xref: /openbmc/linux/block/blk-core.c (revision 0b26ca68)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/blk-pm.h>
22 #include <linux/highmem.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/string.h>
27 #include <linux/init.h>
28 #include <linux/completion.h>
29 #include <linux/slab.h>
30 #include <linux/swap.h>
31 #include <linux/writeback.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/fault-inject.h>
34 #include <linux/list_sort.h>
35 #include <linux/delay.h>
36 #include <linux/ratelimit.h>
37 #include <linux/pm_runtime.h>
38 #include <linux/blk-cgroup.h>
39 #include <linux/t10-pi.h>
40 #include <linux/debugfs.h>
41 #include <linux/bpf.h>
42 #include <linux/psi.h>
43 #include <linux/sched/sysctl.h>
44 #include <linux/blk-crypto.h>
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/block.h>
48 
49 #include "blk.h"
50 #include "blk-mq.h"
51 #include "blk-mq-sched.h"
52 #include "blk-pm.h"
53 #include "blk-rq-qos.h"
54 
55 struct dentry *blk_debugfs_root;
56 
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
60 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
61 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
62 
63 DEFINE_IDA(blk_queue_ida);
64 
65 /*
66  * For queue allocation
67  */
68 struct kmem_cache *blk_requestq_cachep;
69 
70 /*
71  * Controlling structure to kblockd
72  */
73 static struct workqueue_struct *kblockd_workqueue;
74 
75 /**
76  * blk_queue_flag_set - atomically set a queue flag
77  * @flag: flag to be set
78  * @q: request queue
79  */
80 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
81 {
82 	set_bit(flag, &q->queue_flags);
83 }
84 EXPORT_SYMBOL(blk_queue_flag_set);
85 
86 /**
87  * blk_queue_flag_clear - atomically clear a queue flag
88  * @flag: flag to be cleared
89  * @q: request queue
90  */
91 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
92 {
93 	clear_bit(flag, &q->queue_flags);
94 }
95 EXPORT_SYMBOL(blk_queue_flag_clear);
96 
97 /**
98  * blk_queue_flag_test_and_set - atomically test and set a queue flag
99  * @flag: flag to be set
100  * @q: request queue
101  *
102  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
103  * the flag was already set.
104  */
105 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
106 {
107 	return test_and_set_bit(flag, &q->queue_flags);
108 }
109 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
110 
111 void blk_rq_init(struct request_queue *q, struct request *rq)
112 {
113 	memset(rq, 0, sizeof(*rq));
114 
115 	INIT_LIST_HEAD(&rq->queuelist);
116 	rq->q = q;
117 	rq->__sector = (sector_t) -1;
118 	INIT_HLIST_NODE(&rq->hash);
119 	RB_CLEAR_NODE(&rq->rb_node);
120 	rq->tag = BLK_MQ_NO_TAG;
121 	rq->internal_tag = BLK_MQ_NO_TAG;
122 	rq->start_time_ns = ktime_get_ns();
123 	rq->part = NULL;
124 	refcount_set(&rq->ref, 1);
125 	blk_crypto_rq_set_defaults(rq);
126 }
127 EXPORT_SYMBOL(blk_rq_init);
128 
129 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
130 static const char *const blk_op_name[] = {
131 	REQ_OP_NAME(READ),
132 	REQ_OP_NAME(WRITE),
133 	REQ_OP_NAME(FLUSH),
134 	REQ_OP_NAME(DISCARD),
135 	REQ_OP_NAME(SECURE_ERASE),
136 	REQ_OP_NAME(ZONE_RESET),
137 	REQ_OP_NAME(ZONE_RESET_ALL),
138 	REQ_OP_NAME(ZONE_OPEN),
139 	REQ_OP_NAME(ZONE_CLOSE),
140 	REQ_OP_NAME(ZONE_FINISH),
141 	REQ_OP_NAME(ZONE_APPEND),
142 	REQ_OP_NAME(WRITE_SAME),
143 	REQ_OP_NAME(WRITE_ZEROES),
144 	REQ_OP_NAME(SCSI_IN),
145 	REQ_OP_NAME(SCSI_OUT),
146 	REQ_OP_NAME(DRV_IN),
147 	REQ_OP_NAME(DRV_OUT),
148 };
149 #undef REQ_OP_NAME
150 
151 /**
152  * blk_op_str - Return string XXX in the REQ_OP_XXX.
153  * @op: REQ_OP_XXX.
154  *
155  * Description: Centralize block layer function to convert REQ_OP_XXX into
156  * string format. Useful in the debugging and tracing bio or request. For
157  * invalid REQ_OP_XXX it returns string "UNKNOWN".
158  */
159 inline const char *blk_op_str(unsigned int op)
160 {
161 	const char *op_str = "UNKNOWN";
162 
163 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
164 		op_str = blk_op_name[op];
165 
166 	return op_str;
167 }
168 EXPORT_SYMBOL_GPL(blk_op_str);
169 
170 static const struct {
171 	int		errno;
172 	const char	*name;
173 } blk_errors[] = {
174 	[BLK_STS_OK]		= { 0,		"" },
175 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
176 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
177 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
178 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
179 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
180 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
181 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
182 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
183 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
184 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
185 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
186 
187 	/* device mapper special case, should not leak out: */
188 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
189 
190 	/* zone device specific errors */
191 	[BLK_STS_ZONE_OPEN_RESOURCE]	= { -ETOOMANYREFS, "open zones exceeded" },
192 	[BLK_STS_ZONE_ACTIVE_RESOURCE]	= { -EOVERFLOW, "active zones exceeded" },
193 
194 	/* everything else not covered above: */
195 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
196 };
197 
198 blk_status_t errno_to_blk_status(int errno)
199 {
200 	int i;
201 
202 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
203 		if (blk_errors[i].errno == errno)
204 			return (__force blk_status_t)i;
205 	}
206 
207 	return BLK_STS_IOERR;
208 }
209 EXPORT_SYMBOL_GPL(errno_to_blk_status);
210 
211 int blk_status_to_errno(blk_status_t status)
212 {
213 	int idx = (__force int)status;
214 
215 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
216 		return -EIO;
217 	return blk_errors[idx].errno;
218 }
219 EXPORT_SYMBOL_GPL(blk_status_to_errno);
220 
221 static void print_req_error(struct request *req, blk_status_t status,
222 		const char *caller)
223 {
224 	int idx = (__force int)status;
225 
226 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
227 		return;
228 
229 	printk_ratelimited(KERN_ERR
230 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
231 		"phys_seg %u prio class %u\n",
232 		caller, blk_errors[idx].name,
233 		req->rq_disk ? req->rq_disk->disk_name : "?",
234 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
235 		req->cmd_flags & ~REQ_OP_MASK,
236 		req->nr_phys_segments,
237 		IOPRIO_PRIO_CLASS(req->ioprio));
238 }
239 
240 static void req_bio_endio(struct request *rq, struct bio *bio,
241 			  unsigned int nbytes, blk_status_t error)
242 {
243 	if (error)
244 		bio->bi_status = error;
245 
246 	if (unlikely(rq->rq_flags & RQF_QUIET))
247 		bio_set_flag(bio, BIO_QUIET);
248 
249 	bio_advance(bio, nbytes);
250 
251 	if (req_op(rq) == REQ_OP_ZONE_APPEND && error == BLK_STS_OK) {
252 		/*
253 		 * Partial zone append completions cannot be supported as the
254 		 * BIO fragments may end up not being written sequentially.
