xref: /openbmc/linux/block/blk-core.c (revision 022dacdd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1991, 1992 Linus Torvalds
4  * Copyright (C) 1994,      Karl Keyte: Added support for disk statistics
5  * Elevator latency, (C) 2000  Andrea Arcangeli <andrea@suse.de> SuSE
6  * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
7  * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8  *	-  July2000
9  * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
10  */
11 
12 /*
13  * This handles all read/write requests to block devices
14  */
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/backing-dev.h>
18 #include <linux/bio.h>
19 #include <linux/blkdev.h>
20 #include <linux/blk-mq.h>
21 #include <linux/highmem.h>
22 #include <linux/mm.h>
23 #include <linux/kernel_stat.h>
24 #include <linux/string.h>
25 #include <linux/init.h>
26 #include <linux/completion.h>
27 #include <linux/slab.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/fault-inject.h>
32 #include <linux/list_sort.h>
33 #include <linux/delay.h>
34 #include <linux/ratelimit.h>
35 #include <linux/pm_runtime.h>
36 #include <linux/blk-cgroup.h>
37 #include <linux/t10-pi.h>
38 #include <linux/debugfs.h>
39 #include <linux/bpf.h>
40 #include <linux/psi.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/block.h>
44 
45 #include "blk.h"
46 #include "blk-mq.h"
47 #include "blk-mq-sched.h"
48 #include "blk-pm.h"
49 #include "blk-rq-qos.h"
50 
51 #ifdef CONFIG_DEBUG_FS
52 struct dentry *blk_debugfs_root;
53 #endif
54 
55 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
56 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
57 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
58 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split);
59 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
60 
61 DEFINE_IDA(blk_queue_ida);
62 
63 /*
64  * For queue allocation
65  */
66 struct kmem_cache *blk_requestq_cachep;
67 
68 /*
69  * Controlling structure to kblockd
70  */
71 static struct workqueue_struct *kblockd_workqueue;
72 
73 /**
74  * blk_queue_flag_set - atomically set a queue flag
75  * @flag: flag to be set
76  * @q: request queue
77  */
78 void blk_queue_flag_set(unsigned int flag, struct request_queue *q)
79 {
80 	set_bit(flag, &q->queue_flags);
81 }
82 EXPORT_SYMBOL(blk_queue_flag_set);
83 
84 /**
85  * blk_queue_flag_clear - atomically clear a queue flag
86  * @flag: flag to be cleared
87  * @q: request queue
88  */
89 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q)
90 {
91 	clear_bit(flag, &q->queue_flags);
92 }
93 EXPORT_SYMBOL(blk_queue_flag_clear);
94 
95 /**
96  * blk_queue_flag_test_and_set - atomically test and set a queue flag
97  * @flag: flag to be set
98  * @q: request queue
99  *
100  * Returns the previous value of @flag - 0 if the flag was not set and 1 if
101  * the flag was already set.
102  */
103 bool blk_queue_flag_test_and_set(unsigned int flag, struct request_queue *q)
104 {
105 	return test_and_set_bit(flag, &q->queue_flags);
106 }
107 EXPORT_SYMBOL_GPL(blk_queue_flag_test_and_set);
108 
109 void blk_rq_init(struct request_queue *q, struct request *rq)
110 {
111 	memset(rq, 0, sizeof(*rq));
112 
113 	INIT_LIST_HEAD(&rq->queuelist);
114 	rq->q = q;
115 	rq->__sector = (sector_t) -1;
116 	INIT_HLIST_NODE(&rq->hash);
117 	RB_CLEAR_NODE(&rq->rb_node);
118 	rq->tag = -1;
119 	rq->internal_tag = -1;
120 	rq->start_time_ns = ktime_get_ns();
121 	rq->part = NULL;
122 	refcount_set(&rq->ref, 1);
123 }
124 EXPORT_SYMBOL(blk_rq_init);
125 
126 #define REQ_OP_NAME(name) [REQ_OP_##name] = #name
127 static const char *const blk_op_name[] = {
128 	REQ_OP_NAME(READ),
129 	REQ_OP_NAME(WRITE),
130 	REQ_OP_NAME(FLUSH),
131 	REQ_OP_NAME(DISCARD),
132 	REQ_OP_NAME(SECURE_ERASE),
133 	REQ_OP_NAME(ZONE_RESET),
134 	REQ_OP_NAME(ZONE_RESET_ALL),
135 	REQ_OP_NAME(ZONE_OPEN),
136 	REQ_OP_NAME(ZONE_CLOSE),
137 	REQ_OP_NAME(ZONE_FINISH),
138 	REQ_OP_NAME(WRITE_SAME),
139 	REQ_OP_NAME(WRITE_ZEROES),
140 	REQ_OP_NAME(SCSI_IN),
141 	REQ_OP_NAME(SCSI_OUT),
142 	REQ_OP_NAME(DRV_IN),
143 	REQ_OP_NAME(DRV_OUT),
144 };
145 #undef REQ_OP_NAME
146 
147 /**
148  * blk_op_str - Return string XXX in the REQ_OP_XXX.
149  * @op: REQ_OP_XXX.
150  *
151  * Description: Centralize block layer function to convert REQ_OP_XXX into
152  * string format. Useful in the debugging and tracing bio or request. For
153  * invalid REQ_OP_XXX it returns string "UNKNOWN".
154  */
155 inline const char *blk_op_str(unsigned int op)
156 {
157 	const char *op_str = "UNKNOWN";
158 
159 	if (op < ARRAY_SIZE(blk_op_name) && blk_op_name[op])
160 		op_str = blk_op_name[op];
161 
162 	return op_str;
163 }
164 EXPORT_SYMBOL_GPL(blk_op_str);
165 
166 static const struct {
167 	int		errno;
168 	const char	*name;
169 } blk_errors[] = {
170 	[BLK_STS_OK]		= { 0,		"" },
171 	[BLK_STS_NOTSUPP]	= { -EOPNOTSUPP, "operation not supported" },
172 	[BLK_STS_TIMEOUT]	= { -ETIMEDOUT,	"timeout" },
173 	[BLK_STS_NOSPC]		= { -ENOSPC,	"critical space allocation" },
174 	[BLK_STS_TRANSPORT]	= { -ENOLINK,	"recoverable transport" },
175 	[BLK_STS_TARGET]	= { -EREMOTEIO,	"critical target" },
176 	[BLK_STS_NEXUS]		= { -EBADE,	"critical nexus" },
177 	[BLK_STS_MEDIUM]	= { -ENODATA,	"critical medium" },
178 	[BLK_STS_PROTECTION]	= { -EILSEQ,	"protection" },
179 	[BLK_STS_RESOURCE]	= { -ENOMEM,	"kernel resource" },
180 	[BLK_STS_DEV_RESOURCE]	= { -EBUSY,	"device resource" },
181 	[BLK_STS_AGAIN]		= { -EAGAIN,	"nonblocking retry" },
182 
183 	/* device mapper special case, should not leak out: */
184 	[BLK_STS_DM_REQUEUE]	= { -EREMCHG, "dm internal retry" },
185 
186 	/* everything else not covered above: */
187 	[BLK_STS_IOERR]		= { -EIO,	"I/O" },
188 };
189 
190 blk_status_t errno_to_blk_status(int errno)
191 {
192 	int i;
193 
194 	for (i = 0; i < ARRAY_SIZE(blk_errors); i++) {
195 		if (blk_errors[i].errno == errno)
196 			return (__force blk_status_t)i;
197 	}
198 
199 	return BLK_STS_IOERR;
200 }
201 EXPORT_SYMBOL_GPL(errno_to_blk_status);
202 
203 int blk_status_to_errno(blk_status_t status)
204 {
205 	int idx = (__force int)status;
206 
207 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
208 		return -EIO;
209 	return blk_errors[idx].errno;
210 }
211 EXPORT_SYMBOL_GPL(blk_status_to_errno);
212 
213 static void print_req_error(struct request *req, blk_status_t status,
214 		const char *caller)
215 {
216 	int idx = (__force int)status;
217 
218 	if (WARN_ON_ONCE(idx >= ARRAY_SIZE(blk_errors)))
219 		return;
220 
221 	printk_ratelimited(KERN_ERR
222 		"%s: %s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
223 		"phys_seg %u prio class %u\n",
224 		caller, blk_errors[idx].name,
225 		req->rq_disk ? req->rq_disk->disk_name : "?",
226 		blk_rq_pos(req), req_op(req), blk_op_str(req_op(req)),
227 		req->cmd_flags & ~REQ_OP_MASK,
228 		req->nr_phys_segments,
229 		IOPRIO_PRIO_CLASS(req->ioprio));
230 }
231 
232 static void req_bio_endio(struct request *rq, struct bio *bio,
233 			  unsigned int nbytes, blk_status_t error)
234 {
235 	if (error)
236 		bio->bi_status = error;
237 
238 	if (unlikely(rq->rq_flags & RQF_QUIET))
239 		bio_set_flag(bio, BIO_QUIET);
240 
241 	bio_advance(bio, nbytes);
242 
243 	/* don't actually finish bio if it's part of flush sequence */
244 	if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
245 		bio_endio(bio);
246 }
247 
248 void blk_dump_rq_flags(struct request *rq, char *msg)
249 {
250 	printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
251 		rq->rq_disk ? rq->rq_disk->disk_name : "?",
252 		(unsigned long long) rq->cmd_flags);
253 
254 	printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
255 	       (unsigned long long)blk_rq_pos(rq),
256 	       blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
257 	printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
258 	       rq->bio, rq->biotail, blk_rq_bytes(rq));
259 }
260 EXPORT_SYMBOL(blk_dump_rq_flags);
261 
262 /**
263  * blk_sync_queue - cancel any pending callbacks on a queue
264  * @q: the queue
265  *
266  * Description:
267  *     The block layer may perform asynchronous callback activity
268  *     on a queue, such as calling the unplug function after a timeout.
