1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 1991, 1992 Linus Torvalds 4 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 5 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 6 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 7 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 8 * - July2000 9 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 10 */ 11 12 /* 13 * This handles all read/write requests to block devices 14 */ 15 #include <linux/kernel.h> 16 #include <linux/module.h> 17 #include <linux/backing-dev.h> 18 #include <linux/bio.h> 19 #include <linux/blkdev.h> 20 #include <linux/blk-mq.h> 21 #include <linux/highmem.h> 22 #include <linux/mm.h> 23 #include <linux/kernel_stat.h> 24 #include <linux/string.h> 25 #include <linux/init.h> 26 #include <linux/completion.h> 27 #include <linux/slab.h> 28 #include <linux/swap.h> 29 #include <linux/writeback.h> 30 #include <linux/task_io_accounting_ops.h> 31 #include <linux/fault-inject.h> 32 #include <linux/list_sort.h> 33 #include <linux/delay.h> 34 #include <linux/ratelimit.h> 35 #include <linux/pm_runtime.h> 36 #include <linux/blk-cgroup.h> 37 #include <linux/debugfs.h> 38 #include <linux/bpf.h> 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/block.h> 42 43 #include "blk.h" 44 #include "blk-mq.h" 45 #include "blk-mq-sched.h" 46 #include "blk-pm.h" 47 #include "blk-rq-qos.h" 48 49 #ifdef CONFIG_DEBUG_FS 50 struct dentry *blk_debugfs_root; 51 #endif 52 53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split); 57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug); 58 59 DEFINE_IDA(blk_queue_ida); 60 61 /* 62 * For queue allocation 63 */ 64 struct kmem_cache *blk_requestq_cachep; 65 66 /* 67 * Controlling structure to kblockd 68 */ 69 static struct workqueue_struct *kblockd_workqueue; 70 71 /** 72 * blk_queue_flag_set - atomically set a queue flag 73 * @flag: flag to be set 74 * @q: request queue 75 */ 76 void blk_queue_flag_set(unsigned int flag, struct request_queue *q) 77 { 78 set_bit(flag, &q->queue_flags); 79 } 80 EXPORT_SYMBOL(blk_queue_flag_set); 81 82 /** 83 * blk_queue_flag_clear - atomically clear a queue flag 84 * @flag: flag to be cleared 85 * @q: request queue 86 */ 87 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q) 88 { 89 clear_bit(flag, &q->queue_flags); 90 } 91 EXPORT_SYMBOL(blk_queue_flag_clear); 92 93 /** 94 * blk_queue_flag_test_and_set - atomically test and set a queue flag 95 * @flag: flag to be set 96 * @q: request queue 97 * 98 * Returns the previous value of @flag - 0 if the flag was not set and 1 if 99 * the flag was already set. 100 */ 101 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q) 102 { 103 return test_and_set_bit(flag, &q->queue_flags); 104 } 105 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set); 106 107 void blk_rq_init(struct request_queue *q, struct request *rq) 108 { 109 memset(rq, 0, sizeof(*rq)); 110 111 INIT_LIST_HEAD(&rq->queuelist); 112 rq->q = q; 113 rq->__sector = (sector_t) -1; 114 INIT_HLIST_NODE(&rq->hash); 115 RB_CLEAR_NODE(&rq->rb_node); 116 rq->tag = -1; 117 rq->internal_tag = -1; 118 rq->start_time_ns = ktime_get_ns(); 119 rq->part = NULL; 120 } 121 EXPORT_SYMBOL(blk_rq_init); 122 123 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name 124 static const char *const blk_op_name[] = { 125 REQ_OP_NAME(READ), 126 REQ_OP_NAME(WRITE), 127 REQ_OP_NAME(FLUSH), 128 REQ_OP_NAME(DISCARD), 129 REQ_OP_NAME(SECURE_ERASE), 130 REQ_OP_NAME(ZONE_RESET), 131 REQ_OP_NAME(WRITE_SAME), 132 REQ_OP_NAME(WRITE_ZEROES), 133 REQ_OP_NAME(SCSI_IN), 134 REQ_OP_NAME(SCSI_OUT), 135 REQ_OP_NAME(DRV_IN), 136 REQ_OP_NAME(DRV_OUT), 137 }; 138 #undef REQ_OP_NAME 139 140 /** 141 * blk_op_str - Return string XXX in the REQ_OP_XXX. 142 * @op: REQ_OP_XXX. 143 * 144 * Description: Centralize block layer function to convert REQ_OP_XXX into 145 * string format. Useful in the debugging and tracing bio or request. For 146 * invalid REQ_OP_XXX it returns string "UNKNOWN". 147 */ 148 inline const char *blk_op_str(unsigned int op) 149 { 150 const char *op_str = "UNKNOWN"; 151 152 if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op]) 153 op_str = blk_op_name[op]; 154 155 return op_str; 156 } 157 EXPORT_SYMBOL_GPL(blk_op_str); 158 159 static const struct { 160 int errno; 161 const char *name; 162 } blk_errors[] = { 163 [BLK_STS_OK] = { 0, "" }, 164 [BLK_STS_NOTSUPP] = { -EOPNOTSUPP, "operation not supported" }, 165 [BLK_STS_TIMEOUT] = { -ETIMEDOUT, "timeout" }, 166 [BLK_STS_NOSPC] = { -ENOSPC, "critical space allocation" }, 167 [BLK_STS_TRANSPORT] = { -ENOLINK, "recoverable transport" }, 168 [BLK_STS_TARGET] = { -EREMOTEIO, "critical target" }, 169 [BLK_STS_NEXUS] = { -EBADE, "critical nexus" }, 170 [BLK_STS_MEDIUM] = { -ENODATA, "critical medium" }, 171 [BLK_STS_PROTECTION] = { -EILSEQ, "protection" }, 172 [BLK_STS_RESOURCE] = { -ENOMEM, "kernel resource" }, 173 [BLK_STS_DEV_RESOURCE] = { -EBUSY, "device resource" }, 174 [BLK_STS_AGAIN] = { -EAGAIN, "nonblocking retry" }, 175 176 /* device mapper special case, should not leak out: */ 177 [BLK_STS_DM_REQUEUE] = { -EREMCHG, "dm internal retry" }, 178 179 /* everything else not covered above: */ 180 [BLK_STS_IOERR] = { -EIO, "I/O" }, 181 }; 182 183 blk_status_t errno_to_blk_status(int errno) 184 { 185 int i; 186 187 for (i = 0; i < ARRAY_SIZE(blk_errors); i++) { 188 if (blk_errors[i].errno == errno) 189 return (__force blk_status_t)i; 190 } 191 192 return BLK_STS_IOERR; 193 } 194 EXPORT_SYMBOL_GPL(errno_to_blk_status); 195 196 int blk_status_to_errno(blk_status_t status) 197 { 198 int idx = (__force int)status; 199 200 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 201 return -EIO; 202 return blk_errors[idx].errno; 203 } 204 EXPORT_SYMBOL_GPL(blk_status_to_errno); 205 206 static void print_req_error(struct request *req, blk_status_t status, 207 const char *caller) 208 { 209 int idx = (__force int)status; 210 211 if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors))) 212 return; 213 214 printk_ratelimited(KERN_ERR 215 "%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x " 216 "phys_seg %u prio class %u\n", 217 caller, blk_errors[idx].name, 218 req->rq_disk ? req->rq_disk->disk_name : "?", 219 blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)), 220 req->cmd_flags & ~REQ_OP_MASK, 221 req->nr_phys_segments, 222 IOPRIO_PRIO_CLASS(req->ioprio)); 223 } 224 225 static void req_bio_endio(struct request *rq, struct bio *bio, 226 unsigned int nbytes, blk_status_t error) 227 { 228 if (error) 229 bio->bi_status = error; 230 231 if (unlikely(rq->rq_flags & RQF_QUIET)) 232 bio_set_flag(bio, BIO_QUIET); 233 234 bio_advance(bio, nbytes); 235 236 /* don't actually finish bio if it's part of flush sequence */ 237 if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ)) 238 bio_endio(bio); 239 } 240 241 void blk_dump_rq_flags(struct request *rq, char *msg) 242 { 243 printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg, 244 rq->rq_disk ? rq->rq_disk->disk_name : "?", 245 (unsigned long long) rq->cmd_flags); 246 247 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 248 (unsigned long long)blk_rq_pos(rq), 249 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 250 printk(KERN_INFO " bio %p, biotail %p, len %u\n", 251 rq->bio, rq->biotail, blk_rq_bytes(rq)); 252 } 253 EXPORT_SYMBOL(blk_dump_rq_flags); 254 255 /** 256 * blk_sync_queue - cancel any pending callbacks on a queue 257 * @q: the queue 258 * 259 * Description: 260 * The block layer may perform asynchronous callback activity 261 * on a queue, such as calling the unplug function after a timeout. 