xref: /openbmc/linux/block/blk-cgroup.c (revision dd21bfa4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include <linux/part_stat.h>
34 #include "blk.h"
35 #include "blk-ioprio.h"
36 #include "blk-throttle.h"
37 
38 /*
39  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41  * policy [un]register operations including cgroup file additions /
42  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
43  * allows grabbing it from cgroup callbacks.
44  */
45 static DEFINE_MUTEX(blkcg_pol_register_mutex);
46 static DEFINE_MUTEX(blkcg_pol_mutex);
47 
48 struct blkcg blkcg_root;
49 EXPORT_SYMBOL_GPL(blkcg_root);
50 
51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52 EXPORT_SYMBOL_GPL(blkcg_root_css);
53 
54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55 
56 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
57 
58 bool blkcg_debug_stats = false;
59 static struct workqueue_struct *blkcg_punt_bio_wq;
60 
61 #define BLKG_DESTROY_BATCH_SIZE  64
62 
63 static bool blkcg_policy_enabled(struct request_queue *q,
64 				 const struct blkcg_policy *pol)
65 {
66 	return pol && test_bit(pol->plid, q->blkcg_pols);
67 }
68 
69 /**
70  * blkg_free - free a blkg
71  * @blkg: blkg to free
72  *
73  * Free @blkg which may be partially allocated.
74  */
75 static void blkg_free(struct blkcg_gq *blkg)
76 {
77 	int i;
78 
79 	if (!blkg)
80 		return;
81 
82 	for (i = 0; i < BLKCG_MAX_POLS; i++)
83 		if (blkg->pd[i])
84 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
85 
86 	free_percpu(blkg->iostat_cpu);
87 	percpu_ref_exit(&blkg->refcnt);
88 	kfree(blkg);
89 }
90 
91 static void __blkg_release(struct rcu_head *rcu)
92 {
93 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
94 
95 	WARN_ON(!bio_list_empty(&blkg->async_bios));
96 
97 	/* release the blkcg and parent blkg refs this blkg has been holding */
98 	css_put(&blkg->blkcg->css);
99 	if (blkg->parent)
100 		blkg_put(blkg->parent);
101 	blkg_free(blkg);
102 }
103 
104 /*
105  * A group is RCU protected, but having an rcu lock does not mean that one
106  * can access all the fields of blkg and assume these are valid.  For
107  * example, don't try to follow throtl_data and request queue links.
108  *
109  * Having a reference to blkg under an rcu allows accesses to only values
110  * local to groups like group stats and group rate limits.
111  */
112 static void blkg_release(struct percpu_ref *ref)
113 {
114 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
115 
116 	call_rcu(&blkg->rcu_head, __blkg_release);
117 }
118 
119 static void blkg_async_bio_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     async_bio_work);
123 	struct bio_list bios = BIO_EMPTY_LIST;
124 	struct bio *bio;
125 	struct blk_plug plug;
126 	bool need_plug = false;
127 
128 	/* as long as there are pending bios, @blkg can't go away */
129 	spin_lock_bh(&blkg->async_bio_lock);
130 	bio_list_merge(&bios, &blkg->async_bios);
131 	bio_list_init(&blkg->async_bios);
132 	spin_unlock_bh(&blkg->async_bio_lock);
133 
134 	/* start plug only when bio_list contains at least 2 bios */
135 	if (bios.head && bios.head->bi_next) {
136 		need_plug = true;
137 		blk_start_plug(&plug);
138 	}
139 	while ((bio = bio_list_pop(&bios)))
140 		submit_bio(bio);
141 	if (need_plug)
142 		blk_finish_plug(&plug);
143 }
144 
145 /**
146  * blkg_alloc - allocate a blkg
147  * @blkcg: block cgroup the new blkg is associated with
148  * @q: request_queue the new blkg is associated with
149  * @gfp_mask: allocation mask to use
150  *
151  * Allocate a new blkg assocating @blkcg and @q.
