562 	 */
563 	blk_freeze_queue(q);
564 	if (!q->mq_ops) {
565 		spin_lock_irq(lock);
566 		__blk_drain_queue(q, true);
567 	} else {
568 		blk_mq_debugfs_unregister_mq(q);
569 		spin_lock_irq(lock);
570 	}
571 	queue_flag_set(QUEUE_FLAG_DEAD, q);
572 	spin_unlock_irq(lock);
573 
574 	/* for synchronous bio-based driver finish in-flight integrity i/o */
575 	blk_flush_integrity();
576 
577 	/* @q won't process any more request, flush async actions */
578 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
579 	blk_sync_queue(q);
580 
581 	if (q->mq_ops)
582 		blk_mq_free_queue(q);
583 	percpu_ref_exit(&q->q_usage_counter);
584 
585 	spin_lock_irq(lock);
586 	if (q->queue_lock != &q->__queue_lock)
587 		q->queue_lock = &q->__queue_lock;
588 	spin_unlock_irq(lock);
589 
590 	/* @q is and will stay empty, shutdown and put */
591 	blk_put_queue(q);
592 }
593 EXPORT_SYMBOL(blk_cleanup_queue);
594 
595 /* Allocate memory local to the request queue */
596 static void *alloc_request_simple(gfp_t gfp_mask, void *data)
597 {
598 	struct request_queue *q = data;
599 
600 	return kmem_cache_alloc_node(request_cachep, gfp_mask, q->node);
601 }
602 
603 static void free_request_simple(void *element, void *data)
604 {
605 	kmem_cache_free(request_cachep, element);
606 }
607 
608 static void *alloc_request_size(gfp_t gfp_mask, void *data)
609 {
610 	struct request_queue *q = data;
611 	struct request *rq;
612 
613 	rq = kmalloc_node(sizeof(struct request) + q->cmd_size, gfp_mask,
614 			q->node);
615 	if (rq && q->init_rq_fn && q->init_rq_fn(q, rq, gfp_mask) < 0) {
616 		kfree(rq);
617 		rq = NULL;
618 	}
619 	return rq;
620 }
621 
622 static void free_request_size(void *element, void *data)
623 {
624 	struct request_queue *q = data;
625 
626 	if (q->exit_rq_fn)
627 		q->exit_rq_fn(q, element);
628 	kfree(element);
629 }
630 
631 int blk_init_rl(struct request_list *rl, struct request_queue *q,
632 		gfp_t gfp_mask)
633 {
634 	if (unlikely(rl->rq_pool))
635 		return 0;
636 
637 	rl->q = q;
638 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
639 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
640 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
641 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
642 
643 	if (q->cmd_size) {
644 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
645 				alloc_request_size, free_request_size,
646 				q, gfp_mask, q->node);
647 	} else {
648 		rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ,
649 				alloc_request_simple, free_request_simple,
650 				q, gfp_mask, q->node);
651 	}
652 	if (!rl->rq_pool)
653 		return -ENOMEM;
654 
655 	return 0;
656 }
657 
658 void blk_exit_rl(struct request_list *rl)
659 {
660 	if (rl->rq_pool)
661 		mempool_destroy(rl->rq_pool);
662 }
663 
664 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
665 {
666 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
667 }
668 EXPORT_SYMBOL(blk_alloc_queue);
669 
670 int blk_queue_enter(struct request_queue *q, bool nowait)
671 {
672 	while (true) {
673 		int ret;
674 
675 		if (percpu_ref_tryget_live(&q->q_usage_counter))
676 			return 0;
677 
678 		if (nowait)
679 			return -EBUSY;
680 
681 		/*
682 		 * read pair of barrier in blk_freeze_queue_start(),
683 		 * we need to order reading __PERCPU_REF_DEAD flag of
684 		 * .q_usage_counter and reading .mq_freeze_depth or
685 		 * queue dying flag, otherwise the following wait may
686 		 * never return if the two reads are reordered.
687 		 */
688 		smp_rmb();
689 
690 		ret = wait_event_interruptible(q->mq_freeze_wq,
691 				!atomic_read(&q->mq_freeze_depth) ||
692 				blk_queue_dying(q));
693 		if (blk_queue_dying(q))
694 			return -ENODEV;
695 		if (ret)
696 			return ret;
697 	}
698 }
699 
700 void blk_queue_exit(struct request_queue *q)
701 {
702 	percpu_ref_put(&q->q_usage_counter);
703 }
704 
705 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
706 {
707 	struct request_queue *q =
708 		container_of(ref, struct request_queue, q_usage_counter);
709 
710 	wake_up_all(&q->mq_freeze_wq);
711 }
712 
713 static void blk_rq_timed_out_timer(unsigned long data)
714 {
715 	struct request_queue *q = (struct request_queue *)data;
716 
717 	kblockd_schedule_work(&q->timeout_work);
718 }
719 
720 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
721 {
722 	struct request_queue *q;
723 
724 	q = kmem_cache_alloc_node(blk_requestq_cachep,
725 				gfp_mask | __GFP_ZERO, node_id);
726 	if (!q)
727 		return NULL;
728 
729 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
730 	if (q->id < 0)
731 		goto fail_q;
732 
733 	q->bio_split = bioset_create(BIO_POOL_SIZE, 0);
734 	if (!q->bio_split)
735 		goto fail_id;
736 
737 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
738 	if (!q->backing_dev_info)
739 		goto fail_split;
740 
741 	q->stats = blk_alloc_queue_stats();
742 	if (!q->stats)
743 		goto fail_stats;
744 
745 	q->backing_dev_info->ra_pages =
746 			(VM_MAX_READAHEAD * 1024) / PAGE_SIZE;
747 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
748 	q->backing_dev_info->name = "block";
749 	q->node = node_id;
750 
751 	setup_timer(&q->backing_dev_info->laptop_mode_wb_timer,
752 		    laptop_mode_timer_fn, (unsigned long) q);
753 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
754 	INIT_LIST_HEAD(&q->queue_head);
755 	INIT_LIST_HEAD(&q->timeout_list);
756 	INIT_LIST_HEAD(&q->icq_list);
757 #ifdef CONFIG_BLK_CGROUP
758 	INIT_LIST_HEAD(&q->blkg_list);
759 #endif
760 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
761 
762 	kobject_init(&q->kobj, &blk_queue_ktype);
763 
764 	mutex_init(&q->sysfs_lock);
765 	spin_lock_init(&q->__queue_lock);
766 
767 	/*
768 	 * By default initialize queue_lock to internal lock and driver can
769 	 * override it later if need be.
770 	 */
771 	q->queue_lock = &q->__queue_lock;
772 
773 	/*
774 	 * A queue starts its life with bypass turned on to avoid
775 	 * unnecessary bypass on/off overhead and nasty surprises during
776 	 * init.  The initial bypass will be finished when the queue is
777 	 * registered by blk_register_queue().
778 	 */
779 	q->bypass_depth = 1;
780 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
781 
782 	init_waitqueue_head(&q->mq_freeze_wq);
783 
784 	/*
785 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
786 	 * See blk_register_queue() for details.
787 	 */
788 	if (percpu_ref_init(&q->q_usage_counter,
789 				blk_queue_usage_counter_release,
790 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
791 		goto fail_bdi;
792 
793 	if (blkcg_init_queue(q))
794 		goto fail_ref;
795 
796 	return q;
797 
798 fail_ref:
799 	percpu_ref_exit(&q->q_usage_counter);
800 fail_bdi:
801 	blk_free_queue_stats(q->stats);
802 fail_stats:
803 	bdi_put(q->backing_dev_info);
804 fail_split:
805 	bioset_free(q->bio_split);
806 fail_id:
807 	ida_simple_remove(&blk_queue_ida, q->id);
808 fail_q:
809 	kmem_cache_free(blk_requestq_cachep, q);
810 	return NULL;
811 }
812 EXPORT_SYMBOL(blk_alloc_queue_node);
813 
814 /**
815  * blk_init_queue  - prepare a request queue for use with a block device
816  * @rfn:  The function to be called to process requests that have been
817  *        placed on the queue.
818  * @lock: Request queue spin lock
819  *
820  * Description:
821  *    If a block device wishes to use the standard request handling procedures,
822  *    which sorts requests and coalesces adjacent requests, then it must
823  *    call blk_init_queue().  The function @rfn will be called when there
824  *    are requests on the queue that need to be processed.  If the device
825  *    supports plugging, then @rfn may not be called immediately when requests
826  *    are available on the queue, but may be called at some time later instead.
827  *    Plugged queues are generally unplugged when a buffer belonging to one
828  *    of the requests on the queue is needed, or due to memory pressure.
829  *
830  *    @rfn is not required, or even expected, to remove all requests off the
831  *    queue, but only as many as it can handle at a time.  If it does leave
832  *    requests on the queue, it is responsible for arranging that the requests
833  *    get dealt with eventually.
834  *
835  *    The queue spin lock must be held while manipulating the requests on the
836  *    request queue; this lock will be taken also from interrupt context, so irq
837  *    disabling is needed for it.
838  *
839  *    Function returns a pointer to the initialized request queue, or %NULL if
840  *    it didn't succeed.
841  *
842  * Note:
843  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
844  *    when the block device is deactivated (such as at module unload).
845  **/
846 
847 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
848 {
849 	return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
850 }
851 EXPORT_SYMBOL(blk_init_queue);
852 
853 struct request_queue *
854 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
855 {
856 	struct request_queue *q;
857 
858 	q = blk_alloc_queue_node(GFP_KERNEL, node_id);
859 	if (!q)
860 		return NULL;
861 
862 	q->request_fn = rfn;
863 	if (lock)
864 		q->queue_lock = lock;
865 	if (blk_init_allocated_queue(q) < 0) {
866 		blk_cleanup_queue(q);
867 		return NULL;
868 	}
869 
870 	return q;
871 }
872 EXPORT_SYMBOL(blk_init_queue_node);
873 
874 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio);
875 
876 
877 int blk_init_allocated_queue(struct request_queue *q)
878 {
879 	q->fq = blk_alloc_flush_queue(q, NUMA_NO_NODE, q->cmd_size);
880 	if (!q->fq)
881 		return -ENOMEM;
882 
883 	if (q->init_rq_fn && q->init_rq_fn(q, q->fq->flush_rq, GFP_KERNEL))
884 		goto out_free_flush_queue;
885 
886 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
887 		goto out_exit_flush_rq;
888 
889 	INIT_WORK(&q->timeout_work, blk_timeout_work);
890 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
891 
892 	/*
893 	 * This also sets hw/phys segments, boundary and size
894 	 */
895 	blk_queue_make_request(q, blk_queue_bio);
896 
897 	q->sg_reserved_size = INT_MAX;
898 
899 	/* Protect q->elevator from elevator_change */
900 	mutex_lock(&q->sysfs_lock);
901 
902 	/* init elevator */
903 	if (elevator_init(q, NULL)) {
904 		mutex_unlock(&q->sysfs_lock);
905 		goto out_exit_flush_rq;
906 	}
907 
908 	mutex_unlock(&q->sysfs_lock);
909 	return 0;
910 
911 out_exit_flush_rq:
912 	if (q->exit_rq_fn)
913 		q->exit_rq_fn(q, q->fq->flush_rq);
914 out_free_flush_queue:
915 	blk_free_flush_queue(q->fq);
916 	return -ENOMEM;
917 }
918 EXPORT_SYMBOL(blk_init_allocated_queue);
919 
920 bool blk_get_queue(struct request_queue *q)
921 {
922 	if (likely(!blk_queue_dying(q))) {
923 		__blk_get_queue(q);
924 		return true;
925 	}
926 
927 	return false;
928 }
929 EXPORT_SYMBOL(blk_get_queue);
930 
931 static inline void blk_free_request(struct request_list *rl, struct request *rq)
932 {
933 	if (rq->rq_flags & RQF_ELVPRIV) {
934 		elv_put_request(rl->q, rq);
935 		if (rq->elv.icq)
936 			put_io_context(rq->elv.icq->ioc);
937 	}
938 
939 	mempool_free(rq, rl->rq_pool);
940 }
941 
942 /*
943  * ioc_batching returns true if the ioc is a valid batching request and
944  * should be given priority access to a request.
945  */
946 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
947 {
948 	if (!ioc)
949 		return 0;
950 
951 	/*
952 	 * Make sure the process is able to allocate at least 1 request
953 	 * even if the batch times out, otherwise we could theoretically
954 	 * lose wakeups.
