xref: /openbmc/linux/block/blk-core.c (revision 144679df)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 
53 struct dentry *blk_debugfs_root;
54 
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61 
62 static DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 static struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111 static const char *const blk_op_name[] = {
112 	REQ_OP_NAME(READ),
113 	REQ_OP_NAME(WRITE),
114 	REQ_OP_NAME(FLUSH),
115 	REQ_OP_NAME(DISCARD),
116 	REQ_OP_NAME(SECURE_ERASE),
117 	REQ_OP_NAME(ZONE_RESET),
118 	REQ_OP_NAME(ZONE_RESET_ALL),
119 	REQ_OP_NAME(ZONE_OPEN),
120 	REQ_OP_NAME(ZONE_CLOSE),
121 	REQ_OP_NAME(ZONE_FINISH),
122 	REQ_OP_NAME(ZONE_APPEND),
123 	REQ_OP_NAME(WRITE_ZEROES),
124 	REQ_OP_NAME(DRV_IN),
125 	REQ_OP_NAME(DRV_OUT),
126 };
127 #undef REQ_OP_NAME
128 
129 /**
130  * blk_op_str - Return string XXX in the REQ_OP_XXX.
131  * @op: REQ_OP_XXX.
132  *
133  * Description: Centralize block layer function to convert REQ_OP_XXX into
134  * string format. Useful in the debugging and tracing bio or request. For
135  * invalid REQ_OP_XXX it returns string "UNKNOWN".
136  */
137 inline const char *blk_op_str(enum req_op op)
138 {
139 	const char *op_str = "UNKNOWN";
140 
141 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 		op_str = blk_op_name[op];
143 
144 	return op_str;
145 }
146 EXPORT_SYMBOL_GPL(blk_op_str);
147 
148 static const struct {
149 	int		errno;
150 	const char	*name;
151 } blk_errors[] = {
152 	[BLK_STS_OK]		= { 0,		"" },
153 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
154 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
155 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
156 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
157 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
158 	[BLK_STS_RESV_CONFLICT]	= { -EBADE,	"reservation conflict" },
159 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
160 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
161 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
162 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
163 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
164 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
165 
166 	/* device mapper special case, should not leak out: */
167 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
168 
169 	/* zone device specific errors */
170 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
171 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
172 
173 	/* Command duration limit device-side timeout */
174 	[BLK_STS_DURATION_LIMIT]	= { -ETIME, "duration limit exceeded" },
175 
176 	/* everything else not covered above: */
177 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
178 };
179 
180 blk_status_t errno_to_blk_status(int errno)
181 {
182 	int i;
183 
184 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
185 		if (blk_errors[i].errno == errno)
186 			return (__force blk_status_t)i;
187 	}
188 
189 	return BLK_STS_IOERR;
190 }
191 EXPORT_SYMBOL_GPL(errno_to_blk_status);
192 
193 int blk_status_to_errno(blk_status_t status)
194 {
195 	int idx = (__force int)status;
196 
197 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
198 		return -EIO;
199 	return blk_errors[idx].errno;
200 }
201 EXPORT_SYMBOL_GPL(blk_status_to_errno);
202 
203 const char *blk_status_to_str(blk_status_t status)
204 {
205 	int idx = (__force int)status;
206 
207 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 		return "<null>";
209 	return blk_errors[idx].name;
210 }
211 
212 /**
213  * blk_sync_queue - cancel any pending callbacks on a queue
214  * @q: the queue
215  *
216  * Description:
217  *     The block layer may perform asynchronous callback activity
218  *     on a queue, such as calling the unplug function after a timeout.
219  *     A block device may call blk_sync_queue to ensure that any
220  *     such activity is cancelled, thus allowing it to release resources
221  *     that the callbacks might use. The caller must already have made sure
222  *     that its ->submit_bio will not re-add plugging prior to calling
223  *     this function.
224  *
225  *     This function does not cancel any asynchronous activity arising
226  *     out of elevator or throttling code. That would require elevator_exit()
227  *     and blkcg_exit_queue() to be called with queue lock initialized.