255 		 */
256 		if (bio->bi_iter.bi_size)
257 			bio->bi_status = BLK_STS_IOERR;
258 		else
259 			bio->bi_iter.bi_sector = rq->__sector;
260 	}
261 
262 	/* don't actually finish bio if it's part of flush sequence */
263 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
264 		bio_endio(bio);
265 }
266 
267 void blk_dump_rq_flags(struct request *rq, char *msg)
268 {
269 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
270 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
271 		(unsigned long long) rq->cmd_flags);
272 
273 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
274 	       (unsigned long long)blk_rq_pos(rq),
275 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
276 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
277 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
278 }
279 EXPORT_SYMBOL(blk_dump_rq_flags);
280 
281 /**
282  * blk_sync_queue - cancel any pending callbacks on a queue
283  * @q: the queue
284  *
285  * Description:
286  *     The block layer may perform asynchronous callback activity
287  *     on a queue, such as calling the unplug function after a timeout.
288  *     A block device may call blk_sync_queue to ensure that any
289  *     such activity is cancelled, thus allowing it to release resources
290  *     that the callbacks might use. The caller must already have made sure
291  *     that its ->submit_bio will not re-add plugging prior to calling
292  *     this function.
293  *
294  *     This function does not cancel any asynchronous activity arising
295  *     out of elevator or throttling code. That would require elevator_exit()
296  *     and blkcg_exit_queue() to be called with queue lock initialized.
297  *
298  */
299 void blk_sync_queue(struct request_queue *q)
300 {
301 	del_timer_sync(&q->timeout);
302 	cancel_work_sync(&q->timeout_work);
303 }
304 EXPORT_SYMBOL(blk_sync_queue);
305 
306 /**
307  * blk_set_pm_only - increment pm_only counter
308  * @q: request queue pointer
309  */
310 void blk_set_pm_only(struct request_queue *q)
311 {
312 	atomic_inc(&q->pm_only);
313 }
314 EXPORT_SYMBOL_GPL(blk_set_pm_only);
315 
316 void blk_clear_pm_only(struct request_queue *q)
317 {
318 	int pm_only;
319 
320 	pm_only = atomic_dec_return(&q->pm_only);
321 	WARN_ON_ONCE(pm_only < 0);
322 	if (pm_only == 0)
323 		wake_up_all(&q->mq_freeze_wq);
324 }
325 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
326 
327 /**
328  * blk_put_queue - decrement the request_queue refcount
329  * @q: the request_queue structure to decrement the refcount for
330  *
331  * Decrements the refcount of the request_queue kobject. When this reaches 0
332  * we'll have blk_release_queue() called.
333  *
334  * Context: Any context, but the last reference must not be dropped from
335  *          atomic context.
336  */
337 void blk_put_queue(struct request_queue *q)
338 {
339 	kobject_put(&q->kobj);
340 }
341 EXPORT_SYMBOL(blk_put_queue);
342 
343 void blk_set_queue_dying(struct request_queue *q)
344 {
345 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
346 
347 	/*
348 	 * When queue DYING flag is set, we need to block new req
349 	 * entering queue, so we call blk_freeze_queue_start() to
350 	 * prevent I/O from crossing blk_queue_enter().
351 	 */
352 	blk_freeze_queue_start(q);
353 
354 	if (queue_is_mq(q))
355 		blk_mq_wake_waiters(q);
356 
357 	/* Make blk_queue_enter() reexamine the DYING flag. */
358 	wake_up_all(&q->mq_freeze_wq);
359 }
360 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
361 
362 /**
363  * blk_cleanup_queue - shutdown a request queue
364  * @q: request queue to shutdown
365  *
366  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
367  * put it.  All future requests will be failed immediately with -ENODEV.
368  *
369  * Context: can sleep
370  */
371 void blk_cleanup_queue(struct request_queue *q)
372 {
373 	/* cannot be called from atomic context */
374 	might_sleep();
375 
376 	WARN_ON_ONCE(blk_queue_registered(q));
377 
378 	/* mark @q DYING, no new request or merges will be allowed afterwards */
379 	blk_set_queue_dying(q);
380 
381 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
382 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
383 
384 	/*
385 	 * Drain all requests queued before DYING marking. Set DEAD flag to
386 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
387 	 * after draining finished.
388 	 */
389 	blk_freeze_queue(q);
390 
391 	rq_qos_exit(q);
392 
393 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
394 
395 	/* for synchronous bio-based driver finish in-flight integrity i/o */
396 	blk_flush_integrity();
397 
398 	/* @q won't process any more request, flush async actions */
399 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
400 	blk_sync_queue(q);
401 
402 	if (queue_is_mq(q))
403 		blk_mq_exit_queue(q);
404 
405 	/*
406 	 * In theory, request pool of sched_tags belongs to request queue.
407 	 * However, the current implementation requires tag_set for freeing
408 	 * requests, so free the pool now.
409 	 *
410 	 * Queue has become frozen, there can't be any in-queue requests, so
411 	 * it is safe to free requests now.
412 	 */
413 	mutex_lock(&q->sysfs_lock);
414 	if (q->elevator)
415 		blk_mq_sched_free_requests(q);
416 	mutex_unlock(&q->sysfs_lock);
417 
418 	percpu_ref_exit(&q->q_usage_counter);
419 
420 	/* @q is and will stay empty, shutdown and put */
421 	blk_put_queue(q);
422 }
423 EXPORT_SYMBOL(blk_cleanup_queue);
424 
425 /**
426  * blk_queue_enter() - try to increase q->q_usage_counter
427  * @q: request queue pointer
428  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PM
429  */
430 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
431 {
432 	const bool pm = flags & BLK_MQ_REQ_PM;
433 
434 	while (true) {
435 		bool success = false;
436 
437 		rcu_read_lock();
438 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
439 			/*
440 			 * The code that increments the pm_only counter is
441 			 * responsible for ensuring that that counter is
442 			 * globally visible before the queue is unfrozen.
443 			 */
444 			if ((pm && queue_rpm_status(q) != RPM_SUSPENDED) ||
445 			    !blk_queue_pm_only(q)) {
446 				success = true;
447 			} else {
448 				percpu_ref_put(&q->q_usage_counter);
449 			}
450 		}
451 		rcu_read_unlock();
452 
453 		if (success)
454 			return 0;
455 
456 		if (flags & BLK_MQ_REQ_NOWAIT)
457 			return -EBUSY;
458 
459 		/*
460 		 * read pair of barrier in blk_freeze_queue_start(),
461 		 * we need to order reading __PERCPU_REF_DEAD flag of
462 		 * .q_usage_counter and reading .mq_freeze_depth or
463 		 * queue dying flag, otherwise the following wait may
464 		 * never return if the two reads are reordered.
