1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-mq.h> 20 #include <linux/highmem.h> 21 #include <linux/mm.h> 22 #include <linux/kernel_stat.h> 23 #include <linux/string.h> 24 #include <linux/init.h> 25 #include <linux/completion.h> 26 #include <linux/slab.h> 27 #include <linux/swap.h> 28 #include <linux/writeback.h> 29 #include <linux/task_io_accounting_ops.h> 30 #include <linux/fault-inject.h> 31 #include <linux/list_sort.h> 32 #include <linux/delay.h> 33 #include <linux/ratelimit.h> 34 #include <linux/pm_runtime.h> 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/block.h> 38 39 #include "blk.h" 40 #include "blk-cgroup.h" 41 42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 43 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 44 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 45 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 46 47 DEFINE_IDA(blk_queue_ida); 48 49 /* 50 * For the allocated request tables 51 */ 52 struct kmem_cache *request_cachep = NULL; 53 54 /* 55 * For queue allocation 56 */ 57 struct kmem_cache *blk_requestq_cachep; 58 59 /* 60 * Controlling structure to kblockd 61 */ 62 static struct workqueue_struct *kblockd_workqueue; 63 64 void blk_queue_congestion_threshold(struct request_queue *q) 65 { 66 int nr; 67 68 nr = q->nr_requests - (q->nr_requests / 8) + 1; 69 if (nr > q->nr_requests) 70 nr = q->nr_requests; 71 q->nr_congestion_on = nr; 72 73 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 74 if (nr < 1) 75 nr = 1; 76 q->nr_congestion_off = nr; 77 } 78 79 /** 80 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 81 * @bdev: device 82 * 83 * Locates the passed device's request queue and returns the address of its 84 * backing_dev_info 85 * 86 * Will return NULL if the request queue cannot be located. 87 */ 88 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 89 { 90 struct backing_dev_info *ret = NULL; 91 struct request_queue *q = bdev_get_queue(bdev); 92 93 if (q) 94 ret = &q->backing_dev_info; 95 return ret; 96 } 97 EXPORT_SYMBOL(blk_get_backing_dev_info); 98 99 void blk_rq_init(struct request_queue *q, struct request *rq) 100 { 101 memset(rq, 0, sizeof(*rq)); 102 103 INIT_LIST_HEAD(&rq->queuelist); 104 INIT_LIST_HEAD(&rq->timeout_list); 105 rq->cpu = -1; 106 rq->q = q; 107 rq->__sector = (sector_t) -1; 108 INIT_HLIST_NODE(&rq->hash); 109 RB_CLEAR_NODE(&rq->rb_node); 110 rq->cmd = rq->__cmd; 111 rq->cmd_len = BLK_MAX_CDB; 112 rq->tag = -1; 113 rq->start_time = jiffies; 114 set_start_time_ns(rq); 115 rq->part = NULL; 116 } 117 EXPORT_SYMBOL(blk_rq_init); 118 119 static void req_bio_endio(struct request *rq, struct bio *bio, 120 unsigned int nbytes, int error) 121 { 122 if (error) 123 clear_bit(BIO_UPTODATE, &bio->bi_flags); 124 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 125 error = -EIO; 126 127 if (unlikely(rq->cmd_flags & REQ_QUIET)) 128 set_bit(BIO_QUIET, &bio->bi_flags); 129 130 bio_advance(bio, nbytes); 131 132 /* don't actually finish bio if it's part of flush sequence */ 133 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 134 bio_endio(bio, error); 135 } 136 137 void blk_dump_rq_flags(struct request *rq, char *msg) 138 { 139 int bit; 140 141 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg, 142 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 143 (unsigned long long) rq->cmd_flags); 144 145 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 146 (unsigned long long)blk_rq_pos(rq), 147 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 148 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 149 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 150 151 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 152 printk(KERN_INFO " cdb: "); 153 for (bit = 0; bit < BLK_MAX_CDB; bit++) 154 printk("%02x ", rq->cmd[bit]); 155 printk("\n"); 156 } 157 } 158 EXPORT_SYMBOL(blk_dump_rq_flags); 159 160 static void blk_delay_work(struct work_struct *work) 161 { 162 struct request_queue *q; 163 164 q = container_of(work, struct request_queue, delay_work.work); 165 spin_lock_irq(q->queue_lock); 166 __blk_run_queue(q); 167 spin_unlock_irq(q->queue_lock); 168 } 169 170 /** 171 * blk_delay_queue - restart queueing after defined interval 172 * @q: The &struct request_queue in question 173 * @msecs: Delay in msecs 174 * 175 * Description: 176 * Sometimes queueing needs to be postponed for a little while, to allow 177 * resources to come back. This function will make sure that queueing is 178 * restarted around the specified time. Queue lock must be held. 179 */ 180 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 181 { 182 if (likely(!blk_queue_dead(q))) 183 queue_delayed_work(kblockd_workqueue, &q->delay_work, 184 msecs_to_jiffies(msecs)); 185 } 186 EXPORT_SYMBOL(blk_delay_queue); 187 188 /** 189 * blk_start_queue - restart a previously stopped queue 190 * @q: The &struct request_queue in question 191 * 192 * Description: 193 * blk_start_queue() will clear the stop flag on the queue, and call 194 * the request_fn for the queue if it was in a stopped state when 195 * entered. Also see blk_stop_queue(). Queue lock must be held. 196 **/ 197 void blk_start_queue(struct request_queue *q) 198 { 199 WARN_ON(!irqs_disabled()); 200 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 202 __blk_run_queue(q); 203 } 204 EXPORT_SYMBOL(blk_start_queue); 205 206 /** 207 * blk_stop_queue - stop a queue 208 * @q: The &struct request_queue in question 209 * 210 * Description: 211 * The Linux block layer assumes that a block driver will consume all 212 * entries on the request queue when the request_fn strategy is called. 213 * Often this will not happen, because of hardware limitations (queue 214 * depth settings). If a device driver gets a 'queue full' response, 215 * or if it simply chooses not to queue more I/O at one point, it can 216 * call this function to prevent the request_fn from being called until 217 * the driver has signalled it's ready to go again. This happens by calling 218 * blk_start_queue() to restart queue operations. Queue lock must be held. 219 **/ 220 void blk_stop_queue(struct request_queue *q) 221 { 222 cancel_delayed_work(&q->delay_work); 223 queue_flag_set(QUEUE_FLAG_STOPPED, q); 224 } 225 EXPORT_SYMBOL(blk_stop_queue); 226 227 /** 228 * blk_sync_queue - cancel any pending callbacks on a queue 229 * @q: the queue 230 * 231 * Description: 232 * The block layer may perform asynchronous callback activity 233 * on a queue, such as calling the unplug function after a timeout. 234 * A block device may call blk_sync_queue to ensure that any 235 * such activity is cancelled, thus allowing it to release resources 236 * that the callbacks might use. The caller must already have made sure 237 * that its ->make_request_fn will not re-add plugging prior to calling 238 * this function. 239 * 240 * This function does not cancel any asynchronous activity arising 241 * out of elevator or throttling code. That would require elevaotor_exit() 242 * and blkcg_exit_queue() to be called with queue lock initialized. 243 * 244 */ 245 void blk_sync_queue(struct request_queue *q) 246 { 247 del_timer_sync(&q->timeout); 248 cancel_delayed_work_sync(&q->delay_work); 249 } 250 EXPORT_SYMBOL(blk_sync_queue); 251 252 /** 253 * __blk_run_queue_uncond - run a queue whether or not it has been stopped 254 * @q: The queue to run 255 * 256 * Description: 257 * Invoke request handling on a queue if there are any pending requests. 258 * May be used to restart request handling after a request has completed. 259 * This variant runs the queue whether or not the queue has been 260 * stopped. Must be called with the queue lock held and interrupts 261 * disabled. See also @blk_run_queue. 262 */ 263 inline void __blk_run_queue_uncond(struct request_queue *q) 264 { 265 if (unlikely(blk_queue_dead(q))) 266 return; 267 268 /* 269 * Some request_fn implementations, e.g. scsi_request_fn(), unlock 270 * the queue lock internally. As a result multiple threads may be 271 * running such a request function concurrently. Keep track of the 272 * number of active request_fn invocations such that blk_drain_queue() 273 * can wait until all these request_fn calls have finished. 274 */ 275 q->request_fn_active++; 276 q->request_fn(q); 277 q->request_fn_active--; 278 } 279 280 /** 281 * __blk_run_queue - run a single device queue 282 * @q: The queue to run 283 * 284 * Description: 285 * See @blk_run_queue. This variant must be called with the queue lock 286 * held and interrupts disabled. 287 */ 288 void __blk_run_queue(struct request_queue *q) 289 { 290 if (unlikely(blk_queue_stopped(q))) 291 return; 292 293 __blk_run_queue_uncond(q); 294 } 295 EXPORT_SYMBOL(__blk_run_queue); 296 297 /** 298 * blk_run_queue_async - run a single device queue in workqueue context 299 * @q: The queue to run 300 * 301 * Description: 302 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 303 * of us. The caller must hold the queue lock. 304 */ 305 void blk_run_queue_async(struct request_queue *q) 306 { 307 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q))) 308 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 309 } 310 EXPORT_SYMBOL(blk_run_queue_async); 311 312 /** 313 * blk_run_queue - run a single device queue 314 * @q: The queue to run 315 * 316 * Description: 317 * Invoke request handling on this queue, if it has pending work to do. 318 * May be used to restart queueing when a request has completed. 319 */ 320 void blk_run_queue(struct request_queue *q) 321 { 322 unsigned long flags; 323 324 spin_lock_irqsave(q->queue_lock, flags); 325 __blk_run_queue(q); 326 spin_unlock_irqrestore(q->queue_lock, flags); 327 } 328 EXPORT_SYMBOL(blk_run_queue); 329 330 void blk_put_queue(struct request_queue *q) 331 { 332 kobject_put(&q->kobj); 333 } 334 EXPORT_SYMBOL(blk_put_queue); 335 336 /** 337 * __blk_drain_queue - drain requests from request_queue 338 * @q: queue to drain 339 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 340 * 341 * Drain requests from @q. If @drain_all is set, all requests are drained. 342 * If not, only ELVPRIV requests are drained. The caller is responsible 343 * for ensuring that no new requests which need to be drained are queued. 344 */ 345 static void __blk_drain_queue(struct request_queue *q, bool drain_all) 346 __releases(q->queue_lock) 347 __acquires(q->queue_lock) 348 { 349 int i; 350 351 lockdep_assert_held(q->queue_lock); 352 353 while (true) { 354 bool drain = false; 355 356 /* 357 * The caller might be trying to drain @q before its 358 * elevator is initialized. 359 */ 360 if (q->elevator) 361 elv_drain_elevator(q); 362 363 blkcg_drain_queue(q); 364 365 /* 366 * This function might be called on a queue which failed 367 * driver init after queue creation or is not yet fully 368 * active yet. Some drivers (e.g. fd and loop) get unhappy 369 * in such cases. Kick queue iff dispatch queue has 370 * something on it and @q has request_fn set. 371 */ 372 if (!list_empty(&q->queue_head) && q->request_fn) 373 __blk_run_queue(q); 374 375 drain |= q->nr_rqs_elvpriv; 376 drain |= q->request_fn_active; 377 378 /* 379 * Unfortunately, requests are queued at and tracked from 380 * multiple places and there's no single counter which can 381 * be drained. Check all the queues and counters. 382 */ 383 if (drain_all) { 384 drain |= !list_empty(&q->queue_head); 385 for (i = 0; i < 2; i++) { 386 drain |= q->nr_rqs[i]; 387 drain |= q->in_flight[i]; 388 drain |= !list_empty(&q->flush_queue[i]); 389 } 390 } 391 392 if (!drain) 393 break; 394 395 spin_unlock_irq(q->queue_lock); 396 397 msleep(10); 398 399 spin_lock_irq(q->queue_lock); 400 } 401 402 /* 403 * With queue marked dead, any woken up waiter will fail the 404 * allocation path, so the wakeup chaining is lost and we're 405 * left with hung waiters. We need to wake up those waiters. 