1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/blk-pm.h> 22 #include <linux/highmem.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kernel_stat.h> 26 #include <linux/string.h> 27 #include <linux/init.h> 28 #include <linux/completion.h> 29 #include <linux/slab.h> 30 #include <linux/swap.h> 31 #include <linux/writeback.h> 32 #include <linux/task_io_accounting_ops.h> 33 #include <linux/fault-inject.h> 34 #include <linux/list_sort.h> 35 #include <linux/delay.h> 36 #include <linux/ratelimit.h> 37 #include <linux/pm_runtime.h> 38 #include <linux/blk-cgroup.h> 39 #include <linux/t10-pi.h> 40 #include <linux/debugfs.h> 41 #include <linux/bpf.h> 42 #include <linux/psi.h> 43 #include <linux/sched/sysctl.h> 44 #include <linux/blk-crypto.h> 45 46 #define CREATE_TRACE_POINTS 47 #include <trace/events/block.h> 48 49 #include "blk.h" 50 #include "blk-mq.h" 51 #include "blk-mq-sched.h" 52 #include "blk-pm.h" 53 #include "blk-rq-qos.h" 54 55 struct dentry *blk_debugfs_root; 56 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 62 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 63 64 DEFINE_IDA(blk_queue_ida); 65 66 /* 67 * For queue allocation 68 */ 69 struct kmem_cache *blk_requestq_cachep; 70 71 /* 72 * Controlling structure to kblockd 73 */ 74 static struct workqueue_struct *kblockd_workqueue; 75 76 /** 77 * blk_queue_flag_set - atomically set a queue flag 78 * @flag: flag to be set 79 * @q: request queue 80 */ 81 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 82 { 83 set_bit(flag, &q->queue_flags); 84 } 85 EXPORT_SYMBOL(blk_queue_flag_set); 86 87 /** 88 * blk_queue_flag_clear - atomically clear a queue flag 89 * @flag: flag to be cleared 90 * @q: request queue 91 */ 92 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 93 { 94 clear_bit(flag, &q->queue_flags); 95 } 96 EXPORT_SYMBOL(blk_queue_flag_clear); 97 98 /** 99 * blk_queue_flag_test_and_set - atomically test and set a queue flag 100 * @flag: flag to be set 101 * @q: request queue 102 * 103 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 104 * the flag was already set. 105 */ 106 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 107 { 108 return test_and_set_bit(flag, &q->queue_flags); 109 } 110 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 111 112 void blk_rq_init(struct request_queue *q, struct request *rq) 113 { 114 memset(rq, 0, sizeof(*rq)); 115 116 INIT_LIST_HEAD(&rq->queuelist); 117 rq->q = q; 118 rq->__sector = (sector_t) -1; 119 INIT_HLIST_NODE(&rq->hash); 120 RB_CLEAR_NODE(&rq->rb_node); 121 rq->tag = BLK_MQ_NO_TAG; 122 rq->internal_tag = BLK_MQ_NO_TAG; 123 rq->start_time_ns = ktime_get_ns(); 124 rq->part = NULL; 125 refcount_set(&rq->ref, 1); 126 blk_crypto_rq_set_defaults(rq); 127 } 128 EXPORT_SYMBOL(blk_rq_init); 129 130 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 131 static const char *const blk_op_name[] = { 132 REQ_OP_NAME(READ), 133 REQ_OP_NAME(WRITE), 134 REQ_OP_NAME(FLUSH), 135 REQ_OP_NAME(DISCARD), 136 REQ_OP_NAME(SECURE_ERASE), 137 REQ_OP_NAME(ZONE_RESET), 138 REQ_OP_NAME(ZONE_RESET_ALL), 139 REQ_OP_NAME(ZONE_OPEN), 140 REQ_OP_NAME(ZONE_CLOSE), 141 REQ_OP_NAME(ZONE_FINISH), 142 REQ_OP_NAME(ZONE_APPEND), 143 REQ_OP_NAME(WRITE_SAME), 144 REQ_OP_NAME(WRITE_ZEROES), 145 REQ_OP_NAME(SCSI_IN), 146 REQ_OP_NAME(SCSI_OUT), 147 REQ_OP_NAME(DRV_IN), 148 REQ_OP_NAME(DRV_OUT), 149 }; 150 #undef REQ_OP_NAME 151 152 /** 153 * blk_op_str - Return string XXX in the REQ_OP_XXX. 154 * @op: REQ_OP_XXX. 155 * 156 * Description: Centralize block layer function to convert REQ_OP_XXX into 157 * string format. Useful in the debugging and tracing bio or request. For 158 * invalid REQ_OP_XXX it returns string "UNKNOWN". 159 */ 160 inline const char *blk_op_str(unsigned int op) 161 { 162 const char *op_str = "UNKNOWN"; 163 164 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 165 op_str = blk_op_name[op]; 166 167 return op_str; 168 } 169 EXPORT_SYMBOL_GPL(blk_op_str); 170 171 static const struct { 172 int errno; 173 const char *name; 174 } blk_errors[] = { 175 [BLK_STS_OK] = { 0, "" }, 176 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 177 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 178 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 179 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 180 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 181 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 182 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 183 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 184 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 185 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 186 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 187 188 /* device mapper special case, should not leak out: */ 189 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 190 191 /* zone device specific errors */ 192 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 193 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 194 195 /* everything else not covered above: */ 196 [BLK_STS_IOERR] = { -EIO, "I/O" }, 197 }; 198 199 blk_status_t errno_to_blk_status(int errno) 200 { 201 int i; 202 203 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 204 if (blk_errors[i].errno == errno) 205 return (__force blk_status_t)i; 206 } 207 208 return BLK_STS_IOERR; 209 } 210 EXPORT_SYMBOL_GPL(errno_to_blk_status); 211 212 int blk_status_to_errno(blk_status_t status) 213 { 214 int idx = (__force int)status; 215 216 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 217 return -EIO; 218 return blk_errors[idx].errno; 219 } 220 EXPORT_SYMBOL_GPL(blk_status_to_errno); 221 222 static void print_req_error(struct request *req, blk_status_t status, 223 const char *caller) 224 { 225 int idx = (__force int)status; 226 227 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 228 return; 229 230 printk_ratelimited(KERN_ERR 231 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 232 "phys_seg %u prio class %u\n", 233 caller, blk_errors[idx].name, 234 req->rq_disk ? req->rq_disk->disk_name : "?", 235 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 236 req->cmd_flags & ~REQ_OP_MASK, 237 req->nr_phys_segments, 238 IOPRIO_PRIO_CLASS(req->ioprio)); 239 } 240 241 static void req_bio_endio(struct request *rq, struct bio *bio, 242 unsigned int nbytes, blk_status_t error) 243 { 244 if (error) 245 bio->bi_status = error; 246 247 if (unlikely(rq->rq_flags & RQF_QUIET)) 248 bio_set_flag(bio, BIO_QUIET); 249 250 bio_advance(bio, nbytes); 251 252 if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) { 253 /* 254 * Partial zone append completions cannot be supported as the 255 * BIO fragments may end up not being written sequentially. 