xref: /openbmc/linux/block/blk-core.c (revision 115dd546)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-pm.h>
20 #include <linux/blk-integrity.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kernel_stat.h>
25 #include <linux/string.h>
26 #include <linux/init.h>
27 #include <linux/completion.h>
28 #include <linux/slab.h>
29 #include <linux/swap.h>
30 #include <linux/writeback.h>
31 #include <linux/task_io_accounting_ops.h>
32 #include <linux/fault-inject.h>
33 #include <linux/list_sort.h>
34 #include <linux/delay.h>
35 #include <linux/ratelimit.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/part_stat.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/blk-crypto.h>
43 
44 #define CREATE_TRACE_POINTS
45 #include <trace/events/block.h>
46 
47 #include "blk.h"
48 #include "blk-mq-sched.h"
49 #include "blk-pm.h"
50 #include "blk-cgroup.h"
51 #include "blk-throttle.h"
52 
53 struct dentry *blk_debugfs_root;
54 
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert);
61 
62 static DEFINE_IDA(blk_queue_ida);
63 
64 /*
65  * For queue allocation
66  */
67 static struct kmem_cache *blk_requestq_cachep;
68 
69 /*
70  * Controlling structure to kblockd
71  */
72 static struct workqueue_struct *kblockd_workqueue;
73 
74 /**
75  * blk_queue_flag_set - atomically set a queue flag
76  * @flag: flag to be set
77  * @q: request queue
78  */
79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
80 {
81 	set_bit(flag, &q->queue_flags);
82 }
83 EXPORT_SYMBOL(blk_queue_flag_set);
84 
85 /**
86  * blk_queue_flag_clear - atomically clear a queue flag
87  * @flag: flag to be cleared
88  * @q: request queue
89  */
90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
91 {
92 	clear_bit(flag, &q->queue_flags);
93 }
94 EXPORT_SYMBOL(blk_queue_flag_clear);
95 
96 /**
97  * blk_queue_flag_test_and_set - atomically test and set a queue flag
98  * @flag: flag to be set
99  * @q: request queue
100  *
101  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
102  * the flag was already set.
103  */
104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
105 {
106 	return test_and_set_bit(flag, &q->queue_flags);
107 }
108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
109 
110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
111 static const char *const blk_op_name[] = {
112 	REQ_OP_NAME(READ),
113 	REQ_OP_NAME(WRITE),
114 	REQ_OP_NAME(FLUSH),
115 	REQ_OP_NAME(DISCARD),
116 	REQ_OP_NAME(SECURE_ERASE),
117 	REQ_OP_NAME(ZONE_RESET),
118 	REQ_OP_NAME(ZONE_RESET_ALL),
119 	REQ_OP_NAME(ZONE_OPEN),
120 	REQ_OP_NAME(ZONE_CLOSE),
121 	REQ_OP_NAME(ZONE_FINISH),
122 	REQ_OP_NAME(ZONE_APPEND),
123 	REQ_OP_NAME(WRITE_ZEROES),
124 	REQ_OP_NAME(DRV_IN),
125 	REQ_OP_NAME(DRV_OUT),
126 };
127 #undef REQ_OP_NAME
128 
129 /**
130  * blk_op_str - Return string XXX in the REQ_OP_XXX.
131  * @op: REQ_OP_XXX.
132  *
133  * Description: Centralize block layer function to convert REQ_OP_XXX into
134  * string format. Useful in the debugging and tracing bio or request. For
135  * invalid REQ_OP_XXX it returns string "UNKNOWN".
136  */
137 inline const char *blk_op_str(enum req_op op)
138 {
139 	const char *op_str = "UNKNOWN";
140 
141 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
142 		op_str = blk_op_name[op];
143 
144 	return op_str;
145 }
146 EXPORT_SYMBOL_GPL(blk_op_str);
147 
148 static const struct {
149 	int		errno;
150 	const char	*name;
151 } blk_errors[] = {
152 	[BLK_STS_OK]		= { 0,		"" },
153 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
154 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
155 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
156 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
157 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
158 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
159 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
160 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
161 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
162 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
163 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
164 	[BLK_STS_OFFLINE]	= { -ENODEV,	"device offline" },
165 
166 	/* device mapper special case, should not leak out: */
167 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
168 
169 	/* zone device specific errors */
170 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
171 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
172 
173 	/* everything else not covered above: */
174 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
175 };
176 
177 blk_status_t errno_to_blk_status(int errno)
178 {
179 	int i;
180 
181 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
182 		if (blk_errors[i].errno == errno)
183 			return (__force blk_status_t)i;
184 	}
185 
186 	return BLK_STS_IOERR;
187 }
188 EXPORT_SYMBOL_GPL(errno_to_blk_status);
189 
190 int blk_status_to_errno(blk_status_t status)
191 {
192 	int idx = (__force int)status;
193 
194 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
195 		return -EIO;
196 	return blk_errors[idx].errno;
197 }
198 EXPORT_SYMBOL_GPL(blk_status_to_errno);
199 
200 const char *blk_status_to_str(blk_status_t status)
201 {
202 	int idx = (__force int)status;
203 
204 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
205 		return "<null>";
206 	return blk_errors[idx].name;
207 }
208 
209 /**
210  * blk_sync_queue - cancel any pending callbacks on a queue
211  * @q: the queue
212  *
213  * Description:
214  *     The block layer may perform asynchronous callback activity
215  *     on a queue, such as calling the unplug function after a timeout.
