1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 /* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44 static DEFINE_MUTEX(blkcg_pol_register_mutex); 45 static DEFINE_MUTEX(blkcg_pol_mutex); 46 47 struct blkcg blkcg_root; 48 EXPORT_SYMBOL_GPL(blkcg_root); 49 50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51 EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57 bool blkcg_debug_stats = false; 58 static struct workqueue_struct *blkcg_punt_bio_wq; 59 60 #define BLKG_DESTROY_BATCH_SIZE 64 61 62 /** 63 * blkcg_css - find the current css 64 * 65 * Find the css associated with either the kthread or the current task. 66 * This may return a dying css, so it is up to the caller to use tryget logic 67 * to confirm it is alive and well. 68 */ 69 static struct cgroup_subsys_state *blkcg_css(void) 70 { 71 struct cgroup_subsys_state *css; 72 73 css = kthread_blkcg(); 74 if (css) 75 return css; 76 return task_css(current, io_cgrp_id); 77 } 78 79 static bool blkcg_policy_enabled(struct request_queue *q, 80 const struct blkcg_policy *pol) 81 { 82 return pol && test_bit(pol->plid, q->blkcg_pols); 83 } 84 85 static void blkg_free_workfn(struct work_struct *work) 86 { 87 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 88 free_work); 89 int i; 90 91 for (i = 0; i < BLKCG_MAX_POLS; i++) 92 if (blkg->pd[i]) 93 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 94 95 if (blkg->q) 96 blk_put_queue(blkg->q); 97 free_percpu(blkg->iostat_cpu); 98 percpu_ref_exit(&blkg->refcnt); 99 kfree(blkg); 100 } 101 102 /** 103 * blkg_free - free a blkg 104 * @blkg: blkg to free 105 * 106 * Free @blkg which may be partially allocated. 107 */ 108 static void blkg_free(struct blkcg_gq *blkg) 109 { 110 if (!blkg) 111 return; 112 113 /* 114 * Both ->pd_free_fn() and request queue's release handler may 115 * sleep, so free us by scheduling one work func 116 */ 117 INIT_WORK(&blkg->free_work, blkg_free_workfn); 118 schedule_work(&blkg->free_work); 119 } 120 121 static void __blkg_release(struct rcu_head *rcu) 122 { 123 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 124 125 WARN_ON(!bio_list_empty(&blkg->async_bios)); 126 127 /* release the blkcg and parent blkg refs this blkg has been holding */ 128 css_put(&blkg->blkcg->css); 129 if (blkg->parent) 130 blkg_put(blkg->parent); 131 blkg_free(blkg); 132 } 133 134 /* 135 * A group is RCU protected, but having an rcu lock does not mean that one 136 * can access all the fields of blkg and assume these are valid. For 137 * example, don't try to follow throtl_data and request queue links. 138 * 139 * Having a reference to blkg under an rcu allows accesses to only values 140 * local to groups like group stats and group rate limits. 141 */ 142 static void blkg_release(struct percpu_ref *ref) 143 { 144 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 145 146 call_rcu(&blkg->rcu_head, __blkg_release); 147 } 148 149 static void blkg_async_bio_workfn(struct work_struct *work) 150 { 151 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 152 async_bio_work); 153 struct bio_list bios = BIO_EMPTY_LIST; 154 struct bio *bio; 155 struct blk_plug plug; 156 bool need_plug = false; 157 158 /* as long as there are pending bios, @blkg can't go away */ 159 spin_lock_bh(&blkg->async_bio_lock); 160 bio_list_merge(&bios, &blkg->async_bios); 161 bio_list_init(&blkg->async_bios); 162 spin_unlock_bh(&blkg->async_bio_lock); 163 164 /* start plug only when bio_list contains at least 2 bios */ 165 if (bios.head && bios.head->bi_next) { 166 need_plug = true; 167 blk_start_plug(&plug); 168 } 169 while ((bio = bio_list_pop(&bios))) 170 submit_bio(bio); 171 if (need_plug) 172 blk_finish_plug(&plug); 173 } 174 175 /** 176 * bio_blkcg_css - return the blkcg CSS associated with a bio 177 * @bio: target bio 178 * 179 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 180 * associated. Callers are expected to either handle %NULL or know association 181 * has been done prior to calling this. 182 */ 183 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 184 { 185 if (!bio || !bio->bi_blkg) 186 return NULL; 187 return &bio->bi_blkg->blkcg->css; 188 } 189 EXPORT_SYMBOL_GPL(bio_blkcg_css); 190 191 /** 192 * blkcg_parent - get the parent of a blkcg 193 * @blkcg: blkcg of interest 194 * 195 * Return the parent blkcg of @blkcg. Can be called anytime. 196 */ 197 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 198 { 199 return css_to_blkcg(blkcg->css.parent); 200 } 201 202 /** 203 * blkg_alloc - allocate a blkg 204 * @blkcg: block cgroup the new blkg is associated with 205 * @q: request_queue the new blkg is associated with 206 * @gfp_mask: allocation mask to use 207 * 208 * Allocate a new blkg assocating @blkcg and @q. 209 */ 210 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 211 gfp_t gfp_mask) 212 { 213 struct blkcg_gq *blkg; 214 int i, cpu; 215 216 /* alloc and init base part */ 217 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 218 if (!blkg) 219 return NULL; 220 221 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 222 goto err_free; 223 224 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 225 if (!blkg->iostat_cpu) 226 goto err_free; 227 228 if (!blk_get_queue(q)) 229 goto err_free; 230 231 blkg->q = q; 232 INIT_LIST_HEAD(&blkg->q_node); 233 spin_lock_init(&blkg->async_bio_lock); 234 bio_list_init(&blkg->async_bios); 235 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 236 blkg->blkcg = blkcg; 237 238 u64_stats_init(&blkg->iostat.sync); 239 for_each_possible_cpu(cpu) 240 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 241 242 for (i = 0; i < BLKCG_MAX_POLS; i++) { 243 struct blkcg_policy *pol = blkcg_policy[i]; 244 struct blkg_policy_data *pd; 245 246 if (!blkcg_policy_enabled(q, pol)) 247 continue; 248 249 /* alloc per-policy data and attach it to blkg */ 250 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 251 if (!pd) 252 goto err_free; 253 254 blkg->pd[i] = pd; 255 pd->blkg = blkg; 256 pd->plid = i; 257 } 258 259 return blkg; 260 261 err_free: 262 blkg_free(blkg); 263 return NULL; 264 } 265 266 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 267 struct request_queue *q, bool update_hint) 268 { 269 struct blkcg_gq *blkg; 270 271 /* 272 * Hint didn't match. Look up from the radix tree. Note that the 273 * hint can only be updated under queue_lock as otherwise @blkg 274 * could have already been removed from blkg_tree. The caller is 275 * responsible for grabbing queue_lock if @update_hint. 276 */ 277 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 278 if (blkg && blkg->q == q) { 279 if (update_hint) { 280 lockdep_assert_held(&q->queue_lock); 281 rcu_assign_pointer(blkcg->blkg_hint, blkg); 282 } 283 return blkg; 284 } 285 286 return NULL; 287 } 288 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 289 290 /* 291 * If @new_blkg is %NULL, this function tries to allocate a new one as 292 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 293 */ 294 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 295 struct request_queue *q, 296 struct blkcg_gq *new_blkg) 297 { 298 struct blkcg_gq *blkg; 299 int i, ret; 300 301 lockdep_assert_held(&q->queue_lock); 302 303 /* request_queue is dying, do not create/recreate a blkg */ 