xref: /openbmc/linux/block/blk-core.c (revision 12fbfc4c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/blk-cgroup.h>
38 #include <linux/t10-pi.h>
39 #include <linux/debugfs.h>
40 #include <linux/bpf.h>
41 #include <linux/psi.h>
42 #include <linux/sched/sysctl.h>
43 #include <linux/blk-crypto.h>
44 
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/block.h>
47 
48 #include "blk.h"
49 #include "blk-mq.h"
50 #include "blk-mq-sched.h"
51 #include "blk-pm.h"
52 #include "blk-rq-qos.h"
53 
54 struct dentry *blk_debugfs_root;
55 
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
61 
62 DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
110 void blk_rq_init(struct request_queue *q, struct request *rq)
111 {
112 	memset(rq, 0, sizeof(*rq));
113 
114 	INIT_LIST_HEAD(&rq->queuelist);
115 	rq->q = q;
116 	rq->__sector = (sector_t) -1;
117 	INIT_HLIST_NODE(&rq->hash);
118 	RB_CLEAR_NODE(&rq->rb_node);
119 	rq->tag = -1;
120 	rq->internal_tag = -1;
121 	rq->start_time_ns = ktime_get_ns();
122 	rq->part = NULL;
123 	refcount_set(&rq->ref, 1);
124 	blk_crypto_rq_set_defaults(rq);
125 }
126 EXPORT_SYMBOL(blk_rq_init);
127 
128 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
129 static const char *const blk_op_name[] = {
130 	REQ_OP_NAME(READ),
131 	REQ_OP_NAME(WRITE),
132 	REQ_OP_NAME(FLUSH),
133 	REQ_OP_NAME(DISCARD),
134 	REQ_OP_NAME(SECURE_ERASE),
135 	REQ_OP_NAME(ZONE_RESET),
136 	REQ_OP_NAME(ZONE_RESET_ALL),
137 	REQ_OP_NAME(ZONE_OPEN),
138 	REQ_OP_NAME(ZONE_CLOSE),
139 	REQ_OP_NAME(ZONE_FINISH),
140 	REQ_OP_NAME(ZONE_APPEND),
141 	REQ_OP_NAME(WRITE_SAME),
142 	REQ_OP_NAME(WRITE_ZEROES),
143 	REQ_OP_NAME(SCSI_IN),
144 	REQ_OP_NAME(SCSI_OUT),
145 	REQ_OP_NAME(DRV_IN),
146 	REQ_OP_NAME(DRV_OUT),
147 };
148 #undef REQ_OP_NAME
149 
150 /**
151  * blk_op_str - Return string XXX in the REQ_OP_XXX.
152  * @op: REQ_OP_XXX.
153  *
154  * Description: Centralize block layer function to convert REQ_OP_XXX into
155  * string format. Useful in the debugging and tracing bio or request. For
156  * invalid REQ_OP_XXX it returns string "UNKNOWN".
157  */
158 inline const char *blk_op_str(unsigned int op)
159 {
160 	const char *op_str = "UNKNOWN";
161 
162 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
163 		op_str = blk_op_name[op];
164 
165 	return op_str;
166 }
167 EXPORT_SYMBOL_GPL(blk_op_str);
168 
169 static const struct {
170 	int		errno;
171 	const char	*name;
172 } blk_errors[] = {
173 	[BLK_STS_OK]		= { 0,		"" },
174 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
175 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
176 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
177 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
178 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
179 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
180 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
181 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
182 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
183 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
184 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
185 
186 	/* device mapper special case, should not leak out: */
187 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
188 
189 	/* everything else not covered above: */
190 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
191 };
192 
193 blk_status_t errno_to_blk_status(int errno)
194 {
195 	int i;
196 
197 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
198 		if (blk_errors[i].errno == errno)
199 			return (__force blk_status_t)i;
200 	}
201 
202 	return BLK_STS_IOERR;
203 }
204 EXPORT_SYMBOL_GPL(errno_to_blk_status);
205 
206 int blk_status_to_errno(blk_status_t status)
207 {
208 	int idx = (__force int)status;
209 
210 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
211 		return -EIO;
212 	return blk_errors[idx].errno;
213 }
214 EXPORT_SYMBOL_GPL(blk_status_to_errno);
215 
216 static void print_req_error(struct request *req, blk_status_t status,
217 		const char *caller)
218 {
219 	int idx = (__force int)status;
220 
221 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
222 		return;
223 
224 	printk_ratelimited(KERN_ERR
225 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
226 		"phys_seg %u prio class %u\n",
227 		caller, blk_errors[idx].name,
228 		req->rq_disk ? req->rq_disk->disk_name : "?",
229 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
230 		req->cmd_flags & ~REQ_OP_MASK,
231 		req->nr_phys_segments,
232 		IOPRIO_PRIO_CLASS(req->ioprio));
233 }
234 
235 static void req_bio_endio(struct request *rq, struct bio *bio,
236 			  unsigned int nbytes, blk_status_t error)
237 {
238 	if (error)
239 		bio->bi_status = error;
240 
241 	if (unlikely(rq->rq_flags & RQF_QUIET))
242 		bio_set_flag(bio, BIO_QUIET);
243 
244 	bio_advance(bio, nbytes);
245 
246 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
247 		/*
248 		 * Partial zone append completions cannot be supported as the
249 		 * BIO fragments may end up not being written sequentially.
250 		 */
251 		if (bio->bi_iter.bi_size)
252 			bio->bi_status = BLK_STS_IOERR;
253 		else
254 			bio->bi_iter.bi_sector = rq->__sector;
255 	}
256 
257 	/* don't actually finish bio if it's part of flush sequence */
258 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
259 		bio_endio(bio);
260 }
261 
262 void blk_dump_rq_flags(struct request *rq, char *msg)
263 {
264 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
265 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
266 		(unsigned long long) rq->cmd_flags);
267 
268 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
269 	       (unsigned long long)blk_rq_pos(rq),
270 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
271 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
272 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
273 }
274 EXPORT_SYMBOL(blk_dump_rq_flags);
275 
276 /**
277  * blk_sync_queue - cancel any pending callbacks on a queue
278  * @q: the queue
279  *
280  * Description:
281  *     The block layer may perform asynchronous callback activity
282  *     on a queue, such as calling the unplug function after a timeout.
283  *     A block device may call blk_sync_queue to ensure that any
284  *     such activity is cancelled, thus allowing it to release resources
285  *     that the callbacks might use. The caller must already have made sure
286  *     that its ->submit_bio will not re-add plugging prior to calling
287  *     this function.
288  *
289  *     This function does not cancel any asynchronous activity arising
290  *     out of elevator or throttling code. That would require elevator_exit()
291  *     and blkcg_exit_queue() to be called with queue lock initialized.
