xref: /openbmc/linux/block/blk-cgroup.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 #include "blk-rq-qos.h"
37 
38 /*
39  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41  * policy [un]register operations including cgroup file additions /
42  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
43  * allows grabbing it from cgroup callbacks.
44  */
45 static DEFINE_MUTEX(blkcg_pol_register_mutex);
46 static DEFINE_MUTEX(blkcg_pol_mutex);
47 
48 struct blkcg blkcg_root;
49 EXPORT_SYMBOL_GPL(blkcg_root);
50 
51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52 EXPORT_SYMBOL_GPL(blkcg_root_css);
53 
54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55 
56 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
57 
58 bool blkcg_debug_stats = false;
59 static struct workqueue_struct *blkcg_punt_bio_wq;
60 
61 #define BLKG_DESTROY_BATCH_SIZE  64
62 
63 /*
64  * Lockless lists for tracking IO stats update
65  *
66  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
67  * There are multiple blkg's (one for each block device) attached to each
68  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
69  * but it doesn't know which blkg has the updated stats. If there are many
70  * block devices in a system, the cost of iterating all the blkg's to flush
71  * out the IO stats can be high. To reduce such overhead, a set of percpu
72  * lockless lists (lhead) per blkcg are used to track the set of recently
73  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
74  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
75  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
76  * References to blkg are gotten and then put back in the process to
77  * protect against blkg removal.
78  *
79  * Return: 0 if successful or -ENOMEM if allocation fails.
80  */
81 static int init_blkcg_llists(struct blkcg *blkcg)
82 {
83 	int cpu;
84 
85 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
86 	if (!blkcg->lhead)
87 		return -ENOMEM;
88 
89 	for_each_possible_cpu(cpu)
90 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
91 	return 0;
92 }
93 
94 /**
95  * blkcg_css - find the current css
96  *
97  * Find the css associated with either the kthread or the current task.
98  * This may return a dying css, so it is up to the caller to use tryget logic
99  * to confirm it is alive and well.
100  */
101 static struct cgroup_subsys_state *blkcg_css(void)
102 {
103 	struct cgroup_subsys_state *css;
104 
105 	css = kthread_blkcg();
106 	if (css)
107 		return css;
108 	return task_css(current, io_cgrp_id);
109 }
110 
111 static bool blkcg_policy_enabled(struct request_queue *q,
112 				 const struct blkcg_policy *pol)
113 {
114 	return pol && test_bit(pol->plid, q->blkcg_pols);
115 }
116 
117 static void blkg_free_workfn(struct work_struct *work)
118 {
119 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 					     free_work);
121 	int i;
122 
123 	for (i = 0; i < BLKCG_MAX_POLS; i++)
124 		if (blkg->pd[i])
125 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
126 
127 	if (blkg->q)
128 		blk_put_queue(blkg->q);
129 	free_percpu(blkg->iostat_cpu);
130 	percpu_ref_exit(&blkg->refcnt);
131 	kfree(blkg);
132 }
133 
134 /**
135  * blkg_free - free a blkg
136  * @blkg: blkg to free
137  *
138  * Free @blkg which may be partially allocated.
139  */
140 static void blkg_free(struct blkcg_gq *blkg)
141 {
142 	if (!blkg)
143 		return;
144 
145 	/*
146 	 * Both ->pd_free_fn() and request queue's release handler may
147 	 * sleep, so free us by scheduling one work func
148 	 */
149 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
150 	schedule_work(&blkg->free_work);
151 }
152 
153 static void __blkg_release(struct rcu_head *rcu)
154 {
155 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
156 
157 	WARN_ON(!bio_list_empty(&blkg->async_bios));
158 
159 	/* release the blkcg and parent blkg refs this blkg has been holding */
160 	css_put(&blkg->blkcg->css);
161 	if (blkg->parent)
162 		blkg_put(blkg->parent);
163 	blkg_free(blkg);
164 }
165 
166 /*
167  * A group is RCU protected, but having an rcu lock does not mean that one
168  * can access all the fields of blkg and assume these are valid.  For
169  * example, don't try to follow throtl_data and request queue links.
170  *
171  * Having a reference to blkg under an rcu allows accesses to only values
172  * local to groups like group stats and group rate limits.
173  */
174 static void blkg_release(struct percpu_ref *ref)
175 {
176 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
177 
178 	call_rcu(&blkg->rcu_head, __blkg_release);
179 }
180 
181 static void blkg_async_bio_workfn(struct work_struct *work)
182 {
183 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
184 					     async_bio_work);
185 	struct bio_list bios = BIO_EMPTY_LIST;
186 	struct bio *bio;
187 	struct blk_plug plug;
188 	bool need_plug = false;
189 
190 	/* as long as there are pending bios, @blkg can't go away */
191 	spin_lock_bh(&blkg->async_bio_lock);
192 	bio_list_merge(&bios, &blkg->async_bios);
193 	bio_list_init(&blkg->async_bios);
194 	spin_unlock_bh(&blkg->async_bio_lock);
195 
196 	/* start plug only when bio_list contains at least 2 bios */
197 	if (bios.head && bios.head->bi_next) {
198 		need_plug = true;
199 		blk_start_plug(&plug);
200 	}
201 	while ((bio = bio_list_pop(&bios)))
202 		submit_bio(bio);
203 	if (need_plug)
204 		blk_finish_plug(&plug);
205 }
206 
207 /**
208  * bio_blkcg_css - return the blkcg CSS associated with a bio
209  * @bio: target bio
210  *
211  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
212  * associated. Callers are expected to either handle %NULL or know association
213  * has been done prior to calling this.
214  */
215 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
216 {
217 	if (!bio || !bio->bi_blkg)
218 		return NULL;
219 	return &bio->bi_blkg->blkcg->css;
220 }
221 EXPORT_SYMBOL_GPL(bio_blkcg_css);
222 
223 /**
224  * blkcg_parent - get the parent of a blkcg
225  * @blkcg: blkcg of interest
226  *
227  * Return the parent blkcg of @blkcg.  Can be called anytime.
228  */
229 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
230 {
231 	return css_to_blkcg(blkcg->css.parent);
232 }
233 
234 /**
235  * blkg_alloc - allocate a blkg
236  * @blkcg: block cgroup the new blkg is associated with
237  * @disk: gendisk the new blkg is associated with
238  * @gfp_mask: allocation mask to use
239  *
240  * Allocate a new blkg assocating @blkcg and @q.
