1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-pm.h> 20 #include <linux/blk-integrity.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/t10-pi.h> 38 #include <linux/debugfs.h> 39 #include <linux/bpf.h> 40 #include <linux/part_stat.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/blk-crypto.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/block.h> 46 47 #include "blk.h" 48 #include "blk-mq-sched.h" 49 #include "blk-pm.h" 50 #include "blk-cgroup.h" 51 #include "blk-throttle.h" 52 53 struct dentry *blk_debugfs_root; 54 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 61 62 static DEFINE_IDA(blk_queue_ida); 63 64 /* 65 * For queue allocation 66 */ 67 static struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 set_bit(flag, &q->queue_flags); 82 } 83 EXPORT_SYMBOL(blk_queue_flag_set); 84 85 /** 86 * blk_queue_flag_clear - atomically clear a queue flag 87 * @flag: flag to be cleared 88 * @q: request queue 89 */ 90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 91 { 92 clear_bit(flag, &q->queue_flags); 93 } 94 EXPORT_SYMBOL(blk_queue_flag_clear); 95 96 /** 97 * blk_queue_flag_test_and_set - atomically test and set a queue flag 98 * @flag: flag to be set 99 * @q: request queue 100 * 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 102 * the flag was already set. 103 */ 104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 105 { 106 return test_and_set_bit(flag, &q->queue_flags); 107 } 108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 109 110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 111 static const char *const blk_op_name[] = { 112 REQ_OP_NAME(READ), 113 REQ_OP_NAME(WRITE), 114 REQ_OP_NAME(FLUSH), 115 REQ_OP_NAME(DISCARD), 116 REQ_OP_NAME(SECURE_ERASE), 117 REQ_OP_NAME(ZONE_RESET), 118 REQ_OP_NAME(ZONE_RESET_ALL), 119 REQ_OP_NAME(ZONE_OPEN), 120 REQ_OP_NAME(ZONE_CLOSE), 121 REQ_OP_NAME(ZONE_FINISH), 122 REQ_OP_NAME(ZONE_APPEND), 123 REQ_OP_NAME(WRITE_ZEROES), 124 REQ_OP_NAME(DRV_IN), 125 REQ_OP_NAME(DRV_OUT), 126 }; 127 #undef REQ_OP_NAME 128 129 /** 130 * blk_op_str - Return string XXX in the REQ_OP_XXX. 131 * @op: REQ_OP_XXX. 132 * 133 * Description: Centralize block layer function to convert REQ_OP_XXX into 134 * string format. Useful in the debugging and tracing bio or request. For 135 * invalid REQ_OP_XXX it returns string "UNKNOWN". 136 */ 137 inline const char *blk_op_str(enum req_op op) 138 { 139 const char *op_str = "UNKNOWN"; 140 141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 142 op_str = blk_op_name[op]; 143 144 return op_str; 145 } 146 EXPORT_SYMBOL_GPL(blk_op_str); 147 148 static const struct { 149 int errno; 150 const char *name; 151 } blk_errors[] = { 152 [BLK_STS_OK] = { 0, "" }, 153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 158 [BLK_STS_RESV_CONFLICT] = { -EBADE, "reservation conflict" }, 159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" }, 165 166 /* device mapper special case, should not leak out: */ 167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 168 169 /* zone device specific errors */ 170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 172 173 /* Command duration limit device-side timeout */ 174 [BLK_STS_DURATION_LIMIT] = { -ETIME, "duration limit exceeded" }, 175 176 /* everything else not covered above: */ 177 [BLK_STS_IOERR] = { -EIO, "I/O" }, 178 }; 179 180 blk_status_t errno_to_blk_status(int errno) 181 { 182 int i; 183 184 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 185 if (blk_errors[i].errno == errno) 186 return (__force blk_status_t)i; 187 } 188 189 return BLK_STS_IOERR; 190 } 191 EXPORT_SYMBOL_GPL(errno_to_blk_status); 192 193 int blk_status_to_errno(blk_status_t status) 194 { 195 int idx = (__force int)status; 196 197 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 198 return -EIO; 199 return blk_errors[idx].errno; 200 } 201 EXPORT_SYMBOL_GPL(blk_status_to_errno); 202 203 const char *blk_status_to_str(blk_status_t status) 204 { 205 int idx = (__force int)status; 206 207 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 208 return "<null>"; 209 return blk_errors[idx].name; 210 } 211 212 /** 213 * blk_sync_queue - cancel any pending callbacks on a queue 214 * @q: the queue 215 * 216 * Description: 217 * The block layer may perform asynchronous callback activity 218 * on a queue, such as calling the unplug function after a timeout. 