1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/blk-pm.h> 20 #include <linux/blk-integrity.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kernel_stat.h> 25 #include <linux/string.h> 26 #include <linux/init.h> 27 #include <linux/completion.h> 28 #include <linux/slab.h> 29 #include <linux/swap.h> 30 #include <linux/writeback.h> 31 #include <linux/task_io_accounting_ops.h> 32 #include <linux/fault-inject.h> 33 #include <linux/list_sort.h> 34 #include <linux/delay.h> 35 #include <linux/ratelimit.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/t10-pi.h> 38 #include <linux/debugfs.h> 39 #include <linux/bpf.h> 40 #include <linux/part_stat.h> 41 #include <linux/sched/sysctl.h> 42 #include <linux/blk-crypto.h> 43 44 #define CREATE_TRACE_POINTS 45 #include <trace/events/block.h> 46 47 #include "blk.h" 48 #include "blk-mq-sched.h" 49 #include "blk-pm.h" 50 #include "blk-cgroup.h" 51 #include "blk-throttle.h" 52 53 struct dentry *blk_debugfs_root; 54 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_insert); 61 62 static DEFINE_IDA(blk_queue_ida); 63 64 /* 65 * For queue allocation 66 */ 67 static struct kmem_cache *blk_requestq_cachep; 68 69 /* 70 * Controlling structure to kblockd 71 */ 72 static struct workqueue_struct *kblockd_workqueue; 73 74 /** 75 * blk_queue_flag_set - atomically set a queue flag 76 * @flag: flag to be set 77 * @q: request queue 78 */ 79 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 80 { 81 set_bit(flag, &q->queue_flags); 82 } 83 EXPORT_SYMBOL(blk_queue_flag_set); 84 85 /** 86 * blk_queue_flag_clear - atomically clear a queue flag 87 * @flag: flag to be cleared 88 * @q: request queue 89 */ 90 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 91 { 92 clear_bit(flag, &q->queue_flags); 93 } 94 EXPORT_SYMBOL(blk_queue_flag_clear); 95 96 /** 97 * blk_queue_flag_test_and_set - atomically test and set a queue flag 98 * @flag: flag to be set 99 * @q: request queue 100 * 101 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 102 * the flag was already set. 103 */ 104 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 105 { 106 return test_and_set_bit(flag, &q->queue_flags); 107 } 108 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 109 110 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 111 static const char *const blk_op_name[] = { 112 REQ_OP_NAME(READ), 113 REQ_OP_NAME(WRITE), 114 REQ_OP_NAME(FLUSH), 115 REQ_OP_NAME(DISCARD), 116 REQ_OP_NAME(SECURE_ERASE), 117 REQ_OP_NAME(ZONE_RESET), 118 REQ_OP_NAME(ZONE_RESET_ALL), 119 REQ_OP_NAME(ZONE_OPEN), 120 REQ_OP_NAME(ZONE_CLOSE), 121 REQ_OP_NAME(ZONE_FINISH), 122 REQ_OP_NAME(ZONE_APPEND), 123 REQ_OP_NAME(WRITE_ZEROES), 124 REQ_OP_NAME(DRV_IN), 125 REQ_OP_NAME(DRV_OUT), 126 }; 127 #undef REQ_OP_NAME 128 129 /** 130 * blk_op_str - Return string XXX in the REQ_OP_XXX. 131 * @op: REQ_OP_XXX. 132 * 133 * Description: Centralize block layer function to convert REQ_OP_XXX into 134 * string format. Useful in the debugging and tracing bio or request. For 135 * invalid REQ_OP_XXX it returns string "UNKNOWN". 136 */ 137 inline const char *blk_op_str(enum req_op op) 138 { 139 const char *op_str = "UNKNOWN"; 140 141 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 142 op_str = blk_op_name[op]; 143 144 return op_str; 145 } 146 EXPORT_SYMBOL_GPL(blk_op_str); 147 148 static const struct { 149 int errno; 150 const char *name; 151 } blk_errors[] = { 152 [BLK_STS_OK] = { 0, "" }, 153 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 154 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 155 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 156 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 157 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 158 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 159 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 160 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 161 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 162 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 163 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 164 [BLK_STS_OFFLINE] = { -ENODEV, "device offline" }, 165 166 /* device mapper special case, should not leak out: */ 167 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 168 169 /* zone device specific errors */ 170 [BLK_STS_ZONE_OPEN_RESOURCE] = { -ETOOMANYREFS, "open zones exceeded" }, 171 [BLK_STS_ZONE_ACTIVE_RESOURCE] = { -EOVERFLOW, "active zones exceeded" }, 172 