xref: /openbmc/linux/block/blk-cgroup.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 
59 #define BLKG_DESTROY_BATCH_SIZE  64
60 
61 /*
62  * Lockless lists for tracking IO stats update
63  *
64  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
65  * There are multiple blkg's (one for each block device) attached to each
66  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
67  * but it doesn't know which blkg has the updated stats. If there are many
68  * block devices in a system, the cost of iterating all the blkg's to flush
69  * out the IO stats can be high. To reduce such overhead, a set of percpu
70  * lockless lists (lhead) per blkcg are used to track the set of recently
71  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
72  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
73  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
74  * References to blkg are gotten and then put back in the process to
75  * protect against blkg removal.
76  *
77  * Return: 0 if successful or -ENOMEM if allocation fails.
78  */
79 static int init_blkcg_llists(struct blkcg *blkcg)
80 {
81 	int cpu;
82 
83 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
84 	if (!blkcg->lhead)
85 		return -ENOMEM;
86 
87 	for_each_possible_cpu(cpu)
88 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
89 	return 0;
90 }
91 
92 /**
93  * blkcg_css - find the current css
94  *
95  * Find the css associated with either the kthread or the current task.
96  * This may return a dying css, so it is up to the caller to use tryget logic
97  * to confirm it is alive and well.
98  */
99 static struct cgroup_subsys_state *blkcg_css(void)
100 {
101 	struct cgroup_subsys_state *css;
102 
103 	css = kthread_blkcg();
104 	if (css)
105 		return css;
106 	return task_css(current, io_cgrp_id);
107 }
108 
109 static bool blkcg_policy_enabled(struct request_queue *q,
110 				 const struct blkcg_policy *pol)
111 {
112 	return pol && test_bit(pol->plid, q->blkcg_pols);
113 }
114 
115 static void blkg_free_workfn(struct work_struct *work)
116 {
117 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
118 					     free_work);
119 	struct request_queue *q = blkg->q;
120 	int i;
121 
122 	/*
123 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
124 	 * in order to make sure pd_free_fn() is called in order, the deletion
125 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
126 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
127 	 * blkcg_deactivate_policy().
128 	 */
129 	mutex_lock(&q->blkcg_mutex);
130 	for (i = 0; i < BLKCG_MAX_POLS; i++)
131 		if (blkg->pd[i])
132 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
133 	if (blkg->parent)
134 		blkg_put(blkg->parent);
135 	list_del_init(&blkg->q_node);
136 	mutex_unlock(&q->blkcg_mutex);
137 
138 	blk_put_queue(q);
139 	free_percpu(blkg->iostat_cpu);
140 	percpu_ref_exit(&blkg->refcnt);
141 	kfree(blkg);
142 }
143 
144 /**
145  * blkg_free - free a blkg
146  * @blkg: blkg to free
147  *
148  * Free @blkg which may be partially allocated.
149  */
150 static void blkg_free(struct blkcg_gq *blkg)
151 {
152 	if (!blkg)
153 		return;
154 
155 	/*
156 	 * Both ->pd_free_fn() and request queue's release handler may
157 	 * sleep, so free us by scheduling one work func
158 	 */
159 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 	schedule_work(&blkg->free_work);
161 }
162 
163 static void __blkg_release(struct rcu_head *rcu)
164 {
165 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166 
167 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
168 	WARN_ON(!bio_list_empty(&blkg->async_bios));
169 #endif
170 
171 	/* release the blkcg and parent blkg refs this blkg has been holding */
172 	css_put(&blkg->blkcg->css);
173 	blkg_free(blkg);
174 }
175 
176 /*
177  * A group is RCU protected, but having an rcu lock does not mean that one
178  * can access all the fields of blkg and assume these are valid.  For
179  * example, don't try to follow throtl_data and request queue links.
180  *
181  * Having a reference to blkg under an rcu allows accesses to only values
182  * local to groups like group stats and group rate limits.
183  */
184 static void blkg_release(struct percpu_ref *ref)
185 {
186 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
187 
188 	call_rcu(&blkg->rcu_head, __blkg_release);
189 }
190 
191 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
192 static struct workqueue_struct *blkcg_punt_bio_wq;
193 
194 static void blkg_async_bio_workfn(struct work_struct *work)
195 {
196 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
197 					     async_bio_work);
198 	struct bio_list bios = BIO_EMPTY_LIST;
199 	struct bio *bio;
200 	struct blk_plug plug;
201 	bool need_plug = false;
202 
203 	/* as long as there are pending bios, @blkg can't go away */
204 	spin_lock(&blkg->async_bio_lock);
205 	bio_list_merge(&bios, &blkg->async_bios);
206 	bio_list_init(&blkg->async_bios);
207 	spin_unlock(&blkg->async_bio_lock);
208 
209 	/* start plug only when bio_list contains at least 2 bios */
210 	if (bios.head && bios.head->bi_next) {
211 		need_plug = true;
212 		blk_start_plug(&plug);
213 	}
214 	while ((bio = bio_list_pop(&bios)))
215 		submit_bio(bio);
216 	if (need_plug)
217 		blk_finish_plug(&plug);
218 }
219 
220 /*
221  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
222  * lead to priority inversions as the kthread can be trapped waiting for that
223  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
224  * a dedicated per-blkcg work item to avoid such priority inversions.
225  */
226 void blkcg_punt_bio_submit(struct bio *bio)
227 {
228 	struct blkcg_gq *blkg = bio->bi_blkg;
229 
230 	if (blkg->parent) {
231 		spin_lock(&blkg->async_bio_lock);
232 		bio_list_add(&blkg->async_bios, bio);
233 		spin_unlock(&blkg->async_bio_lock);
234 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
235 	} else {
236 		/* never bounce for the root cgroup */
237 		submit_bio(bio);
238 	}
239 }
240 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
241 
242 static int __init blkcg_punt_bio_init(void)
243 {
244 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
245 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
246 					    WQ_UNBOUND | WQ_SYSFS, 0);
247 	if (!blkcg_punt_bio_wq)
248 		return -ENOMEM;
249 	return 0;
250 }
251 subsys_initcall(blkcg_punt_bio_init);
252 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
253 
254 /**
255  * bio_blkcg_css - return the blkcg CSS associated with a bio
256  * @bio: target bio
257  *
258  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
259  * associated. Callers are expected to either handle %NULL or know association
260  * has been done prior to calling this.
261  */
262 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
263 {
264 	if (!bio || !bio->bi_blkg)
265 		return NULL;
266 	return &bio->bi_blkg->blkcg->css;
267 }
268 EXPORT_SYMBOL_GPL(bio_blkcg_css);
269 
270 /**
271  * blkcg_parent - get the parent of a blkcg
272  * @blkcg: blkcg of interest
273  *
274  * Return the parent blkcg of @blkcg.  Can be called anytime.
275  */
276 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
277 {
278 	return css_to_blkcg(blkcg->css.parent);
279 }
280 
281 /**
282  * blkg_alloc - allocate a blkg
283  * @blkcg: block cgroup the new blkg is associated with
284  * @disk: gendisk the new blkg is associated with
285  * @gfp_mask: allocation mask to use
286  *
287  * Allocate a new blkg assocating @blkcg and @q.