406 */ 407 if (q->request_fn) { 408 struct request_list *rl; 409 410 blk_queue_for_each_rl(rl, q) 411 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 412 wake_up_all(&rl->wait[i]); 413 } 414 } 415 416 /** 417 * blk_queue_bypass_start - enter queue bypass mode 418 * @q: queue of interest 419 * 420 * In bypass mode, only the dispatch FIFO queue of @q is used. This 421 * function makes @q enter bypass mode and drains all requests which were 422 * throttled or issued before. On return, it's guaranteed that no request 423 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 424 * inside queue or RCU read lock. 425 */ 426 void blk_queue_bypass_start(struct request_queue *q) 427 { 428 bool drain; 429 430 spin_lock_irq(q->queue_lock); 431 drain = !q->bypass_depth++; 432 queue_flag_set(QUEUE_FLAG_BYPASS, q); 433 spin_unlock_irq(q->queue_lock); 434 435 if (drain) { 436 spin_lock_irq(q->queue_lock); 437 __blk_drain_queue(q, false); 438 spin_unlock_irq(q->queue_lock); 439 440 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 441 synchronize_rcu(); 442 } 443 } 444 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 445 446 /** 447 * blk_queue_bypass_end - leave queue bypass mode 448 * @q: queue of interest 449 * 450 * Leave bypass mode and restore the normal queueing behavior. 451 */ 452 void blk_queue_bypass_end(struct request_queue *q) 453 { 454 spin_lock_irq(q->queue_lock); 455 if (!--q->bypass_depth) 456 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 457 WARN_ON_ONCE(q->bypass_depth < 0); 458 spin_unlock_irq(q->queue_lock); 459 } 460 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 461 462 /** 463 * blk_cleanup_queue - shutdown a request queue 464 * @q: request queue to shutdown 465 * 466 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 467 * put it. All future requests will be failed immediately with -ENODEV. 468 */ 469 void blk_cleanup_queue(struct request_queue *q) 470 { 471 spinlock_t *lock = q->queue_lock; 472 473 /* mark @q DYING, no new request or merges will be allowed afterwards */ 474 mutex_lock(&q->sysfs_lock); 475 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q); 476 spin_lock_irq(lock); 477 478 /* 479 * A dying queue is permanently in bypass mode till released. Note 480 * that, unlike blk_queue_bypass_start(), we aren't performing 481 * synchronize_rcu() after entering bypass mode to avoid the delay 482 * as some drivers create and destroy a lot of queues while 483 * probing. This is still safe because blk_release_queue() will be 484 * called only after the queue refcnt drops to zero and nothing, 485 * RCU or not, would be traversing the queue by then. 486 */ 487 q->bypass_depth++; 488 queue_flag_set(QUEUE_FLAG_BYPASS, q); 489 490 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 491 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 492 queue_flag_set(QUEUE_FLAG_DYING, q); 493 spin_unlock_irq(lock); 494 mutex_unlock(&q->sysfs_lock); 495 496 /* 497 * Drain all requests queued before DYING marking. Set DEAD flag to 498 * prevent that q->request_fn() gets invoked after draining finished. 499 */ 500 spin_lock_irq(lock); 501 __blk_drain_queue(q, true); 502 queue_flag_set(QUEUE_FLAG_DEAD, q); 503 spin_unlock_irq(lock); 504 505 /* @q won't process any more request, flush async actions */ 506 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 507 blk_sync_queue(q); 508 509 spin_lock_irq(lock); 510 if (q->queue_lock != &q->__queue_lock) 511 q->queue_lock = &q->__queue_lock; 512 spin_unlock_irq(lock); 513 514 /* @q is and will stay empty, shutdown and put */ 515 blk_put_queue(q); 516 } 517 EXPORT_SYMBOL(blk_cleanup_queue); 518 519 int blk_init_rl(struct request_list *rl, struct request_queue *q, 520 gfp_t gfp_mask) 521 { 522 if (unlikely(rl->rq_pool)) 523 return 0; 524 525 rl->q = q; 526 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 527 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 528 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 529 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 530 531 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 532 mempool_free_slab, request_cachep, 533 gfp_mask, q->node); 534 if (!rl->rq_pool) 535 return -ENOMEM; 536 537 return 0; 538 } 539 540 void blk_exit_rl(struct request_list *rl) 541 { 542 if (rl->rq_pool) 543 mempool_destroy(rl->rq_pool); 544 } 545 546 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 547 { 548 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 549 } 550 EXPORT_SYMBOL(blk_alloc_queue); 551 552 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 553 { 554 struct request_queue *q; 555 int err; 556 557 q = kmem_cache_alloc_node(blk_requestq_cachep, 558 gfp_mask | __GFP_ZERO, node_id); 559 if (!q) 560 return NULL; 561 562 if (percpu_counter_init(&q->mq_usage_counter, 0)) 563 goto fail_q; 564 565 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 566 if (q->id < 0) 567 goto fail_c; 568 569 q->backing_dev_info.ra_pages = 570 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 571 q->backing_dev_info.state = 0; 572 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 573 q->backing_dev_info.name = "block"; 574 q->node = node_id; 575 576 err = bdi_init(&q->backing_dev_info); 577 if (err) 578 goto fail_id; 579 580 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 581 laptop_mode_timer_fn, (unsigned long) q); 582 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 583 INIT_LIST_HEAD(&q->queue_head); 584 INIT_LIST_HEAD(&q->timeout_list); 585 INIT_LIST_HEAD(&q->icq_list); 586 #ifdef CONFIG_BLK_CGROUP 587 INIT_LIST_HEAD(&q->blkg_list); 588 #endif 589 INIT_LIST_HEAD(&q->flush_queue[0]); 590 INIT_LIST_HEAD(&q->flush_queue[1]); 591 INIT_LIST_HEAD(&q->flush_data_in_flight); 592 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 593 594 kobject_init(&q->kobj, &blk_queue_ktype); 595 596 mutex_init(&q->sysfs_lock); 597 spin_lock_init(&q->__queue_lock); 598 599 /* 600 * By default initialize queue_lock to internal lock and driver can 601 * override it later if need be. 602 */ 603 q->queue_lock = &q->__queue_lock; 604 605 /* 606 * A queue starts its life with bypass turned on to avoid 607 * unnecessary bypass on/off overhead and nasty surprises during 608 * init. The initial bypass will be finished when the queue is 609 * registered by blk_register_queue(). 610 */ 611 q->bypass_depth = 1; 612 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 613 614 init_waitqueue_head(&q->mq_freeze_wq); 615 616 if (blkcg_init_queue(q)) 617 goto fail_bdi; 618 619 return q; 620 621 fail_bdi: 622 bdi_destroy(&q->backing_dev_info); 623 fail_id: 624 ida_simple_remove(&blk_queue_ida, q->id); 625 fail_c: 626 percpu_counter_destroy(&q->mq_usage_counter); 627 fail_q: 628 kmem_cache_free(blk_requestq_cachep, q); 629 return NULL; 630 } 631 EXPORT_SYMBOL(blk_alloc_queue_node); 632 633 /** 634 * blk_init_queue - prepare a request queue for use with a block device 635 * @rfn: The function to be called to process requests that have been 636 * placed on the queue. 637 * @lock: Request queue spin lock 638 * 639 * Description: 640 * If a block device wishes to use the standard request handling procedures, 641 * which sorts requests and coalesces adjacent requests, then it must 642 * call blk_init_queue(). The function @rfn will be called when there 643 * are requests on the queue that need to be processed. If the device 644 * supports plugging, then @rfn may not be called immediately when requests 645 * are available on the queue, but may be called at some time later instead. 646 * Plugged queues are generally unplugged when a buffer belonging to one 647 * of the requests on the queue is needed, or due to memory pressure. 648 * 649 * @rfn is not required, or even expected, to remove all requests off the 650 * queue, but only as many as it can handle at a time. If it does leave 651 * requests on the queue, it is responsible for arranging that the requests 652 * get dealt with eventually. 653 * 654 * The queue spin lock must be held while manipulating the requests on the 655 * request queue; this lock will be taken also from interrupt context, so irq 656 * disabling is needed for it. 657 * 658 * Function returns a pointer to the initialized request queue, or %NULL if 659 * it didn't succeed. 660 * 661 * Note: 662 * blk_init_queue() must be paired with a blk_cleanup_queue() call 663 * when the block device is deactivated (such as at module unload). 664 **/ 665 666 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 667 { 668 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE); 669 } 670 EXPORT_SYMBOL(blk_init_queue); 671 672 struct request_queue * 673 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 674 { 675 struct request_queue *uninit_q, *q; 676 677 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 678 if (!uninit_q) 679 return NULL; 680 681 q = blk_init_allocated_queue(uninit_q, rfn, lock); 682 if (!q) 683 blk_cleanup_queue(uninit_q); 684 685 return q; 686 } 687 EXPORT_SYMBOL(blk_init_queue_node); 688 689 struct request_queue * 690 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 691 spinlock_t *lock) 692 { 693 if (!q) 694 return NULL; 695 696 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 697 return NULL; 698 699 q->request_fn = rfn; 700 q->prep_rq_fn = NULL; 701 q->unprep_rq_fn = NULL; 702 q->queue_flags |= QUEUE_FLAG_DEFAULT; 703 704 /* Override internal queue lock with supplied lock pointer */ 705 if (lock) 706 q->queue_lock = lock; 707 708 /* 709 * This also sets hw/phys segments, boundary and size 710 */ 711 blk_queue_make_request(q, blk_queue_bio); 712 713 q->sg_reserved_size = INT_MAX; 714 715 /* Protect q->elevator from elevator_change */ 716 mutex_lock(&q->sysfs_lock); 717 718 /* init elevator */ 719 if (elevator_init(q, NULL)) { 720 mutex_unlock(&q->sysfs_lock); 721 return NULL; 722 } 723 724 mutex_unlock(&q->sysfs_lock); 725 726 return q; 727 } 728 EXPORT_SYMBOL(blk_init_allocated_queue); 729 730 bool blk_get_queue(struct request_queue *q) 731 { 732 if (likely(!blk_queue_dying(q))) { 733 __blk_get_queue(q); 734 return true; 735 } 736 737 return false; 738 } 739 EXPORT_SYMBOL(blk_get_queue); 740 741 static inline void blk_free_request(struct request_list *rl, struct request *rq) 742 { 743 if (rq->cmd_flags & REQ_ELVPRIV) { 744 elv_put_request(rl->q, rq); 745 if (rq->elv.icq) 746 put_io_context(rq->elv.icq->ioc); 747 } 748 749 mempool_free(rq, rl->rq_pool); 750 } 751 752 /* 753 * ioc_batching returns true if the ioc is a valid batching request and 754 * should be given priority access to a request. 755 */ 756 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 757 { 758 if (!ioc) 759 return 0; 760 761 /* 762 * Make sure the process is able to allocate at least 1 request 763 * even if the batch times out, otherwise we could theoretically 764 * lose wakeups. 765 */ 766 return ioc->nr_batch_requests == q->nr_batching || 767 (ioc->nr_batch_requests > 0 768 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 769 } 770 771 /* 772 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 773 * will cause the process to be a "batcher" on all queues in the system. This 774 * is the behaviour we want though - once it gets a wakeup it should be given 775 * a nice run. 776 */ 777 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 778 { 779 if (!ioc || ioc_batching(q, ioc)) 780 return; 781 782 ioc->nr_batch_requests = q->nr_batching; 783 ioc->last_waited = jiffies; 784 } 785 786 static void __freed_request(struct request_list *rl, int sync) 787 { 788 struct request_queue *q = rl->q; 789 790 /* 791 * bdi isn't aware of blkcg yet. As all async IOs end up root 792 * blkcg anyway, just use root blkcg state. 793 */ 794 if (rl == &q->root_rl && 795 rl->count[sync] < queue_congestion_off_threshold(q)) 796 blk_clear_queue_congested(q, sync); 797 798 if (rl->count[sync] + 1 <= q->nr_requests) { 799 if (waitqueue_active(&rl->wait[sync])) 800 wake_up(&rl->wait[sync]); 801 802 blk_clear_rl_full(rl, sync); 803 } 804 } 805 806 /* 807 * A request has just been released. Account for it, update the full and 808 * congestion status, wake up any waiters. Called under q->queue_lock. 809 */ 810 static void freed_request(struct request_list *rl, unsigned int flags) 811 { 812 struct request_queue *q = rl->q; 813 int sync = rw_is_sync(flags); 814 815 q->nr_rqs[sync]--; 816 rl->count[sync]--; 817 if (flags & REQ_ELVPRIV) 818 q->nr_rqs_elvpriv--; 819 820 __freed_request(rl, sync); 821 822 if (unlikely(rl->starved[sync ^ 1])) 823 __freed_request(rl, sync ^ 1); 824 } 825 826 /* 827 * Determine if elevator data should be initialized when allocating the 828 * request associated with @bio. 829 */ 830 static bool blk_rq_should_init_elevator(struct bio *bio) 831 { 832 if (!bio) 833 return true; 834 835 /* 836 * Flush requests do not use the elevator so skip initialization. 