xref: /openbmc/linux/block/blk-core.c (revision 1ab142d4)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/block.h>
35 
36 #include "blk.h"
37 
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
41 
42 DEFINE_IDA(blk_queue_ida);
43 
44 /*
45  * For the allocated request tables
46  */
47 static struct kmem_cache *request_cachep;
48 
49 /*
50  * For queue allocation
51  */
52 struct kmem_cache *blk_requestq_cachep;
53 
54 /*
55  * Controlling structure to kblockd
56  */
57 static struct workqueue_struct *kblockd_workqueue;
58 
59 static void drive_stat_acct(struct request *rq, int new_io)
60 {
61 	struct hd_struct *part;
62 	int rw = rq_data_dir(rq);
63 	int cpu;
64 
65 	if (!blk_do_io_stat(rq))
66 		return;
67 
68 	cpu = part_stat_lock();
69 
70 	if (!new_io) {
71 		part = rq->part;
72 		part_stat_inc(cpu, part, merges[rw]);
73 	} else {
74 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
75 		if (!hd_struct_try_get(part)) {
76 			/*
77 			 * The partition is already being removed,
78 			 * the request will be accounted on the disk only
79 			 *
80 			 * We take a reference on disk->part0 although that
81 			 * partition will never be deleted, so we can treat
82 			 * it as any other partition.
83 			 */
84 			part = &rq->rq_disk->part0;
85 			hd_struct_get(part);
86 		}
87 		part_round_stats(cpu, part);
88 		part_inc_in_flight(part, rw);
89 		rq->part = part;
90 	}
91 
92 	part_stat_unlock();
93 }
94 
95 void blk_queue_congestion_threshold(struct request_queue *q)
96 {
97 	int nr;
98 
99 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
100 	if (nr > q->nr_requests)
101 		nr = q->nr_requests;
102 	q->nr_congestion_on = nr;
103 
104 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
105 	if (nr < 1)
106 		nr = 1;
107 	q->nr_congestion_off = nr;
108 }
109 
110 /**
111  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
112  * @bdev:	device
113  *
114  * Locates the passed device's request queue and returns the address of its
115  * backing_dev_info
116  *
117  * Will return NULL if the request queue cannot be located.
118  */
119 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
120 {
121 	struct backing_dev_info *ret = NULL;
122 	struct request_queue *q = bdev_get_queue(bdev);
123 
124 	if (q)
125 		ret = &q->backing_dev_info;
126 	return ret;
127 }
128 EXPORT_SYMBOL(blk_get_backing_dev_info);
129 
130 void blk_rq_init(struct request_queue *q, struct request *rq)
131 {
132 	memset(rq, 0, sizeof(*rq));
133 
134 	INIT_LIST_HEAD(&rq->queuelist);
135 	INIT_LIST_HEAD(&rq->timeout_list);
136 	rq->cpu = -1;
137 	rq->q = q;
138 	rq->__sector = (sector_t) -1;
139 	INIT_HLIST_NODE(&rq->hash);
140 	RB_CLEAR_NODE(&rq->rb_node);
141 	rq->cmd = rq->__cmd;
142 	rq->cmd_len = BLK_MAX_CDB;
143 	rq->tag = -1;
144 	rq->ref_count = 1;
145 	rq->start_time = jiffies;
146 	set_start_time_ns(rq);
147 	rq->part = NULL;
148 }
149 EXPORT_SYMBOL(blk_rq_init);
150 
151 static void req_bio_endio(struct request *rq, struct bio *bio,
152 			  unsigned int nbytes, int error)
153 {
154 	if (error)
155 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
156 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
157 		error = -EIO;
158 
159 	if (unlikely(nbytes > bio->bi_size)) {
160 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
161 		       __func__, nbytes, bio->bi_size);
162 		nbytes = bio->bi_size;
163 	}
164 
165 	if (unlikely(rq->cmd_flags & REQ_QUIET))
166 		set_bit(BIO_QUIET, &bio->bi_flags);
167 
168 	bio->bi_size -= nbytes;
169 	bio->bi_sector += (nbytes >> 9);
170 
171 	if (bio_integrity(bio))
172 		bio_integrity_advance(bio, nbytes);
173 
174 	/* don't actually finish bio if it's part of flush sequence */
175 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
176 		bio_endio(bio, error);
177 }
178 
179 void blk_dump_rq_flags(struct request *rq, char *msg)
180 {
181 	int bit;
182 
183 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
184 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
185 		rq->cmd_flags);
186 
187 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
188 	       (unsigned long long)blk_rq_pos(rq),
189 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
190 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
191 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
192 
193 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
194 		printk(KERN_INFO "  cdb: ");
195 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
196 			printk("%02x ", rq->cmd[bit]);
197 		printk("\n");
198 	}
199 }
200 EXPORT_SYMBOL(blk_dump_rq_flags);
201 
202 static void blk_delay_work(struct work_struct *work)
203 {
204 	struct request_queue *q;
205 
206 	q = container_of(work, struct request_queue, delay_work.work);
207 	spin_lock_irq(q->queue_lock);
208 	__blk_run_queue(q);
209 	spin_unlock_irq(q->queue_lock);
210 }
211 
212 /**
213  * blk_delay_queue - restart queueing after defined interval
214  * @q:		The &struct request_queue in question
215  * @msecs:	Delay in msecs
216  *
217  * Description:
218  *   Sometimes queueing needs to be postponed for a little while, to allow
219  *   resources to come back. This function will make sure that queueing is
220  *   restarted around the specified time.
221  */
222 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
223 {
224 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
225 				msecs_to_jiffies(msecs));
226 }
227 EXPORT_SYMBOL(blk_delay_queue);
228 
229 /**
230  * blk_start_queue - restart a previously stopped queue
231  * @q:    The &struct request_queue in question
232  *
233  * Description:
234  *   blk_start_queue() will clear the stop flag on the queue, and call
235  *   the request_fn for the queue if it was in a stopped state when
236  *   entered. Also see blk_stop_queue(). Queue lock must be held.
237  **/
238 void blk_start_queue(struct request_queue *q)
239 {
240 	WARN_ON(!irqs_disabled());
241 
242 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
243 	__blk_run_queue(q);
244 }
245 EXPORT_SYMBOL(blk_start_queue);
246 
247 /**
248  * blk_stop_queue - stop a queue
249  * @q:    The &struct request_queue in question
250  *
251  * Description:
252  *   The Linux block layer assumes that a block driver will consume all
253  *   entries on the request queue when the request_fn strategy is called.
254  *   Often this will not happen, because of hardware limitations (queue
255  *   depth settings). If a device driver gets a 'queue full' response,
256  *   or if it simply chooses not to queue more I/O at one point, it can
257  *   call this function to prevent the request_fn from being called until
258  *   the driver has signalled it's ready to go again. This happens by calling
259  *   blk_start_queue() to restart queue operations. Queue lock must be held.
260  **/
261 void blk_stop_queue(struct request_queue *q)
262 {
263 	__cancel_delayed_work(&q->delay_work);
264 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
265 }
266 EXPORT_SYMBOL(blk_stop_queue);
267 
268 /**
269  * blk_sync_queue - cancel any pending callbacks on a queue
270  * @q: the queue
271  *
272  * Description:
273  *     The block layer may perform asynchronous callback activity
274  *     on a queue, such as calling the unplug function after a timeout.
275  *     A block device may call blk_sync_queue to ensure that any
276  *     such activity is cancelled, thus allowing it to release resources
277  *     that the callbacks might use. The caller must already have made sure
278  *     that its ->make_request_fn will not re-add plugging prior to calling
279  *     this function.
280  *
281  *     This function does not cancel any asynchronous activity arising
282  *     out of elevator or throttling code. That would require elevaotor_exit()
283  *     and blk_throtl_exit() to be called with queue lock initialized.
284  *
285  */
286 void blk_sync_queue(struct request_queue *q)
287 {
288 	del_timer_sync(&q->timeout);
289 	cancel_delayed_work_sync(&q->delay_work);
290 }
291 EXPORT_SYMBOL(blk_sync_queue);
292 
293 /**
294  * __blk_run_queue - run a single device queue
295  * @q:	The queue to run
296  *
297  * Description:
298  *    See @blk_run_queue. This variant must be called with the queue lock
299  *    held and interrupts disabled.
300  */
301 void __blk_run_queue(struct request_queue *q)
302 {
303 	if (unlikely(blk_queue_stopped(q)))
304 		return;
305 
306 	q->request_fn(q);
307 }
308 EXPORT_SYMBOL(__blk_run_queue);
309 
310 /**
311  * blk_run_queue_async - run a single device queue in workqueue context
312  * @q:	The queue to run
313  *
314  * Description:
315  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
316  *    of us.
317  */
318 void blk_run_queue_async(struct request_queue *q)
319 {
320 	if (likely(!blk_queue_stopped(q))) {
321 		__cancel_delayed_work(&q->delay_work);
322 		queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
323 	}
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326 
327 /**
328  * blk_run_queue - run a single device queue
329  * @q: The queue to run
330  *
331  * Description:
332  *    Invoke request handling on this queue, if it has pending work to do.
333  *    May be used to restart queueing when a request has completed.
334  */
335 void blk_run_queue(struct request_queue *q)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(q->queue_lock, flags);
340 	__blk_run_queue(q);
341 	spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344 
345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
351 /**
352  * blk_drain_queue - drain requests from request_queue
353  * @q: queue to drain
354  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355  *
356  * Drain requests from @q.  If @drain_all is set, all requests are drained.
357  * If not, only ELVPRIV requests are drained.  The caller is responsible
358  * for ensuring that no new requests which need to be drained are queued.
359  */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 	while (true) {
363 		bool drain = false;
364 		int i;
365 
366 		spin_lock_irq(q->queue_lock);
367 
368 		elv_drain_elevator(q);
369 		if (drain_all)
370 			blk_throtl_drain(q);
371 
372 		/*
373 		 * This function might be called on a queue which failed
374 		 * driver init after queue creation.  Some drivers
375 		 * (e.g. fd) get unhappy in such cases.  Kick queue iff
376 		 * dispatch queue has something on it.
377 		 */
378 		if (!list_empty(&q->queue_head))
379 			__blk_run_queue(q);
380 
381 		drain |= q->rq.elvpriv;
382 
383 		/*
384 		 * Unfortunately, requests are queued at and tracked from
385 		 * multiple places and there's no single counter which can
386 		 * be drained.  Check all the queues and counters.
387 		 */
388 		if (drain_all) {
389 			drain |= !list_empty(&q->queue_head);
390 			for (i = 0; i < 2; i++) {
391 				drain |= q->rq.count[i];
392 				drain |= q->in_flight[i];
393 				drain |= !list_empty(&q->flush_queue[i]);
394 			}
395 		}
396 
397 		spin_unlock_irq(q->queue_lock);
398 
399 		if (!drain)
400 			break;
401 		msleep(10);
402 	}
403 }
404 
405 /**
406  * blk_cleanup_queue - shutdown a request queue
407  * @q: request queue to shutdown
408  *
409  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
410  * future requests will be failed immediately with -ENODEV.
