xref: /openbmc/linux/block/blk-core.c (revision 113094f7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/debugfs.h>
38 #include <linux/bpf.h>
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/block.h>
42 
43 #include "blk.h"
44 #include "blk-mq.h"
45 #include "blk-mq-sched.h"
46 #include "blk-pm.h"
47 #include "blk-rq-qos.h"
48 
49 #ifdef CONFIG_DEBUG_FS
50 struct dentry *blk_debugfs_root;
51 #endif
52 
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
58 
59 DEFINE_IDA(blk_queue_ida);
60 
61 /*
62  * For queue allocation
63  */
64 struct kmem_cache *blk_requestq_cachep;
65 
66 /*
67  * Controlling structure to kblockd
68  */
69 static struct workqueue_struct *kblockd_workqueue;
70 
71 /**
72  * blk_queue_flag_set - atomically set a queue flag
73  * @flag: flag to be set
74  * @q: request queue
75  */
76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
77 {
78 	set_bit(flag, &q->queue_flags);
79 }
80 EXPORT_SYMBOL(blk_queue_flag_set);
81 
82 /**
83  * blk_queue_flag_clear - atomically clear a queue flag
84  * @flag: flag to be cleared
85  * @q: request queue
86  */
87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
88 {
89 	clear_bit(flag, &q->queue_flags);
90 }
91 EXPORT_SYMBOL(blk_queue_flag_clear);
92 
93 /**
94  * blk_queue_flag_test_and_set - atomically test and set a queue flag
95  * @flag: flag to be set
96  * @q: request queue
97  *
98  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
99  * the flag was already set.
100  */
101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
102 {
103 	return test_and_set_bit(flag, &q->queue_flags);
104 }
105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
106 
107 void blk_rq_init(struct request_queue *q, struct request *rq)
108 {
109 	memset(rq, 0, sizeof(*rq));
110 
111 	INIT_LIST_HEAD(&rq->queuelist);
112 	rq->q = q;
113 	rq->__sector = (sector_t) -1;
114 	INIT_HLIST_NODE(&rq->hash);
115 	RB_CLEAR_NODE(&rq->rb_node);
116 	rq->tag = -1;
117 	rq->internal_tag = -1;
118 	rq->start_time_ns = ktime_get_ns();
119 	rq->part = NULL;
120 }
121 EXPORT_SYMBOL(blk_rq_init);
122 
123 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
124 static const char *const blk_op_name[] = {
125 	REQ_OP_NAME(READ),
126 	REQ_OP_NAME(WRITE),
127 	REQ_OP_NAME(FLUSH),
128 	REQ_OP_NAME(DISCARD),
129 	REQ_OP_NAME(SECURE_ERASE),
130 	REQ_OP_NAME(ZONE_RESET),
131 	REQ_OP_NAME(WRITE_SAME),
132 	REQ_OP_NAME(WRITE_ZEROES),
133 	REQ_OP_NAME(SCSI_IN),
134 	REQ_OP_NAME(SCSI_OUT),
135 	REQ_OP_NAME(DRV_IN),
136 	REQ_OP_NAME(DRV_OUT),
137 };
138 #undef REQ_OP_NAME
139 
140 /**
141  * blk_op_str - Return string XXX in the REQ_OP_XXX.
142  * @op: REQ_OP_XXX.
143  *
144  * Description: Centralize block layer function to convert REQ_OP_XXX into
145  * string format. Useful in the debugging and tracing bio or request. For
146  * invalid REQ_OP_XXX it returns string "UNKNOWN".
147  */
148 inline const char *blk_op_str(unsigned int op)
149 {
150 	const char *op_str = "UNKNOWN";
151 
152 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
153 		op_str = blk_op_name[op];
154 
155 	return op_str;
156 }
157 EXPORT_SYMBOL_GPL(blk_op_str);
158 
159 static const struct {
160 	int		errno;
161 	const char	*name;
162 } blk_errors[] = {
163 	[BLK_STS_OK]		= { 0,		"" },
164 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
165 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
166 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
167 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
168 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
169 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
170 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
171 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
172 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
173 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
174 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
175 
176 	/* device mapper special case, should not leak out: */
177 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
178 
179 	/* everything else not covered above: */
180 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
181 };
182 
183 blk_status_t errno_to_blk_status(int errno)
184 {
185 	int i;
186 
187 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
188 		if (blk_errors[i].errno == errno)
189 			return (__force blk_status_t)i;
190 	}
191 
192 	return BLK_STS_IOERR;
193 }
194 EXPORT_SYMBOL_GPL(errno_to_blk_status);
195 
196 int blk_status_to_errno(blk_status_t status)
197 {
198 	int idx = (__force int)status;
199 
200 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
201 		return -EIO;
202 	return blk_errors[idx].errno;
203 }
204 EXPORT_SYMBOL_GPL(blk_status_to_errno);
205 
206 static void print_req_error(struct request *req, blk_status_t status,
207 		const char *caller)
208 {
209 	int idx = (__force int)status;
210 
211 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
212 		return;
213 
214 	printk_ratelimited(KERN_ERR
215 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
216 		"phys_seg %u prio class %u\n",
217 		caller, blk_errors[idx].name,
218 		req->rq_disk ? req->rq_disk->disk_name : "?",
219 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
220 		req->cmd_flags & ~REQ_OP_MASK,
221 		req->nr_phys_segments,
222 		IOPRIO_PRIO_CLASS(req->ioprio));
223 }
224 
225 static void req_bio_endio(struct request *rq, struct bio *bio,
226 			  unsigned int nbytes, blk_status_t error)
227 {
228 	if (error)
229 		bio->bi_status = error;
230 
231 	if (unlikely(rq->rq_flags & RQF_QUIET))
232 		bio_set_flag(bio, BIO_QUIET);
233 
234 	bio_advance(bio, nbytes);
235 
236 	/* don't actually finish bio if it's part of flush sequence */
237 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
238 		bio_endio(bio);
239 }
240 
241 void blk_dump_rq_flags(struct request *rq, char *msg)
242 {
243 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
244 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
245 		(unsigned long long) rq->cmd_flags);
246 
247 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
248 	       (unsigned long long)blk_rq_pos(rq),
249 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
250 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
251 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
252 }
253 EXPORT_SYMBOL(blk_dump_rq_flags);
254 
255 /**
256  * blk_sync_queue - cancel any pending callbacks on a queue
257  * @q: the queue
258  *
259  * Description:
260  *     The block layer may perform asynchronous callback activity
261  *     on a queue, such as calling the unplug function after a timeout.
262  *     A block device may call blk_sync_queue to ensure that any
263  *     such activity is cancelled, thus allowing it to release resources
264  *     that the callbacks might use. The caller must already have made sure
265  *     that its ->make_request_fn will not re-add plugging prior to calling
266  *     this function.