292  *
293  */
294 void blk_sync_queue(struct request_queue *q)
295 {
296 	del_timer_sync(&q->timeout);
297 	cancel_work_sync(&q->timeout_work);
298 }
299 EXPORT_SYMBOL(blk_sync_queue);
300 
301 /**
302  * blk_set_pm_only - increment pm_only counter
303  * @q: request queue pointer
304  */
305 void blk_set_pm_only(struct request_queue *q)
306 {
307 	atomic_inc(&q->pm_only);
308 }
309 EXPORT_SYMBOL_GPL(blk_set_pm_only);
310 
311 void blk_clear_pm_only(struct request_queue *q)
312 {
313 	int pm_only;
314 
315 	pm_only = atomic_dec_return(&q->pm_only);
316 	WARN_ON_ONCE(pm_only < 0);
317 	if (pm_only == 0)
318 		wake_up_all(&q->mq_freeze_wq);
319 }
320 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
321 
322 /**
323  * blk_put_queue - decrement the request_queue refcount
324  * @q: the request_queue structure to decrement the refcount for
325  *
326  * Decrements the refcount of the request_queue kobject. When this reaches 0
327  * we'll have blk_release_queue() called.
328  *
329  * Context: Any context, but the last reference must not be dropped from
330  *          atomic context.
331  */
332 void blk_put_queue(struct request_queue *q)
333 {
334 	kobject_put(&q->kobj);
335 }
336 EXPORT_SYMBOL(blk_put_queue);
337 
338 void blk_set_queue_dying(struct request_queue *q)
339 {
340 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
341 
342 	/*
343 	 * When queue DYING flag is set, we need to block new req
344 	 * entering queue, so we call blk_freeze_queue_start() to
345 	 * prevent I/O from crossing blk_queue_enter().
346 	 */
347 	blk_freeze_queue_start(q);
348 
349 	if (queue_is_mq(q))
350 		blk_mq_wake_waiters(q);
351 
352 	/* Make blk_queue_enter() reexamine the DYING flag. */
353 	wake_up_all(&q->mq_freeze_wq);
354 }
355 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
356 
357 /**
358  * blk_cleanup_queue - shutdown a request queue
359  * @q: request queue to shutdown
360  *
361  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
362  * put it.  All future requests will be failed immediately with -ENODEV.
363  *
364  * Context: can sleep
365  */
366 void blk_cleanup_queue(struct request_queue *q)
367 {
368 	/* cannot be called from atomic context */
369 	might_sleep();
370 
371 	WARN_ON_ONCE(blk_queue_registered(q));
372 
373 	/* mark @q DYING, no new request or merges will be allowed afterwards */
374 	blk_set_queue_dying(q);
375 
376 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
377 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
378 
379 	/*
380 	 * Drain all requests queued before DYING marking. Set DEAD flag to
381 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
382 	 * after draining finished.
383 	 */
384 	blk_freeze_queue(q);
385 
386 	rq_qos_exit(q);
387 
388 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
389 
390 	/* for synchronous bio-based driver finish in-flight integrity i/o */
391 	blk_flush_integrity();
392 
393 	/* @q won't process any more request, flush async actions */
394 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
395 	blk_sync_queue(q);
396 
397 	if (queue_is_mq(q))
398 		blk_mq_exit_queue(q);
399 
400 	/*
401 	 * In theory, request pool of sched_tags belongs to request queue.
402 	 * However, the current implementation requires tag_set for freeing
403 	 * requests, so free the pool now.
404 	 *
405 	 * Queue has become frozen, there can't be any in-queue requests, so
406 	 * it is safe to free requests now.
407 	 */
408 	mutex_lock(&q->sysfs_lock);
409 	if (q->elevator)
410 		blk_mq_sched_free_requests(q);
411 	mutex_unlock(&q->sysfs_lock);
412 
413 	percpu_ref_exit(&q->q_usage_counter);
414 
415 	/* @q is and will stay empty, shutdown and put */
416 	blk_put_queue(q);
417 }
418 EXPORT_SYMBOL(blk_cleanup_queue);
419 
420 /**
421  * blk_queue_enter() - try to increase q->q_usage_counter
422  * @q: request queue pointer
423  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
424  */
425 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
426 {
427 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
428 
429 	while (true) {
430 		bool success = false;
431 
432 		rcu_read_lock();
433 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
434 			/*
435 			 * The code that increments the pm_only counter is
436 			 * responsible for ensuring that that counter is
437 			 * globally visible before the queue is unfrozen.
438 			 */
439 			if (pm || !blk_queue_pm_only(q)) {
440 				success = true;
441 			} else {
442 				percpu_ref_put(&q->q_usage_counter);
443 			}
444 		}
445 		rcu_read_unlock();
446 
447 		if (success)
448 			return 0;
449 
450 		if (flags & BLK_MQ_REQ_NOWAIT)
451 			return -EBUSY;
452 
453 		/*
454 		 * read pair of barrier in blk_freeze_queue_start(),
455 		 * we need to order reading __PERCPU_REF_DEAD flag of
456 		 * .q_usage_counter and reading .mq_freeze_depth or
457 		 * queue dying flag, otherwise the following wait may
458 		 * never return if the two reads are reordered.
459 		 */
460 		smp_rmb();
461 
462 		wait_event(q->mq_freeze_wq,
463 			   (!q->mq_freeze_depth &&
464 			    (pm || (blk_pm_request_resume(q),
465 				    !blk_queue_pm_only(q)))) ||
466 			   blk_queue_dying(q));
467 		if (blk_queue_dying(q))
468 			return -ENODEV;
469 	}
470 }
471 
472 static inline int bio_queue_enter(struct bio *bio)
473 {
474 	struct request_queue *q = bio->bi_disk->queue;
475 	bool nowait = bio->bi_opf & REQ_NOWAIT;
476 	int ret;
477 
478 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
479 	if (unlikely(ret)) {
480 		if (nowait && !blk_queue_dying(q))
481 			bio_wouldblock_error(bio);
482 		else
483 			bio_io_error(bio);
484 	}
485 
486 	return ret;
487 }
488 
489 void blk_queue_exit(struct request_queue *q)
490 {
491 	percpu_ref_put(&q->q_usage_counter);
492 }
493 
494 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
495 {
496 	struct request_queue *q =
497 		container_of(ref, struct request_queue, q_usage_counter);
498 
499 	wake_up_all(&q->mq_freeze_wq);
500 }
501 
502 static void blk_rq_timed_out_timer(struct timer_list *t)
503 {
504 	struct request_queue *q = from_timer(q, t, timeout);
505 
506 	kblockd_schedule_work(&q->timeout_work);
507 }
508 
509 static void blk_timeout_work(struct work_struct *work)
510 {
511 }
512 
513 struct request_queue *blk_alloc_queue(int node_id)
514 {
515 	struct request_queue *q;
516 	int ret;
517 
518 	q = kmem_cache_alloc_node(blk_requestq_cachep,
519 				GFP_KERNEL | __GFP_ZERO, node_id);
520 	if (!q)
521 		return NULL;
522 
523 	q->last_merge = NULL;
524 
525 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
526 	if (q->id < 0)
527 		goto fail_q;
528 
529 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
530 	if (ret)
531 		goto fail_id;
532 
533 	q->backing_dev_info = bdi_alloc(node_id);
534 	if (!q->backing_dev_info)
535 		goto fail_split;
536 
537 	q->stats = blk_alloc_queue_stats();
538 	if (!q->stats)
539 		goto fail_stats;
540 
541 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
542 	q->backing_dev_info->io_pages = VM_READAHEAD_PAGES;
543 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
544 	q->node = node_id;
545 
546 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
547 		    laptop_mode_timer_fn, 0);
548 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
549 	INIT_WORK(&q->timeout_work, blk_timeout_work);
550 	INIT_LIST_HEAD(&q->icq_list);
551 #ifdef CONFIG_BLK_CGROUP
552 	INIT_LIST_HEAD(&q->blkg_list);
553 #endif
554 
555 	kobject_init(&q->kobj, &blk_queue_ktype);
556 
557 	mutex_init(&q->debugfs_mutex);
558 	mutex_init(&q->sysfs_lock);
559 	mutex_init(&q->sysfs_dir_lock);
560 	spin_lock_init(&q->queue_lock);
561 
562 	init_waitqueue_head(&q->mq_freeze_wq);
563 	mutex_init(&q->mq_freeze_lock);
564 
565 	/*
566 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
567 	 * See blk_register_queue() for details.