465 		 */
466 		smp_rmb();
467 
468 		wait_event(q->mq_freeze_wq,
469 			   (!q->mq_freeze_depth &&
470 			    blk_pm_resume_queue(pm, q)) ||
471 			   blk_queue_dying(q));
472 		if (blk_queue_dying(q))
473 			return -ENODEV;
474 	}
475 }
476 
477 static inline int bio_queue_enter(struct bio *bio)
478 {
479 	struct request_queue *q = bio->bi_disk->queue;
480 	bool nowait = bio->bi_opf & REQ_NOWAIT;
481 	int ret;
482 
483 	ret = blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0);
484 	if (unlikely(ret)) {
485 		if (nowait && !blk_queue_dying(q))
486 			bio_wouldblock_error(bio);
487 		else
488 			bio_io_error(bio);
489 	}
490 
491 	return ret;
492 }
493 
494 void blk_queue_exit(struct request_queue *q)
495 {
496 	percpu_ref_put(&q->q_usage_counter);
497 }
498 
499 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
500 {
501 	struct request_queue *q =
502 		container_of(ref, struct request_queue, q_usage_counter);
503 
504 	wake_up_all(&q->mq_freeze_wq);
505 }
506 
507 static void blk_rq_timed_out_timer(struct timer_list *t)
508 {
509 	struct request_queue *q = from_timer(q, t, timeout);
510 
511 	kblockd_schedule_work(&q->timeout_work);
512 }
513 
514 static void blk_timeout_work(struct work_struct *work)
515 {
516 }
517 
518 struct request_queue *blk_alloc_queue(int node_id)
519 {
520 	struct request_queue *q;
521 	int ret;
522 
523 	q = kmem_cache_alloc_node(blk_requestq_cachep,
524 				GFP_KERNEL | __GFP_ZERO, node_id);
525 	if (!q)
526 		return NULL;
527 
528 	q->last_merge = NULL;
529 
530 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
531 	if (q->id < 0)
532 		goto fail_q;
533 
534 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
535 	if (ret)
536 		goto fail_id;
537 
538 	q->backing_dev_info = bdi_alloc(node_id);
539 	if (!q->backing_dev_info)
540 		goto fail_split;
541 
542 	q->stats = blk_alloc_queue_stats();
543 	if (!q->stats)
544 		goto fail_stats;
545 
546 	q->node = node_id;
547 
548 	atomic_set(&q->nr_active_requests_shared_sbitmap, 0);
549 
550 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
551 		    laptop_mode_timer_fn, 0);
552 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
553 	INIT_WORK(&q->timeout_work, blk_timeout_work);
554 	INIT_LIST_HEAD(&q->icq_list);
555 #ifdef CONFIG_BLK_CGROUP
556 	INIT_LIST_HEAD(&q->blkg_list);
557 #endif
558 
559 	kobject_init(&q->kobj, &blk_queue_ktype);
560 
561 	mutex_init(&q->debugfs_mutex);
562 	mutex_init(&q->sysfs_lock);
563 	mutex_init(&q->sysfs_dir_lock);
564 	spin_lock_init(&q->queue_lock);
565 
566 	init_waitqueue_head(&q->mq_freeze_wq);
567 	mutex_init(&q->mq_freeze_lock);
568 
569 	/*
570 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
571 	 * See blk_register_queue() for details.
572 	 */
573 	if (percpu_ref_init(&q->q_usage_counter,
574 				blk_queue_usage_counter_release,
575 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
576 		goto fail_bdi;
577 
578 	if (blkcg_init_queue(q))
579 		goto fail_ref;
580 
581 	blk_queue_dma_alignment(q, 511);
582 	blk_set_default_limits(&q->limits);
583 	q->nr_requests = BLKDEV_MAX_RQ;
584 
585 	return q;
586 
587 fail_ref:
588 	percpu_ref_exit(&q->q_usage_counter);
589 fail_bdi:
590 	blk_free_queue_stats(q->stats);
591 fail_stats:
592 	bdi_put(q->backing_dev_info);
593 fail_split:
594 	bioset_exit(&q->bio_split);
595 fail_id:
596 	ida_simple_remove(&blk_queue_ida, q->id);
597 fail_q:
598 	kmem_cache_free(blk_requestq_cachep, q);
599 	return NULL;
600 }
601 EXPORT_SYMBOL(blk_alloc_queue);
602 
603 /**
604  * blk_get_queue - increment the request_queue refcount
605  * @q: the request_queue structure to increment the refcount for
606  *
607  * Increment the refcount of the request_queue kobject.
608  *
609  * Context: Any context.
610  */
611 bool blk_get_queue(struct request_queue *q)
612 {
613 	if (likely(!blk_queue_dying(q))) {
614 		__blk_get_queue(q);
615 		return true;
616 	}
617 
618 	return false;
619 }
620 EXPORT_SYMBOL(blk_get_queue);
621 
622 /**
623  * blk_get_request - allocate a request
624  * @q: request queue to allocate a request for
625  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
626  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
627  */
628 struct request *blk_get_request(struct request_queue *q, unsigned int op,
629 				blk_mq_req_flags_t flags)
630 {
631 	struct request *req;
632 
633 	WARN_ON_ONCE(op & REQ_NOWAIT);
634 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PM));
635 
636 	req = blk_mq_alloc_request(q, op, flags);
637 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
638 		q->mq_ops->initialize_rq_fn(req);
639 
640 	return req;
641 }
642 EXPORT_SYMBOL(blk_get_request);
643 
644 void blk_put_request(struct request *req)
645 {
646 	blk_mq_free_request(req);
647 }
648 EXPORT_SYMBOL(blk_put_request);
649 
650 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
651 {
652 	char b[BDEVNAME_SIZE];
653 
654 	pr_info_ratelimited("attempt to access beyond end of device\n"
655 			    "%s: rw=%d, want=%llu, limit=%llu\n",
656 			    bio_devname(bio, b), bio->bi_opf,
657 			    bio_end_sector(bio), maxsector);
658 }
659 
660 #ifdef CONFIG_FAIL_MAKE_REQUEST
661 
662 static DECLARE_FAULT_ATTR(fail_make_request);
663 
664 static int __init setup_fail_make_request(char *str)
665 {
666 	return setup_fault_attr(&fail_make_request, str);
667 }
668 __setup("fail_make_request=", setup_fail_make_request);
669 
670 static bool should_fail_request(struct block_device *part, unsigned int bytes)
671 {
672 	return part->bd_make_it_fail && should_fail(&fail_make_request, bytes);
673 }
674 
675 static int __init fail_make_request_debugfs(void)
676 {
677 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
678 						NULL, &fail_make_request);
679 
680 	return PTR_ERR_OR_ZERO(dir);
681 }
682 
683 late_initcall(fail_make_request_debugfs);
684 
685 #else /* CONFIG_FAIL_MAKE_REQUEST */
686 
687 static inline bool should_fail_request(struct block_device *part,
688 					unsigned int bytes)
689 {
690 	return false;
691 }
692 
693 #endif /* CONFIG_FAIL_MAKE_REQUEST */
694 
695 static inline bool bio_check_ro(struct bio *bio, struct block_device *part)
696 {
697 	const int op = bio_op(bio);
698 
699 	if (part->bd_read_only && op_is_write(op)) {
700 		char b[BDEVNAME_SIZE];
701 
702 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
703 			return false;
704 
705 		WARN_ONCE(1,
706 		       "Trying to write to read-only block-device %s (partno %d)\n",
707 			bio_devname(bio, b), part->bd_partno);
708 		/* Older lvm-tools actually trigger this */
709 		return false;
710 	}
711 
712 	return false;
713 }
714 
715 static noinline int should_fail_bio(struct bio *bio)
716 {
717 	if (should_fail_request(bio->bi_disk->part0, bio->bi_iter.bi_size))
718 		return -EIO;
719 	return 0;
720 }
721 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
722 
723 /*
724  * Check whether this bio extends beyond the end of the device or partition.