411  */
412 void blk_cleanup_queue(struct request_queue *q)
413 {
414 	spinlock_t *lock = q->queue_lock;
415 
416 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
417 	mutex_lock(&q->sysfs_lock);
418 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
419 
420 	spin_lock_irq(lock);
421 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
422 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
423 	queue_flag_set(QUEUE_FLAG_DEAD, q);
424 
425 	if (q->queue_lock != &q->__queue_lock)
426 		q->queue_lock = &q->__queue_lock;
427 
428 	spin_unlock_irq(lock);
429 	mutex_unlock(&q->sysfs_lock);
430 
431 	/*
432 	 * Drain all requests queued before DEAD marking.  The caller might
433 	 * be trying to tear down @q before its elevator is initialized, in
434 	 * which case we don't want to call into draining.
435 	 */
436 	if (q->elevator)
437 		blk_drain_queue(q, true);
438 
439 	/* @q won't process any more request, flush async actions */
440 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
441 	blk_sync_queue(q);
442 
443 	/* @q is and will stay empty, shutdown and put */
444 	blk_put_queue(q);
445 }
446 EXPORT_SYMBOL(blk_cleanup_queue);
447 
448 static int blk_init_free_list(struct request_queue *q)
449 {
450 	struct request_list *rl = &q->rq;
451 
452 	if (unlikely(rl->rq_pool))
453 		return 0;
454 
455 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
456 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
457 	rl->elvpriv = 0;
458 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
459 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
460 
461 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
462 				mempool_free_slab, request_cachep, q->node);
463 
464 	if (!rl->rq_pool)
465 		return -ENOMEM;
466 
467 	return 0;
468 }
469 
470 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
471 {
472 	return blk_alloc_queue_node(gfp_mask, -1);
473 }
474 EXPORT_SYMBOL(blk_alloc_queue);
475 
476 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
477 {
478 	struct request_queue *q;
479 	int err;
480 
481 	q = kmem_cache_alloc_node(blk_requestq_cachep,
482 				gfp_mask | __GFP_ZERO, node_id);
483 	if (!q)
484 		return NULL;
485 
486 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
487 	if (q->id < 0)
488 		goto fail_q;
489 
490 	q->backing_dev_info.ra_pages =
491 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
492 	q->backing_dev_info.state = 0;
493 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
494 	q->backing_dev_info.name = "block";
495 	q->node = node_id;
496 
497 	err = bdi_init(&q->backing_dev_info);
498 	if (err)
499 		goto fail_id;
500 
501 	if (blk_throtl_init(q))
502 		goto fail_id;
503 
504 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
505 		    laptop_mode_timer_fn, (unsigned long) q);
506 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
507 	INIT_LIST_HEAD(&q->timeout_list);
508 	INIT_LIST_HEAD(&q->icq_list);
509 	INIT_LIST_HEAD(&q->flush_queue[0]);
510 	INIT_LIST_HEAD(&q->flush_queue[1]);
511 	INIT_LIST_HEAD(&q->flush_data_in_flight);
512 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
513 
514 	kobject_init(&q->kobj, &blk_queue_ktype);
515 
516 	mutex_init(&q->sysfs_lock);
517 	spin_lock_init(&q->__queue_lock);
518 
519 	/*
520 	 * By default initialize queue_lock to internal lock and driver can
521 	 * override it later if need be.
522 	 */
523 	q->queue_lock = &q->__queue_lock;
524 
525 	return q;
526 
527 fail_id:
528 	ida_simple_remove(&blk_queue_ida, q->id);
529 fail_q:
530 	kmem_cache_free(blk_requestq_cachep, q);
531 	return NULL;
532 }
533 EXPORT_SYMBOL(blk_alloc_queue_node);
534 
535 /**
536  * blk_init_queue  - prepare a request queue for use with a block device
537  * @rfn:  The function to be called to process requests that have been
538  *        placed on the queue.
539  * @lock: Request queue spin lock
540  *
541  * Description:
542  *    If a block device wishes to use the standard request handling procedures,
543  *    which sorts requests and coalesces adjacent requests, then it must
544  *    call blk_init_queue().  The function @rfn will be called when there
545  *    are requests on the queue that need to be processed.  If the device
546  *    supports plugging, then @rfn may not be called immediately when requests
547  *    are available on the queue, but may be called at some time later instead.
548  *    Plugged queues are generally unplugged when a buffer belonging to one
549  *    of the requests on the queue is needed, or due to memory pressure.
550  *
551  *    @rfn is not required, or even expected, to remove all requests off the
552  *    queue, but only as many as it can handle at a time.  If it does leave
553  *    requests on the queue, it is responsible for arranging that the requests
554  *    get dealt with eventually.
555  *
556  *    The queue spin lock must be held while manipulating the requests on the
557  *    request queue; this lock will be taken also from interrupt context, so irq
558  *    disabling is needed for it.
559  *
560  *    Function returns a pointer to the initialized request queue, or %NULL if
561  *    it didn't succeed.
562  *
563  * Note:
564  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
565  *    when the block device is deactivated (such as at module unload).
566  **/
567 
568 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
569 {
570 	return blk_init_queue_node(rfn, lock, -1);
571 }
572 EXPORT_SYMBOL(blk_init_queue);
573 
574 struct request_queue *
575 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
576 {
577 	struct request_queue *uninit_q, *q;
578 
579 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
580 	if (!uninit_q)
581 		return NULL;
582 
583 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
584 	if (!q)
585 		blk_cleanup_queue(uninit_q);
586 
587 	return q;
588 }
589 EXPORT_SYMBOL(blk_init_queue_node);
590 
591 struct request_queue *
592 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
593 			 spinlock_t *lock)
594 {
595 	if (!q)
596 		return NULL;
597 
598 	if (blk_init_free_list(q))
599 		return NULL;
600 
601 	q->request_fn		= rfn;
602 	q->prep_rq_fn		= NULL;
603 	q->unprep_rq_fn		= NULL;
604 	q->queue_flags		= QUEUE_FLAG_DEFAULT;
605 
606 	/* Override internal queue lock with supplied lock pointer */
607 	if (lock)
608 		q->queue_lock		= lock;
609 
610 	/*
611 	 * This also sets hw/phys segments, boundary and size
612 	 */
613 	blk_queue_make_request(q, blk_queue_bio);
614 
615 	q->sg_reserved_size = INT_MAX;
616 
617 	/*
618 	 * all done
619 	 */
620 	if (!elevator_init(q, NULL)) {
621 		blk_queue_congestion_threshold(q);
622 		return q;
623 	}
624 
625 	return NULL;
626 }
627 EXPORT_SYMBOL(blk_init_allocated_queue);
628 
629 bool blk_get_queue(struct request_queue *q)
630 {
631 	if (likely(!blk_queue_dead(q))) {
632 		__blk_get_queue(q);
633 		return true;
634 	}
635 
636 	return false;
637 }
638 EXPORT_SYMBOL(blk_get_queue);
639 
640 static inline void blk_free_request(struct request_queue *q, struct request *rq)
641 {
642 	if (rq->cmd_flags & REQ_ELVPRIV) {
643 		elv_put_request(q, rq);
644 		if (rq->elv.icq)
645 			put_io_context(rq->elv.icq->ioc);
646 	}
647 
648 	mempool_free(rq, q->rq.rq_pool);
649 }
650 
651 static struct request *
652 blk_alloc_request(struct request_queue *q, struct io_cq *icq,
653 		  unsigned int flags, gfp_t gfp_mask)
654 {
655 	struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
656 
657 	if (!rq)
658 		return NULL;
659 
660 	blk_rq_init(q, rq);
661 
662 	rq->cmd_flags = flags | REQ_ALLOCED;
663 
664 	if (flags & REQ_ELVPRIV) {
665 		rq->elv.icq = icq;
666 		if (unlikely(elv_set_request(q, rq, gfp_mask))) {
667 			mempool_free(rq, q->rq.rq_pool);
668 			return NULL;
669 		}
670 		/* @rq->elv.icq holds on to io_context until @rq is freed */
671 		if (icq)
672 			get_io_context(icq->ioc);
673 	}
674 
675 	return rq;
676 }
677 
678 /*
679  * ioc_batching returns true if the ioc is a valid batching request and
680  * should be given priority access to a request.
681  */
682 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
683 {
684 	if (!ioc)
685 		return 0;
686 
687 	/*
688 	 * Make sure the process is able to allocate at least 1 request
689 	 * even if the batch times out, otherwise we could theoretically
690 	 * lose wakeups.
691 	 */
692 	return ioc->nr_batch_requests == q->nr_batching ||
693 		(ioc->nr_batch_requests > 0
694 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
695 }
696 
697 /*
698  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
699  * will cause the process to be a "batcher" on all queues in the system. This
700  * is the behaviour we want though - once it gets a wakeup it should be given
701  * a nice run.
702  */
703 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
704 {
705 	if (!ioc || ioc_batching(q, ioc))
706 		return;
707 
708 	ioc->nr_batch_requests = q->nr_batching;
709 	ioc->last_waited = jiffies;
710 }
711 
712 static void __freed_request(struct request_queue *q, int sync)
713 {
714 	struct request_list *rl = &q->rq;
715 
716 	if (rl->count[sync] < queue_congestion_off_threshold(q))
717 		blk_clear_queue_congested(q, sync);
718 
719 	if (rl->count[sync] + 1 <= q->nr_requests) {
720 		if (waitqueue_active(&rl->wait[sync]))
721 			wake_up(&rl->wait[sync]);
722 
723 		blk_clear_queue_full(q, sync);
724 	}
725 }
726 
727 /*
728  * A request has just been released.  Account for it, update the full and
729  * congestion status, wake up any waiters.   Called under q->queue_lock.
730  */
731 static void freed_request(struct request_queue *q, unsigned int flags)
732 {
733 	struct request_list *rl = &q->rq;
734 	int sync = rw_is_sync(flags);
735 
736 	rl->count[sync]--;
737 	if (flags & REQ_ELVPRIV)
738 		rl->elvpriv--;
739 
740 	__freed_request(q, sync);
741 
742 	if (unlikely(rl->starved[sync ^ 1]))
743 		__freed_request(q, sync ^ 1);
744 }
745 
746 /*
747  * Determine if elevator data should be initialized when allocating the
748  * request associated with @bio.
749  */
750 static bool blk_rq_should_init_elevator(struct bio *bio)
751 {
752 	if (!bio)
753 		return true;
754 
755 	/*
756 	 * Flush requests do not use the elevator so skip initialization.
757 	 * This allows a request to share the flush and elevator data.
758 	 */
759 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
760 		return false;
761 
762 	return true;
763 }
764 
765 /**
766  * get_request - get a free request
767  * @q: request_queue to allocate request from
768  * @rw_flags: RW and SYNC flags
769  * @bio: bio to allocate request for (can be %NULL)
770  * @gfp_mask: allocation mask
771  *
772  * Get a free request from @q.  This function may fail under memory
773  * pressure or if @q is dead.
774  *
775  * Must be callled with @q->queue_lock held and,
776  * Returns %NULL on failure, with @q->queue_lock held.
777  * Returns !%NULL on success, with @q->queue_lock *not held*.
778  */
779 static struct request *get_request(struct request_queue *q, int rw_flags,
780 				   struct bio *bio, gfp_t gfp_mask)
781 {
782 	struct request *rq = NULL;
783 	struct request_list *rl = &q->rq;
784 	struct elevator_type *et;
785 	struct io_context *ioc;
786 	struct io_cq *icq = NULL;
787 	const bool is_sync = rw_is_sync(rw_flags) != 0;
788 	bool retried = false;
789 	int may_queue;
790 retry:
791 	et = q->elevator->type;
792 	ioc = current->io_context;
793 
794 	if (unlikely(blk_queue_dead(q)))
795 		return NULL;
796 
797 	may_queue = elv_may_queue(q, rw_flags);
798 	if (may_queue == ELV_MQUEUE_NO)
799 		goto rq_starved;
800 
801 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
802 		if (rl->count[is_sync]+1 >= q->nr_requests) {
803 			/*
804 			 * We want ioc to record batching state.  If it's
805 			 * not already there, creating a new one requires
806 			 * dropping queue_lock, which in turn requires
807 			 * retesting conditions to avoid queue hang.