304 if (blk_queue_dying(q)) { 305 ret = -ENODEV; 306 goto err_free_blkg; 307 } 308 309 /* blkg holds a reference to blkcg */ 310 if (!css_tryget_online(&blkcg->css)) { 311 ret = -ENODEV; 312 goto err_free_blkg; 313 } 314 315 /* allocate */ 316 if (!new_blkg) { 317 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 318 if (unlikely(!new_blkg)) { 319 ret = -ENOMEM; 320 goto err_put_css; 321 } 322 } 323 blkg = new_blkg; 324 325 /* link parent */ 326 if (blkcg_parent(blkcg)) { 327 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 328 if (WARN_ON_ONCE(!blkg->parent)) { 329 ret = -ENODEV; 330 goto err_put_css; 331 } 332 blkg_get(blkg->parent); 333 } 334 335 /* invoke per-policy init */ 336 for (i = 0; i < BLKCG_MAX_POLS; i++) { 337 struct blkcg_policy *pol = blkcg_policy[i]; 338 339 if (blkg->pd[i] && pol->pd_init_fn) 340 pol->pd_init_fn(blkg->pd[i]); 341 } 342 343 /* insert */ 344 spin_lock(&blkcg->lock); 345 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 346 if (likely(!ret)) { 347 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 348 list_add(&blkg->q_node, &q->blkg_list); 349 350 for (i = 0; i < BLKCG_MAX_POLS; i++) { 351 struct blkcg_policy *pol = blkcg_policy[i]; 352 353 if (blkg->pd[i] && pol->pd_online_fn) 354 pol->pd_online_fn(blkg->pd[i]); 355 } 356 } 357 blkg->online = true; 358 spin_unlock(&blkcg->lock); 359 360 if (!ret) 361 return blkg; 362 363 /* @blkg failed fully initialized, use the usual release path */ 364 blkg_put(blkg); 365 return ERR_PTR(ret); 366 367 err_put_css: 368 css_put(&blkcg->css); 369 err_free_blkg: 370 blkg_free(new_blkg); 371 return ERR_PTR(ret); 372 } 373 374 /** 375 * blkg_lookup_create - lookup blkg, try to create one if not there 376 * @blkcg: blkcg of interest 377 * @q: request_queue of interest 378 * 379 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 380 * create one. blkg creation is performed recursively from blkcg_root such 381 * that all non-root blkg's have access to the parent blkg. This function 382 * should be called under RCU read lock and takes @q->queue_lock. 383 * 384 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 385 * down from root. 386 */ 387 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 388 struct request_queue *q) 389 { 390 struct blkcg_gq *blkg; 391 unsigned long flags; 392 393 WARN_ON_ONCE(!rcu_read_lock_held()); 394 395 blkg = blkg_lookup(blkcg, q); 396 if (blkg) 397 return blkg; 398 399 spin_lock_irqsave(&q->queue_lock, flags); 400 blkg = __blkg_lookup(blkcg, q, true); 401 if (blkg) 402 goto found; 403 404 /* 405 * Create blkgs walking down from blkcg_root to @blkcg, so that all 406 * non-root blkgs have access to their parents. Returns the closest 407 * blkg to the intended blkg should blkg_create() fail. 408 */ 409 while (true) { 410 struct blkcg *pos = blkcg; 411 struct blkcg *parent = blkcg_parent(blkcg); 412 struct blkcg_gq *ret_blkg = q->root_blkg; 413 414 while (parent) { 415 blkg = __blkg_lookup(parent, q, false); 416 if (blkg) { 417 /* remember closest blkg */ 418 ret_blkg = blkg; 419 break; 420 } 421 pos = parent; 422 parent = blkcg_parent(parent); 423 } 424 425 blkg = blkg_create(pos, q, NULL); 426 if (IS_ERR(blkg)) { 427 blkg = ret_blkg; 428 break; 429 } 430 if (pos == blkcg) 431 break; 432 } 433 434 found: 435 spin_unlock_irqrestore(&q->queue_lock, flags); 436 return blkg; 437 } 438 439 static void blkg_destroy(struct blkcg_gq *blkg) 440 { 441 struct blkcg *blkcg = blkg->blkcg; 442 int i; 443 444 lockdep_assert_held(&blkg->q->queue_lock); 445 lockdep_assert_held(&blkcg->lock); 446 447 /* Something wrong if we are trying to remove same group twice */ 448 WARN_ON_ONCE(list_empty(&blkg->q_node)); 449 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 450 451 for (i = 0; i < BLKCG_MAX_POLS; i++) { 452 struct blkcg_policy *pol = blkcg_policy[i]; 453 454 if (blkg->pd[i] && pol->pd_offline_fn) 455 pol->pd_offline_fn(blkg->pd[i]); 456 } 457 458 blkg->online = false; 459 460 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 461 list_del_init(&blkg->q_node); 462 hlist_del_init_rcu(&blkg->blkcg_node); 463 464 /* 465 * Both setting lookup hint to and clearing it from @blkg are done 466 * under queue_lock. If it's not pointing to @blkg now, it never 467 * will. Hint assignment itself can race safely. 468 */ 469 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 470 rcu_assign_pointer(blkcg->blkg_hint, NULL); 471 472 /* 473 * Put the reference taken at the time of creation so that when all 474 * queues are gone, group can be destroyed. 475 */ 476 percpu_ref_kill(&blkg->refcnt); 477 } 478 479 /** 480 * blkg_destroy_all - destroy all blkgs associated with a request_queue 481 * @q: request_queue of interest 482 * 483 * Destroy all blkgs associated with @q. 484 */ 485 static void blkg_destroy_all(struct request_queue *q) 486 { 487 struct blkcg_gq *blkg, *n; 488 int count = BLKG_DESTROY_BATCH_SIZE; 489 490 restart: 491 spin_lock_irq(&q->queue_lock); 492 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 493 struct blkcg *blkcg = blkg->blkcg; 494 495 spin_lock(&blkcg->lock); 496 blkg_destroy(blkg); 497 spin_unlock(&blkcg->lock); 498 499 /* 500 * in order to avoid holding the spin lock for too long, release 501 * it when a batch of blkgs are destroyed. 502 */ 503 if (!(--count)) { 504 count = BLKG_DESTROY_BATCH_SIZE; 505 spin_unlock_irq(&q->queue_lock); 506 cond_resched(); 507 goto restart; 508 } 509 } 510 511 q->root_blkg = NULL; 512 spin_unlock_irq(&q->queue_lock); 513 } 514 515 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 516 struct cftype *cftype, u64 val) 517 { 518 struct blkcg *blkcg = css_to_blkcg(css); 519 struct blkcg_gq *blkg; 520 int i, cpu; 521 522 mutex_lock(&blkcg_pol_mutex); 523 spin_lock_irq(&blkcg->lock); 524 525 /* 526 * Note that stat reset is racy - it doesn't synchronize against 527 * stat updates. This is a debug feature which shouldn't exist 528 * anyway. If you get hit by a race, retry. 529 */ 530 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 531 for_each_possible_cpu(cpu) { 532 struct blkg_iostat_set *bis = 533 per_cpu_ptr(blkg->iostat_cpu, cpu); 534 memset(bis, 0, sizeof(*bis)); 535 } 536 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 537 538 for (i = 0; i < BLKCG_MAX_POLS; i++) { 539 struct blkcg_policy *pol = blkcg_policy[i]; 540 541 if (blkg->pd[i] && pol->pd_reset_stats_fn) 542 pol->pd_reset_stats_fn(blkg->pd[i]); 543 } 544 } 545 546 spin_unlock_irq(&blkcg->lock); 547 mutex_unlock(&blkcg_pol_mutex); 548 return 0; 549 } 550 551 const char *blkg_dev_name(struct blkcg_gq *blkg) 552 { 553 if (!blkg->q->disk || !blkg->q->disk->bdi->dev) 554 return NULL; 555 return bdi_dev_name(blkg->q->disk->bdi); 556 } 557 558 /** 559 * blkcg_print_blkgs - helper for printing per-blkg data 560 * @sf: seq_file to print to 561 * @blkcg: blkcg of interest 562 * @prfill: fill function to print out a blkg 563 * @pol: policy in question 564 * @data: data to be passed to @prfill 565 * @show_total: to print out sum of prfill return values or not 566 * 567 * This function invokes @prfill on each blkg of @blkcg if pd for the 568 * policy specified by @pol exists. @prfill is invoked with @sf, the 569 * policy data and @data and the matching queue lock held. If @show_total 570 * is %true, the sum of the return values from @prfill is printed with 571 * "Total" label at the end. 572 * 573 * This is to be used to construct print functions for 574 * cftype->read_seq_string method. 