228  *
229  */
230 void blk_sync_queue(struct request_queue *q)
231 {
232 	del_timer_sync(&q->timeout);
233 	cancel_work_sync(&q->timeout_work);
234 }
235 EXPORT_SYMBOL(blk_sync_queue);
236 
237 /**
238  * blk_set_pm_only - increment pm_only counter
239  * @q: request queue pointer
240  */
241 void blk_set_pm_only(struct request_queue *q)
242 {
243 	atomic_inc(&q->pm_only);
244 }
245 EXPORT_SYMBOL_GPL(blk_set_pm_only);
246 
247 void blk_clear_pm_only(struct request_queue *q)
248 {
249 	int pm_only;
250 
251 	pm_only = atomic_dec_return(&q->pm_only);
252 	WARN_ON_ONCE(pm_only < 0);
253 	if (pm_only == 0)
254 		wake_up_all(&q->mq_freeze_wq);
255 }
256 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
257 
258 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
259 {
260 	struct request_queue *q = container_of(rcu_head,
261 			struct request_queue, rcu_head);
262 
263 	percpu_ref_exit(&q->q_usage_counter);
264 	kmem_cache_free(blk_requestq_cachep, q);
265 }
266 
267 static void blk_free_queue(struct request_queue *q)
268 {
269 	blk_free_queue_stats(q->stats);
270 	if (queue_is_mq(q))
271 		blk_mq_release(q);
272 
273 	ida_free(&blk_queue_ida, q->id);
274 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
275 }
276 
277 /**
278  * blk_put_queue - decrement the request_queue refcount
279  * @q: the request_queue structure to decrement the refcount for
280  *
281  * Decrements the refcount of the request_queue and free it when the refcount
282  * reaches 0.
283  */
284 void blk_put_queue(struct request_queue *q)
285 {
286 	if (refcount_dec_and_test(&q->refs))
287 		blk_free_queue(q);
288 }
289 EXPORT_SYMBOL(blk_put_queue);
290 
291 void blk_queue_start_drain(struct request_queue *q)
292 {
293 	/*
294 	 * When queue DYING flag is set, we need to block new req
295 	 * entering queue, so we call blk_freeze_queue_start() to
296 	 * prevent I/O from crossing blk_queue_enter().
297 	 */
298 	blk_freeze_queue_start(q);
299 	if (queue_is_mq(q))
300 		blk_mq_wake_waiters(q);
301 	/* Make blk_queue_enter() reexamine the DYING flag. */
302 	wake_up_all(&q->mq_freeze_wq);
303 }
304 
305 /**
306  * blk_queue_enter() - try to increase q->q_usage_counter
307  * @q: request queue pointer
308  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
309  */
310 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
311 {
312 	const bool pm = flags & BLK_MQ_REQ_PM;
313 
314 	while (!blk_try_enter_queue(q, pm)) {
315 		if (flags & BLK_MQ_REQ_NOWAIT)
316 			return -EAGAIN;
317 
318 		/*
319 		 * read pair of barrier in blk_freeze_queue_start(), we need to
320 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
321 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
322 		 * following wait may never return if the two reads are
323 		 * reordered.
324 		 */
325 		smp_rmb();
326 		wait_event(q->mq_freeze_wq,
327 			   (!q->mq_freeze_depth &&
328 			    blk_pm_resume_queue(pm, q)) ||
329 			   blk_queue_dying(q));
330 		if (blk_queue_dying(q))
331 			return -ENODEV;
332 	}
333 
334 	return 0;
335 }
336 
337 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
338 {
339 	while (!blk_try_enter_queue(q, false)) {
340 		struct gendisk *disk = bio->bi_bdev->bd_disk;
341 
342 		if (bio->bi_opf & REQ_NOWAIT) {
343 			if (test_bit(GD_DEAD, &disk->state))
344 				goto dead;
345 			bio_wouldblock_error(bio);
346 			return -EAGAIN;
347 		}
348 
349 		/*
350 		 * read pair of barrier in blk_freeze_queue_start(), we need to
351 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
352 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
353 		 * following wait may never return if the two reads are
354 		 * reordered.