152  */
153 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
154 				   gfp_t gfp_mask)
155 {
156 	struct blkcg_gq *blkg;
157 	int i, cpu;
158 
159 	/* alloc and init base part */
160 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
161 	if (!blkg)
162 		return NULL;
163 
164 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
165 		goto err_free;
166 
167 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
168 	if (!blkg->iostat_cpu)
169 		goto err_free;
170 
171 	blkg->q = q;
172 	INIT_LIST_HEAD(&blkg->q_node);
173 	spin_lock_init(&blkg->async_bio_lock);
174 	bio_list_init(&blkg->async_bios);
175 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
176 	blkg->blkcg = blkcg;
177 
178 	u64_stats_init(&blkg->iostat.sync);
179 	for_each_possible_cpu(cpu)
180 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
181 
182 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
183 		struct blkcg_policy *pol = blkcg_policy[i];
184 		struct blkg_policy_data *pd;
185 
186 		if (!blkcg_policy_enabled(q, pol))
187 			continue;
188 
189 		/* alloc per-policy data and attach it to blkg */
190 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
191 		if (!pd)
192 			goto err_free;
193 
194 		blkg->pd[i] = pd;
195 		pd->blkg = blkg;
196 		pd->plid = i;
197 	}
198 
199 	return blkg;
200 
201 err_free:
202 	blkg_free(blkg);
203 	return NULL;
204 }
205 
206 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
207 				      struct request_queue *q, bool update_hint)
208 {
209 	struct blkcg_gq *blkg;
210 
211 	/*
212 	 * Hint didn't match.  Look up from the radix tree.  Note that the
213 	 * hint can only be updated under queue_lock as otherwise @blkg
214 	 * could have already been removed from blkg_tree.  The caller is
215 	 * responsible for grabbing queue_lock if @update_hint.
216 	 */
217 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
218 	if (blkg && blkg->q == q) {
219 		if (update_hint) {
220 			lockdep_assert_held(&q->queue_lock);
221 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
222 		}
223 		return blkg;
224 	}
225 
226 	return NULL;
227 }
228 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
229 
230 /*
231  * If @new_blkg is %NULL, this function tries to allocate a new one as
232  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
233  */
234 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
235 				    struct request_queue *q,
236 				    struct blkcg_gq *new_blkg)
237 {
238 	struct blkcg_gq *blkg;
239 	int i, ret;
240 
241 	WARN_ON_ONCE(!rcu_read_lock_held());
242 	lockdep_assert_held(&q->queue_lock);
243 
244 	/* request_queue is dying, do not create/recreate a blkg */
245 	if (blk_queue_dying(q)) {
246 		ret = -ENODEV;
247 		goto err_free_blkg;
248 	}
249 
250 	/* blkg holds a reference to blkcg */
251 	if (!css_tryget_online(&blkcg->css)) {
252 		ret = -ENODEV;
253 		goto err_free_blkg;
254 	}
255 
256 	/* allocate */
257 	if (!new_blkg) {
258 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
259 		if (unlikely(!new_blkg)) {
260 			ret = -ENOMEM;
261 			goto err_put_css;
262 		}
263 	}
264 	blkg = new_blkg;
265 
266 	/* link parent */
267 	if (blkcg_parent(blkcg)) {
268 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
269 		if (WARN_ON_ONCE(!blkg->parent)) {
270 			ret = -ENODEV;
271 			goto err_put_css;
272 		}
273 		blkg_get(blkg->parent);
274 	}
275 
276 	/* invoke per-policy init */
277 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
278 		struct blkcg_policy *pol = blkcg_policy[i];
279 
280 		if (blkg->pd[i] && pol->pd_init_fn)
281 			pol->pd_init_fn(blkg->pd[i]);
282 	}
283 
284 	/* insert */
285 	spin_lock(&blkcg->lock);
286 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
287 	if (likely(!ret)) {
288 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
289 		list_add(&blkg->q_node, &q->blkg_list);
290 
291 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
292 			struct blkcg_policy *pol = blkcg_policy[i];
293 
294 			if (blkg->pd[i] && pol->pd_online_fn)
295 				pol->pd_online_fn(blkg->pd[i]);
296 		}
297 	}
298 	blkg->online = true;
299 	spin_unlock(&blkcg->lock);
300 
301 	if (!ret)
302 		return blkg;
303 
304 	/* @blkg failed fully initialized, use the usual release path */
305 	blkg_put(blkg);
306 	return ERR_PTR(ret);
307 
308 err_put_css:
309 	css_put(&blkcg->css);
310 err_free_blkg:
311 	blkg_free(new_blkg);
312 	return ERR_PTR(ret);
313 }
314 
315 /**
316  * blkg_lookup_create - lookup blkg, try to create one if not there
317  * @blkcg: blkcg of interest
318  * @q: request_queue of interest
319  *
320  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
321  * create one.  blkg creation is performed recursively from blkcg_root such
322  * that all non-root blkg's have access to the parent blkg.  This function
323  * should be called under RCU read lock and takes @q->queue_lock.