725  * This may well happen - the kernel calls bread() without checking the size of
726  * the device, e.g., when mounting a file system.
727  */
728 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
729 {
730 	unsigned int nr_sectors = bio_sectors(bio);
731 
732 	if (nr_sectors && maxsector &&
733 	    (nr_sectors > maxsector ||
734 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
735 		handle_bad_sector(bio, maxsector);
736 		return -EIO;
737 	}
738 	return 0;
739 }
740 
741 /*
742  * Remap block n of partition p to block n+start(p) of the disk.
743  */
744 static inline int blk_partition_remap(struct bio *bio)
745 {
746 	struct block_device *p;
747 	int ret = -EIO;
748 
749 	rcu_read_lock();
750 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
751 	if (unlikely(!p))
752 		goto out;
753 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
754 		goto out;
755 	if (unlikely(bio_check_ro(bio, p)))
756 		goto out;
757 
758 	if (bio_sectors(bio)) {
759 		if (bio_check_eod(bio, bdev_nr_sectors(p)))
760 			goto out;
761 		bio->bi_iter.bi_sector += p->bd_start_sect;
762 		trace_block_bio_remap(bio, p->bd_dev,
763 				      bio->bi_iter.bi_sector -
764 				      p->bd_start_sect);
765 	}
766 	bio->bi_partno = 0;
767 	ret = 0;
768 out:
769 	rcu_read_unlock();
770 	return ret;
771 }
772 
773 /*
774  * Check write append to a zoned block device.
775  */
776 static inline blk_status_t blk_check_zone_append(struct request_queue *q,
777 						 struct bio *bio)
778 {
779 	sector_t pos = bio->bi_iter.bi_sector;
780 	int nr_sectors = bio_sectors(bio);
781 
782 	/* Only applicable to zoned block devices */
783 	if (!blk_queue_is_zoned(q))
784 		return BLK_STS_NOTSUPP;
785 
786 	/* The bio sector must point to the start of a sequential zone */
787 	if (pos & (blk_queue_zone_sectors(q) - 1) ||
788 	    !blk_queue_zone_is_seq(q, pos))
789 		return BLK_STS_IOERR;
790 
791 	/*
792 	 * Not allowed to cross zone boundaries. Otherwise, the BIO will be
793 	 * split and could result in non-contiguous sectors being written in
794 	 * different zones.
795 	 */
796 	if (nr_sectors > q->limits.chunk_sectors)
797 		return BLK_STS_IOERR;
798 
799 	/* Make sure the BIO is small enough and will not get split */
800 	if (nr_sectors > q->limits.max_zone_append_sectors)
801 		return BLK_STS_IOERR;
802 
803 	bio->bi_opf |= REQ_NOMERGE;
804 
805 	return BLK_STS_OK;
806 }
807 
808 static noinline_for_stack bool submit_bio_checks(struct bio *bio)
809 {
810 	struct request_queue *q = bio->bi_disk->queue;
811 	blk_status_t status = BLK_STS_IOERR;
812 	struct blk_plug *plug;
813 
814 	might_sleep();
815 
816 	plug = blk_mq_plug(q, bio);
817 	if (plug && plug->nowait)
818 		bio->bi_opf |= REQ_NOWAIT;
819 
820 	/*
821 	 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
822 	 * if queue does not support NOWAIT.
823 	 */
824 	if ((bio->bi_opf & REQ_NOWAIT) && !blk_queue_nowait(q))
825 		goto not_supported;
826 
827 	if (should_fail_bio(bio))
828 		goto end_io;
829 
830 	if (bio->bi_partno) {
831 		if (unlikely(blk_partition_remap(bio)))
832 			goto end_io;
833 	} else {
834 		if (unlikely(bio_check_ro(bio, bio->bi_disk->part0)))
835 			goto end_io;
836 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
837 			goto end_io;
838 	}
839 
840 	/*
841 	 * Filter flush bio's early so that bio based drivers without flush
842 	 * support don't have to worry about them.
843 	 */
844 	if (op_is_flush(bio->bi_opf) &&
845 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
846 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
847 		if (!bio_sectors(bio)) {
848 			status = BLK_STS_OK;
849 			goto end_io;
850 		}
851 	}
852 
853 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
854 		bio->bi_opf &= ~REQ_HIPRI;
855 
856 	switch (bio_op(bio)) {
857 	case REQ_OP_DISCARD:
858 		if (!blk_queue_discard(q))
859 			goto not_supported;
860 		break;
861 	case REQ_OP_SECURE_ERASE:
862 		if (!blk_queue_secure_erase(q))
863 			goto not_supported;
864 		break;
865 	case REQ_OP_WRITE_SAME:
866 		if (!q->limits.max_write_same_sectors)
867 			goto not_supported;
868 		break;
869 	case REQ_OP_ZONE_APPEND:
870 		status = blk_check_zone_append(q, bio);
871 		if (status != BLK_STS_OK)
872 			goto end_io;
873 		break;
874 	case REQ_OP_ZONE_RESET:
875 	case REQ_OP_ZONE_OPEN:
876 	case REQ_OP_ZONE_CLOSE:
877 	case REQ_OP_ZONE_FINISH:
878 		if (!blk_queue_is_zoned(q))
879 			goto not_supported;
880 		break;
881 	case REQ_OP_ZONE_RESET_ALL:
882 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
883 			goto not_supported;
884 		break;
885 	case REQ_OP_WRITE_ZEROES:
886 		if (!q->limits.max_write_zeroes_sectors)
887 			goto not_supported;
888 		break;
889 	default:
890 		break;
891 	}
892 
893 	/*
894 	 * Various block parts want %current->io_context, so allocate it up
895 	 * front rather than dealing with lots of pain to allocate it only
896 	 * where needed. This may fail and the block layer knows how to live
897 	 * with it.
898 	 */
899 	if (unlikely(!current->io_context))
900 		create_task_io_context(current, GFP_ATOMIC, q->node);
901 
902 	if (blk_throtl_bio(bio)) {
903 		blkcg_bio_issue_init(bio);
904 		return false;
905 	}
906 
907 	blk_cgroup_bio_start(bio);
908 	blkcg_bio_issue_init(bio);
909 
910 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
911 		trace_block_bio_queue(bio);
912 		/* Now that enqueuing has been traced, we need to trace
913 		 * completion as well.
914 		 */
915 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
916 	}
917 	return true;
918 
919 not_supported:
920 	status = BLK_STS_NOTSUPP;
921 end_io:
922 	bio->bi_status = status;
923 	bio_endio(bio);
924 	return false;
925 }
926 
927 static blk_qc_t __submit_bio(struct bio *bio)
928 {
929 	struct gendisk *disk = bio->bi_disk;
930 	blk_qc_t ret = BLK_QC_T_NONE;
931 
932 	if (blk_crypto_bio_prep(&bio)) {
933 		if (!disk->fops->submit_bio)
934 			return blk_mq_submit_bio(bio);
935 		ret = disk->fops->submit_bio(bio);
936 	}
937 	blk_queue_exit(disk->queue);
938 	return ret;
939 }
940 
941 /*
942  * The loop in this function may be a bit non-obvious, and so deserves some
943  * explanation:
944  *
945  *  - Before entering the loop, bio->bi_next is NULL (as all callers ensure
946  *    that), so we have a list with a single bio.