269  *     A block device may call blk_sync_queue to ensure that any
270  *     such activity is cancelled, thus allowing it to release resources
271  *     that the callbacks might use. The caller must already have made sure
272  *     that its ->make_request_fn will not re-add plugging prior to calling
273  *     this function.
274  *
275  *     This function does not cancel any asynchronous activity arising
276  *     out of elevator or throttling code. That would require elevator_exit()
277  *     and blkcg_exit_queue() to be called with queue lock initialized.
278  *
279  */
280 void blk_sync_queue(struct request_queue *q)
281 {
282 	del_timer_sync(&q->timeout);
283 	cancel_work_sync(&q->timeout_work);
284 }
285 EXPORT_SYMBOL(blk_sync_queue);
286 
287 /**
288  * blk_set_pm_only - increment pm_only counter
289  * @q: request queue pointer
290  */
291 void blk_set_pm_only(struct request_queue *q)
292 {
293 	atomic_inc(&q->pm_only);
294 }
295 EXPORT_SYMBOL_GPL(blk_set_pm_only);
296 
297 void blk_clear_pm_only(struct request_queue *q)
298 {
299 	int pm_only;
300 
301 	pm_only = atomic_dec_return(&q->pm_only);
302 	WARN_ON_ONCE(pm_only < 0);
303 	if (pm_only == 0)
304 		wake_up_all(&q->mq_freeze_wq);
305 }
306 EXPORT_SYMBOL_GPL(blk_clear_pm_only);
307 
308 void blk_put_queue(struct request_queue *q)
309 {
310 	kobject_put(&q->kobj);
311 }
312 EXPORT_SYMBOL(blk_put_queue);
313 
314 void blk_set_queue_dying(struct request_queue *q)
315 {
316 	blk_queue_flag_set(QUEUE_FLAG_DYING, q);
317 
318 	/*
319 	 * When queue DYING flag is set, we need to block new req
320 	 * entering queue, so we call blk_freeze_queue_start() to
321 	 * prevent I/O from crossing blk_queue_enter().
322 	 */
323 	blk_freeze_queue_start(q);
324 
325 	if (queue_is_mq(q))
326 		blk_mq_wake_waiters(q);
327 
328 	/* Make blk_queue_enter() reexamine the DYING flag. */
329 	wake_up_all(&q->mq_freeze_wq);
330 }
331 EXPORT_SYMBOL_GPL(blk_set_queue_dying);
332 
333 /**
334  * blk_cleanup_queue - shutdown a request queue
335  * @q: request queue to shutdown
336  *
337  * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
338  * put it.  All future requests will be failed immediately with -ENODEV.
339  */
340 void blk_cleanup_queue(struct request_queue *q)
341 {
342 	WARN_ON_ONCE(blk_queue_registered(q));
343 
344 	/* mark @q DYING, no new request or merges will be allowed afterwards */
345 	blk_set_queue_dying(q);
346 
347 	blk_queue_flag_set(QUEUE_FLAG_NOMERGES, q);
348 	blk_queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
349 
350 	/*
351 	 * Drain all requests queued before DYING marking. Set DEAD flag to
352 	 * prevent that blk_mq_run_hw_queues() accesses the hardware queues
353 	 * after draining finished.
354 	 */
355 	blk_freeze_queue(q);
356 
357 	rq_qos_exit(q);
358 
359 	blk_queue_flag_set(QUEUE_FLAG_DEAD, q);
360 
361 	/* for synchronous bio-based driver finish in-flight integrity i/o */
362 	blk_flush_integrity();
363 
364 	/* @q won't process any more request, flush async actions */
365 	del_timer_sync(&q->backing_dev_info->laptop_mode_wb_timer);
366 	blk_sync_queue(q);
367 
368 	if (queue_is_mq(q))
369 		blk_mq_exit_queue(q);
370 
371 	/*
372 	 * In theory, request pool of sched_tags belongs to request queue.
373 	 * However, the current implementation requires tag_set for freeing
374 	 * requests, so free the pool now.
375 	 *
376 	 * Queue has become frozen, there can't be any in-queue requests, so
377 	 * it is safe to free requests now.
378 	 */
379 	mutex_lock(&q->sysfs_lock);
380 	if (q->elevator)
381 		blk_mq_sched_free_requests(q);
382 	mutex_unlock(&q->sysfs_lock);
383 
384 	percpu_ref_exit(&q->q_usage_counter);
385 
386 	/* @q is and will stay empty, shutdown and put */
387 	blk_put_queue(q);
388 }
389 EXPORT_SYMBOL(blk_cleanup_queue);
390 
391 /**
392  * blk_queue_enter() - try to increase q->q_usage_counter
393  * @q: request queue pointer
394  * @flags: BLK_MQ_REQ_NOWAIT and/or BLK_MQ_REQ_PREEMPT
395  */
396 int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags)
397 {
398 	const bool pm = flags & BLK_MQ_REQ_PREEMPT;
399 
400 	while (true) {
401 		bool success = false;
402 
403 		rcu_read_lock();
404 		if (percpu_ref_tryget_live(&q->q_usage_counter)) {
405 			/*
406 			 * The code that increments the pm_only counter is
407 			 * responsible for ensuring that that counter is
408 			 * globally visible before the queue is unfrozen.
409 			 */
410 			if (pm || !blk_queue_pm_only(q)) {
411 				success = true;
412 			} else {
413 				percpu_ref_put(&q->q_usage_counter);
414 			}
415 		}
416 		rcu_read_unlock();
417 
418 		if (success)
419 			return 0;
420 
421 		if (flags & BLK_MQ_REQ_NOWAIT)
422 			return -EBUSY;
423 
424 		/*
425 		 * read pair of barrier in blk_freeze_queue_start(),
426 		 * we need to order reading __PERCPU_REF_DEAD flag of
427 		 * .q_usage_counter and reading .mq_freeze_depth or
428 		 * queue dying flag, otherwise the following wait may
429 		 * never return if the two reads are reordered.
