1 /* 2 * Copyright (C) 1991, 1992 Linus Torvalds 3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics 4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE 5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de> 6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> 7 * - July2000 8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001 9 */ 10 11 /* 12 * This handles all read/write requests to block devices 13 */ 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/backing-dev.h> 17 #include <linux/bio.h> 18 #include <linux/blkdev.h> 19 #include <linux/highmem.h> 20 #include <linux/mm.h> 21 #include <linux/kernel_stat.h> 22 #include <linux/string.h> 23 #include <linux/init.h> 24 #include <linux/completion.h> 25 #include <linux/slab.h> 26 #include <linux/swap.h> 27 #include <linux/writeback.h> 28 #include <linux/task_io_accounting_ops.h> 29 #include <linux/fault-inject.h> 30 #include <linux/list_sort.h> 31 #include <linux/delay.h> 32 #include <linux/ratelimit.h> 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/block.h> 36 37 #include "blk.h" 38 #include "blk-cgroup.h" 39 40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap); 41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap); 42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete); 43 44 DEFINE_IDA(blk_queue_ida); 45 46 /* 47 * For the allocated request tables 48 */ 49 static struct kmem_cache *request_cachep; 50 51 /* 52 * For queue allocation 53 */ 54 struct kmem_cache *blk_requestq_cachep; 55 56 /* 57 * Controlling structure to kblockd 58 */ 59 static struct workqueue_struct *kblockd_workqueue; 60 61 static void drive_stat_acct(struct request *rq, int new_io) 62 { 63 struct hd_struct *part; 64 int rw = rq_data_dir(rq); 65 int cpu; 66 67 if (!blk_do_io_stat(rq)) 68 return; 69 70 cpu = part_stat_lock(); 71 72 if (!new_io) { 73 part = rq->part; 74 part_stat_inc(cpu, part, merges[rw]); 75 } else { 76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq)); 77 if (!hd_struct_try_get(part)) { 78 /* 79 * The partition is already being removed, 80 * the request will be accounted on the disk only 81 * 82 * We take a reference on disk->part0 although that 83 * partition will never be deleted, so we can treat 84 * it as any other partition. 85 */ 86 part = &rq->rq_disk->part0; 87 hd_struct_get(part); 88 } 89 part_round_stats(cpu, part); 90 part_inc_in_flight(part, rw); 91 rq->part = part; 92 } 93 94 part_stat_unlock(); 95 } 96 97 void blk_queue_congestion_threshold(struct request_queue *q) 98 { 99 int nr; 100 101 nr = q->nr_requests - (q->nr_requests / 8) + 1; 102 if (nr > q->nr_requests) 103 nr = q->nr_requests; 104 q->nr_congestion_on = nr; 105 106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1; 107 if (nr < 1) 108 nr = 1; 109 q->nr_congestion_off = nr; 110 } 111 112 /** 113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info 114 * @bdev: device 115 * 116 * Locates the passed device's request queue and returns the address of its 117 * backing_dev_info 118 * 119 * Will return NULL if the request queue cannot be located. 120 */ 121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev) 122 { 123 struct backing_dev_info *ret = NULL; 124 struct request_queue *q = bdev_get_queue(bdev); 125 126 if (q) 127 ret = &q->backing_dev_info; 128 return ret; 129 } 130 EXPORT_SYMBOL(blk_get_backing_dev_info); 131 132 void blk_rq_init(struct request_queue *q, struct request *rq) 133 { 134 memset(rq, 0, sizeof(*rq)); 135 136 INIT_LIST_HEAD(&rq->queuelist); 137 INIT_LIST_HEAD(&rq->timeout_list); 138 rq->cpu = -1; 139 rq->q = q; 140 rq->__sector = (sector_t) -1; 141 INIT_HLIST_NODE(&rq->hash); 142 RB_CLEAR_NODE(&rq->rb_node); 143 rq->cmd = rq->__cmd; 144 rq->cmd_len = BLK_MAX_CDB; 145 rq->tag = -1; 146 rq->ref_count = 1; 147 rq->start_time = jiffies; 148 set_start_time_ns(rq); 149 rq->part = NULL; 150 } 151 EXPORT_SYMBOL(blk_rq_init); 152 153 static void req_bio_endio(struct request *rq, struct bio *bio, 154 unsigned int nbytes, int error) 155 { 156 if (error) 157 clear_bit(BIO_UPTODATE, &bio->bi_flags); 158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) 159 error = -EIO; 160 161 if (unlikely(nbytes > bio->bi_size)) { 162 printk(KERN_ERR "%s: want %u bytes done, %u left\n", 163 __func__, nbytes, bio->bi_size); 164 nbytes = bio->bi_size; 165 } 166 167 if (unlikely(rq->cmd_flags & REQ_QUIET)) 168 set_bit(BIO_QUIET, &bio->bi_flags); 169 170 bio->bi_size -= nbytes; 171 bio->bi_sector += (nbytes >> 9); 172 173 if (bio_integrity(bio)) 174 bio_integrity_advance(bio, nbytes); 175 176 /* don't actually finish bio if it's part of flush sequence */ 177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ)) 178 bio_endio(bio, error); 179 } 180 181 void blk_dump_rq_flags(struct request *rq, char *msg) 182 { 183 int bit; 184 185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg, 186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type, 187 rq->cmd_flags); 188 189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n", 190 (unsigned long long)blk_rq_pos(rq), 191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq)); 192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n", 193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq)); 194 195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) { 196 printk(KERN_INFO " cdb: "); 197 for (bit = 0; bit < BLK_MAX_CDB; bit++) 198 printk("%02x ", rq->cmd[bit]); 199 printk("\n"); 200 } 201 } 202 EXPORT_SYMBOL(blk_dump_rq_flags); 203 204 static void blk_delay_work(struct work_struct *work) 205 { 206 struct request_queue *q; 207 208 q = container_of(work, struct request_queue, delay_work.work); 209 spin_lock_irq(q->queue_lock); 210 __blk_run_queue(q); 211 spin_unlock_irq(q->queue_lock); 212 } 213 214 /** 215 * blk_delay_queue - restart queueing after defined interval 216 * @q: The &struct request_queue in question 217 * @msecs: Delay in msecs 218 * 219 * Description: 220 * Sometimes queueing needs to be postponed for a little while, to allow 221 * resources to come back. This function will make sure that queueing is 222 * restarted around the specified time. 223 */ 224 void blk_delay_queue(struct request_queue *q, unsigned long msecs) 225 { 226 queue_delayed_work(kblockd_workqueue, &q->delay_work, 227 msecs_to_jiffies(msecs)); 228 } 229 EXPORT_SYMBOL(blk_delay_queue); 230 231 /** 232 * blk_start_queue - restart a previously stopped queue 233 * @q: The &struct request_queue in question 234 * 235 * Description: 236 * blk_start_queue() will clear the stop flag on the queue, and call 237 * the request_fn for the queue if it was in a stopped state when 238 * entered. Also see blk_stop_queue(). Queue lock must be held. 239 **/ 240 void blk_start_queue(struct request_queue *q) 241 { 242 WARN_ON(!irqs_disabled()); 243 244 queue_flag_clear(QUEUE_FLAG_STOPPED, q); 245 __blk_run_queue(q); 246 } 247 EXPORT_SYMBOL(blk_start_queue); 248 249 /** 250 * blk_stop_queue - stop a queue 251 * @q: The &struct request_queue in question 252 * 253 * Description: 254 * The Linux block layer assumes that a block driver will consume all 255 * entries on the request queue when the request_fn strategy is called. 256 * Often this will not happen, because of hardware limitations (queue 257 * depth settings). If a device driver gets a 'queue full' response, 258 * or if it simply chooses not to queue more I/O at one point, it can 259 * call this function to prevent the request_fn from being called until 260 * the driver has signalled it's ready to go again. This happens by calling 261 * blk_start_queue() to restart queue operations. Queue lock must be held. 262 **/ 263 void blk_stop_queue(struct request_queue *q) 264 { 265 cancel_delayed_work(&q->delay_work); 266 queue_flag_set(QUEUE_FLAG_STOPPED, q); 267 } 268 EXPORT_SYMBOL(blk_stop_queue); 269 270 /** 271 * blk_sync_queue - cancel any pending callbacks on a queue 272 * @q: the queue 273 * 274 * Description: 275 * The block layer may perform asynchronous callback activity 276 * on a queue, such as calling the unplug function after a timeout. 277 * A block device may call blk_sync_queue to ensure that any 278 * such activity is cancelled, thus allowing it to release resources 279 * that the callbacks might use. The caller must already have made sure 280 * that its ->make_request_fn will not re-add plugging prior to calling 281 * this function. 282 * 283 * This function does not cancel any asynchronous activity arising 284 * out of elevator or throttling code. That would require elevaotor_exit() 285 * and blkcg_exit_queue() to be called with queue lock initialized. 286 * 287 */ 288 void blk_sync_queue(struct request_queue *q) 289 { 290 del_timer_sync(&q->timeout); 291 cancel_delayed_work_sync(&q->delay_work); 292 } 293 EXPORT_SYMBOL(blk_sync_queue); 294 295 /** 296 * __blk_run_queue - run a single device queue 297 * @q: The queue to run 298 * 299 * Description: 300 * See @blk_run_queue. This variant must be called with the queue lock 301 * held and interrupts disabled. 302 */ 303 void __blk_run_queue(struct request_queue *q) 304 { 305 if (unlikely(blk_queue_stopped(q))) 306 return; 307 308 q->request_fn(q); 309 } 310 EXPORT_SYMBOL(__blk_run_queue); 311 312 /** 313 * blk_run_queue_async - run a single device queue in workqueue context 314 * @q: The queue to run 315 * 316 * Description: 317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf 318 * of us. 319 */ 320 void blk_run_queue_async(struct request_queue *q) 321 { 322 if (likely(!blk_queue_stopped(q))) 323 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0); 324 } 325 EXPORT_SYMBOL(blk_run_queue_async); 326 327 /** 328 * blk_run_queue - run a single device queue 329 * @q: The queue to run 330 * 331 * Description: 332 * Invoke request handling on this queue, if it has pending work to do. 333 * May be used to restart queueing when a request has completed. 334 */ 335 void blk_run_queue(struct request_queue *q) 336 { 337 unsigned long flags; 338 339 spin_lock_irqsave(q->queue_lock, flags); 340 __blk_run_queue(q); 341 spin_unlock_irqrestore(q->queue_lock, flags); 342 } 343 EXPORT_SYMBOL(blk_run_queue); 344 345 void blk_put_queue(struct request_queue *q) 346 { 347 kobject_put(&q->kobj); 348 } 349 EXPORT_SYMBOL(blk_put_queue); 350 351 /** 352 * blk_drain_queue - drain requests from request_queue 353 * @q: queue to drain 354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV 355 * 356 * Drain requests from @q. If @drain_all is set, all requests are drained. 357 * If not, only ELVPRIV requests are drained. The caller is responsible 358 * for ensuring that no new requests which need to be drained are queued. 359 */ 360 void blk_drain_queue(struct request_queue *q, bool drain_all) 361 { 362 int i; 363 364 while (true) { 365 bool drain = false; 366 367 spin_lock_irq(q->queue_lock); 368 369 /* 370 * The caller might be trying to drain @q before its 371 * elevator is initialized. 372 */ 373 if (q->elevator) 374 elv_drain_elevator(q); 375 376 blkcg_drain_queue(q); 377 378 /* 379 * This function might be called on a queue which failed 380 * driver init after queue creation or is not yet fully 381 * active yet. Some drivers (e.g. fd and loop) get unhappy 382 * in such cases. Kick queue iff dispatch queue has 383 * something on it and @q has request_fn set. 384 */ 385 if (!list_empty(&q->queue_head) && q->request_fn) 386 __blk_run_queue(q); 387 388 drain |= q->nr_rqs_elvpriv; 389 390 /* 391 * Unfortunately, requests are queued at and tracked from 392 * multiple places and there's no single counter which can 393 * be drained. Check all the queues and counters. 