241  */
242 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
243 				   gfp_t gfp_mask)
244 {
245 	struct blkcg_gq *blkg;
246 	int i, cpu;
247 
248 	/* alloc and init base part */
249 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
250 	if (!blkg)
251 		return NULL;
252 
253 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
254 		goto err_free;
255 
256 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
257 	if (!blkg->iostat_cpu)
258 		goto err_free;
259 
260 	if (!blk_get_queue(disk->queue))
261 		goto err_free;
262 
263 	blkg->q = disk->queue;
264 	INIT_LIST_HEAD(&blkg->q_node);
265 	spin_lock_init(&blkg->async_bio_lock);
266 	bio_list_init(&blkg->async_bios);
267 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
268 	blkg->blkcg = blkcg;
269 
270 	u64_stats_init(&blkg->iostat.sync);
271 	for_each_possible_cpu(cpu) {
272 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
273 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
274 	}
275 
276 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
277 		struct blkcg_policy *pol = blkcg_policy[i];
278 		struct blkg_policy_data *pd;
279 
280 		if (!blkcg_policy_enabled(disk->queue, pol))
281 			continue;
282 
283 		/* alloc per-policy data and attach it to blkg */
284 		pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg);
285 		if (!pd)
286 			goto err_free;
287 
288 		blkg->pd[i] = pd;
289 		pd->blkg = blkg;
290 		pd->plid = i;
291 	}
292 
293 	return blkg;
294 
295 err_free:
296 	blkg_free(blkg);
297 	return NULL;
298 }
299 
300 /*
301  * If @new_blkg is %NULL, this function tries to allocate a new one as
302  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
303  */
304 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
305 				    struct blkcg_gq *new_blkg)
306 {
307 	struct blkcg_gq *blkg;
308 	int i, ret;
309 
310 	lockdep_assert_held(&disk->queue->queue_lock);
311 
312 	/* request_queue is dying, do not create/recreate a blkg */
313 	if (blk_queue_dying(disk->queue)) {
314 		ret = -ENODEV;
315 		goto err_free_blkg;
316 	}
317 
318 	/* blkg holds a reference to blkcg */
319 	if (!css_tryget_online(&blkcg->css)) {
320 		ret = -ENODEV;
321 		goto err_free_blkg;
322 	}
323 
324 	/* allocate */
325 	if (!new_blkg) {
326 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
327 		if (unlikely(!new_blkg)) {
328 			ret = -ENOMEM;
329 			goto err_put_css;
330 		}
331 	}
332 	blkg = new_blkg;
333 
334 	/* link parent */
335 	if (blkcg_parent(blkcg)) {
336 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
337 		if (WARN_ON_ONCE(!blkg->parent)) {
338 			ret = -ENODEV;
339 			goto err_put_css;
340 		}
341 		blkg_get(blkg->parent);
342 	}
343 
344 	/* invoke per-policy init */
345 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
346 		struct blkcg_policy *pol = blkcg_policy[i];
347 
348 		if (blkg->pd[i] && pol->pd_init_fn)
349 			pol->pd_init_fn(blkg->pd[i]);
350 	}
351 
352 	/* insert */
353 	spin_lock(&blkcg->lock);
354 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
355 	if (likely(!ret)) {
356 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
357 		list_add(&blkg->q_node, &disk->queue->blkg_list);
358 
359 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
360 			struct blkcg_policy *pol = blkcg_policy[i];
361 
362 			if (blkg->pd[i] && pol->pd_online_fn)
363 				pol->pd_online_fn(blkg->pd[i]);
364 		}
365 	}
366 	blkg->online = true;
367 	spin_unlock(&blkcg->lock);
368 
369 	if (!ret)
370 		return blkg;
371 
372 	/* @blkg failed fully initialized, use the usual release path */
373 	blkg_put(blkg);
374 	return ERR_PTR(ret);
375 
376 err_put_css:
377 	css_put(&blkcg->css);
378 err_free_blkg:
379 	blkg_free(new_blkg);
380 	return ERR_PTR(ret);
381 }
382 
383 /**
384  * blkg_lookup_create - lookup blkg, try to create one if not there
385  * @blkcg: blkcg of interest
386  * @disk: gendisk of interest
387  *
388  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
389  * create one.  blkg creation is performed recursively from blkcg_root such
390  * that all non-root blkg's have access to the parent blkg.  This function
391  * should be called under RCU read lock and takes @disk->queue->queue_lock.
392  *
393  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
394  * down from root.
395  */
396 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
397 		struct gendisk *disk)
398 {
399 	struct request_queue *q = disk->queue;
400 	struct blkcg_gq *blkg;
401 	unsigned long flags;
402 
403 	WARN_ON_ONCE(!rcu_read_lock_held());
404 
405 	blkg = blkg_lookup(blkcg, q);
406 	if (blkg)
407 		return blkg;
408 
409 	spin_lock_irqsave(&q->queue_lock, flags);
410 	blkg = blkg_lookup(blkcg, q);
411 	if (blkg) {
412 		if (blkcg != &blkcg_root &&
413 		    blkg != rcu_dereference(blkcg->blkg_hint))
414 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
415 		goto found;
416 	}
417 
418 	/*
419 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
420 	 * non-root blkgs have access to their parents.  Returns the closest
421 	 * blkg to the intended blkg should blkg_create() fail.
422 	 */
423 	while (true) {
424 		struct blkcg *pos = blkcg;
425 		struct blkcg *parent = blkcg_parent(blkcg);
426 		struct blkcg_gq *ret_blkg = q->root_blkg;
427 
428 		while (parent) {
429 			blkg = blkg_lookup(parent, q);
430 			if (blkg) {
431 				/* remember closest blkg */
432 				ret_blkg = blkg;
433 				break;
434 			}
435 			pos = parent;
436 			parent = blkcg_parent(parent);
437 		}
438 
439 		blkg = blkg_create(pos, disk, NULL);
440 		if (IS_ERR(blkg)) {
441 			blkg = ret_blkg;
442 			break;
443 		}
444 		if (pos == blkcg)
445 			break;
446 	}
447 
448 found:
449 	spin_unlock_irqrestore(&q->queue_lock, flags);
450 	return blkg;
451 }
452 
453 static void blkg_destroy(struct blkcg_gq *blkg)
454 {
455 	struct blkcg *blkcg = blkg->blkcg;
456 	int i;
457 
458 	lockdep_assert_held(&blkg->q->queue_lock);
459 	lockdep_assert_held(&blkcg->lock);
460 
461 	/* Something wrong if we are trying to remove same group twice */
462 	WARN_ON_ONCE(list_empty(&blkg->q_node));
463 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
464 
465 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
466 		struct blkcg_policy *pol = blkcg_policy[i];
467 
468 		if (blkg->pd[i] && pol->pd_offline_fn)
469 			pol->pd_offline_fn(blkg->pd[i]);
470 	}
471 
472 	blkg->online = false;
473 
474 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
475 	list_del_init(&blkg->q_node);
476 	hlist_del_init_rcu(&blkg->blkcg_node);
477 
478 	/*
479 	 * Both setting lookup hint to and clearing it from @blkg are done
480 	 * under queue_lock.  If it's not pointing to @blkg now, it never
481 	 * will.  Hint assignment itself can race safely.
482 	 */
483 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
484 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
485 
486 	/*
487 	 * Put the reference taken at the time of creation so that when all
488 	 * queues are gone, group can be destroyed.
489 	 */
490 	percpu_ref_kill(&blkg->refcnt);
491 }
492 
493 static void blkg_destroy_all(struct gendisk *disk)
494 {
495 	struct request_queue *q = disk->queue;
496 	struct blkcg_gq *blkg, *n;
497 	int count = BLKG_DESTROY_BATCH_SIZE;
498 
499 restart:
500 	spin_lock_irq(&q->queue_lock);
501 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
502 		struct blkcg *blkcg = blkg->blkcg;
503 
504 		spin_lock(&blkcg->lock);
505 		blkg_destroy(blkg);
506 		spin_unlock(&blkcg->lock);
507 
508 		/*
509 		 * in order to avoid holding the spin lock for too long, release
510 		 * it when a batch of blkgs are destroyed.
511 		 */
512 		if (!(--count)) {
513 			count = BLKG_DESTROY_BATCH_SIZE;
514 			spin_unlock_irq(&q->queue_lock);
515 			cond_resched();
516 			goto restart;
517 		}
518 	}
519 
520 	q->root_blkg = NULL;
521 	spin_unlock_irq(&q->queue_lock);
522 }
523 
524 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
525 			     struct cftype *cftype, u64 val)
526 {
527 	struct blkcg *blkcg = css_to_blkcg(css);
528 	struct blkcg_gq *blkg;
529 	int i, cpu;
530 
531 	mutex_lock(&blkcg_pol_mutex);
532 	spin_lock_irq(&blkcg->lock);
533 
534 	/*
535 	 * Note that stat reset is racy - it doesn't synchronize against
536 	 * stat updates.  This is a debug feature which shouldn't exist
537 	 * anyway.  If you get hit by a race, retry.