288  */
289 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
290 				   gfp_t gfp_mask)
291 {
292 	struct blkcg_gq *blkg;
293 	int i, cpu;
294 
295 	/* alloc and init base part */
296 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
297 	if (!blkg)
298 		return NULL;
299 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
300 		goto out_free_blkg;
301 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
302 	if (!blkg->iostat_cpu)
303 		goto out_exit_refcnt;
304 	if (!blk_get_queue(disk->queue))
305 		goto out_free_iostat;
306 
307 	blkg->q = disk->queue;
308 	INIT_LIST_HEAD(&blkg->q_node);
309 	blkg->blkcg = blkcg;
310 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
311 	spin_lock_init(&blkg->async_bio_lock);
312 	bio_list_init(&blkg->async_bios);
313 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
314 #endif
315 
316 	u64_stats_init(&blkg->iostat.sync);
317 	for_each_possible_cpu(cpu) {
318 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
319 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
320 	}
321 
322 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
323 		struct blkcg_policy *pol = blkcg_policy[i];
324 		struct blkg_policy_data *pd;
325 
326 		if (!blkcg_policy_enabled(disk->queue, pol))
327 			continue;
328 
329 		/* alloc per-policy data and attach it to blkg */
330 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
331 		if (!pd)
332 			goto out_free_pds;
333 		blkg->pd[i] = pd;
334 		pd->blkg = blkg;
335 		pd->plid = i;
336 		pd->online = false;
337 	}
338 
339 	return blkg;
340 
341 out_free_pds:
342 	while (--i >= 0)
343 		if (blkg->pd[i])
344 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
345 	blk_put_queue(disk->queue);
346 out_free_iostat:
347 	free_percpu(blkg->iostat_cpu);
348 out_exit_refcnt:
349 	percpu_ref_exit(&blkg->refcnt);
350 out_free_blkg:
351 	kfree(blkg);
352 	return NULL;
353 }
354 
355 /*
356  * If @new_blkg is %NULL, this function tries to allocate a new one as
357  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
358  */
359 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
360 				    struct blkcg_gq *new_blkg)
361 {
362 	struct blkcg_gq *blkg;
363 	int i, ret;
364 
365 	lockdep_assert_held(&disk->queue->queue_lock);
366 
367 	/* request_queue is dying, do not create/recreate a blkg */
368 	if (blk_queue_dying(disk->queue)) {
369 		ret = -ENODEV;
370 		goto err_free_blkg;
371 	}
372 
373 	/* blkg holds a reference to blkcg */
374 	if (!css_tryget_online(&blkcg->css)) {
375 		ret = -ENODEV;
376 		goto err_free_blkg;
377 	}
378 
379 	/* allocate */
380 	if (!new_blkg) {
381 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
382 		if (unlikely(!new_blkg)) {
383 			ret = -ENOMEM;
384 			goto err_put_css;
385 		}
386 	}
387 	blkg = new_blkg;
388 
389 	/* link parent */
390 	if (blkcg_parent(blkcg)) {
391 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
392 		if (WARN_ON_ONCE(!blkg->parent)) {
393 			ret = -ENODEV;
394 			goto err_put_css;
395 		}
396 		blkg_get(blkg->parent);
397 	}
398 
399 	/* invoke per-policy init */
400 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
401 		struct blkcg_policy *pol = blkcg_policy[i];
402 
403 		if (blkg->pd[i] && pol->pd_init_fn)
404 			pol->pd_init_fn(blkg->pd[i]);
405 	}
406 
407 	/* insert */
408 	spin_lock(&blkcg->lock);
409 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
410 	if (likely(!ret)) {
411 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
412 		list_add(&blkg->q_node, &disk->queue->blkg_list);
413 
414 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 			struct blkcg_policy *pol = blkcg_policy[i];
416 
417 			if (blkg->pd[i]) {
418 				if (pol->pd_online_fn)
419 					pol->pd_online_fn(blkg->pd[i]);
420 				blkg->pd[i]->online = true;
421 			}
422 		}
423 	}
424 	blkg->online = true;
425 	spin_unlock(&blkcg->lock);
426 
427 	if (!ret)
428 		return blkg;
429 
430 	/* @blkg failed fully initialized, use the usual release path */
431 	blkg_put(blkg);
432 	return ERR_PTR(ret);
433 
434 err_put_css:
435 	css_put(&blkcg->css);
436 err_free_blkg:
437 	if (new_blkg)
438 		blkg_free(new_blkg);
439 	return ERR_PTR(ret);
440 }
441 
442 /**
443  * blkg_lookup_create - lookup blkg, try to create one if not there
444  * @blkcg: blkcg of interest
445  * @disk: gendisk of interest
446  *
447  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
448  * create one.  blkg creation is performed recursively from blkcg_root such
449  * that all non-root blkg's have access to the parent blkg.  This function
450  * should be called under RCU read lock and takes @disk->queue->queue_lock.
451  *
452  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
453  * down from root.
454  */
455 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
456 		struct gendisk *disk)
457 {
458 	struct request_queue *q = disk->queue;
459 	struct blkcg_gq *blkg;
460 	unsigned long flags;
461 
462 	WARN_ON_ONCE(!rcu_read_lock_held());
463 
464 	blkg = blkg_lookup(blkcg, q);
465 	if (blkg)
466 		return blkg;
467 
468 	spin_lock_irqsave(&q->queue_lock, flags);
469 	blkg = blkg_lookup(blkcg, q);
470 	if (blkg) {
471 		if (blkcg != &blkcg_root &&
472 		    blkg != rcu_dereference(blkcg->blkg_hint))
473 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
474 		goto found;
475 	}
476 
477 	/*
478 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
479 	 * non-root blkgs have access to their parents.  Returns the closest
480 	 * blkg to the intended blkg should blkg_create() fail.
481 	 */
482 	while (true) {
483 		struct blkcg *pos = blkcg;
484 		struct blkcg *parent = blkcg_parent(blkcg);
485 		struct blkcg_gq *ret_blkg = q->root_blkg;
486 
487 		while (parent) {
488 			blkg = blkg_lookup(parent, q);
489 			if (blkg) {
490 				/* remember closest blkg */
491 				ret_blkg = blkg;
492 				break;
493 			}
494 			pos = parent;
495 			parent = blkcg_parent(parent);
496 		}
497 
498 		blkg = blkg_create(pos, disk, NULL);
499 		if (IS_ERR(blkg)) {
500 			blkg = ret_blkg;
501 			break;
502 		}
503 		if (pos == blkcg)
504 			break;
505 	}
506 
507 found:
508 	spin_unlock_irqrestore(&q->queue_lock, flags);
509 	return blkg;
510 }
511 
512 static void blkg_destroy(struct blkcg_gq *blkg)
513 {
514 	struct blkcg *blkcg = blkg->blkcg;
515 	int i;
516 
517 	lockdep_assert_held(&blkg->q->queue_lock);
518 	lockdep_assert_held(&blkcg->lock);
519 
520 	/*
521 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
522 	 * blkg_free_workfn(), hence this function can be called from
523 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
524 	 * blkg_free_workfn().
525 	 */
526 	if (hlist_unhashed(&blkg->blkcg_node))
527 		return;
528 
529 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
530 		struct blkcg_policy *pol = blkcg_policy[i];
531 
532 		if (blkg->pd[i] && blkg->pd[i]->online) {
533 			blkg->pd[i]->online = false;
534 			if (pol->pd_offline_fn)
535 				pol->pd_offline_fn(blkg->pd[i]);
536 		}
537 	}
538 
539 	blkg->online = false;
540 
541 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
542 	hlist_del_init_rcu(&blkg->blkcg_node);
543 
544 	/*
545 	 * Both setting lookup hint to and clearing it from @blkg are done
546 	 * under queue_lock.  If it's not pointing to @blkg now, it never
547 	 * will.  Hint assignment itself can race safely.
548 	 */
549 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
550 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
551 
552 	/*
553 	 * Put the reference taken at the time of creation so that when all
554 	 * queues are gone, group can be destroyed.
555 	 */
556 	percpu_ref_kill(&blkg->refcnt);
557 }
558 
559 static void blkg_destroy_all(struct gendisk *disk)
560 {
561 	struct request_queue *q = disk->queue;
562 	struct blkcg_gq *blkg, *n;
563 	int count = BLKG_DESTROY_BATCH_SIZE;
564 
565 restart:
566 	spin_lock_irq(&q->queue_lock);
567 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
568 		struct blkcg *blkcg = blkg->blkcg;
569 
570 		if (hlist_unhashed(&blkg->blkcg_node))
571 			continue;
572 
573 		spin_lock(&blkcg->lock);
574 		blkg_destroy(blkg);
575 		spin_unlock(&blkcg->lock);
576 
577 		/*
578 		 * in order to avoid holding the spin lock for too long, release
579 		 * it when a batch of blkgs are destroyed.