394 */ 395 if (drain_all) { 396 drain |= !list_empty(&q->queue_head); 397 for (i = 0; i < 2; i++) { 398 drain |= q->nr_rqs[i]; 399 drain |= q->in_flight[i]; 400 drain |= !list_empty(&q->flush_queue[i]); 401 } 402 } 403 404 spin_unlock_irq(q->queue_lock); 405 406 if (!drain) 407 break; 408 msleep(10); 409 } 410 411 /* 412 * With queue marked dead, any woken up waiter will fail the 413 * allocation path, so the wakeup chaining is lost and we're 414 * left with hung waiters. We need to wake up those waiters. 415 */ 416 if (q->request_fn) { 417 struct request_list *rl; 418 419 spin_lock_irq(q->queue_lock); 420 421 blk_queue_for_each_rl(rl, q) 422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++) 423 wake_up_all(&rl->wait[i]); 424 425 spin_unlock_irq(q->queue_lock); 426 } 427 } 428 429 /** 430 * blk_queue_bypass_start - enter queue bypass mode 431 * @q: queue of interest 432 * 433 * In bypass mode, only the dispatch FIFO queue of @q is used. This 434 * function makes @q enter bypass mode and drains all requests which were 435 * throttled or issued before. On return, it's guaranteed that no request 436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true 437 * inside queue or RCU read lock. 438 */ 439 void blk_queue_bypass_start(struct request_queue *q) 440 { 441 bool drain; 442 443 spin_lock_irq(q->queue_lock); 444 drain = !q->bypass_depth++; 445 queue_flag_set(QUEUE_FLAG_BYPASS, q); 446 spin_unlock_irq(q->queue_lock); 447 448 if (drain) { 449 blk_drain_queue(q, false); 450 /* ensure blk_queue_bypass() is %true inside RCU read lock */ 451 synchronize_rcu(); 452 } 453 } 454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start); 455 456 /** 457 * blk_queue_bypass_end - leave queue bypass mode 458 * @q: queue of interest 459 * 460 * Leave bypass mode and restore the normal queueing behavior. 461 */ 462 void blk_queue_bypass_end(struct request_queue *q) 463 { 464 spin_lock_irq(q->queue_lock); 465 if (!--q->bypass_depth) 466 queue_flag_clear(QUEUE_FLAG_BYPASS, q); 467 WARN_ON_ONCE(q->bypass_depth < 0); 468 spin_unlock_irq(q->queue_lock); 469 } 470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end); 471 472 /** 473 * blk_cleanup_queue - shutdown a request queue 474 * @q: request queue to shutdown 475 * 476 * Mark @q DEAD, drain all pending requests, destroy and put it. All 477 * future requests will be failed immediately with -ENODEV. 478 */ 479 void blk_cleanup_queue(struct request_queue *q) 480 { 481 spinlock_t *lock = q->queue_lock; 482 483 /* mark @q DEAD, no new request or merges will be allowed afterwards */ 484 mutex_lock(&q->sysfs_lock); 485 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q); 486 spin_lock_irq(lock); 487 488 /* 489 * Dead queue is permanently in bypass mode till released. Note 490 * that, unlike blk_queue_bypass_start(), we aren't performing 491 * synchronize_rcu() after entering bypass mode to avoid the delay 492 * as some drivers create and destroy a lot of queues while 493 * probing. This is still safe because blk_release_queue() will be 494 * called only after the queue refcnt drops to zero and nothing, 495 * RCU or not, would be traversing the queue by then. 496 */ 497 q->bypass_depth++; 498 queue_flag_set(QUEUE_FLAG_BYPASS, q); 499 500 queue_flag_set(QUEUE_FLAG_NOMERGES, q); 501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q); 502 queue_flag_set(QUEUE_FLAG_DEAD, q); 503 spin_unlock_irq(lock); 504 mutex_unlock(&q->sysfs_lock); 505 506 /* drain all requests queued before DEAD marking */ 507 blk_drain_queue(q, true); 508 509 /* @q won't process any more request, flush async actions */ 510 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer); 511 blk_sync_queue(q); 512 513 spin_lock_irq(lock); 514 if (q->queue_lock != &q->__queue_lock) 515 q->queue_lock = &q->__queue_lock; 516 spin_unlock_irq(lock); 517 518 /* @q is and will stay empty, shutdown and put */ 519 blk_put_queue(q); 520 } 521 EXPORT_SYMBOL(blk_cleanup_queue); 522 523 int blk_init_rl(struct request_list *rl, struct request_queue *q, 524 gfp_t gfp_mask) 525 { 526 if (unlikely(rl->rq_pool)) 527 return 0; 528 529 rl->q = q; 530 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0; 531 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0; 532 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]); 533 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]); 534 535 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab, 536 mempool_free_slab, request_cachep, 537 gfp_mask, q->node); 538 if (!rl->rq_pool) 539 return -ENOMEM; 540 541 return 0; 542 } 543 544 void blk_exit_rl(struct request_list *rl) 545 { 546 if (rl->rq_pool) 547 mempool_destroy(rl->rq_pool); 548 } 549 550 struct request_queue *blk_alloc_queue(gfp_t gfp_mask) 551 { 552 return blk_alloc_queue_node(gfp_mask, -1); 553 } 554 EXPORT_SYMBOL(blk_alloc_queue); 555 556 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id) 557 { 558 struct request_queue *q; 559 int err; 560 561 q = kmem_cache_alloc_node(blk_requestq_cachep, 562 gfp_mask | __GFP_ZERO, node_id); 563 if (!q) 564 return NULL; 565 566 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask); 567 if (q->id < 0) 568 goto fail_q; 569 570 q->backing_dev_info.ra_pages = 571 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE; 572 q->backing_dev_info.state = 0; 573 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY; 574 q->backing_dev_info.name = "block"; 575 q->node = node_id; 576 577 err = bdi_init(&q->backing_dev_info); 578 if (err) 579 goto fail_id; 580 581 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer, 582 laptop_mode_timer_fn, (unsigned long) q); 583 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q); 584 INIT_LIST_HEAD(&q->queue_head); 585 INIT_LIST_HEAD(&q->timeout_list); 586 INIT_LIST_HEAD(&q->icq_list); 587 #ifdef CONFIG_BLK_CGROUP 588 INIT_LIST_HEAD(&q->blkg_list); 589 #endif 590 INIT_LIST_HEAD(&q->flush_queue[0]); 591 INIT_LIST_HEAD(&q->flush_queue[1]); 592 INIT_LIST_HEAD(&q->flush_data_in_flight); 593 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work); 594 595 kobject_init(&q->kobj, &blk_queue_ktype); 596 597 mutex_init(&q->sysfs_lock); 598 spin_lock_init(&q->__queue_lock); 599 600 /* 601 * By default initialize queue_lock to internal lock and driver can 602 * override it later if need be. 603 */ 604 q->queue_lock = &q->__queue_lock; 605 606 /* 607 * A queue starts its life with bypass turned on to avoid 608 * unnecessary bypass on/off overhead and nasty surprises during 609 * init. The initial bypass will be finished when the queue is 610 * registered by blk_register_queue(). 611 */ 612 q->bypass_depth = 1; 613 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags); 614 615 if (blkcg_init_queue(q)) 616 goto fail_id; 617 618 return q; 619 620 fail_id: 621 ida_simple_remove(&blk_queue_ida, q->id); 622 fail_q: 623 kmem_cache_free(blk_requestq_cachep, q); 624 return NULL; 625 } 626 EXPORT_SYMBOL(blk_alloc_queue_node); 627 628 /** 629 * blk_init_queue - prepare a request queue for use with a block device 630 * @rfn: The function to be called to process requests that have been 631 * placed on the queue. 632 * @lock: Request queue spin lock 633 * 634 * Description: 635 * If a block device wishes to use the standard request handling procedures, 636 * which sorts requests and coalesces adjacent requests, then it must 637 * call blk_init_queue(). The function @rfn will be called when there 638 * are requests on the queue that need to be processed. If the device 639 * supports plugging, then @rfn may not be called immediately when requests 640 * are available on the queue, but may be called at some time later instead. 641 * Plugged queues are generally unplugged when a buffer belonging to one 642 * of the requests on the queue is needed, or due to memory pressure. 643 * 644 * @rfn is not required, or even expected, to remove all requests off the 645 * queue, but only as many as it can handle at a time. If it does leave 646 * requests on the queue, it is responsible for arranging that the requests 647 * get dealt with eventually. 648 * 649 * The queue spin lock must be held while manipulating the requests on the 650 * request queue; this lock will be taken also from interrupt context, so irq 651 * disabling is needed for it. 652 * 653 * Function returns a pointer to the initialized request queue, or %NULL if 654 * it didn't succeed. 655 * 656 * Note: 657 * blk_init_queue() must be paired with a blk_cleanup_queue() call 658 * when the block device is deactivated (such as at module unload). 659 **/ 660 661 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock) 662 { 663 return blk_init_queue_node(rfn, lock, -1); 664 } 665 EXPORT_SYMBOL(blk_init_queue); 666 667 struct request_queue * 668 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id) 669 { 670 struct request_queue *uninit_q, *q; 671 672 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id); 673 if (!uninit_q) 674 return NULL; 675 676 q = blk_init_allocated_queue(uninit_q, rfn, lock); 677 if (!q) 678 blk_cleanup_queue(uninit_q); 679 680 return q; 681 } 682 EXPORT_SYMBOL(blk_init_queue_node); 683 684 struct request_queue * 685 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn, 686 spinlock_t *lock) 687 { 688 if (!q) 689 return NULL; 690 691 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL)) 692 return NULL; 693 694 q->request_fn = rfn; 695 q->prep_rq_fn = NULL; 696 q->unprep_rq_fn = NULL; 697 q->queue_flags |= QUEUE_FLAG_DEFAULT; 698 699 /* Override internal queue lock with supplied lock pointer */ 700 if (lock) 701 q->queue_lock = lock; 702 703 /* 704 * This also sets hw/phys segments, boundary and size 705 */ 706 blk_queue_make_request(q, blk_queue_bio); 707 708 q->sg_reserved_size = INT_MAX; 709 710 /* init elevator */ 711 if (elevator_init(q, NULL)) 712 return NULL; 713 return q; 714 } 715 EXPORT_SYMBOL(blk_init_allocated_queue); 716 717 bool blk_get_queue(struct request_queue *q) 718 { 719 if (likely(!blk_queue_dead(q))) { 720 __blk_get_queue(q); 721 return true; 722 } 723 724 return false; 725 } 726 EXPORT_SYMBOL(blk_get_queue); 727 728 static inline void blk_free_request(struct request_list *rl, struct request *rq) 729 { 730 if (rq->cmd_flags & REQ_ELVPRIV) { 731 elv_put_request(rl->q, rq); 732 if (rq->elv.icq) 733 put_io_context(rq->elv.icq->ioc); 734 } 735 736 mempool_free(rq, rl->rq_pool); 737 } 738 739 /* 740 * ioc_batching returns true if the ioc is a valid batching request and 741 * should be given priority access to a request. 742 */ 743 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc) 744 { 745 if (!ioc) 746 return 0; 747 748 /* 749 * Make sure the process is able to allocate at least 1 request 750 * even if the batch times out, otherwise we could theoretically 751 * lose wakeups. 752 */ 753 return ioc->nr_batch_requests == q->nr_batching || 754 (ioc->nr_batch_requests > 0 755 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME)); 756 } 757 758 /* 759 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This 760 * will cause the process to be a "batcher" on all queues in the system. This 761 * is the behaviour we want though - once it gets a wakeup it should be given 762 * a nice run. 763 */ 764 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc) 765 { 766 if (!ioc || ioc_batching(q, ioc)) 767 return; 768 769 ioc->nr_batch_requests = q->nr_batching; 770 ioc->last_waited = jiffies; 771 } 772 773 static void __freed_request(struct request_list *rl, int sync) 774 { 775 struct request_queue *q = rl->q; 776 777 /* 778 * bdi isn't aware of blkcg yet. As all async IOs end up root 779 * blkcg anyway, just use root blkcg state. 