xref: /openbmc/linux/block/blk-core.c (revision 151f4e2b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42 
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48 
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52 
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58 
59 DEFINE_IDA(blk_queue_ida);
60 
61 /*
62  * For queue allocation
63  */
64 struct kmem_cache *blk_requestq_cachep;
65 
66 /*
67  * Controlling structure to kblockd
68  */
69 static struct workqueue_struct *kblockd_workqueue;
70 
71 /**
72  * blk_queue_flag_set - atomically set a queue flag
73  * @flag: flag to be set
74  * @q: request queue
75  */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 	set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81 
82 /**
83  * blk_queue_flag_clear - atomically clear a queue flag
84  * @flag: flag to be cleared
85  * @q: request queue
86  */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 	clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92 
93 /**
94  * blk_queue_flag_test_and_set - atomically test and set a queue flag
95  * @flag: flag to be set
96  * @q: request queue
97  *
98  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99  * the flag was already set.
100  */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 	return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106 
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 	memset(rq, 0, sizeof(*rq));
110 
111 	INIT_LIST_HEAD(&rq->queuelist);
112 	rq->q = q;
113 	rq->__sector = (sector_t) -1;
114 	INIT_HLIST_NODE(&rq->hash);
115 	RB_CLEAR_NODE(&rq->rb_node);
116 	rq->tag = -1;
117 	rq->internal_tag = -1;
118 	rq->start_time_ns = ktime_get_ns();
119 	rq->part = NULL;
120 }
121 EXPORT_SYMBOL(blk_rq_init);
122 
123 static const struct {
124 	int		errno;
125 	const char	*name;
126 } blk_errors[] = {
127 	[BLK_STS_OK]		= { 0,		"" },
128 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
129 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
130 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
131 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
132 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
133 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
134 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
135 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
136 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
137 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
138 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
139 
140 	/* device mapper special case, should not leak out: */
141 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
142 
143 	/* everything else not covered above: */
144 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
145 };
146 
147 blk_status_t errno_to_blk_status(int errno)
148 {
149 	int i;
150 
151 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
152 		if (blk_errors[i].errno == errno)
153 			return (__force blk_status_t)i;
154 	}
155 
156 	return BLK_STS_IOERR;
157 }
158 EXPORT_SYMBOL_GPL(errno_to_blk_status);
159 
160 int blk_status_to_errno(blk_status_t status)
161 {
162 	int idx = (__force int)status;
163 
164 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
165 		return -EIO;
166 	return blk_errors[idx].errno;
167 }
168 EXPORT_SYMBOL_GPL(blk_status_to_errno);
169 
170 static void print_req_error(struct request *req, blk_status_t status)
171 {
172 	int idx = (__force int)status;
173 
174 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
175 		return;
176 
177 	printk_ratelimited(KERN_ERR "%s: %s error, dev %s, sector %llu flags %x\n",
178 				__func__, blk_errors[idx].name,
179 				req->rq_disk ?  req->rq_disk->disk_name : "?",
180 				(unsigned long long)blk_rq_pos(req),
181 				req->cmd_flags);
182 }
183 
184 static void req_bio_endio(struct request *rq, struct bio *bio,
185 			  unsigned int nbytes, blk_status_t error)
186 {
187 	if (error)
188 		bio->bi_status = error;
189 
190 	if (unlikely(rq->rq_flags & RQF_QUIET))
191 		bio_set_flag(bio, BIO_QUIET);
192 
193 	bio_advance(bio, nbytes);
194 
195 	/* don't actually finish bio if it's part of flush sequence */
196 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
197 		bio_endio(bio);
198 }
199 
200 void blk_dump_rq_flags(struct request *rq, char *msg)
201 {
202 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
203 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
204 		(unsigned long long) rq->cmd_flags);
205 
206 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
207 	       (unsigned long long)blk_rq_pos(rq),
208 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
209 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
210 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
211 }
212 EXPORT_SYMBOL(blk_dump_rq_flags);
213 
214 /**
215  * blk_sync_queue - cancel any pending callbacks on a queue
216  * @q: the queue
217  *
218  * Description:
219  *     The block layer may perform asynchronous callback activity
220  *     on a queue, such as calling the unplug function after a timeout.
221  *     A block device may call blk_sync_queue to ensure that any
222  *     such activity is cancelled, thus allowing it to release resources
223  *     that the callbacks might use. The caller must already have made sure
224  *     that its ->make_request_fn will not re-add plugging prior to calling
225  *     this function.
226  *
227  *     This function does not cancel any asynchronous activity arising
228  *     out of elevator or throttling code. That would require elevator_exit()
229  *     and blkcg_exit_queue() to be called with queue lock initialized.
230  *
231  */
232 void blk_sync_queue(struct request_queue *q)
233 {
234 	del_timer_sync(&q->timeout);
235 	cancel_work_sync(&q->timeout_work);
236 }
237 EXPORT_SYMBOL(blk_sync_queue);
238 
239 /**
240  * blk_set_pm_only - increment pm_only counter
241  * @q: request queue pointer
242  */
243 void blk_set_pm_only(struct request_queue *q)
244 {
245 	atomic_inc(&q->pm_only);
246 }
247 EXPORT_SYMBOL_GPL(blk_set_pm_only);
248 
249 void blk_clear_pm_only(struct request_queue *q)
250 {
251 	int pm_only;
252 
253 	pm_only = atomic_dec_return(&q->pm_only);
254 	WARN_ON_ONCE(pm_only < 0);
255 	if (pm_only == 0)
256 		wake_up_all(&q->mq_freeze_wq);
257 }
258 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
259 
260 void blk_put_queue(struct request_queue *q)
261 {
262 	kobject_put(&q->kobj);
263 }
264 EXPORT_SYMBOL(blk_put_queue);
265 
266 void blk_set_queue_dying(struct request_queue *q)
267 {
268 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
269 
270 	/*
271 	 * When queue DYING flag is set, we need to block new req
272 	 * entering queue, so we call blk_freeze_queue_start() to
273 	 * prevent I/O from crossing blk_queue_enter().
274 	 */
275 	blk_freeze_queue_start(q);
276 
277 	if (queue_is_mq(q))
278 		blk_mq_wake_waiters(q);
279 
280 	/* Make blk_queue_enter() reexamine the DYING flag. */
281 	wake_up_all(&q->mq_freeze_wq);
282 }
283 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
284 
285 /* Unconfigure the I/O scheduler and dissociate from the cgroup controller. */
286 void blk_exit_queue(struct request_queue *q)
287 {
288 	/*
289 	 * Since the I/O scheduler exit code may access cgroup information,
290 	 * perform I/O scheduler exit before disassociating from the block
291 	 * cgroup controller.