267  *
268  *     This function does not cancel any asynchronous activity arising
269  *     out of elevator or throttling code. That would require elevator_exit()
270  *     and blkcg_exit_queue() to be called with queue lock initialized.
271  *
272  */
273 void blk_sync_queue(struct request_queue *q)
274 {
275 	del_timer_sync(&q->timeout);
276 	cancel_work_sync(&q->timeout_work);
277 }
278 EXPORT_SYMBOL(blk_sync_queue);
279 
280 /**
281  * blk_set_pm_only - increment pm_only counter
282  * @q: request queue pointer
283  */
284 void blk_set_pm_only(struct request_queue *q)
285 {
286 	atomic_inc(&q->pm_only);
287 }
288 EXPORT_SYMBOL_GPL(blk_set_pm_only);
289 
290 void blk_clear_pm_only(struct request_queue *q)
291 {
292 	int pm_only;
293 
294 	pm_only = atomic_dec_return(&q->pm_only);
295 	WARN_ON_ONCE(pm_only < 0);
296 	if (pm_only == 0)
297 		wake_up_all(&q->mq_freeze_wq);
298 }
299 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
300 
301 void blk_put_queue(struct request_queue *q)
302 {
303 	kobject_put(&q->kobj);
304 }
305 EXPORT_SYMBOL(blk_put_queue);
306 
307 void blk_set_queue_dying(struct request_queue *q)
308 {
309 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
310 
311 	/*
312 	 * When queue DYING flag is set, we need to block new req
313 	 * entering queue, so we call blk_freeze_queue_start() to
314 	 * prevent I/O from crossing blk_queue_enter().
315 	 */
316 	blk_freeze_queue_start(q);
317 
318 	if (queue_is_mq(q))
319 		blk_mq_wake_waiters(q);
320 
321 	/* Make blk_queue_enter() reexamine the DYING flag. */
322 	wake_up_all(&q->mq_freeze_wq);
323 }
324 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
325 
326 /**
327  * blk_cleanup_queue - shutdown a request queue
328  * @q: request queue to shutdown
329  *
330  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
331  * put it.  All future requests will be failed immediately with -ENODEV.
332  */
333 void blk_cleanup_queue(struct request_queue *q)
334 {
335 	/* mark @q DYING, no new request or merges will be allowed afterwards */
336 	mutex_lock(&q->sysfs_lock);
337 	blk_set_queue_dying(q);
338 
339 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
340 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
341 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
342 	mutex_unlock(&q->sysfs_lock);
343 
344 	/*
345 	 * Drain all requests queued before DYING marking. Set DEAD flag to
346 	 * prevent that q->request_fn() gets invoked after draining finished.
347 	 */
348 	blk_freeze_queue(q);
349 
350 	rq_qos_exit(q);
351 
352 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
353 
354 	/* for synchronous bio-based driver finish in-flight integrity i/o */
355 	blk_flush_integrity();
356 
357 	/* @q won't process any more request, flush async actions */
358 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
359 	blk_sync_queue(q);
360 
361 	if (queue_is_mq(q))
362 		blk_mq_exit_queue(q);
363 
364 	/*
365 	 * In theory, request pool of sched_tags belongs to request queue.
366 	 * However, the current implementation requires tag_set for freeing
367 	 * requests, so free the pool now.
368 	 *
369 	 * Queue has become frozen, there can't be any in-queue requests, so
370 	 * it is safe to free requests now.
371 	 */
372 	mutex_lock(&q->sysfs_lock);
373 	if (q->elevator)
374 		blk_mq_sched_free_requests(q);
375 	mutex_unlock(&q->sysfs_lock);
376 
377 	percpu_ref_exit(&q->q_usage_counter);
378 
379 	/* @q is and will stay empty, shutdown and put */
380 	blk_put_queue(q);
381 }
382 EXPORT_SYMBOL(blk_cleanup_queue);
383 
384 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
385 {
386 	return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
387 }
388 EXPORT_SYMBOL(blk_alloc_queue);
389 
390 /**
391  * blk_queue_enter() - try to increase q->q_usage_counter
392  * @q: request queue pointer
393  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
394  */
395 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
396 {
397 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
398 
399 	while (true) {
400 		bool success = false;
401 
402 		rcu_read_lock();
403 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
404 			/*
405 			 * The code that increments the pm_only counter is
406 			 * responsible for ensuring that that counter is
407 			 * globally visible before the queue is unfrozen.
408 			 */
409 			if (pm || !blk_queue_pm_only(q)) {
410 				success = true;
411 			} else {
412 				percpu_ref_put(&q->q_usage_counter);
413 			}
414 		}
415 		rcu_read_unlock();
416 
417 		if (success)
418 			return 0;
419 
420 		if (flags & BLK_MQ_REQ_NOWAIT)
421 			return -EBUSY;
422 
423 		/*
424 		 * read pair of barrier in blk_freeze_queue_start(),
425 		 * we need to order reading __PERCPU_REF_DEAD flag of
426 		 * .q_usage_counter and reading .mq_freeze_depth or
427 		 * queue dying flag, otherwise the following wait may
428 		 * never return if the two reads are reordered.
429 		 */
430 		smp_rmb();
431 
432 		wait_event(q->mq_freeze_wq,
433 			   (!q->mq_freeze_depth &&
434 			    (pm || (blk_pm_request_resume(q),
435 				    !blk_queue_pm_only(q)))) ||
436 			   blk_queue_dying(q));
437 		if (blk_queue_dying(q))
438 			return -ENODEV;
439 	}
440 }
441 
442 void blk_queue_exit(struct request_queue *q)
443 {
444 	percpu_ref_put(&q->q_usage_counter);
445 }
446 
447 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
448 {
449 	struct request_queue *q =
450 		container_of(ref, struct request_queue, q_usage_counter);
451 
452 	wake_up_all(&q->mq_freeze_wq);
453 }
454 
455 static void blk_rq_timed_out_timer(struct timer_list *t)
456 {
457 	struct request_queue *q = from_timer(q, t, timeout);
458 
459 	kblockd_schedule_work(&q->timeout_work);
460 }
461 
462 static void blk_timeout_work(struct work_struct *work)
463 {
464 }
465 
466 /**
467  * blk_alloc_queue_node - allocate a request queue
468  * @gfp_mask: memory allocation flags
469  * @node_id: NUMA node to allocate memory from
470  */
471 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
472 {
473 	struct request_queue *q;
474 	int ret;
475 
476 	q = kmem_cache_alloc_node(blk_requestq_cachep,
477 				gfp_mask | __GFP_ZERO, node_id);
478 	if (!q)
479 		return NULL;
480 
481 	INIT_LIST_HEAD(&q->queue_head);
482 	q->last_merge = NULL;
483 
484 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
485 	if (q->id < 0)
486 		goto fail_q;
487 
488 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
489 	if (ret)
490 		goto fail_id;
491 
492 	q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id);
493 	if (!q->backing_dev_info)
494 		goto fail_split;
495 
496 	q->stats = blk_alloc_queue_stats();
497 	if (!q->stats)
498 		goto fail_stats;
499 
500 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
501 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
502 	q->backing_dev_info->name = "block";
503 	q->node = node_id;
504 
505 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
506 		    laptop_mode_timer_fn, 0);
507 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
508 	INIT_WORK(&q->timeout_work, blk_timeout_work);
509 	INIT_LIST_HEAD(&q->icq_list);
510 #ifdef CONFIG_BLK_CGROUP
511 	INIT_LIST_HEAD(&q->blkg_list);
512 #endif
513 
514 	kobject_init(&q->kobj, &blk_queue_ktype);
515 
516 #ifdef CONFIG_BLK_DEV_IO_TRACE
517 	mutex_init(&q->blk_trace_mutex);
518 #endif
519 	mutex_init(&q->sysfs_lock);
520 	spin_lock_init(&q->queue_lock);
521 
522 	init_waitqueue_head(&q->mq_freeze_wq);
523 	mutex_init(&q->mq_freeze_lock);
524 
525 	/*
526 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
527 	 * See blk_register_queue() for details.