780 */ 781 if (rl == &q->root_rl && 782 rl->count[sync] < queue_congestion_off_threshold(q)) 783 blk_clear_queue_congested(q, sync); 784 785 if (rl->count[sync] + 1 <= q->nr_requests) { 786 if (waitqueue_active(&rl->wait[sync])) 787 wake_up(&rl->wait[sync]); 788 789 blk_clear_rl_full(rl, sync); 790 } 791 } 792 793 /* 794 * A request has just been released. Account for it, update the full and 795 * congestion status, wake up any waiters. Called under q->queue_lock. 796 */ 797 static void freed_request(struct request_list *rl, unsigned int flags) 798 { 799 struct request_queue *q = rl->q; 800 int sync = rw_is_sync(flags); 801 802 q->nr_rqs[sync]--; 803 rl->count[sync]--; 804 if (flags & REQ_ELVPRIV) 805 q->nr_rqs_elvpriv--; 806 807 __freed_request(rl, sync); 808 809 if (unlikely(rl->starved[sync ^ 1])) 810 __freed_request(rl, sync ^ 1); 811 } 812 813 /* 814 * Determine if elevator data should be initialized when allocating the 815 * request associated with @bio. 816 */ 817 static bool blk_rq_should_init_elevator(struct bio *bio) 818 { 819 if (!bio) 820 return true; 821 822 /* 823 * Flush requests do not use the elevator so skip initialization. 824 * This allows a request to share the flush and elevator data. 825 */ 826 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) 827 return false; 828 829 return true; 830 } 831 832 /** 833 * rq_ioc - determine io_context for request allocation 834 * @bio: request being allocated is for this bio (can be %NULL) 835 * 836 * Determine io_context to use for request allocation for @bio. May return 837 * %NULL if %current->io_context doesn't exist. 838 */ 839 static struct io_context *rq_ioc(struct bio *bio) 840 { 841 #ifdef CONFIG_BLK_CGROUP 842 if (bio && bio->bi_ioc) 843 return bio->bi_ioc; 844 #endif 845 return current->io_context; 846 } 847 848 /** 849 * __get_request - get a free request 850 * @rl: request list to allocate from 851 * @rw_flags: RW and SYNC flags 852 * @bio: bio to allocate request for (can be %NULL) 853 * @gfp_mask: allocation mask 854 * 855 * Get a free request from @q. This function may fail under memory 856 * pressure or if @q is dead. 857 * 858 * Must be callled with @q->queue_lock held and, 859 * Returns %NULL on failure, with @q->queue_lock held. 860 * Returns !%NULL on success, with @q->queue_lock *not held*. 861 */ 862 static struct request *__get_request(struct request_list *rl, int rw_flags, 863 struct bio *bio, gfp_t gfp_mask) 864 { 865 struct request_queue *q = rl->q; 866 struct request *rq; 867 struct elevator_type *et = q->elevator->type; 868 struct io_context *ioc = rq_ioc(bio); 869 struct io_cq *icq = NULL; 870 const bool is_sync = rw_is_sync(rw_flags) != 0; 871 int may_queue; 872 873 if (unlikely(blk_queue_dead(q))) 874 return NULL; 875 876 may_queue = elv_may_queue(q, rw_flags); 877 if (may_queue == ELV_MQUEUE_NO) 878 goto rq_starved; 879 880 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) { 881 if (rl->count[is_sync]+1 >= q->nr_requests) { 882 /* 883 * The queue will fill after this allocation, so set 884 * it as full, and mark this process as "batching". 885 * This process will be allowed to complete a batch of 886 * requests, others will be blocked. 887 */ 888 if (!blk_rl_full(rl, is_sync)) { 889 ioc_set_batching(q, ioc); 890 blk_set_rl_full(rl, is_sync); 891 } else { 892 if (may_queue != ELV_MQUEUE_MUST 893 && !ioc_batching(q, ioc)) { 894 /* 895 * The queue is full and the allocating 896 * process is not a "batcher", and not 897 * exempted by the IO scheduler 898 */ 899 return NULL; 900 } 901 } 902 } 903 /* 904 * bdi isn't aware of blkcg yet. As all async IOs end up 905 * root blkcg anyway, just use root blkcg state. 906 */ 907 if (rl == &q->root_rl) 908 blk_set_queue_congested(q, is_sync); 909 } 910 911 /* 912 * Only allow batching queuers to allocate up to 50% over the defined 913 * limit of requests, otherwise we could have thousands of requests 914 * allocated with any setting of ->nr_requests 915 */ 916 if (rl->count[is_sync] >= (3 * q->nr_requests / 2)) 917 return NULL; 918 919 q->nr_rqs[is_sync]++; 920 rl->count[is_sync]++; 921 rl->starved[is_sync] = 0; 922 923 /* 924 * Decide whether the new request will be managed by elevator. If 925 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will 926 * prevent the current elevator from being destroyed until the new 927 * request is freed. This guarantees icq's won't be destroyed and 928 * makes creating new ones safe. 929 * 930 * Also, lookup icq while holding queue_lock. If it doesn't exist, 931 * it will be created after releasing queue_lock. 932 */ 933 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) { 934 rw_flags |= REQ_ELVPRIV; 935 q->nr_rqs_elvpriv++; 936 if (et->icq_cache && ioc) 937 icq = ioc_lookup_icq(ioc, q); 938 } 939 940 if (blk_queue_io_stat(q)) 941 rw_flags |= REQ_IO_STAT; 942 spin_unlock_irq(q->queue_lock); 943 944 /* allocate and init request */ 945 rq = mempool_alloc(rl->rq_pool, gfp_mask); 946 if (!rq) 947 goto fail_alloc; 948 949 blk_rq_init(q, rq); 950 blk_rq_set_rl(rq, rl); 951 rq->cmd_flags = rw_flags | REQ_ALLOCED; 952 953 /* init elvpriv */ 954 if (rw_flags & REQ_ELVPRIV) { 955 if (unlikely(et->icq_cache && !icq)) { 956 if (ioc) 957 icq = ioc_create_icq(ioc, q, gfp_mask); 958 if (!icq) 959 goto fail_elvpriv; 960 } 961 962 rq->elv.icq = icq; 963 if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) 964 goto fail_elvpriv; 965 966 /* @rq->elv.icq holds io_context until @rq is freed */ 967 if (icq) 968 get_io_context(icq->ioc); 969 } 970 out: 971 /* 972 * ioc may be NULL here, and ioc_batching will be false. That's 973 * OK, if the queue is under the request limit then requests need 974 * not count toward the nr_batch_requests limit. There will always 975 * be some limit enforced by BLK_BATCH_TIME. 976 */ 977 if (ioc_batching(q, ioc)) 978 ioc->nr_batch_requests--; 979 980 trace_block_getrq(q, bio, rw_flags & 1); 981 return rq; 982 983 fail_elvpriv: 984 /* 985 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed 986 * and may fail indefinitely under memory pressure and thus 987 * shouldn't stall IO. Treat this request as !elvpriv. This will 988 * disturb iosched and blkcg but weird is bettern than dead. 989 */ 990 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n", 991 dev_name(q->backing_dev_info.dev)); 992 993 rq->cmd_flags &= ~REQ_ELVPRIV; 994 rq->elv.icq = NULL; 995 996 spin_lock_irq(q->queue_lock); 997 q->nr_rqs_elvpriv--; 998 spin_unlock_irq(q->queue_lock); 999 goto out; 1000 1001 fail_alloc: 1002 /* 1003 * Allocation failed presumably due to memory. Undo anything we 1004 * might have messed up. 1005 * 1006 * Allocating task should really be put onto the front of the wait 1007 * queue, but this is pretty rare. 1008 */ 1009 spin_lock_irq(q->queue_lock); 1010 freed_request(rl, rw_flags); 1011 1012 /* 1013 * in the very unlikely event that allocation failed and no 1014 * requests for this direction was pending, mark us starved so that 1015 * freeing of a request in the other direction will notice 1016 * us. another possible fix would be to split the rq mempool into 1017 * READ and WRITE 1018 */ 1019 rq_starved: 1020 if (unlikely(rl->count[is_sync] == 0)) 1021 rl->starved[is_sync] = 1; 1022 return NULL; 1023 } 1024 1025 /** 1026 * get_request - get a free request 1027 * @q: request_queue to allocate request from 1028 * @rw_flags: RW and SYNC flags 1029 * @bio: bio to allocate request for (can be %NULL) 1030 * @gfp_mask: allocation mask 1031 * 1032 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this 1033 * function keeps retrying under memory pressure and fails iff @q is dead. 1034 * 1035 * Must be callled with @q->queue_lock held and, 1036 * Returns %NULL on failure, with @q->queue_lock held. 1037 * Returns !%NULL on success, with @q->queue_lock *not held*. 1038 */ 1039 static struct request *get_request(struct request_queue *q, int rw_flags, 1040 struct bio *bio, gfp_t gfp_mask) 1041 { 1042 const bool is_sync = rw_is_sync(rw_flags) != 0; 1043 DEFINE_WAIT(wait); 1044 struct request_list *rl; 1045 struct request *rq; 1046 1047 rl = blk_get_rl(q, bio); /* transferred to @rq on success */ 1048 retry: 1049 rq = __get_request(rl, rw_flags, bio, gfp_mask); 1050 if (rq) 1051 return rq; 1052 1053 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) { 1054 blk_put_rl(rl); 1055 return NULL; 1056 } 1057 1058 /* wait on @rl and retry */ 1059 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait, 1060 TASK_UNINTERRUPTIBLE); 1061 1062 trace_block_sleeprq(q, bio, rw_flags & 1); 1063 1064 spin_unlock_irq(q->queue_lock); 1065 io_schedule(); 1066 1067 /* 1068 * After sleeping, we become a "batching" process and will be able 1069 * to allocate at least one request, and up to a big batch of them 1070 * for a small period time. See ioc_batching, ioc_set_batching 1071 */ 1072 ioc_set_batching(q, current->io_context); 1073 1074 spin_lock_irq(q->queue_lock); 1075 finish_wait(&rl->wait[is_sync], &wait); 1076 1077 goto retry; 1078 } 1079 1080 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask) 1081 { 1082 struct request *rq; 1083 1084 BUG_ON(rw != READ && rw != WRITE); 1085 1086 /* create ioc upfront */ 1087 create_io_context(gfp_mask, q->node); 1088 1089 spin_lock_irq(q->queue_lock); 1090 rq = get_request(q, rw, NULL, gfp_mask); 1091 if (!rq) 1092 spin_unlock_irq(q->queue_lock); 1093 /* q->queue_lock is unlocked at this point */ 1094 1095 return rq; 1096 } 1097 EXPORT_SYMBOL(blk_get_request); 1098 1099 /** 1100 * blk_make_request - given a bio, allocate a corresponding struct request. 1101 * @q: target request queue 1102 * @bio: The bio describing the memory mappings that will be submitted for IO. 1103 * It may be a chained-bio properly constructed by block/bio layer. 1104 * @gfp_mask: gfp flags to be used for memory allocation 1105 * 1106 * blk_make_request is the parallel of generic_make_request for BLOCK_PC 1107 * type commands. Where the struct request needs to be farther initialized by 1108 * the caller. It is passed a &struct bio, which describes the memory info of 1109 * the I/O transfer. 1110 * 1111 * The caller of blk_make_request must make sure that bi_io_vec 1112 * are set to describe the memory buffers. That bio_data_dir() will return 1113 * the needed direction of the request. (And all bio's in the passed bio-chain 1114 * are properly set accordingly) 1115 * 1116 * If called under none-sleepable conditions, mapped bio buffers must not 1117 * need bouncing, by calling the appropriate masked or flagged allocator, 1118 * suitable for the target device. Otherwise the call to blk_queue_bounce will 1119 * BUG. 1120 * 1121 * WARNING: When allocating/cloning a bio-chain, careful consideration should be 1122 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for 1123 * anything but the first bio in the chain. Otherwise you risk waiting for IO 1124 * completion of a bio that hasn't been submitted yet, thus resulting in a 1125 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead 1126 * of bio_alloc(), as that avoids the mempool deadlock. 