216  *     A block device may call blk_sync_queue to ensure that any
217  *     such activity is cancelled, thus allowing it to release resources
218  *     that the callbacks might use. The caller must already have made sure
219  *     that its ->submit_bio will not re-add plugging prior to calling
220  *     this function.
221  *
222  *     This function does not cancel any asynchronous activity arising
223  *     out of elevator or throttling code. That would require elevator_exit()
224  *     and blkcg_exit_queue() to be called with queue lock initialized.
225  *
226  */
227 void blk_sync_queue(struct request_queue *q)
228 {
229 	del_timer_sync(&q->timeout);
230 	cancel_work_sync(&q->timeout_work);
231 }
232 EXPORT_SYMBOL(blk_sync_queue);
233 
234 /**
235  * blk_set_pm_only - increment pm_only counter
236  * @q: request queue pointer
237  */
238 void blk_set_pm_only(struct request_queue *q)
239 {
240 	atomic_inc(&q->pm_only);
241 }
242 EXPORT_SYMBOL_GPL(blk_set_pm_only);
243 
244 void blk_clear_pm_only(struct request_queue *q)
245 {
246 	int pm_only;
247 
248 	pm_only = atomic_dec_return(&q->pm_only);
249 	WARN_ON_ONCE(pm_only < 0);
250 	if (pm_only == 0)
251 		wake_up_all(&q->mq_freeze_wq);
252 }
253 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
254 
255 static void blk_free_queue_rcu(struct rcu_head *rcu_head)
256 {
257 	kmem_cache_free(blk_requestq_cachep,
258 			container_of(rcu_head, struct request_queue, rcu_head));
259 }
260 
261 static void blk_free_queue(struct request_queue *q)
262 {
263 	percpu_ref_exit(&q->q_usage_counter);
264 
265 	if (q->poll_stat)
266 		blk_stat_remove_callback(q, q->poll_cb);
267 	blk_stat_free_callback(q->poll_cb);
268 
269 	blk_free_queue_stats(q->stats);
270 	kfree(q->poll_stat);
271 
272 	if (queue_is_mq(q))
273 		blk_mq_release(q);
274 
275 	ida_free(&blk_queue_ida, q->id);
276 	call_rcu(&q->rcu_head, blk_free_queue_rcu);
277 }
278 
279 /**
280  * blk_put_queue - decrement the request_queue refcount
281  * @q: the request_queue structure to decrement the refcount for
282  *
283  * Decrements the refcount of the request_queue and free it when the refcount
284  * reaches 0.
285  *
286  * Context: Can sleep.
287  */
288 void blk_put_queue(struct request_queue *q)
289 {
290 	might_sleep();
291 	if (refcount_dec_and_test(&q->refs))
292 		blk_free_queue(q);
293 }
294 EXPORT_SYMBOL(blk_put_queue);
295 
296 void blk_queue_start_drain(struct request_queue *q)
297 {
298 	/*
299 	 * When queue DYING flag is set, we need to block new req
300 	 * entering queue, so we call blk_freeze_queue_start() to
301 	 * prevent I/O from crossing blk_queue_enter().
302 	 */
303 	blk_freeze_queue_start(q);
304 	if (queue_is_mq(q))
305 		blk_mq_wake_waiters(q);
306 	/* Make blk_queue_enter() reexamine the DYING flag. */
307 	wake_up_all(&q->mq_freeze_wq);
308 }
309 
310 /**
311  * blk_queue_enter() - try to increase q->q_usage_counter
312  * @q: request queue pointer
313  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
314  */
315 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
316 {
317 	const bool pm = flags & BLK_MQ_REQ_PM;
318 
319 	while (!blk_try_enter_queue(q, pm)) {
320 		if (flags & BLK_MQ_REQ_NOWAIT)
321 			return -EAGAIN;
322 
323 		/*
324 		 * read pair of barrier in blk_freeze_queue_start(), we need to
325 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
326 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
327 		 * following wait may never return if the two reads are
328 		 * reordered.