262 * A block device may call blk_sync_queue to ensure that any 263 * such activity is cancelled, thus allowing it to release resources 264 * that the callbacks might use. The caller must already have made sure 265 * that its ->make_request_fn will not re-add plugging prior to calling 266 * this function. 267 * 268 * This function does not cancel any asynchronous activity arising 269 * out of elevator or throttling code. That would require elevator_exit() 270 * and blkcg_exit_queue() to be called with queue lock initialized. 271 * 272 */ 273 void blk_sync_queue(struct request_queue *q) 274 { 275 del_timer_sync(&q->timeout); 276 cancel_work_sync(&q->timeout_work); 277 } 278 EXPORT_SYMBOL(blk_sync_queue); 279 280 /** 281 * blk_set_pm_only - increment pm_only counter 282 * @q: request queue pointer 283 */ 284 void blk_set_pm_only(struct request_queue *q) 285 { 286 atomic_inc(&q->pm_only); 287 } 288 EXPORT_SYMBOL_GPL(blk_set_pm_only); 289 290 void blk_clear_pm_only(struct request_queue *q) 291 { 292 int pm_only; 293 294 pm_only = atomic_dec_return(&q->pm_only); 295 WARN_ON_ONCE(pm_only < 0); 296 if (pm_only == 0) 297 wake_up_all(&q->mq_freeze_wq); 298 } 299 EXPORT_SYMBOL_GPL(blk_clear_pm_only); 300 301 void blk_put_queue(struct request_queue *q) 302 { 303 kobject_put(&q->kobj); 304 } 305 EXPORT_SYMBOL(blk_put_queue); 306 307 void blk_set_queue_dying(struct request_queue *q) 308 { 309 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 310 311 /* 312 * When queue DYING flag is set, we need to block new req 313 * entering queue, so we call blk_freeze_queue_start() to 314 * prevent I/O from crossing blk_queue_enter(). 315 */ 316 blk_freeze_queue_start(q); 317 318 if (queue_is_mq(q)) 319 blk_mq_wake_waiters(q); 320 321 /* Make blk_queue_enter() reexamine the DYING flag. */ 322 wake_up_all(&q->mq_freeze_wq); 323 } 324 EXPORT_SYMBOL_GPL(blk_set_queue_dying); 325 326 /** 327 * blk_cleanup_queue - shutdown a request queue 328 * @q: request queue to shutdown 329 * 330 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and 331 * put it. All future requests will be failed immediately with -ENODEV. 332 */ 333 void blk_cleanup_queue(struct request_queue *q) 334 { 335 /* mark @q DYING, no new request or merges will be allowed afterwards */ 336 mutex_lock(&q->sysfs_lock); 337 blk_set_queue_dying(q); 338 339 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q); 340 blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 341 blk_queue_flag_set(QUEUE_FLAG_DYING, q); 342 mutex_unlock(&q->sysfs_lock); 343 344 /* 345 * Drain all requests queued before DYING marking. Set DEAD flag to 346 * prevent that q->request_fn() gets invoked after draining finished. 347 */ 348 blk_freeze_queue(q); 349 350 rq_qos_exit(q); 351 352 blk_queue_flag_set(QUEUE_FLAG_DEAD, q); 353 354 /* for synchronous bio-based driver finish in-flight integrity i/o */ 355 blk_flush_integrity(); 356 357 /* @q won't process any more request, flush async actions */ 358 del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer); 359 blk_sync_queue(q); 360 361 if (queue_is_mq(q)) 362 blk_mq_exit_queue(q); 363 364 /* 365 * In theory, request pool of sched_tags belongs to request queue. 366 * However, the current implementation requires tag_set for freeing 367 * requests, so free the pool now. 368 * 369 * Queue has become frozen, there can't be any in-queue requests, so 370 * it is safe to free requests now. 371 */ 372 mutex_lock(&q->sysfs_lock); 373 if (q->elevator) 374 blk_mq_sched_free_requests(q); 375 mutex_unlock(&q->sysfs_lock); 376 377 percpu_ref_exit(&q->q_usage_counter); 378 379 /* @q is and will stay empty, shutdown and put */ 380 blk_put_queue(q); 381 } 382 EXPORT_SYMBOL(blk_cleanup_queue); 383 384 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 385 { 386 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE); 387 } 388 EXPORT_SYMBOL(blk_alloc_queue); 389 390 /** 391 * blk_queue_enter() - try to increase q->q_usage_counter 392 * @q: request queue pointer 393 * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT 394 */ 395 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags) 396 { 397 const bool pm = flags & BLK_MQ_REQ_PREEMPT; 398 399 while (true) { 400 bool success = false; 401 402 rcu_read_lock(); 403 if (percpu_ref_tryget_live(&q->q_usage_counter)) { 404 /* 405 * The code that increments the pm_only counter is 406 * responsible for ensuring that that counter is 407 * globally visible before the queue is unfrozen. 408 */ 409 if (pm || !blk_queue_pm_only(q)) { 410 success = true; 411 } else { 412 percpu_ref_put(&q->q_usage_counter); 413 } 414 } 415 rcu_read_unlock(); 416 417 if (success) 418 return 0; 419 420 if (flags & BLK_MQ_REQ_NOWAIT) 421 return -EBUSY; 422 423 /* 424 * read pair of barrier in blk_freeze_queue_start(), 425 * we need to order reading __PERCPU_REF_DEAD flag of 426 * .q_usage_counter and reading .mq_freeze_depth or 427 * queue dying flag, otherwise the following wait may 428 * never return if the two reads are reordered. 