219 * A block device may call blk_sync_queue to ensure that any 220 * such activity is cancelled, thus allowing it to release resources 221 * that the callbacks might use. The caller must already have made sure 222 * that its ->submit_bio will not re-add plugging prior to calling 223 * this function. 224 * 225 * This function does not cancel any asynchronous activity arising 226 * out of elevator or throttling code. That would require elevator_exit() 227 * and blkcg_exit_queue() to be called with queue lock initialized. 228 * 229 */ 230 void blk_sync_queue(struct request_queue *q) 231 { 232 del_timer_sync(&q->timeout); 233 cancel_work_sync(&q->timeout_work); 234 } 235 EXPORT_SYMBOL(blk_sync_queue); 236 237 /** 238 * blk_set_pm_only - increment pm_only counter 239 * @q: request queue pointer 240 */ 241 void blk_set_pm_only(struct request_queue *q) 242 { 243 atomic_inc(&q->pm_only); 244 } 245 EXPORT_SYMBOL_GPL(blk_set_pm_only); 246 247 void blk_clear_pm_only(struct request_queue *q) 248 { 249 int pm_only; 250 251 pm_only = atomic_dec_return(&q->pm_only); 252 WARN_ON_ONCE(pm_only < 0); 253 if (pm_only == 0) 254 wake_up_all(&q->mq_freeze_wq); 255 } 256 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 257 258 static void blk_free_queue_rcu(struct rcu_head *rcu_head) 259 { 260 struct request_queue *q = container_of(rcu_head, 261 struct request_queue, rcu_head); 262 263 percpu_ref_exit(&q->q_usage_counter); 264 kmem_cache_free(blk_requestq_cachep, q); 265 } 266 267 static void blk_free_queue(struct request_queue *q) 268 { 269 blk_free_queue_stats(q->stats); 270 if (queue_is_mq(q)) 271 blk_mq_release(q); 272 273 ida_free(&blk_queue_ida, q->id); 274 call_rcu(&q->rcu_head, blk_free_queue_rcu); 275 } 276 277 /** 278 * blk_put_queue - decrement the request_queue refcount 279 * @q: the request_queue structure to decrement the refcount for 280 * 281 * Decrements the refcount of the request_queue and free it when the refcount 282 * reaches 0. 283 */ 284 void blk_put_queue(struct request_queue *q) 285 { 286 if (refcount_dec_and_test(&q->refs)) 287 blk_free_queue(q); 288 } 289 EXPORT_SYMBOL(blk_put_queue); 290 291 void blk_queue_start_drain(struct request_queue *q) 292 { 293 /* 294 * When queue DYING flag is set, we need to block new req 295 * entering queue, so we call blk_freeze_queue_start() to 296 * prevent I/O from crossing blk_queue_enter(). 297 */ 298 blk_freeze_queue_start(q); 299 if (queue_is_mq(q)) 300 blk_mq_wake_waiters(q); 301 /* Make blk_queue_enter() reexamine the DYING flag. */ 302 wake_up_all(&q->mq_freeze_wq); 303 } 304 305 /** 306 * blk_queue_enter() - try to increase q->q_usage_counter 307 * @q: request queue pointer 308 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 309 */ 310 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 311 { 312 const bool pm = flags & BLK_MQ_REQ_PM; 313 314 while (!blk_try_enter_queue(q, pm)) { 315 if (flags & BLK_MQ_REQ_NOWAIT) 316 return -EAGAIN; 317 318 /* 319 * read pair of barrier in blk_freeze_queue_start(), we need to 320 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 321 * reading .mq_freeze_depth or queue dying flag, otherwise the 322 * following wait may never return if the two reads are 323 * reordered. 324 */ 325 smp_rmb(); 326 wait_event(q->mq_freeze_wq, 327 (!q->mq_freeze_depth && 328 blk_pm_resume_queue(pm, q)) || 329 blk_queue_dying(q)); 330 if (blk_queue_dying(q)) 331 return -ENODEV; 332 } 333 334 return 0; 335 } 336 337 int __bio_queue_enter(struct request_queue *q, struct bio *bio) 338 { 339 while (!blk_try_enter_queue(q, false)) { 340 struct gendisk *disk = bio->bi_bdev->bd_disk; 341 342 if (bio->bi_opf & REQ_NOWAIT) { 343 if (test_bit(GD_DEAD, &disk->state)) 344 goto dead; 345 bio_wouldblock_error(bio); 346 return -EAGAIN; 347 } 348 349 /* 350 * read pair of barrier in blk_freeze_queue_start(), we need to 351 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 352 * reading .mq_freeze_depth or queue dying flag, otherwise the 353 * following wait may never return if the two reads are 354 * reordered. 