xref: /openbmc/linux/block/blk-core.c (revision 05bcf503)
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
4  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
5  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7  *	-  July2000
8  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9  */
10 
11 /*
12  * This handles all read/write requests to block devices
13  */
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
20 #include <linux/mm.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
31 #include <linux/delay.h>
32 #include <linux/ratelimit.h>
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/block.h>
36 
37 #include "blk.h"
38 #include "blk-cgroup.h"
39 
40 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43 
44 DEFINE_IDA(blk_queue_ida);
45 
46 /*
47  * For the allocated request tables
48  */
49 static struct kmem_cache *request_cachep;
50 
51 /*
52  * For queue allocation
53  */
54 struct kmem_cache *blk_requestq_cachep;
55 
56 /*
57  * Controlling structure to kblockd
58  */
59 static struct workqueue_struct *kblockd_workqueue;
60 
61 static void drive_stat_acct(struct request *rq, int new_io)
62 {
63 	struct hd_struct *part;
64 	int rw = rq_data_dir(rq);
65 	int cpu;
66 
67 	if (!blk_do_io_stat(rq))
68 		return;
69 
70 	cpu = part_stat_lock();
71 
72 	if (!new_io) {
73 		part = rq->part;
74 		part_stat_inc(cpu, part, merges[rw]);
75 	} else {
76 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 		if (!hd_struct_try_get(part)) {
78 			/*
79 			 * The partition is already being removed,
80 			 * the request will be accounted on the disk only
81 			 *
82 			 * We take a reference on disk->part0 although that
83 			 * partition will never be deleted, so we can treat
84 			 * it as any other partition.
85 			 */
86 			part = &rq->rq_disk->part0;
87 			hd_struct_get(part);
88 		}
89 		part_round_stats(cpu, part);
90 		part_inc_in_flight(part, rw);
91 		rq->part = part;
92 	}
93 
94 	part_stat_unlock();
95 }
96 
97 void blk_queue_congestion_threshold(struct request_queue *q)
98 {
99 	int nr;
100 
101 	nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 	if (nr > q->nr_requests)
103 		nr = q->nr_requests;
104 	q->nr_congestion_on = nr;
105 
106 	nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 	if (nr < 1)
108 		nr = 1;
109 	q->nr_congestion_off = nr;
110 }
111 
112 /**
113  * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114  * @bdev:	device
115  *
116  * Locates the passed device's request queue and returns the address of its
117  * backing_dev_info
118  *
119  * Will return NULL if the request queue cannot be located.
120  */
121 struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122 {
123 	struct backing_dev_info *ret = NULL;
124 	struct request_queue *q = bdev_get_queue(bdev);
125 
126 	if (q)
127 		ret = &q->backing_dev_info;
128 	return ret;
129 }
130 EXPORT_SYMBOL(blk_get_backing_dev_info);
131 
132 void blk_rq_init(struct request_queue *q, struct request *rq)
133 {
134 	memset(rq, 0, sizeof(*rq));
135 
136 	INIT_LIST_HEAD(&rq->queuelist);
137 	INIT_LIST_HEAD(&rq->timeout_list);
138 	rq->cpu = -1;
139 	rq->q = q;
140 	rq->__sector = (sector_t) -1;
141 	INIT_HLIST_NODE(&rq->hash);
142 	RB_CLEAR_NODE(&rq->rb_node);
143 	rq->cmd = rq->__cmd;
144 	rq->cmd_len = BLK_MAX_CDB;
145 	rq->tag = -1;
146 	rq->ref_count = 1;
147 	rq->start_time = jiffies;
148 	set_start_time_ns(rq);
149 	rq->part = NULL;
150 }
151 EXPORT_SYMBOL(blk_rq_init);
152 
153 static void req_bio_endio(struct request *rq, struct bio *bio,
154 			  unsigned int nbytes, int error)
155 {
156 	if (error)
157 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 	else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 		error = -EIO;
160 
161 	if (unlikely(nbytes > bio->bi_size)) {
162 		printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 		       __func__, nbytes, bio->bi_size);
164 		nbytes = bio->bi_size;
165 	}
166 
167 	if (unlikely(rq->cmd_flags & REQ_QUIET))
168 		set_bit(BIO_QUIET, &bio->bi_flags);
169 
170 	bio->bi_size -= nbytes;
171 	bio->bi_sector += (nbytes >> 9);
172 
173 	if (bio_integrity(bio))
174 		bio_integrity_advance(bio, nbytes);
175 
176 	/* don't actually finish bio if it's part of flush sequence */
177 	if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 		bio_endio(bio, error);
179 }
180 
181 void blk_dump_rq_flags(struct request *rq, char *msg)
182 {
183 	int bit;
184 
185 	printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 		rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 		rq->cmd_flags);
188 
189 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
190 	       (unsigned long long)blk_rq_pos(rq),
191 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 	printk(KERN_INFO "  bio %p, biotail %p, buffer %p, len %u\n",
193 	       rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194 
195 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 		printk(KERN_INFO "  cdb: ");
197 		for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 			printk("%02x ", rq->cmd[bit]);
199 		printk("\n");
200 	}
201 }
202 EXPORT_SYMBOL(blk_dump_rq_flags);
203 
204 static void blk_delay_work(struct work_struct *work)
205 {
206 	struct request_queue *q;
207 
208 	q = container_of(work, struct request_queue, delay_work.work);
209 	spin_lock_irq(q->queue_lock);
210 	__blk_run_queue(q);
211 	spin_unlock_irq(q->queue_lock);
212 }
213 
214 /**
215  * blk_delay_queue - restart queueing after defined interval
216  * @q:		The &struct request_queue in question
217  * @msecs:	Delay in msecs
218  *
219  * Description:
220  *   Sometimes queueing needs to be postponed for a little while, to allow
221  *   resources to come back. This function will make sure that queueing is
222  *   restarted around the specified time.
223  */
224 void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225 {
226 	queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 				msecs_to_jiffies(msecs));
228 }
229 EXPORT_SYMBOL(blk_delay_queue);
230 
231 /**
232  * blk_start_queue - restart a previously stopped queue
233  * @q:    The &struct request_queue in question
234  *
235  * Description:
236  *   blk_start_queue() will clear the stop flag on the queue, and call
237  *   the request_fn for the queue if it was in a stopped state when
238  *   entered. Also see blk_stop_queue(). Queue lock must be held.
239  **/
240 void blk_start_queue(struct request_queue *q)
241 {
242 	WARN_ON(!irqs_disabled());
243 
244 	queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 	__blk_run_queue(q);
246 }
247 EXPORT_SYMBOL(blk_start_queue);
248 
249 /**
250  * blk_stop_queue - stop a queue
251  * @q:    The &struct request_queue in question
252  *
253  * Description:
254  *   The Linux block layer assumes that a block driver will consume all
255  *   entries on the request queue when the request_fn strategy is called.
256  *   Often this will not happen, because of hardware limitations (queue
257  *   depth settings). If a device driver gets a 'queue full' response,
258  *   or if it simply chooses not to queue more I/O at one point, it can
259  *   call this function to prevent the request_fn from being called until
260  *   the driver has signalled it's ready to go again. This happens by calling
261  *   blk_start_queue() to restart queue operations. Queue lock must be held.
262  **/
263 void blk_stop_queue(struct request_queue *q)
264 {
265 	cancel_delayed_work(&q->delay_work);
266 	queue_flag_set(QUEUE_FLAG_STOPPED, q);
267 }
268 EXPORT_SYMBOL(blk_stop_queue);
269 
270 /**
271  * blk_sync_queue - cancel any pending callbacks on a queue
272  * @q: the queue
273  *
274  * Description:
275  *     The block layer may perform asynchronous callback activity
276  *     on a queue, such as calling the unplug function after a timeout.
277  *     A block device may call blk_sync_queue to ensure that any
278  *     such activity is cancelled, thus allowing it to release resources
279  *     that the callbacks might use. The caller must already have made sure
280  *     that its ->make_request_fn will not re-add plugging prior to calling
281  *     this function.
282  *
283  *     This function does not cancel any asynchronous activity arising
284  *     out of elevator or throttling code. That would require elevaotor_exit()
285  *     and blkcg_exit_queue() to be called with queue lock initialized.
286  *
287  */
288 void blk_sync_queue(struct request_queue *q)
289 {
290 	del_timer_sync(&q->timeout);
291 	cancel_delayed_work_sync(&q->delay_work);
292 }
293 EXPORT_SYMBOL(blk_sync_queue);
294 
295 /**
296  * __blk_run_queue - run a single device queue
297  * @q:	The queue to run
298  *
299  * Description:
300  *    See @blk_run_queue. This variant must be called with the queue lock
301  *    held and interrupts disabled.
302  */
303 void __blk_run_queue(struct request_queue *q)
304 {
305 	if (unlikely(blk_queue_stopped(q)))
306 		return;
307 
308 	q->request_fn(q);
309 }
310 EXPORT_SYMBOL(__blk_run_queue);
311 
312 /**
313  * blk_run_queue_async - run a single device queue in workqueue context
314  * @q:	The queue to run
315  *
316  * Description:
317  *    Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318  *    of us.
319  */
320 void blk_run_queue_async(struct request_queue *q)
321 {
322 	if (likely(!blk_queue_stopped(q)))
323 		mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324 }
325 EXPORT_SYMBOL(blk_run_queue_async);
326 
327 /**
328  * blk_run_queue - run a single device queue
329  * @q: The queue to run
330  *
331  * Description:
332  *    Invoke request handling on this queue, if it has pending work to do.
333  *    May be used to restart queueing when a request has completed.
334  */
335 void blk_run_queue(struct request_queue *q)
336 {
337 	unsigned long flags;
338 
339 	spin_lock_irqsave(q->queue_lock, flags);
340 	__blk_run_queue(q);
341 	spin_unlock_irqrestore(q->queue_lock, flags);
342 }
343 EXPORT_SYMBOL(blk_run_queue);
344 
345 void blk_put_queue(struct request_queue *q)
346 {
347 	kobject_put(&q->kobj);
348 }
349 EXPORT_SYMBOL(blk_put_queue);
350 
351 /**
352  * blk_drain_queue - drain requests from request_queue
353  * @q: queue to drain
354  * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355  *
356  * Drain requests from @q.  If @drain_all is set, all requests are drained.
357  * If not, only ELVPRIV requests are drained.  The caller is responsible
358  * for ensuring that no new requests which need to be drained are queued.
359  */
360 void blk_drain_queue(struct request_queue *q, bool drain_all)
361 {
362 	int i;
363 
364 	while (true) {
365 		bool drain = false;
366 
367 		spin_lock_irq(q->queue_lock);
368 
369 		/*
370 		 * The caller might be trying to drain @q before its
371 		 * elevator is initialized.
372 		 */
373 		if (q->elevator)
374 			elv_drain_elevator(q);
375 
376 		blkcg_drain_queue(q);
377 
378 		/*
379 		 * This function might be called on a queue which failed
380 		 * driver init after queue creation or is not yet fully
381 		 * active yet.  Some drivers (e.g. fd and loop) get unhappy
382 		 * in such cases.  Kick queue iff dispatch queue has
383 		 * something on it and @q has request_fn set.
384 		 */
385 		if (!list_empty(&q->queue_head) && q->request_fn)
386 			__blk_run_queue(q);
387 
388 		drain |= q->nr_rqs_elvpriv;
389 
390 		/*
391 		 * Unfortunately, requests are queued at and tracked from
392 		 * multiple places and there's no single counter which can
393 		 * be drained.  Check all the queues and counters.
394 		 */
395 		if (drain_all) {
396 			drain |= !list_empty(&q->queue_head);
397 			for (i = 0; i < 2; i++) {
398 				drain |= q->nr_rqs[i];
399 				drain |= q->in_flight[i];
400 				drain |= !list_empty(&q->flush_queue[i]);
401 			}
402 		}
403 
404 		spin_unlock_irq(q->queue_lock);
405 
406 		if (!drain)
407 			break;
408 		msleep(10);
409 	}
410 
411 	/*
412 	 * With queue marked dead, any woken up waiter will fail the
413 	 * allocation path, so the wakeup chaining is lost and we're
414 	 * left with hung waiters. We need to wake up those waiters.
415 	 */
416 	if (q->request_fn) {
417 		struct request_list *rl;
418 
419 		spin_lock_irq(q->queue_lock);
420 
421 		blk_queue_for_each_rl(rl, q)
422 			for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 				wake_up_all(&rl->wait[i]);
424 
425 		spin_unlock_irq(q->queue_lock);
426 	}
427 }
428 
429 /**
430  * blk_queue_bypass_start - enter queue bypass mode
431  * @q: queue of interest
432  *
433  * In bypass mode, only the dispatch FIFO queue of @q is used.  This
434  * function makes @q enter bypass mode and drains all requests which were
435  * throttled or issued before.  On return, it's guaranteed that no request
436  * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437  * inside queue or RCU read lock.