324  *
325  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
326  * down from root.
327  */
328 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
329 		struct request_queue *q)
330 {
331 	struct blkcg_gq *blkg;
332 	unsigned long flags;
333 
334 	WARN_ON_ONCE(!rcu_read_lock_held());
335 
336 	blkg = blkg_lookup(blkcg, q);
337 	if (blkg)
338 		return blkg;
339 
340 	spin_lock_irqsave(&q->queue_lock, flags);
341 	blkg = __blkg_lookup(blkcg, q, true);
342 	if (blkg)
343 		goto found;
344 
345 	/*
346 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
347 	 * non-root blkgs have access to their parents.  Returns the closest
348 	 * blkg to the intended blkg should blkg_create() fail.
349 	 */
350 	while (true) {
351 		struct blkcg *pos = blkcg;
352 		struct blkcg *parent = blkcg_parent(blkcg);
353 		struct blkcg_gq *ret_blkg = q->root_blkg;
354 
355 		while (parent) {
356 			blkg = __blkg_lookup(parent, q, false);
357 			if (blkg) {
358 				/* remember closest blkg */
359 				ret_blkg = blkg;
360 				break;
361 			}
362 			pos = parent;
363 			parent = blkcg_parent(parent);
364 		}
365 
366 		blkg = blkg_create(pos, q, NULL);
367 		if (IS_ERR(blkg)) {
368 			blkg = ret_blkg;
369 			break;
370 		}
371 		if (pos == blkcg)
372 			break;
373 	}
374 
375 found:
376 	spin_unlock_irqrestore(&q->queue_lock, flags);
377 	return blkg;
378 }
379 
380 static void blkg_destroy(struct blkcg_gq *blkg)
381 {
382 	struct blkcg *blkcg = blkg->blkcg;
383 	int i;
384 
385 	lockdep_assert_held(&blkg->q->queue_lock);
386 	lockdep_assert_held(&blkcg->lock);
387 
388 	/* Something wrong if we are trying to remove same group twice */
389 	WARN_ON_ONCE(list_empty(&blkg->q_node));
390 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
391 
392 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
393 		struct blkcg_policy *pol = blkcg_policy[i];
394 
395 		if (blkg->pd[i] && pol->pd_offline_fn)
396 			pol->pd_offline_fn(blkg->pd[i]);
397 	}
398 
399 	blkg->online = false;
400 
401 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
402 	list_del_init(&blkg->q_node);
403 	hlist_del_init_rcu(&blkg->blkcg_node);
404 
405 	/*
406 	 * Both setting lookup hint to and clearing it from @blkg are done
407 	 * under queue_lock.  If it's not pointing to @blkg now, it never
408 	 * will.  Hint assignment itself can race safely.
409 	 */
410 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
411 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
412 
413 	/*
414 	 * Put the reference taken at the time of creation so that when all
415 	 * queues are gone, group can be destroyed.
416 	 */
417 	percpu_ref_kill(&blkg->refcnt);
418 }
419 
420 /**
421  * blkg_destroy_all - destroy all blkgs associated with a request_queue
422  * @q: request_queue of interest
423  *
424  * Destroy all blkgs associated with @q.
425  */
426 static void blkg_destroy_all(struct request_queue *q)
427 {
428 	struct blkcg_gq *blkg, *n;
429 	int count = BLKG_DESTROY_BATCH_SIZE;
430 
431 restart:
432 	spin_lock_irq(&q->queue_lock);
433 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
434 		struct blkcg *blkcg = blkg->blkcg;
435 
436 		spin_lock(&blkcg->lock);
437 		blkg_destroy(blkg);
438 		spin_unlock(&blkcg->lock);
439 
440 		/*
441 		 * in order to avoid holding the spin lock for too long, release
442 		 * it when a batch of blkgs are destroyed.