955 	 */
956 	return ioc->nr_batch_requests == q->nr_batching ||
957 		(ioc->nr_batch_requests > 0
958 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
959 }
960 
961 /*
962  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
963  * will cause the process to be a "batcher" on all queues in the system. This
964  * is the behaviour we want though - once it gets a wakeup it should be given
965  * a nice run.
966  */
967 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
968 {
969 	if (!ioc || ioc_batching(q, ioc))
970 		return;
971 
972 	ioc->nr_batch_requests = q->nr_batching;
973 	ioc->last_waited = jiffies;
974 }
975 
976 static void __freed_request(struct request_list *rl, int sync)
977 {
978 	struct request_queue *q = rl->q;
979 
980 	if (rl->count[sync] < queue_congestion_off_threshold(q))
981 		blk_clear_congested(rl, sync);
982 
983 	if (rl->count[sync] + 1 <= q->nr_requests) {
984 		if (waitqueue_active(&rl->wait[sync]))
985 			wake_up(&rl->wait[sync]);
986 
987 		blk_clear_rl_full(rl, sync);
988 	}
989 }
990 
991 /*
992  * A request has just been released.  Account for it, update the full and
993  * congestion status, wake up any waiters.   Called under q->queue_lock.
994  */
995 static void freed_request(struct request_list *rl, bool sync,
996 		req_flags_t rq_flags)
997 {
998 	struct request_queue *q = rl->q;
999 
1000 	q->nr_rqs[sync]--;
1001 	rl->count[sync]--;
1002 	if (rq_flags & RQF_ELVPRIV)
1003 		q->nr_rqs_elvpriv--;
1004 
1005 	__freed_request(rl, sync);
1006 
1007 	if (unlikely(rl->starved[sync ^ 1]))
1008 		__freed_request(rl, sync ^ 1);
1009 }
1010 
1011 int blk_update_nr_requests(struct request_queue *q, unsigned int nr)
1012 {
1013 	struct request_list *rl;
1014 	int on_thresh, off_thresh;
1015 
1016 	spin_lock_irq(q->queue_lock);
1017 	q->nr_requests = nr;
1018 	blk_queue_congestion_threshold(q);
1019 	on_thresh = queue_congestion_on_threshold(q);
1020 	off_thresh = queue_congestion_off_threshold(q);
1021 
1022 	blk_queue_for_each_rl(rl, q) {
1023 		if (rl->count[BLK_RW_SYNC] >= on_thresh)
1024 			blk_set_congested(rl, BLK_RW_SYNC);
1025 		else if (rl->count[BLK_RW_SYNC] < off_thresh)
1026 			blk_clear_congested(rl, BLK_RW_SYNC);
1027 
1028 		if (rl->count[BLK_RW_ASYNC] >= on_thresh)
1029 			blk_set_congested(rl, BLK_RW_ASYNC);
1030 		else if (rl->count[BLK_RW_ASYNC] < off_thresh)
1031 			blk_clear_congested(rl, BLK_RW_ASYNC);
1032 
1033 		if (rl->count[BLK_RW_SYNC] >= q->nr_requests) {
1034 			blk_set_rl_full(rl, BLK_RW_SYNC);
1035 		} else {
1036 			blk_clear_rl_full(rl, BLK_RW_SYNC);
1037 			wake_up(&rl->wait[BLK_RW_SYNC]);
1038 		}
1039 
1040 		if (rl->count[BLK_RW_ASYNC] >= q->nr_requests) {
1041 			blk_set_rl_full(rl, BLK_RW_ASYNC);
1042 		} else {
1043 			blk_clear_rl_full(rl, BLK_RW_ASYNC);
1044 			wake_up(&rl->wait[BLK_RW_ASYNC]);
1045 		}
1046 	}
1047 
1048 	spin_unlock_irq(q->queue_lock);
1049 	return 0;
1050 }
1051 
1052 /**
1053  * __get_request - get a free request
1054  * @rl: request list to allocate from
1055  * @op: operation and flags
1056  * @bio: bio to allocate request for (can be %NULL)
1057  * @gfp_mask: allocation mask
1058  *
1059  * Get a free request from @q.  This function may fail under memory
1060  * pressure or if @q is dead.
1061  *
1062  * Must be called with @q->queue_lock held and,
1063  * Returns ERR_PTR on failure, with @q->queue_lock held.
1064  * Returns request pointer on success, with @q->queue_lock *not held*.
1065  */
1066 static struct request *__get_request(struct request_list *rl, unsigned int op,
1067 		struct bio *bio, gfp_t gfp_mask)
1068 {
1069 	struct request_queue *q = rl->q;
1070 	struct request *rq;
1071 	struct elevator_type *et = q->elevator->type;
1072 	struct io_context *ioc = rq_ioc(bio);
1073 	struct io_cq *icq = NULL;
1074 	const bool is_sync = op_is_sync(op);
1075 	int may_queue;
1076 	req_flags_t rq_flags = RQF_ALLOCED;
1077 
1078 	if (unlikely(blk_queue_dying(q)))
1079 		return ERR_PTR(-ENODEV);
1080 
1081 	may_queue = elv_may_queue(q, op);
1082 	if (may_queue == ELV_MQUEUE_NO)
1083 		goto rq_starved;
1084 
1085 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
1086 		if (rl->count[is_sync]+1 >= q->nr_requests) {
1087 			/*
1088 			 * The queue will fill after this allocation, so set
1089 			 * it as full, and mark this process as "batching".
1090 			 * This process will be allowed to complete a batch of
1091 			 * requests, others will be blocked.
1092 			 */
1093 			if (!blk_rl_full(rl, is_sync)) {
1094 				ioc_set_batching(q, ioc);
1095 				blk_set_rl_full(rl, is_sync);
1096 			} else {
1097 				if (may_queue != ELV_MQUEUE_MUST
1098 						&& !ioc_batching(q, ioc)) {
1099 					/*
1100 					 * The queue is full and the allocating
1101 					 * process is not a "batcher", and not
1102 					 * exempted by the IO scheduler
1103 					 */
1104 					return ERR_PTR(-ENOMEM);
1105 				}
1106 			}
1107 		}
1108 		blk_set_congested(rl, is_sync);
1109 	}
1110 
1111 	/*
1112 	 * Only allow batching queuers to allocate up to 50% over the defined
1113 	 * limit of requests, otherwise we could have thousands of requests
1114 	 * allocated with any setting of ->nr_requests
1115 	 */
1116 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
1117 		return ERR_PTR(-ENOMEM);
1118 
1119 	q->nr_rqs[is_sync]++;
1120 	rl->count[is_sync]++;
1121 	rl->starved[is_sync] = 0;
1122 
1123 	/*
1124 	 * Decide whether the new request will be managed by elevator.  If
1125 	 * so, mark @rq_flags and increment elvpriv.  Non-zero elvpriv will
1126 	 * prevent the current elevator from being destroyed until the new
1127 	 * request is freed.  This guarantees icq's won't be destroyed and
1128 	 * makes creating new ones safe.
1129 	 *
1130 	 * Flush requests do not use the elevator so skip initialization.
1131 	 * This allows a request to share the flush and elevator data.
1132 	 *
1133 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
1134 	 * it will be created after releasing queue_lock.
1135 	 */
1136 	if (!op_is_flush(op) && !blk_queue_bypass(q)) {
1137 		rq_flags |= RQF_ELVPRIV;
1138 		q->nr_rqs_elvpriv++;
1139 		if (et->icq_cache && ioc)
1140 			icq = ioc_lookup_icq(ioc, q);
1141 	}
1142 
1143 	if (blk_queue_io_stat(q))
1144 		rq_flags |= RQF_IO_STAT;
1145 	spin_unlock_irq(q->queue_lock);
1146 
1147 	/* allocate and init request */
1148 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
1149 	if (!rq)
1150 		goto fail_alloc;
1151 
1152 	blk_rq_init(q, rq);
1153 	blk_rq_set_rl(rq, rl);
1154 	rq->cmd_flags = op;
1155 	rq->rq_flags = rq_flags;
1156 
1157 	/* init elvpriv */
1158 	if (rq_flags & RQF_ELVPRIV) {
1159 		if (unlikely(et->icq_cache && !icq)) {
1160 			if (ioc)
1161 				icq = ioc_create_icq(ioc, q, gfp_mask);
1162 			if (!icq)
1163 				goto fail_elvpriv;
1164 		}
1165 
1166 		rq->elv.icq = icq;
1167 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1168 			goto fail_elvpriv;
1169 
1170 		/* @rq->elv.icq holds io_context until @rq is freed */
1171 		if (icq)
1172 			get_io_context(icq->ioc);
1173 	}
1174 out:
1175 	/*
1176 	 * ioc may be NULL here, and ioc_batching will be false. That's
1177 	 * OK, if the queue is under the request limit then requests need
1178 	 * not count toward the nr_batch_requests limit. There will always
1179 	 * be some limit enforced by BLK_BATCH_TIME.
1180 	 */
1181 	if (ioc_batching(q, ioc))
1182 		ioc->nr_batch_requests--;
1183 
1184 	trace_block_getrq(q, bio, op);
1185 	return rq;
1186 
1187 fail_elvpriv:
1188 	/*
1189 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
1190 	 * and may fail indefinitely under memory pressure and thus
1191 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
1192 	 * disturb iosched and blkcg but weird is bettern than dead.
1193 	 */
1194 	printk_ratelimited(KERN_WARNING "%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1195 			   __func__, dev_name(q->backing_dev_info->dev));
1196 
1197 	rq->rq_flags &= ~RQF_ELVPRIV;
1198 	rq->elv.icq = NULL;
1199 
1200 	spin_lock_irq(q->queue_lock);
1201 	q->nr_rqs_elvpriv--;
1202 	spin_unlock_irq(q->queue_lock);
1203 	goto out;
1204 
1205 fail_alloc:
1206 	/*
1207 	 * Allocation failed presumably due to memory. Undo anything we
1208 	 * might have messed up.
1209 	 *
1210 	 * Allocating task should really be put onto the front of the wait
1211 	 * queue, but this is pretty rare.
1212 	 */
1213 	spin_lock_irq(q->queue_lock);
1214 	freed_request(rl, is_sync, rq_flags);
1215 
1216 	/*
1217 	 * in the very unlikely event that allocation failed and no
1218 	 * requests for this direction was pending, mark us starved so that
1219 	 * freeing of a request in the other direction will notice
1220 	 * us. another possible fix would be to split the rq mempool into
1221 	 * READ and WRITE
1222 	 */
1223 rq_starved:
1224 	if (unlikely(rl->count[is_sync] == 0))
1225 		rl->starved[is_sync] = 1;
1226 	return ERR_PTR(-ENOMEM);
1227 }
1228 
1229 /**
1230  * get_request - get a free request
1231  * @q: request_queue to allocate request from
1232  * @op: operation and flags
1233  * @bio: bio to allocate request for (can be %NULL)
1234  * @gfp_mask: allocation mask
1235  *
1236  * Get a free request from @q.  If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1237  * this function keeps retrying under memory pressure and fails iff @q is dead.
1238  *
1239  * Must be called with @q->queue_lock held and,
1240  * Returns ERR_PTR on failure, with @q->queue_lock held.
1241  * Returns request pointer on success, with @q->queue_lock *not held*.