173 /* everything else not covered above: */ 174 [BLK_STS_IOERR] = { -EIO, "I/O" }, 175 }; 176 177 blk_status_t errno_to_blk_status(int errno) 178 { 179 int i; 180 181 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 182 if (blk_errors[i].errno == errno) 183 return (__force blk_status_t)i; 184 } 185 186 return BLK_STS_IOERR; 187 } 188 EXPORT_SYMBOL_GPL(errno_to_blk_status); 189 190 int blk_status_to_errno(blk_status_t status) 191 { 192 int idx = (__force int)status; 193 194 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 195 return -EIO; 196 return blk_errors[idx].errno; 197 } 198 EXPORT_SYMBOL_GPL(blk_status_to_errno); 199 200 const char *blk_status_to_str(blk_status_t status) 201 { 202 int idx = (__force int)status; 203 204 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 205 return "<null>"; 206 return blk_errors[idx].name; 207 } 208 209 /** 210 * blk_sync_queue - cancel any pending callbacks on a queue 211 * @q: the queue 212 * 213 * Description: 214 * The block layer may perform asynchronous callback activity 215 * on a queue, such as calling the unplug function after a timeout. 216 * A block device may call blk_sync_queue to ensure that any 217 * such activity is cancelled, thus allowing it to release resources 218 * that the callbacks might use. The caller must already have made sure 219 * that its ->submit_bio will not re-add plugging prior to calling 220 * this function. 221 * 222 * This function does not cancel any asynchronous activity arising 223 * out of elevator or throttling code. That would require elevator_exit() 224 * and blkcg_exit_queue() to be called with queue lock initialized. 225 * 226 */ 227 void blk_sync_queue(struct request_queue *q) 228 { 229 del_timer_sync(&q->timeout); 230 cancel_work_sync(&q->timeout_work); 231 } 232 EXPORT_SYMBOL(blk_sync_queue); 233 234 /** 235 * blk_set_pm_only - increment pm_only counter 236 * @q: request queue pointer 237 */ 238 void blk_set_pm_only(struct request_queue *q) 239 { 240 atomic_inc(&q->pm_only); 241 } 242 EXPORT_SYMBOL_GPL(blk_set_pm_only); 243 244 void blk_clear_pm_only(struct request_queue *q) 245 { 246 int pm_only; 247 248 pm_only = atomic_dec_return(&q->pm_only); 249 WARN_ON_ONCE(pm_only < 0); 250 if (pm_only == 0) 251 wake_up_all(&q->mq_freeze_wq); 252 } 253 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 254 255 static void blk_free_queue_rcu(struct rcu_head *rcu_head) 256 { 257 kmem_cache_free(blk_requestq_cachep, 258 container_of(rcu_head, struct request_queue, rcu_head)); 259 } 260 261 static void blk_free_queue(struct request_queue *q) 262 { 263 percpu_ref_exit(&q->q_usage_counter); 264 265 if (q->poll_stat) 266 blk_stat_remove_callback(q, q->poll_cb); 267 blk_stat_free_callback(q->poll_cb); 268 269 blk_free_queue_stats(q->stats); 270 kfree(q->poll_stat); 271 272 if (queue_is_mq(q)) 273 blk_mq_release(q); 274 275 ida_free(&blk_queue_ida, q->id); 276 call_rcu(&q->rcu_head, blk_free_queue_rcu); 277 } 278 279 /** 280 * blk_put_queue - decrement the request_queue refcount 281 * @q: the request_queue structure to decrement the refcount for 282 * 283 * Decrements the refcount of the request_queue and free it when the refcount 284 * reaches 0. 285 * 286 * Context: Can sleep. 287 */ 288 void blk_put_queue(struct request_queue *q) 289 { 290 might_sleep(); 291 if (refcount_dec_and_test(&q->refs)) 292 blk_free_queue(q); 293 } 294 EXPORT_SYMBOL(blk_put_queue); 295 296 void blk_queue_start_drain(struct request_queue *q) 297 { 298 /* 299 * When queue DYING flag is set, we need to block new req 300 * entering queue, so we call blk_freeze_queue_start() to 301 * prevent I/O from crossing blk_queue_enter(). 302 */ 303 blk_freeze_queue_start(q); 304 if (queue_is_mq(q)) 305 blk_mq_wake_waiters(q); 306 /* Make blk_queue_enter() reexamine the DYING flag. */ 307 wake_up_all(&q->mq_freeze_wq); 308 } 309 310 /** 311 * blk_queue_enter() - try to increase q->q_usage_counter 312 * @q: request queue pointer 313 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM 314 */ 315 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 316 { 317 const bool pm = flags & BLK_MQ_REQ_PM; 318 319 while (!blk_try_enter_queue(q, pm)) { 320 if (flags & BLK_MQ_REQ_NOWAIT) 321 return -EAGAIN; 322 323 /* 324 * read pair of barrier in blk_freeze_queue_start(), we need to 325 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 326 * reading .mq_freeze_depth or queue dying flag, otherwise the 327 * following wait may never return if the two reads are 328 * reordered. 