808 			 */
809 			if (!ioc && !retried) {
810 				spin_unlock_irq(q->queue_lock);
811 				create_io_context(current, gfp_mask, q->node);
812 				spin_lock_irq(q->queue_lock);
813 				retried = true;
814 				goto retry;
815 			}
816 
817 			/*
818 			 * The queue will fill after this allocation, so set
819 			 * it as full, and mark this process as "batching".
820 			 * This process will be allowed to complete a batch of
821 			 * requests, others will be blocked.
822 			 */
823 			if (!blk_queue_full(q, is_sync)) {
824 				ioc_set_batching(q, ioc);
825 				blk_set_queue_full(q, is_sync);
826 			} else {
827 				if (may_queue != ELV_MQUEUE_MUST
828 						&& !ioc_batching(q, ioc)) {
829 					/*
830 					 * The queue is full and the allocating
831 					 * process is not a "batcher", and not
832 					 * exempted by the IO scheduler
833 					 */
834 					goto out;
835 				}
836 			}
837 		}
838 		blk_set_queue_congested(q, is_sync);
839 	}
840 
841 	/*
842 	 * Only allow batching queuers to allocate up to 50% over the defined
843 	 * limit of requests, otherwise we could have thousands of requests
844 	 * allocated with any setting of ->nr_requests
845 	 */
846 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
847 		goto out;
848 
849 	rl->count[is_sync]++;
850 	rl->starved[is_sync] = 0;
851 
852 	/*
853 	 * Decide whether the new request will be managed by elevator.  If
854 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
855 	 * prevent the current elevator from being destroyed until the new
856 	 * request is freed.  This guarantees icq's won't be destroyed and
857 	 * makes creating new ones safe.
858 	 *
859 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
860 	 * it will be created after releasing queue_lock.
861 	 */
862 	if (blk_rq_should_init_elevator(bio) &&
863 	    !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
864 		rw_flags |= REQ_ELVPRIV;
865 		rl->elvpriv++;
866 		if (et->icq_cache && ioc)
867 			icq = ioc_lookup_icq(ioc, q);
868 	}
869 
870 	if (blk_queue_io_stat(q))
871 		rw_flags |= REQ_IO_STAT;
872 	spin_unlock_irq(q->queue_lock);
873 
874 	/* create icq if missing */
875 	if ((rw_flags & REQ_ELVPRIV) && unlikely(et->icq_cache && !icq)) {
876 		icq = ioc_create_icq(q, gfp_mask);
877 		if (!icq)
878 			goto fail_icq;
879 	}
880 
881 	rq = blk_alloc_request(q, icq, rw_flags, gfp_mask);
882 
883 fail_icq:
884 	if (unlikely(!rq)) {
885 		/*
886 		 * Allocation failed presumably due to memory. Undo anything
887 		 * we might have messed up.
888 		 *
889 		 * Allocating task should really be put onto the front of the
890 		 * wait queue, but this is pretty rare.
891 		 */
892 		spin_lock_irq(q->queue_lock);
893 		freed_request(q, rw_flags);
894 
895 		/*
896 		 * in the very unlikely event that allocation failed and no
897 		 * requests for this direction was pending, mark us starved
898 		 * so that freeing of a request in the other direction will
899 		 * notice us. another possible fix would be to split the
900 		 * rq mempool into READ and WRITE
901 		 */
902 rq_starved:
903 		if (unlikely(rl->count[is_sync] == 0))
904 			rl->starved[is_sync] = 1;
905 
906 		goto out;
907 	}
908 
909 	/*
910 	 * ioc may be NULL here, and ioc_batching will be false. That's
911 	 * OK, if the queue is under the request limit then requests need
912 	 * not count toward the nr_batch_requests limit. There will always
913 	 * be some limit enforced by BLK_BATCH_TIME.
914 	 */
915 	if (ioc_batching(q, ioc))
916 		ioc->nr_batch_requests--;
917 
918 	trace_block_getrq(q, bio, rw_flags & 1);
919 out:
920 	return rq;
921 }
922 
923 /**
924  * get_request_wait - get a free request with retry
925  * @q: request_queue to allocate request from
926  * @rw_flags: RW and SYNC flags
927  * @bio: bio to allocate request for (can be %NULL)
928  *
929  * Get a free request from @q.  This function keeps retrying under memory
930  * pressure and fails iff @q is dead.
931  *
932  * Must be callled with @q->queue_lock held and,
933  * Returns %NULL on failure, with @q->queue_lock held.
934  * Returns !%NULL on success, with @q->queue_lock *not held*.
935  */
936 static struct request *get_request_wait(struct request_queue *q, int rw_flags,
937 					struct bio *bio)
938 {
939 	const bool is_sync = rw_is_sync(rw_flags) != 0;
940 	struct request *rq;
941 
942 	rq = get_request(q, rw_flags, bio, GFP_NOIO);
943 	while (!rq) {
944 		DEFINE_WAIT(wait);
945 		struct request_list *rl = &q->rq;
946 
947 		if (unlikely(blk_queue_dead(q)))
948 			return NULL;
949 
950 		prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
951 				TASK_UNINTERRUPTIBLE);
952 
953 		trace_block_sleeprq(q, bio, rw_flags & 1);
954 
955 		spin_unlock_irq(q->queue_lock);
956 		io_schedule();
957 
958 		/*
959 		 * After sleeping, we become a "batching" process and
960 		 * will be able to allocate at least one request, and
961 		 * up to a big batch of them for a small period time.
962 		 * See ioc_batching, ioc_set_batching
963 		 */
964 		create_io_context(current, GFP_NOIO, q->node);
965 		ioc_set_batching(q, current->io_context);
966 
967 		spin_lock_irq(q->queue_lock);
968 		finish_wait(&rl->wait[is_sync], &wait);
969 
970 		rq = get_request(q, rw_flags, bio, GFP_NOIO);
971 	};
972 
973 	return rq;
974 }
975 
976 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
977 {
978 	struct request *rq;
979 
980 	BUG_ON(rw != READ && rw != WRITE);
981 
982 	spin_lock_irq(q->queue_lock);
983 	if (gfp_mask & __GFP_WAIT)
984 		rq = get_request_wait(q, rw, NULL);
985 	else
986 		rq = get_request(q, rw, NULL, gfp_mask);
987 	if (!rq)
988 		spin_unlock_irq(q->queue_lock);
989 	/* q->queue_lock is unlocked at this point */
990 
991 	return rq;
992 }
993 EXPORT_SYMBOL(blk_get_request);
994 
995 /**
996  * blk_make_request - given a bio, allocate a corresponding struct request.
997  * @q: target request queue
998  * @bio:  The bio describing the memory mappings that will be submitted for IO.
999  *        It may be a chained-bio properly constructed by block/bio layer.
1000  * @gfp_mask: gfp flags to be used for memory allocation
1001  *
1002  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1003  * type commands. Where the struct request needs to be farther initialized by
1004  * the caller. It is passed a &struct bio, which describes the memory info of
1005  * the I/O transfer.
1006  *
1007  * The caller of blk_make_request must make sure that bi_io_vec
1008  * are set to describe the memory buffers. That bio_data_dir() will return
1009  * the needed direction of the request. (And all bio's in the passed bio-chain
1010  * are properly set accordingly)
1011  *
1012  * If called under none-sleepable conditions, mapped bio buffers must not
1013  * need bouncing, by calling the appropriate masked or flagged allocator,
1014  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1015  * BUG.
1016  *
1017  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1018  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1019  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1020  * completion of a bio that hasn't been submitted yet, thus resulting in a
1021  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1022  * of bio_alloc(), as that avoids the mempool deadlock.
1023  * If possible a big IO should be split into smaller parts when allocation
1024  * fails. Partial allocation should not be an error, or you risk a live-lock.
1025  */
1026 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1027 				 gfp_t gfp_mask)
1028 {
1029 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1030 
1031 	if (unlikely(!rq))
1032 		return ERR_PTR(-ENOMEM);
1033 
1034 	for_each_bio(bio) {
1035 		struct bio *bounce_bio = bio;
1036 		int ret;
1037 
1038 		blk_queue_bounce(q, &bounce_bio);
1039 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1040 		if (unlikely(ret)) {
1041 			blk_put_request(rq);
1042 			return ERR_PTR(ret);
1043 		}
1044 	}
1045 
1046 	return rq;
1047 }
1048 EXPORT_SYMBOL(blk_make_request);
1049 
1050 /**
1051  * blk_requeue_request - put a request back on queue
1052  * @q:		request queue where request should be inserted
1053  * @rq:		request to be inserted
1054  *
1055  * Description:
1056  *    Drivers often keep queueing requests until the hardware cannot accept
1057  *    more, when that condition happens we need to put the request back
1058  *    on the queue. Must be called with queue lock held.
1059  */
1060 void blk_requeue_request(struct request_queue *q, struct request *rq)
1061 {
1062 	blk_delete_timer(rq);
1063 	blk_clear_rq_complete(rq);
1064 	trace_block_rq_requeue(q, rq);
1065 
1066 	if (blk_rq_tagged(rq))
1067 		blk_queue_end_tag(q, rq);
1068 
1069 	BUG_ON(blk_queued_rq(rq));
1070 
1071 	elv_requeue_request(q, rq);
1072 }
1073 EXPORT_SYMBOL(blk_requeue_request);
1074 
1075 static void add_acct_request(struct request_queue *q, struct request *rq,
1076 			     int where)
1077 {
1078 	drive_stat_acct(rq, 1);
1079 	__elv_add_request(q, rq, where);
1080 }
1081 
1082 static void part_round_stats_single(int cpu, struct hd_struct *part,
1083 				    unsigned long now)
1084 {
1085 	if (now == part->stamp)
1086 		return;
1087 
1088 	if (part_in_flight(part)) {
1089 		__part_stat_add(cpu, part, time_in_queue,
1090 				part_in_flight(part) * (now - part->stamp));
1091 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1092 	}
1093 	part->stamp = now;
1094 }
1095 
1096 /**
1097  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1098  * @cpu: cpu number for stats access
1099  * @part: target partition
1100  *
1101  * The average IO queue length and utilisation statistics are maintained
1102  * by observing the current state of the queue length and the amount of
1103  * time it has been in this state for.
1104  *
1105  * Normally, that accounting is done on IO completion, but that can result
1106  * in more than a second's worth of IO being accounted for within any one
1107  * second, leading to >100% utilisation.  To deal with that, we call this
1108  * function to do a round-off before returning the results when reading
1109  * /proc/diskstats.  This accounts immediately for all queue usage up to
1110  * the current jiffies and restarts the counters again.