438  */
439 void blk_queue_bypass_start(struct request_queue *q)
440 {
441 	bool drain;
442 
443 	spin_lock_irq(q->queue_lock);
444 	drain = !q->bypass_depth++;
445 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 	spin_unlock_irq(q->queue_lock);
447 
448 	if (drain) {
449 		blk_drain_queue(q, false);
450 		/* ensure blk_queue_bypass() is %true inside RCU read lock */
451 		synchronize_rcu();
452 	}
453 }
454 EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455 
456 /**
457  * blk_queue_bypass_end - leave queue bypass mode
458  * @q: queue of interest
459  *
460  * Leave bypass mode and restore the normal queueing behavior.
461  */
462 void blk_queue_bypass_end(struct request_queue *q)
463 {
464 	spin_lock_irq(q->queue_lock);
465 	if (!--q->bypass_depth)
466 		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 	WARN_ON_ONCE(q->bypass_depth < 0);
468 	spin_unlock_irq(q->queue_lock);
469 }
470 EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471 
472 /**
473  * blk_cleanup_queue - shutdown a request queue
474  * @q: request queue to shutdown
475  *
476  * Mark @q DEAD, drain all pending requests, destroy and put it.  All
477  * future requests will be failed immediately with -ENODEV.
478  */
479 void blk_cleanup_queue(struct request_queue *q)
480 {
481 	spinlock_t *lock = q->queue_lock;
482 
483 	/* mark @q DEAD, no new request or merges will be allowed afterwards */
484 	mutex_lock(&q->sysfs_lock);
485 	queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
486 	spin_lock_irq(lock);
487 
488 	/*
489 	 * Dead queue is permanently in bypass mode till released.  Note
490 	 * that, unlike blk_queue_bypass_start(), we aren't performing
491 	 * synchronize_rcu() after entering bypass mode to avoid the delay
492 	 * as some drivers create and destroy a lot of queues while
493 	 * probing.  This is still safe because blk_release_queue() will be
494 	 * called only after the queue refcnt drops to zero and nothing,
495 	 * RCU or not, would be traversing the queue by then.
496 	 */
497 	q->bypass_depth++;
498 	queue_flag_set(QUEUE_FLAG_BYPASS, q);
499 
500 	queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 	queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 	queue_flag_set(QUEUE_FLAG_DEAD, q);
503 	spin_unlock_irq(lock);
504 	mutex_unlock(&q->sysfs_lock);
505 
506 	/* drain all requests queued before DEAD marking */
507 	blk_drain_queue(q, true);
508 
509 	/* @q won't process any more request, flush async actions */
510 	del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
511 	blk_sync_queue(q);
512 
513 	spin_lock_irq(lock);
514 	if (q->queue_lock != &q->__queue_lock)
515 		q->queue_lock = &q->__queue_lock;
516 	spin_unlock_irq(lock);
517 
518 	/* @q is and will stay empty, shutdown and put */
519 	blk_put_queue(q);
520 }
521 EXPORT_SYMBOL(blk_cleanup_queue);
522 
523 int blk_init_rl(struct request_list *rl, struct request_queue *q,
524 		gfp_t gfp_mask)
525 {
526 	if (unlikely(rl->rq_pool))
527 		return 0;
528 
529 	rl->q = q;
530 	rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
531 	rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
532 	init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
533 	init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
534 
535 	rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
536 					  mempool_free_slab, request_cachep,
537 					  gfp_mask, q->node);
538 	if (!rl->rq_pool)
539 		return -ENOMEM;
540 
541 	return 0;
542 }
543 
544 void blk_exit_rl(struct request_list *rl)
545 {
546 	if (rl->rq_pool)
547 		mempool_destroy(rl->rq_pool);
548 }
549 
550 struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
551 {
552 	return blk_alloc_queue_node(gfp_mask, -1);
553 }
554 EXPORT_SYMBOL(blk_alloc_queue);
555 
556 struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
557 {
558 	struct request_queue *q;
559 	int err;
560 
561 	q = kmem_cache_alloc_node(blk_requestq_cachep,
562 				gfp_mask | __GFP_ZERO, node_id);
563 	if (!q)
564 		return NULL;
565 
566 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
567 	if (q->id < 0)
568 		goto fail_q;
569 
570 	q->backing_dev_info.ra_pages =
571 			(VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
572 	q->backing_dev_info.state = 0;
573 	q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
574 	q->backing_dev_info.name = "block";
575 	q->node = node_id;
576 
577 	err = bdi_init(&q->backing_dev_info);
578 	if (err)
579 		goto fail_id;
580 
581 	setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
582 		    laptop_mode_timer_fn, (unsigned long) q);
583 	setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
584 	INIT_LIST_HEAD(&q->queue_head);
585 	INIT_LIST_HEAD(&q->timeout_list);
586 	INIT_LIST_HEAD(&q->icq_list);
587 #ifdef CONFIG_BLK_CGROUP
588 	INIT_LIST_HEAD(&q->blkg_list);
589 #endif
590 	INIT_LIST_HEAD(&q->flush_queue[0]);
591 	INIT_LIST_HEAD(&q->flush_queue[1]);
592 	INIT_LIST_HEAD(&q->flush_data_in_flight);
593 	INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
594 
595 	kobject_init(&q->kobj, &blk_queue_ktype);
596 
597 	mutex_init(&q->sysfs_lock);
598 	spin_lock_init(&q->__queue_lock);
599 
600 	/*
601 	 * By default initialize queue_lock to internal lock and driver can
602 	 * override it later if need be.
603 	 */
604 	q->queue_lock = &q->__queue_lock;
605 
606 	/*
607 	 * A queue starts its life with bypass turned on to avoid
608 	 * unnecessary bypass on/off overhead and nasty surprises during
609 	 * init.  The initial bypass will be finished when the queue is
610 	 * registered by blk_register_queue().
611 	 */
612 	q->bypass_depth = 1;
613 	__set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
614 
615 	if (blkcg_init_queue(q))
616 		goto fail_id;
617 
618 	return q;
619 
620 fail_id:
621 	ida_simple_remove(&blk_queue_ida, q->id);
622 fail_q:
623 	kmem_cache_free(blk_requestq_cachep, q);
624 	return NULL;
625 }
626 EXPORT_SYMBOL(blk_alloc_queue_node);
627 
628 /**
629  * blk_init_queue  - prepare a request queue for use with a block device
630  * @rfn:  The function to be called to process requests that have been
631  *        placed on the queue.
632  * @lock: Request queue spin lock
633  *
634  * Description:
635  *    If a block device wishes to use the standard request handling procedures,
636  *    which sorts requests and coalesces adjacent requests, then it must
637  *    call blk_init_queue().  The function @rfn will be called when there
638  *    are requests on the queue that need to be processed.  If the device
639  *    supports plugging, then @rfn may not be called immediately when requests
640  *    are available on the queue, but may be called at some time later instead.
641  *    Plugged queues are generally unplugged when a buffer belonging to one
642  *    of the requests on the queue is needed, or due to memory pressure.
643  *
644  *    @rfn is not required, or even expected, to remove all requests off the
645  *    queue, but only as many as it can handle at a time.  If it does leave
646  *    requests on the queue, it is responsible for arranging that the requests
647  *    get dealt with eventually.
648  *
649  *    The queue spin lock must be held while manipulating the requests on the
650  *    request queue; this lock will be taken also from interrupt context, so irq
651  *    disabling is needed for it.
652  *
653  *    Function returns a pointer to the initialized request queue, or %NULL if
654  *    it didn't succeed.
655  *
656  * Note:
657  *    blk_init_queue() must be paired with a blk_cleanup_queue() call
658  *    when the block device is deactivated (such as at module unload).
659  **/
660 
661 struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
662 {
663 	return blk_init_queue_node(rfn, lock, -1);
664 }
665 EXPORT_SYMBOL(blk_init_queue);
666 
667 struct request_queue *
668 blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
669 {
670 	struct request_queue *uninit_q, *q;
671 
672 	uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
673 	if (!uninit_q)
674 		return NULL;
675 
676 	q = blk_init_allocated_queue(uninit_q, rfn, lock);
677 	if (!q)
678 		blk_cleanup_queue(uninit_q);
679 
680 	return q;
681 }
682 EXPORT_SYMBOL(blk_init_queue_node);
683 
684 struct request_queue *
685 blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
686 			 spinlock_t *lock)
687 {
688 	if (!q)
689 		return NULL;
690 
691 	if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
692 		return NULL;
693 
694 	q->request_fn		= rfn;
695 	q->prep_rq_fn		= NULL;
696 	q->unprep_rq_fn		= NULL;
697 	q->queue_flags		|= QUEUE_FLAG_DEFAULT;
698 
699 	/* Override internal queue lock with supplied lock pointer */
700 	if (lock)
701 		q->queue_lock		= lock;
702 
703 	/*
704 	 * This also sets hw/phys segments, boundary and size
705 	 */
706 	blk_queue_make_request(q, blk_queue_bio);
707 
708 	q->sg_reserved_size = INT_MAX;
709 
710 	/* init elevator */
711 	if (elevator_init(q, NULL))
712 		return NULL;
713 	return q;
714 }
715 EXPORT_SYMBOL(blk_init_allocated_queue);
716 
717 bool blk_get_queue(struct request_queue *q)
718 {
719 	if (likely(!blk_queue_dead(q))) {
720 		__blk_get_queue(q);
721 		return true;
722 	}
723 
724 	return false;
725 }
726 EXPORT_SYMBOL(blk_get_queue);
727 
728 static inline void blk_free_request(struct request_list *rl, struct request *rq)
729 {
730 	if (rq->cmd_flags & REQ_ELVPRIV) {
731 		elv_put_request(rl->q, rq);
732 		if (rq->elv.icq)
733 			put_io_context(rq->elv.icq->ioc);
734 	}
735 
736 	mempool_free(rq, rl->rq_pool);
737 }
738 
739 /*
740  * ioc_batching returns true if the ioc is a valid batching request and
741  * should be given priority access to a request.
742  */
743 static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
744 {
745 	if (!ioc)
746 		return 0;
747 
748 	/*
749 	 * Make sure the process is able to allocate at least 1 request
750 	 * even if the batch times out, otherwise we could theoretically
751 	 * lose wakeups.
752 	 */
753 	return ioc->nr_batch_requests == q->nr_batching ||
754 		(ioc->nr_batch_requests > 0
755 		&& time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
756 }
757 
758 /*
759  * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
760  * will cause the process to be a "batcher" on all queues in the system. This
761  * is the behaviour we want though - once it gets a wakeup it should be given
762  * a nice run.
763  */
764 static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
765 {
766 	if (!ioc || ioc_batching(q, ioc))
767 		return;
768 
769 	ioc->nr_batch_requests = q->nr_batching;
770 	ioc->last_waited = jiffies;
771 }
772 
773 static void __freed_request(struct request_list *rl, int sync)
774 {
775 	struct request_queue *q = rl->q;
776 
777 	/*
778 	 * bdi isn't aware of blkcg yet.  As all async IOs end up root
779 	 * blkcg anyway, just use root blkcg state.
780 	 */
781 	if (rl == &q->root_rl &&
782 	    rl->count[sync] < queue_congestion_off_threshold(q))
783 		blk_clear_queue_congested(q, sync);
784 
785 	if (rl->count[sync] + 1 <= q->nr_requests) {
786 		if (waitqueue_active(&rl->wait[sync]))
787 			wake_up(&rl->wait[sync]);
788 
789 		blk_clear_rl_full(rl, sync);
790 	}
791 }
792 
793 /*
794  * A request has just been released.  Account for it, update the full and
795  * congestion status, wake up any waiters.   Called under q->queue_lock.
796  */
797 static void freed_request(struct request_list *rl, unsigned int flags)
798 {
799 	struct request_queue *q = rl->q;
800 	int sync = rw_is_sync(flags);
801 
802 	q->nr_rqs[sync]--;
803 	rl->count[sync]--;
804 	if (flags & REQ_ELVPRIV)
805 		q->nr_rqs_elvpriv--;
806 
807 	__freed_request(rl, sync);
808 
809 	if (unlikely(rl->starved[sync ^ 1]))
810 		__freed_request(rl, sync ^ 1);
811 }
812 
813 /*
814  * Determine if elevator data should be initialized when allocating the
815  * request associated with @bio.