538 	 */
539 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
540 		for_each_possible_cpu(cpu) {
541 			struct blkg_iostat_set *bis =
542 				per_cpu_ptr(blkg->iostat_cpu, cpu);
543 			memset(bis, 0, sizeof(*bis));
544 		}
545 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
546 
547 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
548 			struct blkcg_policy *pol = blkcg_policy[i];
549 
550 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
551 				pol->pd_reset_stats_fn(blkg->pd[i]);
552 		}
553 	}
554 
555 	spin_unlock_irq(&blkcg->lock);
556 	mutex_unlock(&blkcg_pol_mutex);
557 	return 0;
558 }
559 
560 const char *blkg_dev_name(struct blkcg_gq *blkg)
561 {
562 	if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
563 		return NULL;
564 	return bdi_dev_name(blkg->q->disk->bdi);
565 }
566 
567 /**
568  * blkcg_print_blkgs - helper for printing per-blkg data
569  * @sf: seq_file to print to
570  * @blkcg: blkcg of interest
571  * @prfill: fill function to print out a blkg
572  * @pol: policy in question
573  * @data: data to be passed to @prfill
574  * @show_total: to print out sum of prfill return values or not
575  *
576  * This function invokes @prfill on each blkg of @blkcg if pd for the
577  * policy specified by @pol exists.  @prfill is invoked with @sf, the
578  * policy data and @data and the matching queue lock held.  If @show_total
579  * is %true, the sum of the return values from @prfill is printed with
580  * "Total" label at the end.
581  *
582  * This is to be used to construct print functions for
583  * cftype->read_seq_string method.
584  */
585 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
586 		       u64 (*prfill)(struct seq_file *,
587 				     struct blkg_policy_data *, int),
588 		       const struct blkcg_policy *pol, int data,
589 		       bool show_total)
590 {
591 	struct blkcg_gq *blkg;
592 	u64 total = 0;
593 
594 	rcu_read_lock();
595 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
596 		spin_lock_irq(&blkg->q->queue_lock);
597 		if (blkcg_policy_enabled(blkg->q, pol))
598 			total += prfill(sf, blkg->pd[pol->plid], data);
599 		spin_unlock_irq(&blkg->q->queue_lock);
600 	}
601 	rcu_read_unlock();
602 
603 	if (show_total)
604 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
605 }
606 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
607 
608 /**
609  * __blkg_prfill_u64 - prfill helper for a single u64 value
610  * @sf: seq_file to print to
611  * @pd: policy private data of interest
612  * @v: value to print
613  *
614  * Print @v to @sf for the device associated with @pd.
615  */
616 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
617 {
618 	const char *dname = blkg_dev_name(pd->blkg);
619 
620 	if (!dname)
621 		return 0;
622 
623 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
624 	return v;
625 }
626 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
627 
628 /**
629  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
630  * @inputp: input string pointer
631  *
632  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
633  * from @input and get and return the matching bdev.  *@inputp is
634  * updated to point past the device node prefix.  Returns an ERR_PTR()
635  * value on error.
636  *
637  * Use this function iff blkg_conf_prep() can't be used for some reason.
638  */
639 struct block_device *blkcg_conf_open_bdev(char **inputp)
640 {
641 	char *input = *inputp;
642 	unsigned int major, minor;
643 	struct block_device *bdev;
644 	int key_len;
645 
646 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
647 		return ERR_PTR(-EINVAL);
648 
649 	input += key_len;
650 	if (!isspace(*input))
651 		return ERR_PTR(-EINVAL);
652 	input = skip_spaces(input);
653 
654 	bdev = blkdev_get_no_open(MKDEV(major, minor));
655 	if (!bdev)
656 		return ERR_PTR(-ENODEV);
657 	if (bdev_is_partition(bdev)) {
658 		blkdev_put_no_open(bdev);
659 		return ERR_PTR(-ENODEV);
660 	}
661 
662 	*inputp = input;
663 	return bdev;
664 }
665 
666 /**
667  * blkg_conf_prep - parse and prepare for per-blkg config update
668  * @blkcg: target block cgroup
669  * @pol: target policy
670  * @input: input string
671  * @ctx: blkg_conf_ctx to be filled
672  *
673  * Parse per-blkg config update from @input and initialize @ctx with the
674  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
675  * part of @input following MAJ:MIN.  This function returns with RCU read
676  * lock and queue lock held and must be paired with blkg_conf_finish().
677  */
678 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
679 		   char *input, struct blkg_conf_ctx *ctx)
680 	__acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
681 {
682 	struct block_device *bdev;
683 	struct gendisk *disk;
684 	struct request_queue *q;
685 	struct blkcg_gq *blkg;
686 	int ret;
687 
688 	bdev = blkcg_conf_open_bdev(&input);
689 	if (IS_ERR(bdev))
690 		return PTR_ERR(bdev);
691 	disk = bdev->bd_disk;
692 	q = disk->queue;
693 
694 	/*
695 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
696 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
697 	 */
698 	ret = blk_queue_enter(q, 0);
699 	if (ret)
700 		goto fail;
701 
702 	rcu_read_lock();
703 	spin_lock_irq(&q->queue_lock);
704 
705 	if (!blkcg_policy_enabled(q, pol)) {
706 		ret = -EOPNOTSUPP;
707 		goto fail_unlock;
708 	}
709 
710 	blkg = blkg_lookup(blkcg, q);
711 	if (blkg)
712 		goto success;
713 
714 	/*
715 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
716 	 * non-root blkgs have access to their parents.
717 	 */
718 	while (true) {
719 		struct blkcg *pos = blkcg;
720 		struct blkcg *parent;
721 		struct blkcg_gq *new_blkg;
722 
723 		parent = blkcg_parent(blkcg);
724 		while (parent && !blkg_lookup(parent, q)) {
725 			pos = parent;
726 			parent = blkcg_parent(parent);
727 		}
728 
729 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
730 		spin_unlock_irq(&q->queue_lock);
731 		rcu_read_unlock();
732 
733 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
734 		if (unlikely(!new_blkg)) {
735 			ret = -ENOMEM;
736 			goto fail_exit_queue;
737 		}
738 
739 		if (radix_tree_preload(GFP_KERNEL)) {
740 			blkg_free(new_blkg);
741 			ret = -ENOMEM;
742 			goto fail_exit_queue;
743 		}
744 
745 		rcu_read_lock();
746 		spin_lock_irq(&q->queue_lock);
747 
748 		if (!blkcg_policy_enabled(q, pol)) {
749 			blkg_free(new_blkg);
750 			ret = -EOPNOTSUPP;
751 			goto fail_preloaded;
752 		}
753 
754 		blkg = blkg_lookup(pos, q);
755 		if (blkg) {
756 			blkg_free(new_blkg);
757 		} else {
758 			blkg = blkg_create(pos, disk, new_blkg);
759 			if (IS_ERR(blkg)) {
760 				ret = PTR_ERR(blkg);
761 				goto fail_preloaded;
762 			}
763 		}
764 
765 		radix_tree_preload_end();
766 
767 		if (pos == blkcg)
768 			goto success;
769 	}
770 success:
771 	blk_queue_exit(q);
772 	ctx->bdev = bdev;
773 	ctx->blkg = blkg;
774 	ctx->body = input;
775 	return 0;
776 
777 fail_preloaded:
778 	radix_tree_preload_end();
779 fail_unlock:
780 	spin_unlock_irq(&q->queue_lock);
781 	rcu_read_unlock();
782 fail_exit_queue:
783 	blk_queue_exit(q);
784 fail:
785 	blkdev_put_no_open(bdev);
786 	/*
787 	 * If queue was bypassing, we should retry.  Do so after a
788 	 * short msleep().  It isn't strictly necessary but queue
789 	 * can be bypassing for some time and it's always nice to
790 	 * avoid busy looping.
791 	 */
792 	if (ret == -EBUSY) {
793 		msleep(10);
794 		ret = restart_syscall();
795 	}
796 	return ret;
797 }
798 EXPORT_SYMBOL_GPL(blkg_conf_prep);
799 
800 /**
801  * blkg_conf_finish - finish up per-blkg config update
802  * @ctx: blkg_conf_ctx initialized by blkg_conf_prep()
803  *
804  * Finish up after per-blkg config update.  This function must be paired
805  * with blkg_conf_prep().