1111  */
1112 void part_round_stats(int cpu, struct hd_struct *part)
1113 {
1114 	unsigned long now = jiffies;
1115 
1116 	if (part->partno)
1117 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1118 	part_round_stats_single(cpu, part, now);
1119 }
1120 EXPORT_SYMBOL_GPL(part_round_stats);
1121 
1122 /*
1123  * queue lock must be held
1124  */
1125 void __blk_put_request(struct request_queue *q, struct request *req)
1126 {
1127 	if (unlikely(!q))
1128 		return;
1129 	if (unlikely(--req->ref_count))
1130 		return;
1131 
1132 	elv_completed_request(q, req);
1133 
1134 	/* this is a bio leak */
1135 	WARN_ON(req->bio != NULL);
1136 
1137 	/*
1138 	 * Request may not have originated from ll_rw_blk. if not,
1139 	 * it didn't come out of our reserved rq pools
1140 	 */
1141 	if (req->cmd_flags & REQ_ALLOCED) {
1142 		unsigned int flags = req->cmd_flags;
1143 
1144 		BUG_ON(!list_empty(&req->queuelist));
1145 		BUG_ON(!hlist_unhashed(&req->hash));
1146 
1147 		blk_free_request(q, req);
1148 		freed_request(q, flags);
1149 	}
1150 }
1151 EXPORT_SYMBOL_GPL(__blk_put_request);
1152 
1153 void blk_put_request(struct request *req)
1154 {
1155 	unsigned long flags;
1156 	struct request_queue *q = req->q;
1157 
1158 	spin_lock_irqsave(q->queue_lock, flags);
1159 	__blk_put_request(q, req);
1160 	spin_unlock_irqrestore(q->queue_lock, flags);
1161 }
1162 EXPORT_SYMBOL(blk_put_request);
1163 
1164 /**
1165  * blk_add_request_payload - add a payload to a request
1166  * @rq: request to update
1167  * @page: page backing the payload
1168  * @len: length of the payload.
1169  *
1170  * This allows to later add a payload to an already submitted request by
1171  * a block driver.  The driver needs to take care of freeing the payload
1172  * itself.
1173  *
1174  * Note that this is a quite horrible hack and nothing but handling of
1175  * discard requests should ever use it.
1176  */
1177 void blk_add_request_payload(struct request *rq, struct page *page,
1178 		unsigned int len)
1179 {
1180 	struct bio *bio = rq->bio;
1181 
1182 	bio->bi_io_vec->bv_page = page;
1183 	bio->bi_io_vec->bv_offset = 0;
1184 	bio->bi_io_vec->bv_len = len;
1185 
1186 	bio->bi_size = len;
1187 	bio->bi_vcnt = 1;
1188 	bio->bi_phys_segments = 1;
1189 
1190 	rq->__data_len = rq->resid_len = len;
1191 	rq->nr_phys_segments = 1;
1192 	rq->buffer = bio_data(bio);
1193 }
1194 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1195 
1196 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1197 				   struct bio *bio)
1198 {
1199 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1200 
1201 	if (!ll_back_merge_fn(q, req, bio))
1202 		return false;
1203 
1204 	trace_block_bio_backmerge(q, bio);
1205 
1206 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1207 		blk_rq_set_mixed_merge(req);
1208 
1209 	req->biotail->bi_next = bio;
1210 	req->biotail = bio;
1211 	req->__data_len += bio->bi_size;
1212 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1213 
1214 	drive_stat_acct(req, 0);
1215 	return true;
1216 }
1217 
1218 static bool bio_attempt_front_merge(struct request_queue *q,
1219 				    struct request *req, struct bio *bio)
1220 {
1221 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1222 
1223 	if (!ll_front_merge_fn(q, req, bio))
1224 		return false;
1225 
1226 	trace_block_bio_frontmerge(q, bio);
1227 
1228 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1229 		blk_rq_set_mixed_merge(req);
1230 
1231 	bio->bi_next = req->bio;
1232 	req->bio = bio;
1233 
1234 	/*
1235 	 * may not be valid. if the low level driver said
1236 	 * it didn't need a bounce buffer then it better
1237 	 * not touch req->buffer either...
1238 	 */
1239 	req->buffer = bio_data(bio);
1240 	req->__sector = bio->bi_sector;
1241 	req->__data_len += bio->bi_size;
1242 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1243 
1244 	drive_stat_acct(req, 0);
1245 	return true;
1246 }
1247 
1248 /**
1249  * attempt_plug_merge - try to merge with %current's plugged list
1250  * @q: request_queue new bio is being queued at
1251  * @bio: new bio being queued
1252  * @request_count: out parameter for number of traversed plugged requests
1253  *
1254  * Determine whether @bio being queued on @q can be merged with a request
1255  * on %current's plugged list.  Returns %true if merge was successful,
1256  * otherwise %false.
1257  *
1258  * Plugging coalesces IOs from the same issuer for the same purpose without
1259  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1260  * than scheduling, and the request, while may have elvpriv data, is not
1261  * added on the elevator at this point.  In addition, we don't have
1262  * reliable access to the elevator outside queue lock.  Only check basic
1263  * merging parameters without querying the elevator.
1264  */
1265 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1266 			       unsigned int *request_count)
1267 {
1268 	struct blk_plug *plug;
1269 	struct request *rq;
1270 	bool ret = false;
1271 
1272 	plug = current->plug;
1273 	if (!plug)
1274 		goto out;
1275 	*request_count = 0;
1276 
1277 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1278 		int el_ret;
1279 
1280 		(*request_count)++;
1281 
1282 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1283 			continue;
1284 
1285 		el_ret = blk_try_merge(rq, bio);
1286 		if (el_ret == ELEVATOR_BACK_MERGE) {
1287 			ret = bio_attempt_back_merge(q, rq, bio);
1288 			if (ret)
1289 				break;
1290 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1291 			ret = bio_attempt_front_merge(q, rq, bio);
1292 			if (ret)
1293 				break;
1294 		}
1295 	}
1296 out:
1297 	return ret;
1298 }
1299 
1300 void init_request_from_bio(struct request *req, struct bio *bio)
1301 {
1302 	req->cmd_type = REQ_TYPE_FS;
1303 
1304 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1305 	if (bio->bi_rw & REQ_RAHEAD)
1306 		req->cmd_flags |= REQ_FAILFAST_MASK;
1307 
1308 	req->errors = 0;
1309 	req->__sector = bio->bi_sector;
1310 	req->ioprio = bio_prio(bio);
1311 	blk_rq_bio_prep(req->q, req, bio);
1312 }
1313 
1314 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1315 {
1316 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1317 	struct blk_plug *plug;
1318 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1319 	struct request *req;
1320 	unsigned int request_count = 0;
1321 
1322 	/*
1323 	 * low level driver can indicate that it wants pages above a
1324 	 * certain limit bounced to low memory (ie for highmem, or even
1325 	 * ISA dma in theory)
1326 	 */
1327 	blk_queue_bounce(q, &bio);
1328 
1329 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1330 		spin_lock_irq(q->queue_lock);
1331 		where = ELEVATOR_INSERT_FLUSH;
1332 		goto get_rq;
1333 	}
1334 
1335 	/*
1336 	 * Check if we can merge with the plugged list before grabbing
1337 	 * any locks.
1338 	 */
1339 	if (attempt_plug_merge(q, bio, &request_count))
1340 		return;
1341 
1342 	spin_lock_irq(q->queue_lock);
1343 
1344 	el_ret = elv_merge(q, &req, bio);
1345 	if (el_ret == ELEVATOR_BACK_MERGE) {
1346 		if (bio_attempt_back_merge(q, req, bio)) {
1347 			elv_bio_merged(q, req, bio);
1348 			if (!attempt_back_merge(q, req))
1349 				elv_merged_request(q, req, el_ret);
1350 			goto out_unlock;
1351 		}
1352 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1353 		if (bio_attempt_front_merge(q, req, bio)) {
1354 			elv_bio_merged(q, req, bio);
1355 			if (!attempt_front_merge(q, req))
1356 				elv_merged_request(q, req, el_ret);
1357 			goto out_unlock;
1358 		}
1359 	}
1360 
1361 get_rq:
1362 	/*
1363 	 * This sync check and mask will be re-done in init_request_from_bio(),
1364 	 * but we need to set it earlier to expose the sync flag to the
1365 	 * rq allocator and io schedulers.
1366 	 */
1367 	rw_flags = bio_data_dir(bio);
1368 	if (sync)
1369 		rw_flags |= REQ_SYNC;
1370 
1371 	/*
1372 	 * Grab a free request. This is might sleep but can not fail.
1373 	 * Returns with the queue unlocked.
1374 	 */
1375 	req = get_request_wait(q, rw_flags, bio);
1376 	if (unlikely(!req)) {
1377 		bio_endio(bio, -ENODEV);	/* @q is dead */
1378 		goto out_unlock;
1379 	}
1380 
1381 	/*
1382 	 * After dropping the lock and possibly sleeping here, our request
1383 	 * may now be mergeable after it had proven unmergeable (above).
1384 	 * We don't worry about that case for efficiency. It won't happen
1385 	 * often, and the elevators are able to handle it.
1386 	 */
1387 	init_request_from_bio(req, bio);
1388 
1389 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1390 		req->cpu = raw_smp_processor_id();
1391 
1392 	plug = current->plug;
1393 	if (plug) {
1394 		/*
1395 		 * If this is the first request added after a plug, fire
1396 		 * of a plug trace. If others have been added before, check
1397 		 * if we have multiple devices in this plug. If so, make a
1398 		 * note to sort the list before dispatch.
1399 		 */
1400 		if (list_empty(&plug->list))
1401 			trace_block_plug(q);
1402 		else {
1403 			if (!plug->should_sort) {
1404 				struct request *__rq;
1405 
1406 				__rq = list_entry_rq(plug->list.prev);
1407 				if (__rq->q != q)
1408 					plug->should_sort = 1;
1409 			}
1410 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1411 				blk_flush_plug_list(plug, false);
1412 				trace_block_plug(q);
1413 			}
1414 		}
1415 		list_add_tail(&req->queuelist, &plug->list);
1416 		drive_stat_acct(req, 1);
1417 	} else {
1418 		spin_lock_irq(q->queue_lock);
1419 		add_acct_request(q, req, where);
1420 		__blk_run_queue(q);
1421 out_unlock:
1422 		spin_unlock_irq(q->queue_lock);
1423 	}
1424 }
1425 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1426 
1427 /*
1428  * If bio->bi_dev is a partition, remap the location
1429  */
1430 static inline void blk_partition_remap(struct bio *bio)
1431 {
1432 	struct block_device *bdev = bio->bi_bdev;
1433 
1434 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1435 		struct hd_struct *p = bdev->bd_part;
1436 
1437 		bio->bi_sector += p->start_sect;
1438 		bio->bi_bdev = bdev->bd_contains;
1439 
1440 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1441 				      bdev->bd_dev,
1442 				      bio->bi_sector - p->start_sect);
1443 	}
1444 }
1445 
1446 static void handle_bad_sector(struct bio *bio)
1447 {
1448 	char b[BDEVNAME_SIZE];
1449 
1450 	printk(KERN_INFO "attempt to access beyond end of device\n");
1451 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1452 			bdevname(bio->bi_bdev, b),
1453 			bio->bi_rw,
1454 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1455 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1456 
1457 	set_bit(BIO_EOF, &bio->bi_flags);
1458 }
1459 
1460 #ifdef CONFIG_FAIL_MAKE_REQUEST
1461 
1462 static DECLARE_FAULT_ATTR(fail_make_request);
1463 
1464 static int __init setup_fail_make_request(char *str)
1465 {
1466 	return setup_fault_attr(&fail_make_request, str);
1467 }
1468 __setup("fail_make_request=", setup_fail_make_request);
1469 
1470 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1471 {
1472 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1473 }
1474 
1475 static int __init fail_make_request_debugfs(void)
1476 {
1477 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1478 						NULL, &fail_make_request);
1479 
1480 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1481 }
1482 
1483 late_initcall(fail_make_request_debugfs);
1484 
1485 #else /* CONFIG_FAIL_MAKE_REQUEST */
1486 
1487 static inline bool should_fail_request(struct hd_struct *part,
1488 					unsigned int bytes)
1489 {
1490 	return false;
1491 }
1492 
1493 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1494 
1495 /*
1496  * Check whether this bio extends beyond the end of the device.