329 */ 330 smp_rmb(); 331 wait_event(q->mq_freeze_wq, 332 (!q->mq_freeze_depth && 333 blk_pm_resume_queue(pm, q)) || 334 blk_queue_dying(q)); 335 if (blk_queue_dying(q)) 336 return -ENODEV; 337 } 338 339 return 0; 340 } 341 342 int __bio_queue_enter(struct request_queue *q, struct bio *bio) 343 { 344 while (!blk_try_enter_queue(q, false)) { 345 struct gendisk *disk = bio->bi_bdev->bd_disk; 346 347 if (bio->bi_opf & REQ_NOWAIT) { 348 if (test_bit(GD_DEAD, &disk->state)) 349 goto dead; 350 bio_wouldblock_error(bio); 351 return -EAGAIN; 352 } 353 354 /* 355 * read pair of barrier in blk_freeze_queue_start(), we need to 356 * order reading __PERCPU_REF_DEAD flag of .q_usage_counter and 357 * reading .mq_freeze_depth or queue dying flag, otherwise the 358 * following wait may never return if the two reads are 359 * reordered. 360 */ 361 smp_rmb(); 362 wait_event(q->mq_freeze_wq, 363 (!q->mq_freeze_depth && 364 blk_pm_resume_queue(false, q)) || 365 test_bit(GD_DEAD, &disk->state)); 366 if (test_bit(GD_DEAD, &disk->state)) 367 goto dead; 368 } 369 370 return 0; 371 dead: 372 bio_io_error(bio); 373 return -ENODEV; 374 } 375 376 void blk_queue_exit(struct request_queue *q) 377 { 378 percpu_ref_put(&q->q_usage_counter); 379 } 380 381 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 382 { 383 struct request_queue *q = 384 container_of(ref, struct request_queue, q_usage_counter); 385 386 wake_up_all(&q->mq_freeze_wq); 387 } 388 389 static void blk_rq_timed_out_timer(struct timer_list *t) 390 { 391 struct request_queue *q = from_timer(q, t, timeout); 392 393 kblockd_schedule_work(&q->timeout_work); 394 } 395 396 static void blk_timeout_work(struct work_struct *work) 397 { 398 } 399 400 struct request_queue *blk_alloc_queue(int node_id) 401 { 402 struct request_queue *q; 403 404 q = kmem_cache_alloc_node(blk_requestq_cachep, GFP_KERNEL | __GFP_ZERO, 405 node_id); 406 if (!q) 407 return NULL; 408 409 q->last_merge = NULL; 410 411 q->id = ida_alloc(&blk_queue_ida, GFP_KERNEL); 412 if (q->id < 0) 413 goto fail_q; 414 415 q->stats = blk_alloc_queue_stats(); 416 if (!q->stats) 417 goto fail_id; 418 419 q->node = node_id; 420 421 atomic_set(&q->nr_active_requests_shared_tags, 0); 422 423 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 424 INIT_WORK(&q->timeout_work, blk_timeout_work); 425 INIT_LIST_HEAD(&q->icq_list); 426 427 refcount_set(&q->refs, 1); 428 mutex_init(&q->debugfs_mutex); 429 mutex_init(&q->sysfs_lock); 430 mutex_init(&q->sysfs_dir_lock); 431 spin_lock_init(&q->queue_lock); 432 433 init_waitqueue_head(&q->mq_freeze_wq); 434 mutex_init(&q->mq_freeze_lock); 435 436 /* 437 * Init percpu_ref in atomic mode so that it's faster to shutdown. 438 * See blk_register_queue() for details. 439 */ 440 if (percpu_ref_init(&q->q_usage_counter, 441 blk_queue_usage_counter_release, 442 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 443 goto fail_stats; 444 445 blk_set_default_limits(&q->limits); 446 q->nr_requests = BLKDEV_DEFAULT_RQ; 447 448 return q; 449 450 fail_stats: 451 blk_free_queue_stats(q->stats); 452 fail_id: 453 ida_free(&blk_queue_ida, q->id); 454 fail_q: 455 kmem_cache_free(blk_requestq_cachep, q); 456 return NULL; 457 } 458 459 /** 460 * blk_get_queue - increment the request_queue refcount 461 * @q: the request_queue structure to increment the refcount for 462 * 463 * Increment the refcount of the request_queue kobject. 464 * 465 * Context: Any context. 466 */ 467 bool blk_get_queue(struct request_queue *q) 468 { 469 if (unlikely(blk_queue_dying(q))) 470 return false; 471 refcount_inc(&q->refs); 472 return true; 473 } 474 EXPORT_SYMBOL(blk_get_queue); 475 476 #ifdef CONFIG_FAIL_MAKE_REQUEST 477 478 static DECLARE_FAULT_ATTR(fail_make_request); 479 480 static int __init setup_fail_make_request(char *str) 481 { 482 return setup_fault_attr(&fail_make_request, str); 483 } 484 __setup("fail_make_request=", setup_fail_make_request); 485 486 bool should_fail_request(struct block_device *part, unsigned int bytes) 487 { 488 return part->bd_make_it_fail && should_fail(&fail_make_request, bytes); 489 } 490 491 static int __init fail_make_request_debugfs(void) 492 { 493 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 494 NULL, &fail_make_request); 495 496 return PTR_ERR_OR_ZERO(dir); 497 } 498 499 late_initcall(fail_make_request_debugfs); 500 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 501 502 static inline void bio_check_ro(struct bio *bio) 503 { 504 if (op_is_write(bio_op(bio)) && bdev_read_only(bio->bi_bdev)) { 505 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 506 return; 507 pr_warn("Trying to write to read-only block-device %pg\n", 508 bio->bi_bdev); 509 /* Older lvm-tools actually trigger this */ 510 } 511 } 512 513 static noinline int should_fail_bio(struct bio *bio) 514 { 515 if (should_fail_request(bdev_whole(bio->bi_bdev), bio->bi_iter.bi_size)) 516 return -EIO; 517 return 0; 518 } 519 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 520 521 /* 522 * Check whether this bio extends beyond the end of the device or partition. 