528 	 */
529 	if (percpu_ref_init(&q->q_usage_counter,
530 				blk_queue_usage_counter_release,
531 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
532 		goto fail_bdi;
533 
534 	if (blkcg_init_queue(q))
535 		goto fail_ref;
536 
537 	return q;
538 
539 fail_ref:
540 	percpu_ref_exit(&q->q_usage_counter);
541 fail_bdi:
542 	blk_free_queue_stats(q->stats);
543 fail_stats:
544 	bdi_put(q->backing_dev_info);
545 fail_split:
546 	bioset_exit(&q->bio_split);
547 fail_id:
548 	ida_simple_remove(&blk_queue_ida, q->id);
549 fail_q:
550 	kmem_cache_free(blk_requestq_cachep, q);
551 	return NULL;
552 }
553 EXPORT_SYMBOL(blk_alloc_queue_node);
554 
555 bool blk_get_queue(struct request_queue *q)
556 {
557 	if (likely(!blk_queue_dying(q))) {
558 		__blk_get_queue(q);
559 		return true;
560 	}
561 
562 	return false;
563 }
564 EXPORT_SYMBOL(blk_get_queue);
565 
566 /**
567  * blk_get_request - allocate a request
568  * @q: request queue to allocate a request for
569  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
570  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
571  */
572 struct request *blk_get_request(struct request_queue *q, unsigned int op,
573 				blk_mq_req_flags_t flags)
574 {
575 	struct request *req;
576 
577 	WARN_ON_ONCE(op & REQ_NOWAIT);
578 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
579 
580 	req = blk_mq_alloc_request(q, op, flags);
581 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
582 		q->mq_ops->initialize_rq_fn(req);
583 
584 	return req;
585 }
586 EXPORT_SYMBOL(blk_get_request);
587 
588 void blk_put_request(struct request *req)
589 {
590 	blk_mq_free_request(req);
591 }
592 EXPORT_SYMBOL(blk_put_request);
593 
594 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
595 		unsigned int nr_segs)
596 {
597 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
598 
599 	if (!ll_back_merge_fn(req, bio, nr_segs))
600 		return false;
601 
602 	trace_block_bio_backmerge(req->q, req, bio);
603 
604 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
605 		blk_rq_set_mixed_merge(req);
606 
607 	req->biotail->bi_next = bio;
608 	req->biotail = bio;
609 	req->__data_len += bio->bi_iter.bi_size;
610 
611 	blk_account_io_start(req, false);
612 	return true;
613 }
614 
615 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
616 		unsigned int nr_segs)
617 {
618 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
619 
620 	if (!ll_front_merge_fn(req, bio, nr_segs))
621 		return false;
622 
623 	trace_block_bio_frontmerge(req->q, req, bio);
624 
625 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
626 		blk_rq_set_mixed_merge(req);
627 
628 	bio->bi_next = req->bio;
629 	req->bio = bio;
630 
631 	req->__sector = bio->bi_iter.bi_sector;
632 	req->__data_len += bio->bi_iter.bi_size;
633 
634 	blk_account_io_start(req, false);
635 	return true;
636 }
637 
638 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
639 		struct bio *bio)
640 {
641 	unsigned short segments = blk_rq_nr_discard_segments(req);
642 
643 	if (segments >= queue_max_discard_segments(q))
644 		goto no_merge;
645 	if (blk_rq_sectors(req) + bio_sectors(bio) >
646 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
647 		goto no_merge;
648 
649 	req->biotail->bi_next = bio;
650 	req->biotail = bio;
651 	req->__data_len += bio->bi_iter.bi_size;
652 	req->nr_phys_segments = segments + 1;
653 
654 	blk_account_io_start(req, false);
655 	return true;
656 no_merge:
657 	req_set_nomerge(q, req);
658 	return false;
659 }
660 
661 /**
662  * blk_attempt_plug_merge - try to merge with %current's plugged list
663  * @q: request_queue new bio is being queued at
664  * @bio: new bio being queued
665  * @nr_segs: number of segments in @bio
666  * @same_queue_rq: pointer to &struct request that gets filled in when
667  * another request associated with @q is found on the plug list
668  * (optional, may be %NULL)
669  *
670  * Determine whether @bio being queued on @q can be merged with a request
671  * on %current's plugged list.  Returns %true if merge was successful,
672  * otherwise %false.
673  *
674  * Plugging coalesces IOs from the same issuer for the same purpose without
675  * going through @q->queue_lock.  As such it's more of an issuing mechanism
676  * than scheduling, and the request, while may have elvpriv data, is not
677  * added on the elevator at this point.  In addition, we don't have
678  * reliable access to the elevator outside queue lock.  Only check basic
679  * merging parameters without querying the elevator.
680  *
681  * Caller must ensure !blk_queue_nomerges(q) beforehand.