355 		 */
356 		smp_rmb();
357 		wait_event(q->mq_freeze_wq,
358 			   (!q->mq_freeze_depth &&
359 			    blk_pm_resume_queue(false, q)) ||
360 			   test_bit(GD_DEAD, &disk->state));
361 		if (test_bit(GD_DEAD, &disk->state))
362 			goto dead;
363 	}
364 
365 	return 0;
366 dead:
367 	bio_io_error(bio);
368 	return -ENODEV;
369 }
370 
371 void blk_queue_exit(struct request_queue *q)
372 {
373 	percpu_ref_put(&q->q_usage_counter);
374 }
375 
376 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
377 {
378 	struct request_queue *q =
379 		container_of(ref, struct request_queue, q_usage_counter);
380 
381 	wake_up_all(&q->mq_freeze_wq);
382 }
383 
384 static void blk_rq_timed_out_timer(struct timer_list *t)
385 {
386 	struct request_queue *q = from_timer(q, t, timeout);
387 
388 	kblockd_schedule_work(&q->timeout_work);
389 }
390 
391 static void blk_timeout_work(struct work_struct *work)
392 {
393 }
394 
395 struct request_queue *blk_alloc_queue(int node_id)
396 {
397 	struct request_queue *q;
398 
399 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
400 				  node_id);
401 	if (!q)
402 		return NULL;
403 
404 	q->last_merge = NULL;
405 
406 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
407 	if (q->id < 0)
408 		goto fail_q;
409 
410 	q->stats = blk_alloc_queue_stats();
411 	if (!q->stats)
412 		goto fail_id;
413 
414 	q->node = node_id;
415 
416 	atomic_set(&q->nr_active_requests_shared_tags, 0);
417 
418 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
419 	INIT_WORK(&q->timeout_work, blk_timeout_work);
420 	INIT_LIST_HEAD(&q->icq_list);
421 
422 	refcount_set(&q->refs, 1);
423 	mutex_init(&q->debugfs_mutex);
424 	mutex_init(&q->sysfs_lock);
425 	mutex_init(&q->sysfs_dir_lock);
426 	spin_lock_init(&q->queue_lock);
427 
428 	init_waitqueue_head(&q->mq_freeze_wq);
429 	mutex_init(&q->mq_freeze_lock);
430 
431 	/*
432 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
433 	 * See blk_register_queue() for details.
434 	 */
435 	if (percpu_ref_init(&q->q_usage_counter,
436 				blk_queue_usage_counter_release,
437 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
438 		goto fail_stats;
439 
440 	blk_set_default_limits(&q->limits);
441 	q->nr_requests = BLKDEV_DEFAULT_RQ;
442 
443 	return q;
444 
445 fail_stats:
446 	blk_free_queue_stats(q->stats);
447 fail_id:
448 	ida_free(&blk_queue_ida, q->id);
449 fail_q:
450 	kmem_cache_free(blk_requestq_cachep, q);
451 	return NULL;
452 }
453 
454 /**
455  * blk_get_queue - increment the request_queue refcount
456  * @q: the request_queue structure to increment the refcount for
457  *
458  * Increment the refcount of the request_queue kobject.
459  *
460  * Context: Any context.
461  */
462 bool blk_get_queue(struct request_queue *q)
463 {
464 	if (unlikely(blk_queue_dying(q)))
465 		return false;
466 	refcount_inc(&q->refs);
467 	return true;
468 }
469 EXPORT_SYMBOL(blk_get_queue);
470 
471 #ifdef CONFIG_FAIL_MAKE_REQUEST
472 
473 static DECLARE_FAULT_ATTR(fail_make_request);
474 
475 static int __init setup_fail_make_request(char *str)
476 {
477 	return setup_fault_attr(&fail_make_request, str);
478 }
479 __setup("fail_make_request=", setup_fail_make_request);
480 
481 bool should_fail_request(struct block_device *part, unsigned int bytes)
482 {
483 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
484 }
485 
486 static int __init fail_make_request_debugfs(void)
487 {
488 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
489 						NULL, &fail_make_request);
490 
491 	return PTR_ERR_OR_ZERO(dir);
492 }
493 
494 late_initcall(fail_make_request_debugfs);
495 #endif /* CONFIG_FAIL_MAKE_REQUEST */
496 
497 static inline void bio_check_ro(struct bio *bio)
498 {
499 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
500 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
501 			return;
502 		pr_warn("Trying to write to read-only block-device %pg\n",
503 			bio->bi_bdev);
504 		/* Older lvm-tools actually trigger this */
505 	}
506 }
507 
508 static noinline int should_fail_bio(struct bio *bio)
509 {
510 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
511 		return -EIO;
512 	return 0;
513 }
514 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
515 
516 /*
517  * Check whether this bio extends beyond the end of the device or partition.
518  * This may well happen - the kernel calls bread() without checking the size of
519  * the device, e.g., when mounting a file system.