355 */ 356 smp_rmb(); 357 wait_event(q->mq_freeze_wq, 358 (!q->mq_freeze_depth && 359 blk_pm_resume_queue(false, q)) || 360 test_bit(GD_DEAD, &disk->state)); 361 if (test_bit(GD_DEAD, &disk->state)) 362 goto dead; 363 } 364 365 return 0; 366 dead: 367 bio_io_error(bio); 368 return -ENODEV; 369 } 370 371 void blk_queue_exit(struct request_queue *q) 372 { 373 percpu_ref_put(&q->q_usage_counter); 374 } 375 376 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 377 { 378 struct request_queue *q = 379 container_of(ref, struct request_queue, q_usage_counter); 380 381 wake_up_all(&q->mq_freeze_wq); 382 } 383 384 static void blk_rq_timed_out_timer(struct timer_list *t) 385 { 386 struct request_queue *q = from_timer(q, t, timeout); 387 388 kblockd_schedule_work(&q->timeout_work); 389 } 390 391 static void blk_timeout_work(struct work_struct *work) 392 { 393 } 394 395 struct request_queue *blk_alloc_queue(int node_id) 396 { 397 struct request_queue *q; 398 399 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO, 400 node_id); 401 if (!q) 402 return NULL; 403 404 q->last_merge = NULL; 405 406 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL); 407 if (q->id < 0) 408 goto fail_q; 409 410 q->stats = blk_alloc_queue_stats(); 411 if (!q->stats) 412 goto fail_id; 413 414 q->node = node_id; 415 416 atomic_set(&q->nr_active_requests_shared_tags, 0); 417 418 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 419 INIT_WORK(&q->timeout_work, blk_timeout_work); 420 INIT_LIST_HEAD(&q->icq_list); 421 422 refcount_set(&q->refs, 1); 423 mutex_init(&q->debugfs_mutex); 424 mutex_init(&q->sysfs_lock); 425 mutex_init(&q->sysfs_dir_lock); 426 spin_lock_init(&q->queue_lock); 427 428 init_waitqueue_head(&q->mq_freeze_wq); 429 mutex_init(&q->mq_freeze_lock); 430 431 /* 432 * Init percpu_ref in atomic mode so that it's faster to shutdown. 433 * See blk_register_queue() for details. 434 */ 435 if (percpu_ref_init(&q->q_usage_counter, 436 blk_queue_usage_counter_release, 437 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 438 goto fail_stats; 439 440 blk_set_default_limits(&q->limits); 441 q->nr_requests = BLKDEV_DEFAULT_RQ; 442 443 return q; 444 445 fail_stats: 446 blk_free_queue_stats(q->stats); 447 fail_id: 448 ida_free(&blk_queue_ida, q->id); 449 fail_q: 450 kmem_cache_free(blk_requestq_cachep, q); 451 return NULL; 452 } 453 454 /** 455 * blk_get_queue - increment the request_queue refcount 456 * @q: the request_queue structure to increment the refcount for 457 * 458 * Increment the refcount of the request_queue kobject. 459 * 460 * Context: Any context. 461 */ 462 bool blk_get_queue(struct request_queue *q) 463 { 464 if (unlikely(blk_queue_dying(q))) 465 return false; 466 refcount_inc(&q->refs); 467 return true; 468 } 469 EXPORT_SYMBOL(blk_get_queue); 470 471 #ifdef CONFIG_FAIL_MAKE_REQUEST 472 473 static DECLARE_FAULT_ATTR(fail_make_request); 474 475 static int __init setup_fail_make_request(char *str) 476 { 477 return setup_fault_attr(&fail_make_request, str); 478 } 479 __setup("fail_make_request=", setup_fail_make_request); 480 481 bool should_fail_request(struct block_device *part, unsigned int bytes) 482 { 483 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 484 } 485 486 static int __init fail_make_request_debugfs(void) 487 { 488 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 489 NULL, &fail_make_request); 490 491 return PTR_ERR_OR_ZERO(dir); 492 } 493 494 late_initcall(fail_make_request_debugfs); 495 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 496 497 static inline void bio_check_ro(struct bio *bio) 498 { 499 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 500 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 501 return; 502 pr_warn("Trying to write to read-only block-device %pg\n", 503 bio->bi_bdev); 504 /* Older lvm-tools actually trigger this */ 505 } 506 } 507 508 static noinline int should_fail_bio(struct bio *bio) 509 { 510 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 511 return -EIO; 512 return 0; 513 } 514 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 515 516 /* 517 * Check whether this bio extends beyond the end of the device or partition. 518 * This may well happen - the kernel calls bread() without checking the size of 519 * the device, e.g., when mounting a file system. 