1242  */
1243 static struct request *get_request(struct request_queue *q, unsigned int op,
1244 		struct bio *bio, gfp_t gfp_mask)
1245 {
1246 	const bool is_sync = op_is_sync(op);
1247 	DEFINE_WAIT(wait);
1248 	struct request_list *rl;
1249 	struct request *rq;
1250 
1251 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1252 retry:
1253 	rq = __get_request(rl, op, bio, gfp_mask);
1254 	if (!IS_ERR(rq))
1255 		return rq;
1256 
1257 	if (!gfpflags_allow_blocking(gfp_mask) || unlikely(blk_queue_dying(q))) {
1258 		blk_put_rl(rl);
1259 		return rq;
1260 	}
1261 
1262 	/* wait on @rl and retry */
1263 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1264 				  TASK_UNINTERRUPTIBLE);
1265 
1266 	trace_block_sleeprq(q, bio, op);
1267 
1268 	spin_unlock_irq(q->queue_lock);
1269 	io_schedule();
1270 
1271 	/*
1272 	 * After sleeping, we become a "batching" process and will be able
1273 	 * to allocate at least one request, and up to a big batch of them
1274 	 * for a small period time.  See ioc_batching, ioc_set_batching
1275 	 */
1276 	ioc_set_batching(q, current->io_context);
1277 
1278 	spin_lock_irq(q->queue_lock);
1279 	finish_wait(&rl->wait[is_sync], &wait);
1280 
1281 	goto retry;
1282 }
1283 
1284 static struct request *blk_old_get_request(struct request_queue *q, int rw,
1285 		gfp_t gfp_mask)
1286 {
1287 	struct request *rq;
1288 
1289 	/* create ioc upfront */
1290 	create_io_context(gfp_mask, q->node);
1291 
1292 	spin_lock_irq(q->queue_lock);
1293 	rq = get_request(q, rw, NULL, gfp_mask);
1294 	if (IS_ERR(rq)) {
1295 		spin_unlock_irq(q->queue_lock);
1296 		return rq;
1297 	}
1298 
1299 	/* q->queue_lock is unlocked at this point */
1300 	rq->__data_len = 0;
1301 	rq->__sector = (sector_t) -1;
1302 	rq->bio = rq->biotail = NULL;
1303 	return rq;
1304 }
1305 
1306 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1307 {
1308 	if (q->mq_ops)
1309 		return blk_mq_alloc_request(q, rw,
1310 			(gfp_mask & __GFP_DIRECT_RECLAIM) ?
1311 				0 : BLK_MQ_REQ_NOWAIT);
1312 	else
1313 		return blk_old_get_request(q, rw, gfp_mask);
1314 }
1315 EXPORT_SYMBOL(blk_get_request);
1316 
1317 /**
1318  * blk_requeue_request - put a request back on queue
1319  * @q:		request queue where request should be inserted
1320  * @rq:		request to be inserted
1321  *
1322  * Description:
1323  *    Drivers often keep queueing requests until the hardware cannot accept
1324  *    more, when that condition happens we need to put the request back
1325  *    on the queue. Must be called with queue lock held.
1326  */
1327 void blk_requeue_request(struct request_queue *q, struct request *rq)
1328 {
1329 	blk_delete_timer(rq);
1330 	blk_clear_rq_complete(rq);
1331 	trace_block_rq_requeue(q, rq);
1332 	wbt_requeue(q->rq_wb, &rq->issue_stat);
1333 
1334 	if (rq->rq_flags & RQF_QUEUED)
1335 		blk_queue_end_tag(q, rq);
1336 
1337 	BUG_ON(blk_queued_rq(rq));
1338 
1339 	elv_requeue_request(q, rq);
1340 }
1341 EXPORT_SYMBOL(blk_requeue_request);
1342 
1343 static void add_acct_request(struct request_queue *q, struct request *rq,
1344 			     int where)
1345 {
1346 	blk_account_io_start(rq, true);
1347 	__elv_add_request(q, rq, where);
1348 }
1349 
1350 static void part_round_stats_single(int cpu, struct hd_struct *part,
1351 				    unsigned long now)
1352 {
1353 	int inflight;
1354 
1355 	if (now == part->stamp)
1356 		return;
1357 
1358 	inflight = part_in_flight(part);
1359 	if (inflight) {
1360 		__part_stat_add(cpu, part, time_in_queue,
1361 				inflight * (now - part->stamp));
1362 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1363 	}
1364 	part->stamp = now;
1365 }
1366 
1367 /**
1368  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1369  * @cpu: cpu number for stats access
1370  * @part: target partition
1371  *
1372  * The average IO queue length and utilisation statistics are maintained
1373  * by observing the current state of the queue length and the amount of
1374  * time it has been in this state for.
1375  *
1376  * Normally, that accounting is done on IO completion, but that can result
1377  * in more than a second's worth of IO being accounted for within any one
1378  * second, leading to >100% utilisation.  To deal with that, we call this
1379  * function to do a round-off before returning the results when reading
1380  * /proc/diskstats.  This accounts immediately for all queue usage up to
1381  * the current jiffies and restarts the counters again.
1382  */
1383 void part_round_stats(int cpu, struct hd_struct *part)
1384 {
1385 	unsigned long now = jiffies;
1386 
1387 	if (part->partno)
1388 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1389 	part_round_stats_single(cpu, part, now);
1390 }
1391 EXPORT_SYMBOL_GPL(part_round_stats);
1392 
1393 #ifdef CONFIG_PM
1394 static void blk_pm_put_request(struct request *rq)
1395 {
1396 	if (rq->q->dev && !(rq->rq_flags & RQF_PM) && !--rq->q->nr_pending)
1397 		pm_runtime_mark_last_busy(rq->q->dev);
1398 }
1399 #else
1400 static inline void blk_pm_put_request(struct request *rq) {}
1401 #endif
1402 
1403 /*
1404  * queue lock must be held
1405  */
1406 void __blk_put_request(struct request_queue *q, struct request *req)
1407 {
1408 	req_flags_t rq_flags = req->rq_flags;
1409 
1410 	if (unlikely(!q))
1411 		return;
1412 
1413 	if (q->mq_ops) {
1414 		blk_mq_free_request(req);
1415 		return;
1416 	}
1417 
1418 	blk_pm_put_request(req);
1419 
1420 	elv_completed_request(q, req);
1421 
1422 	/* this is a bio leak */
1423 	WARN_ON(req->bio != NULL);
1424 
1425 	wbt_done(q->rq_wb, &req->issue_stat);
1426 
1427 	/*
1428 	 * Request may not have originated from ll_rw_blk. if not,
1429 	 * it didn't come out of our reserved rq pools
1430 	 */
1431 	if (rq_flags & RQF_ALLOCED) {
1432 		struct request_list *rl = blk_rq_rl(req);
1433 		bool sync = op_is_sync(req->cmd_flags);
1434 
1435 		BUG_ON(!list_empty(&req->queuelist));
1436 		BUG_ON(ELV_ON_HASH(req));
1437 
1438 		blk_free_request(rl, req);
1439 		freed_request(rl, sync, rq_flags);
1440 		blk_put_rl(rl);
1441 	}
1442 }
1443 EXPORT_SYMBOL_GPL(__blk_put_request);
1444 
1445 void blk_put_request(struct request *req)
1446 {
1447 	struct request_queue *q = req->q;
1448 
1449 	if (q->mq_ops)
1450 		blk_mq_free_request(req);
1451 	else {
1452 		unsigned long flags;
1453 
1454 		spin_lock_irqsave(q->queue_lock, flags);
1455 		__blk_put_request(q, req);
1456 		spin_unlock_irqrestore(q->queue_lock, flags);
1457 	}
1458 }
1459 EXPORT_SYMBOL(blk_put_request);
1460 
1461 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1462 			    struct bio *bio)
1463 {
1464 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1465 
1466 	if (!ll_back_merge_fn(q, req, bio))
1467 		return false;
1468 
1469 	trace_block_bio_backmerge(q, req, bio);
1470 
1471 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1472 		blk_rq_set_mixed_merge(req);
1473 
1474 	req->biotail->bi_next = bio;
1475 	req->biotail = bio;
1476 	req->__data_len += bio->bi_iter.bi_size;
1477 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1478 
1479 	blk_account_io_start(req, false);
1480 	return true;
1481 }
1482 
1483 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1484 			     struct bio *bio)
1485 {
1486 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
1487 
1488 	if (!ll_front_merge_fn(q, req, bio))
1489 		return false;
1490 
1491 	trace_block_bio_frontmerge(q, req, bio);
1492 
1493 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1494 		blk_rq_set_mixed_merge(req);
1495 
1496 	bio->bi_next = req->bio;
1497 	req->bio = bio;
1498 
1499 	req->__sector = bio->bi_iter.bi_sector;
1500 	req->__data_len += bio->bi_iter.bi_size;
1501 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1502 
1503 	blk_account_io_start(req, false);
1504 	return true;
1505 }
1506 
1507 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
1508 		struct bio *bio)
1509 {
1510 	unsigned short segments = blk_rq_nr_discard_segments(req);
1511 
1512 	if (segments >= queue_max_discard_segments(q))
1513 		goto no_merge;
1514 	if (blk_rq_sectors(req) + bio_sectors(bio) >
1515 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
1516 		goto no_merge;
1517 
1518 	req->biotail->bi_next = bio;
1519 	req->biotail = bio;
1520 	req->__data_len += bio->bi_iter.bi_size;
1521 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1522 	req->nr_phys_segments = segments + 1;
1523 
1524 	blk_account_io_start(req, false);
1525 	return true;
1526 no_merge:
1527 	req_set_nomerge(q, req);
1528 	return false;
1529 }
1530 
1531 /**
1532  * blk_attempt_plug_merge - try to merge with %current's plugged list
1533  * @q: request_queue new bio is being queued at
1534  * @bio: new bio being queued
1535  * @request_count: out parameter for number of traversed plugged requests
1536  * @same_queue_rq: pointer to &struct request that gets filled in when
1537  * another request associated with @q is found on the plug list
1538  * (optional, may be %NULL)
1539  *
1540  * Determine whether @bio being queued on @q can be merged with a request
1541  * on %current's plugged list.  Returns %true if merge was successful,
1542  * otherwise %false.
1543  *
1544  * Plugging coalesces IOs from the same issuer for the same purpose without
1545  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1546  * than scheduling, and the request, while may have elvpriv data, is not
1547  * added on the elevator at this point.  In addition, we don't have
1548  * reliable access to the elevator outside queue lock.  Only check basic
1549  * merging parameters without querying the elevator.
1550  *
1551  * Caller must ensure !blk_queue_nomerges(q) beforehand.
1552  */
1553 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1554 			    unsigned int *request_count,
1555 			    struct request **same_queue_rq)
1556 {
1557 	struct blk_plug *plug;
1558 	struct request *rq;
1559 	struct list_head *plug_list;
1560 
1561 	plug = current->plug;
1562 	if (!plug)
1563 		return false;
1564 	*request_count = 0;
1565 
1566 	if (q->mq_ops)
1567 		plug_list = &plug->mq_list;
1568 	else
1569 		plug_list = &plug->list;
1570 
1571 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
1572 		bool merged = false;
1573 
1574 		if (rq->q == q) {
1575 			(*request_count)++;
1576 			/*
1577 			 * Only blk-mq multiple hardware queues case checks the
1578 			 * rq in the same queue, there should be only one such
1579 			 * rq in a queue
1580 			 **/
1581 			if (same_queue_rq)
1582 				*same_queue_rq = rq;
1583 		}
1584 
1585 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1586 			continue;
1587 
1588 		switch (blk_try_merge(rq, bio)) {
1589 		case ELEVATOR_BACK_MERGE:
1590 			merged = bio_attempt_back_merge(q, rq, bio);
1591 			break;
1592 		case ELEVATOR_FRONT_MERGE:
1593 			merged = bio_attempt_front_merge(q, rq, bio);
1594 			break;
1595 		case ELEVATOR_DISCARD_MERGE:
1596 			merged = bio_attempt_discard_merge(q, rq, bio);
1597 			break;
1598 		default:
1599 			break;
1600 		}
1601 
1602 		if (merged)
1603 			return true;
1604 	}
1605 
1606 	return false;
1607 }
1608 
1609 unsigned int blk_plug_queued_count(struct request_queue *q)
1610 {
1611 	struct blk_plug *plug;
1612 	struct request *rq;
1613 	struct list_head *plug_list;
1614 	unsigned int ret = 0;
1615 
1616 	plug = current->plug;
1617 	if (!plug)
1618 		goto out;
1619 
1620 	if (q->mq_ops)
1621 		plug_list = &plug->mq_list;
1622 	else
1623 		plug_list = &plug->list;
1624 
1625 	list_for_each_entry(rq, plug_list, queuelist) {
1626 		if (rq->q == q)
1627 			ret++;
1628 	}
1629 out:
1630 	return ret;
1631 }
1632 
1633 void blk_init_request_from_bio(struct request *req, struct bio *bio)
1634 {
1635 	struct io_context *ioc = rq_ioc(bio);
1636 
1637 	if (bio->bi_opf & REQ_RAHEAD)
1638 		req->cmd_flags |= REQ_FAILFAST_MASK;
1639 
1640 	req->__sector = bio->bi_iter.bi_sector;
1641 	if (ioprio_valid(bio_prio(bio)))
1642 		req->ioprio = bio_prio(bio);
1643 	else if (ioc)
1644 		req->ioprio = ioc->ioprio;
1645 	else
1646 		req->ioprio = IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE, 0);
1647 	blk_rq_bio_prep(req->q, req, bio);
1648 }
1649 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
1650 
1651 static blk_qc_t blk_queue_bio(struct request_queue *q, struct bio *bio)
1652 {
1653 	struct blk_plug *plug;
1654 	int where = ELEVATOR_INSERT_SORT;
1655 	struct request *req, *free;
1656 	unsigned int request_count = 0;
1657 	unsigned int wb_acct;
1658 
1659 	/*
1660 	 * low level driver can indicate that it wants pages above a
1661 	 * certain limit bounced to low memory (ie for highmem, or even
1662 	 * ISA dma in theory)
1663 	 */
1664 	blk_queue_bounce(q, &bio);
1665 
1666 	blk_queue_split(q, &bio, q->bio_split);
1667 
1668 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1669 		bio->bi_error = -EIO;
1670 		bio_endio(bio);
1671 		return BLK_QC_T_NONE;
1672 	}
1673 
1674 	if (op_is_flush(bio->bi_opf)) {
1675 		spin_lock_irq(q->queue_lock);
1676 		where = ELEVATOR_INSERT_FLUSH;
1677 		goto get_rq;
1678 	}
1679 
1680 	/*
1681 	 * Check if we can merge with the plugged list before grabbing
1682 	 * any locks.