430 		 */
431 		smp_rmb();
432 
433 		wait_event(q->mq_freeze_wq,
434 			   (!q->mq_freeze_depth &&
435 			    (pm || (blk_pm_request_resume(q),
436 				    !blk_queue_pm_only(q)))) ||
437 			   blk_queue_dying(q));
438 		if (blk_queue_dying(q))
439 			return -ENODEV;
440 	}
441 }
442 
443 void blk_queue_exit(struct request_queue *q)
444 {
445 	percpu_ref_put(&q->q_usage_counter);
446 }
447 
448 static void blk_queue_usage_counter_release(struct percpu_ref *ref)
449 {
450 	struct request_queue *q =
451 		container_of(ref, struct request_queue, q_usage_counter);
452 
453 	wake_up_all(&q->mq_freeze_wq);
454 }
455 
456 static void blk_rq_timed_out_timer(struct timer_list *t)
457 {
458 	struct request_queue *q = from_timer(q, t, timeout);
459 
460 	kblockd_schedule_work(&q->timeout_work);
461 }
462 
463 static void blk_timeout_work(struct work_struct *work)
464 {
465 }
466 
467 struct request_queue *__blk_alloc_queue(int node_id)
468 {
469 	struct request_queue *q;
470 	int ret;
471 
472 	q = kmem_cache_alloc_node(blk_requestq_cachep,
473 				GFP_KERNEL | __GFP_ZERO, node_id);
474 	if (!q)
475 		return NULL;
476 
477 	q->last_merge = NULL;
478 
479 	q->id = ida_simple_get(&blk_queue_ida, 0, 0, GFP_KERNEL);
480 	if (q->id < 0)
481 		goto fail_q;
482 
483 	ret = bioset_init(&q->bio_split, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS);
484 	if (ret)
485 		goto fail_id;
486 
487 	q->backing_dev_info = bdi_alloc_node(GFP_KERNEL, node_id);
488 	if (!q->backing_dev_info)
489 		goto fail_split;
490 
491 	q->stats = blk_alloc_queue_stats();
492 	if (!q->stats)
493 		goto fail_stats;
494 
495 	q->backing_dev_info->ra_pages = VM_READAHEAD_PAGES;
496 	q->backing_dev_info->capabilities = BDI_CAP_CGROUP_WRITEBACK;
497 	q->backing_dev_info->name = "block";
498 	q->node = node_id;
499 
500 	timer_setup(&q->backing_dev_info->laptop_mode_wb_timer,
501 		    laptop_mode_timer_fn, 0);
502 	timer_setup(&q->timeout, blk_rq_timed_out_timer, 0);
503 	INIT_WORK(&q->timeout_work, blk_timeout_work);
504 	INIT_LIST_HEAD(&q->icq_list);
505 #ifdef CONFIG_BLK_CGROUP
506 	INIT_LIST_HEAD(&q->blkg_list);
507 #endif
508 
509 	kobject_init(&q->kobj, &blk_queue_ktype);
510 
511 #ifdef CONFIG_BLK_DEV_IO_TRACE
512 	mutex_init(&q->blk_trace_mutex);
513 #endif
514 	mutex_init(&q->sysfs_lock);
515 	mutex_init(&q->sysfs_dir_lock);
516 	spin_lock_init(&q->queue_lock);
517 
518 	init_waitqueue_head(&q->mq_freeze_wq);
519 	mutex_init(&q->mq_freeze_lock);
520 
521 	/*
522 	 * Init percpu_ref in atomic mode so that it's faster to shutdown.
523 	 * See blk_register_queue() for details.
524 	 */
525 	if (percpu_ref_init(&q->q_usage_counter,
526 				blk_queue_usage_counter_release,
527 				PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
528 		goto fail_bdi;
529 
530 	if (blkcg_init_queue(q))
531 		goto fail_ref;
532 
533 	blk_queue_dma_alignment(q, 511);
534 	blk_set_default_limits(&q->limits);
535 
536 	return q;
537 
538 fail_ref:
539 	percpu_ref_exit(&q->q_usage_counter);
540 fail_bdi:
541 	blk_free_queue_stats(q->stats);
542 fail_stats:
543 	bdi_put(q->backing_dev_info);
544 fail_split:
545 	bioset_exit(&q->bio_split);
546 fail_id:
547 	ida_simple_remove(&blk_queue_ida, q->id);
548 fail_q:
549 	kmem_cache_free(blk_requestq_cachep, q);
550 	return NULL;
551 }
552 
553 struct request_queue *blk_alloc_queue(make_request_fn make_request, int node_id)
554 {
555 	struct request_queue *q;
556 
557 	if (WARN_ON_ONCE(!make_request))
558 		return NULL;
559 
560 	q = __blk_alloc_queue(node_id);
561 	if (!q)
562 		return NULL;
563 	q->make_request_fn = make_request;
564 	q->nr_requests = BLKDEV_MAX_RQ;
565 	return q;
566 }
567 EXPORT_SYMBOL(blk_alloc_queue);
568 
569 bool blk_get_queue(struct request_queue *q)
570 {
571 	if (likely(!blk_queue_dying(q))) {
572 		__blk_get_queue(q);
573 		return true;
574 	}
575 
576 	return false;
577 }
578 EXPORT_SYMBOL(blk_get_queue);
579 
580 /**
581  * blk_get_request - allocate a request
582  * @q: request queue to allocate a request for
583  * @op: operation (REQ_OP_*) and REQ_* flags, e.g. REQ_SYNC.
584  * @flags: BLK_MQ_REQ_* flags, e.g. BLK_MQ_REQ_NOWAIT.
585  */
586 struct request *blk_get_request(struct request_queue *q, unsigned int op,
587 				blk_mq_req_flags_t flags)
588 {
589 	struct request *req;
590 
591 	WARN_ON_ONCE(op & REQ_NOWAIT);
592 	WARN_ON_ONCE(flags & ~(BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_PREEMPT));
593 
594 	req = blk_mq_alloc_request(q, op, flags);
595 	if (!IS_ERR(req) && q->mq_ops->initialize_rq_fn)
596 		q->mq_ops->initialize_rq_fn(req);
597 
598 	return req;
599 }
600 EXPORT_SYMBOL(blk_get_request);
601 
602 void blk_put_request(struct request *req)
603 {
604 	blk_mq_free_request(req);
605 }
606 EXPORT_SYMBOL(blk_put_request);
607 
608 bool bio_attempt_back_merge(struct request *req, struct bio *bio,
609 		unsigned int nr_segs)
610 {
611 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
612 
613 	if (!ll_back_merge_fn(req, bio, nr_segs))
614 		return false;
615 
616 	trace_block_bio_backmerge(req->q, req, bio);
617 	rq_qos_merge(req->q, req, bio);
618 
619 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
620 		blk_rq_set_mixed_merge(req);
621 
622 	req->biotail->bi_next = bio;
623 	req->biotail = bio;
624 	req->__data_len += bio->bi_iter.bi_size;
625 
626 	blk_account_io_start(req, false);
627 	return true;
628 }
629 
630 bool bio_attempt_front_merge(struct request *req, struct bio *bio,
631 		unsigned int nr_segs)
632 {
633 	const int ff = bio->bi_opf & REQ_FAILFAST_MASK;
634 
635 	if (!ll_front_merge_fn(req, bio, nr_segs))
636 		return false;
637 
638 	trace_block_bio_frontmerge(req->q, req, bio);
639 	rq_qos_merge(req->q, req, bio);
640 
641 	if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
642 		blk_rq_set_mixed_merge(req);
643 
644 	bio->bi_next = req->bio;
645 	req->bio = bio;
646 
647 	req->__sector = bio->bi_iter.bi_sector;
648 	req->__data_len += bio->bi_iter.bi_size;
649 
650 	blk_account_io_start(req, false);
651 	return true;
652 }
653 
654 bool bio_attempt_discard_merge(struct request_queue *q, struct request *req,
655 		struct bio *bio)
656 {
657 	unsigned short segments = blk_rq_nr_discard_segments(req);
658 
659 	if (segments >= queue_max_discard_segments(q))
660 		goto no_merge;
661 	if (blk_rq_sectors(req) + bio_sectors(bio) >
662 	    blk_rq_get_max_sectors(req, blk_rq_pos(req)))
663 		goto no_merge;
664 
665 	rq_qos_merge(q, req, bio);
666 
667 	req->biotail->bi_next = bio;
668 	req->biotail = bio;
669 	req->__data_len += bio->bi_iter.bi_size;
670 	req->nr_phys_segments = segments + 1;
671 
672 	blk_account_io_start(req, false);
673 	return true;
674 no_merge:
675 	req_set_nomerge(q, req);
676 	return false;
677 }
678 
679 /**
680  * blk_attempt_plug_merge - try to merge with %current's plugged list
681  * @q: request_queue new bio is being queued at
682  * @bio: new bio being queued
683  * @nr_segs: number of segments in @bio
684  * @same_queue_rq: pointer to &struct request that gets filled in when
685  * another request associated with @q is found on the plug list
686  * (optional, may be %NULL)
687  *
688  * Determine whether @bio being queued on @q can be merged with a request
689  * on %current's plugged list.  Returns %true if merge was successful,
690  * otherwise %false.