1497  */
1498 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1499 {
1500 	sector_t maxsector;
1501 
1502 	if (!nr_sectors)
1503 		return 0;
1504 
1505 	/* Test device or partition size, when known. */
1506 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1507 	if (maxsector) {
1508 		sector_t sector = bio->bi_sector;
1509 
1510 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1511 			/*
1512 			 * This may well happen - the kernel calls bread()
1513 			 * without checking the size of the device, e.g., when
1514 			 * mounting a device.
1515 			 */
1516 			handle_bad_sector(bio);
1517 			return 1;
1518 		}
1519 	}
1520 
1521 	return 0;
1522 }
1523 
1524 static noinline_for_stack bool
1525 generic_make_request_checks(struct bio *bio)
1526 {
1527 	struct request_queue *q;
1528 	int nr_sectors = bio_sectors(bio);
1529 	int err = -EIO;
1530 	char b[BDEVNAME_SIZE];
1531 	struct hd_struct *part;
1532 
1533 	might_sleep();
1534 
1535 	if (bio_check_eod(bio, nr_sectors))
1536 		goto end_io;
1537 
1538 	q = bdev_get_queue(bio->bi_bdev);
1539 	if (unlikely(!q)) {
1540 		printk(KERN_ERR
1541 		       "generic_make_request: Trying to access "
1542 			"nonexistent block-device %s (%Lu)\n",
1543 			bdevname(bio->bi_bdev, b),
1544 			(long long) bio->bi_sector);
1545 		goto end_io;
1546 	}
1547 
1548 	if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1549 		     nr_sectors > queue_max_hw_sectors(q))) {
1550 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1551 		       bdevname(bio->bi_bdev, b),
1552 		       bio_sectors(bio),
1553 		       queue_max_hw_sectors(q));
1554 		goto end_io;
1555 	}
1556 
1557 	part = bio->bi_bdev->bd_part;
1558 	if (should_fail_request(part, bio->bi_size) ||
1559 	    should_fail_request(&part_to_disk(part)->part0,
1560 				bio->bi_size))
1561 		goto end_io;
1562 
1563 	/*
1564 	 * If this device has partitions, remap block n
1565 	 * of partition p to block n+start(p) of the disk.
1566 	 */
1567 	blk_partition_remap(bio);
1568 
1569 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1570 		goto end_io;
1571 
1572 	if (bio_check_eod(bio, nr_sectors))
1573 		goto end_io;
1574 
1575 	/*
1576 	 * Filter flush bio's early so that make_request based
1577 	 * drivers without flush support don't have to worry
1578 	 * about them.
1579 	 */
1580 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1581 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1582 		if (!nr_sectors) {
1583 			err = 0;
1584 			goto end_io;
1585 		}
1586 	}
1587 
1588 	if ((bio->bi_rw & REQ_DISCARD) &&
1589 	    (!blk_queue_discard(q) ||
1590 	     ((bio->bi_rw & REQ_SECURE) &&
1591 	      !blk_queue_secdiscard(q)))) {
1592 		err = -EOPNOTSUPP;
1593 		goto end_io;
1594 	}
1595 
1596 	if (blk_throtl_bio(q, bio))
1597 		return false;	/* throttled, will be resubmitted later */
1598 
1599 	trace_block_bio_queue(q, bio);
1600 	return true;
1601 
1602 end_io:
1603 	bio_endio(bio, err);
1604 	return false;
1605 }
1606 
1607 /**
1608  * generic_make_request - hand a buffer to its device driver for I/O
1609  * @bio:  The bio describing the location in memory and on the device.
1610  *
1611  * generic_make_request() is used to make I/O requests of block
1612  * devices. It is passed a &struct bio, which describes the I/O that needs
1613  * to be done.
1614  *
1615  * generic_make_request() does not return any status.  The
1616  * success/failure status of the request, along with notification of
1617  * completion, is delivered asynchronously through the bio->bi_end_io
1618  * function described (one day) else where.
1619  *
1620  * The caller of generic_make_request must make sure that bi_io_vec
1621  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1622  * set to describe the device address, and the
1623  * bi_end_io and optionally bi_private are set to describe how
1624  * completion notification should be signaled.
1625  *
1626  * generic_make_request and the drivers it calls may use bi_next if this
1627  * bio happens to be merged with someone else, and may resubmit the bio to
1628  * a lower device by calling into generic_make_request recursively, which
1629  * means the bio should NOT be touched after the call to ->make_request_fn.
1630  */
1631 void generic_make_request(struct bio *bio)
1632 {
1633 	struct bio_list bio_list_on_stack;
1634 
1635 	if (!generic_make_request_checks(bio))
1636 		return;
1637 
1638 	/*
1639 	 * We only want one ->make_request_fn to be active at a time, else
1640 	 * stack usage with stacked devices could be a problem.  So use
1641 	 * current->bio_list to keep a list of requests submited by a
1642 	 * make_request_fn function.  current->bio_list is also used as a
1643 	 * flag to say if generic_make_request is currently active in this
1644 	 * task or not.  If it is NULL, then no make_request is active.  If
1645 	 * it is non-NULL, then a make_request is active, and new requests
1646 	 * should be added at the tail
1647 	 */
1648 	if (current->bio_list) {
1649 		bio_list_add(current->bio_list, bio);
1650 		return;
1651 	}
1652 
1653 	/* following loop may be a bit non-obvious, and so deserves some
1654 	 * explanation.
1655 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1656 	 * ensure that) so we have a list with a single bio.
1657 	 * We pretend that we have just taken it off a longer list, so
1658 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1659 	 * thus initialising the bio_list of new bios to be
1660 	 * added.  ->make_request() may indeed add some more bios
1661 	 * through a recursive call to generic_make_request.  If it
1662 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1663 	 * from the top.  In this case we really did just take the bio
1664 	 * of the top of the list (no pretending) and so remove it from
1665 	 * bio_list, and call into ->make_request() again.
1666 	 */
1667 	BUG_ON(bio->bi_next);
1668 	bio_list_init(&bio_list_on_stack);
1669 	current->bio_list = &bio_list_on_stack;
1670 	do {
1671 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1672 
1673 		q->make_request_fn(q, bio);
1674 
1675 		bio = bio_list_pop(current->bio_list);
1676 	} while (bio);
1677 	current->bio_list = NULL; /* deactivate */
1678 }
1679 EXPORT_SYMBOL(generic_make_request);
1680 
1681 /**
1682  * submit_bio - submit a bio to the block device layer for I/O
1683  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1684  * @bio: The &struct bio which describes the I/O
1685  *
1686  * submit_bio() is very similar in purpose to generic_make_request(), and
1687  * uses that function to do most of the work. Both are fairly rough
1688  * interfaces; @bio must be presetup and ready for I/O.
1689  *
1690  */
1691 void submit_bio(int rw, struct bio *bio)
1692 {
1693 	int count = bio_sectors(bio);
1694 
1695 	bio->bi_rw |= rw;
1696 
1697 	/*
1698 	 * If it's a regular read/write or a barrier with data attached,
1699 	 * go through the normal accounting stuff before submission.
1700 	 */
1701 	if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
1702 		if (rw & WRITE) {
1703 			count_vm_events(PGPGOUT, count);
1704 		} else {
1705 			task_io_account_read(bio->bi_size);
1706 			count_vm_events(PGPGIN, count);
1707 		}
1708 
1709 		if (unlikely(block_dump)) {
1710 			char b[BDEVNAME_SIZE];
1711 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1712 			current->comm, task_pid_nr(current),
1713 				(rw & WRITE) ? "WRITE" : "READ",
1714 				(unsigned long long)bio->bi_sector,
1715 				bdevname(bio->bi_bdev, b),
1716 				count);
1717 		}
1718 	}
1719 
1720 	generic_make_request(bio);
1721 }
1722 EXPORT_SYMBOL(submit_bio);
1723 
1724 /**
1725  * blk_rq_check_limits - Helper function to check a request for the queue limit
1726  * @q:  the queue
1727  * @rq: the request being checked
1728  *
1729  * Description:
1730  *    @rq may have been made based on weaker limitations of upper-level queues
1731  *    in request stacking drivers, and it may violate the limitation of @q.
1732  *    Since the block layer and the underlying device driver trust @rq
1733  *    after it is inserted to @q, it should be checked against @q before
1734  *    the insertion using this generic function.
1735  *
1736  *    This function should also be useful for request stacking drivers
1737  *    in some cases below, so export this function.
1738  *    Request stacking drivers like request-based dm may change the queue
1739  *    limits while requests are in the queue (e.g. dm's table swapping).
1740  *    Such request stacking drivers should check those requests agaist
1741  *    the new queue limits again when they dispatch those requests,
1742  *    although such checkings are also done against the old queue limits
1743  *    when submitting requests.
1744  */
1745 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1746 {
1747 	if (rq->cmd_flags & REQ_DISCARD)
1748 		return 0;
1749 
1750 	if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1751 	    blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
1752 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1753 		return -EIO;
1754 	}
1755 
1756 	/*
1757 	 * queue's settings related to segment counting like q->bounce_pfn
1758 	 * may differ from that of other stacking queues.
1759 	 * Recalculate it to check the request correctly on this queue's
1760 	 * limitation.
1761 	 */
1762 	blk_recalc_rq_segments(rq);
1763 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1764 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1765 		return -EIO;
1766 	}
1767 
1768 	return 0;
1769 }
1770 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1771 
1772 /**
1773  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1774  * @q:  the queue to submit the request
1775  * @rq: the request being queued
1776  */
1777 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1778 {
1779 	unsigned long flags;
1780 	int where = ELEVATOR_INSERT_BACK;
1781 
1782 	if (blk_rq_check_limits(q, rq))
1783 		return -EIO;
1784 
1785 	if (rq->rq_disk &&
1786 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1787 		return -EIO;
1788 
1789 	spin_lock_irqsave(q->queue_lock, flags);
1790 	if (unlikely(blk_queue_dead(q))) {
1791 		spin_unlock_irqrestore(q->queue_lock, flags);
1792 		return -ENODEV;
1793 	}
1794 
1795 	/*
1796 	 * Submitting request must be dequeued before calling this function
1797 	 * because it will be linked to another request_queue
1798 	 */
1799 	BUG_ON(blk_queued_rq(rq));
1800 
1801 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1802 		where = ELEVATOR_INSERT_FLUSH;
1803 
1804 	add_acct_request(q, rq, where);
1805 	if (where == ELEVATOR_INSERT_FLUSH)
1806 		__blk_run_queue(q);
1807 	spin_unlock_irqrestore(q->queue_lock, flags);
1808 
1809 	return 0;
1810 }
1811 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1812 
1813 /**
1814  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1815  * @rq: request to examine
1816  *
1817  * Description:
1818  *     A request could be merge of IOs which require different failure
1819  *     handling.  This function determines the number of bytes which
1820  *     can be failed from the beginning of the request without
1821  *     crossing into area which need to be retried further.