1127 * If possible a big IO should be split into smaller parts when allocation 1128 * fails. Partial allocation should not be an error, or you risk a live-lock. 1129 */ 1130 struct request *blk_make_request(struct request_queue *q, struct bio *bio, 1131 gfp_t gfp_mask) 1132 { 1133 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask); 1134 1135 if (unlikely(!rq)) 1136 return ERR_PTR(-ENOMEM); 1137 1138 for_each_bio(bio) { 1139 struct bio *bounce_bio = bio; 1140 int ret; 1141 1142 blk_queue_bounce(q, &bounce_bio); 1143 ret = blk_rq_append_bio(q, rq, bounce_bio); 1144 if (unlikely(ret)) { 1145 blk_put_request(rq); 1146 return ERR_PTR(ret); 1147 } 1148 } 1149 1150 return rq; 1151 } 1152 EXPORT_SYMBOL(blk_make_request); 1153 1154 /** 1155 * blk_requeue_request - put a request back on queue 1156 * @q: request queue where request should be inserted 1157 * @rq: request to be inserted 1158 * 1159 * Description: 1160 * Drivers often keep queueing requests until the hardware cannot accept 1161 * more, when that condition happens we need to put the request back 1162 * on the queue. Must be called with queue lock held. 1163 */ 1164 void blk_requeue_request(struct request_queue *q, struct request *rq) 1165 { 1166 blk_delete_timer(rq); 1167 blk_clear_rq_complete(rq); 1168 trace_block_rq_requeue(q, rq); 1169 1170 if (blk_rq_tagged(rq)) 1171 blk_queue_end_tag(q, rq); 1172 1173 BUG_ON(blk_queued_rq(rq)); 1174 1175 elv_requeue_request(q, rq); 1176 } 1177 EXPORT_SYMBOL(blk_requeue_request); 1178 1179 static void add_acct_request(struct request_queue *q, struct request *rq, 1180 int where) 1181 { 1182 drive_stat_acct(rq, 1); 1183 __elv_add_request(q, rq, where); 1184 } 1185 1186 static void part_round_stats_single(int cpu, struct hd_struct *part, 1187 unsigned long now) 1188 { 1189 if (now == part->stamp) 1190 return; 1191 1192 if (part_in_flight(part)) { 1193 __part_stat_add(cpu, part, time_in_queue, 1194 part_in_flight(part) * (now - part->stamp)); 1195 __part_stat_add(cpu, part, io_ticks, (now - part->stamp)); 1196 } 1197 part->stamp = now; 1198 } 1199 1200 /** 1201 * part_round_stats() - Round off the performance stats on a struct disk_stats. 1202 * @cpu: cpu number for stats access 1203 * @part: target partition 1204 * 1205 * The average IO queue length and utilisation statistics are maintained 1206 * by observing the current state of the queue length and the amount of 1207 * time it has been in this state for. 1208 * 1209 * Normally, that accounting is done on IO completion, but that can result 1210 * in more than a second's worth of IO being accounted for within any one 1211 * second, leading to >100% utilisation. To deal with that, we call this 1212 * function to do a round-off before returning the results when reading 1213 * /proc/diskstats. This accounts immediately for all queue usage up to 1214 * the current jiffies and restarts the counters again. 1215 */ 1216 void part_round_stats(int cpu, struct hd_struct *part) 1217 { 1218 unsigned long now = jiffies; 1219 1220 if (part->partno) 1221 part_round_stats_single(cpu, &part_to_disk(part)->part0, now); 1222 part_round_stats_single(cpu, part, now); 1223 } 1224 EXPORT_SYMBOL_GPL(part_round_stats); 1225 1226 /* 1227 * queue lock must be held 1228 */ 1229 void __blk_put_request(struct request_queue *q, struct request *req) 1230 { 1231 if (unlikely(!q)) 1232 return; 1233 if (unlikely(--req->ref_count)) 1234 return; 1235 1236 elv_completed_request(q, req); 1237 1238 /* this is a bio leak */ 1239 WARN_ON(req->bio != NULL); 1240 1241 /* 1242 * Request may not have originated from ll_rw_blk. if not, 1243 * it didn't come out of our reserved rq pools 1244 */ 1245 if (req->cmd_flags & REQ_ALLOCED) { 1246 unsigned int flags = req->cmd_flags; 1247 struct request_list *rl = blk_rq_rl(req); 1248 1249 BUG_ON(!list_empty(&req->queuelist)); 1250 BUG_ON(!hlist_unhashed(&req->hash)); 1251 1252 blk_free_request(rl, req); 1253 freed_request(rl, flags); 1254 blk_put_rl(rl); 1255 } 1256 } 1257 EXPORT_SYMBOL_GPL(__blk_put_request); 1258 1259 void blk_put_request(struct request *req) 1260 { 1261 unsigned long flags; 1262 struct request_queue *q = req->q; 1263 1264 spin_lock_irqsave(q->queue_lock, flags); 1265 __blk_put_request(q, req); 1266 spin_unlock_irqrestore(q->queue_lock, flags); 1267 } 1268 EXPORT_SYMBOL(blk_put_request); 1269 1270 /** 1271 * blk_add_request_payload - add a payload to a request 1272 * @rq: request to update 1273 * @page: page backing the payload 1274 * @len: length of the payload. 1275 * 1276 * This allows to later add a payload to an already submitted request by 1277 * a block driver. The driver needs to take care of freeing the payload 1278 * itself. 1279 * 1280 * Note that this is a quite horrible hack and nothing but handling of 1281 * discard requests should ever use it. 1282 */ 1283 void blk_add_request_payload(struct request *rq, struct page *page, 1284 unsigned int len) 1285 { 1286 struct bio *bio = rq->bio; 1287 1288 bio->bi_io_vec->bv_page = page; 1289 bio->bi_io_vec->bv_offset = 0; 1290 bio->bi_io_vec->bv_len = len; 1291 1292 bio->bi_size = len; 1293 bio->bi_vcnt = 1; 1294 bio->bi_phys_segments = 1; 1295 1296 rq->__data_len = rq->resid_len = len; 1297 rq->nr_phys_segments = 1; 1298 rq->buffer = bio_data(bio); 1299 } 1300 EXPORT_SYMBOL_GPL(blk_add_request_payload); 1301 1302 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req, 1303 struct bio *bio) 1304 { 1305 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1306 1307 if (!ll_back_merge_fn(q, req, bio)) 1308 return false; 1309 1310 trace_block_bio_backmerge(q, bio); 1311 1312 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1313 blk_rq_set_mixed_merge(req); 1314 1315 req->biotail->bi_next = bio; 1316 req->biotail = bio; 1317 req->__data_len += bio->bi_size; 1318 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1319 1320 drive_stat_acct(req, 0); 1321 return true; 1322 } 1323 1324 static bool bio_attempt_front_merge(struct request_queue *q, 1325 struct request *req, struct bio *bio) 1326 { 1327 const int ff = bio->bi_rw & REQ_FAILFAST_MASK; 1328 1329 if (!ll_front_merge_fn(q, req, bio)) 1330 return false; 1331 1332 trace_block_bio_frontmerge(q, bio); 1333 1334 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) 1335 blk_rq_set_mixed_merge(req); 1336 1337 bio->bi_next = req->bio; 1338 req->bio = bio; 1339 1340 /* 1341 * may not be valid. if the low level driver said 1342 * it didn't need a bounce buffer then it better 1343 * not touch req->buffer either... 1344 */ 1345 req->buffer = bio_data(bio); 1346 req->__sector = bio->bi_sector; 1347 req->__data_len += bio->bi_size; 1348 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio)); 1349 1350 drive_stat_acct(req, 0); 1351 return true; 1352 } 1353 1354 /** 1355 * attempt_plug_merge - try to merge with %current's plugged list 1356 * @q: request_queue new bio is being queued at 1357 * @bio: new bio being queued 1358 * @request_count: out parameter for number of traversed plugged requests 1359 * 1360 * Determine whether @bio being queued on @q can be merged with a request 1361 * on %current's plugged list. Returns %true if merge was successful, 1362 * otherwise %false. 1363 * 1364 * Plugging coalesces IOs from the same issuer for the same purpose without 1365 * going through @q->queue_lock. As such it's more of an issuing mechanism 1366 * than scheduling, and the request, while may have elvpriv data, is not 1367 * added on the elevator at this point. In addition, we don't have 1368 * reliable access to the elevator outside queue lock. Only check basic 1369 * merging parameters without querying the elevator. 1370 */ 1371 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio, 1372 unsigned int *request_count) 1373 { 1374 struct blk_plug *plug; 1375 struct request *rq; 1376 bool ret = false; 1377 1378 plug = current->plug; 1379 if (!plug) 1380 goto out; 1381 *request_count = 0; 1382 1383 list_for_each_entry_reverse(rq, &plug->list, queuelist) { 1384 int el_ret; 1385 1386 if (rq->q == q) 1387 (*request_count)++; 1388 1389 if (rq->q != q || !blk_rq_merge_ok(rq, bio)) 1390 continue; 1391 1392 el_ret = blk_try_merge(rq, bio); 1393 if (el_ret == ELEVATOR_BACK_MERGE) { 1394 ret = bio_attempt_back_merge(q, rq, bio); 1395 if (ret) 1396 break; 1397 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1398 ret = bio_attempt_front_merge(q, rq, bio); 1399 if (ret) 1400 break; 1401 } 1402 } 1403 out: 1404 return ret; 1405 } 1406 1407 void init_request_from_bio(struct request *req, struct bio *bio) 1408 { 1409 req->cmd_type = REQ_TYPE_FS; 1410 1411 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK; 1412 if (bio->bi_rw & REQ_RAHEAD) 1413 req->cmd_flags |= REQ_FAILFAST_MASK; 1414 1415 req->errors = 0; 1416 req->__sector = bio->bi_sector; 1417 req->ioprio = bio_prio(bio); 1418 blk_rq_bio_prep(req->q, req, bio); 1419 } 1420 1421 void blk_queue_bio(struct request_queue *q, struct bio *bio) 1422 { 1423 const bool sync = !!(bio->bi_rw & REQ_SYNC); 1424 struct blk_plug *plug; 1425 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT; 1426 struct request *req; 1427 unsigned int request_count = 0; 1428 1429 /* 1430 * low level driver can indicate that it wants pages above a 1431 * certain limit bounced to low memory (ie for highmem, or even 1432 * ISA dma in theory) 1433 */ 1434 blk_queue_bounce(q, &bio); 1435 1436 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) { 1437 spin_lock_irq(q->queue_lock); 1438 where = ELEVATOR_INSERT_FLUSH; 1439 goto get_rq; 1440 } 1441 1442 /* 1443 * Check if we can merge with the plugged list before grabbing 1444 * any locks. 1445 */ 1446 if (attempt_plug_merge(q, bio, &request_count)) 1447 return; 1448 1449 spin_lock_irq(q->queue_lock); 1450 1451 el_ret = elv_merge(q, &req, bio); 1452 if (el_ret == ELEVATOR_BACK_MERGE) { 1453 if (bio_attempt_back_merge(q, req, bio)) { 1454 elv_bio_merged(q, req, bio); 1455 if (!attempt_back_merge(q, req)) 1456 elv_merged_request(q, req, el_ret); 1457 goto out_unlock; 1458 } 1459 } else if (el_ret == ELEVATOR_FRONT_MERGE) { 1460 if (bio_attempt_front_merge(q, req, bio)) { 1461 elv_bio_merged(q, req, bio); 1462 if (!attempt_front_merge(q, req)) 1463 elv_merged_request(q, req, el_ret); 1464 goto out_unlock; 1465 } 1466 } 1467 1468 get_rq: 1469 /* 1470 * This sync check and mask will be re-done in init_request_from_bio(), 1471 * but we need to set it earlier to expose the sync flag to the 1472 * rq allocator and io schedulers. 1473 */ 1474 rw_flags = bio_data_dir(bio); 1475 if (sync) 1476 rw_flags |= REQ_SYNC; 1477 1478 /* 1479 * Grab a free request. This is might sleep but can not fail. 1480 * Returns with the queue unlocked. 1481 */ 1482 req = get_request(q, rw_flags, bio, GFP_NOIO); 1483 if (unlikely(!req)) { 1484 bio_endio(bio, -ENODEV); /* @q is dead */ 1485 goto out_unlock; 1486 } 1487 1488 /* 1489 * After dropping the lock and possibly sleeping here, our request 1490 * may now be mergeable after it had proven unmergeable (above). 1491 * We don't worry about that case for efficiency. It won't happen 1492 * often, and the elevators are able to handle it. 1493 */ 1494 init_request_from_bio(req, bio); 1495 1496 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) 1497 req->cpu = raw_smp_processor_id(); 1498 1499 plug = current->plug; 1500 if (plug) { 1501 /* 1502 * If this is the first request added after a plug, fire 1503 * of a plug trace. If others have been added before, check 1504 * if we have multiple devices in this plug. If so, make a 1505 * note to sort the list before dispatch. 