520 */ 521 static inline int bio_check_eod(struct bio *bio) 522 { 523 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 524 unsigned int nr_sectors = bio_sectors(bio); 525 526 if (nr_sectors && maxsector && 527 (nr_sectors > maxsector || 528 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 529 pr_info_ratelimited("%s: attempt to access beyond end of device\n" 530 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n", 531 current->comm, bio->bi_bdev, bio->bi_opf, 532 bio->bi_iter.bi_sector, nr_sectors, maxsector); 533 return -EIO; 534 } 535 return 0; 536 } 537 538 /* 539 * Remap block n of partition p to block n+start(p) of the disk. 540 */ 541 static int blk_partition_remap(struct bio *bio) 542 { 543 struct block_device *p = bio->bi_bdev; 544 545 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 546 return -EIO; 547 if (bio_sectors(bio)) { 548 bio->bi_iter.bi_sector += p->bd_start_sect; 549 trace_block_bio_remap(bio, p->bd_dev, 550 bio->bi_iter.bi_sector - 551 p->bd_start_sect); 552 } 553 bio_set_flag(bio, BIO_REMAPPED); 554 return 0; 555 } 556 557 /* 558 * Check write append to a zoned block device. 559 */ 560 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 561 struct bio *bio) 562 { 563 int nr_sectors = bio_sectors(bio); 564 565 /* Only applicable to zoned block devices */ 566 if (!bdev_is_zoned(bio->bi_bdev)) 567 return BLK_STS_NOTSUPP; 568 569 /* The bio sector must point to the start of a sequential zone */ 570 if (!bdev_is_zone_start(bio->bi_bdev, bio->bi_iter.bi_sector) || 571 !bio_zone_is_seq(bio)) 572 return BLK_STS_IOERR; 573 574 /* 575 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 576 * split and could result in non-contiguous sectors being written in 577 * different zones. 578 */ 579 if (nr_sectors > q->limits.chunk_sectors) 580 return BLK_STS_IOERR; 581 582 /* Make sure the BIO is small enough and will not get split */ 583 if (nr_sectors > q->limits.max_zone_append_sectors) 584 return BLK_STS_IOERR; 585 586 bio->bi_opf |= REQ_NOMERGE; 587 588 return BLK_STS_OK; 589 } 590 591 static void __submit_bio(struct bio *bio) 592 { 593 if (unlikely(!blk_crypto_bio_prep(&bio))) 594 return; 595 596 if (!bio->bi_bdev->bd_has_submit_bio) { 597 blk_mq_submit_bio(bio); 598 } else if (likely(bio_queue_enter(bio) == 0)) { 599 struct gendisk *disk = bio->bi_bdev->bd_disk; 600 601 disk->fops->submit_bio(bio); 602 blk_queue_exit(disk->queue); 603 } 604 } 605 606 /* 607 * The loop in this function may be a bit non-obvious, and so deserves some 608 * explanation: 609 * 610 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 611 * that), so we have a list with a single bio. 612 * - We pretend that we have just taken it off a longer list, so we assign 613 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 614 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 615 * bios through a recursive call to submit_bio_noacct. If it did, we find a 616 * non-NULL value in bio_list and re-enter the loop from the top. 617 * - In this case we really did just take the bio of the top of the list (no 618 * pretending) and so remove it from bio_list, and call into ->submit_bio() 619 * again. 620 * 621 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 622 * bio_list_on_stack[1] contains bios that were submitted before the current 623 * ->submit_bio, but that haven't been processed yet. 624 */ 625 static void __submit_bio_noacct(struct bio *bio) 626 { 627 struct bio_list bio_list_on_stack[2]; 628 629 BUG_ON(bio->bi_next); 630 631 bio_list_init(&bio_list_on_stack[0]); 632 current->bio_list = bio_list_on_stack; 633 634 do { 635 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 636 struct bio_list lower, same; 637 638 /* 639 * Create a fresh bio_list for all subordinate requests. 640 */ 641 bio_list_on_stack[1] = bio_list_on_stack[0]; 642 bio_list_init(&bio_list_on_stack[0]); 643 644 __submit_bio(bio); 645 646 /* 647 * Sort new bios into those for a lower level and those for the 648 * same level. 649 */ 650 bio_list_init(&lower); 651 bio_list_init(&same); 652 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 653 if (q == bdev_get_queue(bio->bi_bdev)) 654 bio_list_add(&same, bio); 655 else 656 bio_list_add(&lower, bio); 657 658 /* 659 * Now assemble so we handle the lowest level first. 