568 	 */
569 	if (percpu_ref_init(&q->q_usage_counter,
570 				blk_queue_usage_counter_release,
571 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
572 		goto fail_bdi;
573 
574 	if (blkcg_init_queue(q))
575 		goto fail_ref;
576 
577 	blk_queue_dma_alignment(q, 511);
578 	blk_set_default_limits(&q->limits);
579 	q->nr_requests = BLKDEV_MAX_RQ;
580 
581 	return q;
582 
583 fail_ref:
584 	percpu_ref_exit(&q->q_usage_counter);
585 fail_bdi:
586 	blk_free_queue_stats(q->stats);
587 fail_stats:
588 	bdi_put(q->backing_dev_info);
589 fail_split:
590 	bioset_exit(&q->bio_split);
591 fail_id:
592 	ida_simple_remove(&blk_queue_ida, q->id);
593 fail_q:
594 	kmem_cache_free(blk_requestq_cachep, q);
595 	return NULL;
596 }
597 EXPORT_SYMBOL(blk_alloc_queue);
598 
599 /**
600  * blk_get_queue - increment the request_queue refcount
601  * @q: the request_queue structure to increment the refcount for
602  *
603  * Increment the refcount of the request_queue kobject.
604  *
605  * Context: Any context.
606  */
607 bool blk_get_queue(struct request_queue *q)
608 {
609 	if (likely(!blk_queue_dying(q))) {
610 		__blk_get_queue(q);
611 		return true;
612 	}
613 
614 	return false;
615 }
616 EXPORT_SYMBOL(blk_get_queue);
617 
618 /**
619  * blk_get_request - allocate a request
620  * @q: request queue to allocate a request for
621  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
622  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
623  */
624 struct request *blk_get_request(struct request_queue *q, unsigned int op,
625 				blk_mq_req_flags_t flags)
626 {
627 	struct request *req;
628 
629 	WARN_ON_ONCE(op & REQ_NOWAIT);
630 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
631 
632 	req = blk_mq_alloc_request(q, op, flags);
633 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
634 		q->mq_ops->initialize_rq_fn(req);
635 
636 	return req;
637 }
638 EXPORT_SYMBOL(blk_get_request);
639 
640 void blk_put_request(struct request *req)
641 {
642 	blk_mq_free_request(req);
643 }
644 EXPORT_SYMBOL(blk_put_request);
645 
646 static void blk_account_io_merge_bio(struct request *req)
647 {
648 	if (!blk_do_io_stat(req))
649 		return;
650 
651 	part_stat_lock();
652 	part_stat_inc(req->part, merges[op_stat_group(req_op(req))]);
653 	part_stat_unlock();
654 }
655 
656 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
657 		unsigned int nr_segs)
658 {
659 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
660 
661 	if (!ll_back_merge_fn(req, bio, nr_segs))
662 		return false;
663 
664 	trace_block_bio_backmerge(req->q, req, bio);
665 	rq_qos_merge(req->q, req, bio);
666 
667 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
668 		blk_rq_set_mixed_merge(req);
669 
670 	req->biotail->bi_next = bio;
671 	req->biotail = bio;
672 	req->__data_len += bio->bi_iter.bi_size;
673 
674 	bio_crypt_free_ctx(bio);
675 
676 	blk_account_io_merge_bio(req);
677 	return true;
678 }
679 
680 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
681 		unsigned int nr_segs)
682 {
683 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
684 
685 	if (!ll_front_merge_fn(req, bio, nr_segs))
686 		return false;
687 
688 	trace_block_bio_frontmerge(req->q, req, bio);
689 	rq_qos_merge(req->q, req, bio);
690 
691 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
692 		blk_rq_set_mixed_merge(req);
693 
694 	bio->bi_next = req->bio;
695 	req->bio = bio;
696 
697 	req->__sector = bio->bi_iter.bi_sector;
698 	req->__data_len += bio->bi_iter.bi_size;
699 
700 	bio_crypt_do_front_merge(req, bio);
701 
702 	blk_account_io_merge_bio(req);
703 	return true;
704 }
705 
706 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
707 		struct bio *bio)
708 {
709 	unsigned short segments = blk_rq_nr_discard_segments(req);
710 
711 	if (segments >= queue_max_discard_segments(q))
712 		goto no_merge;
713 	if (blk_rq_sectors(req) + bio_sectors(bio) >
714 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
715 		goto no_merge;
716 
717 	rq_qos_merge(q, req, bio);
718 
719 	req->biotail->bi_next = bio;
720 	req->biotail = bio;
721 	req->__data_len += bio->bi_iter.bi_size;
722 	req->nr_phys_segments = segments + 1;
723 
724 	blk_account_io_merge_bio(req);
725 	return true;
726 no_merge:
727 	req_set_nomerge(q, req);
728 	return false;
729 }
730 
731 /**
732  * blk_attempt_plug_merge - try to merge with %current's plugged list
733  * @q: request_queue new bio is being queued at
734  * @bio: new bio being queued
735  * @nr_segs: number of segments in @bio
736  * @same_queue_rq: pointer to &struct request that gets filled in when
737  * another request associated with @q is found on the plug list
738  * (optional, may be %NULL)
739  *
740  * Determine whether @bio being queued on @q can be merged with a request
741  * on %current's plugged list.  Returns %true if merge was successful,
742  * otherwise %false.
743  *
744  * Plugging coalesces IOs from the same issuer for the same purpose without
745  * going through @q->queue_lock.  As such it's more of an issuing mechanism
746  * than scheduling, and the request, while may have elvpriv data, is not
747  * added on the elevator at this point.  In addition, we don't have
748  * reliable access to the elevator outside queue lock.  Only check basic
749  * merging parameters without querying the elevator.
750  *
751  * Caller must ensure !blk_queue_nomerges(q) beforehand.