575 */ 576 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 577 u64 (*prfill)(struct seq_file *, 578 struct blkg_policy_data *, int), 579 const struct blkcg_policy *pol, int data, 580 bool show_total) 581 { 582 struct blkcg_gq *blkg; 583 u64 total = 0; 584 585 rcu_read_lock(); 586 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 587 spin_lock_irq(&blkg->q->queue_lock); 588 if (blkcg_policy_enabled(blkg->q, pol)) 589 total += prfill(sf, blkg->pd[pol->plid], data); 590 spin_unlock_irq(&blkg->q->queue_lock); 591 } 592 rcu_read_unlock(); 593 594 if (show_total) 595 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 596 } 597 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 598 599 /** 600 * __blkg_prfill_u64 - prfill helper for a single u64 value 601 * @sf: seq_file to print to 602 * @pd: policy private data of interest 603 * @v: value to print 604 * 605 * Print @v to @sf for the device assocaited with @pd. 606 */ 607 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 608 { 609 const char *dname = blkg_dev_name(pd->blkg); 610 611 if (!dname) 612 return 0; 613 614 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 615 return v; 616 } 617 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 618 619 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 620 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 621 const struct blkcg_policy *pol, 622 struct request_queue *q) 623 { 624 WARN_ON_ONCE(!rcu_read_lock_held()); 625 lockdep_assert_held(&q->queue_lock); 626 627 if (!blkcg_policy_enabled(q, pol)) 628 return ERR_PTR(-EOPNOTSUPP); 629 return __blkg_lookup(blkcg, q, true /* update_hint */); 630 } 631 632 /** 633 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 634 * @inputp: input string pointer 635 * 636 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 637 * from @input and get and return the matching bdev. *@inputp is 638 * updated to point past the device node prefix. Returns an ERR_PTR() 639 * value on error. 640 * 641 * Use this function iff blkg_conf_prep() can't be used for some reason. 642 */ 643 struct block_device *blkcg_conf_open_bdev(char **inputp) 644 { 645 char *input = *inputp; 646 unsigned int major, minor; 647 struct block_device *bdev; 648 int key_len; 649 650 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 651 return ERR_PTR(-EINVAL); 652 653 input += key_len; 654 if (!isspace(*input)) 655 return ERR_PTR(-EINVAL); 656 input = skip_spaces(input); 657 658 bdev = blkdev_get_no_open(MKDEV(major, minor)); 659 if (!bdev) 660 return ERR_PTR(-ENODEV); 661 if (bdev_is_partition(bdev)) { 662 blkdev_put_no_open(bdev); 663 return ERR_PTR(-ENODEV); 664 } 665 666 *inputp = input; 667 return bdev; 668 } 669 670 /** 671 * blkg_conf_prep - parse and prepare for per-blkg config update 672 * @blkcg: target block cgroup 673 * @pol: target policy 674 * @input: input string 675 * @ctx: blkg_conf_ctx to be filled 676 * 677 * Parse per-blkg config update from @input and initialize @ctx with the 678 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 679 * part of @input following MAJ:MIN. This function returns with RCU read 680 * lock and queue lock held and must be paired with blkg_conf_finish(). 681 */ 682 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 683 char *input, struct blkg_conf_ctx *ctx) 684 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock) 685 { 686 struct block_device *bdev; 687 struct request_queue *q; 688 struct blkcg_gq *blkg; 689 int ret; 690 691 bdev = blkcg_conf_open_bdev(&input); 692 if (IS_ERR(bdev)) 693 return PTR_ERR(bdev); 694 695 q = bdev_get_queue(bdev); 696 697 /* 698 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 699 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 700 */ 701 ret = blk_queue_enter(q, 0); 702 if (ret) 703 goto fail; 704 705 rcu_read_lock(); 706 spin_lock_irq(&q->queue_lock); 707 708 blkg = blkg_lookup_check(blkcg, pol, q); 709 if (IS_ERR(blkg)) { 710 ret = PTR_ERR(blkg); 711 goto fail_unlock; 712 } 713 714 if (blkg) 715 goto success; 716 717 /* 718 * Create blkgs walking down from blkcg_root to @blkcg, so that all 719 * non-root blkgs have access to their parents. 720 */ 721 while (true) { 722 struct blkcg *pos = blkcg; 723 struct blkcg *parent; 724 struct blkcg_gq *new_blkg; 725 726 parent = blkcg_parent(blkcg); 727 while (parent && !__blkg_lookup(parent, q, false)) { 728 pos = parent; 729 parent = blkcg_parent(parent); 730 } 731 732 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 733 spin_unlock_irq(&q->queue_lock); 734 rcu_read_unlock(); 735 736 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 737 if (unlikely(!new_blkg)) { 738 ret = -ENOMEM; 739 goto fail_exit_queue; 740 } 741 742 if (radix_tree_preload(GFP_KERNEL)) { 743 blkg_free(new_blkg); 744 ret = -ENOMEM; 745 goto fail_exit_queue; 746 } 747 748 rcu_read_lock(); 749 spin_lock_irq(&q->queue_lock); 750 751 blkg = blkg_lookup_check(pos, pol, q); 752 if (IS_ERR(blkg)) { 753 ret = PTR_ERR(blkg); 754 blkg_free(new_blkg); 755 goto fail_preloaded; 756 } 757 758 if (blkg) { 759 blkg_free(new_blkg); 760 } else { 761 blkg = blkg_create(pos, q, new_blkg); 762 if (IS_ERR(blkg)) { 763 ret = PTR_ERR(blkg); 764 goto fail_preloaded; 765 } 766 } 767 768 radix_tree_preload_end(); 769 770 if (pos == blkcg) 771 goto success; 772 } 773 success: 774 blk_queue_exit(q); 775 ctx->bdev = bdev; 776 ctx->blkg = blkg; 777 ctx->body = input; 778 return 0; 779 780 fail_preloaded: 781 radix_tree_preload_end(); 782 fail_unlock: 783 spin_unlock_irq(&q->queue_lock); 784 rcu_read_unlock(); 785 fail_exit_queue: 786 blk_queue_exit(q); 787 fail: 788 blkdev_put_no_open(bdev); 789 /* 790 * If queue was bypassing, we should retry. Do so after a 791 * short msleep(). It isn't strictly necessary but queue 792 * can be bypassing for some time and it's always nice to 793 * avoid busy looping. 794 */ 795 if (ret == -EBUSY) { 796 msleep(10); 797 ret = restart_syscall(); 798 } 799 return ret; 800 } 801 EXPORT_SYMBOL_GPL(blkg_conf_prep); 802 803 /** 804 * blkg_conf_finish - finish up per-blkg config update 805 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 806 * 807 * Finish up after per-blkg config update. This function must be paired 808 * with blkg_conf_prep(). 