660 */ 661 bio_list_merge(&bio_list_on_stack[0], &lower); 662 bio_list_merge(&bio_list_on_stack[0], &same); 663 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 664 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 665 666 current->bio_list = NULL; 667 } 668 669 static void __submit_bio_noacct_mq(struct bio *bio) 670 { 671 struct bio_list bio_list[2] = { }; 672 673 current->bio_list = bio_list; 674 675 do { 676 __submit_bio(bio); 677 } while ((bio = bio_list_pop(&bio_list[0]))); 678 679 current->bio_list = NULL; 680 } 681 682 void submit_bio_noacct_nocheck(struct bio *bio) 683 { 684 blk_cgroup_bio_start(bio); 685 blkcg_bio_issue_init(bio); 686 687 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 688 trace_block_bio_queue(bio); 689 /* 690 * Now that enqueuing has been traced, we need to trace 691 * completion as well. 692 */ 693 bio_set_flag(bio, BIO_TRACE_COMPLETION); 694 } 695 696 /* 697 * We only want one ->submit_bio to be active at a time, else stack 698 * usage with stacked devices could be a problem. Use current->bio_list 699 * to collect a list of requests submited by a ->submit_bio method while 700 * it is active, and then process them after it returned. 701 */ 702 if (current->bio_list) 703 bio_list_add(¤t->bio_list[0], bio); 704 else if (!bio->bi_bdev->bd_has_submit_bio) 705 __submit_bio_noacct_mq(bio); 706 else 707 __submit_bio_noacct(bio); 708 } 709 710 /** 711 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 712 * @bio: The bio describing the location in memory and on the device. 713 * 714 * This is a version of submit_bio() that shall only be used for I/O that is 715 * resubmitted to lower level drivers by stacking block drivers. All file 716 * systems and other upper level users of the block layer should use 717 * submit_bio() instead. 718 */ 719 void submit_bio_noacct(struct bio *bio) 720 { 721 struct block_device *bdev = bio->bi_bdev; 722 struct request_queue *q = bdev_get_queue(bdev); 723 blk_status_t status = BLK_STS_IOERR; 724 struct blk_plug *plug; 725 726 might_sleep(); 727 728 plug = blk_mq_plug(bio); 729 if (plug && plug->nowait) 730 bio->bi_opf |= REQ_NOWAIT; 731 732 /* 733 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 734 * if queue does not support NOWAIT. 735 */ 736 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev)) 737 goto not_supported; 738 739 if (should_fail_bio(bio)) 740 goto end_io; 741 bio_check_ro(bio); 742 if (!bio_flagged(bio, BIO_REMAPPED)) { 743 if (unlikely(bio_check_eod(bio))) 744 goto end_io; 745 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 746 goto end_io; 747 } 748 749 /* 750 * Filter flush bio's early so that bio based drivers without flush 751 * support don't have to worry about them. 752 */ 753 if (op_is_flush(bio->bi_opf)) { 754 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_WRITE && 755 bio_op(bio) != REQ_OP_ZONE_APPEND)) 756 goto end_io; 757 if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 758 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 759 if (!bio_sectors(bio)) { 760 status = BLK_STS_OK; 761 goto end_io; 762 } 763 } 764 } 765 766 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 767 bio_clear_polled(bio); 768 769 switch (bio_op(bio)) { 770 case REQ_OP_DISCARD: 771 if (!bdev_max_discard_sectors(bdev)) 772 goto not_supported; 773 break; 774 case REQ_OP_SECURE_ERASE: 775 if (!bdev_max_secure_erase_sectors(bdev)) 776 goto not_supported; 777 break; 778 case REQ_OP_ZONE_APPEND: 779 status = blk_check_zone_append(q, bio); 780 if (status != BLK_STS_OK) 781 goto end_io; 782 break; 783 case REQ_OP_ZONE_RESET: 784 case REQ_OP_ZONE_OPEN: 785 case REQ_OP_ZONE_CLOSE: 786 case REQ_OP_ZONE_FINISH: 787 if (!bdev_is_zoned(bio->bi_bdev)) 788 goto not_supported; 789 break; 790 case REQ_OP_ZONE_RESET_ALL: 791 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q)) 792 goto not_supported; 793 break; 794 case REQ_OP_WRITE_ZEROES: 795 if (!q->limits.max_write_zeroes_sectors) 796 goto not_supported; 797 break; 798 default: 799 break; 800 } 801 802 if (blk_throtl_bio(bio)) 803 return; 804 submit_bio_noacct_nocheck(bio); 805 return; 806 807 not_supported: 808 status = BLK_STS_NOTSUPP; 809 end_io: 810 bio->bi_status = status; 811 bio_endio(bio); 812 } 813 EXPORT_SYMBOL(submit_bio_noacct); 814 815 /** 816 * submit_bio - submit a bio to the block device layer for I/O 817 * @bio: The &struct bio which describes the I/O 818 * 819 * submit_bio() is used to submit I/O requests to block devices. It is passed a 820 * fully set up &struct bio that describes the I/O that needs to be done. The 821 * bio will be send to the device described by the bi_bdev field. 