752  */
753 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
754 		unsigned int nr_segs, struct request **same_queue_rq)
755 {
756 	struct blk_plug *plug;
757 	struct request *rq;
758 	struct list_head *plug_list;
759 
760 	plug = blk_mq_plug(q, bio);
761 	if (!plug)
762 		return false;
763 
764 	plug_list = &plug->mq_list;
765 
766 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
767 		bool merged = false;
768 
769 		if (rq->q == q && same_queue_rq) {
770 			/*
771 			 * Only blk-mq multiple hardware queues case checks the
772 			 * rq in the same queue, there should be only one such
773 			 * rq in a queue
774 			 **/
775 			*same_queue_rq = rq;
776 		}
777 
778 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
779 			continue;
780 
781 		switch (blk_try_merge(rq, bio)) {
782 		case ELEVATOR_BACK_MERGE:
783 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
784 			break;
785 		case ELEVATOR_FRONT_MERGE:
786 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
787 			break;
788 		case ELEVATOR_DISCARD_MERGE:
789 			merged = bio_attempt_discard_merge(q, rq, bio);
790 			break;
791 		default:
792 			break;
793 		}
794 
795 		if (merged)
796 			return true;
797 	}
798 
799 	return false;
800 }
801 
802 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
803 {
804 	char b[BDEVNAME_SIZE];
805 
806 	printk(KERN_INFO "attempt to access beyond end of device\n");
807 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
808 			bio_devname(bio, b), bio->bi_opf,
809 			(unsigned long long)bio_end_sector(bio),
810 			(long long)maxsector);
811 }
812 
813 #ifdef CONFIG_FAIL_MAKE_REQUEST
814 
815 static DECLARE_FAULT_ATTR(fail_make_request);
816 
817 static int __init setup_fail_make_request(char *str)
818 {
819 	return setup_fault_attr(&fail_make_request, str);
820 }
821 __setup("fail_make_request=", setup_fail_make_request);
822 
823 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
824 {
825 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
826 }
827 
828 static int __init fail_make_request_debugfs(void)
829 {
830 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
831 						NULL, &fail_make_request);
832 
833 	return PTR_ERR_OR_ZERO(dir);
834 }
835 
836 late_initcall(fail_make_request_debugfs);
837 
838 #else /* CONFIG_FAIL_MAKE_REQUEST */
839 
840 static inline bool should_fail_request(struct hd_struct *part,
841 					unsigned int bytes)
842 {
843 	return false;
844 }
845 
846 #endif /* CONFIG_FAIL_MAKE_REQUEST */
847 
848 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
849 {
850 	const int op = bio_op(bio);
851 
852 	if (part->policy && op_is_write(op)) {
853 		char b[BDEVNAME_SIZE];
854 
855 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
856 			return false;
857 
858 		WARN_ONCE(1,
859 		       "Trying to write to read-only block-device %s (partno %d)\n",
860 			bio_devname(bio, b), part->partno);
861 		/* Older lvm-tools actually trigger this */
862 		return false;
863 	}
864 
865 	return false;
866 }
867 
868 static noinline int should_fail_bio(struct bio *bio)
869 {
870 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
871 		return -EIO;
872 	return 0;
873 }
874 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
875 
876 /*
877  * Check whether this bio extends beyond the end of the device or partition.
878  * This may well happen - the kernel calls bread() without checking the size of
879  * the device, e.g., when mounting a file system.
880  */
881 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
882 {
883 	unsigned int nr_sectors = bio_sectors(bio);
884 
885 	if (nr_sectors && maxsector &&
886 	    (nr_sectors > maxsector ||
887 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
888 		handle_bad_sector(bio, maxsector);
889 		return -EIO;
890 	}
891 	return 0;
892 }
893 
894 /*
895  * Remap block n of partition p to block n+start(p) of the disk.
896  */
897 static inline int blk_partition_remap(struct bio *bio)
898 {
899 	struct hd_struct *p;
900 	int ret = -EIO;
901 
902 	rcu_read_lock();
903 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
904 	if (unlikely(!p))
905 		goto out;
906 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
907 		goto out;
908 	if (unlikely(bio_check_ro(bio, p)))
909 		goto out;
910 
911 	if (bio_sectors(bio)) {
912 		if (bio_check_eod(bio, part_nr_sects_read(p)))
913 			goto out;
914 		bio->bi_iter.bi_sector += p->start_sect;
915 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
916 				      bio->bi_iter.bi_sector - p->start_sect);
917 	}
918 	bio->bi_partno = 0;
919 	ret = 0;
920 out:
921 	rcu_read_unlock();
922 	return ret;
923 }
924 
925 /*
926  * Check write append to a zoned block device.
927  */
928 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
929 						 struct bio *bio)
930 {
931 	sector_t pos = bio->bi_iter.bi_sector;
932 	int nr_sectors = bio_sectors(bio);
933 
934 	/* Only applicable to zoned block devices */
935 	if (!blk_queue_is_zoned(q))
936 		return BLK_STS_NOTSUPP;
937 
938 	/* The bio sector must point to the start of a sequential zone */
939 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
940 	    !blk_queue_zone_is_seq(q, pos))
941 		return BLK_STS_IOERR;
942 
943 	/*
944 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
945 	 * split and could result in non-contiguous sectors being written in
946 	 * different zones.
947 	 */
948 	if (nr_sectors > q->limits.chunk_sectors)
949 		return BLK_STS_IOERR;
950 
951 	/* Make sure the BIO is small enough and will not get split */
952 	if (nr_sectors > q->limits.max_zone_append_sectors)
953 		return BLK_STS_IOERR;
954 
955 	bio->bi_opf |= REQ_NOMERGE;
956 
957 	return BLK_STS_OK;
958 }
959 
960 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
961 {
962 	struct request_queue *q = bio->bi_disk->queue;
963 	blk_status_t status = BLK_STS_IOERR;
964 	struct blk_plug *plug;
965 
966 	might_sleep();
967 
968 	plug = blk_mq_plug(q, bio);
969 	if (plug && plug->nowait)
970 		bio->bi_opf |= REQ_NOWAIT;
971 
972 	/*
973 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
974 	 * if queue is not a request based queue.
975 	 */
976 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
977 		goto not_supported;
978 
979 	if (should_fail_bio(bio))
980 		goto end_io;
981 
982 	if (bio->bi_partno) {
983 		if (unlikely(blk_partition_remap(bio)))
984 			goto end_io;
985 	} else {
986 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
987 			goto end_io;
988 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
989 			goto end_io;
990 	}
991 
992 	/*
993 	 * Filter flush bio's early so that bio based drivers without flush
994 	 * support don't have to worry about them.
995 	 */
996 	if (op_is_flush(bio->bi_opf) &&
997 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
998 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
999 		if (!bio_sectors(bio)) {
1000 			status = BLK_STS_OK;
1001 			goto end_io;
1002 		}
1003 	}
1004 
1005 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
1006 		bio->bi_opf &= ~REQ_HIPRI;
1007 
1008 	switch (bio_op(bio)) {
1009 	case REQ_OP_DISCARD:
1010 		if (!blk_queue_discard(q))
1011 			goto not_supported;
1012 		break;
1013 	case REQ_OP_SECURE_ERASE:
1014 		if (!blk_queue_secure_erase(q))
1015 			goto not_supported;
1016 		break;
1017 	case REQ_OP_WRITE_SAME:
1018 		if (!q->limits.max_write_same_sectors)
1019 			goto not_supported;
1020 		break;
1021 	case REQ_OP_ZONE_APPEND:
1022 		status = blk_check_zone_append(q, bio);
1023 		if (status != BLK_STS_OK)
1024 			goto end_io;
1025 		break;
1026 	case REQ_OP_ZONE_RESET:
1027 	case REQ_OP_ZONE_OPEN:
1028 	case REQ_OP_ZONE_CLOSE:
1029 	case REQ_OP_ZONE_FINISH:
1030 		if (!blk_queue_is_zoned(q))
1031 			goto not_supported;
1032 		break;
1033 	case REQ_OP_ZONE_RESET_ALL:
1034 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
1035 			goto not_supported;
1036 		break;
1037 	case REQ_OP_WRITE_ZEROES:
1038 		if (!q->limits.max_write_zeroes_sectors)
1039 			goto not_supported;
1040 		break;
1041 	default:
1042 		break;
1043 	}
1044 
1045 	/*
1046 	 * Various block parts want %current->io_context, so allocate it up
1047 	 * front rather than dealing with lots of pain to allocate it only
1048 	 * where needed. This may fail and the block layer knows how to live
1049 	 * with it.