292 	 */
293 	if (q->elevator) {
294 		ioc_clear_queue(q);
295 		elevator_exit(q, q->elevator);
296 		q->elevator = NULL;
297 	}
298 
299 	/*
300 	 * Remove all references to @q from the block cgroup controller before
301 	 * restoring @q->queue_lock to avoid that restoring this pointer causes
302 	 * e.g. blkcg_print_blkgs() to crash.
303 	 */
304 	blkcg_exit_queue(q);
305 
306 	/*
307 	 * Since the cgroup code may dereference the @q->backing_dev_info
308 	 * pointer, only decrease its reference count after having removed the
309 	 * association with the block cgroup controller.
310 	 */
311 	bdi_put(q->backing_dev_info);
312 }
313 
314 /**
315  * blk_cleanup_queue - shutdown a request queue
316  * @q: request queue to shutdown
317  *
318  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
319  * put it.  All future requests will be failed immediately with -ENODEV.
320  */
321 void blk_cleanup_queue(struct request_queue *q)
322 {
323 	/* mark @q DYING, no new request or merges will be allowed afterwards */
324 	mutex_lock(&q->sysfs_lock);
325 	blk_set_queue_dying(q);
326 
327 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
328 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
329 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
330 	mutex_unlock(&q->sysfs_lock);
331 
332 	/*
333 	 * Drain all requests queued before DYING marking. Set DEAD flag to
334 	 * prevent that q->request_fn() gets invoked after draining finished.
335 	 */
336 	blk_freeze_queue(q);
337 
338 	rq_qos_exit(q);
339 
340 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
341 
342 	/* for synchronous bio-based driver finish in-flight integrity i/o */
343 	blk_flush_integrity();
344 
345 	/* @q won't process any more request, flush async actions */
346 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
347 	blk_sync_queue(q);
348 
349 	/*
350 	 * I/O scheduler exit is only safe after the sysfs scheduler attribute
351 	 * has been removed.
352 	 */
353 	WARN_ON_ONCE(q->kobj.state_in_sysfs);
354 
355 	blk_exit_queue(q);
356 
357 	if (queue_is_mq(q))
358 		blk_mq_exit_queue(q);
359 
360 	percpu_ref_exit(&q->q_usage_counter);
361 
362 	/* @q is and will stay empty, shutdown and put */
363 	blk_put_queue(q);
364 }
365 EXPORT_SYMBOL(blk_cleanup_queue);
366 
367 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
368 {
369 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
370 }
371 EXPORT_SYMBOL(blk_alloc_queue);
372 
373 /**
374  * blk_queue_enter() - try to increase q->q_usage_counter
375  * @q: request queue pointer
376  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
377  */
378 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
379 {
380 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
381 
382 	while (true) {
383 		bool success = false;
384 
385 		rcu_read_lock();
386 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
387 			/*
388 			 * The code that increments the pm_only counter is
389 			 * responsible for ensuring that that counter is
390 			 * globally visible before the queue is unfrozen.
391 			 */
392 			if (pm || !blk_queue_pm_only(q)) {
393 				success = true;
394 			} else {
395 				percpu_ref_put(&q->q_usage_counter);
396 			}
397 		}
398 		rcu_read_unlock();
399 
400 		if (success)
401 			return 0;
402 
403 		if (flags & BLK_MQ_REQ_NOWAIT)
404 			return -EBUSY;
405 
406 		/*
407 		 * read pair of barrier in blk_freeze_queue_start(),
408 		 * we need to order reading __PERCPU_REF_DEAD flag of
409 		 * .q_usage_counter and reading .mq_freeze_depth or
410 		 * queue dying flag, otherwise the following wait may
411 		 * never return if the two reads are reordered.
412 		 */
413 		smp_rmb();
414 
415 		wait_event(q->mq_freeze_wq,
416 			   (atomic_read(&q->mq_freeze_depth) == 0 &&
417 			    (pm || (blk_pm_request_resume(q),
418 				    !blk_queue_pm_only(q)))) ||
419 			   blk_queue_dying(q));
420 		if (blk_queue_dying(q))
421 			return -ENODEV;
422 	}
423 }
424 
425 void blk_queue_exit(struct request_queue *q)
426 {
427 	percpu_ref_put(&q->q_usage_counter);
428 }
429 
430 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
431 {
432 	struct request_queue *q =
433 		container_of(ref, struct request_queue, q_usage_counter);
434 
435 	wake_up_all(&q->mq_freeze_wq);
436 }
437 
438 static void blk_rq_timed_out_timer(struct timer_list *t)
439 {
440 	struct request_queue *q = from_timer(q, t, timeout);
441 
442 	kblockd_schedule_work(&q->timeout_work);
443 }
444 
445 static void blk_timeout_work(struct work_struct *work)
446 {
447 }
448 
449 /**
450  * blk_alloc_queue_node - allocate a request queue
451  * @gfp_mask: memory allocation flags
452  * @node_id: NUMA node to allocate memory from
453  */
454 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
455 {
456 	struct request_queue *q;
457 	int ret;
458 
459 	q = kmem_cache_alloc_node(blk_requestq_cachep,
460 				gfp_mask | __GFP_ZERO, node_id);
461 	if (!q)
462 		return NULL;
463 
464 	INIT_LIST_HEAD(&q->queue_head);
465 	q->last_merge = NULL;
466 
467 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
468 	if (q->id < 0)
469 		goto fail_q;
470 
471 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
472 	if (ret)
473 		goto fail_id;
474 
475 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
476 	if (!q->backing_dev_info)
477 		goto fail_split;
478 
479 	q->stats = blk_alloc_queue_stats();
480 	if (!q->stats)
481 		goto fail_stats;
482 
483 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
484 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
485 	q->backing_dev_info->name = "block";
486 	q->node = node_id;
487 
488 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
489 		    laptop_mode_timer_fn, 0);
490 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
491 	INIT_WORK(&q->timeout_work, blk_timeout_work);
492 	INIT_LIST_HEAD(&q->icq_list);
493 #ifdef CONFIG_BLK_CGROUP
494 	INIT_LIST_HEAD(&q->blkg_list);
495 #endif
496 
497 	kobject_init(&q->kobj, &blk_queue_ktype);
498 
499 #ifdef CONFIG_BLK_DEV_IO_TRACE
500 	mutex_init(&q->blk_trace_mutex);
501 #endif
502 	mutex_init(&q->sysfs_lock);
503 	spin_lock_init(&q->queue_lock);
504 
505 	init_waitqueue_head(&q->mq_freeze_wq);
506 
507 	/*
508 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
509 	 * See blk_register_queue() for details.