256 */ 257 if (bio->bi_iter.bi_size) 258 bio->bi_status = BLK_STS_IOERR; 259 else 260 bio->bi_iter.bi_sector = rq->__sector; 261 } 262 263 /* don't actually finish bio if it's part of flush sequence */ 264 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 265 bio_endio(bio); 266 } 267 268 void blk_dump_rq_flags(struct request *rq, char *msg) 269 { 270 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 271 rq->rq_disk ? rq->rq_disk->disk_name : "?", 272 (unsigned long long) rq->cmd_flags); 273 274 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 275 (unsigned long long)blk_rq_pos(rq), 276 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 277 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 278 rq->bio, rq->biotail, blk_rq_bytes(rq)); 279 } 280 EXPORT_SYMBOL(blk_dump_rq_flags); 281 282 /** 283 * blk_sync_queue - cancel any pending callbacks on a queue 284 * @q: the queue 285 * 286 * Description: 287 * The block layer may perform asynchronous callback activity 288 * on a queue, such as calling the unplug function after a timeout. 289 * A block device may call blk_sync_queue to ensure that any 290 * such activity is cancelled, thus allowing it to release resources 291 * that the callbacks might use. The caller must already have made sure 292 * that its ->submit_bio will not re-add plugging prior to calling 293 * this function. 294 * 295 * This function does not cancel any asynchronous activity arising 296 * out of elevator or throttling code. That would require elevator_exit() 297 * and blkcg_exit_queue() to be called with queue lock initialized. 298 * 299 */ 300 void blk_sync_queue(struct request_queue *q) 301 { 302 del_timer_sync(&q->timeout); 303 cancel_work_sync(&q->timeout_work); 304 } 305 EXPORT_SYMBOL(blk_sync_queue); 306 307 /** 308 * blk_set_pm_only - increment pm_only counter 309 * @q: request queue pointer 310 */ 311 void blk_set_pm_only(struct request_queue *q) 312 { 313 atomic_inc(&q->pm_only); 314 } 315 EXPORT_SYMBOL_GPL(blk_set_pm_only); 316 317 void blk_clear_pm_only(struct request_queue *q) 318 { 319 int pm_only; 320 321 pm_only = atomic_dec_return(&q->pm_only); 322 WARN_ON_ONCE(pm_only < 0); 323 if (pm_only == 0) 324 wake_up_all(&q->mq_freeze_wq); 325 } 326 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 327 328 /** 329 * blk_put_queue - decrement the request_queue refcount 330 * @q: the request_queue structure to decrement the refcount for 331 * 332 * Decrements the refcount of the request_queue kobject. When this reaches 0 333 * we'll have blk_release_queue() called. 334 * 335 * Context: Any context, but the last reference must not be dropped from 336 * atomic context. 337 */ 338 void blk_put_queue(struct request_queue *q) 339 { 340 kobject_put(&q->kobj); 341 } 342 EXPORT_SYMBOL(blk_put_queue); 343 344 void blk_set_queue_dying(struct request_queue *q) 345 { 346 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 347 348 /* 349 * When queue DYING flag is set, we need to block new req 350 * entering queue, so we call blk_freeze_queue_start() to 351 * prevent I/O from crossing blk_queue_enter(). 352 */ 353 blk_freeze_queue_start(q); 354 355 if (queue_is_mq(q)) 356 blk_mq_wake_waiters(q); 357 358 /* Make blk_queue_enter() reexamine the DYING flag. */ 359 wake_up_all(&q->mq_freeze_wq); 360 } 361 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 362 363 /** 364 * blk_cleanup_queue - shutdown a request queue 365 * @q: request queue to shutdown 366 * 367 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 368 * put it. All future requests will be failed immediately with -ENODEV. 369 * 370 * Context: can sleep 371 */ 372 void blk_cleanup_queue(struct request_queue *q) 373 { 374 /* cannot be called from atomic context */ 375 might_sleep(); 376 377 WARN_ON_ONCE(blk_queue_registered(q)); 378 379 /* mark @q DYING, no new request or merges will be allowed afterwards */ 380 blk_set_queue_dying(q); 381 382 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 383 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 384 385 /* 386 * Drain all requests queued before DYING marking. Set DEAD flag to 387 * prevent that blk_mq_run_hw_queues() accesses the hardware queues 388 * after draining finished. 389 */ 390 blk_freeze_queue(q); 391 392 rq_qos_exit(q); 393 394 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 395 396 /* for synchronous bio-based driver finish in-flight integrity i/o */ 397 blk_flush_integrity(); 398 399 /* @q won't process any more request, flush async actions */ 400 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 401 blk_sync_queue(q); 402 403 if (queue_is_mq(q)) 404 blk_mq_exit_queue(q); 405 406 /* 407 * In theory, request pool of sched_tags belongs to request queue. 408 * However, the current implementation requires tag_set for freeing 409 * requests, so free the pool now. 410 * 411 * Queue has become frozen, there can't be any in-queue requests, so 412 * it is safe to free requests now. 413 */ 414 mutex_lock(&q->sysfs_lock); 415 if (q->elevator) 416 blk_mq_sched_free_requests(q); 417 mutex_unlock(&q->sysfs_lock); 418 419 percpu_ref_exit(&q->q_usage_counter); 420 421 /* @q is and will stay empty, shutdown and put */ 422 blk_put_queue(q); 423 } 424 EXPORT_SYMBOL(blk_cleanup_queue); 425 426 /** 427 * blk_queue_enter() - try to increase q->q_usage_counter 428 * @q: request queue pointer 429 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 430 */ 431 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 432 { 433 const bool pm = flags & BLK_MQ_REQ_PM; 434 435 while (true) { 436 bool success = false; 437 438 rcu_read_lock(); 439 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 440 /* 441 * The code that increments the pm_only counter is 442 * responsible for ensuring that that counter is 443 * globally visible before the queue is unfrozen. 444 */ 445 if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) || 446 !blk_queue_pm_only(q)) { 447 success = true; 448 } else { 449 percpu_ref_put(&q->q_usage_counter); 450 } 451 } 452 rcu_read_unlock(); 453 454 if (success) 455 return 0; 456 457 if (flags & BLK_MQ_REQ_NOWAIT) 458 return -EBUSY; 459 460 /* 461 * read pair of barrier in blk_freeze_queue_start(), 462 * we need to order reading __PERCPU_REF_DEAD flag of 463 * .q_usage_counter and reading .mq_freeze_depth or 464 * queue dying flag, otherwise the following wait may 465 * never return if the two reads are reordered. 