1506 */ 1507 if (list_empty(&plug->list)) 1508 trace_block_plug(q); 1509 else { 1510 if (!plug->should_sort) { 1511 struct request *__rq; 1512 1513 __rq = list_entry_rq(plug->list.prev); 1514 if (__rq->q != q) 1515 plug->should_sort = 1; 1516 } 1517 if (request_count >= BLK_MAX_REQUEST_COUNT) { 1518 blk_flush_plug_list(plug, false); 1519 trace_block_plug(q); 1520 } 1521 } 1522 list_add_tail(&req->queuelist, &plug->list); 1523 drive_stat_acct(req, 1); 1524 } else { 1525 spin_lock_irq(q->queue_lock); 1526 add_acct_request(q, req, where); 1527 __blk_run_queue(q); 1528 out_unlock: 1529 spin_unlock_irq(q->queue_lock); 1530 } 1531 } 1532 EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */ 1533 1534 /* 1535 * If bio->bi_dev is a partition, remap the location 1536 */ 1537 static inline void blk_partition_remap(struct bio *bio) 1538 { 1539 struct block_device *bdev = bio->bi_bdev; 1540 1541 if (bio_sectors(bio) && bdev != bdev->bd_contains) { 1542 struct hd_struct *p = bdev->bd_part; 1543 1544 bio->bi_sector += p->start_sect; 1545 bio->bi_bdev = bdev->bd_contains; 1546 1547 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio, 1548 bdev->bd_dev, 1549 bio->bi_sector - p->start_sect); 1550 } 1551 } 1552 1553 static void handle_bad_sector(struct bio *bio) 1554 { 1555 char b[BDEVNAME_SIZE]; 1556 1557 printk(KERN_INFO "attempt to access beyond end of device\n"); 1558 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n", 1559 bdevname(bio->bi_bdev, b), 1560 bio->bi_rw, 1561 (unsigned long long)bio->bi_sector + bio_sectors(bio), 1562 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9)); 1563 1564 set_bit(BIO_EOF, &bio->bi_flags); 1565 } 1566 1567 #ifdef CONFIG_FAIL_MAKE_REQUEST 1568 1569 static DECLARE_FAULT_ATTR(fail_make_request); 1570 1571 static int __init setup_fail_make_request(char *str) 1572 { 1573 return setup_fault_attr(&fail_make_request, str); 1574 } 1575 __setup("fail_make_request=", setup_fail_make_request); 1576 1577 static bool should_fail_request(struct hd_struct *part, unsigned int bytes) 1578 { 1579 return part->make_it_fail && should_fail(&fail_make_request, bytes); 1580 } 1581 1582 static int __init fail_make_request_debugfs(void) 1583 { 1584 struct dentry *dir = fault_create_debugfs_attr("fail_make_request", 1585 NULL, &fail_make_request); 1586 1587 return IS_ERR(dir) ? PTR_ERR(dir) : 0; 1588 } 1589 1590 late_initcall(fail_make_request_debugfs); 1591 1592 #else /* CONFIG_FAIL_MAKE_REQUEST */ 1593 1594 static inline bool should_fail_request(struct hd_struct *part, 1595 unsigned int bytes) 1596 { 1597 return false; 1598 } 1599 1600 #endif /* CONFIG_FAIL_MAKE_REQUEST */ 1601 1602 /* 1603 * Check whether this bio extends beyond the end of the device. 1604 */ 1605 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors) 1606 { 1607 sector_t maxsector; 1608 1609 if (!nr_sectors) 1610 return 0; 1611 1612 /* Test device or partition size, when known. */ 1613 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9; 1614 if (maxsector) { 1615 sector_t sector = bio->bi_sector; 1616 1617 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) { 1618 /* 1619 * This may well happen - the kernel calls bread() 1620 * without checking the size of the device, e.g., when 1621 * mounting a device. 1622 */ 1623 handle_bad_sector(bio); 1624 return 1; 1625 } 1626 } 1627 1628 return 0; 1629 } 1630 1631 static noinline_for_stack bool 1632 generic_make_request_checks(struct bio *bio) 1633 { 1634 struct request_queue *q; 1635 int nr_sectors = bio_sectors(bio); 1636 int err = -EIO; 1637 char b[BDEVNAME_SIZE]; 1638 struct hd_struct *part; 1639 1640 might_sleep(); 1641 1642 if (bio_check_eod(bio, nr_sectors)) 1643 goto end_io; 1644 1645 q = bdev_get_queue(bio->bi_bdev); 1646 if (unlikely(!q)) { 1647 printk(KERN_ERR 1648 "generic_make_request: Trying to access " 1649 "nonexistent block-device %s (%Lu)\n", 1650 bdevname(bio->bi_bdev, b), 1651 (long long) bio->bi_sector); 1652 goto end_io; 1653 } 1654 1655 if (likely(bio_is_rw(bio) && 1656 nr_sectors > queue_max_hw_sectors(q))) { 1657 printk(KERN_ERR "bio too big device %s (%u > %u)\n", 1658 bdevname(bio->bi_bdev, b), 1659 bio_sectors(bio), 1660 queue_max_hw_sectors(q)); 1661 goto end_io; 1662 } 1663 1664 part = bio->bi_bdev->bd_part; 1665 if (should_fail_request(part, bio->bi_size) || 1666 should_fail_request(&part_to_disk(part)->part0, 1667 bio->bi_size)) 1668 goto end_io; 1669 1670 /* 1671 * If this device has partitions, remap block n 1672 * of partition p to block n+start(p) of the disk. 1673 */ 1674 blk_partition_remap(bio); 1675 1676 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) 1677 goto end_io; 1678 1679 if (bio_check_eod(bio, nr_sectors)) 1680 goto end_io; 1681 1682 /* 1683 * Filter flush bio's early so that make_request based 1684 * drivers without flush support don't have to worry 1685 * about them. 1686 */ 1687 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) { 1688 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA); 1689 if (!nr_sectors) { 1690 err = 0; 1691 goto end_io; 1692 } 1693 } 1694 1695 if ((bio->bi_rw & REQ_DISCARD) && 1696 (!blk_queue_discard(q) || 1697 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) { 1698 err = -EOPNOTSUPP; 1699 goto end_io; 1700 } 1701 1702 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) { 1703 err = -EOPNOTSUPP; 1704 goto end_io; 1705 } 1706 1707 /* 1708 * Various block parts want %current->io_context and lazy ioc 1709 * allocation ends up trading a lot of pain for a small amount of 1710 * memory. Just allocate it upfront. This may fail and block 1711 * layer knows how to live with it. 1712 */ 1713 create_io_context(GFP_ATOMIC, q->node); 1714 1715 if (blk_throtl_bio(q, bio)) 1716 return false; /* throttled, will be resubmitted later */ 1717 1718 trace_block_bio_queue(q, bio); 1719 return true; 1720 1721 end_io: 1722 bio_endio(bio, err); 1723 return false; 1724 } 1725 1726 /** 1727 * generic_make_request - hand a buffer to its device driver for I/O 1728 * @bio: The bio describing the location in memory and on the device. 1729 * 1730 * generic_make_request() is used to make I/O requests of block 1731 * devices. It is passed a &struct bio, which describes the I/O that needs 1732 * to be done. 1733 * 1734 * generic_make_request() does not return any status. The 1735 * success/failure status of the request, along with notification of 1736 * completion, is delivered asynchronously through the bio->bi_end_io 1737 * function described (one day) else where. 1738 * 1739 * The caller of generic_make_request must make sure that bi_io_vec 1740 * are set to describe the memory buffer, and that bi_dev and bi_sector are 1741 * set to describe the device address, and the 1742 * bi_end_io and optionally bi_private are set to describe how 1743 * completion notification should be signaled. 1744 * 1745 * generic_make_request and the drivers it calls may use bi_next if this 1746 * bio happens to be merged with someone else, and may resubmit the bio to 1747 * a lower device by calling into generic_make_request recursively, which 1748 * means the bio should NOT be touched after the call to ->make_request_fn. 1749 */ 1750 void generic_make_request(struct bio *bio) 1751 { 1752 struct bio_list bio_list_on_stack; 1753 1754 if (!generic_make_request_checks(bio)) 1755 return; 1756 1757 /* 1758 * We only want one ->make_request_fn to be active at a time, else 1759 * stack usage with stacked devices could be a problem. So use 1760 * current->bio_list to keep a list of requests submited by a 1761 * make_request_fn function. current->bio_list is also used as a 1762 * flag to say if generic_make_request is currently active in this 1763 * task or not. If it is NULL, then no make_request is active. If 1764 * it is non-NULL, then a make_request is active, and new requests 1765 * should be added at the tail 1766 */ 1767 if (current->bio_list) { 1768 bio_list_add(current->bio_list, bio); 1769 return; 1770 } 1771 1772 /* following loop may be a bit non-obvious, and so deserves some 1773 * explanation. 1774 * Before entering the loop, bio->bi_next is NULL (as all callers 1775 * ensure that) so we have a list with a single bio. 1776 * We pretend that we have just taken it off a longer list, so 1777 * we assign bio_list to a pointer to the bio_list_on_stack, 1778 * thus initialising the bio_list of new bios to be 1779 * added. ->make_request() may indeed add some more bios 1780 * through a recursive call to generic_make_request. If it 1781 * did, we find a non-NULL value in bio_list and re-enter the loop 1782 * from the top. In this case we really did just take the bio 1783 * of the top of the list (no pretending) and so remove it from 1784 * bio_list, and call into ->make_request() again. 1785 */ 1786 BUG_ON(bio->bi_next); 1787 bio_list_init(&bio_list_on_stack); 1788 current->bio_list = &bio_list_on_stack; 1789 do { 1790 struct request_queue *q = bdev_get_queue(bio->bi_bdev); 1791 1792 q->make_request_fn(q, bio); 1793 1794 bio = bio_list_pop(current->bio_list); 1795 } while (bio); 1796 current->bio_list = NULL; /* deactivate */ 1797 } 1798 EXPORT_SYMBOL(generic_make_request); 1799 1800 /** 1801 * submit_bio - submit a bio to the block device layer for I/O 1802 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead) 1803 * @bio: The &struct bio which describes the I/O 1804 * 1805 * submit_bio() is very similar in purpose to generic_make_request(), and 1806 * uses that function to do most of the work. Both are fairly rough 1807 * interfaces; @bio must be presetup and ready for I/O. 1808 * 1809 */ 1810 void submit_bio(int rw, struct bio *bio) 1811 { 1812 bio->bi_rw |= rw; 1813 1814 /* 1815 * If it's a regular read/write or a barrier with data attached, 1816 * go through the normal accounting stuff before submission. 1817 */ 1818 if (bio_has_data(bio)) { 1819 unsigned int count; 1820 1821 if (unlikely(rw & REQ_WRITE_SAME)) 1822 count = bdev_logical_block_size(bio->bi_bdev) >> 9; 1823 else 1824 count = bio_sectors(bio); 1825 1826 if (rw & WRITE) { 1827 count_vm_events(PGPGOUT, count); 1828 } else { 1829 task_io_account_read(bio->bi_size); 1830 count_vm_events(PGPGIN, count); 1831 } 1832 1833 if (unlikely(block_dump)) { 1834 char b[BDEVNAME_SIZE]; 1835 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n", 1836 current->comm, task_pid_nr(current), 1837 (rw & WRITE) ? "WRITE" : "READ", 1838 (unsigned long long)bio->bi_sector, 1839 bdevname(bio->bi_bdev, b), 1840 count); 1841 } 1842 } 1843 1844 generic_make_request(bio); 1845 } 1846 EXPORT_SYMBOL(submit_bio); 1847 1848 /** 1849 * blk_rq_check_limits - Helper function to check a request for the queue limit 1850 * @q: the queue 1851 * @rq: the request being checked 1852 * 1853 * Description: 1854 * @rq may have been made based on weaker limitations of upper-level queues 1855 * in request stacking drivers, and it may violate the limitation of @q. 1856 * Since the block layer and the underlying device driver trust @rq 1857 * after it is inserted to @q, it should be checked against @q before 1858 * the insertion using this generic function. 1859 * 1860 * This function should also be useful for request stacking drivers 1861 * in some cases below, so export this function. 1862 * Request stacking drivers like request-based dm may change the queue 1863 * limits while requests are in the queue (e.g. dm's table swapping). 1864 * Such request stacking drivers should check those requests agaist 1865 * the new queue limits again when they dispatch those requests, 1866 * although such checkings are also done against the old queue limits 1867 * when submitting requests. 