429 */ 430 smp_rmb(); 431 432 wait_event(q->mq_freeze_wq, 433 (!q->mq_freeze_depth && 434 (pm || (blk_pm_request_resume(q), 435 !blk_queue_pm_only(q)))) || 436 blk_queue_dying(q)); 437 if (blk_queue_dying(q)) 438 return -ENODEV; 439 } 440 } 441 442 void blk_queue_exit(struct request_queue *q) 443 { 444 percpu_ref_put(&q->q_usage_counter); 445 } 446 447 static void blk_queue_usage_counter_release(struct percpu_ref *ref) 448 { 449 struct request_queue *q = 450 container_of(ref, struct request_queue, q_usage_counter); 451 452 wake_up_all(&q->mq_freeze_wq); 453 } 454 455 static void blk_rq_timed_out_timer(struct timer_list *t) 456 { 457 struct request_queue *q = from_timer(q, t, timeout); 458 459 kblockd_schedule_work(&q->timeout_work); 460 } 461 462 static void blk_timeout_work(struct work_struct *work) 463 { 464 } 465 466 /** 467 * blk_alloc_queue_node - allocate a request queue 468 * @gfp_mask: memory allocation flags 469 * @node_id: NUMA node to allocate memory from 470 */ 471 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 472 { 473 struct request_queue *q; 474 int ret; 475 476 q = kmem_cache_alloc_node(blk_requestq_cachep, 477 gfp_mask | __GFP_ZERO, node_id); 478 if (!q) 479 return NULL; 480 481 INIT_LIST_HEAD(&q->queue_head); 482 q->last_merge = NULL; 483 484 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 485 if (q->id < 0) 486 goto fail_q; 487 488 ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS); 489 if (ret) 490 goto fail_id; 491 492 q->backing_dev_info = bdi_alloc_node(gfp_mask, node_id); 493 if (!q->backing_dev_info) 494 goto fail_split; 495 496 q->stats = blk_alloc_queue_stats(); 497 if (!q->stats) 498 goto fail_stats; 499 500 q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES; 501 q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK; 502 q->backing_dev_info->name = "block"; 503 q->node = node_id; 504 505 timer_setup(&q->backing_dev_info->laptop_mode_wb_timer, 506 laptop_mode_timer_fn, 0); 507 timer_setup(&q->timeout, blk_rq_timed_out_timer, 0); 508 INIT_WORK(&q->timeout_work, blk_timeout_work); 509 INIT_LIST_HEAD(&q->icq_list); 510 #ifdef CONFIG_BLK_CGROUP 511 INIT_LIST_HEAD(&q->blkg_list); 512 #endif 513 514 kobject_init(&q->kobj, &blk_queue_ktype); 515 516 #ifdef CONFIG_BLK_DEV_IO_TRACE 517 mutex_init(&q->blk_trace_mutex); 518 #endif 519 mutex_init(&q->sysfs_lock); 520 spin_lock_init(&q->queue_lock); 521 522 init_waitqueue_head(&q->mq_freeze_wq); 523 mutex_init(&q->mq_freeze_lock); 524 525 /* 526 * Init percpu_ref in atomic mode so that it's faster to shutdown. 527 * See blk_register_queue() for details. 528 */ 529 if (percpu_ref_init(&q->q_usage_counter, 530 blk_queue_usage_counter_release, 531 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL)) 532 goto fail_bdi; 533 534 if (blkcg_init_queue(q)) 535 goto fail_ref; 536 537 return q; 538 539 fail_ref: 540 percpu_ref_exit(&q->q_usage_counter); 541 fail_bdi: 542 blk_free_queue_stats(q->stats); 543 fail_stats: 544 bdi_put(q->backing_dev_info); 545 fail_split: 546 bioset_exit(&q->bio_split); 547 fail_id: 548 ida_simple_remove(&blk_queue_ida, q->id); 549 fail_q: 550 kmem_cache_free(blk_requestq_cachep, q); 551 return NULL; 552 } 553 EXPORT_SYMBOL(blk_alloc_queue_node); 554 555 bool blk_get_queue(struct request_queue *q) 556 { 557 if (likely(!blk_queue_dying(q))) { 558 __blk_get_queue(q); 559 return true; 560 } 561 562 return false; 563 } 564 EXPORT_SYMBOL(blk_get_queue); 565 566 /** 567 * blk_get_request - allocate a request 568 * @q: request queue to allocate a request for 569 * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC. 570 * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT. 571 */ 572 struct request *blk_get_request(struct request_queue *q, unsigned int op, 573 blk_mq_req_flags_t flags) 574 { 575 struct request *req; 576 577 WARN_ON_ONCE(op & REQ_NOWAIT); 578 WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT)); 579 580 req = blk_mq_alloc_request(q, op, flags); 581 if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn) 582 q->mq_ops->initialize_rq_fn(req); 583 584 return req; 585 } 586 EXPORT_SYMBOL(blk_get_request); 587 588 void blk_put_request(struct request *req) 589 { 590 blk_mq_free_request(req); 591 } 592 EXPORT_SYMBOL(blk_put_request); 593 594 bool bio_attempt_back_merge(struct request *req, struct bio *bio, 595 unsigned int nr_segs) 596 { 597 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 598 599 if (!ll_back_merge_fn(req, bio, nr_segs)) 600 return false; 601 602 trace_block_bio_backmerge(req->q, req, bio); 603 604 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 605 blk_rq_set_mixed_merge(req); 606 607 req->biotail->bi_next = bio; 608 req->biotail = bio; 609 req->__data_len += bio->bi_iter.bi_size; 610 611 blk_account_io_start(req, false); 612 return true; 613 } 614 615 bool bio_attempt_front_merge(struct request *req, struct bio *bio, 616 unsigned int nr_segs) 617 { 618 const int ff = bio->bi_opf & REQ_FAILFAST_MASK; 619 620 if (!ll_front_merge_fn(req, bio, nr_segs)) 621 return false; 622 623 trace_block_bio_frontmerge(req->q, req, bio); 624 625 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 626 blk_rq_set_mixed_merge(req); 627 628 bio->bi_next = req->bio; 629 req->bio = bio; 630 631 req->__sector = bio->bi_iter.bi_sector; 632 req->__data_len += bio->bi_iter.bi_size; 633 634 blk_account_io_start(req, false); 635 return true; 636 } 637 638 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req, 639 struct bio *bio) 640 { 641 unsigned short segments = blk_rq_nr_discard_segments(req); 642 643 if (segments >= queue_max_discard_segments(q)) 644 goto no_merge; 645 if (blk_rq_sectors(req) + bio_sectors(bio) > 646 blk_rq_get_max_sectors(req, blk_rq_pos(req))) 647 goto no_merge; 648 649 req->biotail->bi_next = bio; 650 req->biotail = bio; 651 req->__data_len += bio->bi_iter.bi_size; 652 req->nr_phys_segments = segments + 1; 653 654 blk_account_io_start(req, false); 655 return true; 656 no_merge: 657 req_set_nomerge(q, req); 658 return false; 659 } 660 661 /** 662 * blk_attempt_plug_merge - try to merge with %current's plugged list 663 * @q: request_queue new bio is being queued at 664 * @bio: new bio being queued 665 * @nr_segs: number of segments in @bio 666 * @same_queue_rq: pointer to &struct request that gets filled in when 667 * another request associated with @q is found on the plug list 668 * (optional, may be %NULL) 669 * 670 * Determine whether @bio being queued on @q can be merged with a request 671 * on %current's plugged list. Returns %true if merge was successful, 672 * otherwise %false. 673 * 674 * Plugging coalesces IOs from the same issuer for the same purpose without 675 * going through @q->queue_lock. As such it's more of an issuing mechanism 676 * than scheduling, and the request, while may have elvpriv data, is not 677 * added on the elevator at this point. In addition, we don't have 678 * reliable access to the elevator outside queue lock. Only check basic 679 * merging parameters without querying the elevator. 680 * 681 * Caller must ensure !blk_queue_nomerges(q) beforehand. 