580 		 */
581 		if (!(--count)) {
582 			count = BLKG_DESTROY_BATCH_SIZE;
583 			spin_unlock_irq(&q->queue_lock);
584 			cond_resched();
585 			goto restart;
586 		}
587 	}
588 
589 	q->root_blkg = NULL;
590 	spin_unlock_irq(&q->queue_lock);
591 }
592 
593 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
594 			     struct cftype *cftype, u64 val)
595 {
596 	struct blkcg *blkcg = css_to_blkcg(css);
597 	struct blkcg_gq *blkg;
598 	int i, cpu;
599 
600 	mutex_lock(&blkcg_pol_mutex);
601 	spin_lock_irq(&blkcg->lock);
602 
603 	/*
604 	 * Note that stat reset is racy - it doesn't synchronize against
605 	 * stat updates.  This is a debug feature which shouldn't exist
606 	 * anyway.  If you get hit by a race, retry.
607 	 */
608 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
609 		for_each_possible_cpu(cpu) {
610 			struct blkg_iostat_set *bis =
611 				per_cpu_ptr(blkg->iostat_cpu, cpu);
612 			memset(bis, 0, sizeof(*bis));
613 		}
614 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
615 
616 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
617 			struct blkcg_policy *pol = blkcg_policy[i];
618 
619 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
620 				pol->pd_reset_stats_fn(blkg->pd[i]);
621 		}
622 	}
623 
624 	spin_unlock_irq(&blkcg->lock);
625 	mutex_unlock(&blkcg_pol_mutex);
626 	return 0;
627 }
628 
629 const char *blkg_dev_name(struct blkcg_gq *blkg)
630 {
631 	if (!blkg->q->disk)
632 		return NULL;
633 	return bdi_dev_name(blkg->q->disk->bdi);
634 }
635 
636 /**
637  * blkcg_print_blkgs - helper for printing per-blkg data
638  * @sf: seq_file to print to
639  * @blkcg: blkcg of interest
640  * @prfill: fill function to print out a blkg
641  * @pol: policy in question
642  * @data: data to be passed to @prfill
643  * @show_total: to print out sum of prfill return values or not
644  *
645  * This function invokes @prfill on each blkg of @blkcg if pd for the
646  * policy specified by @pol exists.  @prfill is invoked with @sf, the
647  * policy data and @data and the matching queue lock held.  If @show_total
648  * is %true, the sum of the return values from @prfill is printed with
649  * "Total" label at the end.
650  *
651  * This is to be used to construct print functions for
652  * cftype->read_seq_string method.
653  */
654 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
655 		       u64 (*prfill)(struct seq_file *,
656 				     struct blkg_policy_data *, int),
657 		       const struct blkcg_policy *pol, int data,
658 		       bool show_total)
659 {
660 	struct blkcg_gq *blkg;
661 	u64 total = 0;
662 
663 	rcu_read_lock();
664 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
665 		spin_lock_irq(&blkg->q->queue_lock);
666 		if (blkcg_policy_enabled(blkg->q, pol))
667 			total += prfill(sf, blkg->pd[pol->plid], data);
668 		spin_unlock_irq(&blkg->q->queue_lock);
669 	}
670 	rcu_read_unlock();
671 
672 	if (show_total)
673 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
674 }
675 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
676 
677 /**
678  * __blkg_prfill_u64 - prfill helper for a single u64 value
679  * @sf: seq_file to print to
680  * @pd: policy private data of interest
681  * @v: value to print
682  *
683  * Print @v to @sf for the device associated with @pd.
684  */
685 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
686 {
687 	const char *dname = blkg_dev_name(pd->blkg);
688 
689 	if (!dname)
690 		return 0;
691 
692 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
693 	return v;
694 }
695 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
696 
697 /**
698  * blkg_conf_init - initialize a blkg_conf_ctx
699  * @ctx: blkg_conf_ctx to initialize
700  * @input: input string
701  *
702  * Initialize @ctx which can be used to parse blkg config input string @input.
703  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
704  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
705  */
706 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
707 {
708 	*ctx = (struct blkg_conf_ctx){ .input = input };
709 }
710 EXPORT_SYMBOL_GPL(blkg_conf_init);
711 
712 /**
713  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
714  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
715  *
716  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
717  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
718  * set to point past the device node prefix.
719  *
720  * This function may be called multiple times on @ctx and the extra calls become
721  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
722  * explicitly if bdev access is needed without resolving the blkcg / policy part
723  * of @ctx->input. Returns -errno on error.
724  */
725 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
726 {
727 	char *input = ctx->input;
728 	unsigned int major, minor;
729 	struct block_device *bdev;
730 	int key_len;
731 
732 	if (ctx->bdev)
733 		return 0;
734 
735 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
736 		return -EINVAL;
737 
738 	input += key_len;
739 	if (!isspace(*input))
740 		return -EINVAL;
741 	input = skip_spaces(input);
742 
743 	bdev = blkdev_get_no_open(MKDEV(major, minor));
744 	if (!bdev)
745 		return -ENODEV;
746 	if (bdev_is_partition(bdev)) {
747 		blkdev_put_no_open(bdev);
748 		return -ENODEV;
749 	}
750 
751 	ctx->body = input;
752 	ctx->bdev = bdev;
753 	return 0;
754 }
755 
756 /**
757  * blkg_conf_prep - parse and prepare for per-blkg config update
758  * @blkcg: target block cgroup
759  * @pol: target policy
760  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
761  *
762  * Parse per-blkg config update from @ctx->input and initialize @ctx
763  * accordingly. On success, @ctx->body points to the part of @ctx->input
764  * following MAJ:MIN, @ctx->bdev points to the target block device and
765  * @ctx->blkg to the blkg being configured.
766  *
767  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
768  * function returns with queue lock held and must be followed by
769  * blkg_conf_exit().
770  */
771 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
772 		   struct blkg_conf_ctx *ctx)
773 	__acquires(&bdev->bd_queue->queue_lock)
774 {
775 	struct gendisk *disk;
776 	struct request_queue *q;
777 	struct blkcg_gq *blkg;
778 	int ret;
779 
780 	ret = blkg_conf_open_bdev(ctx);
781 	if (ret)
782 		return ret;
783 
784 	disk = ctx->bdev->bd_disk;
785 	q = disk->queue;
786 
787 	/*
788 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
789 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
790 	 */
791 	ret = blk_queue_enter(q, 0);
792 	if (ret)
793 		goto fail;
794 
795 	spin_lock_irq(&q->queue_lock);
796 
797 	if (!blkcg_policy_enabled(q, pol)) {
798 		ret = -EOPNOTSUPP;
799 		goto fail_unlock;
800 	}
801 
802 	blkg = blkg_lookup(blkcg, q);
803 	if (blkg)
804 		goto success;
805 
806 	/*
807 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
808 	 * non-root blkgs have access to their parents.