809 */ 810 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 811 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu) 812 { 813 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 814 rcu_read_unlock(); 815 blkdev_put_no_open(ctx->bdev); 816 } 817 EXPORT_SYMBOL_GPL(blkg_conf_finish); 818 819 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 820 { 821 int i; 822 823 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 824 dst->bytes[i] = src->bytes[i]; 825 dst->ios[i] = src->ios[i]; 826 } 827 } 828 829 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 830 { 831 int i; 832 833 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 834 dst->bytes[i] += src->bytes[i]; 835 dst->ios[i] += src->ios[i]; 836 } 837 } 838 839 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 840 { 841 int i; 842 843 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 844 dst->bytes[i] -= src->bytes[i]; 845 dst->ios[i] -= src->ios[i]; 846 } 847 } 848 849 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 850 struct blkg_iostat *last) 851 { 852 struct blkg_iostat delta; 853 unsigned long flags; 854 855 /* propagate percpu delta to global */ 856 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 857 blkg_iostat_set(&delta, cur); 858 blkg_iostat_sub(&delta, last); 859 blkg_iostat_add(&blkg->iostat.cur, &delta); 860 blkg_iostat_add(last, &delta); 861 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 862 } 863 864 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 865 { 866 struct blkcg *blkcg = css_to_blkcg(css); 867 struct blkcg_gq *blkg; 868 869 /* Root-level stats are sourced from system-wide IO stats */ 870 if (!cgroup_parent(css->cgroup)) 871 return; 872 873 rcu_read_lock(); 874 875 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 876 struct blkcg_gq *parent = blkg->parent; 877 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 878 struct blkg_iostat cur; 879 unsigned int seq; 880 881 /* fetch the current per-cpu values */ 882 do { 883 seq = u64_stats_fetch_begin(&bisc->sync); 884 blkg_iostat_set(&cur, &bisc->cur); 885 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 886 887 blkcg_iostat_update(blkg, &cur, &bisc->last); 888 889 /* propagate global delta to parent (unless that's root) */ 890 if (parent && parent->parent) 891 blkcg_iostat_update(parent, &blkg->iostat.cur, 892 &blkg->iostat.last); 893 } 894 895 rcu_read_unlock(); 896 } 897 898 /* 899 * We source root cgroup stats from the system-wide stats to avoid 900 * tracking the same information twice and incurring overhead when no 901 * cgroups are defined. For that reason, cgroup_rstat_flush in 902 * blkcg_print_stat does not actually fill out the iostat in the root 903 * cgroup's blkcg_gq. 904 * 905 * However, we would like to re-use the printing code between the root and 906 * non-root cgroups to the extent possible. For that reason, we simulate 907 * flushing the root cgroup's stats by explicitly filling in the iostat 908 * with disk level statistics. 909 */ 910 static void blkcg_fill_root_iostats(void) 911 { 912 struct class_dev_iter iter; 913 struct device *dev; 914 915 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 916 while ((dev = class_dev_iter_next(&iter))) { 917 struct block_device *bdev = dev_to_bdev(dev); 918 struct blkcg_gq *blkg = 919 blk_queue_root_blkg(bdev_get_queue(bdev)); 920 struct blkg_iostat tmp; 921 int cpu; 922 unsigned long flags; 923 924 memset(&tmp, 0, sizeof(tmp)); 925 for_each_possible_cpu(cpu) { 926 struct disk_stats *cpu_dkstats; 927 928 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 929 tmp.ios[BLKG_IOSTAT_READ] += 930 cpu_dkstats->ios[STAT_READ]; 931 tmp.ios[BLKG_IOSTAT_WRITE] += 932 cpu_dkstats->ios[STAT_WRITE]; 933 tmp.ios[BLKG_IOSTAT_DISCARD] += 934 cpu_dkstats->ios[STAT_DISCARD]; 935 // convert sectors to bytes 936 tmp.bytes[BLKG_IOSTAT_READ] += 937 cpu_dkstats->sectors[STAT_READ] << 9; 938 tmp.bytes[BLKG_IOSTAT_WRITE] += 939 cpu_dkstats->sectors[STAT_WRITE] << 9; 940 tmp.bytes[BLKG_IOSTAT_DISCARD] += 941 cpu_dkstats->sectors[STAT_DISCARD] << 9; 942 } 943 944 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 945 blkg_iostat_set(&blkg->iostat.cur, &tmp); 946 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 947 } 948 } 949 950 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 951 { 952 struct blkg_iostat_set *bis = &blkg->iostat; 953 u64 rbytes, wbytes, rios, wios, dbytes, dios; 954 const char *dname; 955 unsigned seq; 956 int i; 957 958 if (!blkg->online) 959 return; 960 961 dname = blkg_dev_name(blkg); 962 if (!dname) 963 return; 964 965 seq_printf(s, "%s ", dname); 966 967 do { 968 seq = u64_stats_fetch_begin(&bis->sync); 969 970 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 971 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 972 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 973 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 974 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 975 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 976 } while (u64_stats_fetch_retry(&bis->sync, seq)); 977 978 if (rbytes || wbytes || rios || wios) { 979 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 980 rbytes, wbytes, rios, wios, 981 dbytes, dios); 982 } 983 984 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 985 seq_printf(s, " use_delay=%d delay_nsec=%llu", 986 atomic_read(&blkg->use_delay), 987 atomic64_read(&blkg->delay_nsec)); 988 } 989 990 for (i = 0; i < BLKCG_MAX_POLS; i++) { 991 struct blkcg_policy *pol = blkcg_policy[i]; 992 993 if (!blkg->pd[i] || !pol->pd_stat_fn) 994 continue; 995 996 pol->pd_stat_fn(blkg->pd[i], s); 997 } 998 999 seq_puts(s, "\n"); 1000 } 1001 1002 static int blkcg_print_stat(struct seq_file *sf, void *v) 1003 { 1004 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1005 struct blkcg_gq *blkg; 1006 1007 if (!seq_css(sf)->parent) 1008 blkcg_fill_root_iostats(); 1009 else 1010 cgroup_rstat_flush(blkcg->css.cgroup); 1011 1012 rcu_read_lock(); 1013 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1014 spin_lock_irq(&blkg->q->queue_lock); 1015 blkcg_print_one_stat(blkg, sf); 1016 spin_unlock_irq(&blkg->q->queue_lock); 1017 } 1018 rcu_read_unlock(); 1019 return 0; 1020 } 1021 1022 static struct cftype blkcg_files[] = { 1023 { 1024 .name = "stat", 1025 .seq_show = blkcg_print_stat, 1026 }, 1027 { } /* terminate */ 1028 }; 1029 1030 static struct cftype blkcg_legacy_files[] = { 1031 { 1032 .name = "reset_stats", 1033 .write_u64 = blkcg_reset_stats, 1034 }, 1035 { } /* terminate */ 1036 }; 1037 1038 #ifdef CONFIG_CGROUP_WRITEBACK 1039 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1040 { 1041 return &css_to_blkcg(css)->cgwb_list; 1042 } 1043 #endif 1044 1045 /* 1046 * blkcg destruction is a three-stage process. 1047 * 1048 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1049 * which offlines writeback. Here we tie the next stage of blkg destruction 1050 * to the completion of writeback associated with the blkcg. This lets us 1051 * avoid punting potentially large amounts of outstanding writeback to root 1052 * while maintaining any ongoing policies. The next stage is triggered when 1053 * the nr_cgwbs count goes to zero. 1054 * 1055 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1056 * and handles the destruction of blkgs. Here the css reference held by 1057 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1058 * This work may occur in cgwb_release_workfn() on the cgwb_release 1059 * workqueue. Any submitted ios that fail to get the blkg ref will be 1060 * punted to the root_blkg. 1061 * 1062 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1063 * This finally frees the blkcg. 1064 */ 1065 1066 /** 1067 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1068 * @blkcg: blkcg of interest 1069 * 1070 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1071 * is nested inside q lock, this function performs reverse double lock dancing. 1072 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1073 * blkcg_css_free to eventually be called. 