947  *  - We pretend that we have just taken it off a longer list, so we assign
948  *    bio_list to a pointer to the bio_list_on_stack, thus initialising the
949  *    bio_list of new bios to be added.  ->submit_bio() may indeed add some more
950  *    bios through a recursive call to submit_bio_noacct.  If it did, we find a
951  *    non-NULL value in bio_list and re-enter the loop from the top.
952  *  - In this case we really did just take the bio of the top of the list (no
953  *    pretending) and so remove it from bio_list, and call into ->submit_bio()
954  *    again.
955  *
956  * bio_list_on_stack[0] contains bios submitted by the current ->submit_bio.
957  * bio_list_on_stack[1] contains bios that were submitted before the current
958  *	->submit_bio_bio, but that haven't been processed yet.
959  */
960 static blk_qc_t __submit_bio_noacct(struct bio *bio)
961 {
962 	struct bio_list bio_list_on_stack[2];
963 	blk_qc_t ret = BLK_QC_T_NONE;
964 
965 	BUG_ON(bio->bi_next);
966 
967 	bio_list_init(&bio_list_on_stack[0]);
968 	current->bio_list = bio_list_on_stack;
969 
970 	do {
971 		struct request_queue *q = bio->bi_disk->queue;
972 		struct bio_list lower, same;
973 
974 		if (unlikely(bio_queue_enter(bio) != 0))
975 			continue;
976 
977 		/*
978 		 * Create a fresh bio_list for all subordinate requests.
979 		 */
980 		bio_list_on_stack[1] = bio_list_on_stack[0];
981 		bio_list_init(&bio_list_on_stack[0]);
982 
983 		ret = __submit_bio(bio);
984 
985 		/*
986 		 * Sort new bios into those for a lower level and those for the
987 		 * same level.
988 		 */
989 		bio_list_init(&lower);
990 		bio_list_init(&same);
991 		while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
992 			if (q == bio->bi_disk->queue)
993 				bio_list_add(&same, bio);
994 			else
995 				bio_list_add(&lower, bio);
996 
997 		/*
998 		 * Now assemble so we handle the lowest level first.
999 		 */
1000 		bio_list_merge(&bio_list_on_stack[0], &lower);
1001 		bio_list_merge(&bio_list_on_stack[0], &same);
1002 		bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1003 	} while ((bio = bio_list_pop(&bio_list_on_stack[0])));
1004 
1005 	current->bio_list = NULL;
1006 	return ret;
1007 }
1008 
1009 static blk_qc_t __submit_bio_noacct_mq(struct bio *bio)
1010 {
1011 	struct bio_list bio_list[2] = { };
1012 	blk_qc_t ret = BLK_QC_T_NONE;
1013 
1014 	current->bio_list = bio_list;
1015 
1016 	do {
1017 		struct gendisk *disk = bio->bi_disk;
1018 
1019 		if (unlikely(bio_queue_enter(bio) != 0))
1020 			continue;
1021 
1022 		if (!blk_crypto_bio_prep(&bio)) {
1023 			blk_queue_exit(disk->queue);
1024 			ret = BLK_QC_T_NONE;
1025 			continue;
1026 		}
1027 
1028 		ret = blk_mq_submit_bio(bio);
1029 	} while ((bio = bio_list_pop(&bio_list[0])));
1030 
1031 	current->bio_list = NULL;
1032 	return ret;
1033 }
1034 
1035 /**
1036  * submit_bio_noacct - re-submit a bio to the block device layer for I/O
1037  * @bio:  The bio describing the location in memory and on the device.
1038  *
1039  * This is a version of submit_bio() that shall only be used for I/O that is
1040  * resubmitted to lower level drivers by stacking block drivers.  All file
1041  * systems and other upper level users of the block layer should use
1042  * submit_bio() instead.
1043  */
1044 blk_qc_t submit_bio_noacct(struct bio *bio)
1045 {
1046 	if (!submit_bio_checks(bio))
1047 		return BLK_QC_T_NONE;
1048 
1049 	/*
1050 	 * We only want one ->submit_bio to be active at a time, else stack
1051 	 * usage with stacked devices could be a problem.  Use current->bio_list
1052 	 * to collect a list of requests submited by a ->submit_bio method while
1053 	 * it is active, and then process them after it returned.
1054 	 */
1055 	if (current->bio_list) {
1056 		bio_list_add(&current->bio_list[0], bio);
1057 		return BLK_QC_T_NONE;
1058 	}
1059 
1060 	if (!bio->bi_disk->fops->submit_bio)
1061 		return __submit_bio_noacct_mq(bio);
1062 	return __submit_bio_noacct(bio);
1063 }
1064 EXPORT_SYMBOL(submit_bio_noacct);
1065 
1066 /**
1067  * submit_bio - submit a bio to the block device layer for I/O
1068  * @bio: The &struct bio which describes the I/O
1069  *
1070  * submit_bio() is used to submit I/O requests to block devices.  It is passed a
1071  * fully set up &struct bio that describes the I/O that needs to be done.  The
1072  * bio will be send to the device described by the bi_disk and bi_partno fields.
1073  *
1074  * The success/failure status of the request, along with notification of
1075  * completion, is delivered asynchronously through the ->bi_end_io() callback
1076  * in @bio.  The bio must NOT be touched by thecaller until ->bi_end_io() has
1077  * been called.
1078  */
1079 blk_qc_t submit_bio(struct bio *bio)
1080 {
1081 	if (blkcg_punt_bio_submit(bio))
1082 		return BLK_QC_T_NONE;
1083 
1084 	/*
1085 	 * If it's a regular read/write or a barrier with data attached,
1086 	 * go through the normal accounting stuff before submission.
1087 	 */
1088 	if (bio_has_data(bio)) {
1089 		unsigned int count;
1090 
1091 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1092 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1093 		else
1094 			count = bio_sectors(bio);
1095 
1096 		if (op_is_write(bio_op(bio))) {
1097 			count_vm_events(PGPGOUT, count);
1098 		} else {
1099 			task_io_account_read(bio->bi_iter.bi_size);
1100 			count_vm_events(PGPGIN, count);
1101 		}
1102 
1103 		if (unlikely(block_dump)) {
1104 			char b[BDEVNAME_SIZE];
1105 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1106 			current->comm, task_pid_nr(current),
1107 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1108 				(unsigned long long)bio->bi_iter.bi_sector,
1109 				bio_devname(bio, b), count);
1110 		}
1111 	}
1112 
1113 	/*
1114 	 * If we're reading data that is part of the userspace workingset, count
1115 	 * submission time as memory stall.  When the device is congested, or
1116 	 * the submitting cgroup IO-throttled, submission can be a significant
1117 	 * part of overall IO time.
1118 	 */
1119 	if (unlikely(bio_op(bio) == REQ_OP_READ &&
1120 	    bio_flagged(bio, BIO_WORKINGSET))) {
1121 		unsigned long pflags;
1122 		blk_qc_t ret;
1123 
1124 		psi_memstall_enter(&pflags);
1125 		ret = submit_bio_noacct(bio);
1126 		psi_memstall_leave(&pflags);
1127 
1128 		return ret;
1129 	}
1130 
1131 	return submit_bio_noacct(bio);
1132 }
1133 EXPORT_SYMBOL(submit_bio);
1134 
1135 /**
1136  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1137  *                              for the new queue limits
1138  * @q:  the queue
1139  * @rq: the request being checked
1140  *
1141  * Description:
1142  *    @rq may have been made based on weaker limitations of upper-level queues
1143  *    in request stacking drivers, and it may violate the limitation of @q.