443 		 */
444 		if (!(--count)) {
445 			count = BLKG_DESTROY_BATCH_SIZE;
446 			spin_unlock_irq(&q->queue_lock);
447 			cond_resched();
448 			goto restart;
449 		}
450 	}
451 
452 	q->root_blkg = NULL;
453 	spin_unlock_irq(&q->queue_lock);
454 }
455 
456 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
457 			     struct cftype *cftype, u64 val)
458 {
459 	struct blkcg *blkcg = css_to_blkcg(css);
460 	struct blkcg_gq *blkg;
461 	int i, cpu;
462 
463 	mutex_lock(&blkcg_pol_mutex);
464 	spin_lock_irq(&blkcg->lock);
465 
466 	/*
467 	 * Note that stat reset is racy - it doesn't synchronize against
468 	 * stat updates.  This is a debug feature which shouldn't exist
469 	 * anyway.  If you get hit by a race, retry.
470 	 */
471 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
472 		for_each_possible_cpu(cpu) {
473 			struct blkg_iostat_set *bis =
474 				per_cpu_ptr(blkg->iostat_cpu, cpu);
475 			memset(bis, 0, sizeof(*bis));
476 		}
477 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
478 
479 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
480 			struct blkcg_policy *pol = blkcg_policy[i];
481 
482 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
483 				pol->pd_reset_stats_fn(blkg->pd[i]);
484 		}
485 	}
486 
487 	spin_unlock_irq(&blkcg->lock);
488 	mutex_unlock(&blkcg_pol_mutex);
489 	return 0;
490 }
491 
492 const char *blkg_dev_name(struct blkcg_gq *blkg)
493 {
494 	if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
495 		return NULL;
496 	return bdi_dev_name(blkg->q->disk->bdi);
497 }
498 
499 /**
500  * blkcg_print_blkgs - helper for printing per-blkg data
501  * @sf: seq_file to print to
502  * @blkcg: blkcg of interest
503  * @prfill: fill function to print out a blkg
504  * @pol: policy in question
505  * @data: data to be passed to @prfill
506  * @show_total: to print out sum of prfill return values or not
507  *
508  * This function invokes @prfill on each blkg of @blkcg if pd for the
509  * policy specified by @pol exists.  @prfill is invoked with @sf, the
510  * policy data and @data and the matching queue lock held.  If @show_total
511  * is %true, the sum of the return values from @prfill is printed with
512  * "Total" label at the end.
513  *
514  * This is to be used to construct print functions for
515  * cftype->read_seq_string method.
516  */
517 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
518 		       u64 (*prfill)(struct seq_file *,
519 				     struct blkg_policy_data *, int),
520 		       const struct blkcg_policy *pol, int data,
521 		       bool show_total)
522 {
523 	struct blkcg_gq *blkg;
524 	u64 total = 0;
525 
526 	rcu_read_lock();
527 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
528 		spin_lock_irq(&blkg->q->queue_lock);
529 		if (blkcg_policy_enabled(blkg->q, pol))
530 			total += prfill(sf, blkg->pd[pol->plid], data);
531 		spin_unlock_irq(&blkg->q->queue_lock);
532 	}
533 	rcu_read_unlock();
534 
535 	if (show_total)
536 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
537 }
538 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
539 
540 /**
541  * __blkg_prfill_u64 - prfill helper for a single u64 value
542  * @sf: seq_file to print to
543  * @pd: policy private data of interest
544  * @v: value to print
545  *
546  * Print @v to @sf for the device assocaited with @pd.