329 		 */
330 		smp_rmb();
331 		wait_event(q->mq_freeze_wq,
332 			   (!q->mq_freeze_depth &&
333 			    blk_pm_resume_queue(pm, q)) ||
334 			   blk_queue_dying(q));
335 		if (blk_queue_dying(q))
336 			return -ENODEV;
337 	}
338 
339 	return 0;
340 }
341 
342 int __bio_queue_enter(struct request_queue *q, struct bio *bio)
343 {
344 	while (!blk_try_enter_queue(q, false)) {
345 		struct gendisk *disk = bio->bi_bdev->bd_disk;
346 
347 		if (bio->bi_opf & REQ_NOWAIT) {
348 			if (test_bit(GD_DEAD, &disk->state))
349 				goto dead;
350 			bio_wouldblock_error(bio);
351 			return -EAGAIN;
352 		}
353 
354 		/*
355 		 * read pair of barrier in blk_freeze_queue_start(), we need to
356 		 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and
357 		 * reading .mq_freeze_depth or queue dying flag, otherwise the
358 		 * following wait may never return if the two reads are
359 		 * reordered.
360 		 */
361 		smp_rmb();
362 		wait_event(q->mq_freeze_wq,
363 			   (!q->mq_freeze_depth &&
364 			    blk_pm_resume_queue(false, q)) ||
365 			   test_bit(GD_DEAD, &disk->state));
366 		if (test_bit(GD_DEAD, &disk->state))
367 			goto dead;
368 	}
369 
370 	return 0;
371 dead:
372 	bio_io_error(bio);
373 	return -ENODEV;
374 }
375 
376 void blk_queue_exit(struct request_queue *q)
377 {
378 	percpu_ref_put(&q->q_usage_counter);
379 }
380 
381 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
382 {
383 	struct request_queue *q =
384 		container_of(ref, struct request_queue, q_usage_counter);
385 
386 	wake_up_all(&q->mq_freeze_wq);
387 }
388 
389 static void blk_rq_timed_out_timer(struct timer_list *t)
390 {
391 	struct request_queue *q = from_timer(q, t, timeout);
392 
393 	kblockd_schedule_work(&q->timeout_work);
394 }
395 
396 static void blk_timeout_work(struct work_struct *work)
397 {
398 }
399 
400 struct request_queue *blk_alloc_queue(int node_id)
401 {
402 	struct request_queue *q;
403 
404 	q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO,
405 				  node_id);
406 	if (!q)
407 		return NULL;
408 
409 	q->last_merge = NULL;
410 
411 	q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL);
412 	if (q->id < 0)
413 		goto fail_q;
414 
415 	q->stats = blk_alloc_queue_stats();
416 	if (!q->stats)
417 		goto fail_id;
418 
419 	q->node = node_id;
420 
421 	atomic_set(&q->nr_active_requests_shared_tags, 0);
422 
423 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
424 	INIT_WORK(&q->timeout_work, blk_timeout_work);
425 	INIT_LIST_HEAD(&q->icq_list);
426 
427 	refcount_set(&q->refs, 1);
428 	mutex_init(&q->debugfs_mutex);
429 	mutex_init(&q->sysfs_lock);
430 	mutex_init(&q->sysfs_dir_lock);
431 	spin_lock_init(&q->queue_lock);
432 
433 	init_waitqueue_head(&q->mq_freeze_wq);
434 	mutex_init(&q->mq_freeze_lock);
435 
436 	/*
437 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
438 	 * See blk_register_queue() for details.
439 	 */
440 	if (percpu_ref_init(&q->q_usage_counter,
441 				blk_queue_usage_counter_release,
442 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
443 		goto fail_stats;
444 
445 	blk_set_default_limits(&q->limits);
446 	q->nr_requests = BLKDEV_DEFAULT_RQ;
447 
448 	return q;
449 
450 fail_stats:
451 	blk_free_queue_stats(q->stats);
452 fail_id:
453 	ida_free(&blk_queue_ida, q->id);
454 fail_q:
455 	kmem_cache_free(blk_requestq_cachep, q);
456 	return NULL;
457 }
458 
459 /**
460  * blk_get_queue - increment the request_queue refcount
461  * @q: the request_queue structure to increment the refcount for
462  *
463  * Increment the refcount of the request_queue kobject.
464  *
465  * Context: Any context.