691  *
692  * Plugging coalesces IOs from the same issuer for the same purpose without
693  * going through @q->queue_lock.  As such it's more of an issuing mechanism
694  * than scheduling, and the request, while may have elvpriv data, is not
695  * added on the elevator at this point.  In addition, we don't have
696  * reliable access to the elevator outside queue lock.  Only check basic
697  * merging parameters without querying the elevator.
698  *
699  * Caller must ensure !blk_queue_nomerges(q) beforehand.
700  */
701 bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
702 		unsigned int nr_segs, struct request **same_queue_rq)
703 {
704 	struct blk_plug *plug;
705 	struct request *rq;
706 	struct list_head *plug_list;
707 
708 	plug = blk_mq_plug(q, bio);
709 	if (!plug)
710 		return false;
711 
712 	plug_list = &plug->mq_list;
713 
714 	list_for_each_entry_reverse(rq, plug_list, queuelist) {
715 		bool merged = false;
716 
717 		if (rq->q == q && same_queue_rq) {
718 			/*
719 			 * Only blk-mq multiple hardware queues case checks the
720 			 * rq in the same queue, there should be only one such
721 			 * rq in a queue
722 			 **/
723 			*same_queue_rq = rq;
724 		}
725 
726 		if (rq->q != q || !blk_rq_merge_ok(rq, bio))
727 			continue;
728 
729 		switch (blk_try_merge(rq, bio)) {
730 		case ELEVATOR_BACK_MERGE:
731 			merged = bio_attempt_back_merge(rq, bio, nr_segs);
732 			break;
733 		case ELEVATOR_FRONT_MERGE:
734 			merged = bio_attempt_front_merge(rq, bio, nr_segs);
735 			break;
736 		case ELEVATOR_DISCARD_MERGE:
737 			merged = bio_attempt_discard_merge(q, rq, bio);
738 			break;
739 		default:
740 			break;
741 		}
742 
743 		if (merged)
744 			return true;
745 	}
746 
747 	return false;
748 }
749 
750 static void handle_bad_sector(struct bio *bio, sector_t maxsector)
751 {
752 	char b[BDEVNAME_SIZE];
753 
754 	printk(KERN_INFO "attempt to access beyond end of device\n");
755 	printk(KERN_INFO "%s: rw=%d, want=%Lu, limit=%Lu\n",
756 			bio_devname(bio, b), bio->bi_opf,
757 			(unsigned long long)bio_end_sector(bio),
758 			(long long)maxsector);
759 }
760 
761 #ifdef CONFIG_FAIL_MAKE_REQUEST
762 
763 static DECLARE_FAULT_ATTR(fail_make_request);
764 
765 static int __init setup_fail_make_request(char *str)
766 {
767 	return setup_fault_attr(&fail_make_request, str);
768 }
769 __setup("fail_make_request=", setup_fail_make_request);
770 
771 static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
772 {
773 	return part->make_it_fail && should_fail(&fail_make_request, bytes);
774 }
775 
776 static int __init fail_make_request_debugfs(void)
777 {
778 	struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
779 						NULL, &fail_make_request);
780 
781 	return PTR_ERR_OR_ZERO(dir);
782 }
783 
784 late_initcall(fail_make_request_debugfs);
785 
786 #else /* CONFIG_FAIL_MAKE_REQUEST */
787 
788 static inline bool should_fail_request(struct hd_struct *part,
789 					unsigned int bytes)
790 {
791 	return false;
792 }
793 
794 #endif /* CONFIG_FAIL_MAKE_REQUEST */
795 
796 static inline bool bio_check_ro(struct bio *bio, struct hd_struct *part)
797 {
798 	const int op = bio_op(bio);
799 
800 	if (part->policy && op_is_write(op)) {
801 		char b[BDEVNAME_SIZE];
802 
803 		if (op_is_flush(bio->bi_opf) && !bio_sectors(bio))
804 			return false;
805 
806 		WARN_ONCE(1,
807 		       "generic_make_request: Trying to write "
808 			"to read-only block-device %s (partno %d)\n",
809 			bio_devname(bio, b), part->partno);
810 		/* Older lvm-tools actually trigger this */
811 		return false;
812 	}
813 
814 	return false;
815 }
816 
817 static noinline int should_fail_bio(struct bio *bio)
818 {
819 	if (should_fail_request(&bio->bi_disk->part0, bio->bi_iter.bi_size))
820 		return -EIO;
821 	return 0;
822 }
823 ALLOW_ERROR_INJECTION(should_fail_bio, ERRNO);
824 
825 /*
826  * Check whether this bio extends beyond the end of the device or partition.
827  * This may well happen - the kernel calls bread() without checking the size of
828  * the device, e.g., when mounting a file system.
829  */
830 static inline int bio_check_eod(struct bio *bio, sector_t maxsector)
831 {
832 	unsigned int nr_sectors = bio_sectors(bio);
833 
834 	if (nr_sectors && maxsector &&
835 	    (nr_sectors > maxsector ||
836 	     bio->bi_iter.bi_sector > maxsector - nr_sectors)) {
837 		handle_bad_sector(bio, maxsector);
838 		return -EIO;
839 	}
840 	return 0;
841 }
842 
843 /*
844  * Remap block n of partition p to block n+start(p) of the disk.
845  */
846 static inline int blk_partition_remap(struct bio *bio)
847 {
848 	struct hd_struct *p;
849 	int ret = -EIO;
850 
851 	rcu_read_lock();
852 	p = __disk_get_part(bio->bi_disk, bio->bi_partno);
853 	if (unlikely(!p))
854 		goto out;
855 	if (unlikely(should_fail_request(p, bio->bi_iter.bi_size)))
856 		goto out;
857 	if (unlikely(bio_check_ro(bio, p)))
858 		goto out;
859 
860 	if (bio_sectors(bio)) {
861 		if (bio_check_eod(bio, part_nr_sects_read(p)))
862 			goto out;
863 		bio->bi_iter.bi_sector += p->start_sect;
864 		trace_block_bio_remap(bio->bi_disk->queue, bio, part_devt(p),
865 				      bio->bi_iter.bi_sector - p->start_sect);
866 	}
867 	bio->bi_partno = 0;
868 	ret = 0;
869 out:
870 	rcu_read_unlock();
871 	return ret;
872 }
873 
874 static noinline_for_stack bool
875 generic_make_request_checks(struct bio *bio)
876 {
877 	struct request_queue *q;
878 	int nr_sectors = bio_sectors(bio);
879 	blk_status_t status = BLK_STS_IOERR;
880 	char b[BDEVNAME_SIZE];
881 
882 	might_sleep();
883 
884 	q = bio->bi_disk->queue;
885 	if (unlikely(!q)) {
886 		printk(KERN_ERR
887 		       "generic_make_request: Trying to access "
888 			"nonexistent block-device %s (%Lu)\n",
889 			bio_devname(bio, b), (long long)bio->bi_iter.bi_sector);
890 		goto end_io;
891 	}
892 
893 	/*
894 	 * Non-mq queues do not honor REQ_NOWAIT, so complete a bio
895 	 * with BLK_STS_AGAIN status in order to catch -EAGAIN and
896 	 * to give a chance to the caller to repeat request gracefully.
897 	 */
898 	if ((bio->bi_opf & REQ_NOWAIT) && !queue_is_mq(q)) {
899 		status = BLK_STS_AGAIN;
900 		goto end_io;
901 	}
902 
903 	if (should_fail_bio(bio))
904 		goto end_io;
905 
906 	if (bio->bi_partno) {
907 		if (unlikely(blk_partition_remap(bio)))
908 			goto end_io;
909 	} else {
910 		if (unlikely(bio_check_ro(bio, &bio->bi_disk->part0)))
911 			goto end_io;
912 		if (unlikely(bio_check_eod(bio, get_capacity(bio->bi_disk))))
913 			goto end_io;
914 	}
915 
916 	/*
917 	 * Filter flush bio's early so that make_request based
918 	 * drivers without flush support don't have to worry
919 	 * about them.