1683 	 */
1684 	if (!blk_queue_nomerges(q)) {
1685 		if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1686 			return BLK_QC_T_NONE;
1687 	} else
1688 		request_count = blk_plug_queued_count(q);
1689 
1690 	spin_lock_irq(q->queue_lock);
1691 
1692 	switch (elv_merge(q, &req, bio)) {
1693 	case ELEVATOR_BACK_MERGE:
1694 		if (!bio_attempt_back_merge(q, req, bio))
1695 			break;
1696 		elv_bio_merged(q, req, bio);
1697 		free = attempt_back_merge(q, req);
1698 		if (free)
1699 			__blk_put_request(q, free);
1700 		else
1701 			elv_merged_request(q, req, ELEVATOR_BACK_MERGE);
1702 		goto out_unlock;
1703 	case ELEVATOR_FRONT_MERGE:
1704 		if (!bio_attempt_front_merge(q, req, bio))
1705 			break;
1706 		elv_bio_merged(q, req, bio);
1707 		free = attempt_front_merge(q, req);
1708 		if (free)
1709 			__blk_put_request(q, free);
1710 		else
1711 			elv_merged_request(q, req, ELEVATOR_FRONT_MERGE);
1712 		goto out_unlock;
1713 	default:
1714 		break;
1715 	}
1716 
1717 get_rq:
1718 	wb_acct = wbt_wait(q->rq_wb, bio, q->queue_lock);
1719 
1720 	/*
1721 	 * Grab a free request. This is might sleep but can not fail.
1722 	 * Returns with the queue unlocked.
1723 	 */
1724 	req = get_request(q, bio->bi_opf, bio, GFP_NOIO);
1725 	if (IS_ERR(req)) {
1726 		__wbt_done(q->rq_wb, wb_acct);
1727 		bio->bi_error = PTR_ERR(req);
1728 		bio_endio(bio);
1729 		goto out_unlock;
1730 	}
1731 
1732 	wbt_track(&req->issue_stat, wb_acct);
1733 
1734 	/*
1735 	 * After dropping the lock and possibly sleeping here, our request
1736 	 * may now be mergeable after it had proven unmergeable (above).
1737 	 * We don't worry about that case for efficiency. It won't happen
1738 	 * often, and the elevators are able to handle it.
1739 	 */
1740 	blk_init_request_from_bio(req, bio);
1741 
1742 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1743 		req->cpu = raw_smp_processor_id();
1744 
1745 	plug = current->plug;
1746 	if (plug) {
1747 		/*
1748 		 * If this is the first request added after a plug, fire
1749 		 * of a plug trace.
1750 		 *
1751 		 * @request_count may become stale because of schedule
1752 		 * out, so check plug list again.
1753 		 */
1754 		if (!request_count || list_empty(&plug->list))
1755 			trace_block_plug(q);
1756 		else {
1757 			struct request *last = list_entry_rq(plug->list.prev);
1758 			if (request_count >= BLK_MAX_REQUEST_COUNT ||
1759 			    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE) {
1760 				blk_flush_plug_list(plug, false);
1761 				trace_block_plug(q);
1762 			}
1763 		}
1764 		list_add_tail(&req->queuelist, &plug->list);
1765 		blk_account_io_start(req, true);
1766 	} else {
1767 		spin_lock_irq(q->queue_lock);
1768 		add_acct_request(q, req, where);
1769 		__blk_run_queue(q);
1770 out_unlock:
1771 		spin_unlock_irq(q->queue_lock);
1772 	}
1773 
1774 	return BLK_QC_T_NONE;
1775 }
1776 
1777 /*
1778  * If bio->bi_dev is a partition, remap the location
1779  */
1780 static inline void blk_partition_remap(struct bio *bio)
1781 {
1782 	struct block_device *bdev = bio->bi_bdev;
1783 
1784 	/*
1785 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
1786 	 * Include a test for the reset op code and perform the remap if needed.
1787 	 */
1788 	if (bdev != bdev->bd_contains &&
1789 	    (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET)) {
1790 		struct hd_struct *p = bdev->bd_part;
1791 
1792 		bio->bi_iter.bi_sector += p->start_sect;
1793 		bio->bi_bdev = bdev->bd_contains;
1794 
1795 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1796 				      bdev->bd_dev,
1797 				      bio->bi_iter.bi_sector - p->start_sect);
1798 	}
1799 }
1800 
1801 static void handle_bad_sector(struct bio *bio)
1802 {
1803 	char b[BDEVNAME_SIZE];
1804 
1805 	printk(KERN_INFO "attempt to access beyond end of device\n");
1806 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
1807 			bdevname(bio->bi_bdev, b),
1808 			bio->bi_opf,
1809 			(unsigned long long)bio_end_sector(bio),
1810 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1811 }
1812 
1813 #ifdef CONFIG_FAIL_MAKE_REQUEST
1814 
1815 static DECLARE_FAULT_ATTR(fail_make_request);
1816 
1817 static int __init setup_fail_make_request(char *str)
1818 {
1819 	return setup_fault_attr(&fail_make_request, str);
1820 }
1821 __setup("fail_make_request=", setup_fail_make_request);
1822 
1823 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1824 {
1825 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1826 }
1827 
1828 static int __init fail_make_request_debugfs(void)
1829 {
1830 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1831 						NULL, &fail_make_request);
1832 
1833 	return PTR_ERR_OR_ZERO(dir);
1834 }
1835 
1836 late_initcall(fail_make_request_debugfs);
1837 
1838 #else /* CONFIG_FAIL_MAKE_REQUEST */
1839 
1840 static inline bool should_fail_request(struct hd_struct *part,
1841 					unsigned int bytes)
1842 {
1843 	return false;
1844 }
1845 
1846 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1847 
1848 /*
1849  * Check whether this bio extends beyond the end of the device.
1850  */
1851 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1852 {
1853 	sector_t maxsector;
1854 
1855 	if (!nr_sectors)
1856 		return 0;
1857 
1858 	/* Test device or partition size, when known. */
1859 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1860 	if (maxsector) {
1861 		sector_t sector = bio->bi_iter.bi_sector;
1862 
1863 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1864 			/*
1865 			 * This may well happen - the kernel calls bread()
1866 			 * without checking the size of the device, e.g., when
1867 			 * mounting a device.
1868 			 */
1869 			handle_bad_sector(bio);
1870 			return 1;
1871 		}
1872 	}
1873 
1874 	return 0;
1875 }
1876 
1877 static noinline_for_stack bool
1878 generic_make_request_checks(struct bio *bio)
1879 {
1880 	struct request_queue *q;
1881 	int nr_sectors = bio_sectors(bio);
1882 	int err = -EIO;
1883 	char b[BDEVNAME_SIZE];
1884 	struct hd_struct *part;
1885 
1886 	might_sleep();
1887 
1888 	if (bio_check_eod(bio, nr_sectors))
1889 		goto end_io;
1890 
1891 	q = bdev_get_queue(bio->bi_bdev);
1892 	if (unlikely(!q)) {
1893 		printk(KERN_ERR
1894 		       "generic_make_request: Trying to access "
1895 			"nonexistent block-device %s (%Lu)\n",
1896 			bdevname(bio->bi_bdev, b),
1897 			(long long) bio->bi_iter.bi_sector);
1898 		goto end_io;
1899 	}
1900 
1901 	part = bio->bi_bdev->bd_part;
1902 	if (should_fail_request(part, bio->bi_iter.bi_size) ||
1903 	    should_fail_request(&part_to_disk(part)->part0,
1904 				bio->bi_iter.bi_size))
1905 		goto end_io;
1906 
1907 	/*
1908 	 * If this device has partitions, remap block n
1909 	 * of partition p to block n+start(p) of the disk.
1910 	 */
1911 	blk_partition_remap(bio);
1912 
1913 	if (bio_check_eod(bio, nr_sectors))
1914 		goto end_io;
1915 
1916 	/*
1917 	 * Filter flush bio's early so that make_request based
1918 	 * drivers without flush support don't have to worry
1919 	 * about them.
1920 	 */
1921 	if (op_is_flush(bio->bi_opf) &&
1922 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
1923 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
1924 		if (!nr_sectors) {
1925 			err = 0;
1926 			goto end_io;
1927 		}
1928 	}
1929 
1930 	switch (bio_op(bio)) {
1931 	case REQ_OP_DISCARD:
1932 		if (!blk_queue_discard(q))
1933 			goto not_supported;
1934 		break;
1935 	case REQ_OP_SECURE_ERASE:
1936 		if (!blk_queue_secure_erase(q))
1937 			goto not_supported;
1938 		break;
1939 	case REQ_OP_WRITE_SAME:
1940 		if (!bdev_write_same(bio->bi_bdev))
1941 			goto not_supported;
1942 		break;
1943 	case REQ_OP_ZONE_REPORT:
1944 	case REQ_OP_ZONE_RESET:
1945 		if (!bdev_is_zoned(bio->bi_bdev))
1946 			goto not_supported;
1947 		break;
1948 	case REQ_OP_WRITE_ZEROES:
1949 		if (!bdev_write_zeroes_sectors(bio->bi_bdev))
1950 			goto not_supported;
1951 		break;
1952 	default:
1953 		break;
1954 	}
1955 
1956 	/*
1957 	 * Various block parts want %current->io_context and lazy ioc
1958 	 * allocation ends up trading a lot of pain for a small amount of
1959 	 * memory.  Just allocate it upfront.  This may fail and block
1960 	 * layer knows how to live with it.
1961 	 */
1962 	create_io_context(GFP_ATOMIC, q->node);
1963 
1964 	if (!blkcg_bio_issue_check(q, bio))
1965 		return false;
1966 
1967 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1968 		trace_block_bio_queue(q, bio);
1969 		/* Now that enqueuing has been traced, we need to trace
1970 		 * completion as well.
1971 		 */
1972 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1973 	}
1974 	return true;
1975 
1976 not_supported:
1977 	err = -EOPNOTSUPP;
1978 end_io:
1979 	bio->bi_error = err;
1980 	bio_endio(bio);
1981 	return false;
1982 }
1983 
1984 /**
1985  * generic_make_request - hand a buffer to its device driver for I/O
1986  * @bio:  The bio describing the location in memory and on the device.
1987  *
1988  * generic_make_request() is used to make I/O requests of block
1989  * devices. It is passed a &struct bio, which describes the I/O that needs
1990  * to be done.
1991  *
1992  * generic_make_request() does not return any status.  The
1993  * success/failure status of the request, along with notification of
1994  * completion, is delivered asynchronously through the bio->bi_end_io
1995  * function described (one day) else where.
1996  *
1997  * The caller of generic_make_request must make sure that bi_io_vec
1998  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1999  * set to describe the device address, and the
2000  * bi_end_io and optionally bi_private are set to describe how
2001  * completion notification should be signaled.
2002  *
2003  * generic_make_request and the drivers it calls may use bi_next if this
2004  * bio happens to be merged with someone else, and may resubmit the bio to
2005  * a lower device by calling into generic_make_request recursively, which
2006  * means the bio should NOT be touched after the call to ->make_request_fn.