466 */ 467 smp_rmb(); 468 469 wait_event(q->mq_freeze_wq, 470 (!q->mq_freeze_depth && 471 blk_pm_resume_queue(pm, q)) || 472 blk_queue_dying(q)); 473 if (blk_queue_dying(q)) 474 return -ENODEV; 475 } 476 } 477 478 static inline int bio_queue_enter(struct bio *bio) 479 { 480 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 481 bool nowait = bio->bi_opf & REQ_NOWAIT; 482 int ret; 483 484 ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0); 485 if (unlikely(ret)) { 486 if (nowait && !blk_queue_dying(q)) 487 bio_wouldblock_error(bio); 488 else 489 bio_io_error(bio); 490 } 491 492 return ret; 493 } 494 495 void blk_queue_exit(struct request_queue *q) 496 { 497 percpu_ref_put(&q->q_usage_counter); 498 } 499 500 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 501 { 502 struct request_queue *q = 503 container_of(ref, struct request_queue, q_usage_counter); 504 505 wake_up_all(&q->mq_freeze_wq); 506 } 507 508 static void blk_rq_timed_out_timer(struct timer_list *t) 509 { 510 struct request_queue *q = from_timer(q, t, timeout); 511 512 kblockd_schedule_work(&q->timeout_work); 513 } 514 515 static void blk_timeout_work(struct work_struct *work) 516 { 517 } 518 519 struct request_queue *blk_alloc_queue(int node_id) 520 { 521 struct request_queue *q; 522 int ret; 523 524 q = kmem_cache_alloc_node(blk_requestq_cachep, 525 GFP_KERNEL | __GFP_ZERO, node_id); 526 if (!q) 527 return NULL; 528 529 q->last_merge = NULL; 530 531 q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL); 532 if (q->id < 0) 533 goto fail_q; 534 535 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, 0); 536 if (ret) 537 goto fail_id; 538 539 q->backing_dev_info = bdi_alloc(node_id); 540 if (!q->backing_dev_info) 541 goto fail_split; 542 543 q->stats = blk_alloc_queue_stats(); 544 if (!q->stats) 545 goto fail_stats; 546 547 q->node = node_id; 548 549 atomic_set(&q->nr_active_requests_shared_sbitmap, 0); 550 551 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 552 laptop_mode_timer_fn, 0); 553 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 554 INIT_WORK(&q->timeout_work, blk_timeout_work); 555 INIT_LIST_HEAD(&q->icq_list); 556 #ifdef CONFIG_BLK_CGROUP 557 INIT_LIST_HEAD(&q->blkg_list); 558 #endif 559 560 kobject_init(&q->kobj, &blk_queue_ktype); 561 562 mutex_init(&q->debugfs_mutex); 563 mutex_init(&q->sysfs_lock); 564 mutex_init(&q->sysfs_dir_lock); 565 spin_lock_init(&q->queue_lock); 566 567 init_waitqueue_head(&q->mq_freeze_wq); 568 mutex_init(&q->mq_freeze_lock); 569 570 /* 571 * Init percpu_ref in atomic mode so that it's faster to shutdown. 572 * See blk_register_queue() for details. 573 */ 574 if (percpu_ref_init(&q->q_usage_counter, 575 blk_queue_usage_counter_release, 576 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 577 goto fail_bdi; 578 579 if (blkcg_init_queue(q)) 580 goto fail_ref; 581 582 blk_queue_dma_alignment(q, 511); 583 blk_set_default_limits(&q->limits); 584 q->nr_requests = BLKDEV_MAX_RQ; 585 586 return q; 587 588 fail_ref: 589 percpu_ref_exit(&q->q_usage_counter); 590 fail_bdi: 591 blk_free_queue_stats(q->stats); 592 fail_stats: 593 bdi_put(q->backing_dev_info); 594 fail_split: 595 bioset_exit(&q->bio_split); 596 fail_id: 597 ida_simple_remove(&blk_queue_ida, q->id); 598 fail_q: 599 kmem_cache_free(blk_requestq_cachep, q); 600 return NULL; 601 } 602 603 /** 604 * blk_get_queue - increment the request_queue refcount 605 * @q: the request_queue structure to increment the refcount for 606 * 607 * Increment the refcount of the request_queue kobject. 608 * 609 * Context: Any context. 610 */ 611 bool blk_get_queue(struct request_queue *q) 612 { 613 if (likely(!blk_queue_dying(q))) { 614 __blk_get_queue(q); 615 return true; 616 } 617 618 return false; 619 } 620 EXPORT_SYMBOL(blk_get_queue); 621 622 /** 623 * blk_get_request - allocate a request 624 * @q: request queue to allocate a request for 625 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 626 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 627 */ 628 struct request *blk_get_request(struct request_queue *q, unsigned int op, 629 blk_mq_req_flags_t flags) 630 { 631 struct request *req; 632 633 WARN_ON_ONCE(op & REQ_NOWAIT); 634 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM)); 635 636 req = blk_mq_alloc_request(q, op, flags); 637 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 638 q->mq_ops->initialize_rq_fn(req); 639 640 return req; 641 } 642 EXPORT_SYMBOL(blk_get_request); 643 644 void blk_put_request(struct request *req) 645 { 646 blk_mq_free_request(req); 647 } 648 EXPORT_SYMBOL(blk_put_request); 649 650 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 651 { 652 char b[BDEVNAME_SIZE]; 653 654 pr_info_ratelimited("attempt to access beyond end of device\n" 655 "%s: rw=%d, want=%llu, limit=%llu\n", 656 bio_devname(bio, b), bio->bi_opf, 657 bio_end_sector(bio), maxsector); 658 } 659 660 #ifdef CONFIG_FAIL_MAKE_REQUEST 661 662 static DECLARE_FAULT_ATTR(fail_make_request); 663 664 static int __init setup_fail_make_request(char *str) 665 { 666 return setup_fault_attr(&fail_make_request, str); 667 } 668 __setup("fail_make_request=", setup_fail_make_request); 669 670 static bool should_fail_request(struct block_device *part, unsigned int bytes) 671 { 672 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 673 } 674 675 static int __init fail_make_request_debugfs(void) 676 { 677 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 678 NULL, &fail_make_request); 679 680 return PTR_ERR_OR_ZERO(dir); 681 } 682 683 late_initcall(fail_make_request_debugfs); 684 685 #else /* CONFIG_FAIL_MAKE_REQUEST */ 686 687 static inline bool should_fail_request(struct block_device *part, 688 unsigned int bytes) 689 { 690 return false; 691 } 692 693 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 694 695 static inline bool bio_check_ro(struct bio *bio) 696 { 697 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 698 char b[BDEVNAME_SIZE]; 699 700 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 701 return false; 702 703 WARN_ONCE(1, 704 "Trying to write to read-only block-device %s (partno %d)\n", 705 bio_devname(bio, b), bio->bi_bdev->bd_partno); 706 /* Older lvm-tools actually trigger this */ 707 return false; 708 } 709 710 return false; 711 } 712 713 static noinline int should_fail_bio(struct bio *bio) 714 { 715 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 716 return -EIO; 717 return 0; 718 } 719 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 720 721 /* 722 * Check whether this bio extends beyond the end of the device or partition. 