837 * This allows a request to share the flush and elevator data. 838 */ 839 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 840 return false; 841 842 return true; 843 } 844 845 /** 846 * rq_ioc - determine io_context for request allocation 847 * @bio: request being allocated is for this bio (can be %NULL) 848 * 849 * Determine io_context to use for request allocation for @bio. May return 850 * %NULL if %current->io_context doesn't exist. 851 */ 852 static struct io_context *rq_ioc(struct bio *bio) 853 { 854 #ifdef CONFIG_BLK_CGROUP 855 if (bio && bio->bi_ioc) 856 return bio->bi_ioc; 857 #endif 858 return current->io_context; 859 } 860 861 /** 862 * __get_request - get a free request 863 * @rl: request list to allocate from 864 * @rw_flags: RW and SYNC flags 865 * @bio: bio to allocate request for (can be %NULL) 866 * @gfp_mask: allocation mask 867 * 868 * Get a free request from @q. This function may fail under memory 869 * pressure or if @q is dead. 870 * 871 * Must be callled with @q->queue_lock held and, 872 * Returns %NULL on failure, with @q->queue_lock held. 873 * Returns !%NULL on success, with @q->queue_lock *not held*. 874 */ 875 static struct request *__get_request(struct request_list *rl, int rw_flags, 876 struct bio *bio, gfp_t gfp_mask) 877 { 878 struct request_queue *q = rl->q; 879 struct request *rq; 880 struct elevator_type *et = q->elevator->type; 881 struct io_context *ioc = rq_ioc(bio); 882 struct io_cq *icq = NULL; 883 const bool is_sync = rw_is_sync(rw_flags) != 0; 884 int may_queue; 885 886 if (unlikely(blk_queue_dying(q))) 887 return NULL; 888 889 may_queue = elv_may_queue(q, rw_flags); 890 if (may_queue == ELV_MQUEUE_NO) 891 goto rq_starved; 892 893 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 894 if (rl->count[is_sync]+1 >= q->nr_requests) { 895 /* 896 * The queue will fill after this allocation, so set 897 * it as full, and mark this process as "batching". 898 * This process will be allowed to complete a batch of 899 * requests, others will be blocked. 900 */ 901 if (!blk_rl_full(rl, is_sync)) { 902 ioc_set_batching(q, ioc); 903 blk_set_rl_full(rl, is_sync); 904 } else { 905 if (may_queue != ELV_MQUEUE_MUST 906 && !ioc_batching(q, ioc)) { 907 /* 908 * The queue is full and the allocating 909 * process is not a "batcher", and not 910 * exempted by the IO scheduler 911 */ 912 return NULL; 913 } 914 } 915 } 916 /* 917 * bdi isn't aware of blkcg yet. As all async IOs end up 918 * root blkcg anyway, just use root blkcg state. 919 */ 920 if (rl == &q->root_rl) 921 blk_set_queue_congested(q, is_sync); 922 } 923 924 /* 925 * Only allow batching queuers to allocate up to 50% over the defined 926 * limit of requests, otherwise we could have thousands of requests 927 * allocated with any setting of ->nr_requests 928 */ 929 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 930 return NULL; 931 932 q->nr_rqs[is_sync]++; 933 rl->count[is_sync]++; 934 rl->starved[is_sync] = 0; 935 936 /* 937 * Decide whether the new request will be managed by elevator. If 938 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 939 * prevent the current elevator from being destroyed until the new 940 * request is freed. This guarantees icq's won't be destroyed and 941 * makes creating new ones safe. 942 * 943 * Also, lookup icq while holding queue_lock. If it doesn't exist, 944 * it will be created after releasing queue_lock. 945 */ 946 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 947 rw_flags |= REQ_ELVPRIV; 948 q->nr_rqs_elvpriv++; 949 if (et->icq_cache && ioc) 950 icq = ioc_lookup_icq(ioc, q); 951 } 952 953 if (blk_queue_io_stat(q)) 954 rw_flags |= REQ_IO_STAT; 955 spin_unlock_irq(q->queue_lock); 956 957 /* allocate and init request */ 958 rq = mempool_alloc(rl->rq_pool, gfp_mask); 959 if (!rq) 960 goto fail_alloc; 961 962 blk_rq_init(q, rq); 963 blk_rq_set_rl(rq, rl); 964 rq->cmd_flags = rw_flags | REQ_ALLOCED; 965 966 /* init elvpriv */ 967 if (rw_flags & REQ_ELVPRIV) { 968 if (unlikely(et->icq_cache && !icq)) { 969 if (ioc) 970 icq = ioc_create_icq(ioc, q, gfp_mask); 971 if (!icq) 972 goto fail_elvpriv; 973 } 974 975 rq->elv.icq = icq; 976 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 977 goto fail_elvpriv; 978 979 /* @rq->elv.icq holds io_context until @rq is freed */ 980 if (icq) 981 get_io_context(icq->ioc); 982 } 983 out: 984 /* 985 * ioc may be NULL here, and ioc_batching will be false. That's 986 * OK, if the queue is under the request limit then requests need 987 * not count toward the nr_batch_requests limit. There will always 988 * be some limit enforced by BLK_BATCH_TIME. 989 */ 990 if (ioc_batching(q, ioc)) 991 ioc->nr_batch_requests--; 992 993 trace_block_getrq(q, bio, rw_flags & 1); 994 return rq; 995 996 fail_elvpriv: 997 /* 998 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 999 * and may fail indefinitely under memory pressure and thus 1000 * shouldn't stall IO. Treat this request as !elvpriv. This will 1001 * disturb iosched and blkcg but weird is bettern than dead. 1002 */ 1003 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 1004 dev_name(q->backing_dev_info.dev)); 1005 1006 rq->cmd_flags &= ~REQ_ELVPRIV; 1007 rq->elv.icq = NULL; 1008 1009 spin_lock_irq(q->queue_lock); 1010 q->nr_rqs_elvpriv--; 1011 spin_unlock_irq(q->queue_lock); 1012 goto out; 1013 1014 fail_alloc: 1015 /* 1016 * Allocation failed presumably due to memory. Undo anything we 1017 * might have messed up. 1018 * 1019 * Allocating task should really be put onto the front of the wait 1020 * queue, but this is pretty rare. 1021 */ 1022 spin_lock_irq(q->queue_lock); 1023 freed_request(rl, rw_flags); 1024 1025 /* 1026 * in the very unlikely event that allocation failed and no 1027 * requests for this direction was pending, mark us starved so that 1028 * freeing of a request in the other direction will notice 1029 * us. another possible fix would be to split the rq mempool into 1030 * READ and WRITE 1031 */ 1032 rq_starved: 1033 if (unlikely(rl->count[is_sync] == 0)) 1034 rl->starved[is_sync] = 1; 1035 return NULL; 1036 } 1037 1038 /** 1039 * get_request - get a free request 1040 * @q: request_queue to allocate request from 1041 * @rw_flags: RW and SYNC flags 1042 * @bio: bio to allocate request for (can be %NULL) 1043 * @gfp_mask: allocation mask 1044 * 1045 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1046 * function keeps retrying under memory pressure and fails iff @q is dead. 1047 * 1048 * Must be callled with @q->queue_lock held and, 1049 * Returns %NULL on failure, with @q->queue_lock held. 1050 * Returns !%NULL on success, with @q->queue_lock *not held*. 1051 */ 1052 static struct request *get_request(struct request_queue *q, int rw_flags, 1053 struct bio *bio, gfp_t gfp_mask) 1054 { 1055 const bool is_sync = rw_is_sync(rw_flags) != 0; 1056 DEFINE_WAIT(wait); 1057 struct request_list *rl; 1058 struct request *rq; 1059 1060 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1061 retry: 1062 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1063 if (rq) 1064 return rq; 1065 1066 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) { 1067 blk_put_rl(rl); 1068 return NULL; 1069 } 1070 1071 /* wait on @rl and retry */ 1072 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1073 TASK_UNINTERRUPTIBLE); 1074 1075 trace_block_sleeprq(q, bio, rw_flags & 1); 1076 1077 spin_unlock_irq(q->queue_lock); 1078 io_schedule(); 1079 1080 /* 1081 * After sleeping, we become a "batching" process and will be able 1082 * to allocate at least one request, and up to a big batch of them 1083 * for a small period time. See ioc_batching, ioc_set_batching 1084 */ 1085 ioc_set_batching(q, current->io_context); 1086 1087 spin_lock_irq(q->queue_lock); 1088 finish_wait(&rl->wait[is_sync], &wait); 1089 1090 goto retry; 1091 } 1092 1093 static struct request *blk_old_get_request(struct request_queue *q, int rw, 1094 gfp_t gfp_mask) 1095 { 1096 struct request *rq; 1097 1098 BUG_ON(rw != READ && rw != WRITE); 1099 1100 /* create ioc upfront */ 1101 create_io_context(gfp_mask, q->node); 1102 1103 spin_lock_irq(q->queue_lock); 1104 rq = get_request(q, rw, NULL, gfp_mask); 1105 if (!rq) 1106 spin_unlock_irq(q->queue_lock); 1107 /* q->queue_lock is unlocked at this point */ 1108 1109 return rq; 1110 } 1111 1112 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1113 { 1114 if (q->mq_ops) 1115 return blk_mq_alloc_request(q, rw, gfp_mask, false); 1116 else 1117 return blk_old_get_request(q, rw, gfp_mask); 1118 } 1119 EXPORT_SYMBOL(blk_get_request); 1120 1121 /** 1122 * blk_make_request - given a bio, allocate a corresponding struct request. 1123 * @q: target request queue 1124 * @bio: The bio describing the memory mappings that will be submitted for IO. 1125 * It may be a chained-bio properly constructed by block/bio layer. 1126 * @gfp_mask: gfp flags to be used for memory allocation 1127 * 1128 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1129 * type commands. Where the struct request needs to be farther initialized by 1130 * the caller. It is passed a &struct bio, which describes the memory info of 1131 * the I/O transfer. 1132 * 1133 * The caller of blk_make_request must make sure that bi_io_vec 1134 * are set to describe the memory buffers. That bio_data_dir() will return 1135 * the needed direction of the request. (And all bio's in the passed bio-chain 1136 * are properly set accordingly) 1137 * 1138 * If called under none-sleepable conditions, mapped bio buffers must not 1139 * need bouncing, by calling the appropriate masked or flagged allocator, 1140 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1141 * BUG. 1142 * 1143 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1144 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1145 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1146 * completion of a bio that hasn't been submitted yet, thus resulting in a 1147 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1148 * of bio_alloc(), as that avoids the mempool deadlock. 1149 * If possible a big IO should be split into smaller parts when allocation 1150 * fails. Partial allocation should not be an error, or you risk a live-lock. 1151 */ 1152 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1153 gfp_t gfp_mask) 1154 { 1155 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1156 1157 if (unlikely(!rq)) 1158 return ERR_PTR(-ENOMEM); 1159 1160 for_each_bio(bio) { 1161 struct bio *bounce_bio = bio; 1162 int ret; 1163 1164 blk_queue_bounce(q, &bounce_bio); 1165 ret = blk_rq_append_bio(q, rq, bounce_bio); 1166 if (unlikely(ret)) { 1167 blk_put_request(rq); 1168 return ERR_PTR(ret); 1169 } 1170 } 1171 1172 return rq; 1173 } 1174 EXPORT_SYMBOL(blk_make_request); 1175 1176 /** 1177 * blk_requeue_request - put a request back on queue 1178 * @q: request queue where request should be inserted 1179 * @rq: request to be inserted 1180 * 1181 * Description: 1182 * Drivers often keep queueing requests until the hardware cannot accept 1183 * more, when that condition happens we need to put the request back 1184 * on the queue. Must be called with queue lock held. 1185 */ 1186 void blk_requeue_request(struct request_queue *q, struct request *rq) 1187 { 1188 blk_delete_timer(rq); 1189 blk_clear_rq_complete(rq); 1190 trace_block_rq_requeue(q, rq); 1191 1192 if (blk_rq_tagged(rq)) 1193 blk_queue_end_tag(q, rq); 1194 1195 BUG_ON(blk_queued_rq(rq)); 1196 1197 elv_requeue_request(q, rq); 1198 } 1199 EXPORT_SYMBOL(blk_requeue_request); 1200 1201 static void add_acct_request(struct request_queue *q, struct request *rq, 1202 int where) 1203 { 1204 blk_account_io_start(rq, true); 1205 __elv_add_request(q, rq, where); 1206 } 1207 1208 static void part_round_stats_single(int cpu, struct hd_struct *part, 1209 unsigned long now) 1210 { 1211 if (now == part->stamp) 1212 return; 1213 1214 if (part_in_flight(part)) { 1215 __part_stat_add(cpu, part, time_in_queue, 1216 part_in_flight(part) * (now - part->stamp)); 1217 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1218 } 1219 part->stamp = now; 1220 } 1221 1222 /** 1223 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1224 * @cpu: cpu number for stats access 1225 * @part: target partition 1226 * 1227 * The average IO queue length and utilisation statistics are maintained 1228 * by observing the current state of the queue length and the amount of 1229 * time it has been in this state for. 1230 * 1231 * Normally, that accounting is done on IO completion, but that can result 1232 * in more than a second's worth of IO being accounted for within any one 1233 * second, leading to >100% utilisation. To deal with that, we call this 1234 * function to do a round-off before returning the results when reading 1235 * /proc/diskstats. This accounts immediately for all queue usage up to 1236 * the current jiffies and restarts the counters again. 