806  */
807 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
808 	__releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
809 {
810 	spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
811 	rcu_read_unlock();
812 	blkdev_put_no_open(ctx->bdev);
813 }
814 EXPORT_SYMBOL_GPL(blkg_conf_finish);
815 
816 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
817 {
818 	int i;
819 
820 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
821 		dst->bytes[i] = src->bytes[i];
822 		dst->ios[i] = src->ios[i];
823 	}
824 }
825 
826 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
827 {
828 	int i;
829 
830 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
831 		dst->bytes[i] += src->bytes[i];
832 		dst->ios[i] += src->ios[i];
833 	}
834 }
835 
836 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
837 {
838 	int i;
839 
840 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
841 		dst->bytes[i] -= src->bytes[i];
842 		dst->ios[i] -= src->ios[i];
843 	}
844 }
845 
846 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
847 				struct blkg_iostat *last)
848 {
849 	struct blkg_iostat delta;
850 	unsigned long flags;
851 
852 	/* propagate percpu delta to global */
853 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
854 	blkg_iostat_set(&delta, cur);
855 	blkg_iostat_sub(&delta, last);
856 	blkg_iostat_add(&blkg->iostat.cur, &delta);
857 	blkg_iostat_add(last, &delta);
858 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
859 }
860 
861 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
862 {
863 	struct blkcg *blkcg = css_to_blkcg(css);
864 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
865 	struct llist_node *lnode;
866 	struct blkg_iostat_set *bisc, *next_bisc;
867 
868 	/* Root-level stats are sourced from system-wide IO stats */
869 	if (!cgroup_parent(css->cgroup))
870 		return;
871 
872 	rcu_read_lock();
873 
874 	lnode = llist_del_all(lhead);
875 	if (!lnode)
876 		goto out;
877 
878 	/*
879 	 * Iterate only the iostat_cpu's queued in the lockless list.
880 	 */
881 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
882 		struct blkcg_gq *blkg = bisc->blkg;
883 		struct blkcg_gq *parent = blkg->parent;
884 		struct blkg_iostat cur;
885 		unsigned int seq;
886 
887 		WRITE_ONCE(bisc->lqueued, false);
888 
889 		/* fetch the current per-cpu values */
890 		do {
891 			seq = u64_stats_fetch_begin(&bisc->sync);
892 			blkg_iostat_set(&cur, &bisc->cur);
893 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
894 
895 		blkcg_iostat_update(blkg, &cur, &bisc->last);
896 
897 		/* propagate global delta to parent (unless that's root) */
898 		if (parent && parent->parent)
899 			blkcg_iostat_update(parent, &blkg->iostat.cur,
900 					    &blkg->iostat.last);
901 		percpu_ref_put(&blkg->refcnt);
902 	}
903 
904 out:
905 	rcu_read_unlock();
906 }
907 
908 /*
909  * We source root cgroup stats from the system-wide stats to avoid
910  * tracking the same information twice and incurring overhead when no
911  * cgroups are defined. For that reason, cgroup_rstat_flush in
912  * blkcg_print_stat does not actually fill out the iostat in the root
913  * cgroup's blkcg_gq.
914  *
915  * However, we would like to re-use the printing code between the root and
916  * non-root cgroups to the extent possible. For that reason, we simulate
917  * flushing the root cgroup's stats by explicitly filling in the iostat
918  * with disk level statistics.
919  */
920 static void blkcg_fill_root_iostats(void)
921 {
922 	struct class_dev_iter iter;
923 	struct device *dev;
924 
925 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
926 	while ((dev = class_dev_iter_next(&iter))) {
927 		struct block_device *bdev = dev_to_bdev(dev);
928 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
929 		struct blkg_iostat tmp;
930 		int cpu;
931 		unsigned long flags;
932 
933 		memset(&tmp, 0, sizeof(tmp));
934 		for_each_possible_cpu(cpu) {
935 			struct disk_stats *cpu_dkstats;
936 
937 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
938 			tmp.ios[BLKG_IOSTAT_READ] +=
939 				cpu_dkstats->ios[STAT_READ];
940 			tmp.ios[BLKG_IOSTAT_WRITE] +=
941 				cpu_dkstats->ios[STAT_WRITE];
942 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
943 				cpu_dkstats->ios[STAT_DISCARD];
944 			// convert sectors to bytes
945 			tmp.bytes[BLKG_IOSTAT_READ] +=
946 				cpu_dkstats->sectors[STAT_READ] << 9;
947 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
948 				cpu_dkstats->sectors[STAT_WRITE] << 9;
949 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
950 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
951 		}
952 
953 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
954 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
955 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
956 	}
957 }
958 
959 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
960 {
961 	struct blkg_iostat_set *bis = &blkg->iostat;
962 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
963 	const char *dname;
964 	unsigned seq;
965 	int i;
966 
967 	if (!blkg->online)
968 		return;
969 
970 	dname = blkg_dev_name(blkg);
971 	if (!dname)
972 		return;
973 
974 	seq_printf(s, "%s ", dname);
975 
976 	do {
977 		seq = u64_stats_fetch_begin(&bis->sync);
978 
979 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
980 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
981 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
982 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
983 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
984 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
985 	} while (u64_stats_fetch_retry(&bis->sync, seq));
986 
987 	if (rbytes || wbytes || rios || wios) {
988 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
989 			rbytes, wbytes, rios, wios,
990 			dbytes, dios);
991 	}
992 
993 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
994 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
995 			atomic_read(&blkg->use_delay),
996 			atomic64_read(&blkg->delay_nsec));
997 	}
998 
999 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1000 		struct blkcg_policy *pol = blkcg_policy[i];
1001 
1002 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1003 			continue;
1004 
1005 		pol->pd_stat_fn(blkg->pd[i], s);
1006 	}
1007 
1008 	seq_puts(s, "\n");
1009 }
1010 
1011 static int blkcg_print_stat(struct seq_file *sf, void *v)
1012 {
1013 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1014 	struct blkcg_gq *blkg;
1015 
1016 	if (!seq_css(sf)->parent)
1017 		blkcg_fill_root_iostats();
1018 	else
1019 		cgroup_rstat_flush(blkcg->css.cgroup);
1020 
1021 	rcu_read_lock();
1022 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1023 		spin_lock_irq(&blkg->q->queue_lock);
1024 		blkcg_print_one_stat(blkg, sf);
1025 		spin_unlock_irq(&blkg->q->queue_lock);
1026 	}
1027 	rcu_read_unlock();
1028 	return 0;
1029 }
1030 
1031 static struct cftype blkcg_files[] = {
1032 	{
1033 		.name = "stat",
1034 		.seq_show = blkcg_print_stat,
1035 	},
1036 	{ }	/* terminate */
1037 };
1038 
1039 static struct cftype blkcg_legacy_files[] = {
1040 	{
1041 		.name = "reset_stats",
1042 		.write_u64 = blkcg_reset_stats,
1043 	},
1044 	{ }	/* terminate */
1045 };
1046 
1047 #ifdef CONFIG_CGROUP_WRITEBACK
1048 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1049 {
1050 	return &css_to_blkcg(css)->cgwb_list;
1051 }
1052 #endif
1053 
1054 /*
1055  * blkcg destruction is a three-stage process.
1056  *
1057  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1058  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1059  *    to the completion of writeback associated with the blkcg.  This lets us
1060  *    avoid punting potentially large amounts of outstanding writeback to root
1061  *    while maintaining any ongoing policies.  The next stage is triggered when
1062  *    the nr_cgwbs count goes to zero.
1063  *
1064  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1065  *    and handles the destruction of blkgs.  Here the css reference held by
1066  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1067  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1068  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1069  *    punted to the root_blkg.
1070  *
1071  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1072  *    This finally frees the blkcg.