2007  */
2008 blk_qc_t generic_make_request(struct bio *bio)
2009 {
2010 	/*
2011 	 * bio_list_on_stack[0] contains bios submitted by the current
2012 	 * make_request_fn.
2013 	 * bio_list_on_stack[1] contains bios that were submitted before
2014 	 * the current make_request_fn, but that haven't been processed
2015 	 * yet.
2016 	 */
2017 	struct bio_list bio_list_on_stack[2];
2018 	blk_qc_t ret = BLK_QC_T_NONE;
2019 
2020 	if (!generic_make_request_checks(bio))
2021 		goto out;
2022 
2023 	/*
2024 	 * We only want one ->make_request_fn to be active at a time, else
2025 	 * stack usage with stacked devices could be a problem.  So use
2026 	 * current->bio_list to keep a list of requests submited by a
2027 	 * make_request_fn function.  current->bio_list is also used as a
2028 	 * flag to say if generic_make_request is currently active in this
2029 	 * task or not.  If it is NULL, then no make_request is active.  If
2030 	 * it is non-NULL, then a make_request is active, and new requests
2031 	 * should be added at the tail
2032 	 */
2033 	if (current->bio_list) {
2034 		bio_list_add(&current->bio_list[0], bio);
2035 		goto out;
2036 	}
2037 
2038 	/* following loop may be a bit non-obvious, and so deserves some
2039 	 * explanation.
2040 	 * Before entering the loop, bio->bi_next is NULL (as all callers
2041 	 * ensure that) so we have a list with a single bio.
2042 	 * We pretend that we have just taken it off a longer list, so
2043 	 * we assign bio_list to a pointer to the bio_list_on_stack,
2044 	 * thus initialising the bio_list of new bios to be
2045 	 * added.  ->make_request() may indeed add some more bios
2046 	 * through a recursive call to generic_make_request.  If it
2047 	 * did, we find a non-NULL value in bio_list and re-enter the loop
2048 	 * from the top.  In this case we really did just take the bio
2049 	 * of the top of the list (no pretending) and so remove it from
2050 	 * bio_list, and call into ->make_request() again.
2051 	 */
2052 	BUG_ON(bio->bi_next);
2053 	bio_list_init(&bio_list_on_stack[0]);
2054 	current->bio_list = bio_list_on_stack;
2055 	do {
2056 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2057 
2058 		if (likely(blk_queue_enter(q, false) == 0)) {
2059 			struct bio_list lower, same;
2060 
2061 			/* Create a fresh bio_list for all subordinate requests */
2062 			bio_list_on_stack[1] = bio_list_on_stack[0];
2063 			bio_list_init(&bio_list_on_stack[0]);
2064 			ret = q->make_request_fn(q, bio);
2065 
2066 			blk_queue_exit(q);
2067 
2068 			/* sort new bios into those for a lower level
2069 			 * and those for the same level
2070 			 */
2071 			bio_list_init(&lower);
2072 			bio_list_init(&same);
2073 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
2074 				if (q == bdev_get_queue(bio->bi_bdev))
2075 					bio_list_add(&same, bio);
2076 				else
2077 					bio_list_add(&lower, bio);
2078 			/* now assemble so we handle the lowest level first */
2079 			bio_list_merge(&bio_list_on_stack[0], &lower);
2080 			bio_list_merge(&bio_list_on_stack[0], &same);
2081 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
2082 		} else {
2083 			bio_io_error(bio);
2084 		}
2085 		bio = bio_list_pop(&bio_list_on_stack[0]);
2086 	} while (bio);
2087 	current->bio_list = NULL; /* deactivate */
2088 
2089 out:
2090 	return ret;
2091 }
2092 EXPORT_SYMBOL(generic_make_request);
2093 
2094 /**
2095  * submit_bio - submit a bio to the block device layer for I/O
2096  * @bio: The &struct bio which describes the I/O
2097  *
2098  * submit_bio() is very similar in purpose to generic_make_request(), and
2099  * uses that function to do most of the work. Both are fairly rough
2100  * interfaces; @bio must be presetup and ready for I/O.
2101  *
2102  */
2103 blk_qc_t submit_bio(struct bio *bio)
2104 {
2105 	/*
2106 	 * If it's a regular read/write or a barrier with data attached,
2107 	 * go through the normal accounting stuff before submission.
2108 	 */
2109 	if (bio_has_data(bio)) {
2110 		unsigned int count;
2111 
2112 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
2113 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
2114 		else
2115 			count = bio_sectors(bio);
2116 
2117 		if (op_is_write(bio_op(bio))) {
2118 			count_vm_events(PGPGOUT, count);
2119 		} else {
2120 			task_io_account_read(bio->bi_iter.bi_size);
2121 			count_vm_events(PGPGIN, count);
2122 		}
2123 
2124 		if (unlikely(block_dump)) {
2125 			char b[BDEVNAME_SIZE];
2126 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
2127 			current->comm, task_pid_nr(current),
2128 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
2129 				(unsigned long long)bio->bi_iter.bi_sector,
2130 				bdevname(bio->bi_bdev, b),
2131 				count);
2132 		}
2133 	}
2134 
2135 	return generic_make_request(bio);
2136 }
2137 EXPORT_SYMBOL(submit_bio);
2138 
2139 /**
2140  * blk_cloned_rq_check_limits - Helper function to check a cloned request
2141  *                              for new the queue limits
2142  * @q:  the queue
2143  * @rq: the request being checked
2144  *
2145  * Description:
2146  *    @rq may have been made based on weaker limitations of upper-level queues
2147  *    in request stacking drivers, and it may violate the limitation of @q.
2148  *    Since the block layer and the underlying device driver trust @rq
2149  *    after it is inserted to @q, it should be checked against @q before
2150  *    the insertion using this generic function.
2151  *
2152  *    Request stacking drivers like request-based dm may change the queue
2153  *    limits when retrying requests on other queues. Those requests need
2154  *    to be checked against the new queue limits again during dispatch.
2155  */
2156 static int blk_cloned_rq_check_limits(struct request_queue *q,
2157 				      struct request *rq)
2158 {
2159 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
2160 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
2161 		return -EIO;
2162 	}
2163 
2164 	/*
2165 	 * queue's settings related to segment counting like q->bounce_pfn
2166 	 * may differ from that of other stacking queues.
2167 	 * Recalculate it to check the request correctly on this queue's
2168 	 * limitation.
2169 	 */
2170 	blk_recalc_rq_segments(rq);
2171 	if (rq->nr_phys_segments > queue_max_segments(q)) {
2172 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
2173 		return -EIO;
2174 	}
2175 
2176 	return 0;
2177 }
2178 
2179 /**
2180  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2181  * @q:  the queue to submit the request
2182  * @rq: the request being queued
2183  */
2184 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
2185 {
2186 	unsigned long flags;
2187 	int where = ELEVATOR_INSERT_BACK;
2188 
2189 	if (blk_cloned_rq_check_limits(q, rq))
2190 		return -EIO;
2191 
2192 	if (rq->rq_disk &&
2193 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
2194 		return -EIO;
2195 
2196 	if (q->mq_ops) {
2197 		if (blk_queue_io_stat(q))
2198 			blk_account_io_start(rq, true);
2199 		blk_mq_sched_insert_request(rq, false, true, false, false);
2200 		return 0;
2201 	}
2202 
2203 	spin_lock_irqsave(q->queue_lock, flags);
2204 	if (unlikely(blk_queue_dying(q))) {
2205 		spin_unlock_irqrestore(q->queue_lock, flags);
2206 		return -ENODEV;
2207 	}
2208 
2209 	/*
2210 	 * Submitting request must be dequeued before calling this function
2211 	 * because it will be linked to another request_queue
2212 	 */
2213 	BUG_ON(blk_queued_rq(rq));
2214 
2215 	if (op_is_flush(rq->cmd_flags))
2216 		where = ELEVATOR_INSERT_FLUSH;
2217 
2218 	add_acct_request(q, rq, where);
2219 	if (where == ELEVATOR_INSERT_FLUSH)
2220 		__blk_run_queue(q);
2221 	spin_unlock_irqrestore(q->queue_lock, flags);
2222 
2223 	return 0;
2224 }
2225 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
2226 
2227 /**
2228  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2229  * @rq: request to examine
2230  *
2231  * Description:
2232  *     A request could be merge of IOs which require different failure
2233  *     handling.  This function determines the number of bytes which
2234  *     can be failed from the beginning of the request without
2235  *     crossing into area which need to be retried further.
2236  *
2237  * Return:
2238  *     The number of bytes to fail.
2239  *
2240  * Context:
2241  *     queue_lock must be held.
2242  */
2243 unsigned int blk_rq_err_bytes(const struct request *rq)
2244 {
2245 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2246 	unsigned int bytes = 0;
2247 	struct bio *bio;
2248 
2249 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
2250 		return blk_rq_bytes(rq);
2251 
2252 	/*
2253 	 * Currently the only 'mixing' which can happen is between
2254 	 * different fastfail types.  We can safely fail portions
2255 	 * which have all the failfast bits that the first one has -
2256 	 * the ones which are at least as eager to fail as the first
2257 	 * one.
2258 	 */
2259 	for (bio = rq->bio; bio; bio = bio->bi_next) {
2260 		if ((bio->bi_opf & ff) != ff)
2261 			break;
2262 		bytes += bio->bi_iter.bi_size;
2263 	}
2264 
2265 	/* this could lead to infinite loop */
2266 	BUG_ON(blk_rq_bytes(rq) && !bytes);
2267 	return bytes;
2268 }
2269 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2270 
2271 void blk_account_io_completion(struct request *req, unsigned int bytes)
2272 {
2273 	if (blk_do_io_stat(req)) {
2274 		const int rw = rq_data_dir(req);
2275 		struct hd_struct *part;
2276 		int cpu;
2277 
2278 		cpu = part_stat_lock();
2279 		part = req->part;
2280 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2281 		part_stat_unlock();
2282 	}
2283 }
2284 
2285 void blk_account_io_done(struct request *req)
2286 {
2287 	/*
2288 	 * Account IO completion.  flush_rq isn't accounted as a
2289 	 * normal IO on queueing nor completion.  Accounting the
2290 	 * containing request is enough.
2291 	 */
2292 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
2293 		unsigned long duration = jiffies - req->start_time;
2294 		const int rw = rq_data_dir(req);
2295 		struct hd_struct *part;
2296 		int cpu;
2297 
2298 		cpu = part_stat_lock();
2299 		part = req->part;
2300 
2301 		part_stat_inc(cpu, part, ios[rw]);
2302 		part_stat_add(cpu, part, ticks[rw], duration);
2303 		part_round_stats(cpu, part);
2304 		part_dec_in_flight(part, rw);
2305 
2306 		hd_struct_put(part);
2307 		part_stat_unlock();
2308 	}
2309 }
2310 
2311 #ifdef CONFIG_PM
2312 /*
2313  * Don't process normal requests when queue is suspended
2314  * or in the process of suspending/resuming
2315  */
2316 static struct request *blk_pm_peek_request(struct request_queue *q,
2317 					   struct request *rq)
2318 {
2319 	if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2320 	    (q->rpm_status != RPM_ACTIVE && !(rq->rq_flags & RQF_PM))))
2321 		return NULL;
2322 	else
2323 		return rq;
2324 }
2325 #else
2326 static inline struct request *blk_pm_peek_request(struct request_queue *q,
2327 						  struct request *rq)
2328 {
2329 	return rq;
2330 }
2331 #endif
2332 
2333 void blk_account_io_start(struct request *rq, bool new_io)
2334 {
2335 	struct hd_struct *part;
2336 	int rw = rq_data_dir(rq);
2337 	int cpu;
2338 
2339 	if (!blk_do_io_stat(rq))
2340 		return;
2341 
2342 	cpu = part_stat_lock();
2343 
2344 	if (!new_io) {
2345 		part = rq->part;
2346 		part_stat_inc(cpu, part, merges[rw]);
2347 	} else {
2348 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2349 		if (!hd_struct_try_get(part)) {
2350 			/*
2351 			 * The partition is already being removed,
2352 			 * the request will be accounted on the disk only
2353 			 *
2354 			 * We take a reference on disk->part0 although that
2355 			 * partition will never be deleted, so we can treat
2356 			 * it as any other partition.