1074 * 1075 * This is the blkcg counterpart of ioc_release_fn(). 1076 */ 1077 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1078 { 1079 might_sleep(); 1080 1081 spin_lock_irq(&blkcg->lock); 1082 1083 while (!hlist_empty(&blkcg->blkg_list)) { 1084 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1085 struct blkcg_gq, blkcg_node); 1086 struct request_queue *q = blkg->q; 1087 1088 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1089 /* 1090 * Given that the system can accumulate a huge number 1091 * of blkgs in pathological cases, check to see if we 1092 * need to rescheduling to avoid softlockup. 1093 */ 1094 spin_unlock_irq(&blkcg->lock); 1095 cond_resched(); 1096 spin_lock_irq(&blkcg->lock); 1097 continue; 1098 } 1099 1100 blkg_destroy(blkg); 1101 spin_unlock(&q->queue_lock); 1102 } 1103 1104 spin_unlock_irq(&blkcg->lock); 1105 } 1106 1107 /** 1108 * blkcg_pin_online - pin online state 1109 * @blkcg_css: blkcg of interest 1110 * 1111 * While pinned, a blkcg is kept online. This is primarily used to 1112 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1113 * while an associated cgwb is still active. 1114 */ 1115 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1116 { 1117 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1118 } 1119 1120 /** 1121 * blkcg_unpin_online - unpin online state 1122 * @blkcg_css: blkcg of interest 1123 * 1124 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1125 * that blkg doesn't go offline while an associated cgwb is still active. 1126 * When this count goes to zero, all active cgwbs have finished so the 1127 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1128 */ 1129 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1130 { 1131 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1132 1133 do { 1134 if (!refcount_dec_and_test(&blkcg->online_pin)) 1135 break; 1136 blkcg_destroy_blkgs(blkcg); 1137 blkcg = blkcg_parent(blkcg); 1138 } while (blkcg); 1139 } 1140 1141 /** 1142 * blkcg_css_offline - cgroup css_offline callback 1143 * @css: css of interest 1144 * 1145 * This function is called when @css is about to go away. Here the cgwbs are 1146 * offlined first and only once writeback associated with the blkcg has 1147 * finished do we start step 2 (see above). 1148 */ 1149 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1150 { 1151 /* this prevents anyone from attaching or migrating to this blkcg */ 1152 wb_blkcg_offline(css); 1153 1154 /* put the base online pin allowing step 2 to be triggered */ 1155 blkcg_unpin_online(css); 1156 } 1157 1158 static void blkcg_css_free(struct cgroup_subsys_state *css) 1159 { 1160 struct blkcg *blkcg = css_to_blkcg(css); 1161 int i; 1162 1163 mutex_lock(&blkcg_pol_mutex); 1164 1165 list_del(&blkcg->all_blkcgs_node); 1166 1167 for (i = 0; i < BLKCG_MAX_POLS; i++) 1168 if (blkcg->cpd[i]) 1169 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1170 1171 mutex_unlock(&blkcg_pol_mutex); 1172 1173 kfree(blkcg); 1174 } 1175 1176 static struct cgroup_subsys_state * 1177 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1178 { 1179 struct blkcg *blkcg; 1180 struct cgroup_subsys_state *ret; 1181 int i; 1182 1183 mutex_lock(&blkcg_pol_mutex); 1184 1185 if (!parent_css) { 1186 blkcg = &blkcg_root; 1187 } else { 1188 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1189 if (!blkcg) { 1190 ret = ERR_PTR(-ENOMEM); 1191 goto unlock; 1192 } 1193 } 1194 1195 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1196 struct blkcg_policy *pol = blkcg_policy[i]; 1197 struct blkcg_policy_data *cpd; 1198 1199 /* 1200 * If the policy hasn't been attached yet, wait for it 1201 * to be attached before doing anything else. Otherwise, 1202 * check if the policy requires any specific per-cgroup 1203 * data: if it does, allocate and initialize it. 1204 */ 1205 if (!pol || !pol->cpd_alloc_fn) 1206 continue; 1207 1208 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1209 if (!cpd) { 1210 ret = ERR_PTR(-ENOMEM); 1211 goto free_pd_blkcg; 1212 } 1213 blkcg->cpd[i] = cpd; 1214 cpd->blkcg = blkcg; 1215 cpd->plid = i; 1216 if (pol->cpd_init_fn) 1217 pol->cpd_init_fn(cpd); 1218 } 1219 1220 spin_lock_init(&blkcg->lock); 1221 refcount_set(&blkcg->online_pin, 1); 1222 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1223 INIT_HLIST_HEAD(&blkcg->blkg_list); 1224 #ifdef CONFIG_CGROUP_WRITEBACK 1225 INIT_LIST_HEAD(&blkcg->cgwb_list); 1226 #endif 1227 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1228 1229 mutex_unlock(&blkcg_pol_mutex); 1230 return &blkcg->css; 1231 1232 free_pd_blkcg: 1233 for (i--; i >= 0; i--) 1234 if (blkcg->cpd[i]) 1235 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1236 1237 if (blkcg != &blkcg_root) 1238 kfree(blkcg); 1239 unlock: 1240 mutex_unlock(&blkcg_pol_mutex); 1241 return ret; 1242 } 1243 1244 static int blkcg_css_online(struct cgroup_subsys_state *css) 1245 { 1246 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1247 1248 /* 1249 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1250 * don't go offline while cgwbs are still active on them. Pin the 1251 * parent so that offline always happens towards the root. 1252 */ 1253 if (parent) 1254 blkcg_pin_online(css); 1255 return 0; 1256 } 1257 1258 /** 1259 * blkcg_init_queue - initialize blkcg part of request queue 1260 * @q: request_queue to initialize 1261 * 1262 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1263 * part of new request_queue @q. 1264 * 1265 * RETURNS: 1266 * 0 on success, -errno on failure. 1267 */ 1268 int blkcg_init_queue(struct request_queue *q) 1269 { 1270 struct blkcg_gq *new_blkg, *blkg; 1271 bool preloaded; 1272 int ret; 1273 1274 INIT_LIST_HEAD(&q->blkg_list); 1275 1276 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1277 if (!new_blkg) 1278 return -ENOMEM; 1279 1280 preloaded = !radix_tree_preload(GFP_KERNEL); 1281 1282 /* Make sure the root blkg exists. */ 1283 /* spin_lock_irq can serve as RCU read-side critical section. */ 1284 spin_lock_irq(&q->queue_lock); 1285 blkg = blkg_create(&blkcg_root, q, new_blkg); 1286 if (IS_ERR(blkg)) 1287 goto err_unlock; 1288 q->root_blkg = blkg; 1289 spin_unlock_irq(&q->queue_lock); 1290 1291 if (preloaded) 1292 radix_tree_preload_end(); 1293 1294 ret = blk_ioprio_init(q); 1295 if (ret) 1296 goto err_destroy_all; 1297 1298 ret = blk_throtl_init(q); 1299 if (ret) 1300 goto err_destroy_all; 1301 1302 ret = blk_iolatency_init(q); 1303 if (ret) { 1304 blk_throtl_exit(q); 1305 blk_ioprio_exit(q); 1306 goto err_destroy_all; 1307 } 1308 1309 return 0; 1310 1311 err_destroy_all: 1312 blkg_destroy_all(q); 1313 return ret; 1314 err_unlock: 1315 spin_unlock_irq(&q->queue_lock); 1316 if (preloaded) 1317 radix_tree_preload_end(); 1318 return PTR_ERR(blkg); 1319 } 1320 1321 /** 1322 * blkcg_exit_queue - exit and release blkcg part of request_queue 1323 * @q: request_queue being released 1324 * 1325 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1326 */ 1327 void blkcg_exit_queue(struct request_queue *q) 1328 { 1329 blkg_destroy_all(q); 1330 blk_throtl_exit(q); 1331 } 1332 1333 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1334 { 1335 int i; 1336 1337 mutex_lock(&blkcg_pol_mutex); 1338 1339 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1340 