822 * 823 * The success/failure status of the request, along with notification of 824 * completion, is delivered asynchronously through the ->bi_end_io() callback 825 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has 826 * been called. 827 */ 828 void submit_bio(struct bio *bio) 829 { 830 if (bio_op(bio) == REQ_OP_READ) { 831 task_io_account_read(bio->bi_iter.bi_size); 832 count_vm_events(PGPGIN, bio_sectors(bio)); 833 } else if (bio_op(bio) == REQ_OP_WRITE) { 834 count_vm_events(PGPGOUT, bio_sectors(bio)); 835 } 836 837 submit_bio_noacct(bio); 838 } 839 EXPORT_SYMBOL(submit_bio); 840 841 /** 842 * bio_poll - poll for BIO completions 843 * @bio: bio to poll for 844 * @iob: batches of IO 845 * @flags: BLK_POLL_* flags that control the behavior 846 * 847 * Poll for completions on queue associated with the bio. Returns number of 848 * completed entries found. 849 * 850 * Note: the caller must either be the context that submitted @bio, or 851 * be in a RCU critical section to prevent freeing of @bio. 852 */ 853 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags) 854 { 855 blk_qc_t cookie = READ_ONCE(bio->bi_cookie); 856 struct block_device *bdev; 857 struct request_queue *q; 858 int ret = 0; 859 860 bdev = READ_ONCE(bio->bi_bdev); 861 if (!bdev) 862 return 0; 863 864 q = bdev_get_queue(bdev); 865 if (cookie == BLK_QC_T_NONE || 866 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 867 return 0; 868 869 /* 870 * As the requests that require a zone lock are not plugged in the 871 * first place, directly accessing the plug instead of using 872 * blk_mq_plug() should not have any consequences during flushing for 873 * zoned devices. 874 */ 875 blk_flush_plug(current->plug, false); 876 877 /* 878 * We need to be able to enter a frozen queue, similar to how 879 * timeouts also need to do that. If that is blocked, then we can 880 * have pending IO when a queue freeze is started, and then the 881 * wait for the freeze to finish will wait for polled requests to 882 * timeout as the poller is preventer from entering the queue and 883 * completing them. As long as we prevent new IO from being queued, 884 * that should be all that matters. 885 */ 886 if (!percpu_ref_tryget(&q->q_usage_counter)) 887 return 0; 888 if (queue_is_mq(q)) { 889 ret = blk_mq_poll(q, cookie, iob, flags); 890 } else { 891 struct gendisk *disk = q->disk; 892 893 if (disk && disk->fops->poll_bio) 894 ret = disk->fops->poll_bio(bio, iob, flags); 895 } 896 blk_queue_exit(q); 897 return ret; 898 } 899 EXPORT_SYMBOL_GPL(bio_poll); 900 901 /* 902 * Helper to implement file_operations.iopoll. Requires the bio to be stored 903 * in iocb->private, and cleared before freeing the bio. 904 */ 905 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 906 unsigned int flags) 907 { 908 struct bio *bio; 909 int ret = 0; 910 911 /* 912 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can 913 * point to a freshly allocated bio at this point. If that happens 914 * we have a few cases to consider: 915 * 916 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just 917 * simply nothing in this case 918 * 2) the bio points to a not poll enabled device. bio_poll will catch 919 * this and return 0 920 * 3) the bio points to a poll capable device, including but not 921 * limited to the one that the original bio pointed to. In this 922 * case we will call into the actual poll method and poll for I/O, 923 * even if we don't need to, but it won't cause harm either. 924 * 925 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev 926 * is still allocated. Because partitions hold a reference to the whole 927 * device bdev and thus disk, the disk is also still valid. Grabbing 928 * a reference to the queue in bio_poll() ensures the hctxs and requests 929 * are still valid as well. 930 */ 931 rcu_read_lock(); 932 bio = READ_ONCE(kiocb->private); 933 if (bio) 934 ret = bio_poll(bio, iob, flags); 935 rcu_read_unlock(); 936 937 return ret; 938 } 939 EXPORT_SYMBOL_GPL(iocb_bio_iopoll); 940 941 void update_io_ticks(struct block_device *part, unsigned long now, bool end) 942 { 943 unsigned long stamp; 944 again: 945 stamp = READ_ONCE(part->bd_stamp); 946 if (unlikely(time_after(now, stamp))) { 947 