682  */
683 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
684 		unsigned int nr_segs, struct request **same_queue_rq)
685 {
686 	struct blk_plug *plug;
687 	struct request *rq;
688 	struct list_head *plug_list;
689 
690 	plug = current->plug;
691 	if (!plug)
692 		return false;
693 
694 	plug_list = &plug->mq_list;
695 
696 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
697 		bool merged = false;
698 
699 		if (rq->q == q && same_queue_rq) {
700 			/*
701 			 * Only blk-mq multiple hardware queues case checks the
702 			 * rq in the same queue, there should be only one such
703 			 * rq in a queue
704 			 **/
705 			*same_queue_rq = rq;
706 		}
707 
708 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
709 			continue;
710 
711 		switch (blk_try_merge(rq, bio)) {
712 		case ELEVATOR_BACK_MERGE:
713 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
714 			break;
715 		case ELEVATOR_FRONT_MERGE:
716 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
717 			break;
718 		case ELEVATOR_DISCARD_MERGE:
719 			merged = bio_attempt_discard_merge(q, rq, bio);
720 			break;
721 		default:
722 			break;
723 		}
724 
725 		if (merged)
726 			return true;
727 	}
728 
729 	return false;
730 }
731 
732 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
733 {
734 	char b[BDEVNAME_SIZE];
735 
736 	printk(KERN_INFO "attempt to access beyond end of device\n");
737 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
738 			bio_devname(bio, b), bio->bi_opf,
739 			(unsigned long long)bio_end_sector(bio),
740 			(long long)maxsector);
741 }
742 
743 #ifdef CONFIG_FAIL_MAKE_REQUEST
744 
745 static DECLARE_FAULT_ATTR(fail_make_request);
746 
747 static int __init setup_fail_make_request(char *str)
748 {
749 	return setup_fault_attr(&fail_make_request, str);
750 }
751 __setup("fail_make_request=", setup_fail_make_request);
752 
753 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
754 {
755 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
756 }
757 
758 static int __init fail_make_request_debugfs(void)
759 {
760 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
761 						NULL, &fail_make_request);
762 
763 	return PTR_ERR_OR_ZERO(dir);
764 }
765 
766 late_initcall(fail_make_request_debugfs);
767 
768 #else /* CONFIG_FAIL_MAKE_REQUEST */
769 
770 static inline bool should_fail_request(struct hd_struct *part,
771 					unsigned int bytes)
772 {
773 	return false;
774 }
775 
776 #endif /* CONFIG_FAIL_MAKE_REQUEST */
777 
778 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
779 {
780 	const int op = bio_op(bio);
781 
782 	if (part->policy && op_is_write(op)) {
783 		char b[BDEVNAME_SIZE];
784 
785 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
786 			return false;
787 
788 		WARN_ONCE(1,
789 		       "generic_make_request: Trying to write "
790 			"to read-only block-device %s (partno %d)\n",
791 			bio_devname(bio, b), part->partno);
792 		/* Older lvm-tools actually trigger this */
793 		return false;
794 	}
795 
796 	return false;
797 }
798 
799 static noinline int should_fail_bio(struct bio *bio)
800 {
801 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
802 		return -EIO;
803 	return 0;
804 }
805 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
806 
807 /*
808  * Check whether this bio extends beyond the end of the device or partition.
809  * This may well happen - the kernel calls bread() without checking the size of
810  * the device, e.g., when mounting a file system.
811  */
812 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
813 {
814 	unsigned int nr_sectors = bio_sectors(bio);
815 
816 	if (nr_sectors && maxsector &&
817 	    (nr_sectors > maxsector ||
818 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
819 		handle_bad_sector(bio, maxsector);
820 		return -EIO;
821 	}
822 	return 0;
823 }
824 
825 /*
826  * Remap block n of partition p to block n+start(p) of the disk.
827  */
828 static inline int blk_partition_remap(struct bio *bio)
829 {
830 	struct hd_struct *p;
831 	int ret = -EIO;
832 
833 	rcu_read_lock();
834 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
835 	if (unlikely(!p))
836 		goto out;
837 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
838 		goto out;
839 	if (unlikely(bio_check_ro(bio, p)))
840 		goto out;
841 
842 	/*
843 	 * Zone reset does not include bi_size so bio_sectors() is always 0.
844 	 * Include a test for the reset op code and perform the remap if needed.
845 	 */
846 	if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) {
847 		if (bio_check_eod(bio, part_nr_sects_read(p)))
848 			goto out;
849 		bio->bi_iter.bi_sector += p->start_sect;
850 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
851 				      bio->bi_iter.bi_sector - p->start_sect);
852 	}
853 	bio->bi_partno = 0;
854 	ret = 0;
855 out:
856 	rcu_read_unlock();
857 	return ret;
858 }
859 
860 static noinline_for_stack bool
861 generic_make_request_checks(struct bio *bio)
862 {
863 	struct request_queue *q;
864 	int nr_sectors = bio_sectors(bio);
865 	blk_status_t status = BLK_STS_IOERR;
866 	char b[BDEVNAME_SIZE];
867 
868 	might_sleep();
869 
870 	q = bio->bi_disk->queue;
871 	if (unlikely(!q)) {
872 		printk(KERN_ERR
873 		       "generic_make_request: Trying to access "
874 			"nonexistent block-device %s (%Lu)\n",
875 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
876 		goto end_io;
877 	}
878 
879 	/*
880 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
881 	 * if queue is not a request based queue.
882 	 */
883 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q))
884 		goto not_supported;
885 
886 	if (should_fail_bio(bio))
887 		goto end_io;
888 
889 	if (bio->bi_partno) {
890 		if (unlikely(blk_partition_remap(bio)))
891 			goto end_io;
892 	} else {
893 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
894 			goto end_io;
895 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
896 			goto end_io;
897 	}
898 
899 	/*
900 	 * Filter flush bio's early so that make_request based
901 	 * drivers without flush support don't have to worry
902 	 * about them.
903 	 */
904 	if (op_is_flush(bio->bi_opf) &&
905 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
906 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
907 		if (!nr_sectors) {
908 			status = BLK_STS_OK;
909 			goto end_io;
910 		}
911 	}
912 
913 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
914 		bio->bi_opf &= ~REQ_HIPRI;
915 
916 	switch (bio_op(bio)) {
917 	case REQ_OP_DISCARD:
918 		if (!blk_queue_discard(q))
919 			goto not_supported;
920 		break;
921 	case REQ_OP_SECURE_ERASE:
922 		if (!blk_queue_secure_erase(q))
923 			goto not_supported;
924 		break;
925 	case REQ_OP_WRITE_SAME:
926 		if (!q->limits.max_write_same_sectors)
927 			goto not_supported;
928 		break;
929 	case REQ_OP_ZONE_RESET:
930 		if (!blk_queue_is_zoned(q))
931 			goto not_supported;
932 		break;
933 	case REQ_OP_WRITE_ZEROES:
934 		if (!q->limits.max_write_zeroes_sectors)
935 			goto not_supported;
936 		break;
937 	default:
938 		break;
939 	}
940 
941 	/*
942 	 * Various block parts want %current->io_context and lazy ioc
943 	 * allocation ends up trading a lot of pain for a small amount of
944 	 * memory.  Just allocate it upfront.  This may fail and block
945 	 * layer knows how to live with it.
946 	 */
947 	create_io_context(GFP_ATOMIC, q->node);
948 
949 	if (!blkcg_bio_issue_check(q, bio))
950 		return false;
951 
952 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
953 		trace_block_bio_queue(q, bio);
954 		/* Now that enqueuing has been traced, we need to trace
955 		 * completion as well.