466  */
467 bool blk_get_queue(struct request_queue *q)
468 {
469 	if (unlikely(blk_queue_dying(q)))
470 		return false;
471 	refcount_inc(&q->refs);
472 	return true;
473 }
474 EXPORT_SYMBOL(blk_get_queue);
475 
476 #ifdef CONFIG_FAIL_MAKE_REQUEST
477 
478 static DECLARE_FAULT_ATTR(fail_make_request);
479 
480 static int __init setup_fail_make_request(char *str)
481 {
482 	return setup_fault_attr(&fail_make_request, str);
483 }
484 __setup("fail_make_request=", setup_fail_make_request);
485 
486 bool should_fail_request(struct block_device *part, unsigned int bytes)
487 {
488 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
489 }
490 
491 static int __init fail_make_request_debugfs(void)
492 {
493 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
494 						NULL, &fail_make_request);
495 
496 	return PTR_ERR_OR_ZERO(dir);
497 }
498 
499 late_initcall(fail_make_request_debugfs);
500 #endif /* CONFIG_FAIL_MAKE_REQUEST */
501 
502 static inline void bio_check_ro(struct bio *bio)
503 {
504 	if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) {
505 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
506 			return;
507 		pr_warn("Trying to write to read-only block-device %pg\n",
508 			bio->bi_bdev);
509 		/* Older lvm-tools actually trigger this */
510 	}
511 }
512 
513 static noinline int should_fail_bio(struct bio *bio)
514 {
515 	if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size))
516 		return -EIO;
517 	return 0;
518 }
519 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
520 
521 /*
522  * Check whether this bio extends beyond the end of the device or partition.
523  * This may well happen - the kernel calls bread() without checking the size of
524  * the device, e.g., when mounting a file system.
525  */
526 static inline int bio_check_eod(struct bio *bio)
527 {
528 	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
529 	unsigned int nr_sectors = bio_sectors(bio);
530 
531 	if (nr_sectors && maxsector &&
532 	    (nr_sectors > maxsector ||
533 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
534 		pr_info_ratelimited("%s: attempt to access beyond end of device\n"
535 				    "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n",
536 				    current->comm, bio->bi_bdev, bio->bi_opf,
537 				    bio->bi_iter.bi_sector, nr_sectors, maxsector);
538 		return -EIO;
539 	}
540 	return 0;
541 }
542 
543 /*
544  * Remap block n of partition p to block n+start(p) of the disk.
545  */
546 static int blk_partition_remap(struct bio *bio)
547 {
548 	struct block_device *p = bio->bi_bdev;
549 
550 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
551 		return -EIO;
552 	if (bio_sectors(bio)) {
553 		bio->bi_iter.bi_sector += p->bd_start_sect;
554 		trace_block_bio_remap(bio, p->bd_dev,
555 				      bio->bi_iter.bi_sector -
556 				      p->bd_start_sect);
557 	}
558 	bio_set_flag(bio, BIO_REMAPPED);
559 	return 0;
560 }
561 
562 /*
563  * Check write append to a zoned block device.
564  */
565 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
566 						 struct bio *bio)
567 {
568 	int nr_sectors = bio_sectors(bio);
569 
570 	/* Only applicable to zoned block devices */
571 	if (!bdev_is_zoned(bio->bi_bdev))
572 		return BLK_STS_NOTSUPP;
573 
574 	/* The bio sector must point to the start of a sequential zone */
575 	if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) ||
576 	    !bio_zone_is_seq(bio))
577 		return BLK_STS_IOERR;
578 
579 	/*
580 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
581 	 * split and could result in non-contiguous sectors being written in
582 	 * different zones.
583 	 */
584 	if (nr_sectors > q->limits.chunk_sectors)
585 		return BLK_STS_IOERR;
586 
587 	/* Make sure the BIO is small enough and will not get split */
588 	if (nr_sectors > q->limits.max_zone_append_sectors)
589 		return BLK_STS_IOERR;
590 
591 	bio->bi_opf |= REQ_NOMERGE;
592 
593 	return BLK_STS_OK;
594 }
595 
596 static void __submit_bio(struct bio *bio)
597 {
598 	struct gendisk *disk = bio->bi_bdev->bd_disk;
599 
600 	if (unlikely(!blk_crypto_bio_prep(&bio)))
601 		return;
602 
603 	if (!disk->fops->submit_bio) {
604 		blk_mq_submit_bio(bio);
605 	} else if (likely(bio_queue_enter(bio) == 0)) {
606 		disk->fops->submit_bio(bio);
607 		blk_queue_exit(disk->queue);
608 	}
609 }
610 
611 /*
612  * The loop in this function may be a bit non-obvious, and so deserves some
613  * explanation:
614  *
615  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
616  *    that), so we have a list with a single bio.
617  *  - We pretend that we have just taken it off a longer list, so we assign
618  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
619  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
620  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
621  *    non-NULL value in bio_list and re-enter the loop from the top.
622  *  - In this case we really did just take the bio of the top of the list (no
623  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
624  *    again.
625  *
626  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
627  * bio_list_on_stack[1] contains bios that were submitted before the current
628  *	->submit_bio, but that haven't been processed yet.
629  */
630 static void __submit_bio_noacct(struct bio *bio)
631 {
632 	struct bio_list bio_list_on_stack[2];
633 
634 	BUG_ON(bio->bi_next);
635 
636 	bio_list_init(&bio_list_on_stack[0]);
637 	current->bio_list = bio_list_on_stack;
638 
639 	do {
640 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
641 		struct bio_list lower, same;
642 
643 		/*
644 		 * Create a fresh bio_list for all subordinate requests.