682 */ 683 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio, 684 unsigned int nr_segs, struct request **same_queue_rq) 685 { 686 struct blk_plug *plug; 687 struct request *rq; 688 struct list_head *plug_list; 689 690 plug = current->plug; 691 if (!plug) 692 return false; 693 694 plug_list = &plug->mq_list; 695 696 list_for_each_entry_reverse(rq, plug_list, queuelist) { 697 bool merged = false; 698 699 if (rq->q == q && same_queue_rq) { 700 /* 701 * Only blk-mq multiple hardware queues case checks the 702 * rq in the same queue, there should be only one such 703 * rq in a queue 704 **/ 705 *same_queue_rq = rq; 706 } 707 708 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 709 continue; 710 711 switch (blk_try_merge(rq, bio)) { 712 case ELEVATOR_BACK_MERGE: 713 merged = bio_attempt_back_merge(rq, bio, nr_segs); 714 break; 715 case ELEVATOR_FRONT_MERGE: 716 merged = bio_attempt_front_merge(rq, bio, nr_segs); 717 break; 718 case ELEVATOR_DISCARD_MERGE: 719 merged = bio_attempt_discard_merge(q, rq, bio); 720 break; 721 default: 722 break; 723 } 724 725 if (merged) 726 return true; 727 } 728 729 return false; 730 } 731 732 static void handle_bad_sector(struct bio *bio, sector_t maxsector) 733 { 734 char b[BDEVNAME_SIZE]; 735 736 printk(KERN_INFO "attempt to access beyond end of device\n"); 737 printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n", 738 bio_devname(bio, b), bio->bi_opf, 739 (unsigned long long)bio_end_sector(bio), 740 (long long)maxsector); 741 } 742 743 #ifdef CONFIG_FAIL_MAKE_REQUEST 744 745 static DECLARE_FAULT_ATTR(fail_make_request); 746 747 static int __init setup_fail_make_request(char *str) 748 { 749 return setup_fault_attr(&fail_make_request, str); 750 } 751 __setup("fail_make_request=", setup_fail_make_request); 752 753 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 754 { 755 return part->make_it_fail && should_fail(&fail_make_request, bytes); 756 } 757 758 static int __init fail_make_request_debugfs(void) 759 { 760 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 761 NULL, &fail_make_request); 762 763 return PTR_ERR_OR_ZERO(dir); 764 } 765 766 late_initcall(fail_make_request_debugfs); 767 768 #else /* CONFIG_FAIL_MAKE_REQUEST */ 769 770 static inline bool should_fail_request(struct hd_struct *part, 771 unsigned int bytes) 772 { 773 return false; 774 } 775 776 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 777 778 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part) 779 { 780 const int op = bio_op(bio); 781 782 if (part->policy && op_is_write(op)) { 783 char b[BDEVNAME_SIZE]; 784 785 if (op_is_flush(bio->bi_opf) && !bio_sectors(bio)) 786 return false; 787 788 WARN_ONCE(1, 789 "generic_make_request: Trying to write " 790 "to read-only block-device %s (partno %d)\n", 791 bio_devname(bio, b), part->partno); 792 /* Older lvm-tools actually trigger this */ 793 return false; 794 } 795 796 return false; 797 } 798 799 static noinline int should_fail_bio(struct bio *bio) 800 { 801 if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size)) 802 return -EIO; 803 return 0; 804 } 805 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO); 806 807 /* 808 * Check whether this bio extends beyond the end of the device or partition. 809 * This may well happen - the kernel calls bread() without checking the size of 810 * the device, e.g., when mounting a file system. 811 */ 812 static inline int bio_check_eod(struct bio *bio, sector_t maxsector) 813 { 814 unsigned int nr_sectors = bio_sectors(bio); 815 816 if (nr_sectors && maxsector && 817 (nr_sectors > maxsector || 818 bio->bi_iter.bi_sector > maxsector - nr_sectors)) { 819 handle_bad_sector(bio, maxsector); 820 return -EIO; 821 } 822 return 0; 823 } 824 825 /* 826 * Remap block n of partition p to block n+start(p) of the disk. 827 */ 828 static inline int blk_partition_remap(struct bio *bio) 829 { 830 struct hd_struct *p; 831 int ret = -EIO; 832 833 rcu_read_lock(); 834 p = __disk_get_part(bio->bi_disk, bio->bi_partno); 835 if (unlikely(!p)) 836 goto out; 837 if (unlikely(should_fail_request(p, bio->bi_iter.bi_size))) 838 goto out; 839 if (unlikely(bio_check_ro(bio, p))) 840 goto out; 841 842 /* 843 * Zone reset does not include bi_size so bio_sectors() is always 0. 844 * Include a test for the reset op code and perform the remap if needed. 845 */ 846 if (bio_sectors(bio) || bio_op(bio) == REQ_OP_ZONE_RESET) { 847 if (bio_check_eod(bio, part_nr_sects_read(p))) 848 goto out; 849 bio->bi_iter.bi_sector += p->start_sect; 850 trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p), 851 bio->bi_iter.bi_sector - p->start_sect); 852 } 853 bio->bi_partno = 0; 854 ret = 0; 855 out: 856 rcu_read_unlock(); 857 return ret; 858 } 859 860 static noinline_for_stack bool 861 generic_make_request_checks(struct bio *bio) 862 { 863 struct request_queue *q; 864 int nr_sectors = bio_sectors(bio); 865 blk_status_t status = BLK_STS_IOERR; 866 char b[BDEVNAME_SIZE]; 867 868 might_sleep(); 869 870 q = bio->bi_disk->queue; 871 if (unlikely(!q)) { 872 printk(KERN_ERR 873 "generic_make_request: Trying to access " 874 "nonexistent block-device %s (%Lu)\n", 875 bio_devname(bio, b), (long long)bio->bi_iter.bi_sector); 876 goto end_io; 877 } 878 879 /* 880 * For a REQ_NOWAIT based request, return -EOPNOTSUPP 881 * if queue is not a request based queue. 882 */ 883 if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) 884 goto not_supported; 885 886 if (should_fail_bio(bio)) 887 goto end_io; 888 889 if (bio->bi_partno) { 890 if (unlikely(blk_partition_remap(bio))) 891 goto end_io; 892 } else { 893 if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0))) 894 goto end_io; 895 if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk)))) 896 goto end_io; 897 } 898 899 /* 900 * Filter flush bio's early so that make_request based 901 * drivers without flush support don't have to worry 902 * about them. 903 */ 904 if (op_is_flush(bio->bi_opf) && 905 !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) { 906 bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA); 907 if (!nr_sectors) { 908 status = BLK_STS_OK; 909 goto end_io; 910 } 911 } 912 913 if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags)) 914 bio->bi_opf &= ~REQ_HIPRI; 915 916 switch (bio_op(bio)) { 917 case REQ_OP_DISCARD: 918 if (!blk_queue_discard(q)) 919 goto not_supported; 920 break; 921 case REQ_OP_SECURE_ERASE: 922 if (!blk_queue_secure_erase(q)) 923 goto not_supported; 924 break; 925 case REQ_OP_WRITE_SAME: 926 if (!q->limits.max_write_same_sectors) 927 goto not_supported; 928 break; 929 case REQ_OP_ZONE_RESET: 930 if (!blk_queue_is_zoned(q)) 931 goto not_supported; 932 break; 933 case REQ_OP_WRITE_ZEROES: 934 if (!q->limits.max_write_zeroes_sectors) 935 goto not_supported; 936 break; 937 default: 938 break; 939 } 940 941 /* 942 * Various block parts want %current->io_context and lazy ioc 943 * allocation ends up trading a lot of pain for a small amount of 944 * memory. Just allocate it upfront. This may fail and block 945 * layer knows how to live with it. 946 */ 947 create_io_context(GFP_ATOMIC, q->node); 948 949 if (!blkcg_bio_issue_check(q, bio)) 950 return false; 951 952 if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) { 953 trace_block_bio_queue(q, bio); 954 /* Now that enqueuing has been traced, we need to trace 955 * completion as well. 956 */ 957 bio_set_flag(bio, BIO_TRACE_COMPLETION); 958 } 959 return true; 960 961 not_supported: 962 status = BLK_STS_NOTSUPP; 963 end_io: 964 bio->bi_status = status; 965 bio_endio(bio); 966 return false; 967 } 968 969 /** 970 * generic_make_request - hand a buffer to its device driver for I/O 971 * @bio: The bio describing the location in memory and on the device. 