struct blkcg_policy *pol = blkcg_policy[i]; 1341 struct blkcg *blkcg; 1342 1343 if (!pol || !pol->cpd_bind_fn) 1344 continue; 1345 1346 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1347 if (blkcg->cpd[pol->plid]) 1348 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1349 } 1350 mutex_unlock(&blkcg_pol_mutex); 1351 } 1352 1353 static void blkcg_exit(struct task_struct *tsk) 1354 { 1355 if (tsk->throttle_queue) 1356 blk_put_queue(tsk->throttle_queue); 1357 tsk->throttle_queue = NULL; 1358 } 1359 1360 struct cgroup_subsys io_cgrp_subsys = { 1361 .css_alloc = blkcg_css_alloc, 1362 .css_online = blkcg_css_online, 1363 .css_offline = blkcg_css_offline, 1364 .css_free = blkcg_css_free, 1365 .css_rstat_flush = blkcg_rstat_flush, 1366 .bind = blkcg_bind, 1367 .dfl_cftypes = blkcg_files, 1368 .legacy_cftypes = blkcg_legacy_files, 1369 .legacy_name = "blkio", 1370 .exit = blkcg_exit, 1371 #ifdef CONFIG_MEMCG 1372 /* 1373 * This ensures that, if available, memcg is automatically enabled 1374 * together on the default hierarchy so that the owner cgroup can 1375 * be retrieved from writeback pages. 1376 */ 1377 .depends_on = 1 << memory_cgrp_id, 1378 #endif 1379 }; 1380 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1381 1382 /** 1383 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1384 * @q: request_queue of interest 1385 * @pol: blkcg policy to activate 1386 * 1387 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1388 * bypass mode to populate its blkgs with policy_data for @pol. 1389 * 1390 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1391 * from IO path. Update of each blkg is protected by both queue and blkcg 1392 * locks so that holding either lock and testing blkcg_policy_enabled() is 1393 * always enough for dereferencing policy data. 1394 * 1395 * The caller is responsible for synchronizing [de]activations and policy 1396 * [un]registerations. Returns 0 on success, -errno on failure. 1397 */ 1398 int blkcg_activate_policy(struct request_queue *q, 1399 const struct blkcg_policy *pol) 1400 { 1401 struct blkg_policy_data *pd_prealloc = NULL; 1402 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1403 int ret; 1404 1405 if (blkcg_policy_enabled(q, pol)) 1406 return 0; 1407 1408 if (queue_is_mq(q)) 1409 blk_mq_freeze_queue(q); 1410 retry: 1411 spin_lock_irq(&q->queue_lock); 1412 1413 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1414 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1415 struct blkg_policy_data *pd; 1416 1417 if (blkg->pd[pol->plid]) 1418 continue; 1419 1420 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1421 if (blkg == pinned_blkg) { 1422 pd = pd_prealloc; 1423 pd_prealloc = NULL; 1424 } else { 1425 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1426 blkg->blkcg); 1427 } 1428 1429 if (!pd) { 1430 /* 1431 * GFP_NOWAIT failed. Free the existing one and 1432 * prealloc for @blkg w/ GFP_KERNEL. 1433 */ 1434 if (pinned_blkg) 1435 blkg_put(pinned_blkg); 1436 blkg_get(blkg); 1437 pinned_blkg = blkg; 1438 1439 spin_unlock_irq(&q->queue_lock); 1440 1441 if (pd_prealloc) 1442 pol->pd_free_fn(pd_prealloc); 1443 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1444 blkg->blkcg); 1445 if (pd_prealloc) 1446 goto retry; 1447 else 1448 goto enomem; 1449 } 1450 1451 blkg->pd[pol->plid] = pd; 1452 pd->blkg = blkg; 1453 pd->plid = pol->plid; 1454 } 1455 1456 /* all allocated, init in the same order */ 1457 if (pol->pd_init_fn) 1458 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1459 pol->pd_init_fn(blkg->pd[pol->plid]); 1460 1461 __set_bit(pol->plid, q->blkcg_pols); 1462 ret = 0; 1463 1464 spin_unlock_irq(&q->queue_lock); 1465 out: 1466 if (queue_is_mq(q)) 1467 blk_mq_unfreeze_queue(q); 1468 if (pinned_blkg) 1469 blkg_put(pinned_blkg); 1470 if (pd_prealloc) 1471 pol->pd_free_fn(pd_prealloc); 1472 return ret; 1473 1474 enomem: 1475 /* alloc failed, nothing's initialized yet, free everything */ 1476 spin_lock_irq(&q->queue_lock); 1477 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1478 struct blkcg *blkcg = blkg->blkcg; 1479 1480 spin_lock(&blkcg->lock); 1481 if (blkg->pd[pol->plid]) { 1482 pol->pd_free_fn(blkg->pd[pol->plid]); 1483 blkg->pd[pol->plid] = NULL; 1484 } 1485 spin_unlock(&blkcg->lock); 1486 } 1487 spin_unlock_irq(&q->queue_lock); 1488 ret = -ENOMEM; 1489 goto out; 1490 } 1491 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1492 1493 /** 1494 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1495 * @q: request_queue of interest 1496 * @pol: blkcg policy to deactivate 1497 * 1498 * Deactivate @pol on @q. Follows the same synchronization rules as 1499 * blkcg_activate_policy(). 1500 */ 1501 void blkcg_deactivate_policy(struct request_queue *q, 1502 const struct blkcg_policy *pol) 1503 { 1504 struct blkcg_gq *blkg; 1505 1506 if (!blkcg_policy_enabled(q, pol)) 1507 return; 1508 1509 if (queue_is_mq(q)) 1510 blk_mq_freeze_queue(q); 1511 1512 spin_lock_irq(&q->queue_lock); 1513 1514 __clear_bit(pol->plid, q->blkcg_pols); 1515 1516 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1517 struct blkcg *blkcg = blkg->blkcg; 1518 1519 spin_lock(&blkcg->lock); 1520 if (blkg->pd[pol->plid]) { 1521 if (pol->pd_offline_fn) 1522 pol->pd_offline_fn(blkg->pd[pol->plid]); 1523 pol->pd_free_fn(blkg->pd[pol->plid]); 1524 blkg->pd[pol->plid] = NULL; 1525 } 1526 spin_unlock(&blkcg->lock); 1527 } 1528 1529 spin_unlock_irq(&q->queue_lock); 1530 1531 if (queue_is_mq(q)) 1532 blk_mq_unfreeze_queue(q); 1533 } 1534 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1535 1536 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1537 { 1538 struct blkcg *blkcg; 1539 1540 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1541 if (blkcg->cpd[pol->plid]) { 1542 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1543 blkcg->cpd[pol->plid] = NULL; 1544 } 1545 } 1546 } 1547 1548 /** 1549 * blkcg_policy_register - register a blkcg policy 1550 * @pol: blkcg policy to register 1551 * 1552 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1553 * successful registration. Returns 0 on success and -errno on failure. 1554 */ 1555 int blkcg_policy_register(struct blkcg_policy *pol) 1556 { 1557 struct blkcg *blkcg; 1558 int i, ret; 1559 1560 mutex_lock(&blkcg_pol_register_mutex); 1561 mutex_lock(&blkcg_pol_mutex); 1562 1563 /* find an empty slot */ 1564 ret = -ENOSPC; 1565 for (i = 0; i < BLKCG_MAX_POLS; i++) 1566 if (!blkcg_policy[i]) 1567 break; 1568 if (i >= BLKCG_MAX_POLS) { 1569 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1570 goto err_unlock; 1571 } 1572 1573 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1574 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1575 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1576 goto err_unlock; 1577 1578 /* register @pol */ 1579 pol->plid = i; 1580 blkcg_policy[pol->plid] = pol; 1581 1582 /* allocate and install cpd's */ 1583 if (pol->cpd_alloc_fn) { 1584 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1585 struct blkcg_policy_data *cpd; 1586 1587 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1588 if (!cpd) 1589 goto err_free_cpds; 1590 1591 blkcg->cpd[pol->plid] = cpd; 1592 cpd->blkcg = blkcg; 1593 cpd->plid = pol->plid; 1594 if (pol->cpd_init_fn) 1595 pol->cpd_init_fn(cpd); 1596 } 1597 } 1598 1599 mutex_unlock(&blkcg_pol_mutex); 1600 1601 /* everything is in place, add intf files for the new policy */ 1602 if (pol->dfl_cftypes) 1603 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1604 pol->dfl_cftypes)); 1605 if (pol->legacy_cftypes) 1606 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1607 pol->legacy_cftypes)); 1608 mutex_unlock(&blkcg_pol_register_mutex); 1609 return 0; 1610 1611 err_free_cpds: 1612 if (pol->cpd_free_fn) 1613 blkcg_free_all_cpd(pol); 1614 1615 blkcg_policy[pol->plid] = NULL; 1616 err_unlock: 1617 mutex_unlock(&blkcg_pol_mutex); 1618 mutex_unlock(&blkcg_pol_register_mutex); 1619 return ret; 1620 } 1621 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1622 1623 /** 1624 * blkcg_policy_unregister - unregister a blkcg policy 1625 * @pol: blkcg policy to unregister 1626 * 1627 * Undo blkcg_policy_register(@pol). Might sleep. 