510 	 */
511 	if (percpu_ref_init(&q->q_usage_counter,
512 				blk_queue_usage_counter_release,
513 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
514 		goto fail_bdi;
515 
516 	if (blkcg_init_queue(q))
517 		goto fail_ref;
518 
519 	return q;
520 
521 fail_ref:
522 	percpu_ref_exit(&q->q_usage_counter);
523 fail_bdi:
524 	blk_free_queue_stats(q->stats);
525 fail_stats:
526 	bdi_put(q->backing_dev_info);
527 fail_split:
528 	bioset_exit(&q->bio_split);
529 fail_id:
530 	ida_simple_remove(&blk_queue_ida, q->id);
531 fail_q:
532 	kmem_cache_free(blk_requestq_cachep, q);
533 	return NULL;
534 }
535 EXPORT_SYMBOL(blk_alloc_queue_node);
536 
537 bool blk_get_queue(struct request_queue *q)
538 {
539 	if (likely(!blk_queue_dying(q))) {
540 		__blk_get_queue(q);
541 		return true;
542 	}
543 
544 	return false;
545 }
546 EXPORT_SYMBOL(blk_get_queue);
547 
548 /**
549  * blk_get_request - allocate a request
550  * @q: request queue to allocate a request for
551  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
552  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
553  */
554 struct request *blk_get_request(struct request_queue *q, unsigned int op,
555 				blk_mq_req_flags_t flags)
556 {
557 	struct request *req;
558 
559 	WARN_ON_ONCE(op & REQ_NOWAIT);
560 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
561 
562 	req = blk_mq_alloc_request(q, op, flags);
563 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
564 		q->mq_ops->initialize_rq_fn(req);
565 
566 	return req;
567 }
568 EXPORT_SYMBOL(blk_get_request);
569 
570 void blk_put_request(struct request *req)
571 {
572 	blk_mq_free_request(req);
573 }
574 EXPORT_SYMBOL(blk_put_request);
575 
576 bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
577 			    struct bio *bio)
578 {
579 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
580 
581 	if (!ll_back_merge_fn(q, req, bio))
582 		return false;
583 
584 	trace_block_bio_backmerge(q, req, bio);
585 
586 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
587 		blk_rq_set_mixed_merge(req);
588 
589 	req->biotail->bi_next = bio;
590 	req->biotail = bio;
591 	req->__data_len += bio->bi_iter.bi_size;
592 
593 	blk_account_io_start(req, false);
594 	return true;
595 }
596 
597 bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
598 			     struct bio *bio)
599 {
600 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
601 
602 	if (!ll_front_merge_fn(q, req, bio))
603 		return false;
604 
605 	trace_block_bio_frontmerge(q, req, bio);
606 
607 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
608 		blk_rq_set_mixed_merge(req);
609 
610 	bio->bi_next = req->bio;
611 	req->bio = bio;
612 
613 	req->__sector = bio->bi_iter.bi_sector;
614 	req->__data_len += bio->bi_iter.bi_size;
615 
616 	blk_account_io_start(req, false);
617 	return true;
618 }
619 
620 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
621 		struct bio *bio)
622 {
623 	unsigned short segments = blk_rq_nr_discard_segments(req);
624 
625 	if (segments >= queue_max_discard_segments(q))
626 		goto no_merge;
627 	if (blk_rq_sectors(req) + bio_sectors(bio) >
628 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
629 		goto no_merge;
630 
631 	req->biotail->bi_next = bio;
632 	req->biotail = bio;
633 	req->__data_len += bio->bi_iter.bi_size;
634 	req->nr_phys_segments = segments + 1;
635 
636 	blk_account_io_start(req, false);
637 	return true;
638 no_merge:
639 	req_set_nomerge(q, req);
640 	return false;
641 }
642 
643 /**
644  * blk_attempt_plug_merge - try to merge with %current's plugged list
645  * @q: request_queue new bio is being queued at
646  * @bio: new bio being queued
647  * @same_queue_rq: pointer to &struct request that gets filled in when
648  * another request associated with @q is found on the plug list
649  * (optional, may be %NULL)
650  *
651  * Determine whether @bio being queued on @q can be merged with a request
652  * on %current's plugged list.  Returns %true if merge was successful,
653  * otherwise %false.
654  *
655  * Plugging coalesces IOs from the same issuer for the same purpose without
656  * going through @q->queue_lock.  As such it's more of an issuing mechanism
657  * than scheduling, and the request, while may have elvpriv data, is not
658  * added on the elevator at this point.  In addition, we don't have
659  * reliable access to the elevator outside queue lock.  Only check basic
660  * merging parameters without querying the elevator.
661  *
662  * Caller must ensure !blk_queue_nomerges(q) beforehand.
663  */
664 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
665 			    struct request **same_queue_rq)
666 {
667 	struct blk_plug *plug;
668 	struct request *rq;
669 	struct list_head *plug_list;
670 
671 	plug = current->plug;
672 	if (!plug)
673 		return false;
674 
675 	plug_list = &plug->mq_list;
676 
677 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
678 		bool merged = false;
679 
680 		if (rq->q == q && same_queue_rq) {
681 			/*
682 			 * Only blk-mq multiple hardware queues case checks the
683 			 * rq in the same queue, there should be only one such
684 			 * rq in a queue
685 			 **/
686 			*same_queue_rq = rq;
687 		}
688 
689 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
690 			continue;
691 
692 		switch (blk_try_merge(rq, bio)) {
693 		case ELEVATOR_BACK_MERGE:
694 			merged = bio_attempt_back_merge(q, rq, bio);
695 			break;
696 		case ELEVATOR_FRONT_MERGE:
697 			merged = bio_attempt_front_merge(q, rq, bio);
698 			break;
699 		case ELEVATOR_DISCARD_MERGE:
700 			merged = bio_attempt_discard_merge(q, rq, bio);
701 			break;
702 		default:
703 			break;
704 		}
705 
706 		if (merged)
707 			return true;
708 	}
709 
710 	return false;
711 }
712 
713 void blk_init_request_from_bio(struct request *req, struct bio *bio)
714 {
715 	if (bio->bi_opf & REQ_RAHEAD)
716 		req->cmd_flags |= REQ_FAILFAST_MASK;
717 
718 	req->__sector = bio->bi_iter.bi_sector;
719 	req->ioprio = bio_prio(bio);
720 	req->write_hint = bio->bi_write_hint;
721 	blk_rq_bio_prep(req->q, req, bio);
722 }
723 EXPORT_SYMBOL_GPL(blk_init_request_from_bio);
724 
725 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
726 {
727 	char b[BDEVNAME_SIZE];
728 
729 	printk(KERN_INFO "attempt to access beyond end of device\n");
730 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
731 			bio_devname(bio, b), bio->bi_opf,
732 			(unsigned long long)bio_end_sector(bio),
733 			(long long)maxsector);
734 }
735 
736 #ifdef CONFIG_FAIL_MAKE_REQUEST
737 
738 static DECLARE_FAULT_ATTR(fail_make_request);
739 
740 static int __init setup_fail_make_request(char *str)
741 {
742 	return setup_fault_attr(&fail_make_request, str);
743 }
744 __setup("fail_make_request=", setup_fail_make_request);
745 
746 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
747 {
748 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
749 }
750 
751 static int __init fail_make_request_debugfs(void)
752 {
753 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
754 						NULL, &fail_make_request);
755 
756 	return PTR_ERR_OR_ZERO(dir);
757 }
758 
759 late_initcall(fail_make_request_debugfs);
760 
761 #else /* CONFIG_FAIL_MAKE_REQUEST */
762 
763 static inline bool should_fail_request(struct hd_struct *part,
764 					unsigned int bytes)
765 {
766 	return false;
767 }
768 
769 #endif /* CONFIG_FAIL_MAKE_REQUEST */
770 
771 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
772 {
773 	const int op = bio_op(bio);
774 
775 	if (part->policy && op_is_write(op)) {
776 		char b[BDEVNAME_SIZE];
777 
778 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
779 			return false;
780 
781 		WARN_ONCE(1,
782 		       "generic_make_request: Trying to write "
783 			"to read-only block-device %s (partno %d)\n",
784 			bio_devname(bio, b), part->partno);
785 		/* Older lvm-tools actually trigger this */
786 		return false;
787 	}
788 
789 	return false;
790 }
791 
792 static noinline int should_fail_bio(struct bio *bio)
793 {
794 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
795 		return -EIO;
796 	return 0;
797 }
798 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
799 
800 /*
801  * Check whether this bio extends beyond the end of the device or partition.