816  */
817 static bool blk_rq_should_init_elevator(struct bio *bio)
818 {
819 	if (!bio)
820 		return true;
821 
822 	/*
823 	 * Flush requests do not use the elevator so skip initialization.
824 	 * This allows a request to share the flush and elevator data.
825 	 */
826 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
827 		return false;
828 
829 	return true;
830 }
831 
832 /**
833  * rq_ioc - determine io_context for request allocation
834  * @bio: request being allocated is for this bio (can be %NULL)
835  *
836  * Determine io_context to use for request allocation for @bio.  May return
837  * %NULL if %current->io_context doesn't exist.
838  */
839 static struct io_context *rq_ioc(struct bio *bio)
840 {
841 #ifdef CONFIG_BLK_CGROUP
842 	if (bio && bio->bi_ioc)
843 		return bio->bi_ioc;
844 #endif
845 	return current->io_context;
846 }
847 
848 /**
849  * __get_request - get a free request
850  * @rl: request list to allocate from
851  * @rw_flags: RW and SYNC flags
852  * @bio: bio to allocate request for (can be %NULL)
853  * @gfp_mask: allocation mask
854  *
855  * Get a free request from @q.  This function may fail under memory
856  * pressure or if @q is dead.
857  *
858  * Must be callled with @q->queue_lock held and,
859  * Returns %NULL on failure, with @q->queue_lock held.
860  * Returns !%NULL on success, with @q->queue_lock *not held*.
861  */
862 static struct request *__get_request(struct request_list *rl, int rw_flags,
863 				     struct bio *bio, gfp_t gfp_mask)
864 {
865 	struct request_queue *q = rl->q;
866 	struct request *rq;
867 	struct elevator_type *et = q->elevator->type;
868 	struct io_context *ioc = rq_ioc(bio);
869 	struct io_cq *icq = NULL;
870 	const bool is_sync = rw_is_sync(rw_flags) != 0;
871 	int may_queue;
872 
873 	if (unlikely(blk_queue_dead(q)))
874 		return NULL;
875 
876 	may_queue = elv_may_queue(q, rw_flags);
877 	if (may_queue == ELV_MQUEUE_NO)
878 		goto rq_starved;
879 
880 	if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
881 		if (rl->count[is_sync]+1 >= q->nr_requests) {
882 			/*
883 			 * The queue will fill after this allocation, so set
884 			 * it as full, and mark this process as "batching".
885 			 * This process will be allowed to complete a batch of
886 			 * requests, others will be blocked.
887 			 */
888 			if (!blk_rl_full(rl, is_sync)) {
889 				ioc_set_batching(q, ioc);
890 				blk_set_rl_full(rl, is_sync);
891 			} else {
892 				if (may_queue != ELV_MQUEUE_MUST
893 						&& !ioc_batching(q, ioc)) {
894 					/*
895 					 * The queue is full and the allocating
896 					 * process is not a "batcher", and not
897 					 * exempted by the IO scheduler
898 					 */
899 					return NULL;
900 				}
901 			}
902 		}
903 		/*
904 		 * bdi isn't aware of blkcg yet.  As all async IOs end up
905 		 * root blkcg anyway, just use root blkcg state.
906 		 */
907 		if (rl == &q->root_rl)
908 			blk_set_queue_congested(q, is_sync);
909 	}
910 
911 	/*
912 	 * Only allow batching queuers to allocate up to 50% over the defined
913 	 * limit of requests, otherwise we could have thousands of requests
914 	 * allocated with any setting of ->nr_requests
915 	 */
916 	if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
917 		return NULL;
918 
919 	q->nr_rqs[is_sync]++;
920 	rl->count[is_sync]++;
921 	rl->starved[is_sync] = 0;
922 
923 	/*
924 	 * Decide whether the new request will be managed by elevator.  If
925 	 * so, mark @rw_flags and increment elvpriv.  Non-zero elvpriv will
926 	 * prevent the current elevator from being destroyed until the new
927 	 * request is freed.  This guarantees icq's won't be destroyed and
928 	 * makes creating new ones safe.
929 	 *
930 	 * Also, lookup icq while holding queue_lock.  If it doesn't exist,
931 	 * it will be created after releasing queue_lock.
932 	 */
933 	if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
934 		rw_flags |= REQ_ELVPRIV;
935 		q->nr_rqs_elvpriv++;
936 		if (et->icq_cache && ioc)
937 			icq = ioc_lookup_icq(ioc, q);
938 	}
939 
940 	if (blk_queue_io_stat(q))
941 		rw_flags |= REQ_IO_STAT;
942 	spin_unlock_irq(q->queue_lock);
943 
944 	/* allocate and init request */
945 	rq = mempool_alloc(rl->rq_pool, gfp_mask);
946 	if (!rq)
947 		goto fail_alloc;
948 
949 	blk_rq_init(q, rq);
950 	blk_rq_set_rl(rq, rl);
951 	rq->cmd_flags = rw_flags | REQ_ALLOCED;
952 
953 	/* init elvpriv */
954 	if (rw_flags & REQ_ELVPRIV) {
955 		if (unlikely(et->icq_cache && !icq)) {
956 			if (ioc)
957 				icq = ioc_create_icq(ioc, q, gfp_mask);
958 			if (!icq)
959 				goto fail_elvpriv;
960 		}
961 
962 		rq->elv.icq = icq;
963 		if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
964 			goto fail_elvpriv;
965 
966 		/* @rq->elv.icq holds io_context until @rq is freed */
967 		if (icq)
968 			get_io_context(icq->ioc);
969 	}
970 out:
971 	/*
972 	 * ioc may be NULL here, and ioc_batching will be false. That's
973 	 * OK, if the queue is under the request limit then requests need
974 	 * not count toward the nr_batch_requests limit. There will always
975 	 * be some limit enforced by BLK_BATCH_TIME.
976 	 */
977 	if (ioc_batching(q, ioc))
978 		ioc->nr_batch_requests--;
979 
980 	trace_block_getrq(q, bio, rw_flags & 1);
981 	return rq;
982 
983 fail_elvpriv:
984 	/*
985 	 * elvpriv init failed.  ioc, icq and elvpriv aren't mempool backed
986 	 * and may fail indefinitely under memory pressure and thus
987 	 * shouldn't stall IO.  Treat this request as !elvpriv.  This will
988 	 * disturb iosched and blkcg but weird is bettern than dead.
989 	 */
990 	printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
991 			   dev_name(q->backing_dev_info.dev));
992 
993 	rq->cmd_flags &= ~REQ_ELVPRIV;
994 	rq->elv.icq = NULL;
995 
996 	spin_lock_irq(q->queue_lock);
997 	q->nr_rqs_elvpriv--;
998 	spin_unlock_irq(q->queue_lock);
999 	goto out;
1000 
1001 fail_alloc:
1002 	/*
1003 	 * Allocation failed presumably due to memory. Undo anything we
1004 	 * might have messed up.
1005 	 *
1006 	 * Allocating task should really be put onto the front of the wait
1007 	 * queue, but this is pretty rare.
1008 	 */
1009 	spin_lock_irq(q->queue_lock);
1010 	freed_request(rl, rw_flags);
1011 
1012 	/*
1013 	 * in the very unlikely event that allocation failed and no
1014 	 * requests for this direction was pending, mark us starved so that
1015 	 * freeing of a request in the other direction will notice
1016 	 * us. another possible fix would be to split the rq mempool into
1017 	 * READ and WRITE
1018 	 */
1019 rq_starved:
1020 	if (unlikely(rl->count[is_sync] == 0))
1021 		rl->starved[is_sync] = 1;
1022 	return NULL;
1023 }
1024 
1025 /**
1026  * get_request - get a free request
1027  * @q: request_queue to allocate request from
1028  * @rw_flags: RW and SYNC flags
1029  * @bio: bio to allocate request for (can be %NULL)
1030  * @gfp_mask: allocation mask
1031  *
1032  * Get a free request from @q.  If %__GFP_WAIT is set in @gfp_mask, this
1033  * function keeps retrying under memory pressure and fails iff @q is dead.
1034  *
1035  * Must be callled with @q->queue_lock held and,
1036  * Returns %NULL on failure, with @q->queue_lock held.
1037  * Returns !%NULL on success, with @q->queue_lock *not held*.
1038  */
1039 static struct request *get_request(struct request_queue *q, int rw_flags,
1040 				   struct bio *bio, gfp_t gfp_mask)
1041 {
1042 	const bool is_sync = rw_is_sync(rw_flags) != 0;
1043 	DEFINE_WAIT(wait);
1044 	struct request_list *rl;
1045 	struct request *rq;
1046 
1047 	rl = blk_get_rl(q, bio);	/* transferred to @rq on success */
1048 retry:
1049 	rq = __get_request(rl, rw_flags, bio, gfp_mask);
1050 	if (rq)
1051 		return rq;
1052 
1053 	if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1054 		blk_put_rl(rl);
1055 		return NULL;
1056 	}
1057 
1058 	/* wait on @rl and retry */
1059 	prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1060 				  TASK_UNINTERRUPTIBLE);
1061 
1062 	trace_block_sleeprq(q, bio, rw_flags & 1);
1063 
1064 	spin_unlock_irq(q->queue_lock);
1065 	io_schedule();
1066 
1067 	/*
1068 	 * After sleeping, we become a "batching" process and will be able
1069 	 * to allocate at least one request, and up to a big batch of them
1070 	 * for a small period time.  See ioc_batching, ioc_set_batching
1071 	 */
1072 	ioc_set_batching(q, current->io_context);
1073 
1074 	spin_lock_irq(q->queue_lock);
1075 	finish_wait(&rl->wait[is_sync], &wait);
1076 
1077 	goto retry;
1078 }
1079 
1080 struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1081 {
1082 	struct request *rq;
1083 
1084 	BUG_ON(rw != READ && rw != WRITE);
1085 
1086 	/* create ioc upfront */
1087 	create_io_context(gfp_mask, q->node);
1088 
1089 	spin_lock_irq(q->queue_lock);
1090 	rq = get_request(q, rw, NULL, gfp_mask);
1091 	if (!rq)
1092 		spin_unlock_irq(q->queue_lock);
1093 	/* q->queue_lock is unlocked at this point */
1094 
1095 	return rq;
1096 }
1097 EXPORT_SYMBOL(blk_get_request);
1098 
1099 /**
1100  * blk_make_request - given a bio, allocate a corresponding struct request.
1101  * @q: target request queue
1102  * @bio:  The bio describing the memory mappings that will be submitted for IO.
1103  *        It may be a chained-bio properly constructed by block/bio layer.
1104  * @gfp_mask: gfp flags to be used for memory allocation
1105  *
1106  * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1107  * type commands. Where the struct request needs to be farther initialized by
1108  * the caller. It is passed a &struct bio, which describes the memory info of
1109  * the I/O transfer.
1110  *
1111  * The caller of blk_make_request must make sure that bi_io_vec
1112  * are set to describe the memory buffers. That bio_data_dir() will return
1113  * the needed direction of the request. (And all bio's in the passed bio-chain
1114  * are properly set accordingly)
1115  *
1116  * If called under none-sleepable conditions, mapped bio buffers must not
1117  * need bouncing, by calling the appropriate masked or flagged allocator,
1118  * suitable for the target device. Otherwise the call to blk_queue_bounce will
1119  * BUG.
1120  *
1121  * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1122  * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1123  * anything but the first bio in the chain. Otherwise you risk waiting for IO
1124  * completion of a bio that hasn't been submitted yet, thus resulting in a
1125  * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1126  * of bio_alloc(), as that avoids the mempool deadlock.
1127  * If possible a big IO should be split into smaller parts when allocation
1128  * fails. Partial allocation should not be an error, or you risk a live-lock.
1129  */
1130 struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1131 				 gfp_t gfp_mask)
1132 {
1133 	struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1134 
1135 	if (unlikely(!rq))
1136 		return ERR_PTR(-ENOMEM);
1137 
1138 	for_each_bio(bio) {
1139 		struct bio *bounce_bio = bio;
1140 		int ret;
1141 
1142 		blk_queue_bounce(q, &bounce_bio);
1143 		ret = blk_rq_append_bio(q, rq, bounce_bio);
1144 		if (unlikely(ret)) {
1145 			blk_put_request(rq);
1146 			return ERR_PTR(ret);
1147 		}
1148 	}
1149 
1150 	return rq;
1151 }
1152 EXPORT_SYMBOL(blk_make_request);
1153 
1154 /**
1155  * blk_requeue_request - put a request back on queue
1156  * @q:		request queue where request should be inserted
1157  * @rq:		request to be inserted
1158  *
1159  * Description:
1160  *    Drivers often keep queueing requests until the hardware cannot accept
1161  *    more, when that condition happens we need to put the request back
1162  *    on the queue. Must be called with queue lock held.