1628 */ 1629 void blkcg_policy_unregister(struct blkcg_policy *pol) 1630 { 1631 mutex_lock(&blkcg_pol_register_mutex); 1632 1633 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1634 goto out_unlock; 1635 1636 /* kill the intf files first */ 1637 if (pol->dfl_cftypes) 1638 cgroup_rm_cftypes(pol->dfl_cftypes); 1639 if (pol->legacy_cftypes) 1640 cgroup_rm_cftypes(pol->legacy_cftypes); 1641 1642 /* remove cpds and unregister */ 1643 mutex_lock(&blkcg_pol_mutex); 1644 1645 if (pol->cpd_free_fn) 1646 blkcg_free_all_cpd(pol); 1647 1648 blkcg_policy[pol->plid] = NULL; 1649 1650 mutex_unlock(&blkcg_pol_mutex); 1651 out_unlock: 1652 mutex_unlock(&blkcg_pol_register_mutex); 1653 } 1654 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1655 1656 bool __blkcg_punt_bio_submit(struct bio *bio) 1657 { 1658 struct blkcg_gq *blkg = bio->bi_blkg; 1659 1660 /* consume the flag first */ 1661 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1662 1663 /* never bounce for the root cgroup */ 1664 if (!blkg->parent) 1665 return false; 1666 1667 spin_lock_bh(&blkg->async_bio_lock); 1668 bio_list_add(&blkg->async_bios, bio); 1669 spin_unlock_bh(&blkg->async_bio_lock); 1670 1671 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1672 return true; 1673 } 1674 1675 /* 1676 * Scale the accumulated delay based on how long it has been since we updated 1677 * the delay. We only call this when we are adding delay, in case it's been a 1678 * while since we added delay, and when we are checking to see if we need to 1679 * delay a task, to account for any delays that may have occurred. 1680 */ 1681 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1682 { 1683 u64 old = atomic64_read(&blkg->delay_start); 1684 1685 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1686 if (atomic_read(&blkg->use_delay) < 0) 1687 return; 1688 1689 /* 1690 * We only want to scale down every second. The idea here is that we 1691 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1692 * time window. We only want to throttle tasks for recent delay that 1693 * has occurred, in 1 second time windows since that's the maximum 1694 * things can be throttled. We save the current delay window in 1695 * blkg->last_delay so we know what amount is still left to be charged 1696 * to the blkg from this point onward. blkg->last_use keeps track of 1697 * the use_delay counter. The idea is if we're unthrottling the blkg we 1698 * are ok with whatever is happening now, and we can take away more of 1699 * the accumulated delay as we've already throttled enough that 1700 * everybody is happy with their IO latencies. 1701 */ 1702 if (time_before64(old + NSEC_PER_SEC, now) && 1703 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1704 u64 cur = atomic64_read(&blkg->delay_nsec); 1705 u64 sub = min_t(u64, blkg->last_delay, now - old); 1706 int cur_use = atomic_read(&blkg->use_delay); 1707 1708 /* 1709 * We've been unthrottled, subtract a larger chunk of our 1710 * accumulated delay. 1711 */ 1712 if (cur_use < blkg->last_use) 1713 sub = max_t(u64, sub, blkg->last_delay >> 1); 1714 1715 /* 1716 * This shouldn't happen, but handle it anyway. Our delay_nsec 1717 * should only ever be growing except here where we subtract out 1718 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1719 * rather not end up with negative numbers. 1720 */ 1721 if (unlikely(cur < sub)) { 1722 atomic64_set(&blkg->delay_nsec, 0); 1723 blkg->last_delay = 0; 1724 } else { 1725 atomic64_sub(sub, &blkg->delay_nsec); 1726 blkg->last_delay = cur - sub; 1727 } 1728 blkg->last_use = cur_use; 1729 } 1730 } 1731 1732 /* 1733 * This is called when we want to actually walk up the hierarchy and check to 1734 * see if we need to throttle, and then actually throttle if there is some 1735 * accumulated delay. This should only be called upon return to user space so 1736 * we're not holding some lock that would induce a priority inversion. 1737 */ 1738 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1739 { 1740 unsigned long pflags; 1741 bool clamp; 1742 u64 now = ktime_to_ns(ktime_get()); 1743 u64 exp; 1744 u64 delay_nsec = 0; 1745 int tok; 1746 1747 while (blkg->parent) { 1748 int use_delay = atomic_read(&blkg->use_delay); 1749 1750 if (use_delay) { 1751 u64 this_delay; 1752 1753 blkcg_scale_delay(blkg, now); 1754 this_delay = atomic64_read(&blkg->delay_nsec); 1755 if (this_delay > delay_nsec) { 1756 delay_nsec = this_delay; 1757 clamp = use_delay > 0; 1758 } 1759 } 1760 blkg = blkg->parent; 1761 } 1762 1763 if (!delay_nsec) 1764 return; 1765 1766 /* 1767 * Let's not sleep for all eternity if we've amassed a huge delay. 1768 * Swapping or metadata IO can accumulate 10's of seconds worth of 1769 * delay, and we want userspace to be able to do _something_ so cap the 1770 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1771 * tasks will be delayed for 0.25 second for every syscall. If 1772 * blkcg_set_delay() was used as indicated by negative use_delay, the 1773 * caller is responsible for regulating the range. 1774 */ 1775 if (clamp) 1776 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1777 1778 if (use_memdelay) 1779 psi_memstall_enter(&pflags); 1780 1781 exp = ktime_add_ns(now, delay_nsec); 1782 tok = io_schedule_prepare(); 1783 do { 1784 __set_current_state(TASK_KILLABLE); 1785 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1786 break; 1787 } while (!fatal_signal_pending(current)); 1788 io_schedule_finish(tok); 1789 1790 if (use_memdelay) 1791 psi_memstall_leave(&pflags); 1792 } 1793 1794 /** 1795 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1796 * 1797 * This is only called if we've been marked with set_notify_resume(). Obviously 1798 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1799 * check to see if current->throttle_queue is set and if not this doesn't do 1800 * anything. This should only ever be called by the resume code, it's not meant 1801 * to be called by people willy-nilly as it will actually do the work to 1802 * throttle the task if it is setup for throttling. 