520  */
521 static inline int bio_check_eod(struct bio *bio)
522 {
523 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
524 	unsigned int nr_sectors = bio_sectors(bio);
525 
526 	if (nr_sectors && maxsector &&
527 	    (nr_sectors > maxsector ||
528 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
529 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
530 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
531 				    current->comm, bio->bi_bdev, bio->bi_opf,
532 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
533 		return -EIO;
534 	}
535 	return 0;
536 }
537 
538 /*
539  * Remap block n of partition p to block n+start(p) of the disk.
540  */
541 static int blk_partition_remap(struct bio *bio)
542 {
543 	struct block_device *p = bio->bi_bdev;
544 
545 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
546 		return -EIO;
547 	if (bio_sectors(bio)) {
548 		bio->bi_iter.bi_sector += p->bd_start_sect;
549 		trace_block_bio_remap(bio, p->bd_dev,
550 				      bio->bi_iter.bi_sector -
551 				      p->bd_start_sect);
552 	}
553 	bio_set_flag(bio, BIO_REMAPPED);
554 	return 0;
555 }
556 
557 /*
558  * Check write append to a zoned block device.
559  */
560 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
561 						 struct bio *bio)
562 {
563 	int nr_sectors = bio_sectors(bio);
564 
565 	/* Only applicable to zoned block devices */
566 	if (!bdev_is_zoned(bio->bi_bdev))
567 		return BLK_STS_NOTSUPP;
568 
569 	/* The bio sector must point to the start of a sequential zone */
570 	if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) ||
571 	    !bio_zone_is_seq(bio))
572 		return BLK_STS_IOERR;
573 
574 	/*
575 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
576 	 * split and could result in non-contiguous sectors being written in
577 	 * different zones.
578 	 */
579 	if (nr_sectors > q->limits.chunk_sectors)
580 		return BLK_STS_IOERR;
581 
582 	/* Make sure the BIO is small enough and will not get split */
583 	if (nr_sectors > q->limits.max_zone_append_sectors)
584 		return BLK_STS_IOERR;
585 
586 	bio->bi_opf |= REQ_NOMERGE;
587 
588 	return BLK_STS_OK;
589 }
590 
591 static void __submit_bio(struct bio *bio)
592 {
593 	if (unlikely(!blk_crypto_bio_prep(&bio)))
594 		return;
595 
596 	if (!bio->bi_bdev->bd_has_submit_bio) {
597 		blk_mq_submit_bio(bio);
598 	} else if (likely(bio_queue_enter(bio) == 0)) {
599 		struct gendisk *disk = bio->bi_bdev->bd_disk;
600 
601 		disk->fops->submit_bio(bio);
602 		blk_queue_exit(disk->queue);
603 	}
604 }
605 
606 /*
607  * The loop in this function may be a bit non-obvious, and so deserves some
608  * explanation:
609  *
610  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
611  *    that), so we have a list with a single bio.
612  *  - We pretend that we have just taken it off a longer list, so we assign
613  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
614  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
615  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
616  *    non-NULL value in bio_list and re-enter the loop from the top.
617  *  - In this case we really did just take the bio of the top of the list (no
618  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
619  *    again.
620  *
621  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
622  * bio_list_on_stack[1] contains bios that were submitted before the current
623  *	->submit_bio, but that haven't been processed yet.
624  */
625 static void __submit_bio_noacct(struct bio *bio)
626 {
627 	struct bio_list bio_list_on_stack[2];
628 
629 	BUG_ON(bio->bi_next);
630 
631 	bio_list_init(&bio_list_on_stack[0]);
632 	current->bio_list = bio_list_on_stack;
633 
634 	do {
635 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
636 		struct bio_list lower, same;
637 
638 		/*
639 		 * Create a fresh bio_list for all subordinate requests.
640 		 */
641 		bio_list_on_stack[1] = bio_list_on_stack[0];
642 		bio_list_init(&bio_list_on_stack[0]);
643 
644 		__submit_bio(bio);
645 
646 		/*
647 		 * Sort new bios into those for a lower level and those for the
648 		 * same level.
649 		 */
650 		bio_list_init(&lower);
651 		bio_list_init(&same);
652 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
653 			if (q == bdev_get_queue(bio->bi_bdev))
654 				bio_list_add(&same, bio);
655 			else
656 				bio_list_add(&lower, bio);
657 
658 		/*
659 		 * Now assemble so we handle the lowest level first.