1163  */
1164 void blk_requeue_request(struct request_queue *q, struct request *rq)
1165 {
1166 	blk_delete_timer(rq);
1167 	blk_clear_rq_complete(rq);
1168 	trace_block_rq_requeue(q, rq);
1169 
1170 	if (blk_rq_tagged(rq))
1171 		blk_queue_end_tag(q, rq);
1172 
1173 	BUG_ON(blk_queued_rq(rq));
1174 
1175 	elv_requeue_request(q, rq);
1176 }
1177 EXPORT_SYMBOL(blk_requeue_request);
1178 
1179 static void add_acct_request(struct request_queue *q, struct request *rq,
1180 			     int where)
1181 {
1182 	drive_stat_acct(rq, 1);
1183 	__elv_add_request(q, rq, where);
1184 }
1185 
1186 static void part_round_stats_single(int cpu, struct hd_struct *part,
1187 				    unsigned long now)
1188 {
1189 	if (now == part->stamp)
1190 		return;
1191 
1192 	if (part_in_flight(part)) {
1193 		__part_stat_add(cpu, part, time_in_queue,
1194 				part_in_flight(part) * (now - part->stamp));
1195 		__part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1196 	}
1197 	part->stamp = now;
1198 }
1199 
1200 /**
1201  * part_round_stats() - Round off the performance stats on a struct disk_stats.
1202  * @cpu: cpu number for stats access
1203  * @part: target partition
1204  *
1205  * The average IO queue length and utilisation statistics are maintained
1206  * by observing the current state of the queue length and the amount of
1207  * time it has been in this state for.
1208  *
1209  * Normally, that accounting is done on IO completion, but that can result
1210  * in more than a second's worth of IO being accounted for within any one
1211  * second, leading to >100% utilisation.  To deal with that, we call this
1212  * function to do a round-off before returning the results when reading
1213  * /proc/diskstats.  This accounts immediately for all queue usage up to
1214  * the current jiffies and restarts the counters again.
1215  */
1216 void part_round_stats(int cpu, struct hd_struct *part)
1217 {
1218 	unsigned long now = jiffies;
1219 
1220 	if (part->partno)
1221 		part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1222 	part_round_stats_single(cpu, part, now);
1223 }
1224 EXPORT_SYMBOL_GPL(part_round_stats);
1225 
1226 /*
1227  * queue lock must be held
1228  */
1229 void __blk_put_request(struct request_queue *q, struct request *req)
1230 {
1231 	if (unlikely(!q))
1232 		return;
1233 	if (unlikely(--req->ref_count))
1234 		return;
1235 
1236 	elv_completed_request(q, req);
1237 
1238 	/* this is a bio leak */
1239 	WARN_ON(req->bio != NULL);
1240 
1241 	/*
1242 	 * Request may not have originated from ll_rw_blk. if not,
1243 	 * it didn't come out of our reserved rq pools
1244 	 */
1245 	if (req->cmd_flags & REQ_ALLOCED) {
1246 		unsigned int flags = req->cmd_flags;
1247 		struct request_list *rl = blk_rq_rl(req);
1248 
1249 		BUG_ON(!list_empty(&req->queuelist));
1250 		BUG_ON(!hlist_unhashed(&req->hash));
1251 
1252 		blk_free_request(rl, req);
1253 		freed_request(rl, flags);
1254 		blk_put_rl(rl);
1255 	}
1256 }
1257 EXPORT_SYMBOL_GPL(__blk_put_request);
1258 
1259 void blk_put_request(struct request *req)
1260 {
1261 	unsigned long flags;
1262 	struct request_queue *q = req->q;
1263 
1264 	spin_lock_irqsave(q->queue_lock, flags);
1265 	__blk_put_request(q, req);
1266 	spin_unlock_irqrestore(q->queue_lock, flags);
1267 }
1268 EXPORT_SYMBOL(blk_put_request);
1269 
1270 /**
1271  * blk_add_request_payload - add a payload to a request
1272  * @rq: request to update
1273  * @page: page backing the payload
1274  * @len: length of the payload.
1275  *
1276  * This allows to later add a payload to an already submitted request by
1277  * a block driver.  The driver needs to take care of freeing the payload
1278  * itself.
1279  *
1280  * Note that this is a quite horrible hack and nothing but handling of
1281  * discard requests should ever use it.
1282  */
1283 void blk_add_request_payload(struct request *rq, struct page *page,
1284 		unsigned int len)
1285 {
1286 	struct bio *bio = rq->bio;
1287 
1288 	bio->bi_io_vec->bv_page = page;
1289 	bio->bi_io_vec->bv_offset = 0;
1290 	bio->bi_io_vec->bv_len = len;
1291 
1292 	bio->bi_size = len;
1293 	bio->bi_vcnt = 1;
1294 	bio->bi_phys_segments = 1;
1295 
1296 	rq->__data_len = rq->resid_len = len;
1297 	rq->nr_phys_segments = 1;
1298 	rq->buffer = bio_data(bio);
1299 }
1300 EXPORT_SYMBOL_GPL(blk_add_request_payload);
1301 
1302 static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1303 				   struct bio *bio)
1304 {
1305 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1306 
1307 	if (!ll_back_merge_fn(q, req, bio))
1308 		return false;
1309 
1310 	trace_block_bio_backmerge(q, bio);
1311 
1312 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1313 		blk_rq_set_mixed_merge(req);
1314 
1315 	req->biotail->bi_next = bio;
1316 	req->biotail = bio;
1317 	req->__data_len += bio->bi_size;
1318 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1319 
1320 	drive_stat_acct(req, 0);
1321 	return true;
1322 }
1323 
1324 static bool bio_attempt_front_merge(struct request_queue *q,
1325 				    struct request *req, struct bio *bio)
1326 {
1327 	const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1328 
1329 	if (!ll_front_merge_fn(q, req, bio))
1330 		return false;
1331 
1332 	trace_block_bio_frontmerge(q, bio);
1333 
1334 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1335 		blk_rq_set_mixed_merge(req);
1336 
1337 	bio->bi_next = req->bio;
1338 	req->bio = bio;
1339 
1340 	/*
1341 	 * may not be valid. if the low level driver said
1342 	 * it didn't need a bounce buffer then it better
1343 	 * not touch req->buffer either...
1344 	 */
1345 	req->buffer = bio_data(bio);
1346 	req->__sector = bio->bi_sector;
1347 	req->__data_len += bio->bi_size;
1348 	req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1349 
1350 	drive_stat_acct(req, 0);
1351 	return true;
1352 }
1353 
1354 /**
1355  * attempt_plug_merge - try to merge with %current's plugged list
1356  * @q: request_queue new bio is being queued at
1357  * @bio: new bio being queued
1358  * @request_count: out parameter for number of traversed plugged requests
1359  *
1360  * Determine whether @bio being queued on @q can be merged with a request
1361  * on %current's plugged list.  Returns %true if merge was successful,
1362  * otherwise %false.
1363  *
1364  * Plugging coalesces IOs from the same issuer for the same purpose without
1365  * going through @q->queue_lock.  As such it's more of an issuing mechanism
1366  * than scheduling, and the request, while may have elvpriv data, is not
1367  * added on the elevator at this point.  In addition, we don't have
1368  * reliable access to the elevator outside queue lock.  Only check basic
1369  * merging parameters without querying the elevator.
1370  */
1371 static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1372 			       unsigned int *request_count)
1373 {
1374 	struct blk_plug *plug;
1375 	struct request *rq;
1376 	bool ret = false;
1377 
1378 	plug = current->plug;
1379 	if (!plug)
1380 		goto out;
1381 	*request_count = 0;
1382 
1383 	list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1384 		int el_ret;
1385 
1386 		if (rq->q == q)
1387 			(*request_count)++;
1388 
1389 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1390 			continue;
1391 
1392 		el_ret = blk_try_merge(rq, bio);
1393 		if (el_ret == ELEVATOR_BACK_MERGE) {
1394 			ret = bio_attempt_back_merge(q, rq, bio);
1395 			if (ret)
1396 				break;
1397 		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1398 			ret = bio_attempt_front_merge(q, rq, bio);
1399 			if (ret)
1400 				break;
1401 		}
1402 	}
1403 out:
1404 	return ret;
1405 }
1406 
1407 void init_request_from_bio(struct request *req, struct bio *bio)
1408 {
1409 	req->cmd_type = REQ_TYPE_FS;
1410 
1411 	req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1412 	if (bio->bi_rw & REQ_RAHEAD)
1413 		req->cmd_flags |= REQ_FAILFAST_MASK;
1414 
1415 	req->errors = 0;
1416 	req->__sector = bio->bi_sector;
1417 	req->ioprio = bio_prio(bio);
1418 	blk_rq_bio_prep(req->q, req, bio);
1419 }
1420 
1421 void blk_queue_bio(struct request_queue *q, struct bio *bio)
1422 {
1423 	const bool sync = !!(bio->bi_rw & REQ_SYNC);
1424 	struct blk_plug *plug;
1425 	int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1426 	struct request *req;
1427 	unsigned int request_count = 0;
1428 
1429 	/*
1430 	 * low level driver can indicate that it wants pages above a
1431 	 * certain limit bounced to low memory (ie for highmem, or even
1432 	 * ISA dma in theory)
1433 	 */
1434 	blk_queue_bounce(q, &bio);
1435 
1436 	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1437 		spin_lock_irq(q->queue_lock);
1438 		where = ELEVATOR_INSERT_FLUSH;
1439 		goto get_rq;
1440 	}
1441 
1442 	/*
1443 	 * Check if we can merge with the plugged list before grabbing
1444 	 * any locks.
1445 	 */
1446 	if (attempt_plug_merge(q, bio, &request_count))
1447 		return;
1448 
1449 	spin_lock_irq(q->queue_lock);
1450 
1451 	el_ret = elv_merge(q, &req, bio);
1452 	if (el_ret == ELEVATOR_BACK_MERGE) {
1453 		if (bio_attempt_back_merge(q, req, bio)) {
1454 			elv_bio_merged(q, req, bio);
1455 			if (!attempt_back_merge(q, req))
1456 				elv_merged_request(q, req, el_ret);
1457 			goto out_unlock;
1458 		}
1459 	} else if (el_ret == ELEVATOR_FRONT_MERGE) {
1460 		if (bio_attempt_front_merge(q, req, bio)) {
1461 			elv_bio_merged(q, req, bio);
1462 			if (!attempt_front_merge(q, req))
1463 				elv_merged_request(q, req, el_ret);
1464 			goto out_unlock;
1465 		}
1466 	}
1467 
1468 get_rq:
1469 	/*
1470 	 * This sync check and mask will be re-done in init_request_from_bio(),
1471 	 * but we need to set it earlier to expose the sync flag to the
1472 	 * rq allocator and io schedulers.
1473 	 */
1474 	rw_flags = bio_data_dir(bio);
1475 	if (sync)
1476 		rw_flags |= REQ_SYNC;
1477 
1478 	/*
1479 	 * Grab a free request. This is might sleep but can not fail.
1480 	 * Returns with the queue unlocked.
1481 	 */
1482 	req = get_request(q, rw_flags, bio, GFP_NOIO);
1483 	if (unlikely(!req)) {
1484 		bio_endio(bio, -ENODEV);	/* @q is dead */
1485 		goto out_unlock;
1486 	}
1487 
1488 	/*
1489 	 * After dropping the lock and possibly sleeping here, our request
1490 	 * may now be mergeable after it had proven unmergeable (above).
1491 	 * We don't worry about that case for efficiency. It won't happen
1492 	 * often, and the elevators are able to handle it.
1493 	 */
1494 	init_request_from_bio(req, bio);
1495 
1496 	if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1497 		req->cpu = raw_smp_processor_id();
1498 
1499 	plug = current->plug;
1500 	if (plug) {
1501 		/*
1502 		 * If this is the first request added after a plug, fire
1503 		 * of a plug trace. If others have been added before, check
1504 		 * if we have multiple devices in this plug. If so, make a
1505 		 * note to sort the list before dispatch.