2357 			 */
2358 			part = &rq->rq_disk->part0;
2359 			hd_struct_get(part);
2360 		}
2361 		part_round_stats(cpu, part);
2362 		part_inc_in_flight(part, rw);
2363 		rq->part = part;
2364 	}
2365 
2366 	part_stat_unlock();
2367 }
2368 
2369 /**
2370  * blk_peek_request - peek at the top of a request queue
2371  * @q: request queue to peek at
2372  *
2373  * Description:
2374  *     Return the request at the top of @q.  The returned request
2375  *     should be started using blk_start_request() before LLD starts
2376  *     processing it.
2377  *
2378  * Return:
2379  *     Pointer to the request at the top of @q if available.  Null
2380  *     otherwise.
2381  *
2382  * Context:
2383  *     queue_lock must be held.
2384  */
2385 struct request *blk_peek_request(struct request_queue *q)
2386 {
2387 	struct request *rq;
2388 	int ret;
2389 
2390 	while ((rq = __elv_next_request(q)) != NULL) {
2391 
2392 		rq = blk_pm_peek_request(q, rq);
2393 		if (!rq)
2394 			break;
2395 
2396 		if (!(rq->rq_flags & RQF_STARTED)) {
2397 			/*
2398 			 * This is the first time the device driver
2399 			 * sees this request (possibly after
2400 			 * requeueing).  Notify IO scheduler.
2401 			 */
2402 			if (rq->rq_flags & RQF_SORTED)
2403 				elv_activate_rq(q, rq);
2404 
2405 			/*
2406 			 * just mark as started even if we don't start
2407 			 * it, a request that has been delayed should
2408 			 * not be passed by new incoming requests
2409 			 */
2410 			rq->rq_flags |= RQF_STARTED;
2411 			trace_block_rq_issue(q, rq);
2412 		}
2413 
2414 		if (!q->boundary_rq || q->boundary_rq == rq) {
2415 			q->end_sector = rq_end_sector(rq);
2416 			q->boundary_rq = NULL;
2417 		}
2418 
2419 		if (rq->rq_flags & RQF_DONTPREP)
2420 			break;
2421 
2422 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2423 			/*
2424 			 * make sure space for the drain appears we
2425 			 * know we can do this because max_hw_segments
2426 			 * has been adjusted to be one fewer than the
2427 			 * device can handle
2428 			 */
2429 			rq->nr_phys_segments++;
2430 		}
2431 
2432 		if (!q->prep_rq_fn)
2433 			break;
2434 
2435 		ret = q->prep_rq_fn(q, rq);
2436 		if (ret == BLKPREP_OK) {
2437 			break;
2438 		} else if (ret == BLKPREP_DEFER) {
2439 			/*
2440 			 * the request may have been (partially) prepped.
2441 			 * we need to keep this request in the front to
2442 			 * avoid resource deadlock.  RQF_STARTED will
2443 			 * prevent other fs requests from passing this one.
2444 			 */
2445 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2446 			    !(rq->rq_flags & RQF_DONTPREP)) {
2447 				/*
2448 				 * remove the space for the drain we added
2449 				 * so that we don't add it again
2450 				 */
2451 				--rq->nr_phys_segments;
2452 			}
2453 
2454 			rq = NULL;
2455 			break;
2456 		} else if (ret == BLKPREP_KILL || ret == BLKPREP_INVALID) {
2457 			int err = (ret == BLKPREP_INVALID) ? -EREMOTEIO : -EIO;
2458 
2459 			rq->rq_flags |= RQF_QUIET;
2460 			/*
2461 			 * Mark this request as started so we don't trigger
2462 			 * any debug logic in the end I/O path.
2463 			 */
2464 			blk_start_request(rq);
2465 			__blk_end_request_all(rq, err);
2466 		} else {
2467 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2468 			break;
2469 		}
2470 	}
2471 
2472 	return rq;
2473 }
2474 EXPORT_SYMBOL(blk_peek_request);
2475 
2476 void blk_dequeue_request(struct request *rq)
2477 {
2478 	struct request_queue *q = rq->q;
2479 
2480 	BUG_ON(list_empty(&rq->queuelist));
2481 	BUG_ON(ELV_ON_HASH(rq));
2482 
2483 	list_del_init(&rq->queuelist);
2484 
2485 	/*
2486 	 * the time frame between a request being removed from the lists
2487 	 * and to it is freed is accounted as io that is in progress at
2488 	 * the driver side.
2489 	 */
2490 	if (blk_account_rq(rq)) {
2491 		q->in_flight[rq_is_sync(rq)]++;
2492 		set_io_start_time_ns(rq);
2493 	}
2494 }
2495 
2496 /**
2497  * blk_start_request - start request processing on the driver
2498  * @req: request to dequeue
2499  *
2500  * Description:
2501  *     Dequeue @req and start timeout timer on it.  This hands off the
2502  *     request to the driver.
2503  *
2504  *     Block internal functions which don't want to start timer should
2505  *     call blk_dequeue_request().
2506  *
2507  * Context:
2508  *     queue_lock must be held.
2509  */
2510 void blk_start_request(struct request *req)
2511 {
2512 	blk_dequeue_request(req);
2513 
2514 	if (test_bit(QUEUE_FLAG_STATS, &req->q->queue_flags)) {
2515 		blk_stat_set_issue(&req->issue_stat, blk_rq_sectors(req));
2516 		req->rq_flags |= RQF_STATS;
2517 		wbt_issue(req->q->rq_wb, &req->issue_stat);
2518 	}
2519 
2520 	BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
2521 	blk_add_timer(req);
2522 }
2523 EXPORT_SYMBOL(blk_start_request);
2524 
2525 /**
2526  * blk_fetch_request - fetch a request from a request queue
2527  * @q: request queue to fetch a request from
2528  *
2529  * Description:
2530  *     Return the request at the top of @q.  The request is started on
2531  *     return and LLD can start processing it immediately.
2532  *
2533  * Return:
2534  *     Pointer to the request at the top of @q if available.  Null
2535  *     otherwise.
2536  *
2537  * Context:
2538  *     queue_lock must be held.
2539  */
2540 struct request *blk_fetch_request(struct request_queue *q)
2541 {
2542 	struct request *rq;
2543 
2544 	rq = blk_peek_request(q);
2545 	if (rq)
2546 		blk_start_request(rq);
2547 	return rq;
2548 }
2549 EXPORT_SYMBOL(blk_fetch_request);
2550 
2551 /**
2552  * blk_update_request - Special helper function for request stacking drivers
2553  * @req:      the request being processed
2554  * @error:    %0 for success, < %0 for error
2555  * @nr_bytes: number of bytes to complete @req
2556  *
2557  * Description:
2558  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2559  *     the request structure even if @req doesn't have leftover.
2560  *     If @req has leftover, sets it up for the next range of segments.
2561  *
2562  *     This special helper function is only for request stacking drivers
2563  *     (e.g. request-based dm) so that they can handle partial completion.
2564  *     Actual device drivers should use blk_end_request instead.
2565  *
2566  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2567  *     %false return from this function.
2568  *
2569  * Return:
2570  *     %false - this request doesn't have any more data
2571  *     %true  - this request has more data
2572  **/
2573 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2574 {
2575 	int total_bytes;
2576 
2577 	trace_block_rq_complete(req, error, nr_bytes);
2578 
2579 	if (!req->bio)
2580 		return false;
2581 
2582 	if (error && !blk_rq_is_passthrough(req) &&
2583 	    !(req->rq_flags & RQF_QUIET)) {
2584 		char *error_type;
2585 
2586 		switch (error) {
2587 		case -ENOLINK:
2588 			error_type = "recoverable transport";
2589 			break;
2590 		case -EREMOTEIO:
2591 			error_type = "critical target";
2592 			break;
2593 		case -EBADE:
2594 			error_type = "critical nexus";
2595 			break;
2596 		case -ETIMEDOUT:
2597 			error_type = "timeout";
2598 			break;
2599 		case -ENOSPC:
2600 			error_type = "critical space allocation";
2601 			break;
2602 		case -ENODATA:
2603 			error_type = "critical medium";
2604 			break;
2605 		case -EIO:
2606 		default:
2607 			error_type = "I/O";
2608 			break;
2609 		}
2610 		printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu\n",
2611 				   __func__, error_type, req->rq_disk ?
2612 				   req->rq_disk->disk_name : "?",
2613 				   (unsigned long long)blk_rq_pos(req));
2614 
2615 	}
2616 
2617 	blk_account_io_completion(req, nr_bytes);
2618 
2619 	total_bytes = 0;
2620 	while (req->bio) {
2621 		struct bio *bio = req->bio;
2622 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
2623 
2624 		if (bio_bytes == bio->bi_iter.bi_size)
2625 			req->bio = bio->bi_next;
2626 
2627 		/* Completion has already been traced */
2628 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
2629 		req_bio_endio(req, bio, bio_bytes, error);
2630 
2631 		total_bytes += bio_bytes;
2632 		nr_bytes -= bio_bytes;
2633 
2634 		if (!nr_bytes)
2635 			break;
2636 	}
2637 
2638 	/*
2639 	 * completely done
2640 	 */
2641 	if (!req->bio) {
2642 		/*
2643 		 * Reset counters so that the request stacking driver
2644 		 * can find how many bytes remain in the request
2645 		 * later.
2646 		 */
2647 		req->__data_len = 0;
2648 		return false;
2649 	}
2650 
2651 	WARN_ON_ONCE(req->rq_flags & RQF_SPECIAL_PAYLOAD);
2652 
2653 	req->__data_len -= total_bytes;
2654 
2655 	/* update sector only for requests with clear definition of sector */
2656 	if (!blk_rq_is_passthrough(req))
2657 		req->__sector += total_bytes >> 9;
2658 
2659 	/* mixed attributes always follow the first bio */
2660 	if (req->rq_flags & RQF_MIXED_MERGE) {
2661 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2662 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
2663 	}
2664 
2665 	/*
2666 	 * If total number of sectors is less than the first segment
2667 	 * size, something has gone terribly wrong.
2668 	 */
2669 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2670 		blk_dump_rq_flags(req, "request botched");
2671 		req->__data_len = blk_rq_cur_bytes(req);
2672 	}
2673 
2674 	/* recalculate the number of segments */
2675 	blk_recalc_rq_segments(req);
2676 
2677 	return true;
2678 }
2679 EXPORT_SYMBOL_GPL(blk_update_request);
2680 
2681 static bool blk_update_bidi_request(struct request *rq, int error,
2682 				    unsigned int nr_bytes,
2683 				    unsigned int bidi_bytes)
2684 {
2685 	if (blk_update_request(rq, error, nr_bytes))
2686 		return true;
2687 
2688 	/* Bidi request must be completed as a whole */
2689 	if (unlikely(blk_bidi_rq(rq)) &&
2690 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2691 		return true;
2692 
2693 	if (blk_queue_add_random(rq->q))
2694 		add_disk_randomness(rq->rq_disk);
2695 
2696 	return false;
2697 }
2698 
2699 /**
2700  * blk_unprep_request - unprepare a request
2701  * @req:	the request
2702  *
2703  * This function makes a request ready for complete resubmission (or
2704  * completion).  It happens only after all error handling is complete,
2705  * so represents the appropriate moment to deallocate any resources
2706  * that were allocated to the request in the prep_rq_fn.  The queue
2707  * lock is held when calling this.
2708  */
2709 void blk_unprep_request(struct request *req)
2710 {
2711 	struct request_queue *q = req->q;
2712 
2713 	req->rq_flags &= ~RQF_DONTPREP;
2714 	if (q->unprep_rq_fn)
2715 		q->unprep_rq_fn(q, req);
2716 }
2717 EXPORT_SYMBOL_GPL(blk_unprep_request);
2718 
2719 /*
2720  * queue lock must be held
2721  */
2722 void blk_finish_request(struct request *req, int error)
2723 {
2724 	struct request_queue *q = req->q;
2725 
2726 	if (req->rq_flags & RQF_STATS)
2727 		blk_stat_add(req);
2728 
2729 	if (req->rq_flags & RQF_QUEUED)
2730 		blk_queue_end_tag(q, req);
2731 
2732 	BUG_ON(blk_queued_rq(req));
2733 
2734 	if (unlikely(laptop_mode) && !blk_rq_is_passthrough(req))
2735 		laptop_io_completion(req->q->backing_dev_info);
2736 
2737 	blk_delete_timer(req);
2738 
2739 	if (req->rq_flags & RQF_DONTPREP)
2740 		blk_unprep_request(req);
2741 
2742 	blk_account_io_done(req);
2743 
2744 	if (req->end_io) {
2745 		wbt_done(req->q->rq_wb, &req->issue_stat);
2746 		req->end_io(req, error);
2747 	} else {
2748 		if (blk_bidi_rq(req))
2749 			__blk_put_request(req->next_rq->q, req->next_rq);
2750 
2751 		__blk_put_request(q, req);
2752 	}
2753 }
2754 EXPORT_SYMBOL(blk_finish_request);
2755 
2756 /**
2757  * blk_end_bidi_request - Complete a bidi request
2758  * @rq:         the request to complete
2759  * @error:      %0 for success, < %0 for error
2760  * @nr_bytes:   number of bytes to complete @rq
2761  * @bidi_bytes: number of bytes to complete @rq->next_rq
2762  *
2763  * Description:
2764  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2765  *     Drivers that supports bidi can safely call this member for any
2766  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2767  *     just ignored.