660 		 */
661 		bio_list_merge(&bio_list_on_stack[0], &lower);
662 		bio_list_merge(&bio_list_on_stack[0], &same);
663 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
664 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
665 
666 	current->bio_list = NULL;
667 }
668 
669 static void __submit_bio_noacct_mq(struct bio *bio)
670 {
671 	struct bio_list bio_list[2] = { };
672 
673 	current->bio_list = bio_list;
674 
675 	do {
676 		__submit_bio(bio);
677 	} while ((bio = bio_list_pop(&bio_list[0])));
678 
679 	current->bio_list = NULL;
680 }
681 
682 void submit_bio_noacct_nocheck(struct bio *bio)
683 {
684 	blk_cgroup_bio_start(bio);
685 	blkcg_bio_issue_init(bio);
686 
687 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
688 		trace_block_bio_queue(bio);
689 		/*
690 		 * Now that enqueuing has been traced, we need to trace
691 		 * completion as well.
692 		 */
693 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
694 	}
695 
696 	/*
697 	 * We only want one ->submit_bio to be active at a time, else stack
698 	 * usage with stacked devices could be a problem.  Use current->bio_list
699 	 * to collect a list of requests submited by a ->submit_bio method while
700 	 * it is active, and then process them after it returned.
701 	 */
702 	if (current->bio_list)
703 		bio_list_add(&current->bio_list[0], bio);
704 	else if (!bio->bi_bdev->bd_has_submit_bio)
705 		__submit_bio_noacct_mq(bio);
706 	else
707 		__submit_bio_noacct(bio);
708 }
709 
710 /**
711  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
712  * @bio:  The bio describing the location in memory and on the device.
713  *
714  * This is a version of submit_bio() that shall only be used for I/O that is
715  * resubmitted to lower level drivers by stacking block drivers.  All file
716  * systems and other upper level users of the block layer should use
717  * submit_bio() instead.
718  */
719 void submit_bio_noacct(struct bio *bio)
720 {
721 	struct block_device *bdev = bio->bi_bdev;
722 	struct request_queue *q = bdev_get_queue(bdev);
723 	blk_status_t status = BLK_STS_IOERR;
724 	struct blk_plug *plug;
725 
726 	might_sleep();
727 
728 	plug = blk_mq_plug(bio);
729 	if (plug && plug->nowait)
730 		bio->bi_opf |= REQ_NOWAIT;
731 
732 	/*
733 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
734 	 * if queue does not support NOWAIT.
735 	 */
736 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
737 		goto not_supported;
738 
739 	if (should_fail_bio(bio))
740 		goto end_io;
741 	bio_check_ro(bio);
742 	if (!bio_flagged(bio, BIO_REMAPPED)) {
743 		if (unlikely(bio_check_eod(bio)))
744 			goto end_io;
745 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
746 			goto end_io;
747 	}
748 
749 	/*
750 	 * Filter flush bio's early so that bio based drivers without flush
751 	 * support don't have to worry about them.
752 	 */
753 	if (op_is_flush(bio->bi_opf)) {
754 		if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE &&
755 				 bio_op(bio) != REQ_OP_ZONE_APPEND))
756 			goto end_io;
757 		if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
758 			bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
759 			if (!bio_sectors(bio)) {
760 				status = BLK_STS_OK;
761 				goto end_io;
762 			}
763 		}
764 	}
765 
766 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
767 		bio_clear_polled(bio);
768 
769 	switch (bio_op(bio)) {
770 	case REQ_OP_DISCARD:
771 		if (!bdev_max_discard_sectors(bdev))
772 			goto not_supported;
773 		break;
774 	case REQ_OP_SECURE_ERASE:
775 		if (!bdev_max_secure_erase_sectors(bdev))
776 			goto not_supported;
777 		break;
778 	case REQ_OP_ZONE_APPEND:
779 		status = blk_check_zone_append(q, bio);
780 		if (status != BLK_STS_OK)
781 			goto end_io;
782 		break;
783 	case REQ_OP_ZONE_RESET:
784 	case REQ_OP_ZONE_OPEN:
785 	case REQ_OP_ZONE_CLOSE:
786 	case REQ_OP_ZONE_FINISH:
787 		if (!bdev_is_zoned(bio->bi_bdev))
788 			goto not_supported;
789 		break;
790 	case REQ_OP_ZONE_RESET_ALL:
791 		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
792 			goto not_supported;
793 		break;
794 	case REQ_OP_WRITE_ZEROES:
795 		if (!q->limits.max_write_zeroes_sectors)
796 			goto not_supported;
797 		break;
798 	default:
799 		break;
800 	}
801 
802 	if (blk_throtl_bio(bio))
803 		return;
804 	submit_bio_noacct_nocheck(bio);
805 	return;
806 
807 not_supported:
808 	status = BLK_STS_NOTSUPP;
809 end_io:
810 	bio->bi_status = status;
811 	bio_endio(bio);
812 }
813 EXPORT_SYMBOL(submit_bio_noacct);
814 
815 /**
816  * submit_bio - submit a bio to the block device layer for I/O
817  * @bio: The &struct bio which describes the I/O
818  *
819  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
820  * fully set up &struct bio that describes the I/O that needs to be done.  The
821  * bio will be send to the device described by the bi_bdev field.