972 * 973 * generic_make_request() is used to make I/O requests of block 974 * devices. It is passed a &struct bio, which describes the I/O that needs 975 * to be done. 976 * 977 * generic_make_request() does not return any status. The 978 * success/failure status of the request, along with notification of 979 * completion, is delivered asynchronously through the bio->bi_end_io 980 * function described (one day) else where. 981 * 982 * The caller of generic_make_request must make sure that bi_io_vec 983 * are set to describe the memory buffer, and that bi_dev and bi_sector are 984 * set to describe the device address, and the 985 * bi_end_io and optionally bi_private are set to describe how 986 * completion notification should be signaled. 987 * 988 * generic_make_request and the drivers it calls may use bi_next if this 989 * bio happens to be merged with someone else, and may resubmit the bio to 990 * a lower device by calling into generic_make_request recursively, which 991 * means the bio should NOT be touched after the call to ->make_request_fn. 992 */ 993 blk_qc_t generic_make_request(struct bio *bio) 994 { 995 /* 996 * bio_list_on_stack[0] contains bios submitted by the current 997 * make_request_fn. 998 * bio_list_on_stack[1] contains bios that were submitted before 999 * the current make_request_fn, but that haven't been processed 1000 * yet. 1001 */ 1002 struct bio_list bio_list_on_stack[2]; 1003 blk_qc_t ret = BLK_QC_T_NONE; 1004 1005 if (!generic_make_request_checks(bio)) 1006 goto out; 1007 1008 /* 1009 * We only want one ->make_request_fn to be active at a time, else 1010 * stack usage with stacked devices could be a problem. So use 1011 * current->bio_list to keep a list of requests submited by a 1012 * make_request_fn function. current->bio_list is also used as a 1013 * flag to say if generic_make_request is currently active in this 1014 * task or not. If it is NULL, then no make_request is active. If 1015 * it is non-NULL, then a make_request is active, and new requests 1016 * should be added at the tail 1017 */ 1018 if (current->bio_list) { 1019 bio_list_add(¤t->bio_list[0], bio); 1020 goto out; 1021 } 1022 1023 /* following loop may be a bit non-obvious, and so deserves some 1024 * explanation. 1025 * Before entering the loop, bio->bi_next is NULL (as all callers 1026 * ensure that) so we have a list with a single bio. 1027 * We pretend that we have just taken it off a longer list, so 1028 * we assign bio_list to a pointer to the bio_list_on_stack, 1029 * thus initialising the bio_list of new bios to be 1030 * added. ->make_request() may indeed add some more bios 1031 * through a recursive call to generic_make_request. If it 1032 * did, we find a non-NULL value in bio_list and re-enter the loop 1033 * from the top. In this case we really did just take the bio 1034 * of the top of the list (no pretending) and so remove it from 1035 * bio_list, and call into ->make_request() again. 1036 */ 1037 BUG_ON(bio->bi_next); 1038 bio_list_init(&bio_list_on_stack[0]); 1039 current->bio_list = bio_list_on_stack; 1040 do { 1041 struct request_queue *q = bio->bi_disk->queue; 1042 blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ? 1043 BLK_MQ_REQ_NOWAIT : 0; 1044 1045 if (likely(blk_queue_enter(q, flags) == 0)) { 1046 struct bio_list lower, same; 1047 1048 /* Create a fresh bio_list for all subordinate requests */ 1049 bio_list_on_stack[1] = bio_list_on_stack[0]; 1050 bio_list_init(&bio_list_on_stack[0]); 1051 ret = q->make_request_fn(q, bio); 1052 1053 blk_queue_exit(q); 1054 1055 /* sort new bios into those for a lower level 1056 * and those for the same level 1057 */ 1058 bio_list_init(&lower); 1059 bio_list_init(&same); 1060 while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL) 1061 if (q == bio->bi_disk->queue) 1062 bio_list_add(&same, bio); 1063 else 1064 bio_list_add(&lower, bio); 1065 /* now assemble so we handle the lowest level first */ 1066 bio_list_merge(&bio_list_on_stack[0], &lower); 1067 bio_list_merge(&bio_list_on_stack[0], &same); 1068 bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]); 1069 } else { 1070 if (unlikely(!blk_queue_dying(q) && 1071 (bio->bi_opf & REQ_NOWAIT))) 1072 bio_wouldblock_error(bio); 1073 else 1074 bio_io_error(bio); 1075 } 1076 bio = bio_list_pop(&bio_list_on_stack[0]); 1077 } while (bio); 1078 current->bio_list = NULL; /* deactivate */ 1079 1080 out: 1081 return ret; 1082 } 1083 EXPORT_SYMBOL(generic_make_request); 1084 1085 /** 1086 * direct_make_request - hand a buffer directly to its device driver for I/O 1087 * @bio: The bio describing the location in memory and on the device. 1088 * 1089 * This function behaves like generic_make_request(), but does not protect 1090 * against recursion. Must only be used if the called driver is known 1091 * to not call generic_make_request (or direct_make_request) again from 1092 * its make_request function. (Calling direct_make_request again from 1093 * a workqueue is perfectly fine as that doesn't recurse). 1094 */ 1095 blk_qc_t direct_make_request(struct bio *bio) 1096 { 1097 struct request_queue *q = bio->bi_disk->queue; 1098 bool nowait = bio->bi_opf & REQ_NOWAIT; 1099 blk_qc_t ret; 1100 1101 if (!generic_make_request_checks(bio)) 1102 return BLK_QC_T_NONE; 1103 1104 if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) { 1105 if (nowait && !blk_queue_dying(q)) 1106 bio->bi_status = BLK_STS_AGAIN; 1107 else 1108 bio->bi_status = BLK_STS_IOERR; 1109 bio_endio(bio); 1110 return BLK_QC_T_NONE; 1111 } 1112 1113 ret = q->make_request_fn(q, bio); 1114 blk_queue_exit(q); 1115 return ret; 1116 } 1117 EXPORT_SYMBOL_GPL(direct_make_request); 1118 1119 /** 1120 * submit_bio - submit a bio to the block device layer for I/O 1121 * @bio: The &struct bio which describes the I/O 1122 * 1123 * submit_bio() is very similar in purpose to generic_make_request(), and 1124 * uses that function to do most of the work. Both are fairly rough 1125 * interfaces; @bio must be presetup and ready for I/O. 1126 * 1127 */ 1128 blk_qc_t submit_bio(struct bio *bio) 1129 { 1130 /* 1131 * If it's a regular read/write or a barrier with data attached, 1132 * go through the normal accounting stuff before submission. 