920 	 */
921 	if (op_is_flush(bio->bi_opf) &&
922 	    !test_bit(QUEUE_FLAG_WC, &q->queue_flags)) {
923 		bio->bi_opf &= ~(REQ_PREFLUSH | REQ_FUA);
924 		if (!nr_sectors) {
925 			status = BLK_STS_OK;
926 			goto end_io;
927 		}
928 	}
929 
930 	if (!test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
931 		bio->bi_opf &= ~REQ_HIPRI;
932 
933 	switch (bio_op(bio)) {
934 	case REQ_OP_DISCARD:
935 		if (!blk_queue_discard(q))
936 			goto not_supported;
937 		break;
938 	case REQ_OP_SECURE_ERASE:
939 		if (!blk_queue_secure_erase(q))
940 			goto not_supported;
941 		break;
942 	case REQ_OP_WRITE_SAME:
943 		if (!q->limits.max_write_same_sectors)
944 			goto not_supported;
945 		break;
946 	case REQ_OP_ZONE_RESET:
947 	case REQ_OP_ZONE_OPEN:
948 	case REQ_OP_ZONE_CLOSE:
949 	case REQ_OP_ZONE_FINISH:
950 		if (!blk_queue_is_zoned(q))
951 			goto not_supported;
952 		break;
953 	case REQ_OP_ZONE_RESET_ALL:
954 		if (!blk_queue_is_zoned(q) || !blk_queue_zone_resetall(q))
955 			goto not_supported;
956 		break;
957 	case REQ_OP_WRITE_ZEROES:
958 		if (!q->limits.max_write_zeroes_sectors)
959 			goto not_supported;
960 		break;
961 	default:
962 		break;
963 	}
964 
965 	/*
966 	 * Various block parts want %current->io_context and lazy ioc
967 	 * allocation ends up trading a lot of pain for a small amount of
968 	 * memory.  Just allocate it upfront.  This may fail and block
969 	 * layer knows how to live with it.
970 	 */
971 	create_io_context(GFP_ATOMIC, q->node);
972 
973 	if (!blkcg_bio_issue_check(q, bio))
974 		return false;
975 
976 	if (!bio_flagged(bio, BIO_TRACE_COMPLETION)) {
977 		trace_block_bio_queue(q, bio);
978 		/* Now that enqueuing has been traced, we need to trace
979 		 * completion as well.
980 		 */
981 		bio_set_flag(bio, BIO_TRACE_COMPLETION);
982 	}
983 	return true;
984 
985 not_supported:
986 	status = BLK_STS_NOTSUPP;
987 end_io:
988 	bio->bi_status = status;
989 	bio_endio(bio);
990 	return false;
991 }
992 
993 /**
994  * generic_make_request - hand a buffer to its device driver for I/O
995  * @bio:  The bio describing the location in memory and on the device.
996  *
997  * generic_make_request() is used to make I/O requests of block
998  * devices. It is passed a &struct bio, which describes the I/O that needs
999  * to be done.
1000  *
1001  * generic_make_request() does not return any status.  The
1002  * success/failure status of the request, along with notification of
1003  * completion, is delivered asynchronously through the bio->bi_end_io
1004  * function described (one day) else where.
1005  *
1006  * The caller of generic_make_request must make sure that bi_io_vec
1007  * are set to describe the memory buffer, and that bi_dev and bi_sector are
1008  * set to describe the device address, and the
1009  * bi_end_io and optionally bi_private are set to describe how
1010  * completion notification should be signaled.
1011  *
1012  * generic_make_request and the drivers it calls may use bi_next if this
1013  * bio happens to be merged with someone else, and may resubmit the bio to
1014  * a lower device by calling into generic_make_request recursively, which
1015  * means the bio should NOT be touched after the call to ->make_request_fn.
1016  */
1017 blk_qc_t generic_make_request(struct bio *bio)
1018 {
1019 	/*
1020 	 * bio_list_on_stack[0] contains bios submitted by the current
1021 	 * make_request_fn.
1022 	 * bio_list_on_stack[1] contains bios that were submitted before
1023 	 * the current make_request_fn, but that haven't been processed
1024 	 * yet.
1025 	 */
1026 	struct bio_list bio_list_on_stack[2];
1027 	blk_qc_t ret = BLK_QC_T_NONE;
1028 
1029 	if (!generic_make_request_checks(bio))
1030 		goto out;
1031 
1032 	/*
1033 	 * We only want one ->make_request_fn to be active at a time, else
1034 	 * stack usage with stacked devices could be a problem.  So use
1035 	 * current->bio_list to keep a list of requests submited by a
1036 	 * make_request_fn function.  current->bio_list is also used as a
1037 	 * flag to say if generic_make_request is currently active in this
1038 	 * task or not.  If it is NULL, then no make_request is active.  If
1039 	 * it is non-NULL, then a make_request is active, and new requests
1040 	 * should be added at the tail
1041 	 */
1042 	if (current->bio_list) {
1043 		bio_list_add(&current->bio_list[0], bio);
1044 		goto out;
1045 	}
1046 
1047 	/* following loop may be a bit non-obvious, and so deserves some
1048 	 * explanation.
1049 	 * Before entering the loop, bio->bi_next is NULL (as all callers
1050 	 * ensure that) so we have a list with a single bio.
1051 	 * We pretend that we have just taken it off a longer list, so
1052 	 * we assign bio_list to a pointer to the bio_list_on_stack,
1053 	 * thus initialising the bio_list of new bios to be
1054 	 * added.  ->make_request() may indeed add some more bios
1055 	 * through a recursive call to generic_make_request.  If it
1056 	 * did, we find a non-NULL value in bio_list and re-enter the loop
1057 	 * from the top.  In this case we really did just take the bio
1058 	 * of the top of the list (no pretending) and so remove it from
1059 	 * bio_list, and call into ->make_request() again.
1060 	 */
1061 	BUG_ON(bio->bi_next);
1062 	bio_list_init(&bio_list_on_stack[0]);
1063 	current->bio_list = bio_list_on_stack;
1064 	do {
1065 		struct request_queue *q = bio->bi_disk->queue;
1066 		blk_mq_req_flags_t flags = bio->bi_opf & REQ_NOWAIT ?
1067 			BLK_MQ_REQ_NOWAIT : 0;
1068 
1069 		if (likely(blk_queue_enter(q, flags) == 0)) {
1070 			struct bio_list lower, same;
1071 
1072 			/* Create a fresh bio_list for all subordinate requests */
1073 			bio_list_on_stack[1] = bio_list_on_stack[0];
1074 			bio_list_init(&bio_list_on_stack[0]);
1075 			ret = q->make_request_fn(q, bio);
1076 
1077 			blk_queue_exit(q);
1078 
1079 			/* sort new bios into those for a lower level
1080 			 * and those for the same level
1081 			 */
1082 			bio_list_init(&lower);
1083 			bio_list_init(&same);
1084 			while ((bio = bio_list_pop(&bio_list_on_stack[0])) != NULL)
1085 				if (q == bio->bi_disk->queue)
1086 					bio_list_add(&same, bio);
1087 				else
1088 					bio_list_add(&lower, bio);
1089 			/* now assemble so we handle the lowest level first */
1090 			bio_list_merge(&bio_list_on_stack[0], &lower);
1091 			bio_list_merge(&bio_list_on_stack[0], &same);
1092 			bio_list_merge(&bio_list_on_stack[0], &bio_list_on_stack[1]);
1093 		} else {
1094 			if (unlikely(!blk_queue_dying(q) &&
1095 					(bio->bi_opf & REQ_NOWAIT)))
1096 				bio_wouldblock_error(bio);
1097 			else
1098 				bio_io_error(bio);
1099 		}
1100 		bio = bio_list_pop(&bio_list_on_stack[0]);
1101 	} while (bio);
1102 	current->bio_list = NULL; /* deactivate */
1103 
1104 out:
1105 	return ret;
1106 }
1107 EXPORT_SYMBOL(generic_make_request);
1108 
1109 /**
1110  * direct_make_request - hand a buffer directly to its device driver for I/O
1111  * @bio:  The bio describing the location in memory and on the device.
1112  *
1113  * This function behaves like generic_make_request(), but does not protect
1114  * against recursion.  Must only be used if the called driver is known
1115  * to not call generic_make_request (or direct_make_request) again from
1116  * its make_request function.  (Calling direct_make_request again from
1117  * a workqueue is perfectly fine as that doesn't recurse).