802  * This may well happen - the kernel calls bread() without checking the size of
803  * the device, e.g., when mounting a file system.
804  */
805 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
806 {
807 	unsigned int nr_sectors = bio_sectors(bio);
808 
809 	if (nr_sectors && maxsector &&
810 	    (nr_sectors > maxsector ||
811 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
812 		handle_bad_sector(bio, maxsector);
813 		return -EIO;
814 	}
815 	return 0;
816 }
817 
818 /*
819  * Remap block n of partition p to block n+start(p) of the disk.
820  */
821 static inline int blk_partition_remap(struct bio *bio)
822 {
823 	struct hd_struct *p;
824 	int ret = -EIO;
825 
826 	rcu_read_lock();
827 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
828 	if (unlikely(!p))
829 		goto out;
830 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
831 		goto out;
832 	if (unlikely(bio_check_ro(bio, p)))
833 		goto out;
834 
835 	/*
836 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
837 	 * Include a test for the reset op code and perform the remap if needed.
838 	 */
839 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
840 		if (bio_check_eod(bio, part_nr_sects_read(p)))
841 			goto out;
842 		bio->bi_iter.bi_sector += p->start_sect;
843 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
844 				      bio->bi_iter.bi_sector - p->start_sect);
845 	}
846 	bio->bi_partno = 0;
847 	ret = 0;
848 out:
849 	rcu_read_unlock();
850 	return ret;
851 }
852 
853 static noinline_for_stack bool
854 generic_make_request_checks(struct bio *bio)
855 {
856 	struct request_queue *q;
857 	int nr_sectors = bio_sectors(bio);
858 	blk_status_t status = BLK_STS_IOERR;
859 	char b[BDEVNAME_SIZE];
860 
861 	might_sleep();
862 
863 	q = bio->bi_disk->queue;
864 	if (unlikely(!q)) {
865 		printk(KERN_ERR
866 		       "generic_make_request: Trying to access "
867 			"nonexistent block-device %s (%Lu)\n",
868 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
869 		goto end_io;
870 	}
871 
872 	/*
873 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
874 	 * if queue is not a request based queue.
875 	 */
876 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
877 		goto not_supported;
878 
879 	if (should_fail_bio(bio))
880 		goto end_io;
881 
882 	if (bio->bi_partno) {
883 		if (unlikely(blk_partition_remap(bio)))
884 			goto end_io;
885 	} else {
886 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
887 			goto end_io;
888 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
889 			goto end_io;
890 	}
891 
892 	/*
893 	 * Filter flush bio's early so that make_request based
894 	 * drivers without flush support don't have to worry
895 	 * about them.
896 	 */
897 	if (op_is_flush(bio->bi_opf) &&
898 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
899 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
900 		if (!nr_sectors) {
901 			status = BLK_STS_OK;
902 			goto end_io;
903 		}
904 	}
905 
906 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
907 		bio->bi_opf &= ~REQ_HIPRI;
908 
909 	switch (bio_op(bio)) {
910 	case REQ_OP_DISCARD:
911 		if (!blk_queue_discard(q))
912 			goto not_supported;
913 		break;
914 	case REQ_OP_SECURE_ERASE:
915 		if (!blk_queue_secure_erase(q))
916 			goto not_supported;
917 		break;
918 	case REQ_OP_WRITE_SAME:
919 		if (!q->limits.max_write_same_sectors)
920 			goto not_supported;
921 		break;
922 	case REQ_OP_ZONE_RESET:
923 		if (!blk_queue_is_zoned(q))
924 			goto not_supported;
925 		break;
926 	case REQ_OP_WRITE_ZEROES:
927 		if (!q->limits.max_write_zeroes_sectors)
928 			goto not_supported;
929 		break;
930 	default:
931 		break;
932 	}
933 
934 	/*
935 	 * Various block parts want %current->io_context and lazy ioc
936 	 * allocation ends up trading a lot of pain for a small amount of
937 	 * memory.  Just allocate it upfront.  This may fail and block
938 	 * layer knows how to live with it.
939 	 */
940 	create_io_context(GFP_ATOMIC, q->node);
941 
942 	if (!blkcg_bio_issue_check(q, bio))
943 		return false;
944 
945 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
946 		trace_block_bio_queue(q, bio);
947 		/* Now that enqueuing has been traced, we need to trace
948 		 * completion as well.
949 		 */
950 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
951 	}
952 	return true;
953 
954 not_supported:
955 	status = BLK_STS_NOTSUPP;
956 end_io:
957 	bio->bi_status = status;
958 	bio_endio(bio);
959 	return false;
960 }
961 
962 /**
963  * generic_make_request - hand a buffer to its device driver for I/O
964  * @bio:  The bio describing the location in memory and on the device.
965  *
966  * generic_make_request() is used to make I/O requests of block
967  * devices. It is passed a &struct bio, which describes the I/O that needs
968  * to be done.
969  *
970  * generic_make_request() does not return any status.  The
971  * success/failure status of the request, along with notification of
972  * completion, is delivered asynchronously through the bio->bi_end_io
973  * function described (one day) else where.
974  *
975  * The caller of generic_make_request must make sure that bi_io_vec
976  * are set to describe the memory buffer, and that bi_dev and bi_sector are
977  * set to describe the device address, and the
978  * bi_end_io and optionally bi_private are set to describe how
979  * completion notification should be signaled.