809 	 */
810 	while (true) {
811 		struct blkcg *pos = blkcg;
812 		struct blkcg *parent;
813 		struct blkcg_gq *new_blkg;
814 
815 		parent = blkcg_parent(blkcg);
816 		while (parent && !blkg_lookup(parent, q)) {
817 			pos = parent;
818 			parent = blkcg_parent(parent);
819 		}
820 
821 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
822 		spin_unlock_irq(&q->queue_lock);
823 
824 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
825 		if (unlikely(!new_blkg)) {
826 			ret = -ENOMEM;
827 			goto fail_exit_queue;
828 		}
829 
830 		if (radix_tree_preload(GFP_KERNEL)) {
831 			blkg_free(new_blkg);
832 			ret = -ENOMEM;
833 			goto fail_exit_queue;
834 		}
835 
836 		spin_lock_irq(&q->queue_lock);
837 
838 		if (!blkcg_policy_enabled(q, pol)) {
839 			blkg_free(new_blkg);
840 			ret = -EOPNOTSUPP;
841 			goto fail_preloaded;
842 		}
843 
844 		blkg = blkg_lookup(pos, q);
845 		if (blkg) {
846 			blkg_free(new_blkg);
847 		} else {
848 			blkg = blkg_create(pos, disk, new_blkg);
849 			if (IS_ERR(blkg)) {
850 				ret = PTR_ERR(blkg);
851 				goto fail_preloaded;
852 			}
853 		}
854 
855 		radix_tree_preload_end();
856 
857 		if (pos == blkcg)
858 			goto success;
859 	}
860 success:
861 	blk_queue_exit(q);
862 	ctx->blkg = blkg;
863 	return 0;
864 
865 fail_preloaded:
866 	radix_tree_preload_end();
867 fail_unlock:
868 	spin_unlock_irq(&q->queue_lock);
869 fail_exit_queue:
870 	blk_queue_exit(q);
871 fail:
872 	/*
873 	 * If queue was bypassing, we should retry.  Do so after a
874 	 * short msleep().  It isn't strictly necessary but queue
875 	 * can be bypassing for some time and it's always nice to
876 	 * avoid busy looping.
877 	 */
878 	if (ret == -EBUSY) {
879 		msleep(10);
880 		ret = restart_syscall();
881 	}
882 	return ret;
883 }
884 EXPORT_SYMBOL_GPL(blkg_conf_prep);
885 
886 /**
887  * blkg_conf_exit - clean up per-blkg config update
888  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
889  *
890  * Clean up after per-blkg config update. This function must be called on all
891  * blkg_conf_ctx's initialized with blkg_conf_init().
892  */
893 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
894 	__releases(&ctx->bdev->bd_queue->queue_lock)
895 {
896 	if (ctx->blkg) {
897 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
898 		ctx->blkg = NULL;
899 	}
900 
901 	if (ctx->bdev) {
902 		blkdev_put_no_open(ctx->bdev);
903 		ctx->body = NULL;
904 		ctx->bdev = NULL;
905 	}
906 }
907 EXPORT_SYMBOL_GPL(blkg_conf_exit);
908 
909 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
910 {
911 	int i;
912 
913 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
914 		dst->bytes[i] = src->bytes[i];
915 		dst->ios[i] = src->ios[i];
916 	}
917 }
918 
919 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
920 {
921 	int i;
922 
923 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
924 		dst->bytes[i] += src->bytes[i];
925 		dst->ios[i] += src->ios[i];
926 	}
927 }
928 
929 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
930 {
931 	int i;
932 
933 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
934 		dst->bytes[i] -= src->bytes[i];
935 		dst->ios[i] -= src->ios[i];
936 	}
937 }
938 
939 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
940 				struct blkg_iostat *last)
941 {
942 	struct blkg_iostat delta;
943 	unsigned long flags;
944 
945 	/* propagate percpu delta to global */
946 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
947 	blkg_iostat_set(&delta, cur);
948 	blkg_iostat_sub(&delta, last);
949 	blkg_iostat_add(&blkg->iostat.cur, &delta);
950 	blkg_iostat_add(last, &delta);
951 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
952 }
953 
954 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
955 {
956 	struct blkcg *blkcg = css_to_blkcg(css);
957 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
958 	struct llist_node *lnode;
959 	struct blkg_iostat_set *bisc, *next_bisc;
960 
961 	/* Root-level stats are sourced from system-wide IO stats */
962 	if (!cgroup_parent(css->cgroup))
963 		return;
964 
965 	rcu_read_lock();
966 
967 	lnode = llist_del_all(lhead);
968 	if (!lnode)
969 		goto out;
970 
971 	/*
972 	 * Iterate only the iostat_cpu's queued in the lockless list.
973 	 */
974 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
975 		struct blkcg_gq *blkg = bisc->blkg;
976 		struct blkcg_gq *parent = blkg->parent;
977 		struct blkg_iostat cur;
978 		unsigned int seq;
979 
980 		WRITE_ONCE(bisc->lqueued, false);
981 
982 		/* fetch the current per-cpu values */
983 		do {
984 			seq = u64_stats_fetch_begin(&bisc->sync);
985 			blkg_iostat_set(&cur, &bisc->cur);
986 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
987 
988 		blkcg_iostat_update(blkg, &cur, &bisc->last);
989 
990 		/* propagate global delta to parent (unless that's root) */
991 		if (parent && parent->parent)
992 			blkcg_iostat_update(parent, &blkg->iostat.cur,
993 					    &blkg->iostat.last);
994 		percpu_ref_put(&blkg->refcnt);
995 	}
996 
997 out:
998 	rcu_read_unlock();
999 }
1000 
1001 /*
1002  * We source root cgroup stats from the system-wide stats to avoid
1003  * tracking the same information twice and incurring overhead when no
1004  * cgroups are defined. For that reason, cgroup_rstat_flush in
1005  * blkcg_print_stat does not actually fill out the iostat in the root
1006  * cgroup's blkcg_gq.
1007  *
1008  * However, we would like to re-use the printing code between the root and
1009  * non-root cgroups to the extent possible. For that reason, we simulate
1010  * flushing the root cgroup's stats by explicitly filling in the iostat
1011  * with disk level statistics.
1012  */
1013 static void blkcg_fill_root_iostats(void)
1014 {
1015 	struct class_dev_iter iter;
1016 	struct device *dev;
1017 
1018 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1019 	while ((dev = class_dev_iter_next(&iter))) {
1020 		struct block_device *bdev = dev_to_bdev(dev);
1021 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1022 		struct blkg_iostat tmp;
1023 		int cpu;
1024 		unsigned long flags;
1025 
1026 		memset(&tmp, 0, sizeof(tmp));
1027 		for_each_possible_cpu(cpu) {
1028 			struct disk_stats *cpu_dkstats;
1029 
1030 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1031 			tmp.ios[BLKG_IOSTAT_READ] +=
1032 				cpu_dkstats->ios[STAT_READ];
1033 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1034 				cpu_dkstats->ios[STAT_WRITE];
1035 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1036 				cpu_dkstats->ios[STAT_DISCARD];
1037 			// convert sectors to bytes
1038 			tmp.bytes[BLKG_IOSTAT_READ] +=
1039 				cpu_dkstats->sectors[STAT_READ] << 9;
1040 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1041 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1042 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1043 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1044 		}
1045 
1046 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1047 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1048 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1049 	}
1050 }
1051 
1052 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1053 {
1054 	struct blkg_iostat_set *bis = &blkg->iostat;
1055 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1056 	const char *dname;
1057 	unsigned seq;
1058 	int i;
1059 
1060 	if (!blkg->online)
1061 		return;
1062 
1063 	dname = blkg_dev_name(blkg);
1064 	if (!dname)
1065 		return;
1066 
1067 	seq_printf(s, "%s ", dname);
1068 
1069 	do {
1070 		seq = u64_stats_fetch_begin(&bis->sync);
1071 
1072 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1073 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1074 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1075 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1076 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1077 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1078 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1079 
1080 	if (rbytes || wbytes || rios || wios) {
1081 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1082 			rbytes, wbytes, rios, wios,
1083 			dbytes, dios);
1084 	}
1085 
1086 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1087 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1088 			atomic_read(&blkg->use_delay),
1089 			atomic64_read(&blkg->delay_nsec));
1090 	}
1091 
1092 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1093 		struct blkcg_policy *pol = blkcg_policy[i];
1094 
1095 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1096 			continue;
1097 
1098 		pol->pd_stat_fn(blkg->pd[i], s);
1099 	}
1100 
1101 	seq_puts(s, "\n");
1102 }
1103 
1104 static int blkcg_print_stat(struct seq_file *sf, void *v)
1105 {
1106 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1107 	struct blkcg_gq *blkg;
1108 
1109 	if (!seq_css(sf)->parent)
1110 		blkcg_fill_root_iostats();
1111 	else
1112 		cgroup_rstat_flush(blkcg->css.cgroup);
1113 
1114 	rcu_read_lock();
1115 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1116 		spin_lock_irq(&blkg->q->queue_lock);
1117 		blkcg_print_one_stat(blkg, sf);
1118 		spin_unlock_irq(&blkg->q->queue_lock);
1119 	}
1120 	rcu_read_unlock();
1121 	return 0;
1122 }
1123 
1124 static struct cftype blkcg_files[] = {
1125 	{
1126 		.name = "stat",
1127 		.seq_show = blkcg_print_stat,
1128 	},
1129 	{ }	/* terminate */
1130 };
1131 
1132 static struct cftype blkcg_legacy_files[] = {
1133 	{
1134 		.name = "reset_stats",
1135 		.write_u64 = blkcg_reset_stats,
1136 	},
1137 	{ }	/* terminate */
1138 };
1139 
1140 #ifdef CONFIG_CGROUP_WRITEBACK
1141 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1142 {
1143 	return &css_to_blkcg(css)->cgwb_list;
1144 }
1145 #endif
1146 
1147 /*
1148  * blkcg destruction is a three-stage process.