956 		 */
957 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
958 	}
959 	return true;
960 
961 not_supported:
962 	status = BLK_STS_NOTSUPP;
963 end_io:
964 	bio->bi_status = status;
965 	bio_endio(bio);
966 	return false;
967 }
968 
969 /**
970  * generic_make_request - hand a buffer to its device driver for I/O
971  * @bio:  The bio describing the location in memory and on the device.
972  *
973  * generic_make_request() is used to make I/O requests of block
974  * devices. It is passed a &struct bio, which describes the I/O that needs
975  * to be done.
976  *
977  * generic_make_request() does not return any status.  The
978  * success/failure status of the request, along with notification of
979  * completion, is delivered asynchronously through the bio->bi_end_io
980  * function described (one day) else where.
981  *
982  * The caller of generic_make_request must make sure that bi_io_vec
983  * are set to describe the memory buffer, and that bi_dev and bi_sector are
984  * set to describe the device address, and the
985  * bi_end_io and optionally bi_private are set to describe how
986  * completion notification should be signaled.
987  *
988  * generic_make_request and the drivers it calls may use bi_next if this
989  * bio happens to be merged with someone else, and may resubmit the bio to
990  * a lower device by calling into generic_make_request recursively, which
991  * means the bio should NOT be touched after the call to ->make_request_fn.
992  */
993 blk_qc_t generic_make_request(struct bio *bio)
994 {
995 	/*
996 	 * bio_list_on_stack[0] contains bios submitted by the current
997 	 * make_request_fn.
998 	 * bio_list_on_stack[1] contains bios that were submitted before
999 	 * the current make_request_fn, but that haven't been processed
1000 	 * yet.
1001 	 */
1002 	struct bio_list bio_list_on_stack[2];
1003 	blk_qc_t ret = BLK_QC_T_NONE;
1004 
1005 	if (!generic_make_request_checks(bio))
1006 		goto out;
1007 
1008 	/*
1009 	 * We only want one ->make_request_fn to be active at a time, else
1010 	 * stack usage with stacked devices could be a problem.  So use
1011 	 * current->bio_list to keep a list of requests submited by a
1012 	 * make_request_fn function.  current->bio_list is also used as a
1013 	 * flag to say if generic_make_request is currently active in this
1014 	 * task or not.  If it is NULL, then no make_request is active.  If
1015 	 * it is non-NULL, then a make_request is active, and new requests
1016 	 * should be added at the tail
1017 	 */
1018 	if (current->bio_list) {
1019 		bio_list_add(&current->bio_list[0], bio);
1020 		goto out;
1021 	}
1022 
1023 	/* following loop may be a bit non-obvious, and so deserves some
1024 	 * explanation.
1025 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1026 	 * ensure that) so we have a list with a single bio.
1027 	 * We pretend that we have just taken it off a longer list, so
1028 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1029 	 * thus initialising the bio_list of new bios to be
1030 	 * added.  ->make_request() may indeed add some more bios
1031 	 * through a recursive call to generic_make_request.  If it
1032 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1033 	 * from the top.  In this case we really did just take the bio
1034 	 * of the top of the list (no pretending) and so remove it from
1035 	 * bio_list, and call into ->make_request() again.
1036 	 */
1037 	BUG_ON(bio->bi_next);
1038 	bio_list_init(&bio_list_on_stack[0]);
1039 	current->bio_list = bio_list_on_stack;
1040 	do {
1041 		struct request_queue *q = bio->bi_disk->queue;
1042 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1043 			BLK_MQ_REQ_NOWAIT : 0;
1044 
1045 		if (likely(blk_queue_enter(q, flags) == 0)) {
1046 			struct bio_list lower, same;
1047 
1048 			/* Create a fresh bio_list for all subordinate requests */
1049 			bio_list_on_stack[1] = bio_list_on_stack[0];
1050 			bio_list_init(&bio_list_on_stack[0]);
1051 			ret = q->make_request_fn(q, bio);
1052 
1053 			blk_queue_exit(q);
1054 
1055 			/* sort new bios into those for a lower level
1056 			 * and those for the same level
1057 			 */
1058 			bio_list_init(&lower);
1059 			bio_list_init(&same);
1060 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1061 				if (q == bio->bi_disk->queue)
1062 					bio_list_add(&same, bio);
1063 				else
1064 					bio_list_add(&lower, bio);
1065 			/* now assemble so we handle the lowest level first */
1066 			bio_list_merge(&bio_list_on_stack[0], &lower);
1067 			bio_list_merge(&bio_list_on_stack[0], &same);
1068 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1069 		} else {
1070 			if (unlikely(!blk_queue_dying(q) &&
1071 					(bio->bi_opf & REQ_NOWAIT)))
1072 				bio_wouldblock_error(bio);
1073 			else
1074 				bio_io_error(bio);
1075 		}
1076 		bio = bio_list_pop(&bio_list_on_stack[0]);
1077 	} while (bio);
1078 	current->bio_list = NULL; /* deactivate */
1079 
1080 out:
1081 	return ret;
1082 }
1083 EXPORT_SYMBOL(generic_make_request);
1084 
1085 /**
1086  * direct_make_request - hand a buffer directly to its device driver for I/O
1087  * @bio:  The bio describing the location in memory and on the device.
1088  *
1089  * This function behaves like generic_make_request(), but does not protect
1090  * against recursion.  Must only be used if the called driver is known
1091  * to not call generic_make_request (or direct_make_request) again from
1092  * its make_request function.  (Calling direct_make_request again from
1093  * a workqueue is perfectly fine as that doesn't recurse).
1094  */
1095 blk_qc_t direct_make_request(struct bio *bio)
1096 {
1097 	struct request_queue *q = bio->bi_disk->queue;
1098 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1099 	blk_qc_t ret;
1100 
1101 	if (!generic_make_request_checks(bio))
1102 		return BLK_QC_T_NONE;
1103 
1104 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1105 		if (nowait && !blk_queue_dying(q))
1106 			bio->bi_status = BLK_STS_AGAIN;
1107 		else
1108 			bio->bi_status = BLK_STS_IOERR;
1109 		bio_endio(bio);
1110 		return BLK_QC_T_NONE;
1111 	}
1112 
1113 	ret = q->make_request_fn(q, bio);
1114 	blk_queue_exit(q);
1115 	return ret;
1116 }
1117 EXPORT_SYMBOL_GPL(direct_make_request);
1118 
1119 /**
1120  * submit_bio - submit a bio to the block device layer for I/O
1121  * @bio: The &struct bio which describes the I/O
1122  *
1123  * submit_bio() is very similar in purpose to generic_make_request(), and
1124  * uses that function to do most of the work. Both are fairly rough
1125  * interfaces; @bio must be presetup and ready for I/O.