1050 	 */
1051 	if (unlikely(!current->io_context))
1052 		create_task_io_context(current, GFP_ATOMIC, q->node);
1053 
1054 	if (blk_throtl_bio(bio)) {
1055 		blkcg_bio_issue_init(bio);
1056 		return false;
1057 	}
1058 
1059 	blk_cgroup_bio_start(bio);
1060 	blkcg_bio_issue_init(bio);
1061 
1062 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1063 		trace_block_bio_queue(q, bio);
1064 		/* Now that enqueuing has been traced, we need to trace
1065 		 * completion as well.
1066 		 */
1067 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
1068 	}
1069 	return true;
1070 
1071 not_supported:
1072 	status = BLK_STS_NOTSUPP;
1073 end_io:
1074 	bio->bi_status = status;
1075 	bio_endio(bio);
1076 	return false;
1077 }
1078 
1079 static blk_qc_t __submit_bio(struct bio *bio)
1080 {
1081 	struct gendisk *disk = bio->bi_disk;
1082 	blk_qc_t ret = BLK_QC_T_NONE;
1083 
1084 	if (blk_crypto_bio_prep(&bio)) {
1085 		if (!disk->fops->submit_bio)
1086 			return blk_mq_submit_bio(bio);
1087 		ret = disk->fops->submit_bio(bio);
1088 	}
1089 	blk_queue_exit(disk->queue);
1090 	return ret;
1091 }
1092 
1093 /*
1094  * The loop in this function may be a bit non-obvious, and so deserves some
1095  * explanation:
1096  *
1097  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
1098  *    that), so we have a list with a single bio.
1099  *  - We pretend that we have just taken it off a longer list, so we assign
1100  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
1101  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
1102  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
1103  *    non-NULL value in bio_list and re-enter the loop from the top.
1104  *  - In this case we really did just take the bio of the top of the list (no
1105  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
1106  *    again.
1107  *
1108  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
1109  * bio_list_on_stack[1] contains bios that were submitted before the current
1110  *	->submit_bio_bio, but that haven't been processed yet.
1111  */
1112 static blk_qc_t __submit_bio_noacct(struct bio *bio)
1113 {
1114 	struct bio_list bio_list_on_stack[2];
1115 	blk_qc_t ret = BLK_QC_T_NONE;
1116 
1117 	BUG_ON(bio->bi_next);
1118 
1119 	bio_list_init(&bio_list_on_stack[0]);
1120 	current->bio_list = bio_list_on_stack;
1121 
1122 	do {
1123 		struct request_queue *q = bio->bi_disk->queue;
1124 		struct bio_list lower, same;
1125 
1126 		if (unlikely(bio_queue_enter(bio) != 0))
1127 			continue;
1128 
1129 		/*
1130 		 * Create a fresh bio_list for all subordinate requests.
1131 		 */
1132 		bio_list_on_stack[1] = bio_list_on_stack[0];
1133 		bio_list_init(&bio_list_on_stack[0]);
1134 
1135 		ret = __submit_bio(bio);
1136 
1137 		/*
1138 		 * Sort new bios into those for a lower level and those for the
1139 		 * same level.
1140 		 */
1141 		bio_list_init(&lower);
1142 		bio_list_init(&same);
1143 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1144 			if (q == bio->bi_disk->queue)
1145 				bio_list_add(&same, bio);
1146 			else
1147 				bio_list_add(&lower, bio);
1148 
1149 		/*
1150 		 * Now assemble so we handle the lowest level first.
1151 		 */
1152 		bio_list_merge(&bio_list_on_stack[0], &lower);
1153 		bio_list_merge(&bio_list_on_stack[0], &same);
1154 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1155 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1156 
1157 	current->bio_list = NULL;
1158 	return ret;
1159 }
1160 
1161 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1162 {
1163 	struct bio_list bio_list[2] = { };
1164 	blk_qc_t ret = BLK_QC_T_NONE;
1165 
1166 	current->bio_list = bio_list;
1167 
1168 	do {
1169 		struct gendisk *disk = bio->bi_disk;
1170 
1171 		if (unlikely(bio_queue_enter(bio) != 0))
1172 			continue;
1173 
1174 		if (!blk_crypto_bio_prep(&bio)) {
1175 			blk_queue_exit(disk->queue);
1176 			ret = BLK_QC_T_NONE;
1177 			continue;
1178 		}
1179 
1180 		ret = blk_mq_submit_bio(bio);
1181 	} while ((bio = bio_list_pop(&bio_list[0])));
1182 
1183 	current->bio_list = NULL;
1184 	return ret;
1185 }
1186 
1187 /**
1188  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1189  * @bio:  The bio describing the location in memory and on the device.
1190  *
1191  * This is a version of submit_bio() that shall only be used for I/O that is
1192  * resubmitted to lower level drivers by stacking block drivers.  All file
1193  * systems and other upper level users of the block layer should use
1194  * submit_bio() instead.
1195  */
1196 blk_qc_t submit_bio_noacct(struct bio *bio)
1197 {
1198 	if (!submit_bio_checks(bio))
1199 		return BLK_QC_T_NONE;
1200 
1201 	/*
1202 	 * We only want one ->submit_bio to be active at a time, else stack
1203 	 * usage with stacked devices could be a problem.  Use current->bio_list
1204 	 * to collect a list of requests submited by a ->submit_bio method while
1205 	 * it is active, and then process them after it returned.
1206 	 */
1207 	if (current->bio_list) {
1208 		bio_list_add(&current->bio_list[0], bio);
1209 		return BLK_QC_T_NONE;
1210 	}
1211 
1212 	if (!bio->bi_disk->fops->submit_bio)
1213 		return __submit_bio_noacct_mq(bio);
1214 	return __submit_bio_noacct(bio);
1215 }
1216 EXPORT_SYMBOL(submit_bio_noacct);
1217 
1218 /**
1219  * submit_bio - submit a bio to the block device layer for I/O
1220  * @bio: The &struct bio which describes the I/O
1221  *
1222  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1223  * fully set up &struct bio that describes the I/O that needs to be done.  The
1224  * bio will be send to the device described by the bi_disk and bi_partno fields.
1225  *
1226  * The success/failure status of the request, along with notification of
1227  * completion, is delivered asynchronously through the ->bi_end_io() callback
1228  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1229  * been called.