980  *
981  * generic_make_request and the drivers it calls may use bi_next if this
982  * bio happens to be merged with someone else, and may resubmit the bio to
983  * a lower device by calling into generic_make_request recursively, which
984  * means the bio should NOT be touched after the call to ->make_request_fn.
985  */
986 blk_qc_t generic_make_request(struct bio *bio)
987 {
988 	/*
989 	 * bio_list_on_stack[0] contains bios submitted by the current
990 	 * make_request_fn.
991 	 * bio_list_on_stack[1] contains bios that were submitted before
992 	 * the current make_request_fn, but that haven't been processed
993 	 * yet.
994 	 */
995 	struct bio_list bio_list_on_stack[2];
996 	blk_mq_req_flags_t flags = 0;
997 	struct request_queue *q = bio->bi_disk->queue;
998 	blk_qc_t ret = BLK_QC_T_NONE;
999 
1000 	if (bio->bi_opf & REQ_NOWAIT)
1001 		flags = BLK_MQ_REQ_NOWAIT;
1002 	if (bio_flagged(bio, BIO_QUEUE_ENTERED))
1003 		blk_queue_enter_live(q);
1004 	else if (blk_queue_enter(q, flags) < 0) {
1005 		if (!blk_queue_dying(q) && (bio->bi_opf & REQ_NOWAIT))
1006 			bio_wouldblock_error(bio);
1007 		else
1008 			bio_io_error(bio);
1009 		return ret;
1010 	}
1011 
1012 	if (!generic_make_request_checks(bio))
1013 		goto out;
1014 
1015 	/*
1016 	 * We only want one ->make_request_fn to be active at a time, else
1017 	 * stack usage with stacked devices could be a problem.  So use
1018 	 * current->bio_list to keep a list of requests submited by a
1019 	 * make_request_fn function.  current->bio_list is also used as a
1020 	 * flag to say if generic_make_request is currently active in this
1021 	 * task or not.  If it is NULL, then no make_request is active.  If
1022 	 * it is non-NULL, then a make_request is active, and new requests
1023 	 * should be added at the tail
1024 	 */
1025 	if (current->bio_list) {
1026 		bio_list_add(&current->bio_list[0], bio);
1027 		goto out;
1028 	}
1029 
1030 	/* following loop may be a bit non-obvious, and so deserves some
1031 	 * explanation.
1032 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1033 	 * ensure that) so we have a list with a single bio.
1034 	 * We pretend that we have just taken it off a longer list, so
1035 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1036 	 * thus initialising the bio_list of new bios to be
1037 	 * added.  ->make_request() may indeed add some more bios
1038 	 * through a recursive call to generic_make_request.  If it
1039 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1040 	 * from the top.  In this case we really did just take the bio
1041 	 * of the top of the list (no pretending) and so remove it from
1042 	 * bio_list, and call into ->make_request() again.
1043 	 */
1044 	BUG_ON(bio->bi_next);
1045 	bio_list_init(&bio_list_on_stack[0]);
1046 	current->bio_list = bio_list_on_stack;
1047 	do {
1048 		bool enter_succeeded = true;
1049 
1050 		if (unlikely(q != bio->bi_disk->queue)) {
1051 			if (q)
1052 				blk_queue_exit(q);
1053 			q = bio->bi_disk->queue;
1054 			flags = 0;
1055 			if (bio->bi_opf & REQ_NOWAIT)
1056 				flags = BLK_MQ_REQ_NOWAIT;
1057 			if (blk_queue_enter(q, flags) < 0) {
1058 				enter_succeeded = false;
1059 				q = NULL;
1060 			}
1061 		}
1062 
1063 		if (enter_succeeded) {
1064 			struct bio_list lower, same;
1065 
1066 			/* Create a fresh bio_list for all subordinate requests */
1067 			bio_list_on_stack[1] = bio_list_on_stack[0];
1068 			bio_list_init(&bio_list_on_stack[0]);
1069 			ret = q->make_request_fn(q, bio);
1070 
1071 			/* sort new bios into those for a lower level
1072 			 * and those for the same level
1073 			 */
1074 			bio_list_init(&lower);
1075 			bio_list_init(&same);
1076 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1077 				if (q == bio->bi_disk->queue)
1078 					bio_list_add(&same, bio);
1079 				else
1080 					bio_list_add(&lower, bio);
1081 			/* now assemble so we handle the lowest level first */
1082 			bio_list_merge(&bio_list_on_stack[0], &lower);
1083 			bio_list_merge(&bio_list_on_stack[0], &same);
1084 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1085 		} else {
1086 			if (unlikely(!blk_queue_dying(q) &&
1087 					(bio->bi_opf & REQ_NOWAIT)))
1088 				bio_wouldblock_error(bio);
1089 			else
1090 				bio_io_error(bio);
1091 		}
1092 		bio = bio_list_pop(&bio_list_on_stack[0]);
1093 	} while (bio);
1094 	current->bio_list = NULL; /* deactivate */
1095 
1096 out:
1097 	if (q)
1098 		blk_queue_exit(q);
1099 	return ret;
1100 }
1101 EXPORT_SYMBOL(generic_make_request);
1102 
1103 /**
1104  * direct_make_request - hand a buffer directly to its device driver for I/O
1105  * @bio:  The bio describing the location in memory and on the device.
1106  *
1107  * This function behaves like generic_make_request(), but does not protect
1108  * against recursion.  Must only be used if the called driver is known
1109  * to not call generic_make_request (or direct_make_request) again from
1110  * its make_request function.  (Calling direct_make_request again from
1111  * a workqueue is perfectly fine as that doesn't recurse).
1112  */
1113 blk_qc_t direct_make_request(struct bio *bio)
1114 {
1115 	struct request_queue *q = bio->bi_disk->queue;
1116 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1117 	blk_qc_t ret;
1118 
1119 	if (!generic_make_request_checks(bio))
1120 		return BLK_QC_T_NONE;
1121 
1122 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1123 		if (nowait && !blk_queue_dying(q))
1124 			bio->bi_status = BLK_STS_AGAIN;
1125 		else
1126 			bio->bi_status = BLK_STS_IOERR;
1127 		bio_endio(bio);
1128 		return BLK_QC_T_NONE;
1129 	}
1130 
1131 	ret = q->make_request_fn(q, bio);
1132 	blk_queue_exit(q);
1133 	return ret;
1134 }
1135 EXPORT_SYMBOL_GPL(direct_make_request);
1136 
1137 /**
1138  * submit_bio - submit a bio to the block device layer for I/O
1139  * @bio: The &struct bio which describes the I/O
1140  *
1141  * submit_bio() is very similar in purpose to generic_make_request(), and
1142  * uses that function to do most of the work. Both are fairly rough
1143  * interfaces; @bio must be presetup and ready for I/O.