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now))) 948 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 949 } 950 if (part->bd_partno) { 951 part = bdev_whole(part); 952 goto again; 953 } 954 } 955 956 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op, 957 unsigned long start_time) 958 { 959 part_stat_lock(); 960 update_io_ticks(bdev, start_time, false); 961 part_stat_local_inc(bdev, in_flight[op_is_write(op)]); 962 part_stat_unlock(); 963 964 return start_time; 965 } 966 EXPORT_SYMBOL(bdev_start_io_acct); 967 968 /** 969 * bio_start_io_acct - start I/O accounting for bio based drivers 970 * @bio: bio to start account for 971 * 972 * Returns the start time that should be passed back to bio_end_io_acct(). 973 */ 974 unsigned long bio_start_io_acct(struct bio *bio) 975 { 976 return bdev_start_io_acct(bio->bi_bdev, bio_op(bio), jiffies); 977 } 978 EXPORT_SYMBOL_GPL(bio_start_io_acct); 979 980 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 981 unsigned int sectors, unsigned long start_time) 982 { 983 const int sgrp = op_stat_group(op); 984 unsigned long now = READ_ONCE(jiffies); 985 unsigned long duration = now - start_time; 986 987 part_stat_lock(); 988 update_io_ticks(bdev, now, true); 989 part_stat_inc(bdev, ios[sgrp]); 990 part_stat_add(bdev, sectors[sgrp], sectors); 991 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration)); 992 part_stat_local_dec(bdev, in_flight[op_is_write(op)]); 993 part_stat_unlock(); 994 } 995 EXPORT_SYMBOL(bdev_end_io_acct); 996 997 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 998 struct block_device *orig_bdev) 999 { 1000 bdev_end_io_acct(orig_bdev, bio_op(bio), bio_sectors(bio), start_time); 1001 } 1002 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 1003 1004 /** 1005 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1006 * @q : the queue of the device being checked 1007 * 1008 * Description: 1009 * Check if underlying low-level drivers of a device are busy. 1010 * If the drivers want to export their busy state, they must set own 1011 * exporting function using blk_queue_lld_busy() first. 1012 * 1013 * Basically, this function is used only by request stacking drivers 1014 * to stop dispatching requests to underlying devices when underlying 1015 * devices are busy. This behavior helps more I/O merging on the queue 1016 * of the request stacking driver and prevents I/O throughput regression 1017 * on burst I/O load. 1018 * 1019 * Return: 1020 * 0 - Not busy (The request stacking driver should dispatch request) 1021 * 1 - Busy (The request stacking driver should stop dispatching request) 1022 */ 1023 int blk_lld_busy(struct request_queue *q) 1024 { 1025 if (queue_is_mq(q) && q->mq_ops->busy) 1026 return q->mq_ops->busy(q); 1027 1028 return 0; 1029 } 1030 EXPORT_SYMBOL_GPL(blk_lld_busy); 1031 1032 int kblockd_schedule_work(struct work_struct *work) 1033 { 1034 return queue_work(kblockd_workqueue, work); 1035 } 1036 EXPORT_SYMBOL(kblockd_schedule_work); 1037 1038 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1039 unsigned long delay) 1040 { 1041 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1042 } 1043 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1044 1045 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) 1046 { 1047 struct task_struct *tsk = current; 1048 1049 /* 1050 * If this is a nested plug, don't actually assign it. 1051 */ 1052 if (tsk->plug) 1053 return; 1054 1055 plug->mq_list = NULL; 1056 plug->cached_rq = NULL; 1057 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT); 1058 plug->rq_count = 0; 1059 plug->multiple_queues = false; 1060 plug->has_elevator = false; 1061 plug->nowait = false; 1062 INIT_LIST_HEAD(&plug->cb_list); 1063 1064 /* 1065 * Store ordering should not be needed here, since a potential 1066 * preempt will imply a full memory barrier 1067 */ 1068 tsk->plug = plug; 1069 } 1070 1071 /** 1072 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1073 * @plug: The &struct blk_plug that needs to be initialized 1074 * 1075 * Description: 1076 * blk_start_plug() indicates to the block layer an intent by the caller 1077 * to submit multiple I/O requests in a batch. The block layer may use 1078 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1079 * is called. However, the block layer may choose to submit requests 1080 * before a call to blk_finish_plug() if the number of queued I/Os 1081 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1082 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1083 * the task schedules (see below). 