1149  *
1150  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1151  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1152  *    to the completion of writeback associated with the blkcg.  This lets us
1153  *    avoid punting potentially large amounts of outstanding writeback to root
1154  *    while maintaining any ongoing policies.  The next stage is triggered when
1155  *    the nr_cgwbs count goes to zero.
1156  *
1157  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1158  *    and handles the destruction of blkgs.  Here the css reference held by
1159  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1160  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1161  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1162  *    punted to the root_blkg.
1163  *
1164  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1165  *    This finally frees the blkcg.
1166  */
1167 
1168 /**
1169  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1170  * @blkcg: blkcg of interest
1171  *
1172  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1173  * is nested inside q lock, this function performs reverse double lock dancing.
1174  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1175  * blkcg_css_free to eventually be called.
1176  *
1177  * This is the blkcg counterpart of ioc_release_fn().
1178  */
1179 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1180 {
1181 	might_sleep();
1182 
1183 	spin_lock_irq(&blkcg->lock);
1184 
1185 	while (!hlist_empty(&blkcg->blkg_list)) {
1186 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1187 						struct blkcg_gq, blkcg_node);
1188 		struct request_queue *q = blkg->q;
1189 
1190 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1191 			/*
1192 			 * Given that the system can accumulate a huge number
1193 			 * of blkgs in pathological cases, check to see if we
1194 			 * need to rescheduling to avoid softlockup.
1195 			 */
1196 			spin_unlock_irq(&blkcg->lock);
1197 			cond_resched();
1198 			spin_lock_irq(&blkcg->lock);
1199 			continue;
1200 		}
1201 
1202 		blkg_destroy(blkg);
1203 		spin_unlock(&q->queue_lock);
1204 	}
1205 
1206 	spin_unlock_irq(&blkcg->lock);
1207 }
1208 
1209 /**
1210  * blkcg_pin_online - pin online state
1211  * @blkcg_css: blkcg of interest
1212  *
1213  * While pinned, a blkcg is kept online.  This is primarily used to
1214  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1215  * while an associated cgwb is still active.
1216  */
1217 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1218 {
1219 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1220 }
1221 
1222 /**
1223  * blkcg_unpin_online - unpin online state
1224  * @blkcg_css: blkcg of interest
1225  *
1226  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1227  * that blkg doesn't go offline while an associated cgwb is still active.
1228  * When this count goes to zero, all active cgwbs have finished so the
1229  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1230  */
1231 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1232 {
1233 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1234 
1235 	do {
1236 		if (!refcount_dec_and_test(&blkcg->online_pin))
1237 			break;
1238 		blkcg_destroy_blkgs(blkcg);
1239 		blkcg = blkcg_parent(blkcg);
1240 	} while (blkcg);
1241 }
1242 
1243 /**
1244  * blkcg_css_offline - cgroup css_offline callback
1245  * @css: css of interest
1246  *
1247  * This function is called when @css is about to go away.  Here the cgwbs are
1248  * offlined first and only once writeback associated with the blkcg has
1249  * finished do we start step 2 (see above).
1250  */
1251 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1252 {
1253 	/* this prevents anyone from attaching or migrating to this blkcg */
1254 	wb_blkcg_offline(css);
1255 
1256 	/* put the base online pin allowing step 2 to be triggered */
1257 	blkcg_unpin_online(css);
1258 }
1259 
1260 static void blkcg_css_free(struct cgroup_subsys_state *css)
1261 {
1262 	struct blkcg *blkcg = css_to_blkcg(css);
1263 	int i;
1264 
1265 	mutex_lock(&blkcg_pol_mutex);
1266 
1267 	list_del(&blkcg->all_blkcgs_node);
1268 
1269 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1270 		if (blkcg->cpd[i])
1271 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1272 
1273 	mutex_unlock(&blkcg_pol_mutex);
1274 
1275 	free_percpu(blkcg->lhead);
1276 	kfree(blkcg);
1277 }
1278 
1279 static struct cgroup_subsys_state *
1280 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1281 {
1282 	struct blkcg *blkcg;
1283 	int i;
1284 
1285 	mutex_lock(&blkcg_pol_mutex);
1286 
1287 	if (!parent_css) {
1288 		blkcg = &blkcg_root;
1289 	} else {
1290 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1291 		if (!blkcg)
1292 			goto unlock;
1293 	}
1294 
1295 	if (init_blkcg_llists(blkcg))
1296 		goto free_blkcg;
1297 
1298 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1299 		struct blkcg_policy *pol = blkcg_policy[i];
1300 		struct blkcg_policy_data *cpd;
1301 
1302 		/*
1303 		 * If the policy hasn't been attached yet, wait for it
1304 		 * to be attached before doing anything else. Otherwise,
1305 		 * check if the policy requires any specific per-cgroup
1306 		 * data: if it does, allocate and initialize it.
1307 		 */
1308 		if (!pol || !pol->cpd_alloc_fn)
1309 			continue;
1310 
1311 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1312 		if (!cpd)
1313 			goto free_pd_blkcg;
1314 
1315 		blkcg->cpd[i] = cpd;
1316 		cpd->blkcg = blkcg;
1317 		cpd->plid = i;
1318 	}
1319 
1320 	spin_lock_init(&blkcg->lock);
1321 	refcount_set(&blkcg->online_pin, 1);
1322 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1323 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1324 #ifdef CONFIG_CGROUP_WRITEBACK
1325 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1326 #endif
1327 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1328 
1329 	mutex_unlock(&blkcg_pol_mutex);
1330 	return &blkcg->css;
1331 
1332 free_pd_blkcg:
1333 	for (i--; i >= 0; i--)
1334 		if (blkcg->cpd[i])
1335 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1336 	free_percpu(blkcg->lhead);
1337 free_blkcg:
1338 	if (blkcg != &blkcg_root)
1339 		kfree(blkcg);
1340 unlock:
1341 	mutex_unlock(&blkcg_pol_mutex);
1342 	return ERR_PTR(-ENOMEM);
1343 }
1344 
1345 static int blkcg_css_online(struct cgroup_subsys_state *css)
1346 {
1347 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1348 
1349 	/*
1350 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1351 	 * don't go offline while cgwbs are still active on them.  Pin the
1352 	 * parent so that offline always happens towards the root.