1237 */ 1238 void part_round_stats(int cpu, struct hd_struct *part) 1239 { 1240 unsigned long now = jiffies; 1241 1242 if (part->partno) 1243 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1244 part_round_stats_single(cpu, part, now); 1245 } 1246 EXPORT_SYMBOL_GPL(part_round_stats); 1247 1248 #ifdef CONFIG_PM_RUNTIME 1249 static void blk_pm_put_request(struct request *rq) 1250 { 1251 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending) 1252 pm_runtime_mark_last_busy(rq->q->dev); 1253 } 1254 #else 1255 static inline void blk_pm_put_request(struct request *rq) {} 1256 #endif 1257 1258 /* 1259 * queue lock must be held 1260 */ 1261 void __blk_put_request(struct request_queue *q, struct request *req) 1262 { 1263 if (unlikely(!q)) 1264 return; 1265 1266 blk_pm_put_request(req); 1267 1268 elv_completed_request(q, req); 1269 1270 /* this is a bio leak */ 1271 WARN_ON(req->bio != NULL); 1272 1273 /* 1274 * Request may not have originated from ll_rw_blk. if not, 1275 * it didn't come out of our reserved rq pools 1276 */ 1277 if (req->cmd_flags & REQ_ALLOCED) { 1278 unsigned int flags = req->cmd_flags; 1279 struct request_list *rl = blk_rq_rl(req); 1280 1281 BUG_ON(!list_empty(&req->queuelist)); 1282 BUG_ON(!hlist_unhashed(&req->hash)); 1283 1284 blk_free_request(rl, req); 1285 freed_request(rl, flags); 1286 blk_put_rl(rl); 1287 } 1288 } 1289 EXPORT_SYMBOL_GPL(__blk_put_request); 1290 1291 void blk_put_request(struct request *req) 1292 { 1293 struct request_queue *q = req->q; 1294 1295 if (q->mq_ops) 1296 blk_mq_free_request(req); 1297 else { 1298 unsigned long flags; 1299 1300 spin_lock_irqsave(q->queue_lock, flags); 1301 __blk_put_request(q, req); 1302 spin_unlock_irqrestore(q->queue_lock, flags); 1303 } 1304 } 1305 EXPORT_SYMBOL(blk_put_request); 1306 1307 /** 1308 * blk_add_request_payload - add a payload to a request 1309 * @rq: request to update 1310 * @page: page backing the payload 1311 * @len: length of the payload. 1312 * 1313 * This allows to later add a payload to an already submitted request by 1314 * a block driver. The driver needs to take care of freeing the payload 1315 * itself. 1316 * 1317 * Note that this is a quite horrible hack and nothing but handling of 1318 * discard requests should ever use it. 1319 */ 1320 void blk_add_request_payload(struct request *rq, struct page *page, 1321 unsigned int len) 1322 { 1323 struct bio *bio = rq->bio; 1324 1325 bio->bi_io_vec->bv_page = page; 1326 bio->bi_io_vec->bv_offset = 0; 1327 bio->bi_io_vec->bv_len = len; 1328 1329 bio->bi_size = len; 1330 bio->bi_vcnt = 1; 1331 bio->bi_phys_segments = 1; 1332 1333 rq->__data_len = rq->resid_len = len; 1334 rq->nr_phys_segments = 1; 1335 rq->buffer = bio_data(bio); 1336 } 1337 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1338 1339 bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1340 struct bio *bio) 1341 { 1342 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1343 1344 if (!ll_back_merge_fn(q, req, bio)) 1345 return false; 1346 1347 trace_block_bio_backmerge(q, req, bio); 1348 1349 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1350 blk_rq_set_mixed_merge(req); 1351 1352 req->biotail->bi_next = bio; 1353 req->biotail = bio; 1354 req->__data_len += bio->bi_size; 1355 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1356 1357 blk_account_io_start(req, false); 1358 return true; 1359 } 1360 1361 bool bio_attempt_front_merge(struct request_queue *q, struct request *req, 1362 struct bio *bio) 1363 { 1364 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1365 1366 if (!ll_front_merge_fn(q, req, bio)) 1367 return false; 1368 1369 trace_block_bio_frontmerge(q, req, bio); 1370 1371 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1372 blk_rq_set_mixed_merge(req); 1373 1374 bio->bi_next = req->bio; 1375 req->bio = bio; 1376 1377 /* 1378 * may not be valid. if the low level driver said 1379 * it didn't need a bounce buffer then it better 1380 * not touch req->buffer either... 1381 */ 1382 req->buffer = bio_data(bio); 1383 req->__sector = bio->bi_sector; 1384 req->__data_len += bio->bi_size; 1385 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1386 1387 blk_account_io_start(req, false); 1388 return true; 1389 } 1390 1391 /** 1392 * blk_attempt_plug_merge - try to merge with %current's plugged list 1393 * @q: request_queue new bio is being queued at 1394 * @bio: new bio being queued 1395 * @request_count: out parameter for number of traversed plugged requests 1396 * 1397 * Determine whether @bio being queued on @q can be merged with a request 1398 * on %current's plugged list. Returns %true if merge was successful, 1399 * otherwise %false. 1400 * 1401 * Plugging coalesces IOs from the same issuer for the same purpose without 1402 * going through @q->queue_lock. As such it's more of an issuing mechanism 1403 * than scheduling, and the request, while may have elvpriv data, is not 1404 * added on the elevator at this point. In addition, we don't have 1405 * reliable access to the elevator outside queue lock. Only check basic 1406 * merging parameters without querying the elevator. 1407 */ 1408 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 1409 unsigned int *request_count) 1410 { 1411 struct blk_plug *plug; 1412 struct request *rq; 1413 bool ret = false; 1414 struct list_head *plug_list; 1415 1416 if (blk_queue_nomerges(q)) 1417 goto out; 1418 1419 plug = current->plug; 1420 if (!plug) 1421 goto out; 1422 *request_count = 0; 1423 1424 if (q->mq_ops) 1425 plug_list = &plug->mq_list; 1426 else 1427 plug_list = &plug->list; 1428 1429 list_for_each_entry_reverse(rq, plug_list, queuelist) { 1430 int el_ret; 1431 1432 if (rq->q == q) 1433 (*request_count)++; 1434 1435 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1436 continue; 1437 1438 el_ret = blk_try_merge(rq, bio); 1439 if (el_ret == ELEVATOR_BACK_MERGE) { 1440 ret = bio_attempt_back_merge(q, rq, bio); 1441 if (ret) 1442 break; 1443 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1444 ret = bio_attempt_front_merge(q, rq, bio); 1445 if (ret) 1446 break; 1447 } 1448 } 1449 out: 1450 return ret; 1451 } 1452 1453 void init_request_from_bio(struct request *req, struct bio *bio) 1454 { 1455 req->cmd_type = REQ_TYPE_FS; 1456 1457 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1458 if (bio->bi_rw & REQ_RAHEAD) 1459 req->cmd_flags |= REQ_FAILFAST_MASK; 1460 1461 req->errors = 0; 1462 req->__sector = bio->bi_sector; 1463 req->ioprio = bio_prio(bio); 1464 blk_rq_bio_prep(req->q, req, bio); 1465 } 1466 1467 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1468 { 1469 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1470 struct blk_plug *plug; 1471 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1472 struct request *req; 1473 unsigned int request_count = 0; 1474 1475 /* 1476 * low level driver can indicate that it wants pages above a 1477 * certain limit bounced to low memory (ie for highmem, or even 1478 * ISA dma in theory) 1479 */ 1480 blk_queue_bounce(q, &bio); 1481 1482 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) { 1483 bio_endio(bio, -EIO); 1484 return; 1485 } 1486 1487 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1488 spin_lock_irq(q->queue_lock); 1489 where = ELEVATOR_INSERT_FLUSH; 1490 goto get_rq; 1491 } 1492 1493 /* 1494 * Check if we can merge with the plugged list before grabbing 1495 * any locks. 1496 */ 1497 if (blk_attempt_plug_merge(q, bio, &request_count)) 1498 return; 1499 1500 spin_lock_irq(q->queue_lock); 1501 1502 el_ret = elv_merge(q, &req, bio); 1503 if (el_ret == ELEVATOR_BACK_MERGE) { 1504 if (bio_attempt_back_merge(q, req, bio)) { 1505 elv_bio_merged(q, req, bio); 1506 if (!attempt_back_merge(q, req)) 1507 elv_merged_request(q, req, el_ret); 1508 goto out_unlock; 1509 } 1510 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1511 if (bio_attempt_front_merge(q, req, bio)) { 1512 elv_bio_merged(q, req, bio); 1513 if (!attempt_front_merge(q, req)) 1514 elv_merged_request(q, req, el_ret); 1515 goto out_unlock; 1516 } 1517 } 1518 1519 get_rq: 1520 /* 1521 * This sync check and mask will be re-done in init_request_from_bio(), 1522 * but we need to set it earlier to expose the sync flag to the 1523 * rq allocator and io schedulers. 1524 */ 1525 rw_flags = bio_data_dir(bio); 1526 if (sync) 1527 rw_flags |= REQ_SYNC; 1528 1529 /* 1530 * Grab a free request. This is might sleep but can not fail. 1531 * Returns with the queue unlocked. 1532 */ 1533 req = get_request(q, rw_flags, bio, GFP_NOIO); 1534 if (unlikely(!req)) { 1535 bio_endio(bio, -ENODEV); /* @q is dead */ 1536 goto out_unlock; 1537 } 1538 1539 /* 1540 * After dropping the lock and possibly sleeping here, our request 1541 * may now be mergeable after it had proven unmergeable (above). 1542 * We don't worry about that case for efficiency. It won't happen 1543 * often, and the elevators are able to handle it. 1544 */ 1545 init_request_from_bio(req, bio); 1546 1547 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1548 req->cpu = raw_smp_processor_id(); 1549 1550 plug = current->plug; 1551 if (plug) { 1552 /* 1553 * If this is the first request added after a plug, fire 1554 * of a plug trace. 1555 */ 1556 if (!request_count) 1557 trace_block_plug(q); 1558 else { 1559 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1560 blk_flush_plug_list(plug, false); 1561 trace_block_plug(q); 1562 } 1563 } 1564 list_add_tail(&req->queuelist, &plug->list); 1565 blk_account_io_start(req, true); 1566 } else { 1567 spin_lock_irq(q->queue_lock); 1568 add_acct_request(q, req, where); 1569 __blk_run_queue(q); 1570 out_unlock: 1571 spin_unlock_irq(q->queue_lock); 1572 } 1573 } 1574 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1575 1576 /* 1577 * If bio->bi_dev is a partition, remap the location 1578 */ 1579 static inline void blk_partition_remap(struct bio *bio) 1580 { 1581 struct block_device *bdev = bio->bi_bdev; 1582 1583 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1584 struct hd_struct *p = bdev->bd_part; 1585 1586 bio->bi_sector += p->start_sect; 1587 bio->bi_bdev = bdev->bd_contains; 1588 1589 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1590 bdev->bd_dev, 1591 bio->bi_sector - p->start_sect); 1592 } 1593 } 1594 1595 static void handle_bad_sector(struct bio *bio) 1596 { 1597 char b[BDEVNAME_SIZE]; 1598 1599 printk(KERN_INFO "attempt to access beyond end of device\n"); 1600 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1601 bdevname(bio->bi_bdev, b), 1602 bio->bi_rw, 1603 (unsigned long long)bio_end_sector(bio), 1604 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1605 1606 set_bit(BIO_EOF, &bio->bi_flags); 1607 } 1608 1609 #ifdef CONFIG_FAIL_MAKE_REQUEST 1610 1611 static DECLARE_FAULT_ATTR(fail_make_request); 1612 1613 static int __init setup_fail_make_request(char *str) 1614 { 1615 return setup_fault_attr(&fail_make_request, str); 1616 } 1617 __setup("fail_make_request=", setup_fail_make_request); 1618 1619 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1620 { 1621 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1622 } 1623 1624 static int __init fail_make_request_debugfs(void) 1625 { 1626 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1627 NULL, &fail_make_request); 1628 1629 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1630 } 1631 1632 late_initcall(fail_make_request_debugfs); 1633 1634 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1635 1636 static inline bool should_fail_request(struct hd_struct *part, 1637 unsigned int bytes) 1638 { 1639 return false; 1640 } 1641 1642 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1643 1644 /* 1645 * Check whether this bio extends beyond the end of the device. 