1506 		 */
1507 		if (list_empty(&plug->list))
1508 			trace_block_plug(q);
1509 		else {
1510 			if (!plug->should_sort) {
1511 				struct request *__rq;
1512 
1513 				__rq = list_entry_rq(plug->list.prev);
1514 				if (__rq->q != q)
1515 					plug->should_sort = 1;
1516 			}
1517 			if (request_count >= BLK_MAX_REQUEST_COUNT) {
1518 				blk_flush_plug_list(plug, false);
1519 				trace_block_plug(q);
1520 			}
1521 		}
1522 		list_add_tail(&req->queuelist, &plug->list);
1523 		drive_stat_acct(req, 1);
1524 	} else {
1525 		spin_lock_irq(q->queue_lock);
1526 		add_acct_request(q, req, where);
1527 		__blk_run_queue(q);
1528 out_unlock:
1529 		spin_unlock_irq(q->queue_lock);
1530 	}
1531 }
1532 EXPORT_SYMBOL_GPL(blk_queue_bio);	/* for device mapper only */
1533 
1534 /*
1535  * If bio->bi_dev is a partition, remap the location
1536  */
1537 static inline void blk_partition_remap(struct bio *bio)
1538 {
1539 	struct block_device *bdev = bio->bi_bdev;
1540 
1541 	if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1542 		struct hd_struct *p = bdev->bd_part;
1543 
1544 		bio->bi_sector += p->start_sect;
1545 		bio->bi_bdev = bdev->bd_contains;
1546 
1547 		trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1548 				      bdev->bd_dev,
1549 				      bio->bi_sector - p->start_sect);
1550 	}
1551 }
1552 
1553 static void handle_bad_sector(struct bio *bio)
1554 {
1555 	char b[BDEVNAME_SIZE];
1556 
1557 	printk(KERN_INFO "attempt to access beyond end of device\n");
1558 	printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1559 			bdevname(bio->bi_bdev, b),
1560 			bio->bi_rw,
1561 			(unsigned long long)bio->bi_sector + bio_sectors(bio),
1562 			(long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1563 
1564 	set_bit(BIO_EOF, &bio->bi_flags);
1565 }
1566 
1567 #ifdef CONFIG_FAIL_MAKE_REQUEST
1568 
1569 static DECLARE_FAULT_ATTR(fail_make_request);
1570 
1571 static int __init setup_fail_make_request(char *str)
1572 {
1573 	return setup_fault_attr(&fail_make_request, str);
1574 }
1575 __setup("fail_make_request=", setup_fail_make_request);
1576 
1577 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1578 {
1579 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
1580 }
1581 
1582 static int __init fail_make_request_debugfs(void)
1583 {
1584 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1585 						NULL, &fail_make_request);
1586 
1587 	return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1588 }
1589 
1590 late_initcall(fail_make_request_debugfs);
1591 
1592 #else /* CONFIG_FAIL_MAKE_REQUEST */
1593 
1594 static inline bool should_fail_request(struct hd_struct *part,
1595 					unsigned int bytes)
1596 {
1597 	return false;
1598 }
1599 
1600 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1601 
1602 /*
1603  * Check whether this bio extends beyond the end of the device.
1604  */
1605 static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1606 {
1607 	sector_t maxsector;
1608 
1609 	if (!nr_sectors)
1610 		return 0;
1611 
1612 	/* Test device or partition size, when known. */
1613 	maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1614 	if (maxsector) {
1615 		sector_t sector = bio->bi_sector;
1616 
1617 		if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1618 			/*
1619 			 * This may well happen - the kernel calls bread()
1620 			 * without checking the size of the device, e.g., when
1621 			 * mounting a device.
1622 			 */
1623 			handle_bad_sector(bio);
1624 			return 1;
1625 		}
1626 	}
1627 
1628 	return 0;
1629 }
1630 
1631 static noinline_for_stack bool
1632 generic_make_request_checks(struct bio *bio)
1633 {
1634 	struct request_queue *q;
1635 	int nr_sectors = bio_sectors(bio);
1636 	int err = -EIO;
1637 	char b[BDEVNAME_SIZE];
1638 	struct hd_struct *part;
1639 
1640 	might_sleep();
1641 
1642 	if (bio_check_eod(bio, nr_sectors))
1643 		goto end_io;
1644 
1645 	q = bdev_get_queue(bio->bi_bdev);
1646 	if (unlikely(!q)) {
1647 		printk(KERN_ERR
1648 		       "generic_make_request: Trying to access "
1649 			"nonexistent block-device %s (%Lu)\n",
1650 			bdevname(bio->bi_bdev, b),
1651 			(long long) bio->bi_sector);
1652 		goto end_io;
1653 	}
1654 
1655 	if (likely(bio_is_rw(bio) &&
1656 		   nr_sectors > queue_max_hw_sectors(q))) {
1657 		printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1658 		       bdevname(bio->bi_bdev, b),
1659 		       bio_sectors(bio),
1660 		       queue_max_hw_sectors(q));
1661 		goto end_io;
1662 	}
1663 
1664 	part = bio->bi_bdev->bd_part;
1665 	if (should_fail_request(part, bio->bi_size) ||
1666 	    should_fail_request(&part_to_disk(part)->part0,
1667 				bio->bi_size))
1668 		goto end_io;
1669 
1670 	/*
1671 	 * If this device has partitions, remap block n
1672 	 * of partition p to block n+start(p) of the disk.
1673 	 */
1674 	blk_partition_remap(bio);
1675 
1676 	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1677 		goto end_io;
1678 
1679 	if (bio_check_eod(bio, nr_sectors))
1680 		goto end_io;
1681 
1682 	/*
1683 	 * Filter flush bio's early so that make_request based
1684 	 * drivers without flush support don't have to worry
1685 	 * about them.
1686 	 */
1687 	if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1688 		bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1689 		if (!nr_sectors) {
1690 			err = 0;
1691 			goto end_io;
1692 		}
1693 	}
1694 
1695 	if ((bio->bi_rw & REQ_DISCARD) &&
1696 	    (!blk_queue_discard(q) ||
1697 	     ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1698 		err = -EOPNOTSUPP;
1699 		goto end_io;
1700 	}
1701 
1702 	if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1703 		err = -EOPNOTSUPP;
1704 		goto end_io;
1705 	}
1706 
1707 	/*
1708 	 * Various block parts want %current->io_context and lazy ioc
1709 	 * allocation ends up trading a lot of pain for a small amount of
1710 	 * memory.  Just allocate it upfront.  This may fail and block
1711 	 * layer knows how to live with it.
1712 	 */
1713 	create_io_context(GFP_ATOMIC, q->node);
1714 
1715 	if (blk_throtl_bio(q, bio))
1716 		return false;	/* throttled, will be resubmitted later */
1717 
1718 	trace_block_bio_queue(q, bio);
1719 	return true;
1720 
1721 end_io:
1722 	bio_endio(bio, err);
1723 	return false;
1724 }
1725 
1726 /**
1727  * generic_make_request - hand a buffer to its device driver for I/O
1728  * @bio:  The bio describing the location in memory and on the device.
1729  *
1730  * generic_make_request() is used to make I/O requests of block
1731  * devices. It is passed a &struct bio, which describes the I/O that needs
1732  * to be done.
1733  *
1734  * generic_make_request() does not return any status.  The
1735  * success/failure status of the request, along with notification of
1736  * completion, is delivered asynchronously through the bio->bi_end_io
1737  * function described (one day) else where.
1738  *
1739  * The caller of generic_make_request must make sure that bi_io_vec
1740  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1741  * set to describe the device address, and the
1742  * bi_end_io and optionally bi_private are set to describe how
1743  * completion notification should be signaled.
1744  *
1745  * generic_make_request and the drivers it calls may use bi_next if this
1746  * bio happens to be merged with someone else, and may resubmit the bio to
1747  * a lower device by calling into generic_make_request recursively, which
1748  * means the bio should NOT be touched after the call to ->make_request_fn.
1749  */
1750 void generic_make_request(struct bio *bio)
1751 {
1752 	struct bio_list bio_list_on_stack;
1753 
1754 	if (!generic_make_request_checks(bio))
1755 		return;
1756 
1757 	/*
1758 	 * We only want one ->make_request_fn to be active at a time, else
1759 	 * stack usage with stacked devices could be a problem.  So use
1760 	 * current->bio_list to keep a list of requests submited by a
1761 	 * make_request_fn function.  current->bio_list is also used as a
1762 	 * flag to say if generic_make_request is currently active in this
1763 	 * task or not.  If it is NULL, then no make_request is active.  If
1764 	 * it is non-NULL, then a make_request is active, and new requests
1765 	 * should be added at the tail
1766 	 */
1767 	if (current->bio_list) {
1768 		bio_list_add(current->bio_list, bio);
1769 		return;
1770 	}
1771 
1772 	/* following loop may be a bit non-obvious, and so deserves some
1773 	 * explanation.
1774 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1775 	 * ensure that) so we have a list with a single bio.
1776 	 * We pretend that we have just taken it off a longer list, so
1777 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1778 	 * thus initialising the bio_list of new bios to be
1779 	 * added.  ->make_request() may indeed add some more bios
1780 	 * through a recursive call to generic_make_request.  If it
1781 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1782 	 * from the top.  In this case we really did just take the bio
1783 	 * of the top of the list (no pretending) and so remove it from
1784 	 * bio_list, and call into ->make_request() again.
1785 	 */
1786 	BUG_ON(bio->bi_next);
1787 	bio_list_init(&bio_list_on_stack);
1788 	current->bio_list = &bio_list_on_stack;
1789 	do {
1790 		struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1791 
1792 		q->make_request_fn(q, bio);
1793 
1794 		bio = bio_list_pop(current->bio_list);
1795 	} while (bio);
1796 	current->bio_list = NULL; /* deactivate */
1797 }
1798 EXPORT_SYMBOL(generic_make_request);
1799 
1800 /**
1801  * submit_bio - submit a bio to the block device layer for I/O
1802  * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1803  * @bio: The &struct bio which describes the I/O
1804  *
1805  * submit_bio() is very similar in purpose to generic_make_request(), and
1806  * uses that function to do most of the work. Both are fairly rough
1807  * interfaces; @bio must be presetup and ready for I/O.
1808  *
1809  */
1810 void submit_bio(int rw, struct bio *bio)
1811 {
1812 	bio->bi_rw |= rw;
1813 
1814 	/*
1815 	 * If it's a regular read/write or a barrier with data attached,
1816 	 * go through the normal accounting stuff before submission.
1817 	 */
1818 	if (bio_has_data(bio)) {
1819 		unsigned int count;
1820 
1821 		if (unlikely(rw & REQ_WRITE_SAME))
1822 			count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1823 		else
1824 			count = bio_sectors(bio);
1825 
1826 		if (rw & WRITE) {
1827 			count_vm_events(PGPGOUT, count);
1828 		} else {
1829 			task_io_account_read(bio->bi_size);
1830 			count_vm_events(PGPGIN, count);
1831 		}
1832 
1833 		if (unlikely(block_dump)) {
1834 			char b[BDEVNAME_SIZE];
1835 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1836 			current->comm, task_pid_nr(current),
1837 				(rw & WRITE) ? "WRITE" : "READ",
1838 				(unsigned long long)bio->bi_sector,
1839 				bdevname(bio->bi_bdev, b),
1840 				count);
1841 		}
1842 	}
1843 
1844 	generic_make_request(bio);
1845 }
1846 EXPORT_SYMBOL(submit_bio);
1847 
1848 /**
1849  * blk_rq_check_limits - Helper function to check a request for the queue limit
1850  * @q:  the queue
1851  * @rq: the request being checked
1852  *
1853  * Description:
1854  *    @rq may have been made based on weaker limitations of upper-level queues
1855  *    in request stacking drivers, and it may violate the limitation of @q.
1856  *    Since the block layer and the underlying device driver trust @rq
1857  *    after it is inserted to @q, it should be checked against @q before
1858  *    the insertion using this generic function.
1859  *
1860  *    This function should also be useful for request stacking drivers
1861  *    in some cases below, so export this function.
1862  *    Request stacking drivers like request-based dm may change the queue
1863  *    limits while requests are in the queue (e.g. dm's table swapping).
1864  *    Such request stacking drivers should check those requests agaist
1865  *    the new queue limits again when they dispatch those requests,
1866  *    although such checkings are also done against the old queue limits
1867  *    when submitting requests.
1868  */
1869 int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1870 {
1871 	if (!rq_mergeable(rq))
1872 		return 0;
1873 
1874 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1875 		printk(KERN_ERR "%s: over max size limit.\n", __func__);
1876 		return -EIO;
1877 	}
1878 
1879 	/*
1880 	 * queue's settings related to segment counting like q->bounce_pfn
1881 	 * may differ from that of other stacking queues.
1882 	 * Recalculate it to check the request correctly on this queue's
1883 	 * limitation.