1868 */ 1869 int blk_rq_check_limits(struct request_queue *q, struct request *rq) 1870 { 1871 if (!rq_mergeable(rq)) 1872 return 0; 1873 1874 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) { 1875 printk(KERN_ERR "%s: over max size limit.\n", __func__); 1876 return -EIO; 1877 } 1878 1879 /* 1880 * queue's settings related to segment counting like q->bounce_pfn 1881 * may differ from that of other stacking queues. 1882 * Recalculate it to check the request correctly on this queue's 1883 * limitation. 1884 */ 1885 blk_recalc_rq_segments(rq); 1886 if (rq->nr_phys_segments > queue_max_segments(q)) { 1887 printk(KERN_ERR "%s: over max segments limit.\n", __func__); 1888 return -EIO; 1889 } 1890 1891 return 0; 1892 } 1893 EXPORT_SYMBOL_GPL(blk_rq_check_limits); 1894 1895 /** 1896 * blk_insert_cloned_request - Helper for stacking drivers to submit a request 1897 * @q: the queue to submit the request 1898 * @rq: the request being queued 1899 */ 1900 int blk_insert_cloned_request(struct request_queue *q, struct request *rq) 1901 { 1902 unsigned long flags; 1903 int where = ELEVATOR_INSERT_BACK; 1904 1905 if (blk_rq_check_limits(q, rq)) 1906 return -EIO; 1907 1908 if (rq->rq_disk && 1909 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq))) 1910 return -EIO; 1911 1912 spin_lock_irqsave(q->queue_lock, flags); 1913 if (unlikely(blk_queue_dead(q))) { 1914 spin_unlock_irqrestore(q->queue_lock, flags); 1915 return -ENODEV; 1916 } 1917 1918 /* 1919 * Submitting request must be dequeued before calling this function 1920 * because it will be linked to another request_queue 1921 */ 1922 BUG_ON(blk_queued_rq(rq)); 1923 1924 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA)) 1925 where = ELEVATOR_INSERT_FLUSH; 1926 1927 add_acct_request(q, rq, where); 1928 if (where == ELEVATOR_INSERT_FLUSH) 1929 __blk_run_queue(q); 1930 spin_unlock_irqrestore(q->queue_lock, flags); 1931 1932 return 0; 1933 } 1934 EXPORT_SYMBOL_GPL(blk_insert_cloned_request); 1935 1936 /** 1937 * blk_rq_err_bytes - determine number of bytes till the next failure boundary 1938 * @rq: request to examine 1939 * 1940 * Description: 1941 * A request could be merge of IOs which require different failure 1942 * handling. This function determines the number of bytes which 1943 * can be failed from the beginning of the request without 1944 * crossing into area which need to be retried further. 1945 * 1946 * Return: 1947 * The number of bytes to fail. 1948 * 1949 * Context: 1950 * queue_lock must be held. 1951 */ 1952 unsigned int blk_rq_err_bytes(const struct request *rq) 1953 { 1954 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK; 1955 unsigned int bytes = 0; 1956 struct bio *bio; 1957 1958 if (!(rq->cmd_flags & REQ_MIXED_MERGE)) 1959 return blk_rq_bytes(rq); 1960 1961 /* 1962 * Currently the only 'mixing' which can happen is between 1963 * different fastfail types. We can safely fail portions 1964 * which have all the failfast bits that the first one has - 1965 * the ones which are at least as eager to fail as the first 1966 * one. 1967 */ 1968 for (bio = rq->bio; bio; bio = bio->bi_next) { 1969 if ((bio->bi_rw & ff) != ff) 1970 break; 1971 bytes += bio->bi_size; 1972 } 1973 1974 /* this could lead to infinite loop */ 1975 BUG_ON(blk_rq_bytes(rq) && !bytes); 1976 return bytes; 1977 } 1978 EXPORT_SYMBOL_GPL(blk_rq_err_bytes); 1979 1980 static void blk_account_io_completion(struct request *req, unsigned int bytes) 1981 { 1982 if (blk_do_io_stat(req)) { 1983 const int rw = rq_data_dir(req); 1984 struct hd_struct *part; 1985 int cpu; 1986 1987 cpu = part_stat_lock(); 1988 part = req->part; 1989 part_stat_add(cpu, part, sectors[rw], bytes >> 9); 1990 part_stat_unlock(); 1991 } 1992 } 1993 1994 static void blk_account_io_done(struct request *req) 1995 { 1996 /* 1997 * Account IO completion. flush_rq isn't accounted as a 1998 * normal IO on queueing nor completion. Accounting the 1999 * containing request is enough. 2000 */ 2001 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) { 2002 unsigned long duration = jiffies - req->start_time; 2003 const int rw = rq_data_dir(req); 2004 struct hd_struct *part; 2005 int cpu; 2006 2007 cpu = part_stat_lock(); 2008 part = req->part; 2009 2010 part_stat_inc(cpu, part, ios[rw]); 2011 part_stat_add(cpu, part, ticks[rw], duration); 2012 part_round_stats(cpu, part); 2013 part_dec_in_flight(part, rw); 2014 2015 hd_struct_put(part); 2016 part_stat_unlock(); 2017 } 2018 } 2019 2020 /** 2021 * blk_peek_request - peek at the top of a request queue 2022 * @q: request queue to peek at 2023 * 2024 * Description: 2025 * Return the request at the top of @q. The returned request 2026 * should be started using blk_start_request() before LLD starts 2027 * processing it. 2028 * 2029 * Return: 2030 * Pointer to the request at the top of @q if available. Null 2031 * otherwise. 2032 * 2033 * Context: 2034 * queue_lock must be held. 2035 */ 2036 struct request *blk_peek_request(struct request_queue *q) 2037 { 2038 struct request *rq; 2039 int ret; 2040 2041 while ((rq = __elv_next_request(q)) != NULL) { 2042 if (!(rq->cmd_flags & REQ_STARTED)) { 2043 /* 2044 * This is the first time the device driver 2045 * sees this request (possibly after 2046 * requeueing). Notify IO scheduler. 2047 */ 2048 if (rq->cmd_flags & REQ_SORTED) 2049 elv_activate_rq(q, rq); 2050 2051 /* 2052 * just mark as started even if we don't start 2053 * it, a request that has been delayed should 2054 * not be passed by new incoming requests 2055 */ 2056 rq->cmd_flags |= REQ_STARTED; 2057 trace_block_rq_issue(q, rq); 2058 } 2059 2060 if (!q->boundary_rq || q->boundary_rq == rq) { 2061 q->end_sector = rq_end_sector(rq); 2062 q->boundary_rq = NULL; 2063 } 2064 2065 if (rq->cmd_flags & REQ_DONTPREP) 2066 break; 2067 2068 if (q->dma_drain_size && blk_rq_bytes(rq)) { 2069 /* 2070 * make sure space for the drain appears we 2071 * know we can do this because max_hw_segments 2072 * has been adjusted to be one fewer than the 2073 * device can handle 2074 */ 2075 rq->nr_phys_segments++; 2076 } 2077 2078 if (!q->prep_rq_fn) 2079 break; 2080 2081 ret = q->prep_rq_fn(q, rq); 2082 if (ret == BLKPREP_OK) { 2083 break; 2084 } else if (ret == BLKPREP_DEFER) { 2085 /* 2086 * the request may have been (partially) prepped. 2087 * we need to keep this request in the front to 2088 * avoid resource deadlock. REQ_STARTED will 2089 * prevent other fs requests from passing this one. 2090 */ 2091 if (q->dma_drain_size && blk_rq_bytes(rq) && 2092 !(rq->cmd_flags & REQ_DONTPREP)) { 2093 /* 2094 * remove the space for the drain we added 2095 * so that we don't add it again 2096 */ 2097 --rq->nr_phys_segments; 2098 } 2099 2100 rq = NULL; 2101 break; 2102 } else if (ret == BLKPREP_KILL) { 2103 rq->cmd_flags |= REQ_QUIET; 2104 /* 2105 * Mark this request as started so we don't trigger 2106 * any debug logic in the end I/O path. 2107 */ 2108 blk_start_request(rq); 2109 __blk_end_request_all(rq, -EIO); 2110 } else { 2111 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret); 2112 break; 2113 } 2114 } 2115 2116 return rq; 2117 } 2118 EXPORT_SYMBOL(blk_peek_request); 2119 2120 void blk_dequeue_request(struct request *rq) 2121 { 2122 struct request_queue *q = rq->q; 2123 2124 BUG_ON(list_empty(&rq->queuelist)); 2125 BUG_ON(ELV_ON_HASH(rq)); 2126 2127 list_del_init(&rq->queuelist); 2128 2129 /* 2130 * the time frame between a request being removed from the lists 2131 * and to it is freed is accounted as io that is in progress at 2132 * the driver side. 2133 */ 2134 if (blk_account_rq(rq)) { 2135 q->in_flight[rq_is_sync(rq)]++; 2136 set_io_start_time_ns(rq); 2137 } 2138 } 2139 2140 /** 2141 * blk_start_request - start request processing on the driver 2142 * @req: request to dequeue 2143 * 2144 * Description: 2145 * Dequeue @req and start timeout timer on it. This hands off the 2146 * request to the driver. 2147 * 2148 * Block internal functions which don't want to start timer should 2149 * call blk_dequeue_request(). 2150 * 2151 * Context: 2152 * queue_lock must be held. 2153 */ 2154 void blk_start_request(struct request *req) 2155 { 2156 blk_dequeue_request(req); 2157 2158 /* 2159 * We are now handing the request to the hardware, initialize 2160 * resid_len to full count and add the timeout handler. 2161 */ 2162 req->resid_len = blk_rq_bytes(req); 2163 if (unlikely(blk_bidi_rq(req))) 2164 req->next_rq->resid_len = blk_rq_bytes(req->next_rq); 2165 2166 blk_add_timer(req); 2167 } 2168 EXPORT_SYMBOL(blk_start_request); 2169 2170 /** 2171 * blk_fetch_request - fetch a request from a request queue 2172 * @q: request queue to fetch a request from 2173 * 2174 * Description: 2175 * Return the request at the top of @q. The request is started on 2176 * return and LLD can start processing it immediately. 2177 * 2178 * Return: 2179 * Pointer to the request at the top of @q if available. Null 2180 * otherwise. 2181 * 2182 * Context: 2183 * queue_lock must be held. 2184 */ 2185 struct request *blk_fetch_request(struct request_queue *q) 2186 { 2187 struct request *rq; 2188 2189 rq = blk_peek_request(q); 2190 if (rq) 2191 blk_start_request(rq); 2192 return rq; 2193 } 2194 EXPORT_SYMBOL(blk_fetch_request); 2195 2196 /** 2197 * blk_update_request - Special helper function for request stacking drivers 2198 * @req: the request being processed 2199 * @error: %0 for success, < %0 for error 2200 * @nr_bytes: number of bytes to complete @req 2201 * 2202 * Description: 2203 * Ends I/O on a number of bytes attached to @req, but doesn't complete 2204 * the request structure even if @req doesn't have leftover. 2205 * If @req has leftover, sets it up for the next range of segments. 2206 * 2207 * This special helper function is only for request stacking drivers 2208 * (e.g. request-based dm) so that they can handle partial completion. 2209 * Actual device drivers should use blk_end_request instead. 2210 * 2211 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees 2212 * %false return from this function. 2213 * 2214 * Return: 2215 * %false - this request doesn't have any more data 2216 * %true - this request has more data 2217 **/ 2218 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes) 2219 { 2220 int total_bytes, bio_nbytes, next_idx = 0; 2221 struct bio *bio; 2222 2223 if (!req->bio) 2224 return false; 2225 2226 trace_block_rq_complete(req->q, req); 2227 2228 /* 2229 * For fs requests, rq is just carrier of independent bio's 2230 * and each partial completion should be handled separately. 2231 * Reset per-request error on each partial completion. 2232 * 2233 * TODO: tj: This is too subtle. It would be better to let 2234 * low level drivers do what they see fit. 2235 */ 2236 if (req->cmd_type == REQ_TYPE_FS) 2237 req->errors = 0; 2238 2239 if (error && req->cmd_type == REQ_TYPE_FS && 2240 !(req->cmd_flags & REQ_QUIET)) { 2241 char *error_type; 2242 2243 switch (error) { 2244 case -ENOLINK: 2245 error_type = "recoverable transport"; 2246 break; 2247 case -EREMOTEIO: 2248 error_type = "critical target"; 2249 break; 2250 case -EBADE: 2251 error_type = "critical nexus"; 2252 break; 2253 case -EIO: 2254 default: 2255 error_type = "I/O"; 2256 break; 2257 } 2258 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n", 2259 error_type, req->rq_disk ? 