1646 */ 1647 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1648 { 1649 sector_t maxsector; 1650 1651 if (!nr_sectors) 1652 return 0; 1653 1654 /* Test device or partition size, when known. */ 1655 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1656 if (maxsector) { 1657 sector_t sector = bio->bi_sector; 1658 1659 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1660 /* 1661 * This may well happen - the kernel calls bread() 1662 * without checking the size of the device, e.g., when 1663 * mounting a device. 1664 */ 1665 handle_bad_sector(bio); 1666 return 1; 1667 } 1668 } 1669 1670 return 0; 1671 } 1672 1673 static noinline_for_stack bool 1674 generic_make_request_checks(struct bio *bio) 1675 { 1676 struct request_queue *q; 1677 int nr_sectors = bio_sectors(bio); 1678 int err = -EIO; 1679 char b[BDEVNAME_SIZE]; 1680 struct hd_struct *part; 1681 1682 might_sleep(); 1683 1684 if (bio_check_eod(bio, nr_sectors)) 1685 goto end_io; 1686 1687 q = bdev_get_queue(bio->bi_bdev); 1688 if (unlikely(!q)) { 1689 printk(KERN_ERR 1690 "generic_make_request: Trying to access " 1691 "nonexistent block-device %s (%Lu)\n", 1692 bdevname(bio->bi_bdev, b), 1693 (long long) bio->bi_sector); 1694 goto end_io; 1695 } 1696 1697 if (likely(bio_is_rw(bio) && 1698 nr_sectors > queue_max_hw_sectors(q))) { 1699 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1700 bdevname(bio->bi_bdev, b), 1701 bio_sectors(bio), 1702 queue_max_hw_sectors(q)); 1703 goto end_io; 1704 } 1705 1706 part = bio->bi_bdev->bd_part; 1707 if (should_fail_request(part, bio->bi_size) || 1708 should_fail_request(&part_to_disk(part)->part0, 1709 bio->bi_size)) 1710 goto end_io; 1711 1712 /* 1713 * If this device has partitions, remap block n 1714 * of partition p to block n+start(p) of the disk. 1715 */ 1716 blk_partition_remap(bio); 1717 1718 if (bio_check_eod(bio, nr_sectors)) 1719 goto end_io; 1720 1721 /* 1722 * Filter flush bio's early so that make_request based 1723 * drivers without flush support don't have to worry 1724 * about them. 1725 */ 1726 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1727 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1728 if (!nr_sectors) { 1729 err = 0; 1730 goto end_io; 1731 } 1732 } 1733 1734 if ((bio->bi_rw & REQ_DISCARD) && 1735 (!blk_queue_discard(q) || 1736 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1737 err = -EOPNOTSUPP; 1738 goto end_io; 1739 } 1740 1741 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1742 err = -EOPNOTSUPP; 1743 goto end_io; 1744 } 1745 1746 /* 1747 * Various block parts want %current->io_context and lazy ioc 1748 * allocation ends up trading a lot of pain for a small amount of 1749 * memory. Just allocate it upfront. This may fail and block 1750 * layer knows how to live with it. 1751 */ 1752 create_io_context(GFP_ATOMIC, q->node); 1753 1754 if (blk_throtl_bio(q, bio)) 1755 return false; /* throttled, will be resubmitted later */ 1756 1757 trace_block_bio_queue(q, bio); 1758 return true; 1759 1760 end_io: 1761 bio_endio(bio, err); 1762 return false; 1763 } 1764 1765 /** 1766 * generic_make_request - hand a buffer to its device driver for I/O 1767 * @bio: The bio describing the location in memory and on the device. 1768 * 1769 * generic_make_request() is used to make I/O requests of block 1770 * devices. It is passed a &struct bio, which describes the I/O that needs 1771 * to be done. 1772 * 1773 * generic_make_request() does not return any status. The 1774 * success/failure status of the request, along with notification of 1775 * completion, is delivered asynchronously through the bio->bi_end_io 1776 * function described (one day) else where. 1777 * 1778 * The caller of generic_make_request must make sure that bi_io_vec 1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1780 * set to describe the device address, and the 1781 * bi_end_io and optionally bi_private are set to describe how 1782 * completion notification should be signaled. 1783 * 1784 * generic_make_request and the drivers it calls may use bi_next if this 1785 * bio happens to be merged with someone else, and may resubmit the bio to 1786 * a lower device by calling into generic_make_request recursively, which 1787 * means the bio should NOT be touched after the call to ->make_request_fn. 1788 */ 1789 void generic_make_request(struct bio *bio) 1790 { 1791 struct bio_list bio_list_on_stack; 1792 1793 if (!generic_make_request_checks(bio)) 1794 return; 1795 1796 /* 1797 * We only want one ->make_request_fn to be active at a time, else 1798 * stack usage with stacked devices could be a problem. So use 1799 * current->bio_list to keep a list of requests submited by a 1800 * make_request_fn function. current->bio_list is also used as a 1801 * flag to say if generic_make_request is currently active in this 1802 * task or not. If it is NULL, then no make_request is active. If 1803 * it is non-NULL, then a make_request is active, and new requests 1804 * should be added at the tail 1805 */ 1806 if (current->bio_list) { 1807 bio_list_add(current->bio_list, bio); 1808 return; 1809 } 1810 1811 /* following loop may be a bit non-obvious, and so deserves some 1812 * explanation. 1813 * Before entering the loop, bio->bi_next is NULL (as all callers 1814 * ensure that) so we have a list with a single bio. 1815 * We pretend that we have just taken it off a longer list, so 1816 * we assign bio_list to a pointer to the bio_list_on_stack, 1817 * thus initialising the bio_list of new bios to be 1818 * added. ->make_request() may indeed add some more bios 1819 * through a recursive call to generic_make_request. If it 1820 * did, we find a non-NULL value in bio_list and re-enter the loop 1821 * from the top. In this case we really did just take the bio 1822 * of the top of the list (no pretending) and so remove it from 1823 * bio_list, and call into ->make_request() again. 1824 */ 1825 BUG_ON(bio->bi_next); 1826 bio_list_init(&bio_list_on_stack); 1827 current->bio_list = &bio_list_on_stack; 1828 do { 1829 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1830 1831 q->make_request_fn(q, bio); 1832 1833 bio = bio_list_pop(current->bio_list); 1834 } while (bio); 1835 current->bio_list = NULL; /* deactivate */ 1836 } 1837 EXPORT_SYMBOL(generic_make_request); 1838 1839 /** 1840 * submit_bio - submit a bio to the block device layer for I/O 1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1842 * @bio: The &struct bio which describes the I/O 1843 * 1844 * submit_bio() is very similar in purpose to generic_make_request(), and 1845 * uses that function to do most of the work. Both are fairly rough 1846 * interfaces; @bio must be presetup and ready for I/O. 1847 * 1848 */ 1849 void submit_bio(int rw, struct bio *bio) 1850 { 1851 bio->bi_rw |= rw; 1852 1853 /* 1854 * If it's a regular read/write or a barrier with data attached, 1855 * go through the normal accounting stuff before submission. 1856 */ 1857 if (bio_has_data(bio)) { 1858 unsigned int count; 1859 1860 if (unlikely(rw & REQ_WRITE_SAME)) 1861 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1862 else 1863 count = bio_sectors(bio); 1864 1865 if (rw & WRITE) { 1866 count_vm_events(PGPGOUT, count); 1867 } else { 1868 task_io_account_read(bio->bi_size); 1869 count_vm_events(PGPGIN, count); 1870 } 1871 1872 if (unlikely(block_dump)) { 1873 char b[BDEVNAME_SIZE]; 1874 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1875 current->comm, task_pid_nr(current), 1876 (rw & WRITE) ? "WRITE" : "READ", 1877 (unsigned long long)bio->bi_sector, 1878 bdevname(bio->bi_bdev, b), 1879 count); 1880 } 1881 } 1882 1883 generic_make_request(bio); 1884 } 1885 EXPORT_SYMBOL(submit_bio); 1886 1887 /** 1888 * blk_rq_check_limits - Helper function to check a request for the queue limit 1889 * @q: the queue 1890 * @rq: the request being checked 1891 * 1892 * Description: 1893 * @rq may have been made based on weaker limitations of upper-level queues 1894 * in request stacking drivers, and it may violate the limitation of @q. 1895 * Since the block layer and the underlying device driver trust @rq 1896 * after it is inserted to @q, it should be checked against @q before 1897 * the insertion using this generic function. 1898 * 1899 * This function should also be useful for request stacking drivers 1900 * in some cases below, so export this function. 1901 * Request stacking drivers like request-based dm may change the queue 1902 * limits while requests are in the queue (e.g. dm's table swapping). 1903 * Such request stacking drivers should check those requests agaist 1904 * the new queue limits again when they dispatch those requests, 1905 * although such checkings are also done against the old queue limits 1906 * when submitting requests. 1907 */ 1908 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1909 { 1910 if (!rq_mergeable(rq)) 1911 return 0; 1912 1913 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1914 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1915 return -EIO; 1916 } 1917 1918 /* 1919 * queue's settings related to segment counting like q->bounce_pfn 1920 * may differ from that of other stacking queues. 1921 * Recalculate it to check the request correctly on this queue's 1922 * limitation. 1923 */ 1924 blk_recalc_rq_segments(rq); 1925 if (rq->nr_phys_segments > queue_max_segments(q)) { 1926 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1927 return -EIO; 1928 } 1929 1930 return 0; 1931 } 1932 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1933 1934 /** 1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1936 * @q: the queue to submit the request 1937 * @rq: the request being queued 1938 */ 1939 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1940 { 1941 unsigned long flags; 1942 int where = ELEVATOR_INSERT_BACK; 1943 1944 if (blk_rq_check_limits(q, rq)) 1945 return -EIO; 1946 1947 if (rq->rq_disk && 1948 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1949 return -EIO; 1950 1951 spin_lock_irqsave(q->queue_lock, flags); 1952 if (unlikely(blk_queue_dying(q))) { 1953 spin_unlock_irqrestore(q->queue_lock, flags); 1954 return -ENODEV; 1955 } 1956 1957 /* 1958 * Submitting request must be dequeued before calling this function 1959 * because it will be linked to another request_queue 1960 */ 1961 BUG_ON(blk_queued_rq(rq)); 1962 1963 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1964 where = ELEVATOR_INSERT_FLUSH; 1965 1966 add_acct_request(q, rq, where); 1967 if (where == ELEVATOR_INSERT_FLUSH) 1968 __blk_run_queue(q); 1969 spin_unlock_irqrestore(q->queue_lock, flags); 1970 1971 return 0; 1972 } 1973 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1974 1975 /** 1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1977 * @rq: request to examine 1978 * 1979 * Description: 1980 * A request could be merge of IOs which require different failure 1981 * handling. This function determines the number of bytes which 1982 * can be failed from the beginning of the request without 1983 * crossing into area which need to be retried further. 1984 * 1985 * Return: 1986 * The number of bytes to fail. 1987 * 1988 * Context: 1989 * queue_lock must be held. 1990 */ 1991 unsigned int blk_rq_err_bytes(const struct request *rq) 1992 { 1993 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1994 unsigned int bytes = 0; 1995 struct bio *bio; 1996 1997 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1998 return blk_rq_bytes(rq); 1999 2000 /* 2001 * Currently the only 'mixing' which can happen is between 2002 * different fastfail types. We can safely fail portions 2003 * which have all the failfast bits that the first one has - 2004 * the ones which are at least as eager to fail as the first 2005 * one. 2006 */ 2007 for (bio = rq->bio; bio; bio = bio->bi_next) { 2008 if ((bio->bi_rw & ff) != ff) 2009 break; 2010 bytes += bio->bi_size; 2011 } 2012 2013 /* this could lead to infinite loop */ 2014 BUG_ON(blk_rq_bytes(rq) && !bytes); 2015 return bytes; 2016 } 2017 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 2018 2019 void blk_account_io_completion(struct request *req, unsigned int bytes) 2020 { 2021 if (blk_do_io_stat(req)) { 2022 const int rw = rq_data_dir(req); 2023 struct hd_struct *part; 2024 int cpu; 2025 2026 cpu = part_stat_lock(); 2027 part = req->part; 2028 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 2029 part_stat_unlock(); 2030 } 2031 } 2032 2033 void blk_account_io_done(struct request *req) 2034 { 2035 /* 2036 * Account IO completion. flush_rq isn't accounted as a 2037 * normal IO on queueing nor completion. Accounting the 2038 * containing request is enough. 