645 		 */
646 		bio_list_on_stack[1] = bio_list_on_stack[0];
647 		bio_list_init(&bio_list_on_stack[0]);
648 
649 		__submit_bio(bio);
650 
651 		/*
652 		 * Sort new bios into those for a lower level and those for the
653 		 * same level.
654 		 */
655 		bio_list_init(&lower);
656 		bio_list_init(&same);
657 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
658 			if (q == bdev_get_queue(bio->bi_bdev))
659 				bio_list_add(&same, bio);
660 			else
661 				bio_list_add(&lower, bio);
662 
663 		/*
664 		 * Now assemble so we handle the lowest level first.
665 		 */
666 		bio_list_merge(&bio_list_on_stack[0], &lower);
667 		bio_list_merge(&bio_list_on_stack[0], &same);
668 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
669 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
670 
671 	current->bio_list = NULL;
672 }
673 
674 static void __submit_bio_noacct_mq(struct bio *bio)
675 {
676 	struct bio_list bio_list[2] = { };
677 
678 	current->bio_list = bio_list;
679 
680 	do {
681 		__submit_bio(bio);
682 	} while ((bio = bio_list_pop(&bio_list[0])));
683 
684 	current->bio_list = NULL;
685 }
686 
687 void submit_bio_noacct_nocheck(struct bio *bio)
688 {
689 	/*
690 	 * We only want one ->submit_bio to be active at a time, else stack
691 	 * usage with stacked devices could be a problem.  Use current->bio_list
692 	 * to collect a list of requests submited by a ->submit_bio method while
693 	 * it is active, and then process them after it returned.
694 	 */
695 	if (current->bio_list)
696 		bio_list_add(&current->bio_list[0], bio);
697 	else if (!bio->bi_bdev->bd_disk->fops->submit_bio)
698 		__submit_bio_noacct_mq(bio);
699 	else
700 		__submit_bio_noacct(bio);
701 }
702 
703 /**
704  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
705  * @bio:  The bio describing the location in memory and on the device.
706  *
707  * This is a version of submit_bio() that shall only be used for I/O that is
708  * resubmitted to lower level drivers by stacking block drivers.  All file
709  * systems and other upper level users of the block layer should use
710  * submit_bio() instead.
711  */
712 void submit_bio_noacct(struct bio *bio)
713 {
714 	struct block_device *bdev = bio->bi_bdev;
715 	struct request_queue *q = bdev_get_queue(bdev);
716 	blk_status_t status = BLK_STS_IOERR;
717 	struct blk_plug *plug;
718 
719 	might_sleep();
720 
721 	plug = blk_mq_plug(bio);
722 	if (plug && plug->nowait)
723 		bio->bi_opf |= REQ_NOWAIT;
724 
725 	/*
726 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
727 	 * if queue does not support NOWAIT.
728 	 */
729 	if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev))
730 		goto not_supported;
731 
732 	if (should_fail_bio(bio))
733 		goto end_io;
734 	bio_check_ro(bio);
735 	if (!bio_flagged(bio, BIO_REMAPPED)) {
736 		if (unlikely(bio_check_eod(bio)))
737 			goto end_io;
738 		if (bdev->bd_partno && unlikely(blk_partition_remap(bio)))
739 			goto end_io;
740 	}
741 
742 	/*
743 	 * Filter flush bio's early so that bio based drivers without flush
744 	 * support don't have to worry about them.
745 	 */
746 	if (op_is_flush(bio->bi_opf) &&
747 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
748 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
749 		if (!bio_sectors(bio)) {
750 			status = BLK_STS_OK;
751 			goto end_io;
752 		}
753 	}
754 
755 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
756 		bio_clear_polled(bio);
757 
758 	switch (bio_op(bio)) {
759 	case REQ_OP_DISCARD:
760 		if (!bdev_max_discard_sectors(bdev))
761 			goto not_supported;
762 		break;
763 	case REQ_OP_SECURE_ERASE:
764 		if (!bdev_max_secure_erase_sectors(bdev))
765 			goto not_supported;
766 		break;
767 	case REQ_OP_ZONE_APPEND:
768 		status = blk_check_zone_append(q, bio);
769 		if (status != BLK_STS_OK)
770 			goto end_io;
771 		break;
772 	case REQ_OP_ZONE_RESET:
773 	case REQ_OP_ZONE_OPEN:
774 	case REQ_OP_ZONE_CLOSE:
775 	case REQ_OP_ZONE_FINISH:
776 		if (!bdev_is_zoned(bio->bi_bdev))
777 			goto not_supported;
778 		break;
779 	case REQ_OP_ZONE_RESET_ALL:
780 		if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q))
781 			goto not_supported;
782 		break;
783 	case REQ_OP_WRITE_ZEROES:
784 		if (!q->limits.max_write_zeroes_sectors)
785 			goto not_supported;
786 		break;
787 	default:
788 		break;
789 	}
790 
791 	if (blk_throtl_bio(bio))
792 		return;
793 
794 	blk_cgroup_bio_start(bio);
795 	blkcg_bio_issue_init(bio);
796 
797 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
798 		trace_block_bio_queue(bio);
799 		/* Now that enqueuing has been traced, we need to trace
800 		 * completion as well.