1118  */
1119 blk_qc_t direct_make_request(struct bio *bio)
1120 {
1121 	struct request_queue *q = bio->bi_disk->queue;
1122 	bool nowait = bio->bi_opf & REQ_NOWAIT;
1123 	blk_qc_t ret;
1124 
1125 	if (!generic_make_request_checks(bio))
1126 		return BLK_QC_T_NONE;
1127 
1128 	if (unlikely(blk_queue_enter(q, nowait ? BLK_MQ_REQ_NOWAIT : 0))) {
1129 		if (nowait && !blk_queue_dying(q))
1130 			bio_wouldblock_error(bio);
1131 		else
1132 			bio_io_error(bio);
1133 		return BLK_QC_T_NONE;
1134 	}
1135 
1136 	ret = q->make_request_fn(q, bio);
1137 	blk_queue_exit(q);
1138 	return ret;
1139 }
1140 EXPORT_SYMBOL_GPL(direct_make_request);
1141 
1142 /**
1143  * submit_bio - submit a bio to the block device layer for I/O
1144  * @bio: The &struct bio which describes the I/O
1145  *
1146  * submit_bio() is very similar in purpose to generic_make_request(), and
1147  * uses that function to do most of the work. Both are fairly rough
1148  * interfaces; @bio must be presetup and ready for I/O.
1149  *
1150  */
1151 blk_qc_t submit_bio(struct bio *bio)
1152 {
1153 	bool workingset_read = false;
1154 	unsigned long pflags;
1155 	blk_qc_t ret;
1156 
1157 	if (blkcg_punt_bio_submit(bio))
1158 		return BLK_QC_T_NONE;
1159 
1160 	/*
1161 	 * If it's a regular read/write or a barrier with data attached,
1162 	 * go through the normal accounting stuff before submission.
1163 	 */
1164 	if (bio_has_data(bio)) {
1165 		unsigned int count;
1166 
1167 		if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1168 			count = queue_logical_block_size(bio->bi_disk->queue) >> 9;
1169 		else
1170 			count = bio_sectors(bio);
1171 
1172 		if (op_is_write(bio_op(bio))) {
1173 			count_vm_events(PGPGOUT, count);
1174 		} else {
1175 			if (bio_flagged(bio, BIO_WORKINGSET))
1176 				workingset_read = true;
1177 			task_io_account_read(bio->bi_iter.bi_size);
1178 			count_vm_events(PGPGIN, count);
1179 		}
1180 
1181 		if (unlikely(block_dump)) {
1182 			char b[BDEVNAME_SIZE];
1183 			printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1184 			current->comm, task_pid_nr(current),
1185 				op_is_write(bio_op(bio)) ? "WRITE" : "READ",
1186 				(unsigned long long)bio->bi_iter.bi_sector,
1187 				bio_devname(bio, b), count);
1188 		}
1189 	}
1190 
1191 	/*
1192 	 * If we're reading data that is part of the userspace
1193 	 * workingset, count submission time as memory stall. When the
1194 	 * device is congested, or the submitting cgroup IO-throttled,
1195 	 * submission can be a significant part of overall IO time.
1196 	 */
1197 	if (workingset_read)
1198 		psi_memstall_enter(&pflags);
1199 
1200 	ret = generic_make_request(bio);
1201 
1202 	if (workingset_read)
1203 		psi_memstall_leave(&pflags);
1204 
1205 	return ret;
1206 }
1207 EXPORT_SYMBOL(submit_bio);
1208 
1209 /**
1210  * blk_cloned_rq_check_limits - Helper function to check a cloned request
1211  *                              for the new queue limits
1212  * @q:  the queue
1213  * @rq: the request being checked
1214  *
1215  * Description:
1216  *    @rq may have been made based on weaker limitations of upper-level queues
1217  *    in request stacking drivers, and it may violate the limitation of @q.
1218  *    Since the block layer and the underlying device driver trust @rq
1219  *    after it is inserted to @q, it should be checked against @q before
1220  *    the insertion using this generic function.
1221  *
1222  *    Request stacking drivers like request-based dm may change the queue
1223  *    limits when retrying requests on other queues. Those requests need
1224  *    to be checked against the new queue limits again during dispatch.
1225  */
1226 static int blk_cloned_rq_check_limits(struct request_queue *q,
1227 				      struct request *rq)
1228 {
1229 	if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, req_op(rq))) {
1230 		printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
1231 			__func__, blk_rq_sectors(rq),
1232 			blk_queue_get_max_sectors(q, req_op(rq)));
1233 		return -EIO;
1234 	}
1235 
1236 	/*
1237 	 * queue's settings related to segment counting like q->bounce_pfn
1238 	 * may differ from that of other stacking queues.
1239 	 * Recalculate it to check the request correctly on this queue's
1240 	 * limitation.
1241 	 */
1242 	rq->nr_phys_segments = blk_recalc_rq_segments(rq);
1243 	if (rq->nr_phys_segments > queue_max_segments(q)) {
1244 		printk(KERN_ERR "%s: over max segments limit. (%hu > %hu)\n",
1245 			__func__, rq->nr_phys_segments, queue_max_segments(q));
1246 		return -EIO;
1247 	}
1248 
1249 	return 0;
1250 }
1251 
1252 /**
1253  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1254  * @q:  the queue to submit the request
1255  * @rq: the request being queued
1256  */
1257 blk_status_t blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1258 {
1259 	if (blk_cloned_rq_check_limits(q, rq))
1260 		return BLK_STS_IOERR;
1261 
1262 	if (rq->rq_disk &&
1263 	    should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1264 		return BLK_STS_IOERR;
1265 
1266 	if (blk_queue_io_stat(q))
1267 		blk_account_io_start(rq, true);
1268 
1269 	/*
1270 	 * Since we have a scheduler attached on the top device,
1271 	 * bypass a potential scheduler on the bottom device for
1272 	 * insert.
1273 	 */
1274 	return blk_mq_request_issue_directly(rq, true);
1275 }
1276 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1277 
1278 /**
1279  * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1280  * @rq: request to examine
1281  *
1282  * Description:
1283  *     A request could be merge of IOs which require different failure
1284  *     handling.  This function determines the number of bytes which
1285  *     can be failed from the beginning of the request without
1286  *     crossing into area which need to be retried further.
1287  *
1288  * Return:
1289  *     The number of bytes to fail.
1290  */
1291 unsigned int blk_rq_err_bytes(const struct request *rq)
1292 {
1293 	unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1294 	unsigned int bytes = 0;
1295 	struct bio *bio;
1296 
1297 	if (!(rq->rq_flags & RQF_MIXED_MERGE))
1298 		return blk_rq_bytes(rq);
1299 
1300 	/*
1301 	 * Currently the only 'mixing' which can happen is between
1302 	 * different fastfail types.  We can safely fail portions
1303 	 * which have all the failfast bits that the first one has -
1304 	 * the ones which are at least as eager to fail as the first
1305 	 * one.
1306 	 */
1307 	for (bio = rq->bio; bio; bio = bio->bi_next) {
1308 		if ((bio->bi_opf & ff) != ff)
1309 			break;
1310 		bytes += bio->bi_iter.bi_size;
1311 	}
1312 
1313 	/* this could lead to infinite loop */
1314 	BUG_ON(blk_rq_bytes(rq) && !bytes);
1315 	return bytes;
1316 }
1317 EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1318 
1319 void blk_account_io_completion(struct request *req, unsigned int bytes)
1320 {
1321 	if (req->part && blk_do_io_stat(req)) {
1322 		const int sgrp = op_stat_group(req_op(req));
1323 		struct hd_struct *part;
1324 
1325 		part_stat_lock();
1326 		part = req->part;
1327 		part_stat_add(part, sectors[sgrp], bytes >> 9);
1328 		part_stat_unlock();
1329 	}
1330 }
1331 
1332 void blk_account_io_done(struct request *req, u64 now)
1333 {
1334 	/*
1335 	 * Account IO completion.  flush_rq isn't accounted as a
1336 	 * normal IO on queueing nor completion.  Accounting the
1337 	 * containing request is enough.