2768  *
2769  * Return:
2770  *     %false - we are done with this request
2771  *     %true  - still buffers pending for this request
2772  **/
2773 static bool blk_end_bidi_request(struct request *rq, int error,
2774 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2775 {
2776 	struct request_queue *q = rq->q;
2777 	unsigned long flags;
2778 
2779 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2780 		return true;
2781 
2782 	spin_lock_irqsave(q->queue_lock, flags);
2783 	blk_finish_request(rq, error);
2784 	spin_unlock_irqrestore(q->queue_lock, flags);
2785 
2786 	return false;
2787 }
2788 
2789 /**
2790  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2791  * @rq:         the request to complete
2792  * @error:      %0 for success, < %0 for error
2793  * @nr_bytes:   number of bytes to complete @rq
2794  * @bidi_bytes: number of bytes to complete @rq->next_rq
2795  *
2796  * Description:
2797  *     Identical to blk_end_bidi_request() except that queue lock is
2798  *     assumed to be locked on entry and remains so on return.
2799  *
2800  * Return:
2801  *     %false - we are done with this request
2802  *     %true  - still buffers pending for this request
2803  **/
2804 static bool __blk_end_bidi_request(struct request *rq, int error,
2805 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2806 {
2807 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2808 		return true;
2809 
2810 	blk_finish_request(rq, error);
2811 
2812 	return false;
2813 }
2814 
2815 /**
2816  * blk_end_request - Helper function for drivers to complete the request.
2817  * @rq:       the request being processed
2818  * @error:    %0 for success, < %0 for error
2819  * @nr_bytes: number of bytes to complete
2820  *
2821  * Description:
2822  *     Ends I/O on a number of bytes attached to @rq.
2823  *     If @rq has leftover, sets it up for the next range of segments.
2824  *
2825  * Return:
2826  *     %false - we are done with this request
2827  *     %true  - still buffers pending for this request
2828  **/
2829 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2830 {
2831 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2832 }
2833 EXPORT_SYMBOL(blk_end_request);
2834 
2835 /**
2836  * blk_end_request_all - Helper function for drives to finish the request.
2837  * @rq: the request to finish
2838  * @error: %0 for success, < %0 for error
2839  *
2840  * Description:
2841  *     Completely finish @rq.
2842  */
2843 void blk_end_request_all(struct request *rq, int error)
2844 {
2845 	bool pending;
2846 	unsigned int bidi_bytes = 0;
2847 
2848 	if (unlikely(blk_bidi_rq(rq)))
2849 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2850 
2851 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2852 	BUG_ON(pending);
2853 }
2854 EXPORT_SYMBOL(blk_end_request_all);
2855 
2856 /**
2857  * __blk_end_request - Helper function for drivers to complete the request.
2858  * @rq:       the request being processed
2859  * @error:    %0 for success, < %0 for error
2860  * @nr_bytes: number of bytes to complete
2861  *
2862  * Description:
2863  *     Must be called with queue lock held unlike blk_end_request().
2864  *
2865  * Return:
2866  *     %false - we are done with this request
2867  *     %true  - still buffers pending for this request
2868  **/
2869 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2870 {
2871 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2872 }
2873 EXPORT_SYMBOL(__blk_end_request);
2874 
2875 /**
2876  * __blk_end_request_all - Helper function for drives to finish the request.
2877  * @rq: the request to finish
2878  * @error: %0 for success, < %0 for error
2879  *
2880  * Description:
2881  *     Completely finish @rq.  Must be called with queue lock held.
2882  */
2883 void __blk_end_request_all(struct request *rq, int error)
2884 {
2885 	bool pending;
2886 	unsigned int bidi_bytes = 0;
2887 
2888 	if (unlikely(blk_bidi_rq(rq)))
2889 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2890 
2891 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2892 	BUG_ON(pending);
2893 }
2894 EXPORT_SYMBOL(__blk_end_request_all);
2895 
2896 /**
2897  * __blk_end_request_cur - Helper function to finish the current request chunk.
2898  * @rq: the request to finish the current chunk for
2899  * @error: %0 for success, < %0 for error
2900  *
2901  * Description:
2902  *     Complete the current consecutively mapped chunk from @rq.  Must
2903  *     be called with queue lock held.
2904  *
2905  * Return:
2906  *     %false - we are done with this request
2907  *     %true  - still buffers pending for this request
2908  */
2909 bool __blk_end_request_cur(struct request *rq, int error)
2910 {
2911 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2912 }
2913 EXPORT_SYMBOL(__blk_end_request_cur);
2914 
2915 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2916 		     struct bio *bio)
2917 {
2918 	if (bio_has_data(bio))
2919 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2920 
2921 	rq->__data_len = bio->bi_iter.bi_size;
2922 	rq->bio = rq->biotail = bio;
2923 
2924 	if (bio->bi_bdev)
2925 		rq->rq_disk = bio->bi_bdev->bd_disk;
2926 }
2927 
2928 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2929 /**
2930  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2931  * @rq: the request to be flushed
2932  *
2933  * Description:
2934  *     Flush all pages in @rq.
2935  */
2936 void rq_flush_dcache_pages(struct request *rq)
2937 {
2938 	struct req_iterator iter;
2939 	struct bio_vec bvec;
2940 
2941 	rq_for_each_segment(bvec, rq, iter)
2942 		flush_dcache_page(bvec.bv_page);
2943 }
2944 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2945 #endif
2946 
2947 /**
2948  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2949  * @q : the queue of the device being checked
2950  *
2951  * Description:
2952  *    Check if underlying low-level drivers of a device are busy.
2953  *    If the drivers want to export their busy state, they must set own
2954  *    exporting function using blk_queue_lld_busy() first.
2955  *
2956  *    Basically, this function is used only by request stacking drivers
2957  *    to stop dispatching requests to underlying devices when underlying
2958  *    devices are busy.  This behavior helps more I/O merging on the queue
2959  *    of the request stacking driver and prevents I/O throughput regression
2960  *    on burst I/O load.
2961  *
2962  * Return:
2963  *    0 - Not busy (The request stacking driver should dispatch request)
2964  *    1 - Busy (The request stacking driver should stop dispatching request)
2965  */
2966 int blk_lld_busy(struct request_queue *q)
2967 {
2968 	if (q->lld_busy_fn)
2969 		return q->lld_busy_fn(q);
2970 
2971 	return 0;
2972 }
2973 EXPORT_SYMBOL_GPL(blk_lld_busy);
2974 
2975 /**
2976  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2977  * @rq: the clone request to be cleaned up
2978  *
2979  * Description:
2980  *     Free all bios in @rq for a cloned request.
2981  */
2982 void blk_rq_unprep_clone(struct request *rq)
2983 {
2984 	struct bio *bio;
2985 
2986 	while ((bio = rq->bio) != NULL) {
2987 		rq->bio = bio->bi_next;
2988 
2989 		bio_put(bio);
2990 	}
2991 }
2992 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2993 
2994 /*
2995  * Copy attributes of the original request to the clone request.
2996  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
2997  */
2998 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2999 {
3000 	dst->cpu = src->cpu;
3001 	dst->__sector = blk_rq_pos(src);
3002 	dst->__data_len = blk_rq_bytes(src);
3003 	dst->nr_phys_segments = src->nr_phys_segments;
3004 	dst->ioprio = src->ioprio;
3005 	dst->extra_len = src->extra_len;
3006 }
3007 
3008 /**
3009  * blk_rq_prep_clone - Helper function to setup clone request
3010  * @rq: the request to be setup
3011  * @rq_src: original request to be cloned
3012  * @bs: bio_set that bios for clone are allocated from
3013  * @gfp_mask: memory allocation mask for bio
3014  * @bio_ctr: setup function to be called for each clone bio.
3015  *           Returns %0 for success, non %0 for failure.
3016  * @data: private data to be passed to @bio_ctr
3017  *
3018  * Description:
3019  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3020  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3021  *     are not copied, and copying such parts is the caller's responsibility.
3022  *     Also, pages which the original bios are pointing to are not copied
3023  *     and the cloned bios just point same pages.
3024  *     So cloned bios must be completed before original bios, which means
3025  *     the caller must complete @rq before @rq_src.
3026  */
3027 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3028 		      struct bio_set *bs, gfp_t gfp_mask,
3029 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
3030 		      void *data)
3031 {
3032 	struct bio *bio, *bio_src;
3033 
3034 	if (!bs)
3035 		bs = fs_bio_set;
3036 
3037 	__rq_for_each_bio(bio_src, rq_src) {
3038 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
3039 		if (!bio)
3040 			goto free_and_out;
3041 
3042 		if (bio_ctr && bio_ctr(bio, bio_src, data))
3043 			goto free_and_out;
3044 
3045 		if (rq->bio) {
3046 			rq->biotail->bi_next = bio;
3047 			rq->biotail = bio;
3048 		} else
3049 			rq->bio = rq->biotail = bio;
3050 	}
3051 
3052 	__blk_rq_prep_clone(rq, rq_src);
3053 
3054 	return 0;
3055 
3056 free_and_out:
3057 	if (bio)
3058 		bio_put(bio);
3059 	blk_rq_unprep_clone(rq);
3060 
3061 	return -ENOMEM;
3062 }
3063 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3064 
3065 int kblockd_schedule_work(struct work_struct *work)
3066 {
3067 	return queue_work(kblockd_workqueue, work);
3068 }
3069 EXPORT_SYMBOL(kblockd_schedule_work);
3070 
3071 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
3072 {
3073 	return queue_work_on(cpu, kblockd_workqueue, work);
3074 }
3075 EXPORT_SYMBOL(kblockd_schedule_work_on);
3076 
3077 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
3078 				unsigned long delay)
3079 {
3080 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3081 }
3082 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
3083 
3084 int kblockd_schedule_delayed_work(struct delayed_work *dwork,
3085 				  unsigned long delay)
3086 {
3087 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
3088 }
3089 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
3090 
3091 int kblockd_schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
3092 				     unsigned long delay)
3093 {
3094 	return queue_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
3095 }
3096 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on);
3097 
3098 /**
3099  * blk_start_plug - initialize blk_plug and track it inside the task_struct
3100  * @plug:	The &struct blk_plug that needs to be initialized
3101  *
3102  * Description:
3103  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
3104  *   pending I/O should the task end up blocking between blk_start_plug() and
3105  *   blk_finish_plug(). This is important from a performance perspective, but
3106  *   also ensures that we don't deadlock. For instance, if the task is blocking
3107  *   for a memory allocation, memory reclaim could end up wanting to free a
3108  *   page belonging to that request that is currently residing in our private
3109  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
3110  *   this kind of deadlock.
3111  */
3112 void blk_start_plug(struct blk_plug *plug)
3113 {
3114 	struct task_struct *tsk = current;
3115 
3116 	/*
3117 	 * If this is a nested plug, don't actually assign it.
3118 	 */
3119 	if (tsk->plug)
3120 		return;
3121 
3122 	INIT_LIST_HEAD(&plug->list);
3123 	INIT_LIST_HEAD(&plug->mq_list);
3124 	INIT_LIST_HEAD(&plug->cb_list);
3125 	/*
3126 	 * Store ordering should not be needed here, since a potential
3127 	 * preempt will imply a full memory barrier
3128 	 */
3129 	tsk->plug = plug;
3130 }
3131 EXPORT_SYMBOL(blk_start_plug);
3132 
3133 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
3134 {
3135 	struct request *rqa = container_of(a, struct request, queuelist);
3136 	struct request *rqb = container_of(b, struct request, queuelist);
3137 
3138 	return !(rqa->q < rqb->q ||
3139 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
3140 }
3141 
3142 /*
3143  * If 'from_schedule' is true, then postpone the dispatch of requests
3144  * until a safe kblockd context. We due this to avoid accidental big
3145  * additional stack usage in driver dispatch, in places where the originally
3146  * plugger did not intend it.