523 * This may well happen - the kernel calls bread() without checking the size of 524 * the device, e.g., when mounting a file system. 525 */ 526 static inline int bio_check_eod(struct bio *bio) 527 { 528 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev); 529 unsigned int nr_sectors = bio_sectors(bio); 530 531 if (nr_sectors && maxsector && 532 (nr_sectors > maxsector || 533 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 534 pr_info_ratelimited("%s: attempt to access beyond end of device\n" 535 "%pg: rw=%d, sector=%llu, nr_sectors = %u limit=%llu\n", 536 current->comm, bio->bi_bdev, bio->bi_opf, 537 bio->bi_iter.bi_sector, nr_sectors, maxsector); 538 return -EIO; 539 } 540 return 0; 541 } 542 543 /* 544 * Remap block n of partition p to block n+start(p) of the disk. 545 */ 546 static int blk_partition_remap(struct bio *bio) 547 { 548 struct block_device *p = bio->bi_bdev; 549 550 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 551 return -EIO; 552 if (bio_sectors(bio)) { 553 bio->bi_iter.bi_sector += p->bd_start_sect; 554 trace_block_bio_remap(bio, p->bd_dev, 555 bio->bi_iter.bi_sector - 556 p->bd_start_sect); 557 } 558 bio_set_flag(bio, BIO_REMAPPED); 559 return 0; 560 } 561 562 /* 563 * Check write append to a zoned block device. 564 */ 565 static inline blk_status_t blk_check_zone_append(struct request_queue *q, 566 struct bio *bio) 567 { 568 int nr_sectors = bio_sectors(bio); 569 570 /* Only applicable to zoned block devices */ 571 if (!bdev_is_zoned(bio->bi_bdev)) 572 return BLK_STS_NOTSUPP; 573 574 /* The bio sector must point to the start of a sequential zone */ 575 if (bio->bi_iter.bi_sector & (bdev_zone_sectors(bio->bi_bdev) - 1) || 576 !bio_zone_is_seq(bio)) 577 return BLK_STS_IOERR; 578 579 /* 580 * Not allowed to cross zone boundaries. Otherwise, the BIO will be 581 * split and could result in non-contiguous sectors being written in 582 * different zones. 583 */ 584 if (nr_sectors > q->limits.chunk_sectors) 585 return BLK_STS_IOERR; 586 587 /* Make sure the BIO is small enough and will not get split */ 588 if (nr_sectors > q->limits.max_zone_append_sectors) 589 return BLK_STS_IOERR; 590 591 bio->bi_opf |= REQ_NOMERGE; 592 593 return BLK_STS_OK; 594 } 595 596 static void __submit_bio(struct bio *bio) 597 { 598 struct gendisk *disk = bio->bi_bdev->bd_disk; 599 600 if (unlikely(!blk_crypto_bio_prep(&bio))) 601 return; 602 603 if (!disk->fops->submit_bio) { 604 blk_mq_submit_bio(bio); 605 } else if (likely(bio_queue_enter(bio) == 0)) { 606 disk->fops->submit_bio(bio); 607 blk_queue_exit(disk->queue); 608 } 609 } 610 611 /* 612 * The loop in this function may be a bit non-obvious, and so deserves some 613 * explanation: 614 * 615 * - Before entering the loop, bio->bi_next is NULL (as all callers ensure 616 * that), so we have a list with a single bio. 617 * - We pretend that we have just taken it off a longer list, so we assign 618 * bio_list to a pointer to the bio_list_on_stack, thus initialising the 619 * bio_list of new bios to be added. ->submit_bio() may indeed add some more 620 * bios through a recursive call to submit_bio_noacct. If it did, we find a 621 * non-NULL value in bio_list and re-enter the loop from the top. 622 * - In this case we really did just take the bio of the top of the list (no 623 * pretending) and so remove it from bio_list, and call into ->submit_bio() 624 * again. 625 * 626 * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio. 627 * bio_list_on_stack[1] contains bios that were submitted before the current 628 * ->submit_bio, but that haven't been processed yet. 629 */ 630 static void __submit_bio_noacct(struct bio *bio) 631 { 632 struct bio_list bio_list_on_stack[2]; 633 634 BUG_ON(bio->bi_next); 635 636 bio_list_init(&bio_list_on_stack[0]); 637 current->bio_list = bio_list_on_stack; 638 639 do { 640 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 641 struct bio_list lower, same; 642 643 /* 644 * Create a fresh bio_list for all subordinate requests. 