1884 	 */
1885 	blk_recalc_rq_segments(rq);
1886 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1887 		printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1888 		return -EIO;
1889 	}
1890 
1891 	return 0;
1892 }
1893 EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1894 
1895 /**
1896  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1897  * @q:  the queue to submit the request
1898  * @rq: the request being queued
1899  */
1900 int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1901 {
1902 	unsigned long flags;
1903 	int where = ELEVATOR_INSERT_BACK;
1904 
1905 	if (blk_rq_check_limits(q, rq))
1906 		return -EIO;
1907 
1908 	if (rq->rq_disk &&
1909 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1910 		return -EIO;
1911 
1912 	spin_lock_irqsave(q->queue_lock, flags);
1913 	if (unlikely(blk_queue_dead(q))) {
1914 		spin_unlock_irqrestore(q->queue_lock, flags);
1915 		return -ENODEV;
1916 	}
1917 
1918 	/*
1919 	 * Submitting request must be dequeued before calling this function
1920 	 * because it will be linked to another request_queue
1921 	 */
1922 	BUG_ON(blk_queued_rq(rq));
1923 
1924 	if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1925 		where = ELEVATOR_INSERT_FLUSH;
1926 
1927 	add_acct_request(q, rq, where);
1928 	if (where == ELEVATOR_INSERT_FLUSH)
1929 		__blk_run_queue(q);
1930 	spin_unlock_irqrestore(q->queue_lock, flags);
1931 
1932 	return 0;
1933 }
1934 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1935 
1936 /**
1937  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1938  * @rq: request to examine
1939  *
1940  * Description:
1941  *     A request could be merge of IOs which require different failure
1942  *     handling.  This function determines the number of bytes which
1943  *     can be failed from the beginning of the request without
1944  *     crossing into area which need to be retried further.
1945  *
1946  * Return:
1947  *     The number of bytes to fail.
1948  *
1949  * Context:
1950  *     queue_lock must be held.
1951  */
1952 unsigned int blk_rq_err_bytes(const struct request *rq)
1953 {
1954 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1955 	unsigned int bytes = 0;
1956 	struct bio *bio;
1957 
1958 	if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1959 		return blk_rq_bytes(rq);
1960 
1961 	/*
1962 	 * Currently the only 'mixing' which can happen is between
1963 	 * different fastfail types.  We can safely fail portions
1964 	 * which have all the failfast bits that the first one has -
1965 	 * the ones which are at least as eager to fail as the first
1966 	 * one.
1967 	 */
1968 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1969 		if ((bio->bi_rw & ff) != ff)
1970 			break;
1971 		bytes += bio->bi_size;
1972 	}
1973 
1974 	/* this could lead to infinite loop */
1975 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1976 	return bytes;
1977 }
1978 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1979 
1980 static void blk_account_io_completion(struct request *req, unsigned int bytes)
1981 {
1982 	if (blk_do_io_stat(req)) {
1983 		const int rw = rq_data_dir(req);
1984 		struct hd_struct *part;
1985 		int cpu;
1986 
1987 		cpu = part_stat_lock();
1988 		part = req->part;
1989 		part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1990 		part_stat_unlock();
1991 	}
1992 }
1993 
1994 static void blk_account_io_done(struct request *req)
1995 {
1996 	/*
1997 	 * Account IO completion.  flush_rq isn't accounted as a
1998 	 * normal IO on queueing nor completion.  Accounting the
1999 	 * containing request is enough.
2000 	 */
2001 	if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2002 		unsigned long duration = jiffies - req->start_time;
2003 		const int rw = rq_data_dir(req);
2004 		struct hd_struct *part;
2005 		int cpu;
2006 
2007 		cpu = part_stat_lock();
2008 		part = req->part;
2009 
2010 		part_stat_inc(cpu, part, ios[rw]);
2011 		part_stat_add(cpu, part, ticks[rw], duration);
2012 		part_round_stats(cpu, part);
2013 		part_dec_in_flight(part, rw);
2014 
2015 		hd_struct_put(part);
2016 		part_stat_unlock();
2017 	}
2018 }
2019 
2020 /**
2021  * blk_peek_request - peek at the top of a request queue
2022  * @q: request queue to peek at
2023  *
2024  * Description:
2025  *     Return the request at the top of @q.  The returned request
2026  *     should be started using blk_start_request() before LLD starts
2027  *     processing it.
2028  *
2029  * Return:
2030  *     Pointer to the request at the top of @q if available.  Null
2031  *     otherwise.
2032  *
2033  * Context:
2034  *     queue_lock must be held.
2035  */
2036 struct request *blk_peek_request(struct request_queue *q)
2037 {
2038 	struct request *rq;
2039 	int ret;
2040 
2041 	while ((rq = __elv_next_request(q)) != NULL) {
2042 		if (!(rq->cmd_flags & REQ_STARTED)) {
2043 			/*
2044 			 * This is the first time the device driver
2045 			 * sees this request (possibly after
2046 			 * requeueing).  Notify IO scheduler.
2047 			 */
2048 			if (rq->cmd_flags & REQ_SORTED)
2049 				elv_activate_rq(q, rq);
2050 
2051 			/*
2052 			 * just mark as started even if we don't start
2053 			 * it, a request that has been delayed should
2054 			 * not be passed by new incoming requests
2055 			 */
2056 			rq->cmd_flags |= REQ_STARTED;
2057 			trace_block_rq_issue(q, rq);
2058 		}
2059 
2060 		if (!q->boundary_rq || q->boundary_rq == rq) {
2061 			q->end_sector = rq_end_sector(rq);
2062 			q->boundary_rq = NULL;
2063 		}
2064 
2065 		if (rq->cmd_flags & REQ_DONTPREP)
2066 			break;
2067 
2068 		if (q->dma_drain_size && blk_rq_bytes(rq)) {
2069 			/*
2070 			 * make sure space for the drain appears we
2071 			 * know we can do this because max_hw_segments
2072 			 * has been adjusted to be one fewer than the
2073 			 * device can handle
2074 			 */
2075 			rq->nr_phys_segments++;
2076 		}
2077 
2078 		if (!q->prep_rq_fn)
2079 			break;
2080 
2081 		ret = q->prep_rq_fn(q, rq);
2082 		if (ret == BLKPREP_OK) {
2083 			break;
2084 		} else if (ret == BLKPREP_DEFER) {
2085 			/*
2086 			 * the request may have been (partially) prepped.
2087 			 * we need to keep this request in the front to
2088 			 * avoid resource deadlock.  REQ_STARTED will
2089 			 * prevent other fs requests from passing this one.
2090 			 */
2091 			if (q->dma_drain_size && blk_rq_bytes(rq) &&
2092 			    !(rq->cmd_flags & REQ_DONTPREP)) {
2093 				/*
2094 				 * remove the space for the drain we added
2095 				 * so that we don't add it again
2096 				 */
2097 				--rq->nr_phys_segments;
2098 			}
2099 
2100 			rq = NULL;
2101 			break;
2102 		} else if (ret == BLKPREP_KILL) {
2103 			rq->cmd_flags |= REQ_QUIET;
2104 			/*
2105 			 * Mark this request as started so we don't trigger
2106 			 * any debug logic in the end I/O path.
2107 			 */
2108 			blk_start_request(rq);
2109 			__blk_end_request_all(rq, -EIO);
2110 		} else {
2111 			printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2112 			break;
2113 		}
2114 	}
2115 
2116 	return rq;
2117 }
2118 EXPORT_SYMBOL(blk_peek_request);
2119 
2120 void blk_dequeue_request(struct request *rq)
2121 {
2122 	struct request_queue *q = rq->q;
2123 
2124 	BUG_ON(list_empty(&rq->queuelist));
2125 	BUG_ON(ELV_ON_HASH(rq));
2126 
2127 	list_del_init(&rq->queuelist);
2128 
2129 	/*
2130 	 * the time frame between a request being removed from the lists
2131 	 * and to it is freed is accounted as io that is in progress at
2132 	 * the driver side.
2133 	 */
2134 	if (blk_account_rq(rq)) {
2135 		q->in_flight[rq_is_sync(rq)]++;
2136 		set_io_start_time_ns(rq);
2137 	}
2138 }
2139 
2140 /**
2141  * blk_start_request - start request processing on the driver
2142  * @req: request to dequeue
2143  *
2144  * Description:
2145  *     Dequeue @req and start timeout timer on it.  This hands off the
2146  *     request to the driver.
2147  *
2148  *     Block internal functions which don't want to start timer should
2149  *     call blk_dequeue_request().
2150  *
2151  * Context:
2152  *     queue_lock must be held.
2153  */
2154 void blk_start_request(struct request *req)
2155 {
2156 	blk_dequeue_request(req);
2157 
2158 	/*
2159 	 * We are now handing the request to the hardware, initialize
2160 	 * resid_len to full count and add the timeout handler.
2161 	 */
2162 	req->resid_len = blk_rq_bytes(req);
2163 	if (unlikely(blk_bidi_rq(req)))
2164 		req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2165 
2166 	blk_add_timer(req);
2167 }
2168 EXPORT_SYMBOL(blk_start_request);
2169 
2170 /**
2171  * blk_fetch_request - fetch a request from a request queue
2172  * @q: request queue to fetch a request from
2173  *
2174  * Description:
2175  *     Return the request at the top of @q.  The request is started on
2176  *     return and LLD can start processing it immediately.
2177  *
2178  * Return:
2179  *     Pointer to the request at the top of @q if available.  Null
2180  *     otherwise.
2181  *
2182  * Context:
2183  *     queue_lock must be held.
2184  */
2185 struct request *blk_fetch_request(struct request_queue *q)
2186 {
2187 	struct request *rq;
2188 
2189 	rq = blk_peek_request(q);
2190 	if (rq)
2191 		blk_start_request(rq);
2192 	return rq;
2193 }
2194 EXPORT_SYMBOL(blk_fetch_request);
2195 
2196 /**
2197  * blk_update_request - Special helper function for request stacking drivers
2198  * @req:      the request being processed
2199  * @error:    %0 for success, < %0 for error
2200  * @nr_bytes: number of bytes to complete @req
2201  *
2202  * Description:
2203  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
2204  *     the request structure even if @req doesn't have leftover.
2205  *     If @req has leftover, sets it up for the next range of segments.
2206  *
2207  *     This special helper function is only for request stacking drivers
2208  *     (e.g. request-based dm) so that they can handle partial completion.
2209  *     Actual device drivers should use blk_end_request instead.
2210  *
2211  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2212  *     %false return from this function.
2213  *
2214  * Return:
2215  *     %false - this request doesn't have any more data
2216  *     %true  - this request has more data
2217  **/
2218 bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2219 {
2220 	int total_bytes, bio_nbytes, next_idx = 0;
2221 	struct bio *bio;
2222 
2223 	if (!req->bio)
2224 		return false;
2225 
2226 	trace_block_rq_complete(req->q, req);
2227 
2228 	/*
2229 	 * For fs requests, rq is just carrier of independent bio's
2230 	 * and each partial completion should be handled separately.
2231 	 * Reset per-request error on each partial completion.
2232 	 *
2233 	 * TODO: tj: This is too subtle.  It would be better to let
2234 	 * low level drivers do what they see fit.
2235 	 */
2236 	if (req->cmd_type == REQ_TYPE_FS)
2237 		req->errors = 0;
2238 
2239 	if (error && req->cmd_type == REQ_TYPE_FS &&
2240 	    !(req->cmd_flags & REQ_QUIET)) {
2241 		char *error_type;
2242 
2243 		switch (error) {
2244 		case -ENOLINK:
2245 			error_type = "recoverable transport";
2246 			break;
2247 		case -EREMOTEIO:
2248 			error_type = "critical target";
2249 			break;
2250 		case -EBADE:
2251 			error_type = "critical nexus";
2252 			break;
2253 		case -EIO:
2254 		default:
2255 			error_type = "I/O";
2256 			break;
2257 		}
2258 		printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2259 				   error_type, req->rq_disk ?