1144  *
1145  */
1146 blk_qc_t submit_bio(struct bio *bio)
1147 {
1148 	/*
1149 	 * If it's a regular read/write or a barrier with data attached,
1150 	 * go through the normal accounting stuff before submission.
1151 	 */
1152 	if (bio_has_data(bio)) {
1153 		unsigned int count;
1154 
1155 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1156 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1157 		else
1158 			count = bio_sectors(bio);
1159 
1160 		if (op_is_write(bio_op(bio))) {
1161 			count_vm_events(PGPGOUT, count);
1162 		} else {
1163 			task_io_account_read(bio->bi_iter.bi_size);
1164 			count_vm_events(PGPGIN, count);
1165 		}
1166 
1167 		if (unlikely(block_dump)) {
1168 			char b[BDEVNAME_SIZE];
1169 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1170 			current->comm, task_pid_nr(current),
1171 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1172 				(unsigned long long)bio->bi_iter.bi_sector,
1173 				bio_devname(bio, b), count);
1174 		}
1175 	}
1176 
1177 	return generic_make_request(bio);
1178 }
1179 EXPORT_SYMBOL(submit_bio);
1180 
1181 /**
1182  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1183  *                              for new the queue limits
1184  * @q:  the queue
1185  * @rq: the request being checked
1186  *
1187  * Description:
1188  *    @rq may have been made based on weaker limitations of upper-level queues
1189  *    in request stacking drivers, and it may violate the limitation of @q.
1190  *    Since the block layer and the underlying device driver trust @rq
1191  *    after it is inserted to @q, it should be checked against @q before
1192  *    the insertion using this generic function.
1193  *
1194  *    Request stacking drivers like request-based dm may change the queue
1195  *    limits when retrying requests on other queues. Those requests need
1196  *    to be checked against the new queue limits again during dispatch.
1197  */
1198 static int blk_cloned_rq_check_limits(struct request_queue *q,
1199 				      struct request *rq)
1200 {
1201 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1202 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1203 		return -EIO;
1204 	}
1205 
1206 	/*
1207 	 * queue's settings related to segment counting like q->bounce_pfn
1208 	 * may differ from that of other stacking queues.
1209 	 * Recalculate it to check the request correctly on this queue's
1210 	 * limitation.
1211 	 */
1212 	blk_recalc_rq_segments(rq);
1213 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1214 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1215 		return -EIO;
1216 	}
1217 
1218 	return 0;
1219 }
1220 
1221 /**
1222  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1223  * @q:  the queue to submit the request
1224  * @rq: the request being queued
1225  */
1226 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1227 {
1228 	if (blk_cloned_rq_check_limits(q, rq))
1229 		return BLK_STS_IOERR;
1230 
1231 	if (rq->rq_disk &&
1232 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1233 		return BLK_STS_IOERR;
1234 
1235 	if (blk_queue_io_stat(q))
1236 		blk_account_io_start(rq, true);
1237 
1238 	/*
1239 	 * Since we have a scheduler attached on the top device,
1240 	 * bypass a potential scheduler on the bottom device for
1241 	 * insert.
1242 	 */
1243 	return blk_mq_request_issue_directly(rq, true);
1244 }
1245 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1246 
1247 /**
1248  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1249  * @rq: request to examine
1250  *
1251  * Description:
1252  *     A request could be merge of IOs which require different failure
1253  *     handling.  This function determines the number of bytes which
1254  *     can be failed from the beginning of the request without
1255  *     crossing into area which need to be retried further.
1256  *
1257  * Return:
1258  *     The number of bytes to fail.
1259  */
1260 unsigned int blk_rq_err_bytes(const struct request *rq)
1261 {
1262 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1263 	unsigned int bytes = 0;
1264 	struct bio *bio;
1265 
1266 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1267 		return blk_rq_bytes(rq);
1268 
1269 	/*
1270 	 * Currently the only 'mixing' which can happen is between
1271 	 * different fastfail types.  We can safely fail portions
1272 	 * which have all the failfast bits that the first one has -
1273 	 * the ones which are at least as eager to fail as the first
1274 	 * one.
1275 	 */
1276 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1277 		if ((bio->bi_opf & ff) != ff)
1278 			break;
1279 		bytes += bio->bi_iter.bi_size;
1280 	}
1281 
1282 	/* this could lead to infinite loop */
1283 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1284 	return bytes;
1285 }
1286 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1287 
1288 void blk_account_io_completion(struct request *req, unsigned int bytes)
1289 {
1290 	if (blk_do_io_stat(req)) {
1291 		const int sgrp = op_stat_group(req_op(req));
1292 		struct hd_struct *part;
1293 
1294 		part_stat_lock();
1295 		part = req->part;
1296 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1297 		part_stat_unlock();
1298 	}
1299 }
1300 
1301 void blk_account_io_done(struct request *req, u64 now)
1302 {
1303 	/*
1304 	 * Account IO completion.  flush_rq isn't accounted as a
1305 	 * normal IO on queueing nor completion.  Accounting the
1306 	 * containing request is enough.
1307 	 */
1308 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1309 		const int sgrp = op_stat_group(req_op(req));
1310 		struct hd_struct *part;
1311 
1312 		part_stat_lock();
1313 		part = req->part;
1314 
1315 		update_io_ticks(part, jiffies);
1316 		part_stat_inc(part, ios[sgrp]);
1317 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1318 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1319 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1320 
1321 		hd_struct_put(part);
1322 		part_stat_unlock();
1323 	}
1324 }
1325 
1326 void blk_account_io_start(struct request *rq, bool new_io)
1327 {
1328 	struct hd_struct *part;
1329 	int rw = rq_data_dir(rq);
1330 
1331 	if (!blk_do_io_stat(rq))
1332 		return;
1333 
1334 	part_stat_lock();
1335 
1336 	if (!new_io) {
1337 		part = rq->part;
1338 		part_stat_inc(part, merges[rw]);
1339 	} else {
1340 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1341 		if (!hd_struct_try_get(part)) {
1342 			/*
1343 			 * The partition is already being removed,
1344 			 * the request will be accounted on the disk only
1345 			 *
1346 			 * We take a reference on disk->part0 although that
1347 			 * partition will never be deleted, so we can treat
1348 			 * it as any other partition.
1349 			 */
1350 			part = &rq->rq_disk->part0;
1351 			hd_struct_get(part);
1352 		}
1353 		part_inc_in_flight(rq->q, part, rw);
1354 		rq->part = part;
1355 	}
1356 
1357 	update_io_ticks(part, jiffies);
1358 
1359 	part_stat_unlock();
1360 }
1361 
1362 /*
1363  * Steal bios from a request and add them to a bio list.
1364  * The request must not have been partially completed before.