1073  */
1074 
1075 /**
1076  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1077  * @blkcg: blkcg of interest
1078  *
1079  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1080  * is nested inside q lock, this function performs reverse double lock dancing.
1081  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1082  * blkcg_css_free to eventually be called.
1083  *
1084  * This is the blkcg counterpart of ioc_release_fn().
1085  */
1086 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1087 {
1088 	might_sleep();
1089 
1090 	spin_lock_irq(&blkcg->lock);
1091 
1092 	while (!hlist_empty(&blkcg->blkg_list)) {
1093 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1094 						struct blkcg_gq, blkcg_node);
1095 		struct request_queue *q = blkg->q;
1096 
1097 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1098 			/*
1099 			 * Given that the system can accumulate a huge number
1100 			 * of blkgs in pathological cases, check to see if we
1101 			 * need to rescheduling to avoid softlockup.
1102 			 */
1103 			spin_unlock_irq(&blkcg->lock);
1104 			cond_resched();
1105 			spin_lock_irq(&blkcg->lock);
1106 			continue;
1107 		}
1108 
1109 		blkg_destroy(blkg);
1110 		spin_unlock(&q->queue_lock);
1111 	}
1112 
1113 	spin_unlock_irq(&blkcg->lock);
1114 }
1115 
1116 /**
1117  * blkcg_pin_online - pin online state
1118  * @blkcg_css: blkcg of interest
1119  *
1120  * While pinned, a blkcg is kept online.  This is primarily used to
1121  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1122  * while an associated cgwb is still active.
1123  */
1124 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1125 {
1126 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1127 }
1128 
1129 /**
1130  * blkcg_unpin_online - unpin online state
1131  * @blkcg_css: blkcg of interest
1132  *
1133  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1134  * that blkg doesn't go offline while an associated cgwb is still active.
1135  * When this count goes to zero, all active cgwbs have finished so the
1136  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1137  */
1138 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1139 {
1140 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1141 
1142 	do {
1143 		if (!refcount_dec_and_test(&blkcg->online_pin))
1144 			break;
1145 		blkcg_destroy_blkgs(blkcg);
1146 		blkcg = blkcg_parent(blkcg);
1147 	} while (blkcg);
1148 }
1149 
1150 /**
1151  * blkcg_css_offline - cgroup css_offline callback
1152  * @css: css of interest
1153  *
1154  * This function is called when @css is about to go away.  Here the cgwbs are
1155  * offlined first and only once writeback associated with the blkcg has
1156  * finished do we start step 2 (see above).
1157  */
1158 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1159 {
1160 	/* this prevents anyone from attaching or migrating to this blkcg */
1161 	wb_blkcg_offline(css);
1162 
1163 	/* put the base online pin allowing step 2 to be triggered */
1164 	blkcg_unpin_online(css);
1165 }
1166 
1167 static void blkcg_css_free(struct cgroup_subsys_state *css)
1168 {
1169 	struct blkcg *blkcg = css_to_blkcg(css);
1170 	int i;
1171 
1172 	mutex_lock(&blkcg_pol_mutex);
1173 
1174 	list_del(&blkcg->all_blkcgs_node);
1175 
1176 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1177 		if (blkcg->cpd[i])
1178 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1179 
1180 	mutex_unlock(&blkcg_pol_mutex);
1181 
1182 	free_percpu(blkcg->lhead);
1183 	kfree(blkcg);
1184 }
1185 
1186 static struct cgroup_subsys_state *
1187 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1188 {
1189 	struct blkcg *blkcg;
1190 	int i;
1191 
1192 	mutex_lock(&blkcg_pol_mutex);
1193 
1194 	if (!parent_css) {
1195 		blkcg = &blkcg_root;
1196 	} else {
1197 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1198 		if (!blkcg)
1199 			goto unlock;
1200 	}
1201 
1202 	if (init_blkcg_llists(blkcg))
1203 		goto free_blkcg;
1204 
1205 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1206 		struct blkcg_policy *pol = blkcg_policy[i];
1207 		struct blkcg_policy_data *cpd;
1208 
1209 		/*
1210 		 * If the policy hasn't been attached yet, wait for it
1211 		 * to be attached before doing anything else. Otherwise,
1212 		 * check if the policy requires any specific per-cgroup
1213 		 * data: if it does, allocate and initialize it.
1214 		 */
1215 		if (!pol || !pol->cpd_alloc_fn)
1216 			continue;
1217 
1218 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1219 		if (!cpd)
1220 			goto free_pd_blkcg;
1221 
1222 		blkcg->cpd[i] = cpd;
1223 		cpd->blkcg = blkcg;
1224 		cpd->plid = i;
1225 		if (pol->cpd_init_fn)
1226 			pol->cpd_init_fn(cpd);
1227 	}
1228 
1229 	spin_lock_init(&blkcg->lock);
1230 	refcount_set(&blkcg->online_pin, 1);
1231 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1232 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1233 #ifdef CONFIG_CGROUP_WRITEBACK
1234 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1235 #endif
1236 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1237 
1238 	mutex_unlock(&blkcg_pol_mutex);
1239 	return &blkcg->css;
1240 
1241 free_pd_blkcg:
1242 	for (i--; i >= 0; i--)
1243 		if (blkcg->cpd[i])
1244 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1245 	free_percpu(blkcg->lhead);
1246 free_blkcg:
1247 	if (blkcg != &blkcg_root)
1248 		kfree(blkcg);
1249 unlock:
1250 	mutex_unlock(&blkcg_pol_mutex);
1251 	return ERR_PTR(-ENOMEM);
1252 }
1253 
1254 static int blkcg_css_online(struct cgroup_subsys_state *css)
1255 {
1256 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1257 
1258 	/*
1259 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1260 	 * don't go offline while cgwbs are still active on them.  Pin the
1261 	 * parent so that offline always happens towards the root.
1262 	 */
1263 	if (parent)
1264 		blkcg_pin_online(&parent->css);
1265 	return 0;
1266 }
1267 
1268 int blkcg_init_disk(struct gendisk *disk)
1269 {
1270 	struct request_queue *q = disk->queue;
1271 	struct blkcg_gq *new_blkg, *blkg;
1272 	bool preloaded;
1273 	int ret;
1274 
1275 	INIT_LIST_HEAD(&q->blkg_list);
1276 
1277 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1278 	if (!new_blkg)
1279 		return -ENOMEM;
1280 
1281 	preloaded = !radix_tree_preload(GFP_KERNEL);
1282 
1283 	/* Make sure the root blkg exists. */
1284 	/* spin_lock_irq can serve as RCU read-side critical section. */
1285 	spin_lock_irq(&q->queue_lock);
1286 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1287 	if (IS_ERR(blkg))
1288 		goto err_unlock;
1289 	q->root_blkg = blkg;
1290 	spin_unlock_irq(&q->queue_lock);
1291 
1292 	if (preloaded)
1293 		radix_tree_preload_end();
1294 
1295 	ret = blk_ioprio_init(disk);
1296 	if (ret)
1297 		goto err_destroy_all;
1298 
1299 	ret = blk_throtl_init(disk);
1300 	if (ret)
1301 		goto err_ioprio_exit;
1302 
1303 	ret = blk_iolatency_init(disk);
1304 	if (ret)
1305 		goto err_throtl_exit;
1306 
1307 	return 0;
1308 
1309 err_throtl_exit:
1310 	blk_throtl_exit(disk);
1311 err_ioprio_exit:
1312 	blk_ioprio_exit(disk);
1313 err_destroy_all:
1314 	blkg_destroy_all(disk);
1315 	return ret;
1316 err_unlock:
1317 	spin_unlock_irq(&q->queue_lock);
1318 	if (preloaded)
1319 		radix_tree_preload_end();
1320 	return PTR_ERR(blkg);
1321 }
1322 
1323 void blkcg_exit_disk(struct gendisk *disk)
1324 {
1325 	blkg_destroy_all(disk);
1326 	rq_qos_exit(disk->queue);
1327 	blk_throtl_exit(disk);
1328 }
1329 
1330 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1331 {
1332 	int i;
1333 
1334 	mutex_lock(&blkcg_pol_mutex);
1335 
1336 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1337 		struct blkcg_policy *pol = blkcg_policy[i];
1338 		struct blkcg *blkcg;
1339 
1340 		if (!pol || !pol->cpd_bind_fn)
1341 			continue;
1342 
1343 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1344 			if (blkcg->cpd[pol->plid])
1345 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1346 	}
1347 	mutex_unlock(&blkcg_pol_mutex);
1348 }
1349 
1350 static void blkcg_exit(struct task_struct *tsk)
1351 {
1352 	if (tsk->throttle_queue)
1353 		blk_put_queue(tsk->throttle_queue);
1354 	tsk->throttle_queue = NULL;
1355 }
1356 
1357 struct cgroup_subsys io_cgrp_subsys = {
1358 	.css_alloc = blkcg_css_alloc,
1359 	.css_online = blkcg_css_online,
1360 	.css_offline = blkcg_css_offline,
1361 	.css_free = blkcg_css_free,
1362 	.css_rstat_flush = blkcg_rstat_flush,
1363 	.bind = blkcg_bind,
1364 	.dfl_cftypes = blkcg_files,
1365 	.legacy_cftypes = blkcg_legacy_files,
1366 	.legacy_name = "blkio",
1367 	.exit = blkcg_exit,
1368 #ifdef CONFIG_MEMCG
1369 	/*
1370 	 * This ensures that, if available, memcg is automatically enabled
1371 	 * together on the default hierarchy so that the owner cgroup can
1372 	 * be retrieved from writeback pages.