645 */ 646 bio_list_on_stack[1] = bio_list_on_stack[0]; 647 bio_list_init(&bio_list_on_stack[0]); 648 649 __submit_bio(bio); 650 651 /* 652 * Sort new bios into those for a lower level and those for the 653 * same level. 654 */ 655 bio_list_init(&lower); 656 bio_list_init(&same); 657 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 658 if (q == bdev_get_queue(bio->bi_bdev)) 659 bio_list_add(&same, bio); 660 else 661 bio_list_add(&lower, bio); 662 663 /* 664 * Now assemble so we handle the lowest level first. 665 */ 666 bio_list_merge(&bio_list_on_stack[0], &lower); 667 bio_list_merge(&bio_list_on_stack[0], &same); 668 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 669 } while ((bio = bio_list_pop(&bio_list_on_stack[0]))); 670 671 current->bio_list = NULL; 672 } 673 674 static void __submit_bio_noacct_mq(struct bio *bio) 675 { 676 struct bio_list bio_list[2] = { }; 677 678 current->bio_list = bio_list; 679 680 do { 681 __submit_bio(bio); 682 } while ((bio = bio_list_pop(&bio_list[0]))); 683 684 current->bio_list = NULL; 685 } 686 687 void submit_bio_noacct_nocheck(struct bio *bio) 688 { 689 /* 690 * We only want one ->submit_bio to be active at a time, else stack 691 * usage with stacked devices could be a problem. Use current->bio_list 692 * to collect a list of requests submited by a ->submit_bio method while 693 * it is active, and then process them after it returned. 694 */ 695 if (current->bio_list) 696 bio_list_add(¤t->bio_list[0], bio); 697 else if (!bio->bi_bdev->bd_disk->fops->submit_bio) 698 __submit_bio_noacct_mq(bio); 699 else 700 __submit_bio_noacct(bio); 701 } 702 703 /** 704 * submit_bio_noacct - re-submit a bio to the block device layer for I/O 705 * @bio: The bio describing the location in memory and on the device. 706 * 707 * This is a version of submit_bio() that shall only be used for I/O that is 708 * resubmitted to lower level drivers by stacking block drivers. All file 709 * systems and other upper level users of the block layer should use 710 * submit_bio() instead. 711 */ 712 void submit_bio_noacct(struct bio *bio) 713 { 714 struct block_device *bdev = bio->bi_bdev; 715 struct request_queue *q = bdev_get_queue(bdev); 716 blk_status_t status = BLK_STS_IOERR; 717 struct blk_plug *plug; 718 719 might_sleep(); 720 721 plug = blk_mq_plug(bio); 722 if (plug && plug->nowait) 723 bio->bi_opf |= REQ_NOWAIT; 724 725 /* 726 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 727 * if queue does not support NOWAIT. 728 */ 729 if ((bio->bi_opf & REQ_NOWAIT) && !bdev_nowait(bdev)) 730 goto not_supported; 731 732 if (should_fail_bio(bio)) 733 goto end_io; 734 bio_check_ro(bio); 735 if (!bio_flagged(bio, BIO_REMAPPED)) { 736 if (unlikely(bio_check_eod(bio))) 737 goto end_io; 738 if (bdev->bd_partno && unlikely(blk_partition_remap(bio))) 739 goto end_io; 740 } 741 742 /* 743 * Filter flush bio's early so that bio based drivers without flush 744 * support don't have to worry about them. 745 */ 746 if (op_is_flush(bio->bi_opf) && 747 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 748 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 749 if (!bio_sectors(bio)) { 750 status = BLK_STS_OK; 751 goto end_io; 752 } 753 } 754 755 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 756 bio_clear_polled(bio); 757 758 switch (bio_op(bio)) { 759 case REQ_OP_DISCARD: 760 if (!bdev_max_discard_sectors(bdev)) 761 goto not_supported; 762 break; 763 case REQ_OP_SECURE_ERASE: 764 if (!bdev_max_secure_erase_sectors(bdev)) 765 goto not_supported; 766 break; 767 case REQ_OP_ZONE_APPEND: 768 status = blk_check_zone_append(q, bio); 769 if (status != BLK_STS_OK) 770 goto end_io; 771 break; 772 case REQ_OP_ZONE_RESET: 773 case REQ_OP_ZONE_OPEN: 774 case REQ_OP_ZONE_CLOSE: 775 case REQ_OP_ZONE_FINISH: 776 if (!bdev_is_zoned(bio->bi_bdev)) 777 goto not_supported; 778 break; 779 case REQ_OP_ZONE_RESET_ALL: 780 if (!bdev_is_zoned(bio->bi_bdev) || !blk_queue_zone_resetall(q)) 781 goto not_supported; 782 break; 783 case REQ_OP_WRITE_ZEROES: 784 if (!q->limits.max_write_zeroes_sectors) 785 goto not_supported; 786 break; 787 default: 788 break; 789 } 790 791 if (blk_throtl_bio(bio)) 792 return; 793 794 blk_cgroup_bio_start(bio); 795 blkcg_bio_issue_init(bio); 