801 		 */
802 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
803 	}
804 	submit_bio_noacct_nocheck(bio);
805 	return;
806 
807 not_supported:
808 	status = BLK_STS_NOTSUPP;
809 end_io:
810 	bio->bi_status = status;
811 	bio_endio(bio);
812 }
813 EXPORT_SYMBOL(submit_bio_noacct);
814 
815 /**
816  * submit_bio - submit a bio to the block device layer for I/O
817  * @bio: The &struct bio which describes the I/O
818  *
819  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
820  * fully set up &struct bio that describes the I/O that needs to be done.  The
821  * bio will be send to the device described by the bi_bdev field.
822  *
823  * The success/failure status of the request, along with notification of
824  * completion, is delivered asynchronously through the ->bi_end_io() callback
825  * in @bio.  The bio must NOT be touched by the caller until ->bi_end_io() has
826  * been called.
827  */
828 void submit_bio(struct bio *bio)
829 {
830 	if (blkcg_punt_bio_submit(bio))
831 		return;
832 
833 	if (bio_op(bio) == REQ_OP_READ) {
834 		task_io_account_read(bio->bi_iter.bi_size);
835 		count_vm_events(PGPGIN, bio_sectors(bio));
836 	} else if (bio_op(bio) == REQ_OP_WRITE) {
837 		count_vm_events(PGPGOUT, bio_sectors(bio));
838 	}
839 
840 	submit_bio_noacct(bio);
841 }
842 EXPORT_SYMBOL(submit_bio);
843 
844 /**
845  * bio_poll - poll for BIO completions
846  * @bio: bio to poll for
847  * @iob: batches of IO
848  * @flags: BLK_POLL_* flags that control the behavior
849  *
850  * Poll for completions on queue associated with the bio. Returns number of
851  * completed entries found.
852  *
853  * Note: the caller must either be the context that submitted @bio, or
854  * be in a RCU critical section to prevent freeing of @bio.
855  */
856 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags)
857 {
858 	struct request_queue *q = bdev_get_queue(bio->bi_bdev);
859 	blk_qc_t cookie = READ_ONCE(bio->bi_cookie);
860 	int ret = 0;
861 
862 	if (cookie == BLK_QC_T_NONE ||
863 	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
864 		return 0;
865 
866 	/*
867 	 * As the requests that require a zone lock are not plugged in the
868 	 * first place, directly accessing the plug instead of using
869 	 * blk_mq_plug() should not have any consequences during flushing for
870 	 * zoned devices.
871 	 */
872 	blk_flush_plug(current->plug, false);
873 
874 	if (bio_queue_enter(bio))
875 		return 0;
876 	if (queue_is_mq(q)) {
877 		ret = blk_mq_poll(q, cookie, iob, flags);
878 	} else {
879 		struct gendisk *disk = q->disk;
880 
881 		if (disk && disk->fops->poll_bio)
882 			ret = disk->fops->poll_bio(bio, iob, flags);
883 	}
884 	blk_queue_exit(q);
885 	return ret;
886 }
887 EXPORT_SYMBOL_GPL(bio_poll);
888 
889 /*
890  * Helper to implement file_operations.iopoll.  Requires the bio to be stored
891  * in iocb->private, and cleared before freeing the bio.
892  */
893 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
894 		    unsigned int flags)
895 {
896 	struct bio *bio;
897 	int ret = 0;
898 
899 	/*
900 	 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can
901 	 * point to a freshly allocated bio at this point.  If that happens
902 	 * we have a few cases to consider:
903 	 *
904 	 *  1) the bio is beeing initialized and bi_bdev is NULL.  We can just
905 	 *     simply nothing in this case
906 	 *  2) the bio points to a not poll enabled device.  bio_poll will catch
907 	 *     this and return 0
908 	 *  3) the bio points to a poll capable device, including but not
909 	 *     limited to the one that the original bio pointed to.  In this
910 	 *     case we will call into the actual poll method and poll for I/O,
911 	 *     even if we don't need to, but it won't cause harm either.
912 	 *
913 	 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev
914 	 * is still allocated. Because partitions hold a reference to the whole
915 	 * device bdev and thus disk, the disk is also still valid.  Grabbing
916 	 * a reference to the queue in bio_poll() ensures the hctxs and requests
917 	 * are still valid as well.