1803 */ 1804 void blkcg_maybe_throttle_current(void) 1805 { 1806 struct request_queue *q = current->throttle_queue; 1807 struct blkcg *blkcg; 1808 struct blkcg_gq *blkg; 1809 bool use_memdelay = current->use_memdelay; 1810 1811 if (!q) 1812 return; 1813 1814 current->throttle_queue = NULL; 1815 current->use_memdelay = false; 1816 1817 rcu_read_lock(); 1818 blkcg = css_to_blkcg(blkcg_css()); 1819 if (!blkcg) 1820 goto out; 1821 blkg = blkg_lookup(blkcg, q); 1822 if (!blkg) 1823 goto out; 1824 if (!blkg_tryget(blkg)) 1825 goto out; 1826 rcu_read_unlock(); 1827 1828 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1829 blkg_put(blkg); 1830 blk_put_queue(q); 1831 return; 1832 out: 1833 rcu_read_unlock(); 1834 blk_put_queue(q); 1835 } 1836 1837 /** 1838 * blkcg_schedule_throttle - this task needs to check for throttling 1839 * @q: the request queue IO was submitted on 1840 * @use_memdelay: do we charge this to memory delay for PSI 1841 * 1842 * This is called by the IO controller when we know there's delay accumulated 1843 * for the blkg for this task. We do not pass the blkg because there are places 1844 * we call this that may not have that information, the swapping code for 1845 * instance will only have a request_queue at that point. This set's the 1846 * notify_resume for the task to check and see if it requires throttling before 1847 * returning to user space. 1848 * 1849 * We will only schedule once per syscall. You can call this over and over 1850 * again and it will only do the check once upon return to user space, and only 1851 * throttle once. If the task needs to be throttled again it'll need to be 1852 * re-set at the next time we see the task. 1853 */ 1854 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1855 { 1856 if (unlikely(current->flags & PF_KTHREAD)) 1857 return; 1858 1859 if (current->throttle_queue != q) { 1860 if (!blk_get_queue(q)) 1861 return; 1862 1863 if (current->throttle_queue) 1864 blk_put_queue(current->throttle_queue); 1865 current->throttle_queue = q; 1866 } 1867 1868 if (use_memdelay) 1869 current->use_memdelay = use_memdelay; 1870 set_notify_resume(current); 1871 } 1872 1873 /** 1874 * blkcg_add_delay - add delay to this blkg 1875 * @blkg: blkg of interest 1876 * @now: the current time in nanoseconds 1877 * @delta: how many nanoseconds of delay to add 1878 * 1879 * Charge @delta to the blkg's current delay accumulation. This is used to 1880 * throttle tasks if an IO controller thinks we need more throttling. 1881 */ 1882 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1883 { 1884 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1885 return; 1886 blkcg_scale_delay(blkg, now); 1887 atomic64_add(delta, &blkg->delay_nsec); 1888 } 1889 1890 /** 1891 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1892 * @bio: target bio 1893 * @css: target css 1894 * 1895 * As the failure mode here is to walk up the blkg tree, this ensure that the 1896 * blkg->parent pointers are always valid. This returns the blkg that it ended 1897 * up taking a reference on or %NULL if no reference was taken. 1898 */ 1899 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1900 struct cgroup_subsys_state *css) 1901 { 1902 struct blkcg_gq *blkg, *ret_blkg = NULL; 1903 1904 rcu_read_lock(); 1905 blkg = blkg_lookup_create(css_to_blkcg(css), 1906 bdev_get_queue(bio->bi_bdev)); 1907 while (blkg) { 1908 if (blkg_tryget(blkg)) { 1909 ret_blkg = blkg; 1910 break; 1911 } 1912 blkg = blkg->parent; 1913 } 1914 rcu_read_unlock(); 1915 1916 return ret_blkg; 1917 } 1918 1919 /** 1920 * bio_associate_blkg_from_css - associate a bio with a specified css 1921 * @bio: target bio 1922 * @css: target css 1923 * 1924 * Associate @bio with the blkg found by combining the css's blkg and the 1925 * request_queue of the @bio. An association failure is handled by walking up 1926 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1927 * and q->root_blkg. This situation only happens when a cgroup is dying and 1928 * then the remaining bios will spill to the closest alive blkg. 1929 * 1930 * A reference will be taken on the blkg and will be released when @bio is 1931 * freed. 1932 */ 1933 void bio_associate_blkg_from_css(struct bio *bio, 1934 struct cgroup_subsys_state *css) 1935 { 1936 if (bio->bi_blkg) 1937 blkg_put(bio->bi_blkg); 1938 1939 if (css && css->parent) { 1940 bio->bi_blkg = blkg_tryget_closest(bio, css); 1941 } else { 1942 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1943 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1944 } 1945 } 1946 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1947 1948 /** 1949 * bio_associate_blkg - associate a bio with a blkg 1950 * @bio: target bio 1951 * 1952 * Associate @bio with the blkg found from the bio's css and request_queue. 1953 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1954 * already associated, the css is reused and association redone as the 1955 * request_queue may have changed. 1956 */ 1957 void bio_associate_blkg(struct bio *bio) 1958 { 1959 struct cgroup_subsys_state *css; 1960 1961 rcu_read_lock(); 1962 1963 if (bio->bi_blkg) 1964 css = bio_blkcg_css(bio); 1965 else 1966 css = blkcg_css(); 1967 1968 bio_associate_blkg_from_css(bio, css); 1969 1970 rcu_read_unlock(); 1971 } 1972 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1973 1974 /** 1975 * bio_clone_blkg_association - clone blkg association from src to dst bio 1976 * @dst: destination bio 1977 * @src: source bio 1978 */ 1979 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1980 { 1981 if (src->bi_blkg) 1982 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 1983 } 1984 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1985 1986 static int blk_cgroup_io_type(struct bio *bio) 1987 { 1988 if (op_is_discard(bio->bi_opf)) 1989 return BLKG_IOSTAT_DISCARD; 1990 if (op_is_write(bio->bi_opf)) 1991 return BLKG_IOSTAT_WRITE; 1992 return BLKG_IOSTAT_READ; 1993 } 1994 1995 void blk_cgroup_bio_start(struct bio *bio) 1996 { 1997 int rwd = blk_cgroup_io_type(bio), cpu; 1998 struct blkg_iostat_set *bis; 1999 unsigned long flags; 2000 2001 cpu = get_cpu(); 2002 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2003 flags = u64_stats_update_begin_irqsave(&bis->sync); 2004 2005 /* 2006 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2007 * bio and we would have already accounted for the size of the bio. 2008 */ 2009 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2010 bio_set_flag(bio, BIO_CGROUP_ACCT); 2011 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2012 } 2013 bis->cur.ios[rwd]++; 2014 2015 u64_stats_update_end_irqrestore(&bis->sync, flags); 2016 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 2017 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 2018 put_cpu(); 2019 } 2020 2021 bool blk_cgroup_congested(void) 2022 { 2023 struct cgroup_subsys_state *css; 2024 bool ret = false; 2025 2026 rcu_read_lock(); 2027 for (css = blkcg_css(); css; css = css->parent) { 2028 if (atomic_read(&css->cgroup->congestion_count)) { 2029 ret = true; 2030 break; 2031 } 2032 } 2033 rcu_read_unlock(); 2034 return ret; 2035 } 2036 2037 static int __init blkcg_init(void) 2038 { 2039 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 2040 WQ_MEM_RECLAIM | WQ_FREEZABLE | 2041 WQ_UNBOUND | WQ_SYSFS, 0); 2042 if (!blkcg_punt_bio_wq) 2043 return -ENOMEM; 2044 return 0; 2045 } 2046 subsys_initcall(blkcg_init); 2047 2048 module_param(blkcg_debug_stats, bool, 0644); 2049 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2050