547  */
548 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
549 {
550 	const char *dname = blkg_dev_name(pd->blkg);
551 
552 	if (!dname)
553 		return 0;
554 
555 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
556 	return v;
557 }
558 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
559 
560 /* Performs queue bypass and policy enabled checks then looks up blkg. */
561 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
562 					  const struct blkcg_policy *pol,
563 					  struct request_queue *q)
564 {
565 	WARN_ON_ONCE(!rcu_read_lock_held());
566 	lockdep_assert_held(&q->queue_lock);
567 
568 	if (!blkcg_policy_enabled(q, pol))
569 		return ERR_PTR(-EOPNOTSUPP);
570 	return __blkg_lookup(blkcg, q, true /* update_hint */);
571 }
572 
573 /**
574  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
575  * @inputp: input string pointer
576  *
577  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
578  * from @input and get and return the matching bdev.  *@inputp is
579  * updated to point past the device node prefix.  Returns an ERR_PTR()
580  * value on error.
581  *
582  * Use this function iff blkg_conf_prep() can't be used for some reason.
583  */
584 struct block_device *blkcg_conf_open_bdev(char **inputp)
585 {
586 	char *input = *inputp;
587 	unsigned int major, minor;
588 	struct block_device *bdev;
589 	int key_len;
590 
591 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
592 		return ERR_PTR(-EINVAL);
593 
594 	input += key_len;
595 	if (!isspace(*input))
596 		return ERR_PTR(-EINVAL);
597 	input = skip_spaces(input);
598 
599 	bdev = blkdev_get_no_open(MKDEV(major, minor));
600 	if (!bdev)
601 		return ERR_PTR(-ENODEV);
602 	if (bdev_is_partition(bdev)) {
603 		blkdev_put_no_open(bdev);
604 		return ERR_PTR(-ENODEV);
605 	}
606 
607 	*inputp = input;
608 	return bdev;
609 }
610 
611 /**
612  * blkg_conf_prep - parse and prepare for per-blkg config update
613  * @blkcg: target block cgroup
614  * @pol: target policy
615  * @input: input string
616  * @ctx: blkg_conf_ctx to be filled
617  *
618  * Parse per-blkg config update from @input and initialize @ctx with the
619  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
620  * part of @input following MAJ:MIN.  This function returns with RCU read
621  * lock and queue lock held and must be paired with blkg_conf_finish().
622  */
623 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
624 		   char *input, struct blkg_conf_ctx *ctx)
625 	__acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
626 {
627 	struct block_device *bdev;
628 	struct request_queue *q;
629 	struct blkcg_gq *blkg;
630 	int ret;
631 
632 	bdev = blkcg_conf_open_bdev(&input);
633 	if (IS_ERR(bdev))
634 		return PTR_ERR(bdev);
635 
636 	q = bdev_get_queue(bdev);
637 
638 	/*
639 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
640 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
641 	 */
642 	ret = blk_queue_enter(q, 0);
643 	if (ret)
644 		goto fail;
645 
646 	rcu_read_lock();
647 	spin_lock_irq(&q->queue_lock);
648 
649 	blkg = blkg_lookup_check(blkcg, pol, q);
650 	if (IS_ERR(blkg)) {
651 		ret = PTR_ERR(blkg);
652 		goto fail_unlock;
653 	}
654 
655 	if (blkg)
656 		goto success;
657 
658 	/*
659 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
660 	 * non-root blkgs have access to their parents.
661 	 */
662 	while (true) {
663 		struct blkcg *pos = blkcg;
664 		struct blkcg *parent;
665 		struct blkcg_gq *new_blkg;
666 
667 		parent = blkcg_parent(blkcg);
668 		while (parent && !__blkg_lookup(parent, q, false)) {
669 			pos = parent;
670 			parent = blkcg_parent(parent);
671 		}
672 
673 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
674 		spin_unlock_irq(&q->queue_lock);
675 		rcu_read_unlock();
676 
677 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
678 		if (unlikely(!new_blkg)) {
679 			ret = -ENOMEM;
680 			goto fail_exit_queue;
681 		}
682 
683 		if (radix_tree_preload(GFP_KERNEL)) {
684 			blkg_free(new_blkg);
685 			ret = -ENOMEM;
686 			goto fail_exit_queue;
687 		}
688 
689 		rcu_read_lock();
690 		spin_lock_irq(&q->queue_lock);
691 
692 		blkg = blkg_lookup_check(pos, pol, q);
693 		if (IS_ERR(blkg)) {
694 			ret = PTR_ERR(blkg);
695 			blkg_free(new_blkg);
696 			goto fail_preloaded;
697 		}
698 
699 		if (blkg) {
700 			blkg_free(new_blkg);
701 		} else {
702 			blkg = blkg_create(pos, q, new_blkg);
703 			if (IS_ERR(blkg)) {
704 				ret = PTR_ERR(blkg);
705 				goto fail_preloaded;
706 			}
707 		}
708 
709 		radix_tree_preload_end();
710 
711 		if (pos == blkcg)
712 			goto success;
713 	}
714 success:
715 	blk_queue_exit(q);
716 	ctx->bdev = bdev;
717 	ctx->blkg = blkg;
718 	ctx->body = input;
719 	return 0;
720 
721 fail_preloaded:
722 	radix_tree_preload_end();
723 fail_unlock:
724 	spin_unlock_irq(&q->queue_lock);
725 	rcu_read_unlock();
726 fail_exit_queue:
727 	blk_queue_exit(q);
728 fail:
729 	blkdev_put_no_open(bdev);
730 	/*
731 	 * If queue was bypassing, we should retry.  Do so after a
732 	 * short msleep().  It isn't strictly necessary but queue
733 	 * can be bypassing for some time and it's always nice to
734 	 * avoid busy looping.