918 	 */
919 	rcu_read_lock();
920 	bio = READ_ONCE(kiocb->private);
921 	if (bio && bio->bi_bdev)
922 		ret = bio_poll(bio, iob, flags);
923 	rcu_read_unlock();
924 
925 	return ret;
926 }
927 EXPORT_SYMBOL_GPL(iocb_bio_iopoll);
928 
929 void update_io_ticks(struct block_device *part, unsigned long now, bool end)
930 {
931 	unsigned long stamp;
932 again:
933 	stamp = READ_ONCE(part->bd_stamp);
934 	if (unlikely(time_after(now, stamp))) {
935 		if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now)))
936 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
937 	}
938 	if (part->bd_partno) {
939 		part = bdev_whole(part);
940 		goto again;
941 	}
942 }
943 
944 unsigned long bdev_start_io_acct(struct block_device *bdev,
945 				 unsigned int sectors, enum req_op op,
946 				 unsigned long start_time)
947 {
948 	const int sgrp = op_stat_group(op);
949 
950 	part_stat_lock();
951 	update_io_ticks(bdev, start_time, false);
952 	part_stat_inc(bdev, ios[sgrp]);
953 	part_stat_add(bdev, sectors[sgrp], sectors);
954 	part_stat_local_inc(bdev, in_flight[op_is_write(op)]);
955 	part_stat_unlock();
956 
957 	return start_time;
958 }
959 EXPORT_SYMBOL(bdev_start_io_acct);
960 
961 /**
962  * bio_start_io_acct - start I/O accounting for bio based drivers
963  * @bio:	bio to start account for
964  *
965  * Returns the start time that should be passed back to bio_end_io_acct().
966  */
967 unsigned long bio_start_io_acct(struct bio *bio)
968 {
969 	return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio),
970 				  bio_op(bio), jiffies);
971 }
972 EXPORT_SYMBOL_GPL(bio_start_io_acct);
973 
974 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
975 		      unsigned long start_time)
976 {
977 	const int sgrp = op_stat_group(op);
978 	unsigned long now = READ_ONCE(jiffies);
979 	unsigned long duration = now - start_time;
980 
981 	part_stat_lock();
982 	update_io_ticks(bdev, now, true);
983 	part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration));
984 	part_stat_local_dec(bdev, in_flight[op_is_write(op)]);
985 	part_stat_unlock();
986 }
987 EXPORT_SYMBOL(bdev_end_io_acct);
988 
989 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
990 			      struct block_device *orig_bdev)
991 {
992 	bdev_end_io_acct(orig_bdev, bio_op(bio), start_time);
993 }
994 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped);
995 
996 /**
997  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
998  * @q : the queue of the device being checked
999  *
1000  * Description:
1001  *    Check if underlying low-level drivers of a device are busy.
1002  *    If the drivers want to export their busy state, they must set own
1003  *    exporting function using blk_queue_lld_busy() first.
1004  *
1005  *    Basically, this function is used only by request stacking drivers
1006  *    to stop dispatching requests to underlying devices when underlying
1007  *    devices are busy.  This behavior helps more I/O merging on the queue
1008  *    of the request stacking driver and prevents I/O throughput regression
1009  *    on burst I/O load.
1010  *
1011  * Return:
1012  *    0 - Not busy (The request stacking driver should dispatch request)
1013  *    1 - Busy (The request stacking driver should stop dispatching request)
1014  */
1015 int blk_lld_busy(struct request_queue *q)
1016 {
1017 	if (queue_is_mq(q) && q->mq_ops->busy)
1018 		return q->mq_ops->busy(q);
1019 
1020 	return 0;
1021 }
1022 EXPORT_SYMBOL_GPL(blk_lld_busy);
1023 
1024 int kblockd_schedule_work(struct work_struct *work)
1025 {
1026 	return queue_work(kblockd_workqueue, work);
1027 }
1028 EXPORT_SYMBOL(kblockd_schedule_work);
1029 
1030 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1031 				unsigned long delay)
1032 {
1033 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1034 }
1035 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1036 
1037 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios)
1038 {
1039 	struct task_struct *tsk = current;
1040 
1041 	/*
1042 	 * If this is a nested plug, don't actually assign it.
1043 	 */
1044 	if (tsk->plug)
1045 		return;
1046 
1047 	plug->mq_list = NULL;
1048 	plug->cached_rq = NULL;
1049 	plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT);
1050 	plug->rq_count = 0;
1051 	plug->multiple_queues = false;
1052 	plug->has_elevator = false;
1053 	plug->nowait = false;
1054 	INIT_LIST_HEAD(&plug->cb_list);
1055 
1056 	/*
1057 	 * Store ordering should not be needed here, since a potential
1058 	 * preempt will imply a full memory barrier
1059 	 */
1060 	tsk->plug = plug;
1061 }
1062 
1063 /**
1064  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1065  * @plug:	The &struct blk_plug that needs to be initialized
1066  *
1067  * Description:
1068  *   blk_start_plug() indicates to the block layer an intent by the caller
1069  *   to submit multiple I/O requests in a batch.  The block layer may use
1070  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1071  *   is called.  However, the block layer may choose to submit requests
1072  *   before a call to blk_finish_plug() if the number of queued I/Os
1073  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1074  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1075  *   the task schedules (see below).