1373 	 */
1374 	.depends_on = 1 << memory_cgrp_id,
1375 #endif
1376 };
1377 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1378 
1379 /**
1380  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1381  * @q: request_queue of interest
1382  * @pol: blkcg policy to activate
1383  *
1384  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1385  * bypass mode to populate its blkgs with policy_data for @pol.
1386  *
1387  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1388  * from IO path.  Update of each blkg is protected by both queue and blkcg
1389  * locks so that holding either lock and testing blkcg_policy_enabled() is
1390  * always enough for dereferencing policy data.
1391  *
1392  * The caller is responsible for synchronizing [de]activations and policy
1393  * [un]registerations.  Returns 0 on success, -errno on failure.
1394  */
1395 int blkcg_activate_policy(struct request_queue *q,
1396 			  const struct blkcg_policy *pol)
1397 {
1398 	struct blkg_policy_data *pd_prealloc = NULL;
1399 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1400 	int ret;
1401 
1402 	if (blkcg_policy_enabled(q, pol))
1403 		return 0;
1404 
1405 	if (queue_is_mq(q))
1406 		blk_mq_freeze_queue(q);
1407 retry:
1408 	spin_lock_irq(&q->queue_lock);
1409 
1410 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1411 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1412 		struct blkg_policy_data *pd;
1413 
1414 		if (blkg->pd[pol->plid])
1415 			continue;
1416 
1417 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1418 		if (blkg == pinned_blkg) {
1419 			pd = pd_prealloc;
1420 			pd_prealloc = NULL;
1421 		} else {
1422 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1423 					      blkg->blkcg);
1424 		}
1425 
1426 		if (!pd) {
1427 			/*
1428 			 * GFP_NOWAIT failed.  Free the existing one and
1429 			 * prealloc for @blkg w/ GFP_KERNEL.
1430 			 */
1431 			if (pinned_blkg)
1432 				blkg_put(pinned_blkg);
1433 			blkg_get(blkg);
1434 			pinned_blkg = blkg;
1435 
1436 			spin_unlock_irq(&q->queue_lock);
1437 
1438 			if (pd_prealloc)
1439 				pol->pd_free_fn(pd_prealloc);
1440 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1441 						       blkg->blkcg);
1442 			if (pd_prealloc)
1443 				goto retry;
1444 			else
1445 				goto enomem;
1446 		}
1447 
1448 		blkg->pd[pol->plid] = pd;
1449 		pd->blkg = blkg;
1450 		pd->plid = pol->plid;
1451 	}
1452 
1453 	/* all allocated, init in the same order */
1454 	if (pol->pd_init_fn)
1455 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1456 			pol->pd_init_fn(blkg->pd[pol->plid]);
1457 
1458 	__set_bit(pol->plid, q->blkcg_pols);
1459 	ret = 0;
1460 
1461 	spin_unlock_irq(&q->queue_lock);
1462 out:
1463 	if (queue_is_mq(q))
1464 		blk_mq_unfreeze_queue(q);
1465 	if (pinned_blkg)
1466 		blkg_put(pinned_blkg);
1467 	if (pd_prealloc)
1468 		pol->pd_free_fn(pd_prealloc);
1469 	return ret;
1470 
1471 enomem:
1472 	/* alloc failed, nothing's initialized yet, free everything */
1473 	spin_lock_irq(&q->queue_lock);
1474 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1475 		struct blkcg *blkcg = blkg->blkcg;
1476 
1477 		spin_lock(&blkcg->lock);
1478 		if (blkg->pd[pol->plid]) {
1479 			pol->pd_free_fn(blkg->pd[pol->plid]);
1480 			blkg->pd[pol->plid] = NULL;
1481 		}
1482 		spin_unlock(&blkcg->lock);
1483 	}
1484 	spin_unlock_irq(&q->queue_lock);
1485 	ret = -ENOMEM;
1486 	goto out;
1487 }
1488 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1489 
1490 /**
1491  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1492  * @q: request_queue of interest
1493  * @pol: blkcg policy to deactivate
1494  *
1495  * Deactivate @pol on @q.  Follows the same synchronization rules as
1496  * blkcg_activate_policy().
1497  */
1498 void blkcg_deactivate_policy(struct request_queue *q,
1499 			     const struct blkcg_policy *pol)
1500 {
1501 	struct blkcg_gq *blkg;
1502 
1503 	if (!blkcg_policy_enabled(q, pol))
1504 		return;
1505 
1506 	if (queue_is_mq(q))
1507 		blk_mq_freeze_queue(q);
1508 
1509 	spin_lock_irq(&q->queue_lock);
1510 
1511 	__clear_bit(pol->plid, q->blkcg_pols);
1512 
1513 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1514 		struct blkcg *blkcg = blkg->blkcg;
1515 
1516 		spin_lock(&blkcg->lock);
1517 		if (blkg->pd[pol->plid]) {
1518 			if (pol->pd_offline_fn)
1519 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1520 			pol->pd_free_fn(blkg->pd[pol->plid]);
1521 			blkg->pd[pol->plid] = NULL;
1522 		}
1523 		spin_unlock(&blkcg->lock);
1524 	}
1525 
1526 	spin_unlock_irq(&q->queue_lock);
1527 
1528 	if (queue_is_mq(q))
1529 		blk_mq_unfreeze_queue(q);
1530 }
1531 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1532 
1533 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1534 {
1535 	struct blkcg *blkcg;
1536 
1537 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1538 		if (blkcg->cpd[pol->plid]) {
1539 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1540 			blkcg->cpd[pol->plid] = NULL;
1541 		}
1542 	}
1543 }
1544 
1545 /**
1546  * blkcg_policy_register - register a blkcg policy
1547  * @pol: blkcg policy to register
1548  *
1549  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1550  * successful registration.  Returns 0 on success and -errno on failure.