1338 	 */
1339 	if (req->part && blk_do_io_stat(req) &&
1340 	    !(req->rq_flags & RQF_FLUSH_SEQ)) {
1341 		const int sgrp = op_stat_group(req_op(req));
1342 		struct hd_struct *part;
1343 
1344 		part_stat_lock();
1345 		part = req->part;
1346 
1347 		update_io_ticks(part, jiffies, true);
1348 		part_stat_inc(part, ios[sgrp]);
1349 		part_stat_add(part, nsecs[sgrp], now - req->start_time_ns);
1350 		part_dec_in_flight(req->q, part, rq_data_dir(req));
1351 
1352 		hd_struct_put(part);
1353 		part_stat_unlock();
1354 	}
1355 }
1356 
1357 void blk_account_io_start(struct request *rq, bool new_io)
1358 {
1359 	struct hd_struct *part;
1360 	int rw = rq_data_dir(rq);
1361 
1362 	if (!blk_do_io_stat(rq))
1363 		return;
1364 
1365 	part_stat_lock();
1366 
1367 	if (!new_io) {
1368 		part = rq->part;
1369 		part_stat_inc(part, merges[rw]);
1370 	} else {
1371 		part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
1372 		if (!hd_struct_try_get(part)) {
1373 			/*
1374 			 * The partition is already being removed,
1375 			 * the request will be accounted on the disk only
1376 			 *
1377 			 * We take a reference on disk->part0 although that
1378 			 * partition will never be deleted, so we can treat
1379 			 * it as any other partition.
1380 			 */
1381 			part = &rq->rq_disk->part0;
1382 			hd_struct_get(part);
1383 		}
1384 		part_inc_in_flight(rq->q, part, rw);
1385 		rq->part = part;
1386 	}
1387 
1388 	update_io_ticks(part, jiffies, false);
1389 
1390 	part_stat_unlock();
1391 }
1392 
1393 /*
1394  * Steal bios from a request and add them to a bio list.
1395  * The request must not have been partially completed before.
1396  */
1397 void blk_steal_bios(struct bio_list *list, struct request *rq)
1398 {
1399 	if (rq->bio) {
1400 		if (list->tail)
1401 			list->tail->bi_next = rq->bio;
1402 		else
1403 			list->head = rq->bio;
1404 		list->tail = rq->biotail;
1405 
1406 		rq->bio = NULL;
1407 		rq->biotail = NULL;
1408 	}
1409 
1410 	rq->__data_len = 0;
1411 }
1412 EXPORT_SYMBOL_GPL(blk_steal_bios);
1413 
1414 /**
1415  * blk_update_request - Special helper function for request stacking drivers
1416  * @req:      the request being processed
1417  * @error:    block status code
1418  * @nr_bytes: number of bytes to complete @req
1419  *
1420  * Description:
1421  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
1422  *     the request structure even if @req doesn't have leftover.
1423  *     If @req has leftover, sets it up for the next range of segments.
1424  *
1425  *     This special helper function is only for request stacking drivers
1426  *     (e.g. request-based dm) so that they can handle partial completion.
1427  *     Actual device drivers should use blk_mq_end_request instead.
1428  *
1429  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1430  *     %false return from this function.
1431  *
1432  * Note:
1433  *	The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in both
1434  *	blk_rq_bytes() and in blk_update_request().
1435  *
1436  * Return:
1437  *     %false - this request doesn't have any more data
1438  *     %true  - this request has more data
1439  **/
1440 bool blk_update_request(struct request *req, blk_status_t error,
1441 		unsigned int nr_bytes)
1442 {
1443 	int total_bytes;
1444 
1445 	trace_block_rq_complete(req, blk_status_to_errno(error), nr_bytes);
1446 
1447 	if (!req->bio)
1448 		return false;
1449 
1450 #ifdef CONFIG_BLK_DEV_INTEGRITY
1451 	if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
1452 	    error == BLK_STS_OK)
1453 		req->q->integrity.profile->complete_fn(req, nr_bytes);
1454 #endif
1455 
1456 	if (unlikely(error && !blk_rq_is_passthrough(req) &&
1457 		     !(req->rq_flags & RQF_QUIET)))
1458 		print_req_error(req, error, __func__);
1459 
1460 	blk_account_io_completion(req, nr_bytes);
1461 
1462 	total_bytes = 0;
1463 	while (req->bio) {
1464 		struct bio *bio = req->bio;
1465 		unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
1466 
1467 		if (bio_bytes == bio->bi_iter.bi_size)
1468 			req->bio = bio->bi_next;
1469 
1470 		/* Completion has already been traced */
1471 		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1472 		req_bio_endio(req, bio, bio_bytes, error);
1473 
1474 		total_bytes += bio_bytes;
1475 		nr_bytes -= bio_bytes;
1476 
1477 		if (!nr_bytes)
1478 			break;
1479 	}
1480 
1481 	/*
1482 	 * completely done
1483 	 */
1484 	if (!req->bio) {
1485 		/*
1486 		 * Reset counters so that the request stacking driver
1487 		 * can find how many bytes remain in the request
1488 		 * later.
1489 		 */
1490 		req->__data_len = 0;
1491 		return false;
1492 	}
1493 
1494 	req->__data_len -= total_bytes;
1495 
1496 	/* update sector only for requests with clear definition of sector */
1497 	if (!blk_rq_is_passthrough(req))
1498 		req->__sector += total_bytes >> 9;
1499 
1500 	/* mixed attributes always follow the first bio */
1501 	if (req->rq_flags & RQF_MIXED_MERGE) {
1502 		req->cmd_flags &= ~REQ_FAILFAST_MASK;
1503 		req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
1504 	}
1505 
1506 	if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
1507 		/*
1508 		 * If total number of sectors is less than the first segment
1509 		 * size, something has gone terribly wrong.
1510 		 */
1511 		if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
1512 			blk_dump_rq_flags(req, "request botched");
1513 			req->__data_len = blk_rq_cur_bytes(req);
1514 		}
1515 
1516 		/* recalculate the number of segments */
1517 		req->nr_phys_segments = blk_recalc_rq_segments(req);
1518 	}
1519 
1520 	return true;
1521 }
1522 EXPORT_SYMBOL_GPL(blk_update_request);
1523 
1524 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1525 /**
1526  * rq_flush_dcache_pages - Helper function to flush all pages in a request
1527  * @rq: the request to be flushed
1528  *
1529  * Description:
1530  *     Flush all pages in @rq.
1531  */
1532 void rq_flush_dcache_pages(struct request *rq)
1533 {
1534 	struct req_iterator iter;
1535 	struct bio_vec bvec;
1536 
1537 	rq_for_each_segment(bvec, rq, iter)
1538 		flush_dcache_page(bvec.bv_page);
1539 }
1540 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
1541 #endif
1542 
1543 /**
1544  * blk_lld_busy - Check if underlying low-level drivers of a device are busy
1545  * @q : the queue of the device being checked
1546  *
1547  * Description:
1548  *    Check if underlying low-level drivers of a device are busy.
1549  *    If the drivers want to export their busy state, they must set own
1550  *    exporting function using blk_queue_lld_busy() first.
1551  *
1552  *    Basically, this function is used only by request stacking drivers
1553  *    to stop dispatching requests to underlying devices when underlying
1554  *    devices are busy.  This behavior helps more I/O merging on the queue
1555  *    of the request stacking driver and prevents I/O throughput regression
1556  *    on burst I/O load.
1557  *
1558  * Return:
1559  *    0 - Not busy (The request stacking driver should dispatch request)
1560  *    1 - Busy (The request stacking driver should stop dispatching request)
1561  */
1562 int blk_lld_busy(struct request_queue *q)
1563 {
1564 	if (queue_is_mq(q) && q->mq_ops->busy)
1565 		return q->mq_ops->busy(q);
1566 
1567 	return 0;
1568 }
1569 EXPORT_SYMBOL_GPL(blk_lld_busy);
1570 
1571 /**
1572  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
1573  * @rq: the clone request to be cleaned up
1574  *
1575  * Description:
1576  *     Free all bios in @rq for a cloned request.
1577  */
1578 void blk_rq_unprep_clone(struct request *rq)
1579 {
1580 	struct bio *bio;
1581 
1582 	while ((bio = rq->bio) != NULL) {
1583 		rq->bio = bio->bi_next;
1584 
1585 		bio_put(bio);
1586 	}
1587 }
1588 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
1589 
1590 /**
1591  * blk_rq_prep_clone - Helper function to setup clone request
1592  * @rq: the request to be setup
1593  * @rq_src: original request to be cloned
1594  * @bs: bio_set that bios for clone are allocated from
1595  * @gfp_mask: memory allocation mask for bio
1596  * @bio_ctr: setup function to be called for each clone bio.