2260 req->rq_disk->disk_name : "?", 2261 (unsigned long long)blk_rq_pos(req)); 2262 2263 } 2264 2265 blk_account_io_completion(req, nr_bytes); 2266 2267 total_bytes = bio_nbytes = 0; 2268 while ((bio = req->bio) != NULL) { 2269 int nbytes; 2270 2271 if (nr_bytes >= bio->bi_size) { 2272 req->bio = bio->bi_next; 2273 nbytes = bio->bi_size; 2274 req_bio_endio(req, bio, nbytes, error); 2275 next_idx = 0; 2276 bio_nbytes = 0; 2277 } else { 2278 int idx = bio->bi_idx + next_idx; 2279 2280 if (unlikely(idx >= bio->bi_vcnt)) { 2281 blk_dump_rq_flags(req, "__end_that"); 2282 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n", 2283 __func__, idx, bio->bi_vcnt); 2284 break; 2285 } 2286 2287 nbytes = bio_iovec_idx(bio, idx)->bv_len; 2288 BIO_BUG_ON(nbytes > bio->bi_size); 2289 2290 /* 2291 * not a complete bvec done 2292 */ 2293 if (unlikely(nbytes > nr_bytes)) { 2294 bio_nbytes += nr_bytes; 2295 total_bytes += nr_bytes; 2296 break; 2297 } 2298 2299 /* 2300 * advance to the next vector 2301 */ 2302 next_idx++; 2303 bio_nbytes += nbytes; 2304 } 2305 2306 total_bytes += nbytes; 2307 nr_bytes -= nbytes; 2308 2309 bio = req->bio; 2310 if (bio) { 2311 /* 2312 * end more in this run, or just return 'not-done' 2313 */ 2314 if (unlikely(nr_bytes <= 0)) 2315 break; 2316 } 2317 } 2318 2319 /* 2320 * completely done 2321 */ 2322 if (!req->bio) { 2323 /* 2324 * Reset counters so that the request stacking driver 2325 * can find how many bytes remain in the request 2326 * later. 2327 */ 2328 req->__data_len = 0; 2329 return false; 2330 } 2331 2332 /* 2333 * if the request wasn't completed, update state 2334 */ 2335 if (bio_nbytes) { 2336 req_bio_endio(req, bio, bio_nbytes, error); 2337 bio->bi_idx += next_idx; 2338 bio_iovec(bio)->bv_offset += nr_bytes; 2339 bio_iovec(bio)->bv_len -= nr_bytes; 2340 } 2341 2342 req->__data_len -= total_bytes; 2343 req->buffer = bio_data(req->bio); 2344 2345 /* update sector only for requests with clear definition of sector */ 2346 if (req->cmd_type == REQ_TYPE_FS) 2347 req->__sector += total_bytes >> 9; 2348 2349 /* mixed attributes always follow the first bio */ 2350 if (req->cmd_flags & REQ_MIXED_MERGE) { 2351 req->cmd_flags &= ~REQ_FAILFAST_MASK; 2352 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK; 2353 } 2354 2355 /* 2356 * If total number of sectors is less than the first segment 2357 * size, something has gone terribly wrong. 2358 */ 2359 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) { 2360 blk_dump_rq_flags(req, "request botched"); 2361 req->__data_len = blk_rq_cur_bytes(req); 2362 } 2363 2364 /* recalculate the number of segments */ 2365 blk_recalc_rq_segments(req); 2366 2367 return true; 2368 } 2369 EXPORT_SYMBOL_GPL(blk_update_request); 2370 2371 static bool blk_update_bidi_request(struct request *rq, int error, 2372 unsigned int nr_bytes, 2373 unsigned int bidi_bytes) 2374 { 2375 if (blk_update_request(rq, error, nr_bytes)) 2376 return true; 2377 2378 /* Bidi request must be completed as a whole */ 2379 if (unlikely(blk_bidi_rq(rq)) && 2380 blk_update_request(rq->next_rq, error, bidi_bytes)) 2381 return true; 2382 2383 if (blk_queue_add_random(rq->q)) 2384 add_disk_randomness(rq->rq_disk); 2385 2386 return false; 2387 } 2388 2389 /** 2390 * blk_unprep_request - unprepare a request 2391 * @req: the request 2392 * 2393 * This function makes a request ready for complete resubmission (or 2394 * completion). It happens only after all error handling is complete, 2395 * so represents the appropriate moment to deallocate any resources 2396 * that were allocated to the request in the prep_rq_fn. The queue 2397 * lock is held when calling this. 2398 */ 2399 void blk_unprep_request(struct request *req) 2400 { 2401 struct request_queue *q = req->q; 2402 2403 req->cmd_flags &= ~REQ_DONTPREP; 2404 if (q->unprep_rq_fn) 2405 q->unprep_rq_fn(q, req); 2406 } 2407 EXPORT_SYMBOL_GPL(blk_unprep_request); 2408 2409 /* 2410 * queue lock must be held 2411 */ 2412 static void blk_finish_request(struct request *req, int error) 2413 { 2414 if (blk_rq_tagged(req)) 2415 blk_queue_end_tag(req->q, req); 2416 2417 BUG_ON(blk_queued_rq(req)); 2418 2419 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS) 2420 laptop_io_completion(&req->q->backing_dev_info); 2421 2422 blk_delete_timer(req); 2423 2424 if (req->cmd_flags & REQ_DONTPREP) 2425 blk_unprep_request(req); 2426 2427 2428 blk_account_io_done(req); 2429 2430 if (req->end_io) 2431 req->end_io(req, error); 2432 else { 2433 if (blk_bidi_rq(req)) 2434 __blk_put_request(req->next_rq->q, req->next_rq); 2435 2436 __blk_put_request(req->q, req); 2437 } 2438 } 2439 2440 /** 2441 * blk_end_bidi_request - Complete a bidi request 2442 * @rq: the request to complete 2443 * @error: %0 for success, < %0 for error 2444 * @nr_bytes: number of bytes to complete @rq 2445 * @bidi_bytes: number of bytes to complete @rq->next_rq 2446 * 2447 * Description: 2448 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq. 2449 * Drivers that supports bidi can safely call this member for any 2450 * type of request, bidi or uni. In the later case @bidi_bytes is 2451 * just ignored. 2452 * 2453 * Return: 2454 * %false - we are done with this request 2455 * %true - still buffers pending for this request 2456 **/ 2457 static bool blk_end_bidi_request(struct request *rq, int error, 2458 unsigned int nr_bytes, unsigned int bidi_bytes) 2459 { 2460 struct request_queue *q = rq->q; 2461 unsigned long flags; 2462 2463 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2464 return true; 2465 2466 spin_lock_irqsave(q->queue_lock, flags); 2467 blk_finish_request(rq, error); 2468 spin_unlock_irqrestore(q->queue_lock, flags); 2469 2470 return false; 2471 } 2472 2473 /** 2474 * __blk_end_bidi_request - Complete a bidi request with queue lock held 2475 * @rq: the request to complete 2476 * @error: %0 for success, < %0 for error 2477 * @nr_bytes: number of bytes to complete @rq 2478 * @bidi_bytes: number of bytes to complete @rq->next_rq 2479 * 2480 * Description: 2481 * Identical to blk_end_bidi_request() except that queue lock is 2482 * assumed to be locked on entry and remains so on return. 2483 * 2484 * Return: 2485 * %false - we are done with this request 2486 * %true - still buffers pending for this request 2487 **/ 2488 bool __blk_end_bidi_request(struct request *rq, int error, 2489 unsigned int nr_bytes, unsigned int bidi_bytes) 2490 { 2491 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes)) 2492 return true; 2493 2494 blk_finish_request(rq, error); 2495 2496 return false; 2497 } 2498 2499 /** 2500 * blk_end_request - Helper function for drivers to complete the request. 2501 * @rq: the request being processed 2502 * @error: %0 for success, < %0 for error 2503 * @nr_bytes: number of bytes to complete 2504 * 2505 * Description: 2506 * Ends I/O on a number of bytes attached to @rq. 2507 * If @rq has leftover, sets it up for the next range of segments. 2508 * 2509 * Return: 2510 * %false - we are done with this request 2511 * %true - still buffers pending for this request 2512 **/ 2513 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2514 { 2515 return blk_end_bidi_request(rq, error, nr_bytes, 0); 2516 } 2517 EXPORT_SYMBOL(blk_end_request); 2518 2519 /** 2520 * blk_end_request_all - Helper function for drives to finish the request. 2521 * @rq: the request to finish 2522 * @error: %0 for success, < %0 for error 2523 * 2524 * Description: 2525 * Completely finish @rq. 2526 */ 2527 void blk_end_request_all(struct request *rq, int error) 2528 { 2529 bool pending; 2530 unsigned int bidi_bytes = 0; 2531 2532 if (unlikely(blk_bidi_rq(rq))) 2533 bidi_bytes = blk_rq_bytes(rq->next_rq); 2534 2535 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2536 BUG_ON(pending); 2537 } 2538 EXPORT_SYMBOL(blk_end_request_all); 2539 2540 /** 2541 * blk_end_request_cur - Helper function to finish the current request chunk. 2542 * @rq: the request to finish the current chunk for 2543 * @error: %0 for success, < %0 for error 2544 * 2545 * Description: 2546 * Complete the current consecutively mapped chunk from @rq. 2547 * 2548 * Return: 2549 * %false - we are done with this request 2550 * %true - still buffers pending for this request 2551 */ 2552 bool blk_end_request_cur(struct request *rq, int error) 2553 { 2554 return blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2555 } 2556 EXPORT_SYMBOL(blk_end_request_cur); 2557 2558 /** 2559 * blk_end_request_err - Finish a request till the next failure boundary. 2560 * @rq: the request to finish till the next failure boundary for 2561 * @error: must be negative errno 2562 * 2563 * Description: 2564 * Complete @rq till the next failure boundary. 2565 * 2566 * Return: 2567 * %false - we are done with this request 2568 * %true - still buffers pending for this request 2569 */ 2570 bool blk_end_request_err(struct request *rq, int error) 2571 { 2572 WARN_ON(error >= 0); 2573 return blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2574 } 2575 EXPORT_SYMBOL_GPL(blk_end_request_err); 2576 2577 /** 2578 * __blk_end_request - Helper function for drivers to complete the request. 2579 * @rq: the request being processed 2580 * @error: %0 for success, < %0 for error 2581 * @nr_bytes: number of bytes to complete 2582 * 2583 * Description: 2584 * Must be called with queue lock held unlike blk_end_request(). 2585 * 2586 * Return: 2587 * %false - we are done with this request 2588 * %true - still buffers pending for this request 2589 **/ 2590 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes) 2591 { 2592 return __blk_end_bidi_request(rq, error, nr_bytes, 0); 2593 } 2594 EXPORT_SYMBOL(__blk_end_request); 2595 2596 /** 2597 * __blk_end_request_all - Helper function for drives to finish the request. 2598 * @rq: the request to finish 2599 * @error: %0 for success, < %0 for error 2600 * 2601 * Description: 2602 * Completely finish @rq. Must be called with queue lock held. 2603 */ 2604 void __blk_end_request_all(struct request *rq, int error) 2605 { 2606 bool pending; 2607 unsigned int bidi_bytes = 0; 2608 2609 if (unlikely(blk_bidi_rq(rq))) 2610 bidi_bytes = blk_rq_bytes(rq->next_rq); 2611 2612 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes); 2613 BUG_ON(pending); 2614 } 2615 EXPORT_SYMBOL(__blk_end_request_all); 2616 2617 /** 2618 * __blk_end_request_cur - Helper function to finish the current request chunk. 2619 * @rq: the request to finish the current chunk for 2620 * @error: %0 for success, < %0 for error 2621 * 2622 * Description: 2623 * Complete the current consecutively mapped chunk from @rq. Must 2624 * be called with queue lock held. 2625 * 2626 * Return: 2627 * %false - we are done with this request 2628 * %true - still buffers pending for this request 2629 */ 2630 bool __blk_end_request_cur(struct request *rq, int error) 2631 { 2632 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq)); 2633 } 2634 EXPORT_SYMBOL(__blk_end_request_cur); 2635 2636 /** 2637 * __blk_end_request_err - Finish a request till the next failure boundary. 