1365  */
1366 void blk_steal_bios(struct bio_list *list, struct request *rq)
1367 {
1368 	if (rq->bio) {
1369 		if (list->tail)
1370 			list->tail->bi_next = rq->bio;
1371 		else
1372 			list->head = rq->bio;
1373 		list->tail = rq->biotail;
1374 
1375 		rq->bio = NULL;
1376 		rq->biotail = NULL;
1377 	}
1378 
1379 	rq->__data_len = 0;
1380 }
1381 EXPORT_SYMBOL_GPL(blk_steal_bios);
1382 
1383 /**
1384  * blk_update_request - Special helper function for request stacking drivers
1385  * @req:      the request being processed
1386  * @error:    block status code
1387  * @nr_bytes: number of bytes to complete @req
1388  *
1389  * Description:
1390  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1391  *     the request structure even if @req doesn't have leftover.
1392  *     If @req has leftover, sets it up for the next range of segments.
1393  *
1394  *     This special helper function is only for request stacking drivers
1395  *     (e.g. request-based dm) so that they can handle partial completion.
1396  *     Actual device drivers should use blk_end_request instead.
1397  *
1398  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1399  *     %false return from this function.
1400  *
1401  * Note:
1402  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1403  *	blk_rq_bytes() and in blk_update_request().
1404  *
1405  * Return:
1406  *     %false - this request doesn't have any more data
1407  *     %true  - this request has more data
1408  **/
1409 bool blk_update_request(struct request *req, blk_status_t error,
1410 		unsigned int nr_bytes)
1411 {
1412 	int total_bytes;
1413 
1414 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1415 
1416 	if (!req->bio)
1417 		return false;
1418 
1419 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1420 		     !(req->rq_flags & RQF_QUIET)))
1421 		print_req_error(req, error);
1422 
1423 	blk_account_io_completion(req, nr_bytes);
1424 
1425 	total_bytes = 0;
1426 	while (req->bio) {
1427 		struct bio *bio = req->bio;
1428 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1429 
1430 		if (bio_bytes == bio->bi_iter.bi_size)
1431 			req->bio = bio->bi_next;
1432 
1433 		/* Completion has already been traced */
1434 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1435 		req_bio_endio(req, bio, bio_bytes, error);
1436 
1437 		total_bytes += bio_bytes;
1438 		nr_bytes -= bio_bytes;
1439 
1440 		if (!nr_bytes)
1441 			break;
1442 	}
1443 
1444 	/*
1445 	 * completely done
1446 	 */
1447 	if (!req->bio) {
1448 		/*
1449 		 * Reset counters so that the request stacking driver
1450 		 * can find how many bytes remain in the request
1451 		 * later.
1452 		 */
1453 		req->__data_len = 0;
1454 		return false;
1455 	}
1456 
1457 	req->__data_len -= total_bytes;
1458 
1459 	/* update sector only for requests with clear definition of sector */
1460 	if (!blk_rq_is_passthrough(req))
1461 		req->__sector += total_bytes >> 9;
1462 
1463 	/* mixed attributes always follow the first bio */
1464 	if (req->rq_flags & RQF_MIXED_MERGE) {
1465 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1466 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1467 	}
1468 
1469 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1470 		/*
1471 		 * If total number of sectors is less than the first segment
1472 		 * size, something has gone terribly wrong.
1473 		 */
1474 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1475 			blk_dump_rq_flags(req, "request botched");
1476 			req->__data_len = blk_rq_cur_bytes(req);
1477 		}
1478 
1479 		/* recalculate the number of segments */
1480 		blk_recalc_rq_segments(req);
1481 	}
1482 
1483 	return true;
1484 }
1485 EXPORT_SYMBOL_GPL(blk_update_request);
1486 
1487 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1488 		     struct bio *bio)
1489 {
1490 	if (bio_has_data(bio))
1491 		rq->nr_phys_segments = bio_phys_segments(q, bio);
1492 	else if (bio_op(bio) == REQ_OP_DISCARD)
1493 		rq->nr_phys_segments = 1;
1494 
1495 	rq->__data_len = bio->bi_iter.bi_size;
1496 	rq->bio = rq->biotail = bio;
1497 
1498 	if (bio->bi_disk)
1499 		rq->rq_disk = bio->bi_disk;
1500 }
1501 
1502 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1503 /**
1504  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1505  * @rq: the request to be flushed
1506  *
1507  * Description:
1508  *     Flush all pages in @rq.
1509  */
1510 void rq_flush_dcache_pages(struct request *rq)
1511 {
1512 	struct req_iterator iter;
1513 	struct bio_vec bvec;
1514 
1515 	rq_for_each_segment(bvec, rq, iter)
1516 		flush_dcache_page(bvec.bv_page);
1517 }
1518 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1519 #endif
1520 
1521 /**
1522  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1523  * @q : the queue of the device being checked
1524  *
1525  * Description:
1526  *    Check if underlying low-level drivers of a device are busy.
1527  *    If the drivers want to export their busy state, they must set own
1528  *    exporting function using blk_queue_lld_busy() first.
1529  *
1530  *    Basically, this function is used only by request stacking drivers
1531  *    to stop dispatching requests to underlying devices when underlying
1532  *    devices are busy.  This behavior helps more I/O merging on the queue
1533  *    of the request stacking driver and prevents I/O throughput regression
1534  *    on burst I/O load.
1535  *
1536  * Return:
1537  *    0 - Not busy (The request stacking driver should dispatch request)
1538  *    1 - Busy (The request stacking driver should stop dispatching request)
1539  */
1540 int blk_lld_busy(struct request_queue *q)
1541 {
1542 	if (queue_is_mq(q) && q->mq_ops->busy)
1543 		return q->mq_ops->busy(q);
1544 
1545 	return 0;
1546 }
1547 EXPORT_SYMBOL_GPL(blk_lld_busy);
1548 
1549 /**
1550  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1551  * @rq: the clone request to be cleaned up
1552  *
1553  * Description:
1554  *     Free all bios in @rq for a cloned request.
1555  */
1556 void blk_rq_unprep_clone(struct request *rq)
1557 {
1558 	struct bio *bio;
1559 
1560 	while ((bio = rq->bio) != NULL) {
1561 		rq->bio = bio->bi_next;
1562 
1563 		bio_put(bio);
1564 	}
1565 }
1566 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1567 
1568 /*
1569  * Copy attributes of the original request to the clone request.
1570  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1571  */
1572 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1573 {
1574 	dst->__sector = blk_rq_pos(src);
1575 	dst->__data_len = blk_rq_bytes(src);
1576 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1577 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1578 		dst->special_vec = src->special_vec;
1579 	}
1580 	dst->nr_phys_segments = src->nr_phys_segments;
1581 	dst->ioprio = src->ioprio;
1582 	dst->extra_len = src->extra_len;
1583 }
1584 
1585 /**
1586  * blk_rq_prep_clone - Helper function to setup clone request
1587  * @rq: the request to be setup
1588  * @rq_src: original request to be cloned
1589  * @bs: bio_set that bios for clone are allocated from
1590  * @gfp_mask: memory allocation mask for bio
1591  * @bio_ctr: setup function to be called for each clone bio.