2260 				   req->rq_disk->disk_name : "?",
2261 				   (unsigned long long)blk_rq_pos(req));
2262 
2263 	}
2264 
2265 	blk_account_io_completion(req, nr_bytes);
2266 
2267 	total_bytes = bio_nbytes = 0;
2268 	while ((bio = req->bio) != NULL) {
2269 		int nbytes;
2270 
2271 		if (nr_bytes >= bio->bi_size) {
2272 			req->bio = bio->bi_next;
2273 			nbytes = bio->bi_size;
2274 			req_bio_endio(req, bio, nbytes, error);
2275 			next_idx = 0;
2276 			bio_nbytes = 0;
2277 		} else {
2278 			int idx = bio->bi_idx + next_idx;
2279 
2280 			if (unlikely(idx >= bio->bi_vcnt)) {
2281 				blk_dump_rq_flags(req, "__end_that");
2282 				printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2283 				       __func__, idx, bio->bi_vcnt);
2284 				break;
2285 			}
2286 
2287 			nbytes = bio_iovec_idx(bio, idx)->bv_len;
2288 			BIO_BUG_ON(nbytes > bio->bi_size);
2289 
2290 			/*
2291 			 * not a complete bvec done
2292 			 */
2293 			if (unlikely(nbytes > nr_bytes)) {
2294 				bio_nbytes += nr_bytes;
2295 				total_bytes += nr_bytes;
2296 				break;
2297 			}
2298 
2299 			/*
2300 			 * advance to the next vector
2301 			 */
2302 			next_idx++;
2303 			bio_nbytes += nbytes;
2304 		}
2305 
2306 		total_bytes += nbytes;
2307 		nr_bytes -= nbytes;
2308 
2309 		bio = req->bio;
2310 		if (bio) {
2311 			/*
2312 			 * end more in this run, or just return 'not-done'
2313 			 */
2314 			if (unlikely(nr_bytes <= 0))
2315 				break;
2316 		}
2317 	}
2318 
2319 	/*
2320 	 * completely done
2321 	 */
2322 	if (!req->bio) {
2323 		/*
2324 		 * Reset counters so that the request stacking driver
2325 		 * can find how many bytes remain in the request
2326 		 * later.
2327 		 */
2328 		req->__data_len = 0;
2329 		return false;
2330 	}
2331 
2332 	/*
2333 	 * if the request wasn't completed, update state
2334 	 */
2335 	if (bio_nbytes) {
2336 		req_bio_endio(req, bio, bio_nbytes, error);
2337 		bio->bi_idx += next_idx;
2338 		bio_iovec(bio)->bv_offset += nr_bytes;
2339 		bio_iovec(bio)->bv_len -= nr_bytes;
2340 	}
2341 
2342 	req->__data_len -= total_bytes;
2343 	req->buffer = bio_data(req->bio);
2344 
2345 	/* update sector only for requests with clear definition of sector */
2346 	if (req->cmd_type == REQ_TYPE_FS)
2347 		req->__sector += total_bytes >> 9;
2348 
2349 	/* mixed attributes always follow the first bio */
2350 	if (req->cmd_flags & REQ_MIXED_MERGE) {
2351 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
2352 		req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2353 	}
2354 
2355 	/*
2356 	 * If total number of sectors is less than the first segment
2357 	 * size, something has gone terribly wrong.
2358 	 */
2359 	if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2360 		blk_dump_rq_flags(req, "request botched");
2361 		req->__data_len = blk_rq_cur_bytes(req);
2362 	}
2363 
2364 	/* recalculate the number of segments */
2365 	blk_recalc_rq_segments(req);
2366 
2367 	return true;
2368 }
2369 EXPORT_SYMBOL_GPL(blk_update_request);
2370 
2371 static bool blk_update_bidi_request(struct request *rq, int error,
2372 				    unsigned int nr_bytes,
2373 				    unsigned int bidi_bytes)
2374 {
2375 	if (blk_update_request(rq, error, nr_bytes))
2376 		return true;
2377 
2378 	/* Bidi request must be completed as a whole */
2379 	if (unlikely(blk_bidi_rq(rq)) &&
2380 	    blk_update_request(rq->next_rq, error, bidi_bytes))
2381 		return true;
2382 
2383 	if (blk_queue_add_random(rq->q))
2384 		add_disk_randomness(rq->rq_disk);
2385 
2386 	return false;
2387 }
2388 
2389 /**
2390  * blk_unprep_request - unprepare a request
2391  * @req:	the request
2392  *
2393  * This function makes a request ready for complete resubmission (or
2394  * completion).  It happens only after all error handling is complete,
2395  * so represents the appropriate moment to deallocate any resources
2396  * that were allocated to the request in the prep_rq_fn.  The queue
2397  * lock is held when calling this.
2398  */
2399 void blk_unprep_request(struct request *req)
2400 {
2401 	struct request_queue *q = req->q;
2402 
2403 	req->cmd_flags &= ~REQ_DONTPREP;
2404 	if (q->unprep_rq_fn)
2405 		q->unprep_rq_fn(q, req);
2406 }
2407 EXPORT_SYMBOL_GPL(blk_unprep_request);
2408 
2409 /*
2410  * queue lock must be held
2411  */
2412 static void blk_finish_request(struct request *req, int error)
2413 {
2414 	if (blk_rq_tagged(req))
2415 		blk_queue_end_tag(req->q, req);
2416 
2417 	BUG_ON(blk_queued_rq(req));
2418 
2419 	if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2420 		laptop_io_completion(&req->q->backing_dev_info);
2421 
2422 	blk_delete_timer(req);
2423 
2424 	if (req->cmd_flags & REQ_DONTPREP)
2425 		blk_unprep_request(req);
2426 
2427 
2428 	blk_account_io_done(req);
2429 
2430 	if (req->end_io)
2431 		req->end_io(req, error);
2432 	else {
2433 		if (blk_bidi_rq(req))
2434 			__blk_put_request(req->next_rq->q, req->next_rq);
2435 
2436 		__blk_put_request(req->q, req);
2437 	}
2438 }
2439 
2440 /**
2441  * blk_end_bidi_request - Complete a bidi request
2442  * @rq:         the request to complete
2443  * @error:      %0 for success, < %0 for error
2444  * @nr_bytes:   number of bytes to complete @rq
2445  * @bidi_bytes: number of bytes to complete @rq->next_rq
2446  *
2447  * Description:
2448  *     Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2449  *     Drivers that supports bidi can safely call this member for any
2450  *     type of request, bidi or uni.  In the later case @bidi_bytes is
2451  *     just ignored.
2452  *
2453  * Return:
2454  *     %false - we are done with this request
2455  *     %true  - still buffers pending for this request
2456  **/
2457 static bool blk_end_bidi_request(struct request *rq, int error,
2458 				 unsigned int nr_bytes, unsigned int bidi_bytes)
2459 {
2460 	struct request_queue *q = rq->q;
2461 	unsigned long flags;
2462 
2463 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2464 		return true;
2465 
2466 	spin_lock_irqsave(q->queue_lock, flags);
2467 	blk_finish_request(rq, error);
2468 	spin_unlock_irqrestore(q->queue_lock, flags);
2469 
2470 	return false;
2471 }
2472 
2473 /**
2474  * __blk_end_bidi_request - Complete a bidi request with queue lock held
2475  * @rq:         the request to complete
2476  * @error:      %0 for success, < %0 for error
2477  * @nr_bytes:   number of bytes to complete @rq
2478  * @bidi_bytes: number of bytes to complete @rq->next_rq
2479  *
2480  * Description:
2481  *     Identical to blk_end_bidi_request() except that queue lock is
2482  *     assumed to be locked on entry and remains so on return.
2483  *
2484  * Return:
2485  *     %false - we are done with this request
2486  *     %true  - still buffers pending for this request
2487  **/
2488 bool __blk_end_bidi_request(struct request *rq, int error,
2489 				   unsigned int nr_bytes, unsigned int bidi_bytes)
2490 {
2491 	if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2492 		return true;
2493 
2494 	blk_finish_request(rq, error);
2495 
2496 	return false;
2497 }
2498 
2499 /**
2500  * blk_end_request - Helper function for drivers to complete the request.
2501  * @rq:       the request being processed
2502  * @error:    %0 for success, < %0 for error
2503  * @nr_bytes: number of bytes to complete
2504  *
2505  * Description:
2506  *     Ends I/O on a number of bytes attached to @rq.
2507  *     If @rq has leftover, sets it up for the next range of segments.
2508  *
2509  * Return:
2510  *     %false - we are done with this request
2511  *     %true  - still buffers pending for this request
2512  **/
2513 bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2514 {
2515 	return blk_end_bidi_request(rq, error, nr_bytes, 0);
2516 }
2517 EXPORT_SYMBOL(blk_end_request);
2518 
2519 /**
2520  * blk_end_request_all - Helper function for drives to finish the request.
2521  * @rq: the request to finish
2522  * @error: %0 for success, < %0 for error
2523  *
2524  * Description:
2525  *     Completely finish @rq.
2526  */
2527 void blk_end_request_all(struct request *rq, int error)
2528 {
2529 	bool pending;
2530 	unsigned int bidi_bytes = 0;
2531 
2532 	if (unlikely(blk_bidi_rq(rq)))
2533 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2534 
2535 	pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2536 	BUG_ON(pending);
2537 }
2538 EXPORT_SYMBOL(blk_end_request_all);
2539 
2540 /**
2541  * blk_end_request_cur - Helper function to finish the current request chunk.
2542  * @rq: the request to finish the current chunk for
2543  * @error: %0 for success, < %0 for error
2544  *
2545  * Description:
2546  *     Complete the current consecutively mapped chunk from @rq.
2547  *
2548  * Return:
2549  *     %false - we are done with this request
2550  *     %true  - still buffers pending for this request
2551  */
2552 bool blk_end_request_cur(struct request *rq, int error)
2553 {
2554 	return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2555 }
2556 EXPORT_SYMBOL(blk_end_request_cur);
2557 
2558 /**
2559  * blk_end_request_err - Finish a request till the next failure boundary.
2560  * @rq: the request to finish till the next failure boundary for
2561  * @error: must be negative errno
2562  *
2563  * Description:
2564  *     Complete @rq till the next failure boundary.
2565  *
2566  * Return:
2567  *     %false - we are done with this request
2568  *     %true  - still buffers pending for this request
2569  */
2570 bool blk_end_request_err(struct request *rq, int error)
2571 {
2572 	WARN_ON(error >= 0);
2573 	return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2574 }
2575 EXPORT_SYMBOL_GPL(blk_end_request_err);
2576 
2577 /**
2578  * __blk_end_request - Helper function for drivers to complete the request.
2579  * @rq:       the request being processed
2580  * @error:    %0 for success, < %0 for error
2581  * @nr_bytes: number of bytes to complete
2582  *
2583  * Description:
2584  *     Must be called with queue lock held unlike blk_end_request().
2585  *
2586  * Return:
2587  *     %false - we are done with this request
2588  *     %true  - still buffers pending for this request
2589  **/
2590 bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2591 {
2592 	return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2593 }
2594 EXPORT_SYMBOL(__blk_end_request);
2595 
2596 /**
2597  * __blk_end_request_all - Helper function for drives to finish the request.
2598  * @rq: the request to finish
2599  * @error: %0 for success, < %0 for error
2600  *
2601  * Description:
2602  *     Completely finish @rq.  Must be called with queue lock held.
2603  */
2604 void __blk_end_request_all(struct request *rq, int error)
2605 {
2606 	bool pending;
2607 	unsigned int bidi_bytes = 0;
2608 
2609 	if (unlikely(blk_bidi_rq(rq)))
2610 		bidi_bytes = blk_rq_bytes(rq->next_rq);
2611 
2612 	pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2613 	BUG_ON(pending);
2614 }
2615 EXPORT_SYMBOL(__blk_end_request_all);
2616 
2617 /**
2618  * __blk_end_request_cur - Helper function to finish the current request chunk.
2619  * @rq: the request to finish the current chunk for
2620  * @error: %0 for success, < %0 for error
2621  *
2622  * Description:
2623  *     Complete the current consecutively mapped chunk from @rq.  Must
2624  *     be called with queue lock held.
2625  *
2626  * Return:
2627  *     %false - we are done with this request
2628  *     %true  - still buffers pending for this request
2629  */
2630 bool __blk_end_request_cur(struct request *rq, int error)
2631 {
2632 	return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2633 }
2634 EXPORT_SYMBOL(__blk_end_request_cur);
2635 
2636 /**
2637  * __blk_end_request_err - Finish a request till the next failure boundary.
2638  * @rq: the request to finish till the next failure boundary for
2639  * @error: must be negative errno
2640  *
2641  * Description:
2642  *     Complete @rq till the next failure boundary.  Must be called
2643  *     with queue lock held.