796 797 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 798 trace_block_bio_queue(bio); 799 /* Now that enqueuing has been traced, we need to trace 800 * completion as well. 801 */ 802 bio_set_flag(bio, BIO_TRACE_COMPLETION); 803 } 804 submit_bio_noacct_nocheck(bio); 805 return; 806 807 not_supported: 808 status = BLK_STS_NOTSUPP; 809 end_io: 810 bio->bi_status = status; 811 bio_endio(bio); 812 } 813 EXPORT_SYMBOL(submit_bio_noacct); 814 815 /** 816 * submit_bio - submit a bio to the block device layer for I/O 817 * @bio: The &struct bio which describes the I/O 818 * 819 * submit_bio() is used to submit I/O requests to block devices. It is passed a 820 * fully set up &struct bio that describes the I/O that needs to be done. The 821 * bio will be send to the device described by the bi_bdev field. 822 * 823 * The success/failure status of the request, along with notification of 824 * completion, is delivered asynchronously through the ->bi_end_io() callback 825 * in @bio. The bio must NOT be touched by the caller until ->bi_end_io() has 826 * been called. 827 */ 828 void submit_bio(struct bio *bio) 829 { 830 if (blkcg_punt_bio_submit(bio)) 831 return; 832 833 if (bio_op(bio) == REQ_OP_READ) { 834 task_io_account_read(bio->bi_iter.bi_size); 835 count_vm_events(PGPGIN, bio_sectors(bio)); 836 } else if (bio_op(bio) == REQ_OP_WRITE) { 837 count_vm_events(PGPGOUT, bio_sectors(bio)); 838 } 839 840 submit_bio_noacct(bio); 841 } 842 EXPORT_SYMBOL(submit_bio); 843 844 /** 845 * bio_poll - poll for BIO completions 846 * @bio: bio to poll for 847 * @iob: batches of IO 848 * @flags: BLK_POLL_* flags that control the behavior 849 * 850 * Poll for completions on queue associated with the bio. Returns number of 851 * completed entries found. 852 * 853 * Note: the caller must either be the context that submitted @bio, or 854 * be in a RCU critical section to prevent freeing of @bio. 855 */ 856 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags) 857 { 858 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 859 blk_qc_t cookie = READ_ONCE(bio->bi_cookie); 860 int ret = 0; 861 862 if (cookie == BLK_QC_T_NONE || 863 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 864 return 0; 865 866 /* 867 * As the requests that require a zone lock are not plugged in the 868 * first place, directly accessing the plug instead of using 869 * blk_mq_plug() should not have any consequences during flushing for 870 * zoned devices. 871 */ 872 blk_flush_plug(current->plug, false); 873 874 if (bio_queue_enter(bio)) 875 return 0; 876 if (queue_is_mq(q)) { 877 ret = blk_mq_poll(q, cookie, iob, flags); 878 } else { 879 struct gendisk *disk = q->disk; 880 881 if (disk && disk->fops->poll_bio) 882 ret = disk->fops->poll_bio(bio, iob, flags); 883 } 884 blk_queue_exit(q); 885 return ret; 886 } 887 EXPORT_SYMBOL_GPL(bio_poll); 888 889 /* 890 * Helper to implement file_operations.iopoll. Requires the bio to be stored 891 * in iocb->private, and cleared before freeing the bio. 892 */ 893 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob, 894 unsigned int flags) 895 { 896 struct bio *bio; 897 int ret = 0; 898 899 /* 900 * Note: the bio cache only uses SLAB_TYPESAFE_BY_RCU, so bio can 901 * point to a freshly allocated bio at this point. If that happens 902 * we have a few cases to consider: 903 * 904 * 1) the bio is beeing initialized and bi_bdev is NULL. We can just 905 * simply nothing in this case 906 * 2) the bio points to a not poll enabled device. bio_poll will catch 907 * this and return 0 908 * 3) the bio points to a poll capable device, including but not 909 * limited to the one that the original bio pointed to. In this 910 * case we will call into the actual poll method and poll for I/O, 911 * even if we don't need to, but it won't cause harm either. 