2039 */ 2040 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2041 unsigned long duration = jiffies - req->start_time; 2042 const int rw = rq_data_dir(req); 2043 struct hd_struct *part; 2044 int cpu; 2045 2046 cpu = part_stat_lock(); 2047 part = req->part; 2048 2049 part_stat_inc(cpu, part, ios[rw]); 2050 part_stat_add(cpu, part, ticks[rw], duration); 2051 part_round_stats(cpu, part); 2052 part_dec_in_flight(part, rw); 2053 2054 hd_struct_put(part); 2055 part_stat_unlock(); 2056 } 2057 } 2058 2059 #ifdef CONFIG_PM_RUNTIME 2060 /* 2061 * Don't process normal requests when queue is suspended 2062 * or in the process of suspending/resuming 2063 */ 2064 static struct request *blk_pm_peek_request(struct request_queue *q, 2065 struct request *rq) 2066 { 2067 if (q->dev && (q->rpm_status == RPM_SUSPENDED || 2068 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM)))) 2069 return NULL; 2070 else 2071 return rq; 2072 } 2073 #else 2074 static inline struct request *blk_pm_peek_request(struct request_queue *q, 2075 struct request *rq) 2076 { 2077 return rq; 2078 } 2079 #endif 2080 2081 void blk_account_io_start(struct request *rq, bool new_io) 2082 { 2083 struct hd_struct *part; 2084 int rw = rq_data_dir(rq); 2085 int cpu; 2086 2087 if (!blk_do_io_stat(rq)) 2088 return; 2089 2090 cpu = part_stat_lock(); 2091 2092 if (!new_io) { 2093 part = rq->part; 2094 part_stat_inc(cpu, part, merges[rw]); 2095 } else { 2096 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 2097 if (!hd_struct_try_get(part)) { 2098 /* 2099 * The partition is already being removed, 2100 * the request will be accounted on the disk only 2101 * 2102 * We take a reference on disk->part0 although that 2103 * partition will never be deleted, so we can treat 2104 * it as any other partition. 2105 */ 2106 part = &rq->rq_disk->part0; 2107 hd_struct_get(part); 2108 } 2109 part_round_stats(cpu, part); 2110 part_inc_in_flight(part, rw); 2111 rq->part = part; 2112 } 2113 2114 part_stat_unlock(); 2115 } 2116 2117 /** 2118 * blk_peek_request - peek at the top of a request queue 2119 * @q: request queue to peek at 2120 * 2121 * Description: 2122 * Return the request at the top of @q. The returned request 2123 * should be started using blk_start_request() before LLD starts 2124 * processing it. 2125 * 2126 * Return: 2127 * Pointer to the request at the top of @q if available. Null 2128 * otherwise. 2129 * 2130 * Context: 2131 * queue_lock must be held. 2132 */ 2133 struct request *blk_peek_request(struct request_queue *q) 2134 { 2135 struct request *rq; 2136 int ret; 2137 2138 while ((rq = __elv_next_request(q)) != NULL) { 2139 2140 rq = blk_pm_peek_request(q, rq); 2141 if (!rq) 2142 break; 2143 2144 if (!(rq->cmd_flags & REQ_STARTED)) { 2145 /* 2146 * This is the first time the device driver 2147 * sees this request (possibly after 2148 * requeueing). Notify IO scheduler. 2149 */ 2150 if (rq->cmd_flags & REQ_SORTED) 2151 elv_activate_rq(q, rq); 2152 2153 /* 2154 * just mark as started even if we don't start 2155 * it, a request that has been delayed should 2156 * not be passed by new incoming requests 2157 */ 2158 rq->cmd_flags |= REQ_STARTED; 2159 trace_block_rq_issue(q, rq); 2160 } 2161 2162 if (!q->boundary_rq || q->boundary_rq == rq) { 2163 q->end_sector = rq_end_sector(rq); 2164 q->boundary_rq = NULL; 2165 } 2166 2167 if (rq->cmd_flags & REQ_DONTPREP) 2168 break; 2169 2170 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2171 /* 2172 * make sure space for the drain appears we 2173 * know we can do this because max_hw_segments 2174 * has been adjusted to be one fewer than the 2175 * device can handle 2176 */ 2177 rq->nr_phys_segments++; 2178 } 2179 2180 if (!q->prep_rq_fn) 2181 break; 2182 2183 ret = q->prep_rq_fn(q, rq); 2184 if (ret == BLKPREP_OK) { 2185 break; 2186 } else if (ret == BLKPREP_DEFER) { 2187 /* 2188 * the request may have been (partially) prepped. 2189 * we need to keep this request in the front to 2190 * avoid resource deadlock. REQ_STARTED will 2191 * prevent other fs requests from passing this one. 2192 */ 2193 if (q->dma_drain_size && blk_rq_bytes(rq) && 2194 !(rq->cmd_flags & REQ_DONTPREP)) { 2195 /* 2196 * remove the space for the drain we added 2197 * so that we don't add it again 2198 */ 2199 --rq->nr_phys_segments; 2200 } 2201 2202 rq = NULL; 2203 break; 2204 } else if (ret == BLKPREP_KILL) { 2205 rq->cmd_flags |= REQ_QUIET; 2206 /* 2207 * Mark this request as started so we don't trigger 2208 * any debug logic in the end I/O path. 2209 */ 2210 blk_start_request(rq); 2211 __blk_end_request_all(rq, -EIO); 2212 } else { 2213 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2214 break; 2215 } 2216 } 2217 2218 return rq; 2219 } 2220 EXPORT_SYMBOL(blk_peek_request); 2221 2222 void blk_dequeue_request(struct request *rq) 2223 { 2224 struct request_queue *q = rq->q; 2225 2226 BUG_ON(list_empty(&rq->queuelist)); 2227 BUG_ON(ELV_ON_HASH(rq)); 2228 2229 list_del_init(&rq->queuelist); 2230 2231 /* 2232 * the time frame between a request being removed from the lists 2233 * and to it is freed is accounted as io that is in progress at 2234 * the driver side. 2235 */ 2236 if (blk_account_rq(rq)) { 2237 q->in_flight[rq_is_sync(rq)]++; 2238 set_io_start_time_ns(rq); 2239 } 2240 } 2241 2242 /** 2243 * blk_start_request - start request processing on the driver 2244 * @req: request to dequeue 2245 * 2246 * Description: 2247 * Dequeue @req and start timeout timer on it. This hands off the 2248 * request to the driver. 2249 * 2250 * Block internal functions which don't want to start timer should 2251 * call blk_dequeue_request(). 2252 * 2253 * Context: 2254 * queue_lock must be held. 2255 */ 2256 void blk_start_request(struct request *req) 2257 { 2258 blk_dequeue_request(req); 2259 2260 /* 2261 * We are now handing the request to the hardware, initialize 2262 * resid_len to full count and add the timeout handler. 2263 */ 2264 req->resid_len = blk_rq_bytes(req); 2265 if (unlikely(blk_bidi_rq(req))) 2266 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2267 2268 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags)); 2269 blk_add_timer(req); 2270 } 2271 EXPORT_SYMBOL(blk_start_request); 2272 2273 /** 2274 * blk_fetch_request - fetch a request from a request queue 2275 * @q: request queue to fetch a request from 2276 * 2277 * Description: 2278 * Return the request at the top of @q. The request is started on 2279 * return and LLD can start processing it immediately. 2280 * 2281 * Return: 2282 * Pointer to the request at the top of @q if available. Null 2283 * otherwise. 2284 * 2285 * Context: 2286 * queue_lock must be held. 2287 */ 2288 struct request *blk_fetch_request(struct request_queue *q) 2289 { 2290 struct request *rq; 2291 2292 rq = blk_peek_request(q); 2293 if (rq) 2294 blk_start_request(rq); 2295 return rq; 2296 } 2297 EXPORT_SYMBOL(blk_fetch_request); 2298 2299 /** 2300 * blk_update_request - Special helper function for request stacking drivers 2301 * @req: the request being processed 2302 * @error: %0 for success, < %0 for error 2303 * @nr_bytes: number of bytes to complete @req 2304 * 2305 * Description: 2306 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2307 * the request structure even if @req doesn't have leftover. 2308 * If @req has leftover, sets it up for the next range of segments. 2309 * 2310 * This special helper function is only for request stacking drivers 2311 * (e.g. request-based dm) so that they can handle partial completion. 2312 * Actual device drivers should use blk_end_request instead. 2313 * 2314 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2315 * %false return from this function. 2316 * 2317 * Return: 2318 * %false - this request doesn't have any more data 2319 * %true - this request has more data 2320 **/ 2321 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2322 { 2323 int total_bytes; 2324 2325 if (!req->bio) 2326 return false; 2327 2328 trace_block_rq_complete(req->q, req); 2329 2330 /* 2331 * For fs requests, rq is just carrier of independent bio's 2332 * and each partial completion should be handled separately. 2333 * Reset per-request error on each partial completion. 2334 * 2335 * TODO: tj: This is too subtle. It would be better to let 2336 * low level drivers do what they see fit. 2337 */ 2338 if (req->cmd_type == REQ_TYPE_FS) 2339 req->errors = 0; 2340 2341 if (error && req->cmd_type == REQ_TYPE_FS && 2342 !(req->cmd_flags & REQ_QUIET)) { 2343 char *error_type; 2344 2345 switch (error) { 2346 case -ENOLINK: 2347 error_type = "recoverable transport"; 2348 break; 2349 case -EREMOTEIO: 2350 error_type = "critical target"; 2351 break; 2352 case -EBADE: 2353 error_type = "critical nexus"; 2354 break; 2355 case -ETIMEDOUT: 2356 error_type = "timeout"; 2357 break; 2358 case -ENOSPC: 2359 error_type = "critical space allocation"; 2360 break; 2361 case -ENODATA: 2362 error_type = "critical medium"; 2363 break; 2364 case -EIO: 2365 default: 2366 error_type = "I/O"; 2367 break; 2368 } 2369 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2370 error_type, req->rq_disk ? 2371 req->rq_disk->disk_name : "?", 2372 (unsigned long long)blk_rq_pos(req)); 2373 2374 } 2375 2376 blk_account_io_completion(req, nr_bytes); 2377 2378 total_bytes = 0; 2379 while (req->bio) { 2380 struct bio *bio = req->bio; 2381 unsigned bio_bytes = min(bio->bi_size, nr_bytes); 2382 2383 if (bio_bytes == bio->bi_size) 2384 req->bio = bio->bi_next; 2385 2386 req_bio_endio(req, bio, bio_bytes, error); 2387 2388 total_bytes += bio_bytes; 2389 nr_bytes -= bio_bytes; 2390 2391 if (!nr_bytes) 2392 break; 2393 } 2394 2395 /* 2396 * completely done 2397 */ 2398 if (!req->bio) { 2399 /* 2400 * Reset counters so that the request stacking driver 2401 * can find how many bytes remain in the request 2402 * later. 2403 */ 2404 req->__data_len = 0; 2405 return false; 2406 } 2407 2408 req->__data_len -= total_bytes; 2409 req->buffer = bio_data(req->bio); 2410 2411 /* update sector only for requests with clear definition of sector */ 2412 if (req->cmd_type == REQ_TYPE_FS) 2413 req->__sector += total_bytes >> 9; 2414 2415 /* mixed attributes always follow the first bio */ 2416 if (req->cmd_flags & REQ_MIXED_MERGE) { 2417 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2418 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2419 } 2420 2421 /* 2422 * If total number of sectors is less than the first segment 2423 * size, something has gone terribly wrong. 