822  *
823  * The success/failure status of the request, along with notification of
824  * completion, is delivered asynchronously through the ->bi_end_io() callback
825  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
826  * been called.
827  */
828 void submit_bio(struct bio *bio)
829 {
830 	if (bio_op(bio) == REQ_OP_READ) {
831 		task_io_account_read(bio->bi_iter.bi_size);
832 		count_vm_events(PGPGIN, bio_sectors(bio));
833 	} else if (bio_op(bio) == REQ_OP_WRITE) {
834 		count_vm_events(PGPGOUT, bio_sectors(bio));
835 	}
836 
837 	submit_bio_noacct(bio);
838 }
839 EXPORT_SYMBOL(submit_bio);
840 
841 /**
842  * bio_poll - poll for BIO completions
843  * @bio: bio to poll for
844  * @iob: batches of IO
845  * @flags: BLK_POLL_* flags that control the behavior
846  *
847  * Poll for completions on queue associated with the bio. Returns number of
848  * completed entries found.
849  *
850  * Note: the caller must either be the context that submitted @bio, or
851  * be in a RCU critical section to prevent freeing of @bio.
852  */
853 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
854 {
855 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
856 	struct block_device *bdev;
857 	struct request_queue *q;
858 	int ret = 0;
859 
860 	bdev = READ_ONCE(bio->bi_bdev);
861 	if (!bdev)
862 		return 0;
863 
864 	q = bdev_get_queue(bdev);
865 	if (cookie == BLK_QC_T_NONE ||
866 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
867 		return 0;
868 
869 	/*
870 	 * As the requests that require a zone lock are not plugged in the
871 	 * first place, directly accessing the plug instead of using
872 	 * blk_mq_plug() should not have any consequences during flushing for
873 	 * zoned devices.
874 	 */
875 	blk_flush_plug(current->plug, false);
876 
877 	/*
878 	 * We need to be able to enter a frozen queue, similar to how
879 	 * timeouts also need to do that. If that is blocked, then we can
880 	 * have pending IO when a queue freeze is started, and then the
881 	 * wait for the freeze to finish will wait for polled requests to
882 	 * timeout as the poller is preventer from entering the queue and
883 	 * completing them. As long as we prevent new IO from being queued,
884 	 * that should be all that matters.
885 	 */
886 	if (!percpu_ref_tryget(&q->q_usage_counter))
887 		return 0;
888 	if (queue_is_mq(q)) {
889 		ret = blk_mq_poll(q, cookie, iob, flags);
890 	} else {
891 		struct gendisk *disk = q->disk;
892 
893 		if (disk && disk->fops->poll_bio)
894 			ret = disk->fops->poll_bio(bio, iob, flags);
895 	}
896 	blk_queue_exit(q);
897 	return ret;
898 }
899 EXPORT_SYMBOL_GPL(bio_poll);
900 
901 /*
902  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
903  * in iocb->private, and cleared before freeing the bio.
904  */
905 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
906 		    unsigned int flags)
907 {
908 	struct bio *bio;
909 	int ret = 0;
910 
911 	/*
912 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
913 	 * point to a freshly allocated bio at this point.  If that happens
914 	 * we have a few cases to consider:
915 	 *
916 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
917 	 *     simply nothing in this case
918 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
919 	 *     this and return 0
920 	 *  3) the bio points to a poll capable device, including but not
921 	 *     limited to the one that the original bio pointed to.  In this
922 	 *     case we will call into the actual poll method and poll for I/O,
923 	 *     even if we don't need to, but it won't cause harm either.
924 	 *
925 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
926 	 * is still allocated. Because partitions hold a reference to the whole
927 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
928 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
929 	 * are still valid as well.