723 * This may well happen - the kernel calls bread() without checking the size of 724 * the device, e.g., when mounting a file system. 725 */ 726 static inline int bio_check_eod(struct bio *bio) 727 { 728 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 729 unsigned int nr_sectors = bio_sectors(bio); 730 731 if (nr_sectors && maxsector && 732 (nr_sectors > maxsector || 733 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 734 handle_bad_sector(bio, maxsector); 735 return -EIO; 736 } 737 return 0; 738 } 739 740 /* 741 * Remap block n of partition p to block n+start(p) of the disk. 742 */ 743 static int blk_partition_remap(struct bio *bio) 744 { 745 struct block_device *p = bio->bi_bdev; 746 747 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 748 return -EIO; 749 if (bio_sectors(bio)) { 750 bio->bi_iter.bi_sector += p->bd_start_sect; 751 trace_block_bio_remap(bio, p->bd_dev, 752 bio->bi_iter.bi_sector - 753 p->bd_start_sect); 754 } 755 bio_set_flag(bio, BIO_REMAPPED); 756 return 0; 757 } 758 759 /* 760 * Check write append to a zoned block device. 761 */ 762 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 763 struct bio *bio) 764 { 765 sector_t pos = bio->bi_iter.bi_sector; 766 int nr_sectors = bio_sectors(bio); 767 768 /* Only applicable to zoned block devices */ 769 if (!blk_queue_is_zoned(q)) 770 return BLK_STS_NOTSUPP; 771 772 /* The bio sector must point to the start of a sequential zone */ 773 if (pos & (blk_queue_zone_sectors(q) - 1) || 774 !blk_queue_zone_is_seq(q, pos)) 775 return BLK_STS_IOERR; 776 777 /* 778 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 779 * split and could result in non-contiguous sectors being written in 780 * different zones. 781 */ 782 if (nr_sectors > q->limits.chunk_sectors) 783 return BLK_STS_IOERR; 784 785 /* Make sure the BIO is small enough and will not get split */ 786 if (nr_sectors > q->limits.max_zone_append_sectors) 787 return BLK_STS_IOERR; 788 789 bio->bi_opf |= REQ_NOMERGE; 790 791 return BLK_STS_OK; 792 } 793 794 static noinline_for_stack bool submit_bio_checks(struct bio *bio) 795 { 796 struct block_device *bdev = bio->bi_bdev; 797 struct request_queue *q = bdev->bd_disk->queue; 798 blk_status_t status = BLK_STS_IOERR; 799 struct blk_plug *plug; 800 801 might_sleep(); 802 803 plug = blk_mq_plug(q, bio); 804 if (plug && plug->nowait) 805 bio->bi_opf |= REQ_NOWAIT; 806 807 /* 808 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 809 * if queue does not support NOWAIT. 810 */ 811 if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q)) 812 goto not_supported; 813 814 if (should_fail_bio(bio)) 815 goto end_io; 816 if (unlikely(bio_check_ro(bio))) 817 goto end_io; 818 if (!bio_flagged(bio, BIO_REMAPPED)) { 819 if (unlikely(bio_check_eod(bio))) 820 goto end_io; 821 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 822 goto end_io; 823 } 824 825 /* 826 * Filter flush bio's early so that bio based drivers without flush 827 * support don't have to worry about them. 828 */ 829 if (op_is_flush(bio->bi_opf) && 830 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 831 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 832 if (!bio_sectors(bio)) { 833 status = BLK_STS_OK; 834 goto end_io; 835 } 836 } 837 838 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 839 bio->bi_opf &= ~REQ_HIPRI; 840 841 switch (bio_op(bio)) { 842 case REQ_OP_DISCARD: 843 if (!blk_queue_discard(q)) 844 goto not_supported; 845 break; 846 case REQ_OP_SECURE_ERASE: 847 if (!blk_queue_secure_erase(q)) 848 goto not_supported; 849 break; 850 case REQ_OP_WRITE_SAME: 851 if (!q->limits.max_write_same_sectors) 852 goto not_supported; 853 break; 854 case REQ_OP_ZONE_APPEND: 855 status = blk_check_zone_append(q, bio); 856 if (status != BLK_STS_OK) 857 goto end_io; 858 break; 859 case REQ_OP_ZONE_RESET: 860 case REQ_OP_ZONE_OPEN: 861 case REQ_OP_ZONE_CLOSE: 862 case REQ_OP_ZONE_FINISH: 863 if (!blk_queue_is_zoned(q)) 864 goto not_supported; 865 break; 866 case REQ_OP_ZONE_RESET_ALL: 867 if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q)) 868 goto not_supported; 869 break; 870 case REQ_OP_WRITE_ZEROES: 871 if (!q->limits.max_write_zeroes_sectors) 872 goto not_supported; 873 break; 874 default: 875 break; 876 } 877 878 /* 879 * Various block parts want %current->io_context, so allocate it up 880 * front rather than dealing with lots of pain to allocate it only 881 * where needed. This may fail and the block layer knows how to live 882 * with it. 883 */ 884 if (unlikely(!current->io_context)) 885 create_task_io_context(current, GFP_ATOMIC, q->node); 886 887 if (blk_throtl_bio(bio)) { 888 blkcg_bio_issue_init(bio); 889 return false; 890 } 891 892 blk_cgroup_bio_start(bio); 893 blkcg_bio_issue_init(bio); 894 895 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 896 trace_block_bio_queue(bio); 897 /* Now that enqueuing has been traced, we need to trace 898 * completion as well. 899 */ 900 bio_set_flag(bio, BIO_TRACE_COMPLETION); 901 } 902 return true; 903 904 not_supported: 905 status = BLK_STS_NOTSUPP; 906 end_io: 907 bio->bi_status = status; 908 bio_endio(bio); 909 return false; 910 } 911 912 static blk_qc_t __submit_bio(struct bio *bio) 913 { 914 struct gendisk *disk = bio->bi_bdev->bd_disk; 915 blk_qc_t ret = BLK_QC_T_NONE; 916 917 if (blk_crypto_bio_prep(&bio)) { 918 if (!disk->fops->submit_bio) 919 return blk_mq_submit_bio(bio); 920 ret = disk->fops->submit_bio(bio); 921 } 922 blk_queue_exit(disk->queue); 923 return ret; 924 } 925 926 /* 927 * The loop in this function may be a bit non-obvious, and so deserves some 928 * explanation: 929 * 930 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 931 * that), so we have a list with a single bio. 932 * - We pretend that we have just taken it off a longer list, so we assign 933 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 934 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 935 * bios through a recursive call to submit_bio_noacct. If it did, we find a 936 * non-NULL value in bio_list and re-enter the loop from the top. 937 * - In this case we really did just take the bio of the top of the list (no 938 * pretending) and so remove it from bio_list, and call into ->submit_bio() 939 * again. 