912 * 913 * For cases 2) and 3) above the RCU grace period ensures that bi_bdev 914 * is still allocated. Because partitions hold a reference to the whole 915 * device bdev and thus disk, the disk is also still valid. Grabbing 916 * a reference to the queue in bio_poll() ensures the hctxs and requests 917 * are still valid as well. 918 */ 919 rcu_read_lock(); 920 bio = READ_ONCE(kiocb->private); 921 if (bio && bio->bi_bdev) 922 ret = bio_poll(bio, iob, flags); 923 rcu_read_unlock(); 924 925 return ret; 926 } 927 EXPORT_SYMBOL_GPL(iocb_bio_iopoll); 928 929 void update_io_ticks(struct block_device *part, unsigned long now, bool end) 930 { 931 unsigned long stamp; 932 again: 933 stamp = READ_ONCE(part->bd_stamp); 934 if (unlikely(time_after(now, stamp))) { 935 if (likely(try_cmpxchg(&part->bd_stamp, &stamp, now))) 936 __part_stat_add(part, io_ticks, end ? now - stamp : 1); 937 } 938 if (part->bd_partno) { 939 part = bdev_whole(part); 940 goto again; 941 } 942 } 943 944 unsigned long bdev_start_io_acct(struct block_device *bdev, 945 unsigned int sectors, enum req_op op, 946 unsigned long start_time) 947 { 948 const int sgrp = op_stat_group(op); 949 950 part_stat_lock(); 951 update_io_ticks(bdev, start_time, false); 952 part_stat_inc(bdev, ios[sgrp]); 953 part_stat_add(bdev, sectors[sgrp], sectors); 954 part_stat_local_inc(bdev, in_flight[op_is_write(op)]); 955 part_stat_unlock(); 956 957 return start_time; 958 } 959 EXPORT_SYMBOL(bdev_start_io_acct); 960 961 /** 962 * bio_start_io_acct - start I/O accounting for bio based drivers 963 * @bio: bio to start account for 964 * 965 * Returns the start time that should be passed back to bio_end_io_acct(). 966 */ 967 unsigned long bio_start_io_acct(struct bio *bio) 968 { 969 return bdev_start_io_acct(bio->bi_bdev, bio_sectors(bio), 970 bio_op(bio), jiffies); 971 } 972 EXPORT_SYMBOL_GPL(bio_start_io_acct); 973 974 void bdev_end_io_acct(struct block_device *bdev, enum req_op op, 975 unsigned long start_time) 976 { 977 const int sgrp = op_stat_group(op); 978 unsigned long now = READ_ONCE(jiffies); 979 unsigned long duration = now - start_time; 980 981 part_stat_lock(); 982 update_io_ticks(bdev, now, true); 983 part_stat_add(bdev, nsecs[sgrp], jiffies_to_nsecs(duration)); 984 part_stat_local_dec(bdev, in_flight[op_is_write(op)]); 985 part_stat_unlock(); 986 } 987 EXPORT_SYMBOL(bdev_end_io_acct); 988 989 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time, 990 struct block_device *orig_bdev) 991 { 992 bdev_end_io_acct(orig_bdev, bio_op(bio), start_time); 993 } 994 EXPORT_SYMBOL_GPL(bio_end_io_acct_remapped); 995 996 /** 997 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 998 * @q : the queue of the device being checked 999 * 1000 * Description: 1001 * Check if underlying low-level drivers of a device are busy. 1002 * If the drivers want to export their busy state, they must set own 1003 * exporting function using blk_queue_lld_busy() first. 1004 * 1005 * Basically, this function is used only by request stacking drivers 1006 * to stop dispatching requests to underlying devices when underlying 1007 * devices are busy. This behavior helps more I/O merging on the queue 1008 * of the request stacking driver and prevents I/O throughput regression 1009 * on burst I/O load. 1010 * 1011 * Return: 1012 * 0 - Not busy (The request stacking driver should dispatch request) 1013 * 1 - Busy (The request stacking driver should stop dispatching request) 1014 */ 1015 int blk_lld_busy(struct request_queue *q) 1016 { 1017 if (queue_is_mq(q) && q->mq_ops->busy) 1018 return q->mq_ops->busy(q); 1019 1020 return 0; 1021 } 1022 EXPORT_SYMBOL_GPL(blk_lld_busy); 1023 1024 int kblockd_schedule_work(struct work_struct *work) 1025 { 1026 return queue_work(kblockd_workqueue, work); 1027 } 1028 EXPORT_SYMBOL(kblockd_schedule_work); 1029 1030 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1031 unsigned long delay) 1032 { 1033 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1034 } 1035 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1036 1037 void blk_start_plug_nr_ios(struct blk_plug *plug, unsigned short nr_ios) 1038 { 1039 struct task_struct *tsk = current; 1040 1041 /* 1042 * If this is a nested plug, don't actually assign it. 1043 */ 1044 if (tsk->plug) 1045 return; 1046 1047 plug->mq_list = NULL; 1048 plug->cached_rq = NULL; 1049 plug->nr_ios = min_t(unsigned short, nr_ios, BLK_MAX_REQUEST_COUNT); 1050 plug->rq_count = 0; 1051 plug->multiple_queues = false; 1052 plug->has_elevator = false; 1053 plug->nowait = false; 1054 INIT_LIST_HEAD(&plug->cb_list); 1055 1056 /* 1057 * Store ordering should not be needed here, since a potential 1058 * preempt will imply a full memory barrier 1059 */ 1060 tsk->plug = plug; 1061 } 1062 1063 /** 1064 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1065 * @plug: The &struct blk_plug that needs to be initialized 1066 * 1067 * Description: 1068 * blk_start_plug() indicates to the block layer an intent by the caller 1069 * to submit multiple I/O requests in a batch. The block layer may use 1070 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1071 * is called. However, the block layer may choose to submit requests 1072 * before a call to blk_finish_plug() if the number of queued I/Os 1073 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1074 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1075 * the task schedules (see below). 