1126  *
1127  */
1128 blk_qc_t submit_bio(struct bio *bio)
1129 {
1130 	/*
1131 	 * If it's a regular read/write or a barrier with data attached,
1132 	 * go through the normal accounting stuff before submission.
1133 	 */
1134 	if (bio_has_data(bio)) {
1135 		unsigned int count;
1136 
1137 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1138 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1139 		else
1140 			count = bio_sectors(bio);
1141 
1142 		if (op_is_write(bio_op(bio))) {
1143 			count_vm_events(PGPGOUT, count);
1144 		} else {
1145 			task_io_account_read(bio->bi_iter.bi_size);
1146 			count_vm_events(PGPGIN, count);
1147 		}
1148 
1149 		if (unlikely(block_dump)) {
1150 			char b[BDEVNAME_SIZE];
1151 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1152 			current->comm, task_pid_nr(current),
1153 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1154 				(unsigned long long)bio->bi_iter.bi_sector,
1155 				bio_devname(bio, b), count);
1156 		}
1157 	}
1158 
1159 	return generic_make_request(bio);
1160 }
1161 EXPORT_SYMBOL(submit_bio);
1162 
1163 /**
1164  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1165  *                              for new the queue limits
1166  * @q:  the queue
1167  * @rq: the request being checked
1168  *
1169  * Description:
1170  *    @rq may have been made based on weaker limitations of upper-level queues
1171  *    in request stacking drivers, and it may violate the limitation of @q.
1172  *    Since the block layer and the underlying device driver trust @rq
1173  *    after it is inserted to @q, it should be checked against @q before
1174  *    the insertion using this generic function.
1175  *
1176  *    Request stacking drivers like request-based dm may change the queue
1177  *    limits when retrying requests on other queues. Those requests need
1178  *    to be checked against the new queue limits again during dispatch.
1179  */
1180 static int blk_cloned_rq_check_limits(struct request_queue *q,
1181 				      struct request *rq)
1182 {
1183 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1184 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1185 			__func__, blk_rq_sectors(rq),
1186 			blk_queue_get_max_sectors(q, req_op(rq)));
1187 		return -EIO;
1188 	}
1189 
1190 	/*
1191 	 * queue's settings related to segment counting like q->bounce_pfn
1192 	 * may differ from that of other stacking queues.
1193 	 * Recalculate it to check the request correctly on this queue's
1194 	 * limitation.
1195 	 */
1196 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1197 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1198 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1199 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1200 		return -EIO;
1201 	}
1202 
1203 	return 0;
1204 }
1205 
1206 /**
1207  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1208  * @q:  the queue to submit the request
1209  * @rq: the request being queued
1210  */
1211 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1212 {
1213 	if (blk_cloned_rq_check_limits(q, rq))
1214 		return BLK_STS_IOERR;
1215 
1216 	if (rq->rq_disk &&
1217 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1218 		return BLK_STS_IOERR;
1219 
1220 	if (blk_queue_io_stat(q))
1221 		blk_account_io_start(rq, true);
1222 
1223 	/*
1224 	 * Since we have a scheduler attached on the top device,
1225 	 * bypass a potential scheduler on the bottom device for
1226 	 * insert.
1227 	 */
1228 	return blk_mq_request_issue_directly(rq, true);
1229 }
1230 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1231 
1232 /**
1233  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1234  * @rq: request to examine
1235  *
1236  * Description:
1237  *     A request could be merge of IOs which require different failure
1238  *     handling.  This function determines the number of bytes which
1239  *     can be failed from the beginning of the request without
1240  *     crossing into area which need to be retried further.
1241  *
1242  * Return:
1243  *     The number of bytes to fail.
1244  */
1245 unsigned int blk_rq_err_bytes(const struct request *rq)
1246 {
1247 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1248 	unsigned int bytes = 0;
1249 	struct bio *bio;
1250 
1251 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1252 		return blk_rq_bytes(rq);
1253 
1254 	/*
1255 	 * Currently the only 'mixing' which can happen is between
1256 	 * different fastfail types.  We can safely fail portions
1257 	 * which have all the failfast bits that the first one has -
1258 	 * the ones which are at least as eager to fail as the first
1259 	 * one.
1260 	 */
1261 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1262 		if ((bio->bi_opf & ff) != ff)
1263 			break;
1264 		bytes += bio->bi_iter.bi_size;
1265 	}
1266 
1267 	/* this could lead to infinite loop */
1268 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1269 	return bytes;
1270 }
1271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1272 
1273 void blk_account_io_completion(struct request *req, unsigned int bytes)
1274 {
1275 	if (blk_do_io_stat(req)) {
1276 		const int sgrp = op_stat_group(req_op(req));
1277 		struct hd_struct *part;
1278 
1279 		part_stat_lock();
1280 		part = req->part;
1281 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1282 		part_stat_unlock();
1283 	}
1284 }
1285 
1286 void blk_account_io_done(struct request *req, u64 now)
1287 {
1288 	/*
1289 	 * Account IO completion.  flush_rq isn't accounted as a
1290 	 * normal IO on queueing nor completion.  Accounting the
1291 	 * containing request is enough.
1292 	 */
1293 	if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) {
1294 		const int sgrp = op_stat_group(req_op(req));
1295 		struct hd_struct *part;
1296 
1297 		part_stat_lock();
1298 		part = req->part;
1299 
1300 		update_io_ticks(part, jiffies);
1301 		part_stat_inc(part, ios[sgrp]);
1302 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1303 		part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns));
1304 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1305 
1306 		hd_struct_put(part);
1307 		part_stat_unlock();
1308 	}
1309 }
1310 
1311 void blk_account_io_start(struct request *rq, bool new_io)
1312 {
1313 	struct hd_struct *part;
1314 	int rw = rq_data_dir(rq);
1315 
1316 	if (!blk_do_io_stat(rq))
1317 		return;
1318 
1319 	part_stat_lock();
1320 
1321 	if (!new_io) {
1322 		part = rq->part;
1323 		part_stat_inc(part, merges[rw]);
1324 	} else {
1325 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1326 		if (!hd_struct_try_get(part)) {
1327 			/*
1328 			 * The partition is already being removed,
1329 			 * the request will be accounted on the disk only
1330 			 *
1331 			 * We take a reference on disk->part0 although that
1332 			 * partition will never be deleted, so we can treat
1333 			 * it as any other partition.
1334 			 */
1335 			part = &rq->rq_disk->part0;
1336 			hd_struct_get(part);
1337 		}
1338 		part_inc_in_flight(rq->q, part, rw);
1339 		rq->part = part;
1340 	}
1341 
1342 	update_io_ticks(part, jiffies);
1343 
1344 	part_stat_unlock();
1345 }
1346 
1347 /*
1348  * Steal bios from a request and add them to a bio list.