940 * 941 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 942 * bio_list_on_stack[1] contains bios that were submitted before the current 943 * ->submit_bio_bio, but that haven't been processed yet. 944 */ 945 static blk_qc_t __submit_bio_noacct(struct bio *bio) 946 { 947 struct bio_list bio_list_on_stack[2]; 948 blk_qc_t ret = BLK_QC_T_NONE; 949 950 BUG_ON(bio->bi_next); 951 952 bio_list_init(&bio_list_on_stack[0]); 953 current->bio_list = bio_list_on_stack; 954 955 do { 956 struct request_queue *q = bio->bi_bdev->bd_disk->queue; 957 struct bio_list lower, same; 958 959 if (unlikely(bio_queue_enter(bio) != 0)) 960 continue; 961 962 /* 963 * Create a fresh bio_list for all subordinate requests. 964 */ 965 bio_list_on_stack[1] = bio_list_on_stack[0]; 966 bio_list_init(&bio_list_on_stack[0]); 967 968 ret = __submit_bio(bio); 969 970 /* 971 * Sort new bios into those for a lower level and those for the 972 * same level. 973 */ 974 bio_list_init(&lower); 975 bio_list_init(&same); 976 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 977 if (q == bio->bi_bdev->bd_disk->queue) 978 bio_list_add(&same, bio); 979 else 980 bio_list_add(&lower, bio); 981 982 /* 983 * Now assemble so we handle the lowest level first. 984 */ 985 bio_list_merge(&bio_list_on_stack[0], &lower); 986 bio_list_merge(&bio_list_on_stack[0], &same); 987 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 988 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 989 990 current->bio_list = NULL; 991 return ret; 992 } 993 994 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio) 995 { 996 struct bio_list bio_list[2] = { }; 997 blk_qc_t ret = BLK_QC_T_NONE; 998 999 current->bio_list = bio_list; 1000 1001 do { 1002 struct gendisk *disk = bio->bi_bdev->bd_disk; 1003 1004 if (unlikely(bio_queue_enter(bio) != 0)) 1005 continue; 1006 1007 if (!blk_crypto_bio_prep(&bio)) { 1008 blk_queue_exit(disk->queue); 1009 ret = BLK_QC_T_NONE; 1010 continue; 1011 } 1012 1013 ret = blk_mq_submit_bio(bio); 1014 } while ((bio = bio_list_pop(&bio_list[0]))); 1015 1016 current->bio_list = NULL; 1017 return ret; 1018 } 1019 1020 /** 1021 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 1022 * @bio: The bio describing the location in memory and on the device. 1023 * 1024 * This is a version of submit_bio() that shall only be used for I/O that is 1025 * resubmitted to lower level drivers by stacking block drivers. All file 1026 * systems and other upper level users of the block layer should use 1027 * submit_bio() instead. 1028 */ 1029 blk_qc_t submit_bio_noacct(struct bio *bio) 1030 { 1031 if (!submit_bio_checks(bio)) 1032 return BLK_QC_T_NONE; 1033 1034 /* 1035 * We only want one ->submit_bio to be active at a time, else stack 1036 * usage with stacked devices could be a problem. Use current->bio_list 1037 * to collect a list of requests submited by a ->submit_bio method while 1038 * it is active, and then process them after it returned. 1039 */ 1040 if (current->bio_list) { 1041 bio_list_add(¤t->bio_list[0], bio); 1042 return BLK_QC_T_NONE; 1043 } 1044 1045 if (!bio->bi_bdev->bd_disk->fops->submit_bio) 1046 return __submit_bio_noacct_mq(bio); 1047 return __submit_bio_noacct(bio); 1048 } 1049 EXPORT_SYMBOL(submit_bio_noacct); 1050 1051 /** 1052 * submit_bio - submit a bio to the block device layer for I/O 1053 * @bio: The &struct bio which describes the I/O 1054 * 1055 * submit_bio() is used to submit I/O requests to block devices. It is passed a 1056 * fully set up &struct bio that describes the I/O that needs to be done. The 1057 * bio will be send to the device described by the bi_bdev field. 1058 * 1059 * The success/failure status of the request, along with notification of 1060 * completion, is delivered asynchronously through the ->bi_end_io() callback 1061 * in @bio. The bio must NOT be touched by thecaller until ->bi_end_io() has 1062 * been called. 1063 */ 1064 blk_qc_t submit_bio(struct bio *bio) 1065 { 1066 if (blkcg_punt_bio_submit(bio)) 1067 return BLK_QC_T_NONE; 1068 1069 /* 1070 * If it's a regular read/write or a barrier with data attached, 1071 * go through the normal accounting stuff before submission. 1072 */ 1073 if (bio_has_data(bio)) { 1074 unsigned int count; 1075 1076 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1077 count = queue_logical_block_size( 1078 bio->bi_bdev->bd_disk->queue) >> 9; 1079 else 1080 count = bio_sectors(bio); 1081 1082 if (op_is_write(bio_op(bio))) { 1083 count_vm_events(PGPGOUT, count); 1084 } else { 1085 task_io_account_read(bio->bi_iter.bi_size); 1086 count_vm_events(PGPGIN, count); 1087 } 1088 } 1089 1090 /* 1091 * If we're reading data that is part of the userspace workingset, count 1092 * submission time as memory stall. When the device is congested, or 1093 * the submitting cgroup IO-throttled, submission can be a significant 1094 * part of overall IO time. 1095 */ 1096 if (unlikely(bio_op(bio) == REQ_OP_READ && 1097 bio_flagged(bio, BIO_WORKINGSET))) { 1098 unsigned long pflags; 1099 blk_qc_t ret; 1100 1101 psi_memstall_enter(&pflags); 1102 ret = submit_bio_noacct(bio); 1103 psi_memstall_leave(&pflags); 1104 1105 return ret; 1106 } 1107 1108 return submit_bio_noacct(bio); 1109 } 1110 EXPORT_SYMBOL(submit_bio); 1111 1112 /** 1113 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1114 * for the new queue limits 1115 * @q: the queue 1116 * @rq: the request being checked 1117 * 1118 * Description: 1119 * @rq may have been made based on weaker limitations of upper-level queues 1120 * in request stacking drivers, and it may violate the limitation of @q. 1121 * Since the block layer and the underlying device driver trust @rq 1122 * after it is inserted to @q, it should be checked against @q before 1123 * the insertion using this generic function. 1124 * 1125 * Request stacking drivers like request-based dm may change the queue 1126 * limits when retrying requests on other queues. Those requests need 1127 * to be checked against the new queue limits again during dispatch. 1128 */ 1129 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q, 1130 struct request *rq) 1131 { 1132 unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq)); 1133 1134 if (blk_rq_sectors(rq) > max_sectors) { 1135 /* 1136 * SCSI device does not have a good way to return if 1137 * Write Same/Zero is actually supported. If a device rejects 1138 * a non-read/write command (discard, write same,etc.) the 1139 * low-level device driver will set the relevant queue limit to 1140 * 0 to prevent blk-lib from issuing more of the offending 1141 * operations. Commands queued prior to the queue limit being 1142 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O 1143 * errors being propagated to upper layers. 