735 	 */
736 	if (ret == -EBUSY) {
737 		msleep(10);
738 		ret = restart_syscall();
739 	}
740 	return ret;
741 }
742 EXPORT_SYMBOL_GPL(blkg_conf_prep);
743 
744 /**
745  * blkg_conf_finish - finish up per-blkg config update
746  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
747  *
748  * Finish up after per-blkg config update.  This function must be paired
749  * with blkg_conf_prep().
750  */
751 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
752 	__releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
753 {
754 	spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
755 	rcu_read_unlock();
756 	blkdev_put_no_open(ctx->bdev);
757 }
758 EXPORT_SYMBOL_GPL(blkg_conf_finish);
759 
760 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
761 {
762 	int i;
763 
764 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
765 		dst->bytes[i] = src->bytes[i];
766 		dst->ios[i] = src->ios[i];
767 	}
768 }
769 
770 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
771 {
772 	int i;
773 
774 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
775 		dst->bytes[i] += src->bytes[i];
776 		dst->ios[i] += src->ios[i];
777 	}
778 }
779 
780 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
781 {
782 	int i;
783 
784 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
785 		dst->bytes[i] -= src->bytes[i];
786 		dst->ios[i] -= src->ios[i];
787 	}
788 }
789 
790 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
791 {
792 	struct blkcg *blkcg = css_to_blkcg(css);
793 	struct blkcg_gq *blkg;
794 
795 	/* Root-level stats are sourced from system-wide IO stats */
796 	if (!cgroup_parent(css->cgroup))
797 		return;
798 
799 	rcu_read_lock();
800 
801 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
802 		struct blkcg_gq *parent = blkg->parent;
803 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
804 		struct blkg_iostat cur, delta;
805 		unsigned long flags;
806 		unsigned int seq;
807 
808 		/* fetch the current per-cpu values */
809 		do {
810 			seq = u64_stats_fetch_begin(&bisc->sync);
811 			blkg_iostat_set(&cur, &bisc->cur);
812 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
813 
814 		/* propagate percpu delta to global */
815 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
816 		blkg_iostat_set(&delta, &cur);
817 		blkg_iostat_sub(&delta, &bisc->last);
818 		blkg_iostat_add(&blkg->iostat.cur, &delta);
819 		blkg_iostat_add(&bisc->last, &delta);
820 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
821 
822 		/* propagate global delta to parent (unless that's root) */
823 		if (parent && parent->parent) {
824 			flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
825 			blkg_iostat_set(&delta, &blkg->iostat.cur);
826 			blkg_iostat_sub(&delta, &blkg->iostat.last);
827 			blkg_iostat_add(&parent->iostat.cur, &delta);
828 			blkg_iostat_add(&blkg->iostat.last, &delta);
829 			u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
830 		}
831 	}
832 
833 	rcu_read_unlock();
834 }
835 
836 /*
837  * We source root cgroup stats from the system-wide stats to avoid
838  * tracking the same information twice and incurring overhead when no
839  * cgroups are defined. For that reason, cgroup_rstat_flush in
840  * blkcg_print_stat does not actually fill out the iostat in the root
841  * cgroup's blkcg_gq.