1822  *
1823  * Return:
1824  *     The number of bytes to fail.
1825  *
1826  * Context:
1827  *     queue_lock must be held.
1828  */
1829 unsigned int blk_rq_err_bytes(const struct request *rq)
1830 {
1831 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1832 	unsigned int bytes = 0;
1833 	struct bio *bio;
1834 
1835 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1836 		return blk_rq_bytes(rq);
1837 
1838 	/*
1839 	 * Currently the only 'mixing' which can happen is between
1840 	 * different fastfail types.  We can safely fail portions
1841 	 * which have all the failfast bits that the first one has -
1842 	 * the ones which are at least as eager to fail as the first
1843 	 * one.
1844 	 */
1845 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1846 		if ((bio->bi_rw & ff) != ff)
1847 			break;
1848 		bytes += bio->bi_size;
1849 	}
1850 
1851 	/* this could lead to infinite loop */
1852 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1853 	return bytes;
1854 }
1855 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1856 
1857 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1858 {
1859 	if (blk_do_io_stat(req)) {
1860 		const int rw = rq_data_dir(req);
1861 		struct hd_struct *part;
1862 		int cpu;
1863 
1864 		cpu = part_stat_lock();
1865 		part = req->part;
1866 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1867 		part_stat_unlock();
1868 	}
1869 }
1870 
1871 static void blk_account_io_done(struct request *req)
1872 {
1873 	/*
1874 	 * Account IO completion.  flush_rq isn't accounted as a
1875 	 * normal IO on queueing nor completion.  Accounting the
1876 	 * containing request is enough.
1877 	 */
1878 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
1879 		unsigned long duration = jiffies - req->start_time;
1880 		const int rw = rq_data_dir(req);
1881 		struct hd_struct *part;
1882 		int cpu;
1883 
1884 		cpu = part_stat_lock();
1885 		part = req->part;
1886 
1887 		part_stat_inc(cpu, part, ios[rw]);
1888 		part_stat_add(cpu, part, ticks[rw], duration);
1889 		part_round_stats(cpu, part);
1890 		part_dec_in_flight(part, rw);
1891 
1892 		hd_struct_put(part);
1893 		part_stat_unlock();
1894 	}
1895 }
1896 
1897 /**
1898  * blk_peek_request - peek at the top of a request queue
1899  * @q: request queue to peek at
1900  *
1901  * Description:
1902  *     Return the request at the top of @q.  The returned request
1903  *     should be started using blk_start_request() before LLD starts
1904  *     processing it.
1905  *
1906  * Return:
1907  *     Pointer to the request at the top of @q if available.  Null
1908  *     otherwise.
1909  *
1910  * Context:
1911  *     queue_lock must be held.
1912  */
1913 struct request *blk_peek_request(struct request_queue *q)
1914 {
1915 	struct request *rq;
1916 	int ret;
1917 
1918 	while ((rq = __elv_next_request(q)) != NULL) {
1919 		if (!(rq->cmd_flags & REQ_STARTED)) {
1920 			/*
1921 			 * This is the first time the device driver
1922 			 * sees this request (possibly after
1923 			 * requeueing).  Notify IO scheduler.
1924 			 */
1925 			if (rq->cmd_flags & REQ_SORTED)
1926 				elv_activate_rq(q, rq);
1927 
1928 			/*
1929 			 * just mark as started even if we don't start
1930 			 * it, a request that has been delayed should
1931 			 * not be passed by new incoming requests
1932 			 */
1933 			rq->cmd_flags |= REQ_STARTED;
1934 			trace_block_rq_issue(q, rq);
1935 		}
1936 
1937 		if (!q->boundary_rq || q->boundary_rq == rq) {
1938 			q->end_sector = rq_end_sector(rq);
1939 			q->boundary_rq = NULL;
1940 		}
1941 
1942 		if (rq->cmd_flags & REQ_DONTPREP)
1943 			break;
1944 
1945 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
1946 			/*
1947 			 * make sure space for the drain appears we
1948 			 * know we can do this because max_hw_segments
1949 			 * has been adjusted to be one fewer than the
1950 			 * device can handle
1951 			 */
1952 			rq->nr_phys_segments++;
1953 		}
1954 
1955 		if (!q->prep_rq_fn)
1956 			break;
1957 
1958 		ret = q->prep_rq_fn(q, rq);
1959 		if (ret == BLKPREP_OK) {
1960 			break;
1961 		} else if (ret == BLKPREP_DEFER) {
1962 			/*
1963 			 * the request may have been (partially) prepped.
1964 			 * we need to keep this request in the front to
1965 			 * avoid resource deadlock.  REQ_STARTED will
1966 			 * prevent other fs requests from passing this one.
1967 			 */
1968 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
1969 			    !(rq->cmd_flags & REQ_DONTPREP)) {
1970 				/*
1971 				 * remove the space for the drain we added
1972 				 * so that we don't add it again
1973 				 */
1974 				--rq->nr_phys_segments;
1975 			}
1976 
1977 			rq = NULL;
1978 			break;
1979 		} else if (ret == BLKPREP_KILL) {
1980 			rq->cmd_flags |= REQ_QUIET;
1981 			/*
1982 			 * Mark this request as started so we don't trigger
1983 			 * any debug logic in the end I/O path.
1984 			 */
1985 			blk_start_request(rq);
1986 			__blk_end_request_all(rq, -EIO);
1987 		} else {
1988 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1989 			break;
1990 		}
1991 	}
1992 
1993 	return rq;
1994 }
1995 EXPORT_SYMBOL(blk_peek_request);
1996 
1997 void blk_dequeue_request(struct request *rq)
1998 {
1999 	struct request_queue *q = rq->q;
2000 
2001 	BUG_ON(list_empty(&rq->queuelist));
2002 	BUG_ON(ELV_ON_HASH(rq));
2003 
2004 	list_del_init(&rq->queuelist);
2005 
2006 	/*
2007 	 * the time frame between a request being removed from the lists
2008 	 * and to it is freed is accounted as io that is in progress at
2009 	 * the driver side.
2010 	 */
2011 	if (blk_account_rq(rq)) {
2012 		q->in_flight[rq_is_sync(rq)]++;
2013 		set_io_start_time_ns(rq);
2014 	}
2015 }
2016 
2017 /**
2018  * blk_start_request - start request processing on the driver
2019  * @req: request to dequeue
2020  *
2021  * Description:
2022  *     Dequeue @req and start timeout timer on it.  This hands off the
2023  *     request to the driver.
2024  *
2025  *     Block internal functions which don't want to start timer should
2026  *     call blk_dequeue_request().
2027  *
2028  * Context:
2029  *     queue_lock must be held.
2030  */
2031 void blk_start_request(struct request *req)
2032 {
2033 	blk_dequeue_request(req);
2034 
2035 	/*
2036 	 * We are now handing the request to the hardware, initialize
2037 	 * resid_len to full count and add the timeout handler.
2038 	 */
2039 	req->resid_len = blk_rq_bytes(req);
2040 	if (unlikely(blk_bidi_rq(req)))
2041 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2042 
2043 	blk_add_timer(req);
2044 }
2045 EXPORT_SYMBOL(blk_start_request);
2046 
2047 /**
2048  * blk_fetch_request - fetch a request from a request queue
2049  * @q: request queue to fetch a request from
2050  *
2051  * Description:
2052  *     Return the request at the top of @q.  The request is started on
2053  *     return and LLD can start processing it immediately.
2054  *
2055  * Return:
2056  *     Pointer to the request at the top of @q if available.  Null
2057  *     otherwise.
2058  *
2059  * Context:
2060  *     queue_lock must be held.
2061  */
2062 struct request *blk_fetch_request(struct request_queue *q)
2063 {
2064 	struct request *rq;
2065 
2066 	rq = blk_peek_request(q);
2067 	if (rq)
2068 		blk_start_request(rq);
2069 	return rq;
2070 }
2071 EXPORT_SYMBOL(blk_fetch_request);
2072 
2073 /**
2074  * blk_update_request - Special helper function for request stacking drivers
2075  * @req:      the request being processed
2076  * @error:    %0 for success, < %0 for error
2077  * @nr_bytes: number of bytes to complete @req
2078  *
2079  * Description:
2080  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2081  *     the request structure even if @req doesn't have leftover.
2082  *     If @req has leftover, sets it up for the next range of segments.
2083  *
2084  *     This special helper function is only for request stacking drivers
2085  *     (e.g. request-based dm) so that they can handle partial completion.
2086  *     Actual device drivers should use blk_end_request instead.
2087  *
2088  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2089  *     %false return from this function.
2090  *
2091  * Return:
2092  *     %false - this request doesn't have any more data
2093  *     %true  - this request has more data
2094  **/
2095 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2096 {
2097 	int total_bytes, bio_nbytes, next_idx = 0;
2098 	struct bio *bio;
2099 
2100 	if (!req->bio)
2101 		return false;
2102 
2103 	trace_block_rq_complete(req->q, req);
2104 
2105 	/*
2106 	 * For fs requests, rq is just carrier of independent bio's
2107 	 * and each partial completion should be handled separately.
2108 	 * Reset per-request error on each partial completion.
2109 	 *
2110 	 * TODO: tj: This is too subtle.  It would be better to let
2111 	 * low level drivers do what they see fit.
2112 	 */
2113 	if (req->cmd_type == REQ_TYPE_FS)
2114 		req->errors = 0;
2115 
2116 	if (error && req->cmd_type == REQ_TYPE_FS &&
2117 	    !(req->cmd_flags & REQ_QUIET)) {
2118 		char *error_type;
2119 
2120 		switch (error) {
2121 		case -ENOLINK:
2122 			error_type = "recoverable transport";
2123 			break;
2124 		case -EREMOTEIO:
2125 			error_type = "critical target";
2126 			break;
2127 		case -EBADE:
2128 			error_type = "critical nexus";
2129 			break;
2130 		case -EIO:
2131 		default:
2132 			error_type = "I/O";
2133 			break;
2134 		}
2135 		printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2136 		       error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2137 		       (unsigned long long)blk_rq_pos(req));
2138 	}
2139 
2140 	blk_account_io_completion(req, nr_bytes);
2141 
2142 	total_bytes = bio_nbytes = 0;
2143 	while ((bio = req->bio) != NULL) {
2144 		int nbytes;
2145 
2146 		if (nr_bytes >= bio->bi_size) {
2147 			req->bio = bio->bi_next;
2148 			nbytes = bio->bi_size;
2149 			req_bio_endio(req, bio, nbytes, error);
2150 			next_idx = 0;
2151 			bio_nbytes = 0;
2152 		} else {
2153 			int idx = bio->bi_idx + next_idx;
2154 
2155 			if (unlikely(idx >= bio->bi_vcnt)) {
2156 				blk_dump_rq_flags(req, "__end_that");
2157 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2158 				       __func__, idx, bio->bi_vcnt);
2159 				break;
2160 			}
2161 
2162 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2163 			BIO_BUG_ON(nbytes > bio->bi_size);
2164 
2165 			/*
2166 			 * not a complete bvec done
2167 			 */
2168 			if (unlikely(nbytes > nr_bytes)) {
2169 				bio_nbytes += nr_bytes;
2170 				total_bytes += nr_bytes;
2171 				break;
2172 			}
2173 
2174 			/*
2175 			 * advance to the next vector
2176 			 */
2177 			next_idx++;
2178 			bio_nbytes += nbytes;
2179 		}
2180 
2181 		total_bytes += nbytes;
2182 		nr_bytes -= nbytes;
2183 
2184 		bio = req->bio;
2185 		if (bio) {
2186 			/*
2187 			 * end more in this run, or just return 'not-done'
2188 			 */
2189 			if (unlikely(nr_bytes <= 0))
2190 				break;
2191 		}
2192 	}
2193 
2194 	/*
2195 	 * completely done
2196 	 */
2197 	if (!req->bio) {
2198 		/*
2199 		 * Reset counters so that the request stacking driver
2200 		 * can find how many bytes remain in the request
2201 		 * later.