1133 */ 1134 if (bio_has_data(bio)) { 1135 unsigned int count; 1136 1137 if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME)) 1138 count = queue_logical_block_size(bio->bi_disk->queue) >> 9; 1139 else 1140 count = bio_sectors(bio); 1141 1142 if (op_is_write(bio_op(bio))) { 1143 count_vm_events(PGPGOUT, count); 1144 } else { 1145 task_io_account_read(bio->bi_iter.bi_size); 1146 count_vm_events(PGPGIN, count); 1147 } 1148 1149 if (unlikely(block_dump)) { 1150 char b[BDEVNAME_SIZE]; 1151 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1152 current->comm, task_pid_nr(current), 1153 op_is_write(bio_op(bio)) ? "WRITE" : "READ", 1154 (unsigned long long)bio->bi_iter.bi_sector, 1155 bio_devname(bio, b), count); 1156 } 1157 } 1158 1159 return generic_make_request(bio); 1160 } 1161 EXPORT_SYMBOL(submit_bio); 1162 1163 /** 1164 * blk_cloned_rq_check_limits - Helper function to check a cloned request 1165 * for new the queue limits 1166 * @q: the queue 1167 * @rq: the request being checked 1168 * 1169 * Description: 1170 * @rq may have been made based on weaker limitations of upper-level queues 1171 * in request stacking drivers, and it may violate the limitation of @q. 1172 * Since the block layer and the underlying device driver trust @rq 1173 * after it is inserted to @q, it should be checked against @q before 1174 * the insertion using this generic function. 1175 * 1176 * Request stacking drivers like request-based dm may change the queue 1177 * limits when retrying requests on other queues. Those requests need 1178 * to be checked against the new queue limits again during dispatch. 1179 */ 1180 static int blk_cloned_rq_check_limits(struct request_queue *q, 1181 struct request *rq) 1182 { 1183 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) { 1184 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n", 1185 __func__, blk_rq_sectors(rq), 1186 blk_queue_get_max_sectors(q, req_op(rq))); 1187 return -EIO; 1188 } 1189 1190 /* 1191 * queue's settings related to segment counting like q->bounce_pfn 1192 * may differ from that of other stacking queues. 1193 * Recalculate it to check the request correctly on this queue's 1194 * limitation. 1195 */ 1196 rq->nr_phys_segments = blk_recalc_rq_segments(rq); 1197 if (rq->nr_phys_segments > queue_max_segments(q)) { 1198 printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n", 1199 __func__, rq->nr_phys_segments, queue_max_segments(q)); 1200 return -EIO; 1201 } 1202 1203 return 0; 1204 } 1205 1206 /** 1207 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1208 * @q: the queue to submit the request 1209 * @rq: the request being queued 1210 */ 1211 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1212 { 1213 if (blk_cloned_rq_check_limits(q, rq)) 1214 return BLK_STS_IOERR; 1215 1216 if (rq->rq_disk && 1217 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1218 return BLK_STS_IOERR; 1219 1220 if (blk_queue_io_stat(q)) 1221 blk_account_io_start(rq, true); 1222 1223 /* 1224 * Since we have a scheduler attached on the top device, 1225 * bypass a potential scheduler on the bottom device for 1226 * insert. 1227 */ 1228 return blk_mq_request_issue_directly(rq, true); 1229 } 1230 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1231 1232 /** 1233 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1234 * @rq: request to examine 1235 * 1236 * Description: 1237 * A request could be merge of IOs which require different failure 1238 * handling. This function determines the number of bytes which 1239 * can be failed from the beginning of the request without 1240 * crossing into area which need to be retried further. 1241 * 1242 * Return: 1243 * The number of bytes to fail. 1244 */ 1245 unsigned int blk_rq_err_bytes(const struct request *rq) 1246 { 1247 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1248 unsigned int bytes = 0; 1249 struct bio *bio; 1250 1251 if (!(rq->rq_flags & RQF_MIXED_MERGE)) 1252 return blk_rq_bytes(rq); 1253 1254 /* 1255 * Currently the only 'mixing' which can happen is between 1256 * different fastfail types. We can safely fail portions 1257 * which have all the failfast bits that the first one has - 1258 * the ones which are at least as eager to fail as the first 1259 * one. 1260 */ 1261 for (bio = rq->bio; bio; bio = bio->bi_next) { 1262 if ((bio->bi_opf & ff) != ff) 1263 break; 1264 bytes += bio->bi_iter.bi_size; 1265 } 1266 1267 /* this could lead to infinite loop */ 1268 BUG_ON(blk_rq_bytes(rq) && !bytes); 1269 return bytes; 1270 } 1271 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1272 1273 void blk_account_io_completion(struct request *req, unsigned int bytes) 1274 { 1275 if (blk_do_io_stat(req)) { 1276 const int sgrp = op_stat_group(req_op(req)); 1277 struct hd_struct *part; 1278 1279 part_stat_lock(); 1280 part = req->part; 1281 part_stat_add(part, sectors[sgrp], bytes >> 9); 1282 part_stat_unlock(); 1283 } 1284 } 1285 1286 void blk_account_io_done(struct request *req, u64 now) 1287 { 1288 /* 1289 * Account IO completion. flush_rq isn't accounted as a 1290 * normal IO on queueing nor completion. Accounting the 1291 * containing request is enough. 1292 */ 1293 if (blk_do_io_stat(req) && !(req->rq_flags & RQF_FLUSH_SEQ)) { 1294 const int sgrp = op_stat_group(req_op(req)); 1295 struct hd_struct *part; 1296 1297 part_stat_lock(); 1298 part = req->part; 1299 1300 update_io_ticks(part, jiffies); 1301 part_stat_inc(part, ios[sgrp]); 1302 part_stat_add(part, nsecs[sgrp], now - req->start_time_ns); 1303 part_stat_add(part, time_in_queue, nsecs_to_jiffies64(now - req->start_time_ns)); 1304 part_dec_in_flight(req->q, part, rq_data_dir(req)); 1305 1306 hd_struct_put(part); 1307 part_stat_unlock(); 1308 } 1309 } 1310 1311 void blk_account_io_start(struct request *rq, bool new_io) 1312 { 1313 struct hd_struct *part; 1314 int rw = rq_data_dir(rq); 1315 1316 if (!blk_do_io_stat(rq)) 1317 return; 1318 1319 part_stat_lock(); 1320 1321 if (!new_io) { 1322 part = rq->part; 1323 part_stat_inc(part, merges[rw]); 1324 } else { 1325 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 1326 if (!hd_struct_try_get(part)) { 1327 /* 1328 * The partition is already being removed, 1329 * the request will be accounted on the disk only 1330 * 1331 * We take a reference on disk->part0 although that 1332 * partition will never be deleted, so we can treat 1333 * it as any other partition. 