1353 	 */
1354 	if (parent)
1355 		blkcg_pin_online(&parent->css);
1356 	return 0;
1357 }
1358 
1359 int blkcg_init_disk(struct gendisk *disk)
1360 {
1361 	struct request_queue *q = disk->queue;
1362 	struct blkcg_gq *new_blkg, *blkg;
1363 	bool preloaded;
1364 	int ret;
1365 
1366 	INIT_LIST_HEAD(&q->blkg_list);
1367 	mutex_init(&q->blkcg_mutex);
1368 
1369 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1370 	if (!new_blkg)
1371 		return -ENOMEM;
1372 
1373 	preloaded = !radix_tree_preload(GFP_KERNEL);
1374 
1375 	/* Make sure the root blkg exists. */
1376 	/* spin_lock_irq can serve as RCU read-side critical section. */
1377 	spin_lock_irq(&q->queue_lock);
1378 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1379 	if (IS_ERR(blkg))
1380 		goto err_unlock;
1381 	q->root_blkg = blkg;
1382 	spin_unlock_irq(&q->queue_lock);
1383 
1384 	if (preloaded)
1385 		radix_tree_preload_end();
1386 
1387 	ret = blk_ioprio_init(disk);
1388 	if (ret)
1389 		goto err_destroy_all;
1390 
1391 	ret = blk_throtl_init(disk);
1392 	if (ret)
1393 		goto err_ioprio_exit;
1394 
1395 	return 0;
1396 
1397 err_ioprio_exit:
1398 	blk_ioprio_exit(disk);
1399 err_destroy_all:
1400 	blkg_destroy_all(disk);
1401 	return ret;
1402 err_unlock:
1403 	spin_unlock_irq(&q->queue_lock);
1404 	if (preloaded)
1405 		radix_tree_preload_end();
1406 	return PTR_ERR(blkg);
1407 }
1408 
1409 void blkcg_exit_disk(struct gendisk *disk)
1410 {
1411 	blkg_destroy_all(disk);
1412 	blk_throtl_exit(disk);
1413 }
1414 
1415 static void blkcg_exit(struct task_struct *tsk)
1416 {
1417 	if (tsk->throttle_disk)
1418 		put_disk(tsk->throttle_disk);
1419 	tsk->throttle_disk = NULL;
1420 }
1421 
1422 struct cgroup_subsys io_cgrp_subsys = {
1423 	.css_alloc = blkcg_css_alloc,
1424 	.css_online = blkcg_css_online,
1425 	.css_offline = blkcg_css_offline,
1426 	.css_free = blkcg_css_free,
1427 	.css_rstat_flush = blkcg_rstat_flush,
1428 	.dfl_cftypes = blkcg_files,
1429 	.legacy_cftypes = blkcg_legacy_files,
1430 	.legacy_name = "blkio",
1431 	.exit = blkcg_exit,
1432 #ifdef CONFIG_MEMCG
1433 	/*
1434 	 * This ensures that, if available, memcg is automatically enabled
1435 	 * together on the default hierarchy so that the owner cgroup can
1436 	 * be retrieved from writeback pages.
1437 	 */
1438 	.depends_on = 1 << memory_cgrp_id,
1439 #endif
1440 };
1441 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1442 
1443 /**
1444  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1445  * @disk: gendisk of interest
1446  * @pol: blkcg policy to activate
1447  *
1448  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1449  * bypass mode to populate its blkgs with policy_data for @pol.
1450  *
1451  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1452  * from IO path.  Update of each blkg is protected by both queue and blkcg
1453  * locks so that holding either lock and testing blkcg_policy_enabled() is
1454  * always enough for dereferencing policy data.
1455  *
1456  * The caller is responsible for synchronizing [de]activations and policy
1457  * [un]registerations.  Returns 0 on success, -errno on failure.
1458  */
1459 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1460 {
1461 	struct request_queue *q = disk->queue;
1462 	struct blkg_policy_data *pd_prealloc = NULL;
1463 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1464 	int ret;
1465 
1466 	if (blkcg_policy_enabled(q, pol))
1467 		return 0;
1468 
1469 	if (queue_is_mq(q))
1470 		blk_mq_freeze_queue(q);
1471 retry:
1472 	spin_lock_irq(&q->queue_lock);
1473 
1474 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1475 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1476 		struct blkg_policy_data *pd;
1477 
1478 		if (blkg->pd[pol->plid])
1479 			continue;
1480 
1481 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1482 		if (blkg == pinned_blkg) {
1483 			pd = pd_prealloc;
1484 			pd_prealloc = NULL;
1485 		} else {
1486 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1487 					      GFP_NOWAIT | __GFP_NOWARN);
1488 		}
1489 
1490 		if (!pd) {
1491 			/*
1492 			 * GFP_NOWAIT failed.  Free the existing one and
1493 			 * prealloc for @blkg w/ GFP_KERNEL.
1494 			 */
1495 			if (pinned_blkg)
1496 				blkg_put(pinned_blkg);
1497 			blkg_get(blkg);
1498 			pinned_blkg = blkg;
1499 
1500 			spin_unlock_irq(&q->queue_lock);
1501 
1502 			if (pd_prealloc)
1503 				pol->pd_free_fn(pd_prealloc);
1504 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1505 						       GFP_KERNEL);
1506 			if (pd_prealloc)
1507 				goto retry;
1508 			else
1509 				goto enomem;
1510 		}
1511 
1512 		blkg->pd[pol->plid] = pd;
1513 		pd->blkg = blkg;
1514 		pd->plid = pol->plid;
1515 		pd->online = false;
1516 	}
1517 
1518 	/* all allocated, init in the same order */
1519 	if (pol->pd_init_fn)
1520 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1521 			pol->pd_init_fn(blkg->pd[pol->plid]);
1522 
1523 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1524 		if (pol->pd_online_fn)
1525 			pol->pd_online_fn(blkg->pd[pol->plid]);
1526 		blkg->pd[pol->plid]->online = true;
1527 	}
1528 
1529 	__set_bit(pol->plid, q->blkcg_pols);
1530 	ret = 0;
1531 
1532 	spin_unlock_irq(&q->queue_lock);
1533 out:
1534 	if (queue_is_mq(q))
1535 		blk_mq_unfreeze_queue(q);
1536 	if (pinned_blkg)
1537 		blkg_put(pinned_blkg);
1538 	if (pd_prealloc)
1539 		pol->pd_free_fn(pd_prealloc);
1540 	return ret;
1541 
1542 enomem:
1543 	/* alloc failed, nothing's initialized yet, free everything */
1544 	spin_lock_irq(&q->queue_lock);
1545 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1546 		struct blkcg *blkcg = blkg->blkcg;
1547 
1548 		spin_lock(&blkcg->lock);
1549 		if (blkg->pd[pol->plid]) {
1550 			pol->pd_free_fn(blkg->pd[pol->plid]);
1551 			blkg->pd[pol->plid] = NULL;
1552 		}
1553 		spin_unlock(&blkcg->lock);
1554 	}
1555 	spin_unlock_irq(&q->queue_lock);
1556 	ret = -ENOMEM;
1557 	goto out;
1558 }
1559 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1560 
1561 /**
1562  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1563  * @disk: gendisk of interest
1564  * @pol: blkcg policy to deactivate
1565  *
1566  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1567  * blkcg_activate_policy().
1568  */
1569 void blkcg_deactivate_policy(struct gendisk *disk,
1570 			     const struct blkcg_policy *pol)
1571 {
1572 	struct request_queue *q = disk->queue;
1573 	struct blkcg_gq *blkg;
1574 
1575 	if (!blkcg_policy_enabled(q, pol))
1576 		return;
1577 
1578 	if (queue_is_mq(q))
1579 		blk_mq_freeze_queue(q);
1580 
1581 	mutex_lock(&q->blkcg_mutex);
1582 	spin_lock_irq(&q->queue_lock);
1583 
1584 	__clear_bit(pol->plid, q->blkcg_pols);
1585 
1586 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1587 		struct blkcg *blkcg = blkg->blkcg;
1588 
1589 		spin_lock(&blkcg->lock);
1590 		if (blkg->pd[pol->plid]) {
1591 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1592 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1593 			pol->pd_free_fn(blkg->pd[pol->plid]);
1594 			blkg->pd[pol->plid] = NULL;
1595 		}
1596 		spin_unlock(&blkcg->lock);
1597 	}
1598 
1599 	spin_unlock_irq(&q->queue_lock);
1600 	mutex_unlock(&q->blkcg_mutex);
1601 
1602 	if (queue_is_mq(q))
1603 		blk_mq_unfreeze_queue(q);
1604 }
1605 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1606 
1607 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1608 {
1609 	struct blkcg *blkcg;
1610 
1611 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1612 		if (blkcg->cpd[pol->plid]) {
1613 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1614 			blkcg->cpd[pol->plid] = NULL;
1615 		}
1616 	}
1617 }
1618 
1619 /**
1620  * blkcg_policy_register - register a blkcg policy
1621  * @pol: blkcg policy to register
1622  *
1623  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1624  * successful registration.  Returns 0 on success and -errno on failure.