1144  *    Since the block layer and the underlying device driver trust @rq
1145  *    after it is inserted to @q, it should be checked against @q before
1146  *    the insertion using this generic function.
1147  *
1148  *    Request stacking drivers like request-based dm may change the queue
1149  *    limits when retrying requests on other queues. Those requests need
1150  *    to be checked against the new queue limits again during dispatch.
1151  */
1152 static blk_status_t blk_cloned_rq_check_limits(struct request_queue *q,
1153 				      struct request *rq)
1154 {
1155 	unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
1156 
1157 	if (blk_rq_sectors(rq) > max_sectors) {
1158 		/*
1159 		 * SCSI device does not have a good way to return if
1160 		 * Write Same/Zero is actually supported. If a device rejects
1161 		 * a non-read/write command (discard, write same,etc.) the
1162 		 * low-level device driver will set the relevant queue limit to
1163 		 * 0 to prevent blk-lib from issuing more of the offending
1164 		 * operations. Commands queued prior to the queue limit being
1165 		 * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
1166 		 * errors being propagated to upper layers.
1167 		 */
1168 		if (max_sectors == 0)
1169 			return BLK_STS_NOTSUPP;
1170 
1171 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1172 			__func__, blk_rq_sectors(rq), max_sectors);
1173 		return BLK_STS_IOERR;
1174 	}
1175 
1176 	/*
1177 	 * queue's settings related to segment counting like q->bounce_pfn
1178 	 * may differ from that of other stacking queues.
1179 	 * Recalculate it to check the request correctly on this queue's
1180 	 * limitation.
1181 	 */
1182 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1183 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1184 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1185 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1186 		return BLK_STS_IOERR;
1187 	}
1188 
1189 	return BLK_STS_OK;
1190 }
1191 
1192 /**
1193  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1194  * @q:  the queue to submit the request
1195  * @rq: the request being queued
1196  */
1197 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1198 {
1199 	blk_status_t ret;
1200 
1201 	ret = blk_cloned_rq_check_limits(q, rq);
1202 	if (ret != BLK_STS_OK)
1203 		return ret;
1204 
1205 	if (rq->rq_disk &&
1206 	    should_fail_request(rq->rq_disk->part0, blk_rq_bytes(rq)))
1207 		return BLK_STS_IOERR;
1208 
1209 	if (blk_crypto_insert_cloned_request(rq))
1210 		return BLK_STS_IOERR;
1211 
1212 	if (blk_queue_io_stat(q))
1213 		blk_account_io_start(rq);
1214 
1215 	/*
1216 	 * Since we have a scheduler attached on the top device,
1217 	 * bypass a potential scheduler on the bottom device for
1218 	 * insert.
1219 	 */
1220 	return blk_mq_request_issue_directly(rq, true);
1221 }
1222 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1223 
1224 /**
1225  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1226  * @rq: request to examine
1227  *
1228  * Description:
1229  *     A request could be merge of IOs which require different failure
1230  *     handling.  This function determines the number of bytes which
1231  *     can be failed from the beginning of the request without
1232  *     crossing into area which need to be retried further.
1233  *
1234  * Return:
1235  *     The number of bytes to fail.
1236  */
1237 unsigned int blk_rq_err_bytes(const struct request *rq)
1238 {
1239 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1240 	unsigned int bytes = 0;
1241 	struct bio *bio;
1242 
1243 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1244 		return blk_rq_bytes(rq);
1245 
1246 	/*
1247 	 * Currently the only 'mixing' which can happen is between
1248 	 * different fastfail types.  We can safely fail portions
1249 	 * which have all the failfast bits that the first one has -
1250 	 * the ones which are at least as eager to fail as the first
1251 	 * one.
1252 	 */
1253 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1254 		if ((bio->bi_opf & ff) != ff)
1255 			break;
1256 		bytes += bio->bi_iter.bi_size;
1257 	}
1258 
1259 	/* this could lead to infinite loop */
1260 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1261 	return bytes;
1262 }
1263 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1264 
1265 static void update_io_ticks(struct block_device *part, unsigned long now,
1266 		bool end)
1267 {
1268 	unsigned long stamp;
1269 again:
1270 	stamp = READ_ONCE(part->bd_stamp);
1271 	if (unlikely(stamp != now)) {
1272 		if (likely(cmpxchg(&part->bd_stamp, stamp, now) == stamp))
1273 			__part_stat_add(part, io_ticks, end ? now - stamp : 1);
1274 	}
1275 	if (part->bd_partno) {
1276 		part = bdev_whole(part);
1277 		goto again;
1278 	}
1279 }
1280 
1281 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1282 {
1283 	if (req->part && blk_do_io_stat(req)) {
1284 		const int sgrp = op_stat_group(req_op(req));
1285 
1286 		part_stat_lock();
1287 		part_stat_add(req->part, sectors[sgrp], bytes >> 9);
1288 		part_stat_unlock();
1289 	}
1290 }
1291 
1292 void blk_account_io_done(struct request *req, u64 now)
1293 {
1294 	/*
1295 	 * Account IO completion.  flush_rq isn't accounted as a
1296 	 * normal IO on queueing nor completion.  Accounting the
1297 	 * containing request is enough.
1298 	 */
1299 	if (req->part && blk_do_io_stat(req) &&
1300 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1301 		const int sgrp = op_stat_group(req_op(req));
1302 
1303 		part_stat_lock();
1304 		update_io_ticks(req->part, jiffies, true);
1305 		part_stat_inc(req->part, ios[sgrp]);
1306 		part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
1307 		part_stat_unlock();
1308 	}
1309 }
1310 
1311 void blk_account_io_start(struct request *rq)
1312 {
1313 	if (!blk_do_io_stat(rq))
1314 		return;
1315 
1316 	rq->part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1317 
1318 	part_stat_lock();
1319 	update_io_ticks(rq->part, jiffies, false);
1320 	part_stat_unlock();
1321 }
1322 
1323 static unsigned long __part_start_io_acct(struct block_device *part,
1324 					  unsigned int sectors, unsigned int op)
1325 {
1326 	const int sgrp = op_stat_group(op);
1327 	unsigned long now = READ_ONCE(jiffies);
1328 
1329 	part_stat_lock();
1330 	update_io_ticks(part, now, false);
1331 	part_stat_inc(part, ios[sgrp]);
1332 	part_stat_add(part, sectors[sgrp], sectors);
1333 	part_stat_local_inc(part, in_flight[op_is_write(op)]);
1334 	part_stat_unlock();
1335 
1336 	return now;
1337 }
1338 
1339 unsigned long part_start_io_acct(struct gendisk *disk, struct block_device **part,
1340 				 struct bio *bio)
1341 {
1342 	*part = disk_map_sector_rcu(disk, bio->bi_iter.bi_sector);
1343 
1344 	return __part_start_io_acct(*part, bio_sectors(bio), bio_op(bio));
1345 }
1346 EXPORT_SYMBOL_GPL(part_start_io_acct);
1347 
1348 unsigned long disk_start_io_acct(struct gendisk *disk, unsigned int sectors,
1349 				 unsigned int op)
1350 {
1351 	return __part_start_io_acct(disk->part0, sectors, op);
1352 }
1353 EXPORT_SYMBOL(disk_start_io_acct);
1354 
1355 static void __part_end_io_acct(struct block_device *part, unsigned int op,
1356 			       unsigned long start_time)
1357 {
1358 	const int sgrp = op_stat_group(op);
1359 	unsigned long now = READ_ONCE(jiffies);
1360 	unsigned long duration = now - start_time;
1361 
1362 	part_stat_lock();
1363 	update_io_ticks(part, now, true);
1364 	part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1365 	part_stat_local_dec(part, in_flight[op_is_write(op)]);
1366 	part_stat_unlock();
1367 }
1368 
1369 void part_end_io_acct(struct block_device *part, struct bio *bio,
1370 		      unsigned long start_time)
1371 {
1372 	__part_end_io_acct(part, bio_op(bio), start_time);
1373 }
1374 EXPORT_SYMBOL_GPL(part_end_io_acct);
1375 
1376 void disk_end_io_acct(struct gendisk *disk, unsigned int op,
1377 		      unsigned long start_time)
1378 {
1379 	__part_end_io_acct(disk->part0, op, start_time);
1380 }
1381 EXPORT_SYMBOL(disk_end_io_acct);
1382 
1383 /*
1384  * Steal bios from a request and add them to a bio list.