1592  *           Returns %0 for success, non %0 for failure.
1593  * @data: private data to be passed to @bio_ctr
1594  *
1595  * Description:
1596  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1597  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1598  *     are not copied, and copying such parts is the caller's responsibility.
1599  *     Also, pages which the original bios are pointing to are not copied
1600  *     and the cloned bios just point same pages.
1601  *     So cloned bios must be completed before original bios, which means
1602  *     the caller must complete @rq before @rq_src.
1603  */
1604 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1605 		      struct bio_set *bs, gfp_t gfp_mask,
1606 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1607 		      void *data)
1608 {
1609 	struct bio *bio, *bio_src;
1610 
1611 	if (!bs)
1612 		bs = &fs_bio_set;
1613 
1614 	__rq_for_each_bio(bio_src, rq_src) {
1615 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1616 		if (!bio)
1617 			goto free_and_out;
1618 
1619 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1620 			goto free_and_out;
1621 
1622 		if (rq->bio) {
1623 			rq->biotail->bi_next = bio;
1624 			rq->biotail = bio;
1625 		} else
1626 			rq->bio = rq->biotail = bio;
1627 	}
1628 
1629 	__blk_rq_prep_clone(rq, rq_src);
1630 
1631 	return 0;
1632 
1633 free_and_out:
1634 	if (bio)
1635 		bio_put(bio);
1636 	blk_rq_unprep_clone(rq);
1637 
1638 	return -ENOMEM;
1639 }
1640 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1641 
1642 int kblockd_schedule_work(struct work_struct *work)
1643 {
1644 	return queue_work(kblockd_workqueue, work);
1645 }
1646 EXPORT_SYMBOL(kblockd_schedule_work);
1647 
1648 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1649 {
1650 	return queue_work_on(cpu, kblockd_workqueue, work);
1651 }
1652 EXPORT_SYMBOL(kblockd_schedule_work_on);
1653 
1654 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1655 				unsigned long delay)
1656 {
1657 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1658 }
1659 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1660 
1661 /**
1662  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1663  * @plug:	The &struct blk_plug that needs to be initialized
1664  *
1665  * Description:
1666  *   blk_start_plug() indicates to the block layer an intent by the caller
1667  *   to submit multiple I/O requests in a batch.  The block layer may use
1668  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1669  *   is called.  However, the block layer may choose to submit requests
1670  *   before a call to blk_finish_plug() if the number of queued I/Os
1671  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1672  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1673  *   the task schedules (see below).
1674  *
1675  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1676  *   pending I/O should the task end up blocking between blk_start_plug() and
1677  *   blk_finish_plug(). This is important from a performance perspective, but
1678  *   also ensures that we don't deadlock. For instance, if the task is blocking
1679  *   for a memory allocation, memory reclaim could end up wanting to free a
1680  *   page belonging to that request that is currently residing in our private
1681  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1682  *   this kind of deadlock.
1683  */
1684 void blk_start_plug(struct blk_plug *plug)
1685 {
1686 	struct task_struct *tsk = current;
1687 
1688 	/*
1689 	 * If this is a nested plug, don't actually assign it.
1690 	 */
1691 	if (tsk->plug)
1692 		return;
1693 
1694 	INIT_LIST_HEAD(&plug->mq_list);
1695 	INIT_LIST_HEAD(&plug->cb_list);
1696 	plug->rq_count = 0;
1697 	plug->multiple_queues = false;
1698 
1699 	/*
1700 	 * Store ordering should not be needed here, since a potential
1701 	 * preempt will imply a full memory barrier
1702 	 */
1703 	tsk->plug = plug;
1704 }
1705 EXPORT_SYMBOL(blk_start_plug);
1706 
1707 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1708 {
1709 	LIST_HEAD(callbacks);
1710 
1711 	while (!list_empty(&plug->cb_list)) {
1712 		list_splice_init(&plug->cb_list, &callbacks);
1713 
1714 		while (!list_empty(&callbacks)) {
1715 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1716 							  struct blk_plug_cb,
1717 							  list);
1718 			list_del(&cb->list);
1719 			cb->callback(cb, from_schedule);
1720 		}
1721 	}
1722 }
1723 
1724 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1725 				      int size)
1726 {
1727 	struct blk_plug *plug = current->plug;
1728 	struct blk_plug_cb *cb;
1729 
1730 	if (!plug)
1731 		return NULL;
1732 
1733 	list_for_each_entry(cb, &plug->cb_list, list)
1734 		if (cb->callback == unplug && cb->data == data)
1735 			return cb;
1736 
1737 	/* Not currently on the callback list */
1738 	BUG_ON(size < sizeof(*cb));
1739 	cb = kzalloc(size, GFP_ATOMIC);
1740 	if (cb) {
1741 		cb->data = data;
1742 		cb->callback = unplug;
1743 		list_add(&cb->list, &plug->cb_list);
1744 	}
1745 	return cb;
1746 }
1747 EXPORT_SYMBOL(blk_check_plugged);
1748 
1749 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1750 {
1751 	flush_plug_callbacks(plug, from_schedule);
1752 
1753 	if (!list_empty(&plug->mq_list))
1754 		blk_mq_flush_plug_list(plug, from_schedule);
1755 }
1756 
1757 /**
1758  * blk_finish_plug - mark the end of a batch of submitted I/O
1759  * @plug:	The &struct blk_plug passed to blk_start_plug()
1760  *
1761  * Description:
1762  * Indicate that a batch of I/O submissions is complete.  This function
1763  * must be paired with an initial call to blk_start_plug().  The intent
1764  * is to allow the block layer to optimize I/O submission.  See the
1765  * documentation for blk_start_plug() for more information.
1766  */
1767 void blk_finish_plug(struct blk_plug *plug)
1768 {
1769 	if (plug != current->plug)
1770 		return;
1771 	blk_flush_plug_list(plug, false);
1772 
1773 	current->plug = NULL;
1774 }
1775 EXPORT_SYMBOL(blk_finish_plug);
1776 
1777 int __init blk_dev_init(void)
1778 {
1779 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1780 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1781 			FIELD_SIZEOF(struct request, cmd_flags));
1782 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1783 			FIELD_SIZEOF(struct bio, bi_opf));
1784 
1785 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1786 	kblockd_workqueue = alloc_workqueue("kblockd",
1787 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1788 	if (!kblockd_workqueue)
1789 		panic("Failed to create kblockd\n");
1790 
1791 	blk_requestq_cachep = kmem_cache_create("request_queue",
1792 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1793 
1794 #ifdef CONFIG_DEBUG_FS
1795 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1796 #endif
1797 
1798 	return 0;
1799 }
1800