1076 * 1077 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1078 * pending I/O should the task end up blocking between blk_start_plug() and 1079 * blk_finish_plug(). This is important from a performance perspective, but 1080 * also ensures that we don't deadlock. For instance, if the task is blocking 1081 * for a memory allocation, memory reclaim could end up wanting to free a 1082 * page belonging to that request that is currently residing in our private 1083 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1084 * this kind of deadlock. 1085 */ 1086 void blk_start_plug(struct blk_plug *plug) 1087 { 1088 blk_start_plug_nr_ios(plug, 1); 1089 } 1090 EXPORT_SYMBOL(blk_start_plug); 1091 1092 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1093 { 1094 LIST_HEAD(callbacks); 1095 1096 while (!list_empty(&plug->cb_list)) { 1097 list_splice_init(&plug->cb_list, &callbacks); 1098 1099 while (!list_empty(&callbacks)) { 1100 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1101 struct blk_plug_cb, 1102 list); 1103 list_del(&cb->list); 1104 cb->callback(cb, from_schedule); 1105 } 1106 } 1107 } 1108 1109 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1110 int size) 1111 { 1112 struct blk_plug *plug = current->plug; 1113 struct blk_plug_cb *cb; 1114 1115 if (!plug) 1116 return NULL; 1117 1118 list_for_each_entry(cb, &plug->cb_list, list) 1119 if (cb->callback == unplug && cb->data == data) 1120 return cb; 1121 1122 /* Not currently on the callback list */ 1123 BUG_ON(size < sizeof(*cb)); 1124 cb = kzalloc(size, GFP_ATOMIC); 1125 if (cb) { 1126 cb->data = data; 1127 cb->callback = unplug; 1128 list_add(&cb->list, &plug->cb_list); 1129 } 1130 return cb; 1131 } 1132 EXPORT_SYMBOL(blk_check_plugged); 1133 1134 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule) 1135 { 1136 if (!list_empty(&plug->cb_list)) 1137 flush_plug_callbacks(plug, from_schedule); 1138 if (!rq_list_empty(plug->mq_list)) 1139 blk_mq_flush_plug_list(plug, from_schedule); 1140 /* 1141 * Unconditionally flush out cached requests, even if the unplug 1142 * event came from schedule. Since we know hold references to the 1143 * queue for cached requests, we don't want a blocked task holding 1144 * up a queue freeze/quiesce event. 1145 */ 1146 if (unlikely(!rq_list_empty(plug->cached_rq))) 1147 blk_mq_free_plug_rqs(plug); 1148 } 1149 1150 /** 1151 * blk_finish_plug - mark the end of a batch of submitted I/O 1152 * @plug: The &struct blk_plug passed to blk_start_plug() 1153 * 1154 * Description: 1155 * Indicate that a batch of I/O submissions is complete. This function 1156 * must be paired with an initial call to blk_start_plug(). The intent 1157 * is to allow the block layer to optimize I/O submission. See the 1158 * documentation for blk_start_plug() for more information. 1159 */ 1160 void blk_finish_plug(struct blk_plug *plug) 1161 { 1162 if (plug == current->plug) { 1163 __blk_flush_plug(plug, false); 1164 current->plug = NULL; 1165 } 1166 } 1167 EXPORT_SYMBOL(blk_finish_plug); 1168 1169 void blk_io_schedule(void) 1170 { 1171 /* Prevent hang_check timer from firing at us during very long I/O */ 1172 unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2; 1173 1174 if (timeout) 1175 io_schedule_timeout(timeout); 1176 else 1177 io_schedule(); 1178 } 1179 EXPORT_SYMBOL_GPL(blk_io_schedule); 1180 1181 int __init blk_dev_init(void) 1182 { 1183 BUILD_BUG_ON((__force u32)REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1184 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1185 sizeof_field(struct request, cmd_flags)); 1186 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1187 sizeof_field(struct bio, bi_opf)); 1188 1189 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1190 kblockd_workqueue = alloc_workqueue("kblockd", 1191 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1192 if (!kblockd_workqueue) 1193 panic("Failed to create kblockd\n"); 1194 1195 blk_requestq_cachep = kmem_cache_create("request_queue", 1196 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1197 1198 blk_debugfs_root = debugfs_create_dir("block", NULL); 1199 1200 return 0; 1201 } 1202