1144 */ 1145 if (max_sectors == 0) 1146 return BLK_STS_NOTSUPP; 1147 1148 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1149 __func__, blk_rq_sectors(rq), max_sectors); 1150 return BLK_STS_IOERR; 1151 } 1152 1153 /* 1154 * The queue settings related to segment counting may differ from the 1155 * original queue. 1156 */ 1157 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1158 if (rq->nr_phys_segments > queue_max_segments(q)) { 1159 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1160 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1161 return BLK_STS_IOERR; 1162 } 1163 1164 return BLK_STS_OK; 1165 } 1166 1167 /** 1168 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1169 * @q: the queue to submit the request 1170 * @rq: the request being queued 1171 */ 1172 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1173 { 1174 blk_status_t ret; 1175 1176 ret = blk_cloned_rq_check_limits(q, rq); 1177 if (ret != BLK_STS_OK) 1178 return ret; 1179 1180 if (rq->rq_disk && 1181 should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq))) 1182 return BLK_STS_IOERR; 1183 1184 if (blk_crypto_insert_cloned_request(rq)) 1185 return BLK_STS_IOERR; 1186 1187 if (blk_queue_io_stat(q)) 1188 blk_account_io_start(rq); 1189 1190 /* 1191 * Since we have a scheduler attached on the top device, 1192 * bypass a potential scheduler on the bottom device for 1193 * insert. 1194 */ 1195 return blk_mq_request_issue_directly(rq, true); 1196 } 1197 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1198 1199 /** 1200 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1201 * @rq: request to examine 1202 * 1203 * Description: 1204 * A request could be merge of IOs which require different failure 1205 * handling. This function determines the number of bytes which 1206 * can be failed from the beginning of the request without 1207 * crossing into area which need to be retried further. 1208 * 1209 * Return: 1210 * The number of bytes to fail. 1211 */ 1212 unsigned int blk_rq_err_bytes(const struct request *rq) 1213 { 1214 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1215 unsigned int bytes = 0; 1216 struct bio *bio; 1217 1218 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1219 return blk_rq_bytes(rq); 1220 1221 /* 1222 * Currently the only 'mixing' which can happen is between 1223 * different fastfail types. We can safely fail portions 1224 * which have all the failfast bits that the first one has - 1225 * the ones which are at least as eager to fail as the first 1226 * one. 1227 */ 1228 for (bio = rq->bio; bio; bio = bio->bi_next) { 1229 if ((bio->bi_opf & ff) != ff) 1230 break; 1231 bytes += bio->bi_iter.bi_size; 1232 } 1233 1234 /* this could lead to infinite loop */ 1235 BUG_ON(blk_rq_bytes(rq) && !bytes); 1236 return bytes; 1237 } 1238 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1239 1240 static void update_io_ticks(struct block_device *part, unsigned long now, 1241 bool end) 1242 { 1243 unsigned long stamp; 1244 again: 1245 stamp = READ_ONCE(part->bd_stamp); 1246 if (unlikely(stamp != now)) { 1247 if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp)) 1248 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 1249 } 1250 if (part->bd_partno) { 1251 part = bdev_whole(part); 1252 goto again; 1253 } 1254 } 1255 1256 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1257 { 1258 if (req->part && blk_do_io_stat(req)) { 1259 const int sgrp = op_stat_group(req_op(req)); 1260 1261 part_stat_lock(); 1262 part_stat_add(req->part, sectors[sgrp], bytes >> 9); 1263 part_stat_unlock(); 1264 } 1265 } 1266 1267 void blk_account_io_done(struct request *req, u64 now) 1268 { 1269 /* 1270 * Account IO completion. flush_rq isn't accounted as a 1271 * normal IO on queueing nor completion. Accounting the 1272 * containing request is enough. 1273 */ 1274 if (req->part && blk_do_io_stat(req) && 1275 !(req->rq_flags & RQF_FLUSH_SEQ)) { 1276 const int sgrp = op_stat_group(req_op(req)); 1277 1278 part_stat_lock(); 1279 update_io_ticks(req->part, jiffies, true); 1280 part_stat_inc(req->part, ios[sgrp]); 1281 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns); 1282 part_stat_unlock(); 1283 } 1284 } 1285 1286 void blk_account_io_start(struct request *rq) 1287 { 1288 if (!blk_do_io_stat(rq)) 1289 return; 1290 1291 /* passthrough requests can hold bios that do not have ->bi_bdev set */ 1292 if (rq->bio && rq->bio->bi_bdev) 1293 rq->part = rq->bio->bi_bdev; 1294 else 1295 rq->part = rq->rq_disk->part0; 1296 1297 part_stat_lock(); 1298 update_io_ticks(rq->part, jiffies, false); 1299 part_stat_unlock(); 1300 } 1301 1302 static unsigned long __part_start_io_acct(struct block_device *part, 1303 unsigned int sectors, unsigned int op) 1304 { 1305 const int sgrp = op_stat_group(op); 1306 unsigned long now = READ_ONCE(jiffies); 1307 1308 part_stat_lock(); 1309 update_io_ticks(part, now, false); 1310 part_stat_inc(part, ios[sgrp]); 1311 part_stat_add(part, sectors[sgrp], sectors); 1312 part_stat_local_inc(part, in_flight[op_is_write(op)]); 1313 part_stat_unlock(); 1314 1315 return now; 1316 } 1317 1318 /** 1319 * bio_start_io_acct - start I/O accounting for bio based drivers 1320 * @bio: bio to start account for 1321 * 1322 * Returns the start time that should be passed back to bio_end_io_acct(). 1323 */ 1324 unsigned long bio_start_io_acct(struct bio *bio) 1325 { 1326 return __part_start_io_acct(bio->bi_bdev, bio_sectors(bio), bio_op(bio)); 1327 } 1328 EXPORT_SYMBOL_GPL(bio_start_io_acct); 1329 1330 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors, 1331 unsigned int op) 1332 { 1333 return __part_start_io_acct(disk->part0, sectors, op); 1334 } 1335 EXPORT_SYMBOL(disk_start_io_acct); 1336 1337 static void __part_end_io_acct(struct block_device *part, unsigned int op, 1338 unsigned long start_time) 1339 { 1340 const int sgrp = op_stat_group(op); 1341 unsigned long now = READ_ONCE(jiffies); 1342 unsigned long duration = now - start_time; 1343 1344 part_stat_lock(); 1345 update_io_ticks(part, now, true); 1346 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration)); 1347 part_stat_local_dec(part, in_flight[op_is_write(op)]); 1348 part_stat_unlock(); 1349 } 1350 1351 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 1352 struct block_device *orig_bdev) 1353 { 1354 __part_end_io_acct(orig_bdev, bio_op(bio), start_time); 1355 } 1356 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1357 1358 void disk_end_io_acct(struct gendisk *disk, unsigned int op, 1359 unsigned long start_time) 1360 { 1361 __part_end_io_acct(disk->part0, op, start_time); 1362 } 1363 EXPORT_SYMBOL(disk_end_io_acct); 1364 1365 /* 1366 * Steal bios from a request and add them to a bio list. 1367 * The request must not have been partially completed before. 