1076  *
1077  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1078  *   pending I/O should the task end up blocking between blk_start_plug() and
1079  *   blk_finish_plug(). This is important from a performance perspective, but
1080  *   also ensures that we don't deadlock. For instance, if the task is blocking
1081  *   for a memory allocation, memory reclaim could end up wanting to free a
1082  *   page belonging to that request that is currently residing in our private
1083  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1084  *   this kind of deadlock.
1085  */
1086 void blk_start_plug(struct blk_plug *plug)
1087 {
1088 	blk_start_plug_nr_ios(plug, 1);
1089 }
1090 EXPORT_SYMBOL(blk_start_plug);
1091 
1092 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1093 {
1094 	LIST_HEAD(callbacks);
1095 
1096 	while (!list_empty(&plug->cb_list)) {
1097 		list_splice_init(&plug->cb_list, &callbacks);
1098 
1099 		while (!list_empty(&callbacks)) {
1100 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1101 							  struct blk_plug_cb,
1102 							  list);
1103 			list_del(&cb->list);
1104 			cb->callback(cb, from_schedule);
1105 		}
1106 	}
1107 }
1108 
1109 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1110 				      int size)
1111 {
1112 	struct blk_plug *plug = current->plug;
1113 	struct blk_plug_cb *cb;
1114 
1115 	if (!plug)
1116 		return NULL;
1117 
1118 	list_for_each_entry(cb, &plug->cb_list, list)
1119 		if (cb->callback == unplug && cb->data == data)
1120 			return cb;
1121 
1122 	/* Not currently on the callback list */
1123 	BUG_ON(size < sizeof(*cb));
1124 	cb = kzalloc(size, GFP_ATOMIC);
1125 	if (cb) {
1126 		cb->data = data;
1127 		cb->callback = unplug;
1128 		list_add(&cb->list, &plug->cb_list);
1129 	}
1130 	return cb;
1131 }
1132 EXPORT_SYMBOL(blk_check_plugged);
1133 
1134 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule)
1135 {
1136 	if (!list_empty(&plug->cb_list))
1137 		flush_plug_callbacks(plug, from_schedule);
1138 	if (!rq_list_empty(plug->mq_list))
1139 		blk_mq_flush_plug_list(plug, from_schedule);
1140 	/*
1141 	 * Unconditionally flush out cached requests, even if the unplug
1142 	 * event came from schedule. Since we know hold references to the
1143 	 * queue for cached requests, we don't want a blocked task holding
1144 	 * up a queue freeze/quiesce event.
1145 	 */
1146 	if (unlikely(!rq_list_empty(plug->cached_rq)))
1147 		blk_mq_free_plug_rqs(plug);
1148 }
1149 
1150 /**
1151  * blk_finish_plug - mark the end of a batch of submitted I/O
1152  * @plug:	The &struct blk_plug passed to blk_start_plug()
1153  *
1154  * Description:
1155  * Indicate that a batch of I/O submissions is complete.  This function
1156  * must be paired with an initial call to blk_start_plug().  The intent
1157  * is to allow the block layer to optimize I/O submission.  See the
1158  * documentation for blk_start_plug() for more information.
1159  */
1160 void blk_finish_plug(struct blk_plug *plug)
1161 {
1162 	if (plug == current->plug) {
1163 		__blk_flush_plug(plug, false);
1164 		current->plug = NULL;
1165 	}
1166 }
1167 EXPORT_SYMBOL(blk_finish_plug);
1168 
1169 void blk_io_schedule(void)
1170 {
1171 	/* Prevent hang_check timer from firing at us during very long I/O */
1172 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1173 
1174 	if (timeout)
1175 		io_schedule_timeout(timeout);
1176 	else
1177 		io_schedule();
1178 }
1179 EXPORT_SYMBOL_GPL(blk_io_schedule);
1180 
1181 int __init blk_dev_init(void)
1182 {
1183 	BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS));
1184 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1185 			sizeof_field(struct request, cmd_flags));
1186 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1187 			sizeof_field(struct bio, bi_opf));
1188 
1189 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1190 	kblockd_workqueue = alloc_workqueue("kblockd",
1191 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1192 	if (!kblockd_workqueue)
1193 		panic("Failed to create kblockd\n");
1194 
1195 	blk_requestq_cachep = kmem_cache_create("request_queue",
1196 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1197 
1198 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1199 
1200 	return 0;
1201 }
1202