2202 		 */
2203 		req->__data_len = 0;
2204 		return false;
2205 	}
2206 
2207 	/*
2208 	 * if the request wasn't completed, update state
2209 	 */
2210 	if (bio_nbytes) {
2211 		req_bio_endio(req, bio, bio_nbytes, error);
2212 		bio->bi_idx += next_idx;
2213 		bio_iovec(bio)->bv_offset += nr_bytes;
2214 		bio_iovec(bio)->bv_len -= nr_bytes;
2215 	}
2216 
2217 	req->__data_len -= total_bytes;
2218 	req->buffer = bio_data(req->bio);
2219 
2220 	/* update sector only for requests with clear definition of sector */
2221 	if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
2222 		req->__sector += total_bytes >> 9;
2223 
2224 	/* mixed attributes always follow the first bio */
2225 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2226 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2227 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2228 	}
2229 
2230 	/*
2231 	 * If total number of sectors is less than the first segment
2232 	 * size, something has gone terribly wrong.
2233 	 */
2234 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2235 		blk_dump_rq_flags(req, "request botched");
2236 		req->__data_len = blk_rq_cur_bytes(req);
2237 	}
2238 
2239 	/* recalculate the number of segments */
2240 	blk_recalc_rq_segments(req);
2241 
2242 	return true;
2243 }
2244 EXPORT_SYMBOL_GPL(blk_update_request);
2245 
2246 static bool blk_update_bidi_request(struct request *rq, int error,
2247 				    unsigned int nr_bytes,
2248 				    unsigned int bidi_bytes)
2249 {
2250 	if (blk_update_request(rq, error, nr_bytes))
2251 		return true;
2252 
2253 	/* Bidi request must be completed as a whole */
2254 	if (unlikely(blk_bidi_rq(rq)) &&
2255 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2256 		return true;
2257 
2258 	if (blk_queue_add_random(rq->q))
2259 		add_disk_randomness(rq->rq_disk);
2260 
2261 	return false;
2262 }
2263 
2264 /**
2265  * blk_unprep_request - unprepare a request
2266  * @req:	the request
2267  *
2268  * This function makes a request ready for complete resubmission (or
2269  * completion).  It happens only after all error handling is complete,
2270  * so represents the appropriate moment to deallocate any resources
2271  * that were allocated to the request in the prep_rq_fn.  The queue
2272  * lock is held when calling this.
2273  */
2274 void blk_unprep_request(struct request *req)
2275 {
2276 	struct request_queue *q = req->q;
2277 
2278 	req->cmd_flags &= ~REQ_DONTPREP;
2279 	if (q->unprep_rq_fn)
2280 		q->unprep_rq_fn(q, req);
2281 }
2282 EXPORT_SYMBOL_GPL(blk_unprep_request);
2283 
2284 /*
2285  * queue lock must be held
2286  */
2287 static void blk_finish_request(struct request *req, int error)
2288 {
2289 	if (blk_rq_tagged(req))
2290 		blk_queue_end_tag(req->q, req);
2291 
2292 	BUG_ON(blk_queued_rq(req));
2293 
2294 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2295 		laptop_io_completion(&req->q->backing_dev_info);
2296 
2297 	blk_delete_timer(req);
2298 
2299 	if (req->cmd_flags & REQ_DONTPREP)
2300 		blk_unprep_request(req);
2301 
2302 
2303 	blk_account_io_done(req);
2304 
2305 	if (req->end_io)
2306 		req->end_io(req, error);
2307 	else {
2308 		if (blk_bidi_rq(req))
2309 			__blk_put_request(req->next_rq->q, req->next_rq);
2310 
2311 		__blk_put_request(req->q, req);
2312 	}
2313 }
2314 
2315 /**
2316  * blk_end_bidi_request - Complete a bidi request
2317  * @rq:         the request to complete
2318  * @error:      %0 for success, < %0 for error
2319  * @nr_bytes:   number of bytes to complete @rq
2320  * @bidi_bytes: number of bytes to complete @rq->next_rq
2321  *
2322  * Description:
2323  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2324  *     Drivers that supports bidi can safely call this member for any
2325  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2326  *     just ignored.
2327  *
2328  * Return:
2329  *     %false - we are done with this request
2330  *     %true  - still buffers pending for this request
2331  **/
2332 static bool blk_end_bidi_request(struct request *rq, int error,
2333 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2334 {
2335 	struct request_queue *q = rq->q;
2336 	unsigned long flags;
2337 
2338 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2339 		return true;
2340 
2341 	spin_lock_irqsave(q->queue_lock, flags);
2342 	blk_finish_request(rq, error);
2343 	spin_unlock_irqrestore(q->queue_lock, flags);
2344 
2345 	return false;
2346 }
2347 
2348 /**
2349  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2350  * @rq:         the request to complete
2351  * @error:      %0 for success, < %0 for error
2352  * @nr_bytes:   number of bytes to complete @rq
2353  * @bidi_bytes: number of bytes to complete @rq->next_rq
2354  *
2355  * Description:
2356  *     Identical to blk_end_bidi_request() except that queue lock is
2357  *     assumed to be locked on entry and remains so on return.
2358  *
2359  * Return:
2360  *     %false - we are done with this request
2361  *     %true  - still buffers pending for this request
2362  **/
2363 bool __blk_end_bidi_request(struct request *rq, int error,
2364 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2365 {
2366 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2367 		return true;
2368 
2369 	blk_finish_request(rq, error);
2370 
2371 	return false;
2372 }
2373 
2374 /**
2375  * blk_end_request - Helper function for drivers to complete the request.
2376  * @rq:       the request being processed
2377  * @error:    %0 for success, < %0 for error
2378  * @nr_bytes: number of bytes to complete
2379  *
2380  * Description:
2381  *     Ends I/O on a number of bytes attached to @rq.
2382  *     If @rq has leftover, sets it up for the next range of segments.
2383  *
2384  * Return:
2385  *     %false - we are done with this request
2386  *     %true  - still buffers pending for this request
2387  **/
2388 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2389 {
2390 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2391 }
2392 EXPORT_SYMBOL(blk_end_request);
2393 
2394 /**
2395  * blk_end_request_all - Helper function for drives to finish the request.
2396  * @rq: the request to finish
2397  * @error: %0 for success, < %0 for error
2398  *
2399  * Description:
2400  *     Completely finish @rq.
2401  */
2402 void blk_end_request_all(struct request *rq, int error)
2403 {
2404 	bool pending;
2405 	unsigned int bidi_bytes = 0;
2406 
2407 	if (unlikely(blk_bidi_rq(rq)))
2408 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2409 
2410 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2411 	BUG_ON(pending);
2412 }
2413 EXPORT_SYMBOL(blk_end_request_all);
2414 
2415 /**
2416  * blk_end_request_cur - Helper function to finish the current request chunk.
2417  * @rq: the request to finish the current chunk for
2418  * @error: %0 for success, < %0 for error
2419  *
2420  * Description:
2421  *     Complete the current consecutively mapped chunk from @rq.
2422  *
2423  * Return:
2424  *     %false - we are done with this request
2425  *     %true  - still buffers pending for this request
2426  */
2427 bool blk_end_request_cur(struct request *rq, int error)
2428 {
2429 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2430 }
2431 EXPORT_SYMBOL(blk_end_request_cur);
2432 
2433 /**
2434  * blk_end_request_err - Finish a request till the next failure boundary.
2435  * @rq: the request to finish till the next failure boundary for
2436  * @error: must be negative errno
2437  *
2438  * Description:
2439  *     Complete @rq till the next failure boundary.
2440  *
2441  * Return:
2442  *     %false - we are done with this request
2443  *     %true  - still buffers pending for this request
2444  */
2445 bool blk_end_request_err(struct request *rq, int error)
2446 {
2447 	WARN_ON(error >= 0);
2448 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2449 }
2450 EXPORT_SYMBOL_GPL(blk_end_request_err);
2451 
2452 /**
2453  * __blk_end_request - Helper function for drivers to complete the request.
2454  * @rq:       the request being processed
2455  * @error:    %0 for success, < %0 for error
2456  * @nr_bytes: number of bytes to complete
2457  *
2458  * Description:
2459  *     Must be called with queue lock held unlike blk_end_request().
2460  *
2461  * Return:
2462  *     %false - we are done with this request
2463  *     %true  - still buffers pending for this request
2464  **/
2465 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2466 {
2467 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2468 }
2469 EXPORT_SYMBOL(__blk_end_request);
2470 
2471 /**
2472  * __blk_end_request_all - Helper function for drives to finish the request.
2473  * @rq: the request to finish
2474  * @error: %0 for success, < %0 for error
2475  *
2476  * Description:
2477  *     Completely finish @rq.  Must be called with queue lock held.
2478  */
2479 void __blk_end_request_all(struct request *rq, int error)
2480 {
2481 	bool pending;
2482 	unsigned int bidi_bytes = 0;
2483 
2484 	if (unlikely(blk_bidi_rq(rq)))
2485 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2486 
2487 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2488 	BUG_ON(pending);
2489 }
2490 EXPORT_SYMBOL(__blk_end_request_all);
2491 
2492 /**
2493  * __blk_end_request_cur - Helper function to finish the current request chunk.
2494  * @rq: the request to finish the current chunk for
2495  * @error: %0 for success, < %0 for error
2496  *
2497  * Description:
2498  *     Complete the current consecutively mapped chunk from @rq.  Must
2499  *     be called with queue lock held.
2500  *
2501  * Return:
2502  *     %false - we are done with this request
2503  *     %true  - still buffers pending for this request
2504  */
2505 bool __blk_end_request_cur(struct request *rq, int error)
2506 {
2507 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2508 }
2509 EXPORT_SYMBOL(__blk_end_request_cur);
2510 
2511 /**
2512  * __blk_end_request_err - Finish a request till the next failure boundary.
2513  * @rq: the request to finish till the next failure boundary for
2514  * @error: must be negative errno
2515  *
2516  * Description:
2517  *     Complete @rq till the next failure boundary.  Must be called
2518  *     with queue lock held.
2519  *
2520  * Return:
2521  *     %false - we are done with this request
2522  *     %true  - still buffers pending for this request
2523  */
2524 bool __blk_end_request_err(struct request *rq, int error)
2525 {
2526 	WARN_ON(error >= 0);
2527 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2528 }
2529 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2530 
2531 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2532 		     struct bio *bio)
2533 {
2534 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2535 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2536 
2537 	if (bio_has_data(bio)) {
2538 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2539 		rq->buffer = bio_data(bio);
2540 	}
2541 	rq->__data_len = bio->bi_size;
2542 	rq->bio = rq->biotail = bio;
2543 
2544 	if (bio->bi_bdev)
2545 		rq->rq_disk = bio->bi_bdev->bd_disk;
2546 }
2547 
2548 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2549 /**
2550  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2551  * @rq: the request to be flushed
2552  *
2553  * Description:
2554  *     Flush all pages in @rq.