1597  *           Returns %0 for success, non %0 for failure.
1598  * @data: private data to be passed to @bio_ctr
1599  *
1600  * Description:
1601  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
1602  *     Also, pages which the original bios are pointing to are not copied
1603  *     and the cloned bios just point same pages.
1604  *     So cloned bios must be completed before original bios, which means
1605  *     the caller must complete @rq before @rq_src.
1606  */
1607 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
1608 		      struct bio_set *bs, gfp_t gfp_mask,
1609 		      int (*bio_ctr)(struct bio *, struct bio *, void *),
1610 		      void *data)
1611 {
1612 	struct bio *bio, *bio_src;
1613 
1614 	if (!bs)
1615 		bs = &fs_bio_set;
1616 
1617 	__rq_for_each_bio(bio_src, rq_src) {
1618 		bio = bio_clone_fast(bio_src, gfp_mask, bs);
1619 		if (!bio)
1620 			goto free_and_out;
1621 
1622 		if (bio_ctr && bio_ctr(bio, bio_src, data))
1623 			goto free_and_out;
1624 
1625 		if (rq->bio) {
1626 			rq->biotail->bi_next = bio;
1627 			rq->biotail = bio;
1628 		} else
1629 			rq->bio = rq->biotail = bio;
1630 	}
1631 
1632 	/* Copy attributes of the original request to the clone request. */
1633 	rq->__sector = blk_rq_pos(rq_src);
1634 	rq->__data_len = blk_rq_bytes(rq_src);
1635 	if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
1636 		rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
1637 		rq->special_vec = rq_src->special_vec;
1638 	}
1639 	rq->nr_phys_segments = rq_src->nr_phys_segments;
1640 	rq->ioprio = rq_src->ioprio;
1641 	rq->extra_len = rq_src->extra_len;
1642 
1643 	return 0;
1644 
1645 free_and_out:
1646 	if (bio)
1647 		bio_put(bio);
1648 	blk_rq_unprep_clone(rq);
1649 
1650 	return -ENOMEM;
1651 }
1652 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
1653 
1654 int kblockd_schedule_work(struct work_struct *work)
1655 {
1656 	return queue_work(kblockd_workqueue, work);
1657 }
1658 EXPORT_SYMBOL(kblockd_schedule_work);
1659 
1660 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork,
1661 				unsigned long delay)
1662 {
1663 	return mod_delayed_work_on(cpu, kblockd_workqueue, dwork, delay);
1664 }
1665 EXPORT_SYMBOL(kblockd_mod_delayed_work_on);
1666 
1667 /**
1668  * blk_start_plug - initialize blk_plug and track it inside the task_struct
1669  * @plug:	The &struct blk_plug that needs to be initialized
1670  *
1671  * Description:
1672  *   blk_start_plug() indicates to the block layer an intent by the caller
1673  *   to submit multiple I/O requests in a batch.  The block layer may use
1674  *   this hint to defer submitting I/Os from the caller until blk_finish_plug()
1675  *   is called.  However, the block layer may choose to submit requests
1676  *   before a call to blk_finish_plug() if the number of queued I/Os
1677  *   exceeds %BLK_MAX_REQUEST_COUNT, or if the size of the I/O is larger than
1678  *   %BLK_PLUG_FLUSH_SIZE.  The queued I/Os may also be submitted early if
1679  *   the task schedules (see below).
1680  *
1681  *   Tracking blk_plug inside the task_struct will help with auto-flushing the
1682  *   pending I/O should the task end up blocking between blk_start_plug() and
1683  *   blk_finish_plug(). This is important from a performance perspective, but
1684  *   also ensures that we don't deadlock. For instance, if the task is blocking
1685  *   for a memory allocation, memory reclaim could end up wanting to free a
1686  *   page belonging to that request that is currently residing in our private
1687  *   plug. By flushing the pending I/O when the process goes to sleep, we avoid
1688  *   this kind of deadlock.
1689  */
1690 void blk_start_plug(struct blk_plug *plug)
1691 {
1692 	struct task_struct *tsk = current;
1693 
1694 	/*
1695 	 * If this is a nested plug, don't actually assign it.
1696 	 */
1697 	if (tsk->plug)
1698 		return;
1699 
1700 	INIT_LIST_HEAD(&plug->mq_list);
1701 	INIT_LIST_HEAD(&plug->cb_list);
1702 	plug->rq_count = 0;
1703 	plug->multiple_queues = false;
1704 
1705 	/*
1706 	 * Store ordering should not be needed here, since a potential
1707 	 * preempt will imply a full memory barrier
1708 	 */
1709 	tsk->plug = plug;
1710 }
1711 EXPORT_SYMBOL(blk_start_plug);
1712 
1713 static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
1714 {
1715 	LIST_HEAD(callbacks);
1716 
1717 	while (!list_empty(&plug->cb_list)) {
1718 		list_splice_init(&plug->cb_list, &callbacks);
1719 
1720 		while (!list_empty(&callbacks)) {
1721 			struct blk_plug_cb *cb = list_first_entry(&callbacks,
1722 							  struct blk_plug_cb,
1723 							  list);
1724 			list_del(&cb->list);
1725 			cb->callback(cb, from_schedule);
1726 		}
1727 	}
1728 }
1729 
1730 struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
1731 				      int size)
1732 {
1733 	struct blk_plug *plug = current->plug;
1734 	struct blk_plug_cb *cb;
1735 
1736 	if (!plug)
1737 		return NULL;
1738 
1739 	list_for_each_entry(cb, &plug->cb_list, list)
1740 		if (cb->callback == unplug && cb->data == data)
1741 			return cb;
1742 
1743 	/* Not currently on the callback list */
1744 	BUG_ON(size < sizeof(*cb));
1745 	cb = kzalloc(size, GFP_ATOMIC);
1746 	if (cb) {
1747 		cb->data = data;
1748 		cb->callback = unplug;
1749 		list_add(&cb->list, &plug->cb_list);
1750 	}
1751 	return cb;
1752 }
1753 EXPORT_SYMBOL(blk_check_plugged);
1754 
1755 void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1756 {
1757 	flush_plug_callbacks(plug, from_schedule);
1758 
1759 	if (!list_empty(&plug->mq_list))
1760 		blk_mq_flush_plug_list(plug, from_schedule);
1761 }
1762 
1763 /**
1764  * blk_finish_plug - mark the end of a batch of submitted I/O
1765  * @plug:	The &struct blk_plug passed to blk_start_plug()
1766  *
1767  * Description:
1768  * Indicate that a batch of I/O submissions is complete.  This function
1769  * must be paired with an initial call to blk_start_plug().  The intent
1770  * is to allow the block layer to optimize I/O submission.  See the
1771  * documentation for blk_start_plug() for more information.
1772  */
1773 void blk_finish_plug(struct blk_plug *plug)
1774 {
1775 	if (plug != current->plug)
1776 		return;
1777 	blk_flush_plug_list(plug, false);
1778 
1779 	current->plug = NULL;
1780 }
1781 EXPORT_SYMBOL(blk_finish_plug);
1782 
1783 int __init blk_dev_init(void)
1784 {
1785 	BUILD_BUG_ON(REQ_OP_LAST >= (1 << REQ_OP_BITS));
1786 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1787 			sizeof_field(struct request, cmd_flags));
1788 	BUILD_BUG_ON(REQ_OP_BITS + REQ_FLAG_BITS > 8 *
1789 			sizeof_field(struct bio, bi_opf));
1790 
1791 	/* used for unplugging and affects IO latency/throughput - HIGHPRI */
1792 	kblockd_workqueue = alloc_workqueue("kblockd",
1793 					    WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1794 	if (!kblockd_workqueue)
1795 		panic("Failed to create kblockd\n");
1796 
1797 	blk_requestq_cachep = kmem_cache_create("request_queue",
1798 			sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1799 
1800 #ifdef CONFIG_DEBUG_FS
1801 	blk_debugfs_root = debugfs_create_dir("block", NULL);
1802 #endif
1803 
1804 	return 0;
1805 }
1806