1625  */
1626 int blkcg_policy_register(struct blkcg_policy *pol)
1627 {
1628 	struct blkcg *blkcg;
1629 	int i, ret;
1630 
1631 	mutex_lock(&blkcg_pol_register_mutex);
1632 	mutex_lock(&blkcg_pol_mutex);
1633 
1634 	/* find an empty slot */
1635 	ret = -ENOSPC;
1636 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1637 		if (!blkcg_policy[i])
1638 			break;
1639 	if (i >= BLKCG_MAX_POLS) {
1640 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1641 		goto err_unlock;
1642 	}
1643 
1644 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1645 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1646 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1647 		goto err_unlock;
1648 
1649 	/* register @pol */
1650 	pol->plid = i;
1651 	blkcg_policy[pol->plid] = pol;
1652 
1653 	/* allocate and install cpd's */
1654 	if (pol->cpd_alloc_fn) {
1655 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1656 			struct blkcg_policy_data *cpd;
1657 
1658 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1659 			if (!cpd)
1660 				goto err_free_cpds;
1661 
1662 			blkcg->cpd[pol->plid] = cpd;
1663 			cpd->blkcg = blkcg;
1664 			cpd->plid = pol->plid;
1665 		}
1666 	}
1667 
1668 	mutex_unlock(&blkcg_pol_mutex);
1669 
1670 	/* everything is in place, add intf files for the new policy */
1671 	if (pol->dfl_cftypes)
1672 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1673 					       pol->dfl_cftypes));
1674 	if (pol->legacy_cftypes)
1675 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1676 						  pol->legacy_cftypes));
1677 	mutex_unlock(&blkcg_pol_register_mutex);
1678 	return 0;
1679 
1680 err_free_cpds:
1681 	if (pol->cpd_free_fn)
1682 		blkcg_free_all_cpd(pol);
1683 
1684 	blkcg_policy[pol->plid] = NULL;
1685 err_unlock:
1686 	mutex_unlock(&blkcg_pol_mutex);
1687 	mutex_unlock(&blkcg_pol_register_mutex);
1688 	return ret;
1689 }
1690 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1691 
1692 /**
1693  * blkcg_policy_unregister - unregister a blkcg policy
1694  * @pol: blkcg policy to unregister
1695  *
1696  * Undo blkcg_policy_register(@pol).  Might sleep.
1697  */
1698 void blkcg_policy_unregister(struct blkcg_policy *pol)
1699 {
1700 	mutex_lock(&blkcg_pol_register_mutex);
1701 
1702 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1703 		goto out_unlock;
1704 
1705 	/* kill the intf files first */
1706 	if (pol->dfl_cftypes)
1707 		cgroup_rm_cftypes(pol->dfl_cftypes);
1708 	if (pol->legacy_cftypes)
1709 		cgroup_rm_cftypes(pol->legacy_cftypes);
1710 
1711 	/* remove cpds and unregister */
1712 	mutex_lock(&blkcg_pol_mutex);
1713 
1714 	if (pol->cpd_free_fn)
1715 		blkcg_free_all_cpd(pol);
1716 
1717 	blkcg_policy[pol->plid] = NULL;
1718 
1719 	mutex_unlock(&blkcg_pol_mutex);
1720 out_unlock:
1721 	mutex_unlock(&blkcg_pol_register_mutex);
1722 }
1723 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1724 
1725 /*
1726  * Scale the accumulated delay based on how long it has been since we updated
1727  * the delay.  We only call this when we are adding delay, in case it's been a
1728  * while since we added delay, and when we are checking to see if we need to
1729  * delay a task, to account for any delays that may have occurred.
1730  */
1731 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1732 {
1733 	u64 old = atomic64_read(&blkg->delay_start);
1734 
1735 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1736 	if (atomic_read(&blkg->use_delay) < 0)
1737 		return;
1738 
1739 	/*
1740 	 * We only want to scale down every second.  The idea here is that we
1741 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1742 	 * time window.  We only want to throttle tasks for recent delay that
1743 	 * has occurred, in 1 second time windows since that's the maximum
1744 	 * things can be throttled.  We save the current delay window in
1745 	 * blkg->last_delay so we know what amount is still left to be charged
1746 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1747 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1748 	 * are ok with whatever is happening now, and we can take away more of
1749 	 * the accumulated delay as we've already throttled enough that
1750 	 * everybody is happy with their IO latencies.
1751 	 */
1752 	if (time_before64(old + NSEC_PER_SEC, now) &&
1753 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1754 		u64 cur = atomic64_read(&blkg->delay_nsec);
1755 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1756 		int cur_use = atomic_read(&blkg->use_delay);
1757 
1758 		/*
1759 		 * We've been unthrottled, subtract a larger chunk of our
1760 		 * accumulated delay.
1761 		 */
1762 		if (cur_use < blkg->last_use)
1763 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1764 
1765 		/*
1766 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1767 		 * should only ever be growing except here where we subtract out
1768 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1769 		 * rather not end up with negative numbers.
1770 		 */
1771 		if (unlikely(cur < sub)) {
1772 			atomic64_set(&blkg->delay_nsec, 0);
1773 			blkg->last_delay = 0;
1774 		} else {
1775 			atomic64_sub(sub, &blkg->delay_nsec);
1776 			blkg->last_delay = cur - sub;
1777 		}
1778 		blkg->last_use = cur_use;
1779 	}
1780 }
1781 
1782 /*
1783  * This is called when we want to actually walk up the hierarchy and check to
1784  * see if we need to throttle, and then actually throttle if there is some
1785  * accumulated delay.  This should only be called upon return to user space so
1786  * we're not holding some lock that would induce a priority inversion.
1787  */
1788 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1789 {
1790 	unsigned long pflags;
1791 	bool clamp;
1792 	u64 now = ktime_to_ns(ktime_get());
1793 	u64 exp;
1794 	u64 delay_nsec = 0;
1795 	int tok;
1796 
1797 	while (blkg->parent) {
1798 		int use_delay = atomic_read(&blkg->use_delay);
1799 
1800 		if (use_delay) {
1801 			u64 this_delay;
1802 
1803 			blkcg_scale_delay(blkg, now);
1804 			this_delay = atomic64_read(&blkg->delay_nsec);
1805 			if (this_delay > delay_nsec) {
1806 				delay_nsec = this_delay;
1807 				clamp = use_delay > 0;
1808 			}
1809 		}
1810 		blkg = blkg->parent;
1811 	}
1812 
1813 	if (!delay_nsec)
1814 		return;
1815 
1816 	/*
1817 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1818 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1819 	 * delay, and we want userspace to be able to do _something_ so cap the
1820 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1821 	 * tasks will be delayed for 0.25 second for every syscall. If
1822 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1823 	 * caller is responsible for regulating the range.
1824 	 */
1825 	if (clamp)
1826 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1827 
1828 	if (use_memdelay)
1829 		psi_memstall_enter(&pflags);
1830 
1831 	exp = ktime_add_ns(now, delay_nsec);
1832 	tok = io_schedule_prepare();
1833 	do {
1834 		__set_current_state(TASK_KILLABLE);
1835 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1836 			break;
1837 	} while (!fatal_signal_pending(current));
1838 	io_schedule_finish(tok);
1839 
1840 	if (use_memdelay)
1841 		psi_memstall_leave(&pflags);
1842 }
1843 
1844 /**
1845  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1846  *
1847  * This is only called if we've been marked with set_notify_resume().  Obviously
1848  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1849  * check to see if current->throttle_disk is set and if not this doesn't do
1850  * anything.  This should only ever be called by the resume code, it's not meant
1851  * to be called by people willy-nilly as it will actually do the work to
1852  * throttle the task if it is setup for throttling.