1349  * The request must not have been partially completed before.
1350  */
1351 void blk_steal_bios(struct bio_list *list, struct request *rq)
1352 {
1353 	if (rq->bio) {
1354 		if (list->tail)
1355 			list->tail->bi_next = rq->bio;
1356 		else
1357 			list->head = rq->bio;
1358 		list->tail = rq->biotail;
1359 
1360 		rq->bio = NULL;
1361 		rq->biotail = NULL;
1362 	}
1363 
1364 	rq->__data_len = 0;
1365 }
1366 EXPORT_SYMBOL_GPL(blk_steal_bios);
1367 
1368 /**
1369  * blk_update_request - Special helper function for request stacking drivers
1370  * @req:      the request being processed
1371  * @error:    block status code
1372  * @nr_bytes: number of bytes to complete @req
1373  *
1374  * Description:
1375  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1376  *     the request structure even if @req doesn't have leftover.
1377  *     If @req has leftover, sets it up for the next range of segments.
1378  *
1379  *     This special helper function is only for request stacking drivers
1380  *     (e.g. request-based dm) so that they can handle partial completion.
1381  *     Actual device drivers should use blk_mq_end_request instead.
1382  *
1383  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1384  *     %false return from this function.
1385  *
1386  * Note:
1387  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1388  *	blk_rq_bytes() and in blk_update_request().
1389  *
1390  * Return:
1391  *     %false - this request doesn't have any more data
1392  *     %true  - this request has more data
1393  **/
1394 bool blk_update_request(struct request *req, blk_status_t error,
1395 		unsigned int nr_bytes)
1396 {
1397 	int total_bytes;
1398 
1399 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1400 
1401 	if (!req->bio)
1402 		return false;
1403 
1404 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1405 		     !(req->rq_flags & RQF_QUIET)))
1406 		print_req_error(req, error, __func__);
1407 
1408 	blk_account_io_completion(req, nr_bytes);
1409 
1410 	total_bytes = 0;
1411 	while (req->bio) {
1412 		struct bio *bio = req->bio;
1413 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1414 
1415 		if (bio_bytes == bio->bi_iter.bi_size)
1416 			req->bio = bio->bi_next;
1417 
1418 		/* Completion has already been traced */
1419 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1420 		req_bio_endio(req, bio, bio_bytes, error);
1421 
1422 		total_bytes += bio_bytes;
1423 		nr_bytes -= bio_bytes;
1424 
1425 		if (!nr_bytes)
1426 			break;
1427 	}
1428 
1429 	/*
1430 	 * completely done
1431 	 */
1432 	if (!req->bio) {
1433 		/*
1434 		 * Reset counters so that the request stacking driver
1435 		 * can find how many bytes remain in the request
1436 		 * later.
1437 		 */
1438 		req->__data_len = 0;
1439 		return false;
1440 	}
1441 
1442 	req->__data_len -= total_bytes;
1443 
1444 	/* update sector only for requests with clear definition of sector */
1445 	if (!blk_rq_is_passthrough(req))
1446 		req->__sector += total_bytes >> 9;
1447 
1448 	/* mixed attributes always follow the first bio */
1449 	if (req->rq_flags & RQF_MIXED_MERGE) {
1450 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1451 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1452 	}
1453 
1454 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1455 		/*
1456 		 * If total number of sectors is less than the first segment
1457 		 * size, something has gone terribly wrong.
1458 		 */
1459 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1460 			blk_dump_rq_flags(req, "request botched");
1461 			req->__data_len = blk_rq_cur_bytes(req);
1462 		}
1463 
1464 		/* recalculate the number of segments */
1465 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1466 	}
1467 
1468 	return true;
1469 }
1470 EXPORT_SYMBOL_GPL(blk_update_request);
1471 
1472 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1473 /**
1474  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1475  * @rq: the request to be flushed
1476  *
1477  * Description:
1478  *     Flush all pages in @rq.
1479  */
1480 void rq_flush_dcache_pages(struct request *rq)
1481 {
1482 	struct req_iterator iter;
1483 	struct bio_vec bvec;
1484 
1485 	rq_for_each_segment(bvec, rq, iter)
1486 		flush_dcache_page(bvec.bv_page);
1487 }
1488 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1489 #endif
1490 
1491 /**
1492  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1493  * @q : the queue of the device being checked
1494  *
1495  * Description:
1496  *    Check if underlying low-level drivers of a device are busy.
1497  *    If the drivers want to export their busy state, they must set own
1498  *    exporting function using blk_queue_lld_busy() first.
1499  *
1500  *    Basically, this function is used only by request stacking drivers
1501  *    to stop dispatching requests to underlying devices when underlying
1502  *    devices are busy.  This behavior helps more I/O merging on the queue
1503  *    of the request stacking driver and prevents I/O throughput regression
1504  *    on burst I/O load.
1505  *
1506  * Return:
1507  *    0 - Not busy (The request stacking driver should dispatch request)
1508  *    1 - Busy (The request stacking driver should stop dispatching request)
1509  */
1510 int blk_lld_busy(struct request_queue *q)
1511 {
1512 	if (queue_is_mq(q) && q->mq_ops->busy)
1513 		return q->mq_ops->busy(q);
1514 
1515 	return 0;
1516 }
1517 EXPORT_SYMBOL_GPL(blk_lld_busy);
1518 
1519 /**
1520  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1521  * @rq: the clone request to be cleaned up
1522  *
1523  * Description:
1524  *     Free all bios in @rq for a cloned request.
1525  */
1526 void blk_rq_unprep_clone(struct request *rq)
1527 {
1528 	struct bio *bio;
1529 
1530 	while ((bio = rq->bio) != NULL) {
1531 		rq->bio = bio->bi_next;
1532 
1533 		bio_put(bio);
1534 	}
1535 }
1536 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1537 
1538 /*
1539  * Copy attributes of the original request to the clone request.
1540  * The actual data parts (e.g. ->cmd, ->sense) are not copied.
1541  */
1542 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
1543 {
1544 	dst->__sector = blk_rq_pos(src);
1545 	dst->__data_len = blk_rq_bytes(src);
1546 	if (src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1547 		dst->rq_flags |= RQF_SPECIAL_PAYLOAD;
1548 		dst->special_vec = src->special_vec;
1549 	}
1550 	dst->nr_phys_segments = src->nr_phys_segments;
1551 	dst->ioprio = src->ioprio;
1552 	dst->extra_len = src->extra_len;
1553 }
1554 
1555 /**
1556  * blk_rq_prep_clone - Helper function to setup clone request
1557  * @rq: the request to be setup
1558  * @rq_src: original request to be cloned
1559  * @bs: bio_set that bios for clone are allocated from
1560  * @gfp_mask: memory allocation mask for bio
1561  * @bio_ctr: setup function to be called for each clone bio.