1334 */ 1335 part = &rq->rq_disk->part0; 1336 hd_struct_get(part); 1337 } 1338 part_inc_in_flight(rq->q, part, rw); 1339 rq->part = part; 1340 } 1341 1342 update_io_ticks(part, jiffies); 1343 1344 part_stat_unlock(); 1345 } 1346 1347 /* 1348 * Steal bios from a request and add them to a bio list. 1349 * The request must not have been partially completed before. 1350 */ 1351 void blk_steal_bios(struct bio_list *list, struct request *rq) 1352 { 1353 if (rq->bio) { 1354 if (list->tail) 1355 list->tail->bi_next = rq->bio; 1356 else 1357 list->head = rq->bio; 1358 list->tail = rq->biotail; 1359 1360 rq->bio = NULL; 1361 rq->biotail = NULL; 1362 } 1363 1364 rq->__data_len = 0; 1365 } 1366 EXPORT_SYMBOL_GPL(blk_steal_bios); 1367 1368 /** 1369 * blk_update_request - Special helper function for request stacking drivers 1370 * @req: the request being processed 1371 * @error: block status code 1372 * @nr_bytes: number of bytes to complete @req 1373 * 1374 * Description: 1375 * Ends I/O on a number of bytes attached to @req, but doesn't complete 1376 * the request structure even if @req doesn't have leftover. 1377 * If @req has leftover, sets it up for the next range of segments. 1378 * 1379 * This special helper function is only for request stacking drivers 1380 * (e.g. request-based dm) so that they can handle partial completion. 1381 * Actual device drivers should use blk_mq_end_request instead. 1382 * 1383 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 1384 * %false return from this function. 1385 * 1386 * Note: 1387 * The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both 1388 * blk_rq_bytes() and in blk_update_request(). 1389 * 1390 * Return: 1391 * %false - this request doesn't have any more data 1392 * %true - this request has more data 1393 **/ 1394 bool blk_update_request(struct request *req, blk_status_t error, 1395 unsigned int nr_bytes) 1396 { 1397 int total_bytes; 1398 1399 trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes); 1400 1401 if (!req->bio) 1402 return false; 1403 1404 if (unlikely(error && !blk_rq_is_passthrough(req) && 1405 !(req->rq_flags & RQF_QUIET))) 1406 print_req_error(req, error, __func__); 1407 1408 blk_account_io_completion(req, nr_bytes); 1409 1410 total_bytes = 0; 1411 while (req->bio) { 1412 struct bio *bio = req->bio; 1413 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes); 1414 1415 if (bio_bytes == bio->bi_iter.bi_size) 1416 req->bio = bio->bi_next; 1417 1418 /* Completion has already been traced */ 1419 bio_clear_flag(bio, BIO_TRACE_COMPLETION); 1420 req_bio_endio(req, bio, bio_bytes, error); 1421 1422 total_bytes += bio_bytes; 1423 nr_bytes -= bio_bytes; 1424 1425 if (!nr_bytes) 1426 break; 1427 } 1428 1429 /* 1430 * completely done 1431 */ 1432 if (!req->bio) { 1433 /* 1434 * Reset counters so that the request stacking driver 1435 * can find how many bytes remain in the request 1436 * later. 1437 */ 1438 req->__data_len = 0; 1439 return false; 1440 } 1441 1442 req->__data_len -= total_bytes; 1443 1444 /* update sector only for requests with clear definition of sector */ 1445 if (!blk_rq_is_passthrough(req)) 1446 req->__sector += total_bytes >> 9; 1447 1448 /* mixed attributes always follow the first bio */ 1449 if (req->rq_flags & RQF_MIXED_MERGE) { 1450 req->cmd_flags &= ~REQ_FAILFAST_MASK; 1451 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK; 1452 } 1453 1454 if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) { 1455 /* 1456 * If total number of sectors is less than the first segment 1457 * size, something has gone terribly wrong. 1458 */ 1459 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 1460 blk_dump_rq_flags(req, "request botched"); 1461 req->__data_len = blk_rq_cur_bytes(req); 1462 } 1463 1464 /* recalculate the number of segments */ 1465 req->nr_phys_segments = blk_recalc_rq_segments(req); 1466 } 1467 1468 return true; 1469 } 1470 EXPORT_SYMBOL_GPL(blk_update_request); 1471 1472 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1473 /** 1474 * rq_flush_dcache_pages - Helper function to flush all pages in a request 1475 * @rq: the request to be flushed 1476 * 1477 * Description: 1478 * Flush all pages in @rq. 1479 */ 1480 void rq_flush_dcache_pages(struct request *rq) 1481 { 1482 struct req_iterator iter; 1483 struct bio_vec bvec; 1484 1485 rq_for_each_segment(bvec, rq, iter) 1486 flush_dcache_page(bvec.bv_page); 1487 } 1488 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 1489 #endif 1490 1491 /** 1492 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 1493 * @q : the queue of the device being checked 1494 * 1495 * Description: 1496 * Check if underlying low-level drivers of a device are busy. 1497 * If the drivers want to export their busy state, they must set own 1498 * exporting function using blk_queue_lld_busy() first. 1499 * 1500 * Basically, this function is used only by request stacking drivers 1501 * to stop dispatching requests to underlying devices when underlying 1502 * devices are busy. This behavior helps more I/O merging on the queue 1503 * of the request stacking driver and prevents I/O throughput regression 1504 * on burst I/O load. 1505 * 1506 * Return: 1507 * 0 - Not busy (The request stacking driver should dispatch request) 1508 * 1 - Busy (The request stacking driver should stop dispatching request) 1509 */ 1510 int blk_lld_busy(struct request_queue *q) 1511 { 1512 if (queue_is_mq(q) && q->mq_ops->busy) 1513 return q->mq_ops->busy(q); 1514 1515 return 0; 1516 } 1517 EXPORT_SYMBOL_GPL(blk_lld_busy); 1518 1519 /** 1520 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 1521 * @rq: the clone request to be cleaned up 1522 * 1523 * Description: 1524 * Free all bios in @rq for a cloned request. 1525 */ 1526 void blk_rq_unprep_clone(struct request *rq) 1527 { 1528 struct bio *bio; 1529 1530 while ((bio = rq->bio) != NULL) { 1531 rq->bio = bio->bi_next; 1532 1533 bio_put(bio); 1534 } 1535 } 1536 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 1537 1538 /* 1539 * Copy attributes of the original request to the clone request. 1540 * The actual data parts (e.g. ->cmd, ->sense) are not copied. 1541 */ 1542 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 1543 { 1544 dst->__sector = blk_rq_pos(src); 1545 dst->__data_len = blk_rq_bytes(src); 1546 if (src->rq_flags & RQF_SPECIAL_PAYLOAD) { 1547 dst->rq_flags |= RQF_SPECIAL_PAYLOAD; 1548 dst->special_vec = src->special_vec; 1549 } 1550 dst->nr_phys_segments = src->nr_phys_segments; 1551 dst->ioprio = src->ioprio; 1552 dst->extra_len = src->extra_len; 1553 } 1554 1555 /** 1556 * blk_rq_prep_clone - Helper function to setup clone request 1557 * @rq: the request to be setup 1558 * @rq_src: original request to be cloned 1559 * @bs: bio_set that bios for clone are allocated from 1560 * @gfp_mask: memory allocation mask for bio 1561 * @bio_ctr: setup function to be called for each clone bio. 1562 * Returns %0 for success, non %0 for failure. 