1853  */
1854 void blkcg_maybe_throttle_current(void)
1855 {
1856 	struct gendisk *disk = current->throttle_disk;
1857 	struct blkcg *blkcg;
1858 	struct blkcg_gq *blkg;
1859 	bool use_memdelay = current->use_memdelay;
1860 
1861 	if (!disk)
1862 		return;
1863 
1864 	current->throttle_disk = NULL;
1865 	current->use_memdelay = false;
1866 
1867 	rcu_read_lock();
1868 	blkcg = css_to_blkcg(blkcg_css());
1869 	if (!blkcg)
1870 		goto out;
1871 	blkg = blkg_lookup(blkcg, disk->queue);
1872 	if (!blkg)
1873 		goto out;
1874 	if (!blkg_tryget(blkg))
1875 		goto out;
1876 	rcu_read_unlock();
1877 
1878 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1879 	blkg_put(blkg);
1880 	put_disk(disk);
1881 	return;
1882 out:
1883 	rcu_read_unlock();
1884 }
1885 
1886 /**
1887  * blkcg_schedule_throttle - this task needs to check for throttling
1888  * @disk: disk to throttle
1889  * @use_memdelay: do we charge this to memory delay for PSI
1890  *
1891  * This is called by the IO controller when we know there's delay accumulated
1892  * for the blkg for this task.  We do not pass the blkg because there are places
1893  * we call this that may not have that information, the swapping code for
1894  * instance will only have a block_device at that point.  This set's the
1895  * notify_resume for the task to check and see if it requires throttling before
1896  * returning to user space.
1897  *
1898  * We will only schedule once per syscall.  You can call this over and over
1899  * again and it will only do the check once upon return to user space, and only
1900  * throttle once.  If the task needs to be throttled again it'll need to be
1901  * re-set at the next time we see the task.
1902  */
1903 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1904 {
1905 	if (unlikely(current->flags & PF_KTHREAD))
1906 		return;
1907 
1908 	if (current->throttle_disk != disk) {
1909 		if (test_bit(GD_DEAD, &disk->state))
1910 			return;
1911 		get_device(disk_to_dev(disk));
1912 
1913 		if (current->throttle_disk)
1914 			put_disk(current->throttle_disk);
1915 		current->throttle_disk = disk;
1916 	}
1917 
1918 	if (use_memdelay)
1919 		current->use_memdelay = use_memdelay;
1920 	set_notify_resume(current);
1921 }
1922 
1923 /**
1924  * blkcg_add_delay - add delay to this blkg
1925  * @blkg: blkg of interest
1926  * @now: the current time in nanoseconds
1927  * @delta: how many nanoseconds of delay to add
1928  *
1929  * Charge @delta to the blkg's current delay accumulation.  This is used to
1930  * throttle tasks if an IO controller thinks we need more throttling.
1931  */
1932 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1933 {
1934 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1935 		return;
1936 	blkcg_scale_delay(blkg, now);
1937 	atomic64_add(delta, &blkg->delay_nsec);
1938 }
1939 
1940 /**
1941  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1942  * @bio: target bio
1943  * @css: target css
1944  *
1945  * As the failure mode here is to walk up the blkg tree, this ensure that the
1946  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1947  * up taking a reference on or %NULL if no reference was taken.
1948  */
1949 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1950 		struct cgroup_subsys_state *css)
1951 {
1952 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1953 
1954 	rcu_read_lock();
1955 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1956 	while (blkg) {
1957 		if (blkg_tryget(blkg)) {
1958 			ret_blkg = blkg;
1959 			break;
1960 		}
1961 		blkg = blkg->parent;
1962 	}
1963 	rcu_read_unlock();
1964 
1965 	return ret_blkg;
1966 }
1967 
1968 /**
1969  * bio_associate_blkg_from_css - associate a bio with a specified css
1970  * @bio: target bio
1971  * @css: target css
1972  *
1973  * Associate @bio with the blkg found by combining the css's blkg and the
1974  * request_queue of the @bio.  An association failure is handled by walking up
1975  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1976  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1977  * then the remaining bios will spill to the closest alive blkg.
1978  *
1979  * A reference will be taken on the blkg and will be released when @bio is
1980  * freed.
1981  */
1982 void bio_associate_blkg_from_css(struct bio *bio,
1983 				 struct cgroup_subsys_state *css)
1984 {
1985 	if (bio->bi_blkg)
1986 		blkg_put(bio->bi_blkg);
1987 
1988 	if (css && css->parent) {
1989 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1990 	} else {
1991 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1992 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1993 	}
1994 }
1995 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1996 
1997 /**
1998  * bio_associate_blkg - associate a bio with a blkg
1999  * @bio: target bio
2000  *
2001  * Associate @bio with the blkg found from the bio's css and request_queue.
2002  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2003  * already associated, the css is reused and association redone as the
2004  * request_queue may have changed.
2005  */
2006 void bio_associate_blkg(struct bio *bio)
2007 {
2008 	struct cgroup_subsys_state *css;
2009 
2010 	rcu_read_lock();
2011 
2012 	if (bio->bi_blkg)
2013 		css = bio_blkcg_css(bio);
2014 	else
2015 		css = blkcg_css();
2016 
2017 	bio_associate_blkg_from_css(bio, css);
2018 
2019 	rcu_read_unlock();
2020 }
2021 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2022 
2023 /**
2024  * bio_clone_blkg_association - clone blkg association from src to dst bio
2025  * @dst: destination bio
2026  * @src: source bio
2027  */
2028 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2029 {
2030 	if (src->bi_blkg)
2031 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2032 }
2033 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2034 
2035 static int blk_cgroup_io_type(struct bio *bio)
2036 {
2037 	if (op_is_discard(bio->bi_opf))
2038 		return BLKG_IOSTAT_DISCARD;
2039 	if (op_is_write(bio->bi_opf))
2040 		return BLKG_IOSTAT_WRITE;
2041 	return BLKG_IOSTAT_READ;
2042 }
2043 
2044 void blk_cgroup_bio_start(struct bio *bio)
2045 {
2046 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2047 	int rwd = blk_cgroup_io_type(bio), cpu;
2048 	struct blkg_iostat_set *bis;
2049 	unsigned long flags;
2050 
2051 	/* Root-level stats are sourced from system-wide IO stats */
2052 	if (!cgroup_parent(blkcg->css.cgroup))
2053 		return;
2054 
2055 	cpu = get_cpu();
2056 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2057 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2058 
2059 	/*
2060 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2061 	 * bio and we would have already accounted for the size of the bio.
2062 	 */
2063 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2064 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2065 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2066 	}
2067 	bis->cur.ios[rwd]++;
2068 
2069 	/*
2070 	 * If the iostat_cpu isn't in a lockless list, put it into the
2071 	 * list to indicate that a stat update is pending.
2072 	 */
2073 	if (!READ_ONCE(bis->lqueued)) {
2074 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2075 
2076 		llist_add(&bis->lnode, lhead);
2077 		WRITE_ONCE(bis->lqueued, true);
2078 		percpu_ref_get(&bis->blkg->refcnt);
2079 	}
2080 
2081 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2082 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2083 		cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2084 	put_cpu();
2085 }
2086 
2087 bool blk_cgroup_congested(void)
2088 {
2089 	struct cgroup_subsys_state *css;
2090 	bool ret = false;
2091 
2092 	rcu_read_lock();
2093 	for (css = blkcg_css(); css; css = css->parent) {
2094 		if (atomic_read(&css->cgroup->congestion_count)) {
2095 			ret = true;
2096 			break;
2097 		}
2098 	}
2099 	rcu_read_unlock();
2100 	return ret;
2101 }
2102 
2103 module_param(blkcg_debug_stats, bool, 0644);
2104 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2105