1084 * 1085 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1086 * pending I/O should the task end up blocking between blk_start_plug() and 1087 * blk_finish_plug(). This is important from a performance perspective, but 1088 * also ensures that we don't deadlock. For instance, if the task is blocking 1089 * for a memory allocation, memory reclaim could end up wanting to free a 1090 * page belonging to that request that is currently residing in our private 1091 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1092 * this kind of deadlock. 1093 */ 1094 void blk_start_plug(struct blk_plug *plug) 1095 { 1096 blk_start_plug_nr_ios(plug, 1); 1097 } 1098 EXPORT_SYMBOL(blk_start_plug); 1099 1100 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1101 { 1102 LIST_HEAD(callbacks); 1103 1104 while (!list_empty(&plug->cb_list)) { 1105 list_splice_init(&plug->cb_list, &callbacks); 1106 1107 while (!list_empty(&callbacks)) { 1108 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1109 struct blk_plug_cb, 1110 list); 1111 list_del(&cb->list); 1112 cb->callback(cb, from_schedule); 1113 } 1114 } 1115 } 1116 1117 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1118 int size) 1119 { 1120 struct blk_plug *plug = current->plug; 1121 struct blk_plug_cb *cb; 1122 1123 if (!plug) 1124 return NULL; 1125 1126 list_for_each_entry(cb, &plug->cb_list, list) 1127 if (cb->callback == unplug && cb->data == data) 1128 return cb; 1129 1130 /* Not currently on the callback list */ 1131 BUG_ON(size < sizeof(*cb)); 1132 cb = kzalloc(size, GFP_ATOMIC); 1133 if (cb) { 1134 cb->data = data; 1135 cb->callback = unplug; 1136 list_add(&cb->list, &plug->cb_list); 1137 } 1138 return cb; 1139 } 1140 EXPORT_SYMBOL(blk_check_plugged); 1141 1142 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule) 1143 { 1144 if (!list_empty(&plug->cb_list)) 1145 flush_plug_callbacks(plug, from_schedule); 1146 if (!rq_list_empty(plug->mq_list)) 1147 blk_mq_flush_plug_list(plug, from_schedule); 1148 /* 1149 * Unconditionally flush out cached requests, even if the unplug 1150 * event came from schedule. Since we know hold references to the 1151 * queue for cached requests, we don't want a blocked task holding 1152 * up a queue freeze/quiesce event. 1153 */ 1154 if (unlikely(!rq_list_empty(plug->cached_rq))) 1155 blk_mq_free_plug_rqs(plug); 1156 } 1157 1158 /** 1159 * blk_finish_plug - mark the end of a batch of submitted I/O 1160 * @plug: The &struct blk_plug passed to blk_start_plug() 1161 * 1162 * Description: 1163 * Indicate that a batch of I/O submissions is complete. This function 1164 * must be paired with an initial call to blk_start_plug(). The intent 1165 * is to allow the block layer to optimize I/O submission. See the 1166 * documentation for blk_start_plug() for more information. 1167 */ 1168 void blk_finish_plug(struct blk_plug *plug) 1169 { 1170 if (plug == current->plug) { 1171 __blk_flush_plug(plug, false); 1172 current->plug = NULL; 1173 } 1174 } 1175 EXPORT_SYMBOL(blk_finish_plug); 1176 1177 void blk_io_schedule(void) 1178 { 1179 /* Prevent hang_check timer from firing at us during very long I/O */ 1180 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1181 1182 if (timeout) 1183 io_schedule_timeout(timeout); 1184 else 1185 io_schedule(); 1186 } 1187 EXPORT_SYMBOL_GPL(blk_io_schedule); 1188 1189 int __init blk_dev_init(void) 1190 { 1191 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1192 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1193 sizeof_field(struct request, cmd_flags)); 1194 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1195 sizeof_field(struct bio, bi_opf)); 1196 1197 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1198 kblockd_workqueue = alloc_workqueue("kblockd", 1199 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1200 if (!kblockd_workqueue) 1201 panic("Failed to create kblockd\n"); 1202 1203 blk_requestq_cachep = kmem_cache_create("request_queue", 1204 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1205 1206 blk_debugfs_root = debugfs_create_dir("block", NULL); 1207 1208 return 0; 1209 } 1210