2638 * @rq: the request to finish till the next failure boundary for 2639 * @error: must be negative errno 2640 * 2641 * Description: 2642 * Complete @rq till the next failure boundary. Must be called 2643 * with queue lock held. 2644 * 2645 * Return: 2646 * %false - we are done with this request 2647 * %true - still buffers pending for this request 2648 */ 2649 bool __blk_end_request_err(struct request *rq, int error) 2650 { 2651 WARN_ON(error >= 0); 2652 return __blk_end_request(rq, error, blk_rq_err_bytes(rq)); 2653 } 2654 EXPORT_SYMBOL_GPL(__blk_end_request_err); 2655 2656 void blk_rq_bio_prep(struct request_queue *q, struct request *rq, 2657 struct bio *bio) 2658 { 2659 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */ 2660 rq->cmd_flags |= bio->bi_rw & REQ_WRITE; 2661 2662 if (bio_has_data(bio)) { 2663 rq->nr_phys_segments = bio_phys_segments(q, bio); 2664 rq->buffer = bio_data(bio); 2665 } 2666 rq->__data_len = bio->bi_size; 2667 rq->bio = rq->biotail = bio; 2668 2669 if (bio->bi_bdev) 2670 rq->rq_disk = bio->bi_bdev->bd_disk; 2671 } 2672 2673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 2674 /** 2675 * rq_flush_dcache_pages - Helper function to flush all pages in a request 2676 * @rq: the request to be flushed 2677 * 2678 * Description: 2679 * Flush all pages in @rq. 2680 */ 2681 void rq_flush_dcache_pages(struct request *rq) 2682 { 2683 struct req_iterator iter; 2684 struct bio_vec *bvec; 2685 2686 rq_for_each_segment(bvec, rq, iter) 2687 flush_dcache_page(bvec->bv_page); 2688 } 2689 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages); 2690 #endif 2691 2692 /** 2693 * blk_lld_busy - Check if underlying low-level drivers of a device are busy 2694 * @q : the queue of the device being checked 2695 * 2696 * Description: 2697 * Check if underlying low-level drivers of a device are busy. 2698 * If the drivers want to export their busy state, they must set own 2699 * exporting function using blk_queue_lld_busy() first. 2700 * 2701 * Basically, this function is used only by request stacking drivers 2702 * to stop dispatching requests to underlying devices when underlying 2703 * devices are busy. This behavior helps more I/O merging on the queue 2704 * of the request stacking driver and prevents I/O throughput regression 2705 * on burst I/O load. 2706 * 2707 * Return: 2708 * 0 - Not busy (The request stacking driver should dispatch request) 2709 * 1 - Busy (The request stacking driver should stop dispatching request) 2710 */ 2711 int blk_lld_busy(struct request_queue *q) 2712 { 2713 if (q->lld_busy_fn) 2714 return q->lld_busy_fn(q); 2715 2716 return 0; 2717 } 2718 EXPORT_SYMBOL_GPL(blk_lld_busy); 2719 2720 /** 2721 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request 2722 * @rq: the clone request to be cleaned up 2723 * 2724 * Description: 2725 * Free all bios in @rq for a cloned request. 2726 */ 2727 void blk_rq_unprep_clone(struct request *rq) 2728 { 2729 struct bio *bio; 2730 2731 while ((bio = rq->bio) != NULL) { 2732 rq->bio = bio->bi_next; 2733 2734 bio_put(bio); 2735 } 2736 } 2737 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone); 2738 2739 /* 2740 * Copy attributes of the original request to the clone request. 2741 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied. 2742 */ 2743 static void __blk_rq_prep_clone(struct request *dst, struct request *src) 2744 { 2745 dst->cpu = src->cpu; 2746 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE; 2747 dst->cmd_type = src->cmd_type; 2748 dst->__sector = blk_rq_pos(src); 2749 dst->__data_len = blk_rq_bytes(src); 2750 dst->nr_phys_segments = src->nr_phys_segments; 2751 dst->ioprio = src->ioprio; 2752 dst->extra_len = src->extra_len; 2753 } 2754 2755 /** 2756 * blk_rq_prep_clone - Helper function to setup clone request 2757 * @rq: the request to be setup 2758 * @rq_src: original request to be cloned 2759 * @bs: bio_set that bios for clone are allocated from 2760 * @gfp_mask: memory allocation mask for bio 2761 * @bio_ctr: setup function to be called for each clone bio. 2762 * Returns %0 for success, non %0 for failure. 2763 * @data: private data to be passed to @bio_ctr 2764 * 2765 * Description: 2766 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq. 2767 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense) 2768 * are not copied, and copying such parts is the caller's responsibility. 2769 * Also, pages which the original bios are pointing to are not copied 2770 * and the cloned bios just point same pages. 2771 * So cloned bios must be completed before original bios, which means 2772 * the caller must complete @rq before @rq_src. 2773 */ 2774 int blk_rq_prep_clone(struct request *rq, struct request *rq_src, 2775 struct bio_set *bs, gfp_t gfp_mask, 2776 int (*bio_ctr)(struct bio *, struct bio *, void *), 2777 void *data) 2778 { 2779 struct bio *bio, *bio_src; 2780 2781 if (!bs) 2782 bs = fs_bio_set; 2783 2784 blk_rq_init(NULL, rq); 2785 2786 __rq_for_each_bio(bio_src, rq_src) { 2787 bio = bio_clone_bioset(bio_src, gfp_mask, bs); 2788 if (!bio) 2789 goto free_and_out; 2790 2791 if (bio_ctr && bio_ctr(bio, bio_src, data)) 2792 goto free_and_out; 2793 2794 if (rq->bio) { 2795 rq->biotail->bi_next = bio; 2796 rq->biotail = bio; 2797 } else 2798 rq->bio = rq->biotail = bio; 2799 } 2800 2801 __blk_rq_prep_clone(rq, rq_src); 2802 2803 return 0; 2804 2805 free_and_out: 2806 if (bio) 2807 bio_put(bio); 2808 blk_rq_unprep_clone(rq); 2809 2810 return -ENOMEM; 2811 } 2812 EXPORT_SYMBOL_GPL(blk_rq_prep_clone); 2813 2814 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work) 2815 { 2816 return queue_work(kblockd_workqueue, work); 2817 } 2818 EXPORT_SYMBOL(kblockd_schedule_work); 2819 2820 int kblockd_schedule_delayed_work(struct request_queue *q, 2821 struct delayed_work *dwork, unsigned long delay) 2822 { 2823 return queue_delayed_work(kblockd_workqueue, dwork, delay); 2824 } 2825 EXPORT_SYMBOL(kblockd_schedule_delayed_work); 2826 2827 #define PLUG_MAGIC 0x91827364 2828 2829 /** 2830 * blk_start_plug - initialize blk_plug and track it inside the task_struct 2831 * @plug: The &struct blk_plug that needs to be initialized 2832 * 2833 * Description: 2834 * Tracking blk_plug inside the task_struct will help with auto-flushing the 2835 * pending I/O should the task end up blocking between blk_start_plug() and 2836 * blk_finish_plug(). This is important from a performance perspective, but 2837 * also ensures that we don't deadlock. For instance, if the task is blocking 2838 * for a memory allocation, memory reclaim could end up wanting to free a 2839 * page belonging to that request that is currently residing in our private 2840 * plug. By flushing the pending I/O when the process goes to sleep, we avoid 2841 * this kind of deadlock. 2842 */ 2843 void blk_start_plug(struct blk_plug *plug) 2844 { 2845 struct task_struct *tsk = current; 2846 2847 plug->magic = PLUG_MAGIC; 2848 INIT_LIST_HEAD(&plug->list); 2849 INIT_LIST_HEAD(&plug->cb_list); 2850 plug->should_sort = 0; 2851 2852 /* 2853 * If this is a nested plug, don't actually assign it. It will be 2854 * flushed on its own. 2855 */ 2856 if (!tsk->plug) { 2857 /* 2858 * Store ordering should not be needed here, since a potential 2859 * preempt will imply a full memory barrier 2860 */ 2861 tsk->plug = plug; 2862 } 2863 } 2864 EXPORT_SYMBOL(blk_start_plug); 2865 2866 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b) 2867 { 2868 struct request *rqa = container_of(a, struct request, queuelist); 2869 struct request *rqb = container_of(b, struct request, queuelist); 2870 2871 return !(rqa->q < rqb->q || 2872 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb))); 2873 } 2874 2875 /* 2876 * If 'from_schedule' is true, then postpone the dispatch of requests 2877 * until a safe kblockd context. We due this to avoid accidental big 2878 * additional stack usage in driver dispatch, in places where the originally 2879 * plugger did not intend it. 2880 */ 2881 static void queue_unplugged(struct request_queue *q, unsigned int depth, 2882 bool from_schedule) 2883 __releases(q->queue_lock) 2884 { 2885 trace_block_unplug(q, depth, !from_schedule); 2886 2887 /* 2888 * Don't mess with dead queue. 2889 */ 2890 if (unlikely(blk_queue_dead(q))) { 2891 spin_unlock(q->queue_lock); 2892 return; 2893 } 2894 2895 /* 2896 * If we are punting this to kblockd, then we can safely drop 2897 * the queue_lock before waking kblockd (which needs to take 2898 * this lock). 2899 */ 2900 if (from_schedule) { 2901 spin_unlock(q->queue_lock); 2902 blk_run_queue_async(q); 2903 } else { 2904 __blk_run_queue(q); 2905 spin_unlock(q->queue_lock); 2906 } 2907 2908 } 2909 2910 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule) 2911 { 2912 LIST_HEAD(callbacks); 2913 2914 while (!list_empty(&plug->cb_list)) { 2915 list_splice_init(&plug->cb_list, &callbacks); 2916 2917 while (!list_empty(&callbacks)) { 2918 struct blk_plug_cb *cb = list_first_entry(&callbacks, 2919 struct blk_plug_cb, 2920 list); 2921 list_del(&cb->list); 2922 cb->callback(cb, from_schedule); 2923 } 2924 } 2925 } 2926 2927 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data, 2928 int size) 2929 { 2930 struct blk_plug *plug = current->plug; 2931 struct blk_plug_cb *cb; 2932 2933 if (!plug) 2934 return NULL; 2935 2936 list_for_each_entry(cb, &plug->cb_list, list) 2937 if (cb->callback == unplug && cb->data == data) 2938 return cb; 2939 2940 /* Not currently on the callback list */ 2941 BUG_ON(size < sizeof(*cb)); 2942 cb = kzalloc(size, GFP_ATOMIC); 2943 if (cb) { 2944 cb->data = data; 2945 cb->callback = unplug; 2946 list_add(&cb->list, &plug->cb_list); 2947 } 2948 return cb; 2949 } 2950 EXPORT_SYMBOL(blk_check_plugged); 2951 2952 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule) 2953 { 2954 struct request_queue *q; 2955 unsigned long flags; 2956 struct request *rq; 2957 LIST_HEAD(list); 2958 unsigned int depth; 2959 2960 BUG_ON(plug->magic != PLUG_MAGIC); 2961 2962 flush_plug_callbacks(plug, from_schedule); 2963 if (list_empty(&plug->list)) 2964 return; 2965 2966 list_splice_init(&plug->list, &list); 2967 2968 if (plug->should_sort) { 2969 list_sort(NULL, &list, plug_rq_cmp); 2970 plug->should_sort = 0; 2971 } 2972 2973 q = NULL; 2974 depth = 0; 2975 2976 /* 2977 * Save and disable interrupts here, to avoid doing it for every 2978 * queue lock we have to take. 2979 */ 2980 local_irq_save(flags); 2981 while (!list_empty(&list)) { 2982 rq = list_entry_rq(list.next); 2983 list_del_init(&rq->queuelist); 2984 BUG_ON(!rq->q); 2985 if (rq->q != q) { 2986 /* 2987 * This drops the queue lock 2988 */ 2989 if (q) 2990 queue_unplugged(q, depth, from_schedule); 2991 q = rq->q; 2992 depth = 0; 2993 spin_lock(q->queue_lock); 2994 } 2995 2996 /* 2997 * Short-circuit if @q is dead 2998 */ 2999 if (unlikely(blk_queue_dead(q))) { 3000 __blk_end_request_all(rq, -ENODEV); 3001 continue; 3002 } 3003 3004 /* 3005 * rq is already accounted, so use raw insert 3006 */ 3007 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) 3008 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH); 3009 else 3010 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE); 3011 3012 depth++; 3013 } 3014 3015 /* 3016 * This drops the queue lock 3017 */ 3018 if (q) 3019 queue_unplugged(q, depth, from_schedule); 3020 3021 local_irq_restore(flags); 3022 } 3023 3024 void blk_finish_plug(struct blk_plug *plug) 3025 { 3026 blk_flush_plug_list(plug, false); 3027 3028 if (plug == current->plug) 3029 current->plug = NULL; 3030 } 3031 EXPORT_SYMBOL(blk_finish_plug); 3032 3033 int __init blk_dev_init(void) 3034 { 3035 BUILD_BUG_ON(__REQ_NR_BITS > 8 * 3036 sizeof(((struct request *)0)->cmd_flags)); 3037 3038 /* used for unplugging and affects IO latency/throughput - HIGHPRI */ 3039 kblockd_workqueue = alloc_workqueue("kblockd", 3040 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0); 3041 if (!kblockd_workqueue) 3042 panic("Failed to create kblockd\n"); 3043 3044 request_cachep = kmem_cache_create("blkdev_requests", 3045 sizeof(struct request), 0, SLAB_PANIC, NULL); 3046 3047 blk_requestq_cachep = kmem_cache_create("blkdev_queue", 3048 sizeof(struct request_queue), 0, SLAB_PANIC, NULL); 3049 3050 return 0; 3051 } 3052