1385  * The request must not have been partially completed before.
1386  */
1387 void blk_steal_bios(struct bio_list *list, struct request *rq)
1388 {
1389 	if (rq->bio) {
1390 		if (list->tail)
1391 			list->tail->bi_next = rq->bio;
1392 		else
1393 			list->head = rq->bio;
1394 		list->tail = rq->biotail;
1395 
1396 		rq->bio = NULL;
1397 		rq->biotail = NULL;
1398 	}
1399 
1400 	rq->__data_len = 0;
1401 }
1402 EXPORT_SYMBOL_GPL(blk_steal_bios);
1403 
1404 /**
1405  * blk_update_request - Special helper function for request stacking drivers
1406  * @req:      the request being processed
1407  * @error:    block status code
1408  * @nr_bytes: number of bytes to complete @req
1409  *
1410  * Description:
1411  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1412  *     the request structure even if @req doesn't have leftover.
1413  *     If @req has leftover, sets it up for the next range of segments.
1414  *
1415  *     This special helper function is only for request stacking drivers
1416  *     (e.g. request-based dm) so that they can handle partial completion.
1417  *     Actual device drivers should use blk_mq_end_request instead.
1418  *
1419  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1420  *     %false return from this function.
1421  *
1422  * Note:
1423  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1424  *	blk_rq_bytes() and in blk_update_request().
1425  *
1426  * Return:
1427  *     %false - this request doesn't have any more data
1428  *     %true  - this request has more data
1429  **/
1430 bool blk_update_request(struct request *req, blk_status_t error,
1431 		unsigned int nr_bytes)
1432 {
1433 	int total_bytes;
1434 
1435 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1436 
1437 	if (!req->bio)
1438 		return false;
1439 
1440 #ifdef CONFIG_BLK_DEV_INTEGRITY
1441 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1442 	    error == BLK_STS_OK)
1443 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1444 #endif
1445 
1446 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1447 		     !(req->rq_flags & RQF_QUIET)))
1448 		print_req_error(req, error, __func__);
1449 
1450 	blk_account_io_completion(req, nr_bytes);
1451 
1452 	total_bytes = 0;
1453 	while (req->bio) {
1454 		struct bio *bio = req->bio;
1455 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1456 
1457 		if (bio_bytes == bio->bi_iter.bi_size)
1458 			req->bio = bio->bi_next;
1459 
1460 		/* Completion has already been traced */
1461 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1462 		req_bio_endio(req, bio, bio_bytes, error);
1463 
1464 		total_bytes += bio_bytes;
1465 		nr_bytes -= bio_bytes;
1466 
1467 		if (!nr_bytes)
1468 			break;
1469 	}
1470 
1471 	/*
1472 	 * completely done
1473 	 */
1474 	if (!req->bio) {
1475 		/*
1476 		 * Reset counters so that the request stacking driver
1477 		 * can find how many bytes remain in the request
1478 		 * later.
1479 		 */
1480 		req->__data_len = 0;
1481 		return false;
1482 	}
1483 
1484 	req->__data_len -= total_bytes;
1485 
1486 	/* update sector only for requests with clear definition of sector */
1487 	if (!blk_rq_is_passthrough(req))
1488 		req->__sector += total_bytes >> 9;
1489 
1490 	/* mixed attributes always follow the first bio */
1491 	if (req->rq_flags & RQF_MIXED_MERGE) {
1492 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1493 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1494 	}
1495 
1496 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1497 		/*
1498 		 * If total number of sectors is less than the first segment
1499 		 * size, something has gone terribly wrong.
1500 		 */
1501 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1502 			blk_dump_rq_flags(req, "request botched");
1503 			req->__data_len = blk_rq_cur_bytes(req);
1504 		}
1505 
1506 		/* recalculate the number of segments */
1507 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1508 	}
1509 
1510 	return true;
1511 }
1512 EXPORT_SYMBOL_GPL(blk_update_request);
1513 
1514 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1515 /**
1516  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1517  * @rq: the request to be flushed
1518  *
1519  * Description:
1520  *     Flush all pages in @rq.
1521  */
1522 void rq_flush_dcache_pages(struct request *rq)
1523 {
1524 	struct req_iterator iter;
1525 	struct bio_vec bvec;
1526 
1527 	rq_for_each_segment(bvec, rq, iter)
1528 		flush_dcache_page(bvec.bv_page);
1529 }
1530 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1531 #endif
1532 
1533 /**
1534  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1535  * @q : the queue of the device being checked
1536  *
1537  * Description:
1538  *    Check if underlying low-level drivers of a device are busy.
1539  *    If the drivers want to export their busy state, they must set own
1540  *    exporting function using blk_queue_lld_busy() first.
1541  *
1542  *    Basically, this function is used only by request stacking drivers
1543  *    to stop dispatching requests to underlying devices when underlying
1544  *    devices are busy.  This behavior helps more I/O merging on the queue
1545  *    of the request stacking driver and prevents I/O throughput regression
1546  *    on burst I/O load.
1547  *
1548  * Return:
1549  *    0 - Not busy (The request stacking driver should dispatch request)
1550  *    1 - Busy (The request stacking driver should stop dispatching request)
1551  */
1552 int blk_lld_busy(struct request_queue *q)
1553 {
1554 	if (queue_is_mq(q) && q->mq_ops->busy)
1555 		return q->mq_ops->busy(q);
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(blk_lld_busy);
1560 
1561 /**
1562  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1563  * @rq: the clone request to be cleaned up
1564  *
1565  * Description:
1566  *     Free all bios in @rq for a cloned request.
1567  */
1568 void blk_rq_unprep_clone(struct request *rq)
1569 {
1570 	struct bio *bio;
1571 
1572 	while ((bio = rq->bio) != NULL) {
1573 		rq->bio = bio->bi_next;
1574 
1575 		bio_put(bio);
1576 	}
1577 }
1578 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1579 
1580 /**
1581  * blk_rq_prep_clone - Helper function to setup clone request
1582  * @rq: the request to be setup
1583  * @rq_src: original request to be cloned
1584  * @bs: bio_set that bios for clone are allocated from
1585  * @gfp_mask: memory allocation mask for bio
1586  * @bio_ctr: setup function to be called for each clone bio.