930 	 */
931 	rcu_read_lock();
932 	bio = READ_ONCE(kiocb->private);
933 	if (bio)
934 		ret = bio_poll(bio, iob, flags);
935 	rcu_read_unlock();
936 
937 	return ret;
938 }
939 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
940 
941 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
942 {
943 	unsigned long stamp;
944 again:
945 	stamp = READ_ONCE(part->bd_stamp);
946 	if (unlikely(time_after(now, stamp))) {
947 		if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
948 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
949 	}
950 	if (part->bd_partno) {
951 		part = bdev_whole(part);
952 		goto again;
953 	}
954 }
955 
956 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
957 				 unsigned long start_time)
958 {
959 	part_stat_lock();
960 	update_io_ticks(bdev, start_time, false);
961 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
962 	part_stat_unlock();
963 
964 	return start_time;
965 }
966 EXPORT_SYMBOL(bdev_start_io_acct);
967 
968 /**
969  * bio_start_io_acct - start I/O accounting for bio based drivers
970  * @bio:	bio to start account for
971  *
972  * Returns the start time that should be passed back to bio_end_io_acct().
973  */
974 unsigned long bio_start_io_acct(struct bio *bio)
975 {
976 	return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies);
977 }
978 EXPORT_SYMBOL_GPL(bio_start_io_acct);
979 
980 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
981 		      unsigned int sectors, unsigned long start_time)
982 {
983 	const int sgrp = op_stat_group(op);
984 	unsigned long now = READ_ONCE(jiffies);
985 	unsigned long duration = now - start_time;
986 
987 	part_stat_lock();
988 	update_io_ticks(bdev, now, true);
989 	part_stat_inc(bdev, ios[sgrp]);
990 	part_stat_add(bdev, sectors[sgrp], sectors);
991 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
992 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
993 	part_stat_unlock();
994 }
995 EXPORT_SYMBOL(bdev_end_io_acct);
996 
997 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
998 			      struct block_device *orig_bdev)
999 {
1000 	bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time);
1001 }
1002 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
1003 
1004 /**
1005  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1006  * @q : the queue of the device being checked
1007  *
1008  * Description:
1009  *    Check if underlying low-level drivers of a device are busy.
1010  *    If the drivers want to export their busy state, they must set own
1011  *    exporting function using blk_queue_lld_busy() first.
1012  *
1013  *    Basically, this function is used only by request stacking drivers
1014  *    to stop dispatching requests to underlying devices when underlying
1015  *    devices are busy.  This behavior helps more I/O merging on the queue
1016  *    of the request stacking driver and prevents I/O throughput regression
1017  *    on burst I/O load.
1018  *
1019  * Return:
1020  *    0 - Not busy (The request stacking driver should dispatch request)
1021  *    1 - Busy (The request stacking driver should stop dispatching request)
1022  */
1023 int blk_lld_busy(struct request_queue *q)
1024 {
1025 	if (queue_is_mq(q) && q->mq_ops->busy)
1026 		return q->mq_ops->busy(q);
1027 
1028 	return 0;
1029 }
1030 EXPORT_SYMBOL_GPL(blk_lld_busy);
1031 
1032 int kblockd_schedule_work(struct work_struct *work)
1033 {
1034 	return queue_work(kblockd_workqueue, work);
1035 }
1036 EXPORT_SYMBOL(kblockd_schedule_work);
1037 
1038 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1039 				unsigned long delay)
1040 {
1041 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1042 }
1043 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1044 
1045 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1046 {
1047 	struct task_struct *tsk = current;
1048 
1049 	/*
1050 	 * If this is a nested plug, don't actually assign it.
1051 	 */
1052 	if (tsk->plug)
1053 		return;
1054 
1055 	plug->mq_list = NULL;
1056 	plug->cached_rq = NULL;
1057 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1058 	plug->rq_count = 0;
1059 	plug->multiple_queues = false;
1060 	plug->has_elevator = false;
1061 	plug->nowait = false;
1062 	INIT_LIST_HEAD(&plug->cb_list);
1063 
1064 	/*
1065 	 * Store ordering should not be needed here, since a potential
1066 	 * preempt will imply a full memory barrier
1067 	 */
1068 	tsk->plug = plug;
1069 }
1070 
1071 /**
1072  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1073  * @plug:	The &struct blk_plug that needs to be initialized
1074  *
1075  * Description:
1076  *   blk_start_plug() indicates to the block layer an intent by the caller
1077  *   to submit multiple I/O requests in a batch.  The block layer may use
1078  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1079  *   is called.  However, the block layer may choose to submit requests
1080  *   before a call to blk_finish_plug() if the number of queued I/Os
1081  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1082  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1083  *   the task schedules (see below).