1551  */
1552 int blkcg_policy_register(struct blkcg_policy *pol)
1553 {
1554 	struct blkcg *blkcg;
1555 	int i, ret;
1556 
1557 	mutex_lock(&blkcg_pol_register_mutex);
1558 	mutex_lock(&blkcg_pol_mutex);
1559 
1560 	/* find an empty slot */
1561 	ret = -ENOSPC;
1562 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1563 		if (!blkcg_policy[i])
1564 			break;
1565 	if (i >= BLKCG_MAX_POLS) {
1566 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1567 		goto err_unlock;
1568 	}
1569 
1570 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1571 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1572 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1573 		goto err_unlock;
1574 
1575 	/* register @pol */
1576 	pol->plid = i;
1577 	blkcg_policy[pol->plid] = pol;
1578 
1579 	/* allocate and install cpd's */
1580 	if (pol->cpd_alloc_fn) {
1581 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1582 			struct blkcg_policy_data *cpd;
1583 
1584 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1585 			if (!cpd)
1586 				goto err_free_cpds;
1587 
1588 			blkcg->cpd[pol->plid] = cpd;
1589 			cpd->blkcg = blkcg;
1590 			cpd->plid = pol->plid;
1591 			if (pol->cpd_init_fn)
1592 				pol->cpd_init_fn(cpd);
1593 		}
1594 	}
1595 
1596 	mutex_unlock(&blkcg_pol_mutex);
1597 
1598 	/* everything is in place, add intf files for the new policy */
1599 	if (pol->dfl_cftypes)
1600 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1601 					       pol->dfl_cftypes));
1602 	if (pol->legacy_cftypes)
1603 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1604 						  pol->legacy_cftypes));
1605 	mutex_unlock(&blkcg_pol_register_mutex);
1606 	return 0;
1607 
1608 err_free_cpds:
1609 	if (pol->cpd_free_fn)
1610 		blkcg_free_all_cpd(pol);
1611 
1612 	blkcg_policy[pol->plid] = NULL;
1613 err_unlock:
1614 	mutex_unlock(&blkcg_pol_mutex);
1615 	mutex_unlock(&blkcg_pol_register_mutex);
1616 	return ret;
1617 }
1618 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1619 
1620 /**
1621  * blkcg_policy_unregister - unregister a blkcg policy
1622  * @pol: blkcg policy to unregister
1623  *
1624  * Undo blkcg_policy_register(@pol).  Might sleep.
1625  */
1626 void blkcg_policy_unregister(struct blkcg_policy *pol)
1627 {
1628 	mutex_lock(&blkcg_pol_register_mutex);
1629 
1630 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1631 		goto out_unlock;
1632 
1633 	/* kill the intf files first */
1634 	if (pol->dfl_cftypes)
1635 		cgroup_rm_cftypes(pol->dfl_cftypes);
1636 	if (pol->legacy_cftypes)
1637 		cgroup_rm_cftypes(pol->legacy_cftypes);
1638 
1639 	/* remove cpds and unregister */
1640 	mutex_lock(&blkcg_pol_mutex);
1641 
1642 	if (pol->cpd_free_fn)
1643 		blkcg_free_all_cpd(pol);
1644 
1645 	blkcg_policy[pol->plid] = NULL;
1646 
1647 	mutex_unlock(&blkcg_pol_mutex);
1648 out_unlock:
1649 	mutex_unlock(&blkcg_pol_register_mutex);
1650 }
1651 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1652 
1653 bool __blkcg_punt_bio_submit(struct bio *bio)
1654 {
1655 	struct blkcg_gq *blkg = bio->bi_blkg;
1656 
1657 	/* consume the flag first */
1658 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1659 
1660 	/* never bounce for the root cgroup */
1661 	if (!blkg->parent)
1662 		return false;
1663 
1664 	spin_lock_bh(&blkg->async_bio_lock);
1665 	bio_list_add(&blkg->async_bios, bio);
1666 	spin_unlock_bh(&blkg->async_bio_lock);
1667 
1668 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1669 	return true;
1670 }
1671 
1672 /*
1673  * Scale the accumulated delay based on how long it has been since we updated
1674  * the delay.  We only call this when we are adding delay, in case it's been a
1675  * while since we added delay, and when we are checking to see if we need to
1676  * delay a task, to account for any delays that may have occurred.
1677  */
1678 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1679 {
1680 	u64 old = atomic64_read(&blkg->delay_start);
1681 
1682 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1683 	if (atomic_read(&blkg->use_delay) < 0)
1684 		return;
1685 
1686 	/*
1687 	 * We only want to scale down every second.  The idea here is that we
1688 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1689 	 * time window.  We only want to throttle tasks for recent delay that
1690 	 * has occurred, in 1 second time windows since that's the maximum
1691 	 * things can be throttled.  We save the current delay window in
1692 	 * blkg->last_delay so we know what amount is still left to be charged
1693 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1694 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1695 	 * are ok with whatever is happening now, and we can take away more of
1696 	 * the accumulated delay as we've already throttled enough that
1697 	 * everybody is happy with their IO latencies.
1698 	 */
1699 	if (time_before64(old + NSEC_PER_SEC, now) &&
1700 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1701 		u64 cur = atomic64_read(&blkg->delay_nsec);
1702 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1703 		int cur_use = atomic_read(&blkg->use_delay);
1704 
1705 		/*
1706 		 * We've been unthrottled, subtract a larger chunk of our
1707 		 * accumulated delay.
1708 		 */
1709 		if (cur_use < blkg->last_use)
1710 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1711 
1712 		/*
1713 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1714 		 * should only ever be growing except here where we subtract out
1715 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1716 		 * rather not end up with negative numbers.
1717 		 */
1718 		if (unlikely(cur < sub)) {
1719 			atomic64_set(&blkg->delay_nsec, 0);
1720 			blkg->last_delay = 0;
1721 		} else {
1722 			atomic64_sub(sub, &blkg->delay_nsec);
1723 			blkg->last_delay = cur - sub;
1724 		}
1725 		blkg->last_use = cur_use;
1726 	}
1727 }
1728 
1729 /*
1730  * This is called when we want to actually walk up the hierarchy and check to
1731  * see if we need to throttle, and then actually throttle if there is some
1732  * accumulated delay.  This should only be called upon return to user space so
1733  * we're not holding some lock that would induce a priority inversion.
1734  */
1735 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1736 {
1737 	unsigned long pflags;
1738 	bool clamp;
1739 	u64 now = ktime_to_ns(ktime_get());
1740 	u64 exp;
1741 	u64 delay_nsec = 0;
1742 	int tok;
1743 
1744 	while (blkg->parent) {
1745 		int use_delay = atomic_read(&blkg->use_delay);
1746 
1747 		if (use_delay) {
1748 			u64 this_delay;
1749 
1750 			blkcg_scale_delay(blkg, now);
1751 			this_delay = atomic64_read(&blkg->delay_nsec);
1752 			if (this_delay > delay_nsec) {
1753 				delay_nsec = this_delay;
1754 				clamp = use_delay > 0;
1755 			}
1756 		}
1757 		blkg = blkg->parent;
1758 	}
1759 
1760 	if (!delay_nsec)
1761 		return;
1762 
1763 	/*
1764 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1765 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1766 	 * delay, and we want userspace to be able to do _something_ so cap the
1767 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1768 	 * tasks will be delayed for 0.25 second for every syscall. If
1769 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1770 	 * caller is responsible for regulating the range.
1771 	 */
1772 	if (clamp)
1773 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1774 
1775 	if (use_memdelay)
1776 		psi_memstall_enter(&pflags);
1777 
1778 	exp = ktime_add_ns(now, delay_nsec);
1779 	tok = io_schedule_prepare();
1780 	do {
1781 		__set_current_state(TASK_KILLABLE);
1782 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1783 			break;
1784 	} while (!fatal_signal_pending(current));
1785 	io_schedule_finish(tok);
1786 
1787 	if (use_memdelay)
1788 		psi_memstall_leave(&pflags);
1789 }
1790 
1791 /**
1792  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1793  *
1794  * This is only called if we've been marked with set_notify_resume().  Obviously
1795  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1796  * check to see if current->throttle_queue is set and if not this doesn't do
1797  * anything.  This should only ever be called by the resume code, it's not meant
1798  * to be called by people willy-nilly as it will actually do the work to
1799  * throttle the task if it is setup for throttling.