1230  */
1231 blk_qc_t submit_bio(struct bio *bio)
1232 {
1233 	if (blkcg_punt_bio_submit(bio))
1234 		return BLK_QC_T_NONE;
1235 
1236 	/*
1237 	 * If it's a regular read/write or a barrier with data attached,
1238 	 * go through the normal accounting stuff before submission.
1239 	 */
1240 	if (bio_has_data(bio)) {
1241 		unsigned int count;
1242 
1243 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1244 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1245 		else
1246 			count = bio_sectors(bio);
1247 
1248 		if (op_is_write(bio_op(bio))) {
1249 			count_vm_events(PGPGOUT, count);
1250 		} else {
1251 			task_io_account_read(bio->bi_iter.bi_size);
1252 			count_vm_events(PGPGIN, count);
1253 		}
1254 
1255 		if (unlikely(block_dump)) {
1256 			char b[BDEVNAME_SIZE];
1257 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1258 			current->comm, task_pid_nr(current),
1259 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1260 				(unsigned long long)bio->bi_iter.bi_sector,
1261 				bio_devname(bio, b), count);
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * If we're reading data that is part of the userspace workingset, count
1267 	 * submission time as memory stall.  When the device is congested, or
1268 	 * the submitting cgroup IO-throttled, submission can be a significant
1269 	 * part of overall IO time.
1270 	 */
1271 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1272 	    bio_flagged(bio, BIO_WORKINGSET))) {
1273 		unsigned long pflags;
1274 		blk_qc_t ret;
1275 
1276 		psi_memstall_enter(&pflags);
1277 		ret = submit_bio_noacct(bio);
1278 		psi_memstall_leave(&pflags);
1279 
1280 		return ret;
1281 	}
1282 
1283 	return submit_bio_noacct(bio);
1284 }
1285 EXPORT_SYMBOL(submit_bio);
1286 
1287 /**
1288  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1289  *                              for the new queue limits
1290  * @q:  the queue
1291  * @rq: the request being checked
1292  *
1293  * Description:
1294  *    @rq may have been made based on weaker limitations of upper-level queues
1295  *    in request stacking drivers, and it may violate the limitation of @q.
1296  *    Since the block layer and the underlying device driver trust @rq
1297  *    after it is inserted to @q, it should be checked against @q before
1298  *    the insertion using this generic function.
1299  *
1300  *    Request stacking drivers like request-based dm may change the queue
1301  *    limits when retrying requests on other queues. Those requests need
1302  *    to be checked against the new queue limits again during dispatch.
1303  */
1304 static int blk_cloned_rq_check_limits(struct request_queue *q,
1305 				      struct request *rq)
1306 {
1307 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1308 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1309 			__func__, blk_rq_sectors(rq),
1310 			blk_queue_get_max_sectors(q, req_op(rq)));
1311 		return -EIO;
1312 	}
1313 
1314 	/*
1315 	 * queue's settings related to segment counting like q->bounce_pfn
1316 	 * may differ from that of other stacking queues.
1317 	 * Recalculate it to check the request correctly on this queue's
1318 	 * limitation.
1319 	 */
1320 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1321 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1322 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1323 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1324 		return -EIO;
1325 	}
1326 
1327 	return 0;
1328 }
1329 
1330 /**
1331  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1332  * @q:  the queue to submit the request
1333  * @rq: the request being queued
1334  */
1335 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1336 {
1337 	if (blk_cloned_rq_check_limits(q, rq))
1338 		return BLK_STS_IOERR;
1339 
1340 	if (rq->rq_disk &&
1341 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1342 		return BLK_STS_IOERR;
1343 
1344 	if (blk_crypto_insert_cloned_request(rq))
1345 		return BLK_STS_IOERR;
1346 
1347 	if (blk_queue_io_stat(q))
1348 		blk_account_io_start(rq);
1349 
1350 	/*
1351 	 * Since we have a scheduler attached on the top device,
1352 	 * bypass a potential scheduler on the bottom device for
1353 	 * insert.
1354 	 */
1355 	return blk_mq_request_issue_directly(rq, true);
1356 }
1357 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1358 
1359 /**
1360  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1361  * @rq: request to examine
1362  *
1363  * Description:
1364  *     A request could be merge of IOs which require different failure
1365  *     handling.  This function determines the number of bytes which
1366  *     can be failed from the beginning of the request without
1367  *     crossing into area which need to be retried further.
1368  *
1369  * Return:
1370  *     The number of bytes to fail.
1371  */
1372 unsigned int blk_rq_err_bytes(const struct request *rq)
1373 {
1374 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1375 	unsigned int bytes = 0;
1376 	struct bio *bio;
1377 
1378 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1379 		return blk_rq_bytes(rq);
1380 
1381 	/*
1382 	 * Currently the only 'mixing' which can happen is between
1383 	 * different fastfail types.  We can safely fail portions
1384 	 * which have all the failfast bits that the first one has -
1385 	 * the ones which are at least as eager to fail as the first
1386 	 * one.
1387 	 */
1388 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1389 		if ((bio->bi_opf & ff) != ff)
1390 			break;
1391 		bytes += bio->bi_iter.bi_size;
1392 	}
1393 
1394 	/* this could lead to infinite loop */
1395 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1396 	return bytes;
1397 }
1398 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1399 
1400 static void update_io_ticks(struct hd_struct *part, unsigned long now, bool end)
1401 {
1402 	unsigned long stamp;
1403 again:
1404 	stamp = READ_ONCE(part->stamp);
1405 	if (unlikely(stamp != now)) {
1406 		if (likely(cmpxchg(&part->stamp, stamp, now) == stamp))
1407 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1408 	}
1409 	if (part->partno) {
1410 		part = &part_to_disk(part)->part0;
1411 		goto again;
1412 	}
1413 }
1414 
1415 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1416 {
1417 	if (req->part && blk_do_io_stat(req)) {
1418 		const int sgrp = op_stat_group(req_op(req));
1419 		struct hd_struct *part;
1420 
1421 		part_stat_lock();
1422 		part = req->part;
1423 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1424 		part_stat_unlock();
1425 	}
1426 }
1427 
1428 void blk_account_io_done(struct request *req, u64 now)
1429 {
1430 	/*
1431 	 * Account IO completion.  flush_rq isn't accounted as a
1432 	 * normal IO on queueing nor completion.  Accounting the
1433 	 * containing request is enough.