2424 */ 2425 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2426 blk_dump_rq_flags(req, "request botched"); 2427 req->__data_len = blk_rq_cur_bytes(req); 2428 } 2429 2430 /* recalculate the number of segments */ 2431 blk_recalc_rq_segments(req); 2432 2433 return true; 2434 } 2435 EXPORT_SYMBOL_GPL(blk_update_request); 2436 2437 static bool blk_update_bidi_request(struct request *rq, int error, 2438 unsigned int nr_bytes, 2439 unsigned int bidi_bytes) 2440 { 2441 if (blk_update_request(rq, error, nr_bytes)) 2442 return true; 2443 2444 /* Bidi request must be completed as a whole */ 2445 if (unlikely(blk_bidi_rq(rq)) && 2446 blk_update_request(rq->next_rq, error, bidi_bytes)) 2447 return true; 2448 2449 if (blk_queue_add_random(rq->q)) 2450 add_disk_randomness(rq->rq_disk); 2451 2452 return false; 2453 } 2454 2455 /** 2456 * blk_unprep_request - unprepare a request 2457 * @req: the request 2458 * 2459 * This function makes a request ready for complete resubmission (or 2460 * completion). It happens only after all error handling is complete, 2461 * so represents the appropriate moment to deallocate any resources 2462 * that were allocated to the request in the prep_rq_fn. The queue 2463 * lock is held when calling this. 2464 */ 2465 void blk_unprep_request(struct request *req) 2466 { 2467 struct request_queue *q = req->q; 2468 2469 req->cmd_flags &= ~REQ_DONTPREP; 2470 if (q->unprep_rq_fn) 2471 q->unprep_rq_fn(q, req); 2472 } 2473 EXPORT_SYMBOL_GPL(blk_unprep_request); 2474 2475 /* 2476 * queue lock must be held 2477 */ 2478 static void blk_finish_request(struct request *req, int error) 2479 { 2480 if (blk_rq_tagged(req)) 2481 blk_queue_end_tag(req->q, req); 2482 2483 BUG_ON(blk_queued_rq(req)); 2484 2485 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2486 laptop_io_completion(&req->q->backing_dev_info); 2487 2488 blk_delete_timer(req); 2489 2490 if (req->cmd_flags & REQ_DONTPREP) 2491 blk_unprep_request(req); 2492 2493 blk_account_io_done(req); 2494 2495 if (req->end_io) 2496 req->end_io(req, error); 2497 else { 2498 if (blk_bidi_rq(req)) 2499 __blk_put_request(req->next_rq->q, req->next_rq); 2500 2501 __blk_put_request(req->q, req); 2502 } 2503 } 2504 2505 /** 2506 * blk_end_bidi_request - Complete a bidi request 2507 * @rq: the request to complete 2508 * @error: %0 for success, < %0 for error 2509 * @nr_bytes: number of bytes to complete @rq 2510 * @bidi_bytes: number of bytes to complete @rq->next_rq 2511 * 2512 * Description: 2513 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2514 * Drivers that supports bidi can safely call this member for any 2515 * type of request, bidi or uni. In the later case @bidi_bytes is 2516 * just ignored. 2517 * 2518 * Return: 2519 * %false - we are done with this request 2520 * %true - still buffers pending for this request 2521 **/ 2522 static bool blk_end_bidi_request(struct request *rq, int error, 2523 unsigned int nr_bytes, unsigned int bidi_bytes) 2524 { 2525 struct request_queue *q = rq->q; 2526 unsigned long flags; 2527 2528 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2529 return true; 2530 2531 spin_lock_irqsave(q->queue_lock, flags); 2532 blk_finish_request(rq, error); 2533 spin_unlock_irqrestore(q->queue_lock, flags); 2534 2535 return false; 2536 } 2537 2538 /** 2539 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2540 * @rq: the request to complete 2541 * @error: %0 for success, < %0 for error 2542 * @nr_bytes: number of bytes to complete @rq 2543 * @bidi_bytes: number of bytes to complete @rq->next_rq 2544 * 2545 * Description: 2546 * Identical to blk_end_bidi_request() except that queue lock is 2547 * assumed to be locked on entry and remains so on return. 2548 * 2549 * Return: 2550 * %false - we are done with this request 2551 * %true - still buffers pending for this request 2552 **/ 2553 bool __blk_end_bidi_request(struct request *rq, int error, 2554 unsigned int nr_bytes, unsigned int bidi_bytes) 2555 { 2556 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2557 return true; 2558 2559 blk_finish_request(rq, error); 2560 2561 return false; 2562 } 2563 2564 /** 2565 * blk_end_request - Helper function for drivers to complete the request. 2566 * @rq: the request being processed 2567 * @error: %0 for success, < %0 for error 2568 * @nr_bytes: number of bytes to complete 2569 * 2570 * Description: 2571 * Ends I/O on a number of bytes attached to @rq. 2572 * If @rq has leftover, sets it up for the next range of segments. 2573 * 2574 * Return: 2575 * %false - we are done with this request 2576 * %true - still buffers pending for this request 2577 **/ 2578 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2579 { 2580 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2581 } 2582 EXPORT_SYMBOL(blk_end_request); 2583 2584 /** 2585 * blk_end_request_all - Helper function for drives to finish the request. 2586 * @rq: the request to finish 2587 * @error: %0 for success, < %0 for error 2588 * 2589 * Description: 2590 * Completely finish @rq. 2591 */ 2592 void blk_end_request_all(struct request *rq, int error) 2593 { 2594 bool pending; 2595 unsigned int bidi_bytes = 0; 2596 2597 if (unlikely(blk_bidi_rq(rq))) 2598 bidi_bytes = blk_rq_bytes(rq->next_rq); 2599 2600 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2601 BUG_ON(pending); 2602 } 2603 EXPORT_SYMBOL(blk_end_request_all); 2604 2605 /** 2606 * blk_end_request_cur - Helper function to finish the current request chunk. 2607 * @rq: the request to finish the current chunk for 2608 * @error: %0 for success, < %0 for error 2609 * 2610 * Description: 2611 * Complete the current consecutively mapped chunk from @rq. 2612 * 2613 * Return: 2614 * %false - we are done with this request 2615 * %true - still buffers pending for this request 2616 */ 2617 bool blk_end_request_cur(struct request *rq, int error) 2618 { 2619 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2620 } 2621 EXPORT_SYMBOL(blk_end_request_cur); 2622 2623 /** 2624 * blk_end_request_err - Finish a request till the next failure boundary. 2625 * @rq: the request to finish till the next failure boundary for 2626 * @error: must be negative errno 2627 * 2628 * Description: 2629 * Complete @rq till the next failure boundary. 2630 * 2631 * Return: 2632 * %false - we are done with this request 2633 * %true - still buffers pending for this request 2634 */ 2635 bool blk_end_request_err(struct request *rq, int error) 2636 { 2637 WARN_ON(error >= 0); 2638 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2639 } 2640 EXPORT_SYMBOL_GPL(blk_end_request_err); 2641 2642 /** 2643 * __blk_end_request - Helper function for drivers to complete the request. 2644 * @rq: the request being processed 2645 * @error: %0 for success, < %0 for error 2646 * @nr_bytes: number of bytes to complete 2647 * 2648 * Description: 2649 * Must be called with queue lock held unlike blk_end_request(). 2650 * 2651 * Return: 2652 * %false - we are done with this request 2653 * %true - still buffers pending for this request 2654 **/ 2655 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2656 { 2657 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2658 } 2659 EXPORT_SYMBOL(__blk_end_request); 2660 2661 /** 2662 * __blk_end_request_all - Helper function for drives to finish the request. 2663 * @rq: the request to finish 2664 * @error: %0 for success, < %0 for error 2665 * 2666 * Description: 2667 * Completely finish @rq. Must be called with queue lock held. 2668 */ 2669 void __blk_end_request_all(struct request *rq, int error) 2670 { 2671 bool pending; 2672 unsigned int bidi_bytes = 0; 2673 2674 if (unlikely(blk_bidi_rq(rq))) 2675 bidi_bytes = blk_rq_bytes(rq->next_rq); 2676 2677 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2678 BUG_ON(pending); 2679 } 2680 EXPORT_SYMBOL(__blk_end_request_all); 2681 2682 /** 2683 * __blk_end_request_cur - Helper function to finish the current request chunk. 2684 * @rq: the request to finish the current chunk for 2685 * @error: %0 for success, < %0 for error 2686 * 2687 * Description: 2688 * Complete the current consecutively mapped chunk from @rq. Must 2689 * be called with queue lock held. 2690 * 2691 * Return: 2692 * %false - we are done with this request 2693 * %true - still buffers pending for this request 2694 */ 2695 bool __blk_end_request_cur(struct request *rq, int error) 2696 { 2697 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2698 } 2699 EXPORT_SYMBOL(__blk_end_request_cur); 2700 2701 /** 2702 * __blk_end_request_err - Finish a request till the next failure boundary. 2703 * @rq: the request to finish till the next failure boundary for 2704 * @error: must be negative errno 2705 * 2706 * Description: 2707 * Complete @rq till the next failure boundary. Must be called 2708 * with queue lock held. 2709 * 2710 * Return: 2711 * %false - we are done with this request 2712 * %true - still buffers pending for this request 2713 */ 2714 bool __blk_end_request_err(struct request *rq, int error) 2715 { 2716 WARN_ON(error >= 0); 2717 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2718 } 2719 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2720 2721 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2722 struct bio *bio) 2723 { 2724 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2725 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2726 2727 if (bio_has_data(bio)) { 2728 rq->nr_phys_segments = bio_phys_segments(q, bio); 2729 rq->buffer = bio_data(bio); 2730 } 2731 rq->__data_len = bio->bi_size; 2732 rq->bio = rq->biotail = bio; 2733 2734 if (bio->bi_bdev) 2735 rq->rq_disk = bio->bi_bdev->bd_disk; 2736 } 2737 2738 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2739 /** 2740 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2741 * @rq: the request to be flushed 2742 * 2743 * Description: 2744 * Flush all pages in @rq. 2745 */ 2746 void rq_flush_dcache_pages(struct request *rq) 2747 { 2748 struct req_iterator iter; 2749 struct bio_vec *bvec; 2750 2751 rq_for_each_segment(bvec, rq, iter) 2752 flush_dcache_page(bvec->bv_page); 2753 } 2754 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2755 #endif 2756 2757 /** 2758 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2759 * @q : the queue of the device being checked 2760 * 2761 * Description: 2762 * Check if underlying low-level drivers of a device are busy. 2763 * If the drivers want to export their busy state, they must set own 2764 * exporting function using blk_queue_lld_busy() first. 2765 * 2766 * Basically, this function is used only by request stacking drivers 2767 * to stop dispatching requests to underlying devices when underlying 2768 * devices are busy. This behavior helps more I/O merging on the queue 2769 * of the request stacking driver and prevents I/O throughput regression 2770 * on burst I/O load. 2771 * 2772 * Return: 2773 * 0 - Not busy (The request stacking driver should dispatch request) 2774 * 1 - Busy (The request stacking driver should stop dispatching request) 2775 */ 2776 int blk_lld_busy(struct request_queue *q) 2777 { 2778 if (q->lld_busy_fn) 2779 return q->lld_busy_fn(q); 2780 2781 return 0; 2782 } 2783 EXPORT_SYMBOL_GPL(blk_lld_busy); 2784 2785 /** 2786 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2787 * @rq: the clone request to be cleaned up 2788 * 2789 * Description: 2790 * Free all bios in @rq for a cloned request. 2791 */ 2792 void blk_rq_unprep_clone(struct request *rq) 2793 { 2794 struct bio *bio; 2795 2796 while ((bio = rq->bio) != NULL) { 2797 rq->bio = bio->bi_next; 2798 2799 bio_put(bio); 2800 } 2801 } 2802 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2803 2804 /* 2805 * Copy attributes of the original request to the clone request. 2806 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2807 */ 2808 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2809 { 2810 dst->cpu = src->cpu; 2811 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2812 dst->cmd_type = src->cmd_type; 2813 dst->__sector = blk_rq_pos(src); 2814 dst->__data_len = blk_rq_bytes(src); 2815 dst->nr_phys_segments = src->nr_phys_segments; 2816 dst->ioprio = src->ioprio; 2817 dst->extra_len = src->extra_len; 2818 } 2819 2820 /** 2821 * blk_rq_prep_clone - Helper function to setup clone request 2822 * @rq: the request to be setup 2823 * @rq_src: original request to be cloned 2824 * @bs: bio_set that bios for clone are allocated from 2825 * @gfp_mask: memory allocation mask for bio 2826 * @bio_ctr: setup function to be called for each clone bio. 2827 * Returns %0 for success, non %0 for failure. 2828 * @data: private data to be passed to @bio_ctr 2829 * 2830 * Description: 2831 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2832 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2833 * are not copied, and copying such parts is the caller's responsibility. 2834 * Also, pages which the original bios are pointing to are not copied 2835 * and the cloned bios just point same pages. 