2555  */
2556 void rq_flush_dcache_pages(struct request *rq)
2557 {
2558 	struct req_iterator iter;
2559 	struct bio_vec *bvec;
2560 
2561 	rq_for_each_segment(bvec, rq, iter)
2562 		flush_dcache_page(bvec->bv_page);
2563 }
2564 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2565 #endif
2566 
2567 /**
2568  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2569  * @q : the queue of the device being checked
2570  *
2571  * Description:
2572  *    Check if underlying low-level drivers of a device are busy.
2573  *    If the drivers want to export their busy state, they must set own
2574  *    exporting function using blk_queue_lld_busy() first.
2575  *
2576  *    Basically, this function is used only by request stacking drivers
2577  *    to stop dispatching requests to underlying devices when underlying
2578  *    devices are busy.  This behavior helps more I/O merging on the queue
2579  *    of the request stacking driver and prevents I/O throughput regression
2580  *    on burst I/O load.
2581  *
2582  * Return:
2583  *    0 - Not busy (The request stacking driver should dispatch request)
2584  *    1 - Busy (The request stacking driver should stop dispatching request)
2585  */
2586 int blk_lld_busy(struct request_queue *q)
2587 {
2588 	if (q->lld_busy_fn)
2589 		return q->lld_busy_fn(q);
2590 
2591 	return 0;
2592 }
2593 EXPORT_SYMBOL_GPL(blk_lld_busy);
2594 
2595 /**
2596  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2597  * @rq: the clone request to be cleaned up
2598  *
2599  * Description:
2600  *     Free all bios in @rq for a cloned request.
2601  */
2602 void blk_rq_unprep_clone(struct request *rq)
2603 {
2604 	struct bio *bio;
2605 
2606 	while ((bio = rq->bio) != NULL) {
2607 		rq->bio = bio->bi_next;
2608 
2609 		bio_put(bio);
2610 	}
2611 }
2612 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2613 
2614 /*
2615  * Copy attributes of the original request to the clone request.
2616  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2617  */
2618 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2619 {
2620 	dst->cpu = src->cpu;
2621 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2622 	dst->cmd_type = src->cmd_type;
2623 	dst->__sector = blk_rq_pos(src);
2624 	dst->__data_len = blk_rq_bytes(src);
2625 	dst->nr_phys_segments = src->nr_phys_segments;
2626 	dst->ioprio = src->ioprio;
2627 	dst->extra_len = src->extra_len;
2628 }
2629 
2630 /**
2631  * blk_rq_prep_clone - Helper function to setup clone request
2632  * @rq: the request to be setup
2633  * @rq_src: original request to be cloned
2634  * @bs: bio_set that bios for clone are allocated from
2635  * @gfp_mask: memory allocation mask for bio
2636  * @bio_ctr: setup function to be called for each clone bio.
2637  *           Returns %0 for success, non %0 for failure.
2638  * @data: private data to be passed to @bio_ctr
2639  *
2640  * Description:
2641  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2642  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2643  *     are not copied, and copying such parts is the caller's responsibility.
2644  *     Also, pages which the original bios are pointing to are not copied
2645  *     and the cloned bios just point same pages.
2646  *     So cloned bios must be completed before original bios, which means
2647  *     the caller must complete @rq before @rq_src.
2648  */
2649 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2650 		      struct bio_set *bs, gfp_t gfp_mask,
2651 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2652 		      void *data)
2653 {
2654 	struct bio *bio, *bio_src;
2655 
2656 	if (!bs)
2657 		bs = fs_bio_set;
2658 
2659 	blk_rq_init(NULL, rq);
2660 
2661 	__rq_for_each_bio(bio_src, rq_src) {
2662 		bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2663 		if (!bio)
2664 			goto free_and_out;
2665 
2666 		__bio_clone(bio, bio_src);
2667 
2668 		if (bio_integrity(bio_src) &&
2669 		    bio_integrity_clone(bio, bio_src, gfp_mask, bs))
2670 			goto free_and_out;
2671 
2672 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2673 			goto free_and_out;
2674 
2675 		if (rq->bio) {
2676 			rq->biotail->bi_next = bio;
2677 			rq->biotail = bio;
2678 		} else
2679 			rq->bio = rq->biotail = bio;
2680 	}
2681 
2682 	__blk_rq_prep_clone(rq, rq_src);
2683 
2684 	return 0;
2685 
2686 free_and_out:
2687 	if (bio)
2688 		bio_free(bio, bs);
2689 	blk_rq_unprep_clone(rq);
2690 
2691 	return -ENOMEM;
2692 }
2693 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2694 
2695 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2696 {
2697 	return queue_work(kblockd_workqueue, work);
2698 }
2699 EXPORT_SYMBOL(kblockd_schedule_work);
2700 
2701 int kblockd_schedule_delayed_work(struct request_queue *q,
2702 			struct delayed_work *dwork, unsigned long delay)
2703 {
2704 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2705 }
2706 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2707 
2708 #define PLUG_MAGIC	0x91827364
2709 
2710 /**
2711  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2712  * @plug:	The &struct blk_plug that needs to be initialized
2713  *
2714  * Description:
2715  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2716  *   pending I/O should the task end up blocking between blk_start_plug() and
2717  *   blk_finish_plug(). This is important from a performance perspective, but
2718  *   also ensures that we don't deadlock. For instance, if the task is blocking
2719  *   for a memory allocation, memory reclaim could end up wanting to free a
2720  *   page belonging to that request that is currently residing in our private
2721  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2722  *   this kind of deadlock.
2723  */
2724 void blk_start_plug(struct blk_plug *plug)
2725 {
2726 	struct task_struct *tsk = current;
2727 
2728 	plug->magic = PLUG_MAGIC;
2729 	INIT_LIST_HEAD(&plug->list);
2730 	INIT_LIST_HEAD(&plug->cb_list);
2731 	plug->should_sort = 0;
2732 
2733 	/*
2734 	 * If this is a nested plug, don't actually assign it. It will be
2735 	 * flushed on its own.
2736 	 */
2737 	if (!tsk->plug) {
2738 		/*
2739 		 * Store ordering should not be needed here, since a potential
2740 		 * preempt will imply a full memory barrier
2741 		 */
2742 		tsk->plug = plug;
2743 	}
2744 }
2745 EXPORT_SYMBOL(blk_start_plug);
2746 
2747 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2748 {
2749 	struct request *rqa = container_of(a, struct request, queuelist);
2750 	struct request *rqb = container_of(b, struct request, queuelist);
2751 
2752 	return !(rqa->q <= rqb->q);
2753 }
2754 
2755 /*
2756  * If 'from_schedule' is true, then postpone the dispatch of requests
2757  * until a safe kblockd context. We due this to avoid accidental big
2758  * additional stack usage in driver dispatch, in places where the originally
2759  * plugger did not intend it.
2760  */
2761 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2762 			    bool from_schedule)
2763 	__releases(q->queue_lock)
2764 {
2765 	trace_block_unplug(q, depth, !from_schedule);
2766 
2767 	/*
2768 	 * Don't mess with dead queue.
2769 	 */
2770 	if (unlikely(blk_queue_dead(q))) {
2771 		spin_unlock(q->queue_lock);
2772 		return;
2773 	}
2774 
2775 	/*
2776 	 * If we are punting this to kblockd, then we can safely drop
2777 	 * the queue_lock before waking kblockd (which needs to take
2778 	 * this lock).
2779 	 */
2780 	if (from_schedule) {
2781 		spin_unlock(q->queue_lock);
2782 		blk_run_queue_async(q);
2783 	} else {
2784 		__blk_run_queue(q);
2785 		spin_unlock(q->queue_lock);
2786 	}
2787 
2788 }
2789 
2790 static void flush_plug_callbacks(struct blk_plug *plug)
2791 {
2792 	LIST_HEAD(callbacks);
2793 
2794 	if (list_empty(&plug->cb_list))
2795 		return;
2796 
2797 	list_splice_init(&plug->cb_list, &callbacks);
2798 
2799 	while (!list_empty(&callbacks)) {
2800 		struct blk_plug_cb *cb = list_first_entry(&callbacks,
2801 							  struct blk_plug_cb,
2802 							  list);
2803 		list_del(&cb->list);
2804 		cb->callback(cb);
2805 	}
2806 }
2807 
2808 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2809 {
2810 	struct request_queue *q;
2811 	unsigned long flags;
2812 	struct request *rq;
2813 	LIST_HEAD(list);
2814 	unsigned int depth;
2815 
2816 	BUG_ON(plug->magic != PLUG_MAGIC);
2817 
2818 	flush_plug_callbacks(plug);
2819 	if (list_empty(&plug->list))
2820 		return;
2821 
2822 	list_splice_init(&plug->list, &list);
2823 
2824 	if (plug->should_sort) {
2825 		list_sort(NULL, &list, plug_rq_cmp);
2826 		plug->should_sort = 0;
2827 	}
2828 
2829 	q = NULL;
2830 	depth = 0;
2831 
2832 	/*
2833 	 * Save and disable interrupts here, to avoid doing it for every
2834 	 * queue lock we have to take.
2835 	 */
2836 	local_irq_save(flags);
2837 	while (!list_empty(&list)) {
2838 		rq = list_entry_rq(list.next);
2839 		list_del_init(&rq->queuelist);
2840 		BUG_ON(!rq->q);
2841 		if (rq->q != q) {
2842 			/*
2843 			 * This drops the queue lock
2844 			 */
2845 			if (q)
2846 				queue_unplugged(q, depth, from_schedule);
2847 			q = rq->q;
2848 			depth = 0;
2849 			spin_lock(q->queue_lock);
2850 		}
2851 
2852 		/*
2853 		 * Short-circuit if @q is dead
2854 		 */
2855 		if (unlikely(blk_queue_dead(q))) {
2856 			__blk_end_request_all(rq, -ENODEV);
2857 			continue;
2858 		}
2859 
2860 		/*
2861 		 * rq is already accounted, so use raw insert
2862 		 */
2863 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2864 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2865 		else
2866 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
2867 
2868 		depth++;
2869 	}
2870 
2871 	/*
2872 	 * This drops the queue lock
2873 	 */
2874 	if (q)
2875 		queue_unplugged(q, depth, from_schedule);
2876 
2877 	local_irq_restore(flags);
2878 }
2879 
2880 void blk_finish_plug(struct blk_plug *plug)
2881 {
2882 	blk_flush_plug_list(plug, false);
2883 
2884 	if (plug == current->plug)
2885 		current->plug = NULL;
2886 }
2887 EXPORT_SYMBOL(blk_finish_plug);
2888 
2889 int __init blk_dev_init(void)
2890 {
2891 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2892 			sizeof(((struct request *)0)->cmd_flags));
2893 
2894 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
2895 	kblockd_workqueue = alloc_workqueue("kblockd",
2896 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2897 	if (!kblockd_workqueue)
2898 		panic("Failed to create kblockd\n");
2899 
2900 	request_cachep = kmem_cache_create("blkdev_requests",
2901 			sizeof(struct request), 0, SLAB_PANIC, NULL);
2902 
2903 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
2904 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
2905 
2906 	return 0;
2907 }
2908