1368 */ 1369 void blk_steal_bios(struct bio_list *list, struct request *rq) 1370 { 1371 if (rq->bio) { 1372 if (list->tail) 1373 list->tail->bi_next = rq->bio; 1374 else 1375 list->head = rq->bio; 1376 list->tail = rq->biotail; 1377 1378 rq->bio = NULL; 1379 rq->biotail = NULL; 1380 } 1381 1382 rq->__data_len = 0; 1383 } 1384 EXPORT_SYMBOL_GPL(blk_steal_bios); 1385 1386 /** 1387 * blk_update_request - Complete multiple bytes without completing the request 1388 * @req: the request being processed 1389 * @error: block status code 1390 * @nr_bytes: number of bytes to complete for @req 1391 * 1392 * Description: 1393 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1394 * the request structure even if @req doesn't have leftover. 1395 * If @req has leftover, sets it up for the next range of segments. 1396 * 1397 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1398 * %false return from this function. 1399 * 1400 * Note: 1401 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function 1402 * except in the consistency check at the end of this function. 1403 * 1404 * Return: 1405 * %false - this request doesn't have any more data 1406 * %true - this request has more data 1407 **/ 1408 bool blk_update_request(struct request *req, blk_status_t error, 1409 unsigned int nr_bytes) 1410 { 1411 int total_bytes; 1412 1413 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1414 1415 if (!req->bio) 1416 return false; 1417 1418 #ifdef CONFIG_BLK_DEV_INTEGRITY 1419 if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ && 1420 error == BLK_STS_OK) 1421 req->q->integrity.profile->complete_fn(req, nr_bytes); 1422 #endif 1423 1424 if (unlikely(error && !blk_rq_is_passthrough(req) && 1425 !(req->rq_flags & RQF_QUIET))) 1426 print_req_error(req, error, __func__); 1427 1428 blk_account_io_completion(req, nr_bytes); 1429 1430 total_bytes = 0; 1431 while (req->bio) { 1432 struct bio *bio = req->bio; 1433 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1434 1435 if (bio_bytes == bio->bi_iter.bi_size) 1436 req->bio = bio->bi_next; 1437 1438 /* Completion has already been traced */ 1439 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1440 req_bio_endio(req, bio, bio_bytes, error); 1441 1442 total_bytes += bio_bytes; 1443 nr_bytes -= bio_bytes; 1444 1445 if (!nr_bytes) 1446 break; 1447 } 1448 1449 /* 1450 * completely done 1451 */ 1452 if (!req->bio) { 1453 /* 1454 * Reset counters so that the request stacking driver 1455 * can find how many bytes remain in the request 1456 * later. 1457 */ 1458 req->__data_len = 0; 1459 return false; 1460 } 1461 1462 req->__data_len -= total_bytes; 1463 1464 /* update sector only for requests with clear definition of sector */ 1465 if (!blk_rq_is_passthrough(req)) 1466 req->__sector += total_bytes >> 9; 1467 1468 /* mixed attributes always follow the first bio */ 1469 if (req->rq_flags & RQF_MIXED_MERGE) { 1470 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1471 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1472 } 1473 1474 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1475 /* 1476 * If total number of sectors is less than the first segment 1477 * size, something has gone terribly wrong. 1478 */ 1479 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1480 blk_dump_rq_flags(req, "request botched"); 1481 req->__data_len = blk_rq_cur_bytes(req); 1482 } 1483 1484 /* recalculate the number of segments */ 1485 req->nr_phys_segments = blk_recalc_rq_segments(req); 1486 } 1487 1488 return true; 1489 } 1490 EXPORT_SYMBOL_GPL(blk_update_request); 1491 1492 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1493 /** 1494 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1495 * @rq: the request to be flushed 1496 * 1497 * Description: 1498 * Flush all pages in @rq. 1499 */ 1500 void rq_flush_dcache_pages(struct request *rq) 1501 { 1502 struct req_iterator iter; 1503 struct bio_vec bvec; 1504 1505 rq_for_each_segment(bvec, rq, iter) 1506 flush_dcache_page(bvec.bv_page); 1507 } 1508 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1509 #endif 1510 1511 /** 1512 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1513 * @q : the queue of the device being checked 1514 * 1515 * Description: 1516 * Check if underlying low-level drivers of a device are busy. 1517 * If the drivers want to export their busy state, they must set own 1518 * exporting function using blk_queue_lld_busy() first. 1519 * 1520 * Basically, this function is used only by request stacking drivers 1521 * to stop dispatching requests to underlying devices when underlying 1522 * devices are busy. This behavior helps more I/O merging on the queue 1523 * of the request stacking driver and prevents I/O throughput regression 1524 * on burst I/O load. 1525 * 1526 * Return: 1527 * 0 - Not busy (The request stacking driver should dispatch request) 1528 * 1 - Busy (The request stacking driver should stop dispatching request) 1529 */ 1530 int blk_lld_busy(struct request_queue *q) 1531 { 1532 if (queue_is_mq(q) && q->mq_ops->busy) 1533 return q->mq_ops->busy(q); 1534 1535 return 0; 1536 } 1537 EXPORT_SYMBOL_GPL(blk_lld_busy); 1538 1539 /** 1540 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1541 * @rq: the clone request to be cleaned up 1542 * 1543 * Description: 1544 * Free all bios in @rq for a cloned request. 1545 */ 1546 void blk_rq_unprep_clone(struct request *rq) 1547 { 1548 struct bio *bio; 1549 1550 while ((bio = rq->bio) != NULL) { 1551 rq->bio = bio->bi_next; 1552 1553 bio_put(bio); 1554 } 1555 } 1556 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1557 1558 /** 1559 * blk_rq_prep_clone - Helper function to setup clone request 1560 * @rq: the request to be setup 1561 * @rq_src: original request to be cloned 1562 * @bs: bio_set that bios for clone are allocated from 1563 * @gfp_mask: memory allocation mask for bio 1564 * @bio_ctr: setup function to be called for each clone bio. 1565 * Returns %0 for success, non %0 for failure. 1566 * @data: private data to be passed to @bio_ctr 1567 * 1568 * Description: 1569 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1570 * Also, pages which the original bios are pointing to are not copied 1571 * and the cloned bios just point same pages. 