1562  *           Returns %0 for success, non %0 for failure.
1563  * @data: private data to be passed to @bio_ctr
1564  *
1565  * Description:
1566  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1567  *     The actual data parts of @rq_src (e.g. ->cmd, ->sense)
1568  *     are not copied, and copying such parts is the caller's responsibility.
1569  *     Also, pages which the original bios are pointing to are not copied
1570  *     and the cloned bios just point same pages.
1571  *     So cloned bios must be completed before original bios, which means
1572  *     the caller must complete @rq before @rq_src.
1573  */
1574 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1575 		      struct bio_set *bs, gfp_t gfp_mask,
1576 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1577 		      void *data)
1578 {
1579 	struct bio *bio, *bio_src;
1580 
1581 	if (!bs)
1582 		bs = &fs_bio_set;
1583 
1584 	__rq_for_each_bio(bio_src, rq_src) {
1585 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1586 		if (!bio)
1587 			goto free_and_out;
1588 
1589 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1590 			goto free_and_out;
1591 
1592 		if (rq->bio) {
1593 			rq->biotail->bi_next = bio;
1594 			rq->biotail = bio;
1595 		} else
1596 			rq->bio = rq->biotail = bio;
1597 	}
1598 
1599 	__blk_rq_prep_clone(rq, rq_src);
1600 
1601 	return 0;
1602 
1603 free_and_out:
1604 	if (bio)
1605 		bio_put(bio);
1606 	blk_rq_unprep_clone(rq);
1607 
1608 	return -ENOMEM;
1609 }
1610 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1611 
1612 int kblockd_schedule_work(struct work_struct *work)
1613 {
1614 	return queue_work(kblockd_workqueue, work);
1615 }
1616 EXPORT_SYMBOL(kblockd_schedule_work);
1617 
1618 int kblockd_schedule_work_on(int cpu, struct work_struct *work)
1619 {
1620 	return queue_work_on(cpu, kblockd_workqueue, work);
1621 }
1622 EXPORT_SYMBOL(kblockd_schedule_work_on);
1623 
1624 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1625 				unsigned long delay)
1626 {
1627 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1628 }
1629 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1630 
1631 /**
1632  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1633  * @plug:	The &struct blk_plug that needs to be initialized
1634  *
1635  * Description:
1636  *   blk_start_plug() indicates to the block layer an intent by the caller
1637  *   to submit multiple I/O requests in a batch.  The block layer may use
1638  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1639  *   is called.  However, the block layer may choose to submit requests
1640  *   before a call to blk_finish_plug() if the number of queued I/Os
1641  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1642  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1643  *   the task schedules (see below).
1644  *
1645  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1646  *   pending I/O should the task end up blocking between blk_start_plug() and
1647  *   blk_finish_plug(). This is important from a performance perspective, but
1648  *   also ensures that we don't deadlock. For instance, if the task is blocking
1649  *   for a memory allocation, memory reclaim could end up wanting to free a
1650  *   page belonging to that request that is currently residing in our private
1651  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1652  *   this kind of deadlock.
1653  */
1654 void blk_start_plug(struct blk_plug *plug)
1655 {
1656 	struct task_struct *tsk = current;
1657 
1658 	/*
1659 	 * If this is a nested plug, don't actually assign it.
1660 	 */
1661 	if (tsk->plug)
1662 		return;
1663 
1664 	INIT_LIST_HEAD(&plug->mq_list);
1665 	INIT_LIST_HEAD(&plug->cb_list);
1666 	plug->rq_count = 0;
1667 	plug->multiple_queues = false;
1668 
1669 	/*
1670 	 * Store ordering should not be needed here, since a potential
1671 	 * preempt will imply a full memory barrier
1672 	 */
1673 	tsk->plug = plug;
1674 }
1675 EXPORT_SYMBOL(blk_start_plug);
1676 
1677 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1678 {
1679 	LIST_HEAD(callbacks);
1680 
1681 	while (!list_empty(&plug->cb_list)) {
1682 		list_splice_init(&plug->cb_list, &callbacks);
1683 
1684 		while (!list_empty(&callbacks)) {
1685 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1686 							  struct blk_plug_cb,
1687 							  list);
1688 			list_del(&cb->list);
1689 			cb->callback(cb, from_schedule);
1690 		}
1691 	}
1692 }
1693 
1694 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1695 				      int size)
1696 {
1697 	struct blk_plug *plug = current->plug;
1698 	struct blk_plug_cb *cb;
1699 
1700 	if (!plug)
1701 		return NULL;
1702 
1703 	list_for_each_entry(cb, &plug->cb_list, list)
1704 		if (cb->callback == unplug && cb->data == data)
1705 			return cb;
1706 
1707 	/* Not currently on the callback list */
1708 	BUG_ON(size < sizeof(*cb));
1709 	cb = kzalloc(size, GFP_ATOMIC);
1710 	if (cb) {
1711 		cb->data = data;
1712 		cb->callback = unplug;
1713 		list_add(&cb->list, &plug->cb_list);
1714 	}
1715 	return cb;
1716 }
1717 EXPORT_SYMBOL(blk_check_plugged);
1718 
1719 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1720 {
1721 	flush_plug_callbacks(plug, from_schedule);
1722 
1723 	if (!list_empty(&plug->mq_list))
1724 		blk_mq_flush_plug_list(plug, from_schedule);
1725 }
1726 
1727 /**
1728  * blk_finish_plug - mark the end of a batch of submitted I/O
1729  * @plug:	The &struct blk_plug passed to blk_start_plug()
1730  *
1731  * Description:
1732  * Indicate that a batch of I/O submissions is complete.  This function
1733  * must be paired with an initial call to blk_start_plug().  The intent
1734  * is to allow the block layer to optimize I/O submission.  See the
1735  * documentation for blk_start_plug() for more information.
1736  */
1737 void blk_finish_plug(struct blk_plug *plug)
1738 {
1739 	if (plug != current->plug)
1740 		return;
1741 	blk_flush_plug_list(plug, false);
1742 
1743 	current->plug = NULL;
1744 }
1745 EXPORT_SYMBOL(blk_finish_plug);
1746 
1747 int __init blk_dev_init(void)
1748 {
1749 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1750 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1751 			FIELD_SIZEOF(struct request, cmd_flags));
1752 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1753 			FIELD_SIZEOF(struct bio, bi_opf));
1754 
1755 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1756 	kblockd_workqueue = alloc_workqueue("kblockd",
1757 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1758 	if (!kblockd_workqueue)
1759 		panic("Failed to create kblockd\n");
1760 
1761 	blk_requestq_cachep = kmem_cache_create("request_queue",
1762 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1763 
1764 #ifdef CONFIG_DEBUG_FS
1765 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1766 #endif
1767 
1768 	return 0;
1769 }
1770