1587  *           Returns %0 for success, non %0 for failure.
1588  * @data: private data to be passed to @bio_ctr
1589  *
1590  * Description:
1591  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1592  *     Also, pages which the original bios are pointing to are not copied
1593  *     and the cloned bios just point same pages.
1594  *     So cloned bios must be completed before original bios, which means
1595  *     the caller must complete @rq before @rq_src.
1596  */
1597 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1598 		      struct bio_set *bs, gfp_t gfp_mask,
1599 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1600 		      void *data)
1601 {
1602 	struct bio *bio, *bio_src;
1603 
1604 	if (!bs)
1605 		bs = &fs_bio_set;
1606 
1607 	__rq_for_each_bio(bio_src, rq_src) {
1608 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1609 		if (!bio)
1610 			goto free_and_out;
1611 
1612 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1613 			goto free_and_out;
1614 
1615 		if (rq->bio) {
1616 			rq->biotail->bi_next = bio;
1617 			rq->biotail = bio;
1618 		} else {
1619 			rq->bio = rq->biotail = bio;
1620 		}
1621 		bio = NULL;
1622 	}
1623 
1624 	/* Copy attributes of the original request to the clone request. */
1625 	rq->__sector = blk_rq_pos(rq_src);
1626 	rq->__data_len = blk_rq_bytes(rq_src);
1627 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1628 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1629 		rq->special_vec = rq_src->special_vec;
1630 	}
1631 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1632 	rq->ioprio = rq_src->ioprio;
1633 
1634 	if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
1635 		goto free_and_out;
1636 
1637 	return 0;
1638 
1639 free_and_out:
1640 	if (bio)
1641 		bio_put(bio);
1642 	blk_rq_unprep_clone(rq);
1643 
1644 	return -ENOMEM;
1645 }
1646 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1647 
1648 int kblockd_schedule_work(struct work_struct *work)
1649 {
1650 	return queue_work(kblockd_workqueue, work);
1651 }
1652 EXPORT_SYMBOL(kblockd_schedule_work);
1653 
1654 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1655 				unsigned long delay)
1656 {
1657 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1658 }
1659 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1660 
1661 /**
1662  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1663  * @plug:	The &struct blk_plug that needs to be initialized
1664  *
1665  * Description:
1666  *   blk_start_plug() indicates to the block layer an intent by the caller
1667  *   to submit multiple I/O requests in a batch.  The block layer may use
1668  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1669  *   is called.  However, the block layer may choose to submit requests
1670  *   before a call to blk_finish_plug() if the number of queued I/Os
1671  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1672  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1673  *   the task schedules (see below).
1674  *
1675  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1676  *   pending I/O should the task end up blocking between blk_start_plug() and
1677  *   blk_finish_plug(). This is important from a performance perspective, but
1678  *   also ensures that we don't deadlock. For instance, if the task is blocking
1679  *   for a memory allocation, memory reclaim could end up wanting to free a
1680  *   page belonging to that request that is currently residing in our private
1681  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1682  *   this kind of deadlock.
1683  */
1684 void blk_start_plug(struct blk_plug *plug)
1685 {
1686 	struct task_struct *tsk = current;
1687 
1688 	/*
1689 	 * If this is a nested plug, don't actually assign it.
1690 	 */
1691 	if (tsk->plug)
1692 		return;
1693 
1694 	INIT_LIST_HEAD(&plug->mq_list);
1695 	INIT_LIST_HEAD(&plug->cb_list);
1696 	plug->rq_count = 0;
1697 	plug->multiple_queues = false;
1698 	plug->nowait = false;
1699 
1700 	/*
1701 	 * Store ordering should not be needed here, since a potential
1702 	 * preempt will imply a full memory barrier
1703 	 */
1704 	tsk->plug = plug;
1705 }
1706 EXPORT_SYMBOL(blk_start_plug);
1707 
1708 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1709 {
1710 	LIST_HEAD(callbacks);
1711 
1712 	while (!list_empty(&plug->cb_list)) {
1713 		list_splice_init(&plug->cb_list, &callbacks);
1714 
1715 		while (!list_empty(&callbacks)) {
1716 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1717 							  struct blk_plug_cb,
1718 							  list);
1719 			list_del(&cb->list);
1720 			cb->callback(cb, from_schedule);
1721 		}
1722 	}
1723 }
1724 
1725 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1726 				      int size)
1727 {
1728 	struct blk_plug *plug = current->plug;
1729 	struct blk_plug_cb *cb;
1730 
1731 	if (!plug)
1732 		return NULL;
1733 
1734 	list_for_each_entry(cb, &plug->cb_list, list)
1735 		if (cb->callback == unplug && cb->data == data)
1736 			return cb;
1737 
1738 	/* Not currently on the callback list */
1739 	BUG_ON(size < sizeof(*cb));
1740 	cb = kzalloc(size, GFP_ATOMIC);
1741 	if (cb) {
1742 		cb->data = data;
1743 		cb->callback = unplug;
1744 		list_add(&cb->list, &plug->cb_list);
1745 	}
1746 	return cb;
1747 }
1748 EXPORT_SYMBOL(blk_check_plugged);
1749 
1750 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1751 {
1752 	flush_plug_callbacks(plug, from_schedule);
1753 
1754 	if (!list_empty(&plug->mq_list))
1755 		blk_mq_flush_plug_list(plug, from_schedule);
1756 }
1757 
1758 /**
1759  * blk_finish_plug - mark the end of a batch of submitted I/O
1760  * @plug:	The &struct blk_plug passed to blk_start_plug()
1761  *
1762  * Description:
1763  * Indicate that a batch of I/O submissions is complete.  This function
1764  * must be paired with an initial call to blk_start_plug().  The intent
1765  * is to allow the block layer to optimize I/O submission.  See the
1766  * documentation for blk_start_plug() for more information.
1767  */
1768 void blk_finish_plug(struct blk_plug *plug)
1769 {
1770 	if (plug != current->plug)
1771 		return;
1772 	blk_flush_plug_list(plug, false);
1773 
1774 	current->plug = NULL;
1775 }
1776 EXPORT_SYMBOL(blk_finish_plug);
1777 
1778 void blk_io_schedule(void)
1779 {
1780 	/* Prevent hang_check timer from firing at us during very long I/O */
1781 	unsigned long timeout = sysctl_hung_task_timeout_secs * HZ / 2;
1782 
1783 	if (timeout)
1784 		io_schedule_timeout(timeout);
1785 	else
1786 		io_schedule();
1787 }
1788 EXPORT_SYMBOL_GPL(blk_io_schedule);
1789 
1790 int __init blk_dev_init(void)
1791 {
1792 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1793 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1794 			sizeof_field(struct request, cmd_flags));
1795 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1796 			sizeof_field(struct bio, bi_opf));
1797 
1798 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1799 	kblockd_workqueue = alloc_workqueue("kblockd",
1800 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1801 	if (!kblockd_workqueue)
1802 		panic("Failed to create kblockd\n");
1803 
1804 	blk_requestq_cachep = kmem_cache_create("request_queue",
1805 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1806 
1807 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1808 
1809 	return 0;
1810 }
1811