1572 * So cloned bios must be completed before original bios, which means 1573 * the caller must complete @rq before @rq_src. 1574 */ 1575 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1576 struct bio_set *bs, gfp_t gfp_mask, 1577 int (*bio_ctr)(struct bio *, struct bio *, void *), 1578 void *data) 1579 { 1580 struct bio *bio, *bio_src; 1581 1582 if (!bs) 1583 bs = &fs_bio_set; 1584 1585 __rq_for_each_bio(bio_src, rq_src) { 1586 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1587 if (!bio) 1588 goto free_and_out; 1589 1590 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1591 goto free_and_out; 1592 1593 if (rq->bio) { 1594 rq->biotail->bi_next = bio; 1595 rq->biotail = bio; 1596 } else { 1597 rq->bio = rq->biotail = bio; 1598 } 1599 bio = NULL; 1600 } 1601 1602 /* Copy attributes of the original request to the clone request. */ 1603 rq->__sector = blk_rq_pos(rq_src); 1604 rq->__data_len = blk_rq_bytes(rq_src); 1605 if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1606 rq->rq_flags |= RQF_SPECIAL_PAYLOAD; 1607 rq->special_vec = rq_src->special_vec; 1608 } 1609 rq->nr_phys_segments = rq_src->nr_phys_segments; 1610 rq->ioprio = rq_src->ioprio; 1611 1612 if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0) 1613 goto free_and_out; 1614 1615 return 0; 1616 1617 free_and_out: 1618 if (bio) 1619 bio_put(bio); 1620 blk_rq_unprep_clone(rq); 1621 1622 return -ENOMEM; 1623 } 1624 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1625 1626 int kblockd_schedule_work(struct work_struct *work) 1627 { 1628 return queue_work(kblockd_workqueue, work); 1629 } 1630 EXPORT_SYMBOL(kblockd_schedule_work); 1631 1632 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1633 unsigned long delay) 1634 { 1635 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1636 } 1637 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1638 1639 /** 1640 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1641 * @plug: The &struct blk_plug that needs to be initialized 1642 * 1643 * Description: 1644 * blk_start_plug() indicates to the block layer an intent by the caller 1645 * to submit multiple I/O requests in a batch. The block layer may use 1646 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1647 * is called. However, the block layer may choose to submit requests 1648 * before a call to blk_finish_plug() if the number of queued I/Os 1649 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1650 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1651 * the task schedules (see below). 1652 * 1653 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1654 * pending I/O should the task end up blocking between blk_start_plug() and 1655 * blk_finish_plug(). This is important from a performance perspective, but 1656 * also ensures that we don't deadlock. For instance, if the task is blocking 1657 * for a memory allocation, memory reclaim could end up wanting to free a 1658 * page belonging to that request that is currently residing in our private 1659 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1660 * this kind of deadlock. 1661 */ 1662 void blk_start_plug(struct blk_plug *plug) 1663 { 1664 struct task_struct *tsk = current; 1665 1666 /* 1667 * If this is a nested plug, don't actually assign it. 1668 */ 1669 if (tsk->plug) 1670 return; 1671 1672 INIT_LIST_HEAD(&plug->mq_list); 1673 INIT_LIST_HEAD(&plug->cb_list); 1674 plug->rq_count = 0; 1675 plug->multiple_queues = false; 1676 plug->nowait = false; 1677 1678 /* 1679 * Store ordering should not be needed here, since a potential 1680 * preempt will imply a full memory barrier 1681 */ 1682 tsk->plug = plug; 1683 } 1684 EXPORT_SYMBOL(blk_start_plug); 1685 1686 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1687 { 1688 LIST_HEAD(callbacks); 1689 1690 while (!list_empty(&plug->cb_list)) { 1691 list_splice_init(&plug->cb_list, &callbacks); 1692 1693 while (!list_empty(&callbacks)) { 1694 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1695 struct blk_plug_cb, 1696 list); 1697 list_del(&cb->list); 1698 cb->callback(cb, from_schedule); 1699 } 1700 } 1701 } 1702 1703 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1704 int size) 1705 { 1706 struct blk_plug *plug = current->plug; 1707 struct blk_plug_cb *cb; 1708 1709 if (!plug) 1710 return NULL; 1711 1712 list_for_each_entry(cb, &plug->cb_list, list) 1713 if (cb->callback == unplug && cb->data == data) 1714 return cb; 1715 1716 /* Not currently on the callback list */ 1717 BUG_ON(size < sizeof(*cb)); 1718 cb = kzalloc(size, GFP_ATOMIC); 1719 if (cb) { 1720 cb->data = data; 1721 cb->callback = unplug; 1722 list_add(&cb->list, &plug->cb_list); 1723 } 1724 return cb; 1725 } 1726 EXPORT_SYMBOL(blk_check_plugged); 1727 1728 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1729 { 1730 flush_plug_callbacks(plug, from_schedule); 1731 1732 if (!list_empty(&plug->mq_list)) 1733 blk_mq_flush_plug_list(plug, from_schedule); 1734 } 1735 1736 /** 1737 * blk_finish_plug - mark the end of a batch of submitted I/O 1738 * @plug: The &struct blk_plug passed to blk_start_plug() 1739 * 1740 * Description: 1741 * Indicate that a batch of I/O submissions is complete. This function 1742 * must be paired with an initial call to blk_start_plug(). The intent 1743 * is to allow the block layer to optimize I/O submission. See the 1744 * documentation for blk_start_plug() for more information. 1745 */ 1746 void blk_finish_plug(struct blk_plug *plug) 1747 { 1748 if (plug != current->plug) 1749 return; 1750 blk_flush_plug_list(plug, false); 1751 1752 current->plug = NULL; 1753 } 1754 EXPORT_SYMBOL(blk_finish_plug); 1755 1756 void blk_io_schedule(void) 1757 { 1758 /* Prevent hang_check timer from firing at us during very long I/O */ 1759 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1760 1761 if (timeout) 1762 io_schedule_timeout(timeout); 1763 else 1764 io_schedule(); 1765 } 1766 EXPORT_SYMBOL_GPL(blk_io_schedule); 1767 1768 int __init blk_dev_init(void) 1769 { 1770 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1771 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1772 sizeof_field(struct request, cmd_flags)); 1773 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1774 sizeof_field(struct bio, bi_opf)); 1775 1776 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1777 kblockd_workqueue = alloc_workqueue("kblockd", 1778 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1779 if (!kblockd_workqueue) 1780 panic("Failed to create kblockd\n"); 1781 1782 blk_requestq_cachep = kmem_cache_create("request_queue", 1783 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1784 1785 blk_debugfs_root = debugfs_create_dir("block", NULL); 1786 1787 return 0; 1788 } 1789