3147  */
3148 static void queue_unplugged(struct request_queue *q, unsigned int depth,
3149 			    bool from_schedule)
3150 	__releases(q->queue_lock)
3151 {
3152 	trace_block_unplug(q, depth, !from_schedule);
3153 
3154 	if (from_schedule)
3155 		blk_run_queue_async(q);
3156 	else
3157 		__blk_run_queue(q);
3158 	spin_unlock(q->queue_lock);
3159 }
3160 
3161 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
3162 {
3163 	LIST_HEAD(callbacks);
3164 
3165 	while (!list_empty(&plug->cb_list)) {
3166 		list_splice_init(&plug->cb_list, &callbacks);
3167 
3168 		while (!list_empty(&callbacks)) {
3169 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
3170 							  struct blk_plug_cb,
3171 							  list);
3172 			list_del(&cb->list);
3173 			cb->callback(cb, from_schedule);
3174 		}
3175 	}
3176 }
3177 
3178 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
3179 				      int size)
3180 {
3181 	struct blk_plug *plug = current->plug;
3182 	struct blk_plug_cb *cb;
3183 
3184 	if (!plug)
3185 		return NULL;
3186 
3187 	list_for_each_entry(cb, &plug->cb_list, list)
3188 		if (cb->callback == unplug && cb->data == data)
3189 			return cb;
3190 
3191 	/* Not currently on the callback list */
3192 	BUG_ON(size < sizeof(*cb));
3193 	cb = kzalloc(size, GFP_ATOMIC);
3194 	if (cb) {
3195 		cb->data = data;
3196 		cb->callback = unplug;
3197 		list_add(&cb->list, &plug->cb_list);
3198 	}
3199 	return cb;
3200 }
3201 EXPORT_SYMBOL(blk_check_plugged);
3202 
3203 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
3204 {
3205 	struct request_queue *q;
3206 	unsigned long flags;
3207 	struct request *rq;
3208 	LIST_HEAD(list);
3209 	unsigned int depth;
3210 
3211 	flush_plug_callbacks(plug, from_schedule);
3212 
3213 	if (!list_empty(&plug->mq_list))
3214 		blk_mq_flush_plug_list(plug, from_schedule);
3215 
3216 	if (list_empty(&plug->list))
3217 		return;
3218 
3219 	list_splice_init(&plug->list, &list);
3220 
3221 	list_sort(NULL, &list, plug_rq_cmp);
3222 
3223 	q = NULL;
3224 	depth = 0;
3225 
3226 	/*
3227 	 * Save and disable interrupts here, to avoid doing it for every
3228 	 * queue lock we have to take.
3229 	 */
3230 	local_irq_save(flags);
3231 	while (!list_empty(&list)) {
3232 		rq = list_entry_rq(list.next);
3233 		list_del_init(&rq->queuelist);
3234 		BUG_ON(!rq->q);
3235 		if (rq->q != q) {
3236 			/*
3237 			 * This drops the queue lock
3238 			 */
3239 			if (q)
3240 				queue_unplugged(q, depth, from_schedule);
3241 			q = rq->q;
3242 			depth = 0;
3243 			spin_lock(q->queue_lock);
3244 		}
3245 
3246 		/*
3247 		 * Short-circuit if @q is dead
3248 		 */
3249 		if (unlikely(blk_queue_dying(q))) {
3250 			__blk_end_request_all(rq, -ENODEV);
3251 			continue;
3252 		}
3253 
3254 		/*
3255 		 * rq is already accounted, so use raw insert
3256 		 */
3257 		if (op_is_flush(rq->cmd_flags))
3258 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3259 		else
3260 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3261 
3262 		depth++;
3263 	}
3264 
3265 	/*
3266 	 * This drops the queue lock
3267 	 */
3268 	if (q)
3269 		queue_unplugged(q, depth, from_schedule);
3270 
3271 	local_irq_restore(flags);
3272 }
3273 
3274 void blk_finish_plug(struct blk_plug *plug)
3275 {
3276 	if (plug != current->plug)
3277 		return;
3278 	blk_flush_plug_list(plug, false);
3279 
3280 	current->plug = NULL;
3281 }
3282 EXPORT_SYMBOL(blk_finish_plug);
3283 
3284 #ifdef CONFIG_PM
3285 /**
3286  * blk_pm_runtime_init - Block layer runtime PM initialization routine
3287  * @q: the queue of the device
3288  * @dev: the device the queue belongs to
3289  *
3290  * Description:
3291  *    Initialize runtime-PM-related fields for @q and start auto suspend for
3292  *    @dev. Drivers that want to take advantage of request-based runtime PM
3293  *    should call this function after @dev has been initialized, and its
3294  *    request queue @q has been allocated, and runtime PM for it can not happen
3295  *    yet(either due to disabled/forbidden or its usage_count > 0). In most
3296  *    cases, driver should call this function before any I/O has taken place.
3297  *
3298  *    This function takes care of setting up using auto suspend for the device,
3299  *    the autosuspend delay is set to -1 to make runtime suspend impossible
3300  *    until an updated value is either set by user or by driver. Drivers do
3301  *    not need to touch other autosuspend settings.
3302  *
3303  *    The block layer runtime PM is request based, so only works for drivers
3304  *    that use request as their IO unit instead of those directly use bio's.
3305  */
3306 void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3307 {
3308 	q->dev = dev;
3309 	q->rpm_status = RPM_ACTIVE;
3310 	pm_runtime_set_autosuspend_delay(q->dev, -1);
3311 	pm_runtime_use_autosuspend(q->dev);
3312 }
3313 EXPORT_SYMBOL(blk_pm_runtime_init);
3314 
3315 /**
3316  * blk_pre_runtime_suspend - Pre runtime suspend check
3317  * @q: the queue of the device
3318  *
3319  * Description:
3320  *    This function will check if runtime suspend is allowed for the device
3321  *    by examining if there are any requests pending in the queue. If there
3322  *    are requests pending, the device can not be runtime suspended; otherwise,
3323  *    the queue's status will be updated to SUSPENDING and the driver can
3324  *    proceed to suspend the device.
3325  *
3326  *    For the not allowed case, we mark last busy for the device so that
3327  *    runtime PM core will try to autosuspend it some time later.
3328  *
3329  *    This function should be called near the start of the device's
3330  *    runtime_suspend callback.
3331  *
3332  * Return:
3333  *    0		- OK to runtime suspend the device
3334  *    -EBUSY	- Device should not be runtime suspended
3335  */
3336 int blk_pre_runtime_suspend(struct request_queue *q)
3337 {
3338 	int ret = 0;
3339 
3340 	if (!q->dev)
3341 		return ret;
3342 
3343 	spin_lock_irq(q->queue_lock);
3344 	if (q->nr_pending) {
3345 		ret = -EBUSY;
3346 		pm_runtime_mark_last_busy(q->dev);
3347 	} else {
3348 		q->rpm_status = RPM_SUSPENDING;
3349 	}
3350 	spin_unlock_irq(q->queue_lock);
3351 	return ret;
3352 }
3353 EXPORT_SYMBOL(blk_pre_runtime_suspend);
3354 
3355 /**
3356  * blk_post_runtime_suspend - Post runtime suspend processing
3357  * @q: the queue of the device
3358  * @err: return value of the device's runtime_suspend function
3359  *
3360  * Description:
3361  *    Update the queue's runtime status according to the return value of the
3362  *    device's runtime suspend function and mark last busy for the device so
3363  *    that PM core will try to auto suspend the device at a later time.
3364  *
3365  *    This function should be called near the end of the device's
3366  *    runtime_suspend callback.
3367  */
3368 void blk_post_runtime_suspend(struct request_queue *q, int err)
3369 {
3370 	if (!q->dev)
3371 		return;
3372 
3373 	spin_lock_irq(q->queue_lock);
3374 	if (!err) {
3375 		q->rpm_status = RPM_SUSPENDED;
3376 	} else {
3377 		q->rpm_status = RPM_ACTIVE;
3378 		pm_runtime_mark_last_busy(q->dev);
3379 	}
3380 	spin_unlock_irq(q->queue_lock);
3381 }
3382 EXPORT_SYMBOL(blk_post_runtime_suspend);
3383 
3384 /**
3385  * blk_pre_runtime_resume - Pre runtime resume processing
3386  * @q: the queue of the device
3387  *
3388  * Description:
3389  *    Update the queue's runtime status to RESUMING in preparation for the
3390  *    runtime resume of the device.
3391  *
3392  *    This function should be called near the start of the device's
3393  *    runtime_resume callback.
3394  */
3395 void blk_pre_runtime_resume(struct request_queue *q)
3396 {
3397 	if (!q->dev)
3398 		return;
3399 
3400 	spin_lock_irq(q->queue_lock);
3401 	q->rpm_status = RPM_RESUMING;
3402 	spin_unlock_irq(q->queue_lock);
3403 }
3404 EXPORT_SYMBOL(blk_pre_runtime_resume);
3405 
3406 /**
3407  * blk_post_runtime_resume - Post runtime resume processing
3408  * @q: the queue of the device
3409  * @err: return value of the device's runtime_resume function
3410  *
3411  * Description:
3412  *    Update the queue's runtime status according to the return value of the
3413  *    device's runtime_resume function. If it is successfully resumed, process
3414  *    the requests that are queued into the device's queue when it is resuming
3415  *    and then mark last busy and initiate autosuspend for it.
3416  *
3417  *    This function should be called near the end of the device's
3418  *    runtime_resume callback.
3419  */
3420 void blk_post_runtime_resume(struct request_queue *q, int err)
3421 {
3422 	if (!q->dev)
3423 		return;
3424 
3425 	spin_lock_irq(q->queue_lock);
3426 	if (!err) {
3427 		q->rpm_status = RPM_ACTIVE;
3428 		__blk_run_queue(q);
3429 		pm_runtime_mark_last_busy(q->dev);
3430 		pm_request_autosuspend(q->dev);
3431 	} else {
3432 		q->rpm_status = RPM_SUSPENDED;
3433 	}
3434 	spin_unlock_irq(q->queue_lock);
3435 }
3436 EXPORT_SYMBOL(blk_post_runtime_resume);
3437 
3438 /**
3439  * blk_set_runtime_active - Force runtime status of the queue to be active
3440  * @q: the queue of the device
3441  *
3442  * If the device is left runtime suspended during system suspend the resume
3443  * hook typically resumes the device and corrects runtime status
3444  * accordingly. However, that does not affect the queue runtime PM status
3445  * which is still "suspended". This prevents processing requests from the
3446  * queue.
3447  *
3448  * This function can be used in driver's resume hook to correct queue
3449  * runtime PM status and re-enable peeking requests from the queue. It
3450  * should be called before first request is added to the queue.
3451  */
3452 void blk_set_runtime_active(struct request_queue *q)
3453 {
3454 	spin_lock_irq(q->queue_lock);
3455 	q->rpm_status = RPM_ACTIVE;
3456 	pm_runtime_mark_last_busy(q->dev);
3457 	pm_request_autosuspend(q->dev);
3458 	spin_unlock_irq(q->queue_lock);
3459 }
3460 EXPORT_SYMBOL(blk_set_runtime_active);
3461 #endif
3462 
3463 int __init blk_dev_init(void)
3464 {
3465 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
3466 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3467 			FIELD_SIZEOF(struct request, cmd_flags));
3468 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
3469 			FIELD_SIZEOF(struct bio, bi_opf));
3470 
3471 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3472 	kblockd_workqueue = alloc_workqueue("kblockd",
3473 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3474 	if (!kblockd_workqueue)
3475 		panic("Failed to create kblockd\n");
3476 
3477 	request_cachep = kmem_cache_create("blkdev_requests",
3478 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3479 
3480 	blk_requestq_cachep = kmem_cache_create("request_queue",
3481 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3482 
3483 #ifdef CONFIG_DEBUG_FS
3484 	blk_debugfs_root = debugfs_create_dir("block", NULL);
3485 #endif
3486 
3487 	return 0;
3488 }
3489