1084  *
1085  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1086  *   pending I/O should the task end up blocking between blk_start_plug() and
1087  *   blk_finish_plug(). This is important from a performance perspective, but
1088  *   also ensures that we don't deadlock. For instance, if the task is blocking
1089  *   for a memory allocation, memory reclaim could end up wanting to free a
1090  *   page belonging to that request that is currently residing in our private
1091  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1092  *   this kind of deadlock.
1093  */
1094 void blk_start_plug(struct blk_plug *plug)
1095 {
1096 	blk_start_plug_nr_ios(plug, 1);
1097 }
1098 EXPORT_SYMBOL(blk_start_plug);
1099 
1100 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1101 {
1102 	LIST_HEAD(callbacks);
1103 
1104 	while (!list_empty(&plug->cb_list)) {
1105 		list_splice_init(&plug->cb_list, &callbacks);
1106 
1107 		while (!list_empty(&callbacks)) {
1108 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1109 							  struct blk_plug_cb,
1110 							  list);
1111 			list_del(&cb->list);
1112 			cb->callback(cb, from_schedule);
1113 		}
1114 	}
1115 }
1116 
1117 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1118 				      int size)
1119 {
1120 	struct blk_plug *plug = current->plug;
1121 	struct blk_plug_cb *cb;
1122 
1123 	if (!plug)
1124 		return NULL;
1125 
1126 	list_for_each_entry(cb, &plug->cb_list, list)
1127 		if (cb->callback == unplug && cb->data == data)
1128 			return cb;
1129 
1130 	/* Not currently on the callback list */
1131 	BUG_ON(size < sizeof(*cb));
1132 	cb = kzalloc(size, GFP_ATOMIC);
1133 	if (cb) {
1134 		cb->data = data;
1135 		cb->callback = unplug;
1136 		list_add(&cb->list, &plug->cb_list);
1137 	}
1138 	return cb;
1139 }
1140 EXPORT_SYMBOL(blk_check_plugged);
1141 
1142 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1143 {
1144 	if (!list_empty(&plug->cb_list))
1145 		flush_plug_callbacks(plug, from_schedule);
1146 	if (!rq_list_empty(plug->mq_list))
1147 		blk_mq_flush_plug_list(plug, from_schedule);
1148 	/*
1149 	 * Unconditionally flush out cached requests, even if the unplug
1150 	 * event came from schedule. Since we know hold references to the
1151 	 * queue for cached requests, we don't want a blocked task holding
1152 	 * up a queue freeze/quiesce event.
1153 	 */
1154 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1155 		blk_mq_free_plug_rqs(plug);
1156 }
1157 
1158 /**
1159  * blk_finish_plug - mark the end of a batch of submitted I/O
1160  * @plug:	The &struct blk_plug passed to blk_start_plug()
1161  *
1162  * Description:
1163  * Indicate that a batch of I/O submissions is complete.  This function
1164  * must be paired with an initial call to blk_start_plug().  The intent
1165  * is to allow the block layer to optimize I/O submission.  See the
1166  * documentation for blk_start_plug() for more information.
1167  */
1168 void blk_finish_plug(struct blk_plug *plug)
1169 {
1170 	if (plug == current->plug) {
1171 		__blk_flush_plug(plug, false);
1172 		current->plug = NULL;
1173 	}
1174 }
1175 EXPORT_SYMBOL(blk_finish_plug);
1176 
1177 void blk_io_schedule(void)
1178 {
1179 	/* Prevent hang_check timer from firing at us during very long I/O */
1180 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1181 
1182 	if (timeout)
1183 		io_schedule_timeout(timeout);
1184 	else
1185 		io_schedule();
1186 }
1187 EXPORT_SYMBOL_GPL(blk_io_schedule);
1188 
1189 int __init blk_dev_init(void)
1190 {
1191 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1192 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1193 			sizeof_field(struct request, cmd_flags));
1194 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1195 			sizeof_field(struct bio, bi_opf));
1196 
1197 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1198 	kblockd_workqueue = alloc_workqueue("kblockd",
1199 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1200 	if (!kblockd_workqueue)
1201 		panic("Failed to create kblockd\n");
1202 
1203 	blk_requestq_cachep = kmem_cache_create("request_queue",
1204 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1205 
1206 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1207 
1208 	return 0;
1209 }
1210