1434 	 */
1435 	if (req->part && blk_do_io_stat(req) &&
1436 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1437 		const int sgrp = op_stat_group(req_op(req));
1438 		struct hd_struct *part;
1439 
1440 		part_stat_lock();
1441 		part = req->part;
1442 
1443 		update_io_ticks(part, jiffies, true);
1444 		part_stat_inc(part, ios[sgrp]);
1445 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1446 		part_stat_unlock();
1447 
1448 		hd_struct_put(part);
1449 	}
1450 }
1451 
1452 void blk_account_io_start(struct request *rq)
1453 {
1454 	if (!blk_do_io_stat(rq))
1455 		return;
1456 
1457 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1458 
1459 	part_stat_lock();
1460 	update_io_ticks(rq->part, jiffies, false);
1461 	part_stat_unlock();
1462 }
1463 
1464 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1465 		unsigned int op)
1466 {
1467 	struct hd_struct *part = &disk->part0;
1468 	const int sgrp = op_stat_group(op);
1469 	unsigned long now = READ_ONCE(jiffies);
1470 
1471 	part_stat_lock();
1472 	update_io_ticks(part, now, false);
1473 	part_stat_inc(part, ios[sgrp]);
1474 	part_stat_add(part, sectors[sgrp], sectors);
1475 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1476 	part_stat_unlock();
1477 
1478 	return now;
1479 }
1480 EXPORT_SYMBOL(disk_start_io_acct);
1481 
1482 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1483 		unsigned long start_time)
1484 {
1485 	struct hd_struct *part = &disk->part0;
1486 	const int sgrp = op_stat_group(op);
1487 	unsigned long now = READ_ONCE(jiffies);
1488 	unsigned long duration = now - start_time;
1489 
1490 	part_stat_lock();
1491 	update_io_ticks(part, now, true);
1492 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1493 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1494 	part_stat_unlock();
1495 }
1496 EXPORT_SYMBOL(disk_end_io_acct);
1497 
1498 /*
1499  * Steal bios from a request and add them to a bio list.
1500  * The request must not have been partially completed before.
1501  */
1502 void blk_steal_bios(struct bio_list *list, struct request *rq)
1503 {
1504 	if (rq->bio) {
1505 		if (list->tail)
1506 			list->tail->bi_next = rq->bio;
1507 		else
1508 			list->head = rq->bio;
1509 		list->tail = rq->biotail;
1510 
1511 		rq->bio = NULL;
1512 		rq->biotail = NULL;
1513 	}
1514 
1515 	rq->__data_len = 0;
1516 }
1517 EXPORT_SYMBOL_GPL(blk_steal_bios);
1518 
1519 /**
1520  * blk_update_request - Special helper function for request stacking drivers
1521  * @req:      the request being processed
1522  * @error:    block status code
1523  * @nr_bytes: number of bytes to complete @req
1524  *
1525  * Description:
1526  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1527  *     the request structure even if @req doesn't have leftover.
1528  *     If @req has leftover, sets it up for the next range of segments.
1529  *
1530  *     This special helper function is only for request stacking drivers
1531  *     (e.g. request-based dm) so that they can handle partial completion.
1532  *     Actual device drivers should use blk_mq_end_request instead.
1533  *
1534  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1535  *     %false return from this function.
1536  *
1537  * Note:
1538  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1539  *	blk_rq_bytes() and in blk_update_request().
1540  *
1541  * Return:
1542  *     %false - this request doesn't have any more data
1543  *     %true  - this request has more data
1544  **/
1545 bool blk_update_request(struct request *req, blk_status_t error,
1546 		unsigned int nr_bytes)
1547 {
1548 	int total_bytes;
1549 
1550 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1551 
1552 	if (!req->bio)
1553 		return false;
1554 
1555 #ifdef CONFIG_BLK_DEV_INTEGRITY
1556 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1557 	    error == BLK_STS_OK)
1558 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1559 #endif
1560 
1561 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1562 		     !(req->rq_flags & RQF_QUIET)))
1563 		print_req_error(req, error, __func__);
1564 
1565 	blk_account_io_completion(req, nr_bytes);
1566 
1567 	total_bytes = 0;
1568 	while (req->bio) {
1569 		struct bio *bio = req->bio;
1570 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1571 
1572 		if (bio_bytes == bio->bi_iter.bi_size)
1573 			req->bio = bio->bi_next;
1574 
1575 		/* Completion has already been traced */
1576 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1577 		req_bio_endio(req, bio, bio_bytes, error);
1578 
1579 		total_bytes += bio_bytes;
1580 		nr_bytes -= bio_bytes;
1581 
1582 		if (!nr_bytes)
1583 			break;
1584 	}
1585 
1586 	/*
1587 	 * completely done
1588 	 */
1589 	if (!req->bio) {
1590 		/*
1591 		 * Reset counters so that the request stacking driver
1592 		 * can find how many bytes remain in the request
1593 		 * later.
1594 		 */
1595 		req->__data_len = 0;
1596 		return false;
1597 	}
1598 
1599 	req->__data_len -= total_bytes;
1600 
1601 	/* update sector only for requests with clear definition of sector */
1602 	if (!blk_rq_is_passthrough(req))
1603 		req->__sector += total_bytes >> 9;
1604 
1605 	/* mixed attributes always follow the first bio */
1606 	if (req->rq_flags & RQF_MIXED_MERGE) {
1607 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1608 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1609 	}
1610 
1611 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1612 		/*
1613 		 * If total number of sectors is less than the first segment
1614 		 * size, something has gone terribly wrong.
1615 		 */
1616 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1617 			blk_dump_rq_flags(req, "request botched");
1618 			req->__data_len = blk_rq_cur_bytes(req);
1619 		}
1620 
1621 		/* recalculate the number of segments */
1622 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1623 	}
1624 
1625 	return true;
1626 }
1627 EXPORT_SYMBOL_GPL(blk_update_request);
1628 
1629 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1630 /**
1631  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1632  * @rq: the request to be flushed
1633  *
1634  * Description:
1635  *     Flush all pages in @rq.
1636  */
1637 void rq_flush_dcache_pages(struct request *rq)
1638 {
1639 	struct req_iterator iter;
1640 	struct bio_vec bvec;
1641 
1642 	rq_for_each_segment(bvec, rq, iter)
1643 		flush_dcache_page(bvec.bv_page);
1644 }
1645 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1646 #endif
1647 
1648 /**
1649  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1650  * @q : the queue of the device being checked
1651  *
1652  * Description:
1653  *    Check if underlying low-level drivers of a device are busy.
1654  *    If the drivers want to export their busy state, they must set own
1655  *    exporting function using blk_queue_lld_busy() first.
1656  *
1657  *    Basically, this function is used only by request stacking drivers
1658  *    to stop dispatching requests to underlying devices when underlying
1659  *    devices are busy.  This behavior helps more I/O merging on the queue
1660  *    of the request stacking driver and prevents I/O throughput regression
1661  *    on burst I/O load.
1662  *
1663  * Return:
1664  *    0 - Not busy (The request stacking driver should dispatch request)
1665  *    1 - Busy (The request stacking driver should stop dispatching request)
1666  */
1667 int blk_lld_busy(struct request_queue *q)
1668 {
1669 	if (queue_is_mq(q) && q->mq_ops->busy)
1670 		return q->mq_ops->busy(q);
1671 
1672 	return 0;
1673 }
1674 EXPORT_SYMBOL_GPL(blk_lld_busy);
1675 
1676 /**
1677  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1678  * @rq: the clone request to be cleaned up
1679  *
1680  * Description:
1681  *     Free all bios in @rq for a cloned request.
1682  */
1683 void blk_rq_unprep_clone(struct request *rq)
1684 {
1685 	struct bio *bio;
1686 
1687 	while ((bio = rq->bio) != NULL) {
1688 		rq->bio = bio->bi_next;
1689 
1690 		bio_put(bio);
1691 	}
1692 }
1693 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1694 
1695 /**
1696  * blk_rq_prep_clone - Helper function to setup clone request
1697  * @rq: the request to be setup
1698  * @rq_src: original request to be cloned
1699  * @bs: bio_set that bios for clone are allocated from
1700  * @gfp_mask: memory allocation mask for bio
1701  * @bio_ctr: setup function to be called for each clone bio.