2644  *
2645  * Return:
2646  *     %false - we are done with this request
2647  *     %true  - still buffers pending for this request
2648  */
2649 bool __blk_end_request_err(struct request *rq, int error)
2650 {
2651 	WARN_ON(error >= 0);
2652 	return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2653 }
2654 EXPORT_SYMBOL_GPL(__blk_end_request_err);
2655 
2656 void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2657 		     struct bio *bio)
2658 {
2659 	/* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2660 	rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2661 
2662 	if (bio_has_data(bio)) {
2663 		rq->nr_phys_segments = bio_phys_segments(q, bio);
2664 		rq->buffer = bio_data(bio);
2665 	}
2666 	rq->__data_len = bio->bi_size;
2667 	rq->bio = rq->biotail = bio;
2668 
2669 	if (bio->bi_bdev)
2670 		rq->rq_disk = bio->bi_bdev->bd_disk;
2671 }
2672 
2673 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2674 /**
2675  * rq_flush_dcache_pages - Helper function to flush all pages in a request
2676  * @rq: the request to be flushed
2677  *
2678  * Description:
2679  *     Flush all pages in @rq.
2680  */
2681 void rq_flush_dcache_pages(struct request *rq)
2682 {
2683 	struct req_iterator iter;
2684 	struct bio_vec *bvec;
2685 
2686 	rq_for_each_segment(bvec, rq, iter)
2687 		flush_dcache_page(bvec->bv_page);
2688 }
2689 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2690 #endif
2691 
2692 /**
2693  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2694  * @q : the queue of the device being checked
2695  *
2696  * Description:
2697  *    Check if underlying low-level drivers of a device are busy.
2698  *    If the drivers want to export their busy state, they must set own
2699  *    exporting function using blk_queue_lld_busy() first.
2700  *
2701  *    Basically, this function is used only by request stacking drivers
2702  *    to stop dispatching requests to underlying devices when underlying
2703  *    devices are busy.  This behavior helps more I/O merging on the queue
2704  *    of the request stacking driver and prevents I/O throughput regression
2705  *    on burst I/O load.
2706  *
2707  * Return:
2708  *    0 - Not busy (The request stacking driver should dispatch request)
2709  *    1 - Busy (The request stacking driver should stop dispatching request)
2710  */
2711 int blk_lld_busy(struct request_queue *q)
2712 {
2713 	if (q->lld_busy_fn)
2714 		return q->lld_busy_fn(q);
2715 
2716 	return 0;
2717 }
2718 EXPORT_SYMBOL_GPL(blk_lld_busy);
2719 
2720 /**
2721  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2722  * @rq: the clone request to be cleaned up
2723  *
2724  * Description:
2725  *     Free all bios in @rq for a cloned request.
2726  */
2727 void blk_rq_unprep_clone(struct request *rq)
2728 {
2729 	struct bio *bio;
2730 
2731 	while ((bio = rq->bio) != NULL) {
2732 		rq->bio = bio->bi_next;
2733 
2734 		bio_put(bio);
2735 	}
2736 }
2737 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2738 
2739 /*
2740  * Copy attributes of the original request to the clone request.
2741  * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2742  */
2743 static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2744 {
2745 	dst->cpu = src->cpu;
2746 	dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2747 	dst->cmd_type = src->cmd_type;
2748 	dst->__sector = blk_rq_pos(src);
2749 	dst->__data_len = blk_rq_bytes(src);
2750 	dst->nr_phys_segments = src->nr_phys_segments;
2751 	dst->ioprio = src->ioprio;
2752 	dst->extra_len = src->extra_len;
2753 }
2754 
2755 /**
2756  * blk_rq_prep_clone - Helper function to setup clone request
2757  * @rq: the request to be setup
2758  * @rq_src: original request to be cloned
2759  * @bs: bio_set that bios for clone are allocated from
2760  * @gfp_mask: memory allocation mask for bio
2761  * @bio_ctr: setup function to be called for each clone bio.
2762  *           Returns %0 for success, non %0 for failure.
2763  * @data: private data to be passed to @bio_ctr
2764  *
2765  * Description:
2766  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2767  *     The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2768  *     are not copied, and copying such parts is the caller's responsibility.
2769  *     Also, pages which the original bios are pointing to are not copied
2770  *     and the cloned bios just point same pages.
2771  *     So cloned bios must be completed before original bios, which means
2772  *     the caller must complete @rq before @rq_src.
2773  */
2774 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2775 		      struct bio_set *bs, gfp_t gfp_mask,
2776 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
2777 		      void *data)
2778 {
2779 	struct bio *bio, *bio_src;
2780 
2781 	if (!bs)
2782 		bs = fs_bio_set;
2783 
2784 	blk_rq_init(NULL, rq);
2785 
2786 	__rq_for_each_bio(bio_src, rq_src) {
2787 		bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2788 		if (!bio)
2789 			goto free_and_out;
2790 
2791 		if (bio_ctr && bio_ctr(bio, bio_src, data))
2792 			goto free_and_out;
2793 
2794 		if (rq->bio) {
2795 			rq->biotail->bi_next = bio;
2796 			rq->biotail = bio;
2797 		} else
2798 			rq->bio = rq->biotail = bio;
2799 	}
2800 
2801 	__blk_rq_prep_clone(rq, rq_src);
2802 
2803 	return 0;
2804 
2805 free_and_out:
2806 	if (bio)
2807 		bio_put(bio);
2808 	blk_rq_unprep_clone(rq);
2809 
2810 	return -ENOMEM;
2811 }
2812 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2813 
2814 int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2815 {
2816 	return queue_work(kblockd_workqueue, work);
2817 }
2818 EXPORT_SYMBOL(kblockd_schedule_work);
2819 
2820 int kblockd_schedule_delayed_work(struct request_queue *q,
2821 			struct delayed_work *dwork, unsigned long delay)
2822 {
2823 	return queue_delayed_work(kblockd_workqueue, dwork, delay);
2824 }
2825 EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2826 
2827 #define PLUG_MAGIC	0x91827364
2828 
2829 /**
2830  * blk_start_plug - initialize blk_plug and track it inside the task_struct
2831  * @plug:	The &struct blk_plug that needs to be initialized
2832  *
2833  * Description:
2834  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
2835  *   pending I/O should the task end up blocking between blk_start_plug() and
2836  *   blk_finish_plug(). This is important from a performance perspective, but
2837  *   also ensures that we don't deadlock. For instance, if the task is blocking
2838  *   for a memory allocation, memory reclaim could end up wanting to free a
2839  *   page belonging to that request that is currently residing in our private
2840  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
2841  *   this kind of deadlock.
2842  */
2843 void blk_start_plug(struct blk_plug *plug)
2844 {
2845 	struct task_struct *tsk = current;
2846 
2847 	plug->magic = PLUG_MAGIC;
2848 	INIT_LIST_HEAD(&plug->list);
2849 	INIT_LIST_HEAD(&plug->cb_list);
2850 	plug->should_sort = 0;
2851 
2852 	/*
2853 	 * If this is a nested plug, don't actually assign it. It will be
2854 	 * flushed on its own.
2855 	 */
2856 	if (!tsk->plug) {
2857 		/*
2858 		 * Store ordering should not be needed here, since a potential
2859 		 * preempt will imply a full memory barrier
2860 		 */
2861 		tsk->plug = plug;
2862 	}
2863 }
2864 EXPORT_SYMBOL(blk_start_plug);
2865 
2866 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2867 {
2868 	struct request *rqa = container_of(a, struct request, queuelist);
2869 	struct request *rqb = container_of(b, struct request, queuelist);
2870 
2871 	return !(rqa->q < rqb->q ||
2872 		(rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2873 }
2874 
2875 /*
2876  * If 'from_schedule' is true, then postpone the dispatch of requests
2877  * until a safe kblockd context. We due this to avoid accidental big
2878  * additional stack usage in driver dispatch, in places where the originally
2879  * plugger did not intend it.
2880  */
2881 static void queue_unplugged(struct request_queue *q, unsigned int depth,
2882 			    bool from_schedule)
2883 	__releases(q->queue_lock)
2884 {
2885 	trace_block_unplug(q, depth, !from_schedule);
2886 
2887 	/*
2888 	 * Don't mess with dead queue.
2889 	 */
2890 	if (unlikely(blk_queue_dead(q))) {
2891 		spin_unlock(q->queue_lock);
2892 		return;
2893 	}
2894 
2895 	/*
2896 	 * If we are punting this to kblockd, then we can safely drop
2897 	 * the queue_lock before waking kblockd (which needs to take
2898 	 * this lock).
2899 	 */
2900 	if (from_schedule) {
2901 		spin_unlock(q->queue_lock);
2902 		blk_run_queue_async(q);
2903 	} else {
2904 		__blk_run_queue(q);
2905 		spin_unlock(q->queue_lock);
2906 	}
2907 
2908 }
2909 
2910 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2911 {
2912 	LIST_HEAD(callbacks);
2913 
2914 	while (!list_empty(&plug->cb_list)) {
2915 		list_splice_init(&plug->cb_list, &callbacks);
2916 
2917 		while (!list_empty(&callbacks)) {
2918 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
2919 							  struct blk_plug_cb,
2920 							  list);
2921 			list_del(&cb->list);
2922 			cb->callback(cb, from_schedule);
2923 		}
2924 	}
2925 }
2926 
2927 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2928 				      int size)
2929 {
2930 	struct blk_plug *plug = current->plug;
2931 	struct blk_plug_cb *cb;
2932 
2933 	if (!plug)
2934 		return NULL;
2935 
2936 	list_for_each_entry(cb, &plug->cb_list, list)
2937 		if (cb->callback == unplug && cb->data == data)
2938 			return cb;
2939 
2940 	/* Not currently on the callback list */
2941 	BUG_ON(size < sizeof(*cb));
2942 	cb = kzalloc(size, GFP_ATOMIC);
2943 	if (cb) {
2944 		cb->data = data;
2945 		cb->callback = unplug;
2946 		list_add(&cb->list, &plug->cb_list);
2947 	}
2948 	return cb;
2949 }
2950 EXPORT_SYMBOL(blk_check_plugged);
2951 
2952 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2953 {
2954 	struct request_queue *q;
2955 	unsigned long flags;
2956 	struct request *rq;
2957 	LIST_HEAD(list);
2958 	unsigned int depth;
2959 
2960 	BUG_ON(plug->magic != PLUG_MAGIC);
2961 
2962 	flush_plug_callbacks(plug, from_schedule);
2963 	if (list_empty(&plug->list))
2964 		return;
2965 
2966 	list_splice_init(&plug->list, &list);
2967 
2968 	if (plug->should_sort) {
2969 		list_sort(NULL, &list, plug_rq_cmp);
2970 		plug->should_sort = 0;
2971 	}
2972 
2973 	q = NULL;
2974 	depth = 0;
2975 
2976 	/*
2977 	 * Save and disable interrupts here, to avoid doing it for every
2978 	 * queue lock we have to take.
2979 	 */
2980 	local_irq_save(flags);
2981 	while (!list_empty(&list)) {
2982 		rq = list_entry_rq(list.next);
2983 		list_del_init(&rq->queuelist);
2984 		BUG_ON(!rq->q);
2985 		if (rq->q != q) {
2986 			/*
2987 			 * This drops the queue lock
2988 			 */
2989 			if (q)
2990 				queue_unplugged(q, depth, from_schedule);
2991 			q = rq->q;
2992 			depth = 0;
2993 			spin_lock(q->queue_lock);
2994 		}
2995 
2996 		/*
2997 		 * Short-circuit if @q is dead
2998 		 */
2999 		if (unlikely(blk_queue_dead(q))) {
3000 			__blk_end_request_all(rq, -ENODEV);
3001 			continue;
3002 		}
3003 
3004 		/*
3005 		 * rq is already accounted, so use raw insert
3006 		 */
3007 		if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3008 			__elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3009 		else
3010 			__elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3011 
3012 		depth++;
3013 	}
3014 
3015 	/*
3016 	 * This drops the queue lock
3017 	 */
3018 	if (q)
3019 		queue_unplugged(q, depth, from_schedule);
3020 
3021 	local_irq_restore(flags);
3022 }
3023 
3024 void blk_finish_plug(struct blk_plug *plug)
3025 {
3026 	blk_flush_plug_list(plug, false);
3027 
3028 	if (plug == current->plug)
3029 		current->plug = NULL;
3030 }
3031 EXPORT_SYMBOL(blk_finish_plug);
3032 
3033 int __init blk_dev_init(void)
3034 {
3035 	BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3036 			sizeof(((struct request *)0)->cmd_flags));
3037 
3038 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
3039 	kblockd_workqueue = alloc_workqueue("kblockd",
3040 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3041 	if (!kblockd_workqueue)
3042 		panic("Failed to create kblockd\n");
3043 
3044 	request_cachep = kmem_cache_create("blkdev_requests",
3045 			sizeof(struct request), 0, SLAB_PANIC, NULL);
3046 
3047 	blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3048 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3049 
3050 	return 0;
3051 }
3052