1563 * @data: private data to be passed to @bio_ctr 1564 * 1565 * Description: 1566 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 1567 * The actual data parts of @rq_src (e.g. ->cmd, ->sense) 1568 * are not copied, and copying such parts is the caller's responsibility. 1569 * Also, pages which the original bios are pointing to are not copied 1570 * and the cloned bios just point same pages. 1571 * So cloned bios must be completed before original bios, which means 1572 * the caller must complete @rq before @rq_src. 1573 */ 1574 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 1575 struct bio_set *bs, gfp_t gfp_mask, 1576 int (*bio_ctr)(struct bio *, struct bio *, void *), 1577 void *data) 1578 { 1579 struct bio *bio, *bio_src; 1580 1581 if (!bs) 1582 bs = &fs_bio_set; 1583 1584 __rq_for_each_bio(bio_src, rq_src) { 1585 bio = bio_clone_fast(bio_src, gfp_mask, bs); 1586 if (!bio) 1587 goto free_and_out; 1588 1589 if (bio_ctr && bio_ctr(bio, bio_src, data)) 1590 goto free_and_out; 1591 1592 if (rq->bio) { 1593 rq->biotail->bi_next = bio; 1594 rq->biotail = bio; 1595 } else 1596 rq->bio = rq->biotail = bio; 1597 } 1598 1599 __blk_rq_prep_clone(rq, rq_src); 1600 1601 return 0; 1602 1603 free_and_out: 1604 if (bio) 1605 bio_put(bio); 1606 blk_rq_unprep_clone(rq); 1607 1608 return -ENOMEM; 1609 } 1610 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 1611 1612 int kblockd_schedule_work(struct work_struct *work) 1613 { 1614 return queue_work(kblockd_workqueue, work); 1615 } 1616 EXPORT_SYMBOL(kblockd_schedule_work); 1617 1618 int kblockd_schedule_work_on(int cpu, struct work_struct *work) 1619 { 1620 return queue_work_on(cpu, kblockd_workqueue, work); 1621 } 1622 EXPORT_SYMBOL(kblockd_schedule_work_on); 1623 1624 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, 1625 unsigned long delay) 1626 { 1627 return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay); 1628 } 1629 EXPORT_SYMBOL(kblockd_mod_delayed_work_on); 1630 1631 /** 1632 * blk_start_plug - initialize blk_plug and track it inside the task_struct 1633 * @plug: The &struct blk_plug that needs to be initialized 1634 * 1635 * Description: 1636 * blk_start_plug() indicates to the block layer an intent by the caller 1637 * to submit multiple I/O requests in a batch. The block layer may use 1638 * this hint to defer submitting I/Os from the caller until blk_finish_plug() 1639 * is called. However, the block layer may choose to submit requests 1640 * before a call to blk_finish_plug() if the number of queued I/Os 1641 * exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than 1642 * %BLK_PLUG_FLUSH_SIZE. The queued I/Os may also be submitted early if 1643 * the task schedules (see below). 1644 * 1645 * Tracking blk_plug inside the task_struct will help with auto-flushing the 1646 * pending I/O should the task end up blocking between blk_start_plug() and 1647 * blk_finish_plug(). This is important from a performance perspective, but 1648 * also ensures that we don't deadlock. For instance, if the task is blocking 1649 * for a memory allocation, memory reclaim could end up wanting to free a 1650 * page belonging to that request that is currently residing in our private 1651 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 1652 * this kind of deadlock. 1653 */ 1654 void blk_start_plug(struct blk_plug *plug) 1655 { 1656 struct task_struct *tsk = current; 1657 1658 /* 1659 * If this is a nested plug, don't actually assign it. 1660 */ 1661 if (tsk->plug) 1662 return; 1663 1664 INIT_LIST_HEAD(&plug->mq_list); 1665 INIT_LIST_HEAD(&plug->cb_list); 1666 plug->rq_count = 0; 1667 plug->multiple_queues = false; 1668 1669 /* 1670 * Store ordering should not be needed here, since a potential 1671 * preempt will imply a full memory barrier 1672 */ 1673 tsk->plug = plug; 1674 } 1675 EXPORT_SYMBOL(blk_start_plug); 1676 1677 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 1678 { 1679 LIST_HEAD(callbacks); 1680 1681 while (!list_empty(&plug->cb_list)) { 1682 list_splice_init(&plug->cb_list, &callbacks); 1683 1684 while (!list_empty(&callbacks)) { 1685 struct blk_plug_cb *cb = list_first_entry(&callbacks, 1686 struct blk_plug_cb, 1687 list); 1688 list_del(&cb->list); 1689 cb->callback(cb, from_schedule); 1690 } 1691 } 1692 } 1693 1694 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 1695 int size) 1696 { 1697 struct blk_plug *plug = current->plug; 1698 struct blk_plug_cb *cb; 1699 1700 if (!plug) 1701 return NULL; 1702 1703 list_for_each_entry(cb, &plug->cb_list, list) 1704 if (cb->callback == unplug && cb->data == data) 1705 return cb; 1706 1707 /* Not currently on the callback list */ 1708 BUG_ON(size < sizeof(*cb)); 1709 cb = kzalloc(size, GFP_ATOMIC); 1710 if (cb) { 1711 cb->data = data; 1712 cb->callback = unplug; 1713 list_add(&cb->list, &plug->cb_list); 1714 } 1715 return cb; 1716 } 1717 EXPORT_SYMBOL(blk_check_plugged); 1718 1719 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 1720 { 1721 flush_plug_callbacks(plug, from_schedule); 1722 1723 if (!list_empty(&plug->mq_list)) 1724 blk_mq_flush_plug_list(plug, from_schedule); 1725 } 1726 1727 /** 1728 * blk_finish_plug - mark the end of a batch of submitted I/O 1729 * @plug: The &struct blk_plug passed to blk_start_plug() 1730 * 1731 * Description: 1732 * Indicate that a batch of I/O submissions is complete. This function 1733 * must be paired with an initial call to blk_start_plug(). The intent 1734 * is to allow the block layer to optimize I/O submission. See the 1735 * documentation for blk_start_plug() for more information. 1736 */ 1737 void blk_finish_plug(struct blk_plug *plug) 1738 { 1739 if (plug != current->plug) 1740 return; 1741 blk_flush_plug_list(plug, false); 1742 1743 current->plug = NULL; 1744 } 1745 EXPORT_SYMBOL(blk_finish_plug); 1746 1747 int __init blk_dev_init(void) 1748 { 1749 BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS)); 1750 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1751 FIELD_SIZEOF(struct request, cmd_flags)); 1752 BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 * 1753 FIELD_SIZEOF(struct bio, bi_opf)); 1754 1755 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 1756 kblockd_workqueue = alloc_workqueue("kblockd", 1757 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 1758 if (!kblockd_workqueue) 1759 panic("Failed to create kblockd\n"); 1760 1761 blk_requestq_cachep = kmem_cache_create("request_queue", 1762 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 1763 1764 #ifdef CONFIG_DEBUG_FS 1765 blk_debugfs_root = debugfs_create_dir("block", NULL); 1766 #endif 1767 1768 return 0; 1769 } 1770