1702  *           Returns %0 for success, non %0 for failure.
1703  * @data: private data to be passed to @bio_ctr
1704  *
1705  * Description:
1706  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1707  *     Also, pages which the original bios are pointing to are not copied
1708  *     and the cloned bios just point same pages.
1709  *     So cloned bios must be completed before original bios, which means
1710  *     the caller must complete @rq before @rq_src.
1711  */
1712 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1713 		      struct bio_set *bs, gfp_t gfp_mask,
1714 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1715 		      void *data)
1716 {
1717 	struct bio *bio, *bio_src;
1718 
1719 	if (!bs)
1720 		bs = &fs_bio_set;
1721 
1722 	__rq_for_each_bio(bio_src, rq_src) {
1723 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1724 		if (!bio)
1725 			goto free_and_out;
1726 
1727 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1728 			goto free_and_out;
1729 
1730 		if (rq->bio) {
1731 			rq->biotail->bi_next = bio;
1732 			rq->biotail = bio;
1733 		} else
1734 			rq->bio = rq->biotail = bio;
1735 	}
1736 
1737 	/* Copy attributes of the original request to the clone request. */
1738 	rq->__sector = blk_rq_pos(rq_src);
1739 	rq->__data_len = blk_rq_bytes(rq_src);
1740 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1741 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1742 		rq->special_vec = rq_src->special_vec;
1743 	}
1744 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1745 	rq->ioprio = rq_src->ioprio;
1746 
1747 	if (rq->bio)
1748 		blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask);
1749 
1750 	return 0;
1751 
1752 free_and_out:
1753 	if (bio)
1754 		bio_put(bio);
1755 	blk_rq_unprep_clone(rq);
1756 
1757 	return -ENOMEM;
1758 }
1759 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1760 
1761 int kblockd_schedule_work(struct work_struct *work)
1762 {
1763 	return queue_work(kblockd_workqueue, work);
1764 }
1765 EXPORT_SYMBOL(kblockd_schedule_work);
1766 
1767 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1768 				unsigned long delay)
1769 {
1770 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1771 }
1772 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1773 
1774 /**
1775  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1776  * @plug:	The &struct blk_plug that needs to be initialized
1777  *
1778  * Description:
1779  *   blk_start_plug() indicates to the block layer an intent by the caller
1780  *   to submit multiple I/O requests in a batch.  The block layer may use
1781  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1782  *   is called.  However, the block layer may choose to submit requests
1783  *   before a call to blk_finish_plug() if the number of queued I/Os
1784  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1785  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1786  *   the task schedules (see below).
1787  *
1788  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1789  *   pending I/O should the task end up blocking between blk_start_plug() and
1790  *   blk_finish_plug(). This is important from a performance perspective, but
1791  *   also ensures that we don't deadlock. For instance, if the task is blocking
1792  *   for a memory allocation, memory reclaim could end up wanting to free a
1793  *   page belonging to that request that is currently residing in our private
1794  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1795  *   this kind of deadlock.
1796  */
1797 void blk_start_plug(struct blk_plug *plug)
1798 {
1799 	struct task_struct *tsk = current;
1800 
1801 	/*
1802 	 * If this is a nested plug, don't actually assign it.
1803 	 */
1804 	if (tsk->plug)
1805 		return;
1806 
1807 	INIT_LIST_HEAD(&plug->mq_list);
1808 	INIT_LIST_HEAD(&plug->cb_list);
1809 	plug->rq_count = 0;
1810 	plug->multiple_queues = false;
1811 	plug->nowait = false;
1812 
1813 	/*
1814 	 * Store ordering should not be needed here, since a potential
1815 	 * preempt will imply a full memory barrier
1816 	 */
1817 	tsk->plug = plug;
1818 }
1819 EXPORT_SYMBOL(blk_start_plug);
1820 
1821 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1822 {
1823 	LIST_HEAD(callbacks);
1824 
1825 	while (!list_empty(&plug->cb_list)) {
1826 		list_splice_init(&plug->cb_list, &callbacks);
1827 
1828 		while (!list_empty(&callbacks)) {
1829 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1830 							  struct blk_plug_cb,
1831 							  list);
1832 			list_del(&cb->list);
1833 			cb->callback(cb, from_schedule);
1834 		}
1835 	}
1836 }
1837 
1838 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1839 				      int size)
1840 {
1841 	struct blk_plug *plug = current->plug;
1842 	struct blk_plug_cb *cb;
1843 
1844 	if (!plug)
1845 		return NULL;
1846 
1847 	list_for_each_entry(cb, &plug->cb_list, list)
1848 		if (cb->callback == unplug && cb->data == data)
1849 			return cb;
1850 
1851 	/* Not currently on the callback list */
1852 	BUG_ON(size < sizeof(*cb));
1853 	cb = kzalloc(size, GFP_ATOMIC);
1854 	if (cb) {
1855 		cb->data = data;
1856 		cb->callback = unplug;
1857 		list_add(&cb->list, &plug->cb_list);
1858 	}
1859 	return cb;
1860 }
1861 EXPORT_SYMBOL(blk_check_plugged);
1862 
1863 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1864 {
1865 	flush_plug_callbacks(plug, from_schedule);
1866 
1867 	if (!list_empty(&plug->mq_list))
1868 		blk_mq_flush_plug_list(plug, from_schedule);
1869 }
1870 
1871 /**
1872  * blk_finish_plug - mark the end of a batch of submitted I/O
1873  * @plug:	The &struct blk_plug passed to blk_start_plug()
1874  *
1875  * Description:
1876  * Indicate that a batch of I/O submissions is complete.  This function
1877  * must be paired with an initial call to blk_start_plug().  The intent
1878  * is to allow the block layer to optimize I/O submission.  See the
1879  * documentation for blk_start_plug() for more information.
1880  */
1881 void blk_finish_plug(struct blk_plug *plug)
1882 {
1883 	if (plug != current->plug)
1884 		return;
1885 	blk_flush_plug_list(plug, false);
1886 
1887 	current->plug = NULL;
1888 }
1889 EXPORT_SYMBOL(blk_finish_plug);
1890 
1891 void blk_io_schedule(void)
1892 {
1893 	/* Prevent hang_check timer from firing at us during very long I/O */
1894 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1895 
1896 	if (timeout)
1897 		io_schedule_timeout(timeout);
1898 	else
1899 		io_schedule();
1900 }
1901 EXPORT_SYMBOL_GPL(blk_io_schedule);
1902 
1903 int __init blk_dev_init(void)
1904 {
1905 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1906 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1907 			sizeof_field(struct request, cmd_flags));
1908 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1909 			sizeof_field(struct bio, bi_opf));
1910 
1911 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1912 	kblockd_workqueue = alloc_workqueue("kblockd",
1913 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1914 	if (!kblockd_workqueue)
1915 		panic("Failed to create kblockd\n");
1916 
1917 	blk_requestq_cachep = kmem_cache_create("request_queue",
1918 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1919 
1920 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1921 
1922 	return 0;
1923 }
1924