2836 * So cloned bios must be completed before original bios, which means 2837 * the caller must complete @rq before @rq_src. 2838 */ 2839 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2840 struct bio_set *bs, gfp_t gfp_mask, 2841 int (*bio_ctr)(struct bio *, struct bio *, void *), 2842 void *data) 2843 { 2844 struct bio *bio, *bio_src; 2845 2846 if (!bs) 2847 bs = fs_bio_set; 2848 2849 blk_rq_init(NULL, rq); 2850 2851 __rq_for_each_bio(bio_src, rq_src) { 2852 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2853 if (!bio) 2854 goto free_and_out; 2855 2856 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2857 goto free_and_out; 2858 2859 if (rq->bio) { 2860 rq->biotail->bi_next = bio; 2861 rq->biotail = bio; 2862 } else 2863 rq->bio = rq->biotail = bio; 2864 } 2865 2866 __blk_rq_prep_clone(rq, rq_src); 2867 2868 return 0; 2869 2870 free_and_out: 2871 if (bio) 2872 bio_put(bio); 2873 blk_rq_unprep_clone(rq); 2874 2875 return -ENOMEM; 2876 } 2877 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2878 2879 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2880 { 2881 return queue_work(kblockd_workqueue, work); 2882 } 2883 EXPORT_SYMBOL(kblockd_schedule_work); 2884 2885 int kblockd_schedule_delayed_work(struct request_queue *q, 2886 struct delayed_work *dwork, unsigned long delay) 2887 { 2888 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2889 } 2890 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2891 2892 #define PLUG_MAGIC 0x91827364 2893 2894 /** 2895 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2896 * @plug: The &struct blk_plug that needs to be initialized 2897 * 2898 * Description: 2899 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2900 * pending I/O should the task end up blocking between blk_start_plug() and 2901 * blk_finish_plug(). This is important from a performance perspective, but 2902 * also ensures that we don't deadlock. For instance, if the task is blocking 2903 * for a memory allocation, memory reclaim could end up wanting to free a 2904 * page belonging to that request that is currently residing in our private 2905 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2906 * this kind of deadlock. 2907 */ 2908 void blk_start_plug(struct blk_plug *plug) 2909 { 2910 struct task_struct *tsk = current; 2911 2912 plug->magic = PLUG_MAGIC; 2913 INIT_LIST_HEAD(&plug->list); 2914 INIT_LIST_HEAD(&plug->mq_list); 2915 INIT_LIST_HEAD(&plug->cb_list); 2916 2917 /* 2918 * If this is a nested plug, don't actually assign it. It will be 2919 * flushed on its own. 2920 */ 2921 if (!tsk->plug) { 2922 /* 2923 * Store ordering should not be needed here, since a potential 2924 * preempt will imply a full memory barrier 2925 */ 2926 tsk->plug = plug; 2927 } 2928 } 2929 EXPORT_SYMBOL(blk_start_plug); 2930 2931 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2932 { 2933 struct request *rqa = container_of(a, struct request, queuelist); 2934 struct request *rqb = container_of(b, struct request, queuelist); 2935 2936 return !(rqa->q < rqb->q || 2937 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2938 } 2939 2940 /* 2941 * If 'from_schedule' is true, then postpone the dispatch of requests 2942 * until a safe kblockd context. We due this to avoid accidental big 2943 * additional stack usage in driver dispatch, in places where the originally 2944 * plugger did not intend it. 2945 */ 2946 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2947 bool from_schedule) 2948 __releases(q->queue_lock) 2949 { 2950 trace_block_unplug(q, depth, !from_schedule); 2951 2952 if (from_schedule) 2953 blk_run_queue_async(q); 2954 else 2955 __blk_run_queue(q); 2956 spin_unlock(q->queue_lock); 2957 } 2958 2959 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2960 { 2961 LIST_HEAD(callbacks); 2962 2963 while (!list_empty(&plug->cb_list)) { 2964 list_splice_init(&plug->cb_list, &callbacks); 2965 2966 while (!list_empty(&callbacks)) { 2967 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2968 struct blk_plug_cb, 2969 list); 2970 list_del(&cb->list); 2971 cb->callback(cb, from_schedule); 2972 } 2973 } 2974 } 2975 2976 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 2977 int size) 2978 { 2979 struct blk_plug *plug = current->plug; 2980 struct blk_plug_cb *cb; 2981 2982 if (!plug) 2983 return NULL; 2984 2985 list_for_each_entry(cb, &plug->cb_list, list) 2986 if (cb->callback == unplug && cb->data == data) 2987 return cb; 2988 2989 /* Not currently on the callback list */ 2990 BUG_ON(size < sizeof(*cb)); 2991 cb = kzalloc(size, GFP_ATOMIC); 2992 if (cb) { 2993 cb->data = data; 2994 cb->callback = unplug; 2995 list_add(&cb->list, &plug->cb_list); 2996 } 2997 return cb; 2998 } 2999 EXPORT_SYMBOL(blk_check_plugged); 3000 3001 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 3002 { 3003 struct request_queue *q; 3004 unsigned long flags; 3005 struct request *rq; 3006 LIST_HEAD(list); 3007 unsigned int depth; 3008 3009 BUG_ON(plug->magic != PLUG_MAGIC); 3010 3011 flush_plug_callbacks(plug, from_schedule); 3012 3013 if (!list_empty(&plug->mq_list)) 3014 blk_mq_flush_plug_list(plug, from_schedule); 3015 3016 if (list_empty(&plug->list)) 3017 return; 3018 3019 list_splice_init(&plug->list, &list); 3020 3021 list_sort(NULL, &list, plug_rq_cmp); 3022 3023 q = NULL; 3024 depth = 0; 3025 3026 /* 3027 * Save and disable interrupts here, to avoid doing it for every 3028 * queue lock we have to take. 3029 */ 3030 local_irq_save(flags); 3031 while (!list_empty(&list)) { 3032 rq = list_entry_rq(list.next); 3033 list_del_init(&rq->queuelist); 3034 BUG_ON(!rq->q); 3035 if (rq->q != q) { 3036 /* 3037 * This drops the queue lock 3038 */ 3039 if (q) 3040 queue_unplugged(q, depth, from_schedule); 3041 q = rq->q; 3042 depth = 0; 3043 spin_lock(q->queue_lock); 3044 } 3045 3046 /* 3047 * Short-circuit if @q is dead 3048 */ 3049 if (unlikely(blk_queue_dying(q))) { 3050 __blk_end_request_all(rq, -ENODEV); 3051 continue; 3052 } 3053 3054 /* 3055 * rq is already accounted, so use raw insert 3056 */ 3057 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3058 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3059 else 3060 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3061 3062 depth++; 3063 } 3064 3065 /* 3066 * This drops the queue lock 3067 */ 3068 if (q) 3069 queue_unplugged(q, depth, from_schedule); 3070 3071 local_irq_restore(flags); 3072 } 3073 3074 void blk_finish_plug(struct blk_plug *plug) 3075 { 3076 blk_flush_plug_list(plug, false); 3077 3078 if (plug == current->plug) 3079 current->plug = NULL; 3080 } 3081 EXPORT_SYMBOL(blk_finish_plug); 3082 3083 #ifdef CONFIG_PM_RUNTIME 3084 /** 3085 * blk_pm_runtime_init - Block layer runtime PM initialization routine 3086 * @q: the queue of the device 3087 * @dev: the device the queue belongs to 3088 * 3089 * Description: 3090 * Initialize runtime-PM-related fields for @q and start auto suspend for 3091 * @dev. Drivers that want to take advantage of request-based runtime PM 3092 * should call this function after @dev has been initialized, and its 3093 * request queue @q has been allocated, and runtime PM for it can not happen 3094 * yet(either due to disabled/forbidden or its usage_count > 0). In most 3095 * cases, driver should call this function before any I/O has taken place. 3096 * 3097 * This function takes care of setting up using auto suspend for the device, 3098 * the autosuspend delay is set to -1 to make runtime suspend impossible 3099 * until an updated value is either set by user or by driver. Drivers do 3100 * not need to touch other autosuspend settings. 3101 * 3102 * The block layer runtime PM is request based, so only works for drivers 3103 * that use request as their IO unit instead of those directly use bio's. 3104 */ 3105 void blk_pm_runtime_init(struct request_queue *q, struct device *dev) 3106 { 3107 q->dev = dev; 3108 q->rpm_status = RPM_ACTIVE; 3109 pm_runtime_set_autosuspend_delay(q->dev, -1); 3110 pm_runtime_use_autosuspend(q->dev); 3111 } 3112 EXPORT_SYMBOL(blk_pm_runtime_init); 3113 3114 /** 3115 * blk_pre_runtime_suspend - Pre runtime suspend check 3116 * @q: the queue of the device 3117 * 3118 * Description: 3119 * This function will check if runtime suspend is allowed for the device 3120 * by examining if there are any requests pending in the queue. If there 3121 * are requests pending, the device can not be runtime suspended; otherwise, 3122 * the queue's status will be updated to SUSPENDING and the driver can 3123 * proceed to suspend the device. 3124 * 3125 * For the not allowed case, we mark last busy for the device so that 3126 * runtime PM core will try to autosuspend it some time later. 3127 * 3128 * This function should be called near the start of the device's 3129 * runtime_suspend callback. 3130 * 3131 * Return: 3132 * 0 - OK to runtime suspend the device 3133 * -EBUSY - Device should not be runtime suspended 3134 */ 3135 int blk_pre_runtime_suspend(struct request_queue *q) 3136 { 3137 int ret = 0; 3138 3139 spin_lock_irq(q->queue_lock); 3140 if (q->nr_pending) { 3141 ret = -EBUSY; 3142 pm_runtime_mark_last_busy(q->dev); 3143 } else { 3144 q->rpm_status = RPM_SUSPENDING; 3145 } 3146 spin_unlock_irq(q->queue_lock); 3147 return ret; 3148 } 3149 EXPORT_SYMBOL(blk_pre_runtime_suspend); 3150 3151 /** 3152 * blk_post_runtime_suspend - Post runtime suspend processing 3153 * @q: the queue of the device 3154 * @err: return value of the device's runtime_suspend function 3155 * 3156 * Description: 3157 * Update the queue's runtime status according to the return value of the 3158 * device's runtime suspend function and mark last busy for the device so 3159 * that PM core will try to auto suspend the device at a later time. 3160 * 3161 * This function should be called near the end of the device's 3162 * runtime_suspend callback. 3163 */ 3164 void blk_post_runtime_suspend(struct request_queue *q, int err) 3165 { 3166 spin_lock_irq(q->queue_lock); 3167 if (!err) { 3168 q->rpm_status = RPM_SUSPENDED; 3169 } else { 3170 q->rpm_status = RPM_ACTIVE; 3171 pm_runtime_mark_last_busy(q->dev); 3172 } 3173 spin_unlock_irq(q->queue_lock); 3174 } 3175 EXPORT_SYMBOL(blk_post_runtime_suspend); 3176 3177 /** 3178 * blk_pre_runtime_resume - Pre runtime resume processing 3179 * @q: the queue of the device 3180 * 3181 * Description: 3182 * Update the queue's runtime status to RESUMING in preparation for the 3183 * runtime resume of the device. 3184 * 3185 * This function should be called near the start of the device's 3186 * runtime_resume callback. 3187 */ 3188 void blk_pre_runtime_resume(struct request_queue *q) 3189 { 3190 spin_lock_irq(q->queue_lock); 3191 q->rpm_status = RPM_RESUMING; 3192 spin_unlock_irq(q->queue_lock); 3193 } 3194 EXPORT_SYMBOL(blk_pre_runtime_resume); 3195 3196 /** 3197 * blk_post_runtime_resume - Post runtime resume processing 3198 * @q: the queue of the device 3199 * @err: return value of the device's runtime_resume function 3200 * 3201 * Description: 3202 * Update the queue's runtime status according to the return value of the 3203 * device's runtime_resume function. If it is successfully resumed, process 3204 * the requests that are queued into the device's queue when it is resuming 3205 * and then mark last busy and initiate autosuspend for it. 3206 * 3207 * This function should be called near the end of the device's 3208 * runtime_resume callback. 3209 */ 3210 void blk_post_runtime_resume(struct request_queue *q, int err) 3211 { 3212 spin_lock_irq(q->queue_lock); 3213 if (!err) { 3214 q->rpm_status = RPM_ACTIVE; 3215 __blk_run_queue(q); 3216 pm_runtime_mark_last_busy(q->dev); 3217 pm_request_autosuspend(q->dev); 3218 } else { 3219 q->rpm_status = RPM_SUSPENDED; 3220 } 3221 spin_unlock_irq(q->queue_lock); 3222 } 3223 EXPORT_SYMBOL(blk_post_runtime_resume); 3224 #endif 3225 3226 int __init blk_dev_init(void) 3227 { 3228 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3229 sizeof(((struct request *)0)->cmd_flags)); 3230 3231 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3232 kblockd_workqueue = alloc_workqueue("kblockd", 3233 WQ_MEM_RECLAIM | WQ_HIGHPRI | 3234 WQ_POWER_EFFICIENT, 0); 3235 if (!kblockd_workqueue) 3236 panic("Failed to create kblockd\n"); 3237 3238 request_cachep = kmem_cache_create("blkdev_requests", 3239 sizeof(struct request), 0, SLAB_PANIC, NULL); 3240 3241 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3242 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3243 3244 return 0; 3245 } 3246