1800  */
1801 void blkcg_maybe_throttle_current(void)
1802 {
1803 	struct request_queue *q = current->throttle_queue;
1804 	struct blkcg *blkcg;
1805 	struct blkcg_gq *blkg;
1806 	bool use_memdelay = current->use_memdelay;
1807 
1808 	if (!q)
1809 		return;
1810 
1811 	current->throttle_queue = NULL;
1812 	current->use_memdelay = false;
1813 
1814 	rcu_read_lock();
1815 	blkcg = css_to_blkcg(blkcg_css());
1816 	if (!blkcg)
1817 		goto out;
1818 	blkg = blkg_lookup(blkcg, q);
1819 	if (!blkg)
1820 		goto out;
1821 	if (!blkg_tryget(blkg))
1822 		goto out;
1823 	rcu_read_unlock();
1824 
1825 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1826 	blkg_put(blkg);
1827 	blk_put_queue(q);
1828 	return;
1829 out:
1830 	rcu_read_unlock();
1831 	blk_put_queue(q);
1832 }
1833 
1834 /**
1835  * blkcg_schedule_throttle - this task needs to check for throttling
1836  * @disk: disk to throttle
1837  * @use_memdelay: do we charge this to memory delay for PSI
1838  *
1839  * This is called by the IO controller when we know there's delay accumulated
1840  * for the blkg for this task.  We do not pass the blkg because there are places
1841  * we call this that may not have that information, the swapping code for
1842  * instance will only have a block_device at that point.  This set's the
1843  * notify_resume for the task to check and see if it requires throttling before
1844  * returning to user space.
1845  *
1846  * We will only schedule once per syscall.  You can call this over and over
1847  * again and it will only do the check once upon return to user space, and only
1848  * throttle once.  If the task needs to be throttled again it'll need to be
1849  * re-set at the next time we see the task.
1850  */
1851 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1852 {
1853 	struct request_queue *q = disk->queue;
1854 
1855 	if (unlikely(current->flags & PF_KTHREAD))
1856 		return;
1857 
1858 	if (current->throttle_queue != q) {
1859 		if (!blk_get_queue(q))
1860 			return;
1861 
1862 		if (current->throttle_queue)
1863 			blk_put_queue(current->throttle_queue);
1864 		current->throttle_queue = q;
1865 	}
1866 
1867 	if (use_memdelay)
1868 		current->use_memdelay = use_memdelay;
1869 	set_notify_resume(current);
1870 }
1871 
1872 /**
1873  * blkcg_add_delay - add delay to this blkg
1874  * @blkg: blkg of interest
1875  * @now: the current time in nanoseconds
1876  * @delta: how many nanoseconds of delay to add
1877  *
1878  * Charge @delta to the blkg's current delay accumulation.  This is used to
1879  * throttle tasks if an IO controller thinks we need more throttling.
1880  */
1881 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1882 {
1883 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1884 		return;
1885 	blkcg_scale_delay(blkg, now);
1886 	atomic64_add(delta, &blkg->delay_nsec);
1887 }
1888 
1889 /**
1890  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1891  * @bio: target bio
1892  * @css: target css
1893  *
1894  * As the failure mode here is to walk up the blkg tree, this ensure that the
1895  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1896  * up taking a reference on or %NULL if no reference was taken.
1897  */
1898 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1899 		struct cgroup_subsys_state *css)
1900 {
1901 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1902 
1903 	rcu_read_lock();
1904 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1905 	while (blkg) {
1906 		if (blkg_tryget(blkg)) {
1907 			ret_blkg = blkg;
1908 			break;
1909 		}
1910 		blkg = blkg->parent;
1911 	}
1912 	rcu_read_unlock();
1913 
1914 	return ret_blkg;
1915 }
1916 
1917 /**
1918  * bio_associate_blkg_from_css - associate a bio with a specified css
1919  * @bio: target bio
1920  * @css: target css
1921  *
1922  * Associate @bio with the blkg found by combining the css's blkg and the
1923  * request_queue of the @bio.  An association failure is handled by walking up
1924  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1925  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1926  * then the remaining bios will spill to the closest alive blkg.
1927  *
1928  * A reference will be taken on the blkg and will be released when @bio is
1929  * freed.
1930  */
1931 void bio_associate_blkg_from_css(struct bio *bio,
1932 				 struct cgroup_subsys_state *css)
1933 {
1934 	if (bio->bi_blkg)
1935 		blkg_put(bio->bi_blkg);
1936 
1937 	if (css && css->parent) {
1938 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1939 	} else {
1940 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1941 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1942 	}
1943 }
1944 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1945 
1946 /**
1947  * bio_associate_blkg - associate a bio with a blkg
1948  * @bio: target bio
1949  *
1950  * Associate @bio with the blkg found from the bio's css and request_queue.
1951  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1952  * already associated, the css is reused and association redone as the
1953  * request_queue may have changed.
1954  */
1955 void bio_associate_blkg(struct bio *bio)
1956 {
1957 	struct cgroup_subsys_state *css;
1958 
1959 	rcu_read_lock();
1960 
1961 	if (bio->bi_blkg)
1962 		css = bio_blkcg_css(bio);
1963 	else
1964 		css = blkcg_css();
1965 
1966 	bio_associate_blkg_from_css(bio, css);
1967 
1968 	rcu_read_unlock();
1969 }
1970 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1971 
1972 /**
1973  * bio_clone_blkg_association - clone blkg association from src to dst bio
1974  * @dst: destination bio
1975  * @src: source bio
1976  */
1977 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1978 {
1979 	if (src->bi_blkg)
1980 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
1981 }
1982 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1983 
1984 static int blk_cgroup_io_type(struct bio *bio)
1985 {
1986 	if (op_is_discard(bio->bi_opf))
1987 		return BLKG_IOSTAT_DISCARD;
1988 	if (op_is_write(bio->bi_opf))
1989 		return BLKG_IOSTAT_WRITE;
1990 	return BLKG_IOSTAT_READ;
1991 }
1992 
1993 void blk_cgroup_bio_start(struct bio *bio)
1994 {
1995 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
1996 	int rwd = blk_cgroup_io_type(bio), cpu;
1997 	struct blkg_iostat_set *bis;
1998 	unsigned long flags;
1999 
2000 	cpu = get_cpu();
2001 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2002 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2003 
2004 	/*
2005 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2006 	 * bio and we would have already accounted for the size of the bio.
2007 	 */
2008 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2009 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2010 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2011 	}
2012 	bis->cur.ios[rwd]++;
2013 
2014 	/*
2015 	 * If the iostat_cpu isn't in a lockless list, put it into the
2016 	 * list to indicate that a stat update is pending.
2017 	 */
2018 	if (!READ_ONCE(bis->lqueued)) {
2019 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2020 
2021 		llist_add(&bis->lnode, lhead);
2022 		WRITE_ONCE(bis->lqueued, true);
2023 		percpu_ref_get(&bis->blkg->refcnt);
2024 	}
2025 
2026 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2027 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2028 		cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2029 	put_cpu();
2030 }
2031 
2032 bool blk_cgroup_congested(void)
2033 {
2034 	struct cgroup_subsys_state *css;
2035 	bool ret = false;
2036 
2037 	rcu_read_lock();
2038 	for (css = blkcg_css(); css; css = css->parent) {
2039 		if (atomic_read(&css->cgroup->congestion_count)) {
2040 			ret = true;
2041 			break;
2042 		}
2043 	}
2044 	rcu_read_unlock();
2045 	return ret;
2046 }
2047 
2048 static int __init blkcg_init(void)
2049 {
2050 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2051 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
2052 					    WQ_UNBOUND | WQ_SYSFS, 0);
2053 	if (!blkcg_punt_bio_wq)
2054 		return -ENOMEM;
2055 	return 0;
2056 }
2057 subsys_initcall(blkcg_init);
2058 
2059 module_param(blkcg_debug_stats, bool, 0644);
2060 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2061