842  *
843  * However, we would like to re-use the printing code between the root and
844  * non-root cgroups to the extent possible. For that reason, we simulate
845  * flushing the root cgroup's stats by explicitly filling in the iostat
846  * with disk level statistics.
847  */
848 static void blkcg_fill_root_iostats(void)
849 {
850 	struct class_dev_iter iter;
851 	struct device *dev;
852 
853 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
854 	while ((dev = class_dev_iter_next(&iter))) {
855 		struct block_device *bdev = dev_to_bdev(dev);
856 		struct blkcg_gq *blkg =
857 			blk_queue_root_blkg(bdev_get_queue(bdev));
858 		struct blkg_iostat tmp;
859 		int cpu;
860 
861 		memset(&tmp, 0, sizeof(tmp));
862 		for_each_possible_cpu(cpu) {
863 			struct disk_stats *cpu_dkstats;
864 			unsigned long flags;
865 
866 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
867 			tmp.ios[BLKG_IOSTAT_READ] +=
868 				cpu_dkstats->ios[STAT_READ];
869 			tmp.ios[BLKG_IOSTAT_WRITE] +=
870 				cpu_dkstats->ios[STAT_WRITE];
871 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
872 				cpu_dkstats->ios[STAT_DISCARD];
873 			// convert sectors to bytes
874 			tmp.bytes[BLKG_IOSTAT_READ] +=
875 				cpu_dkstats->sectors[STAT_READ] << 9;
876 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
877 				cpu_dkstats->sectors[STAT_WRITE] << 9;
878 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
879 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
880 
881 			flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
882 			blkg_iostat_set(&blkg->iostat.cur, &tmp);
883 			u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
884 		}
885 	}
886 }
887 
888 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
889 {
890 	struct blkg_iostat_set *bis = &blkg->iostat;
891 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
892 	bool has_stats = false;
893 	const char *dname;
894 	unsigned seq;
895 	int i;
896 
897 	if (!blkg->online)
898 		return;
899 
900 	dname = blkg_dev_name(blkg);
901 	if (!dname)
902 		return;
903 
904 	seq_printf(s, "%s ", dname);
905 
906 	do {
907 		seq = u64_stats_fetch_begin(&bis->sync);
908 
909 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
910 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
911 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
912 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
913 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
914 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
915 	} while (u64_stats_fetch_retry(&bis->sync, seq));
916 
917 	if (rbytes || wbytes || rios || wios) {
918 		has_stats = true;
919 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
920 			rbytes, wbytes, rios, wios,
921 			dbytes, dios);
922 	}
923 
924 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
925 		has_stats = true;
926 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
927 			atomic_read(&blkg->use_delay),
928 			atomic64_read(&blkg->delay_nsec));
929 	}
930 
931 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
932 		struct blkcg_policy *pol = blkcg_policy[i];
933 
934 		if (!blkg->pd[i] || !pol->pd_stat_fn)
935 			continue;
936 
937 		if (pol->pd_stat_fn(blkg->pd[i], s))
938 			has_stats = true;
939 	}
940 
941 	if (has_stats)
942 		seq_printf(s, "\n");
943 }
944 
945 static int blkcg_print_stat(struct seq_file *sf, void *v)
946 {
947 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
948 	struct blkcg_gq *blkg;
949 
950 	if (!seq_css(sf)->parent)
951 		blkcg_fill_root_iostats();
952 	else
953 		cgroup_rstat_flush(blkcg->css.cgroup);
954 
955 	rcu_read_lock();
956 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
957 		spin_lock_irq(&blkg->q->queue_lock);
958 		blkcg_print_one_stat(blkg, sf);
959 		spin_unlock_irq(&blkg->q->queue_lock);
960 	}
961 	rcu_read_unlock();
962 	return 0;
963 }
964 
965 static struct cftype blkcg_files[] = {
966 	{
967 		.name = "stat",
968 		.seq_show = blkcg_print_stat,
969 	},
970 	{ }	/* terminate */
971 };
972 
973 static struct cftype blkcg_legacy_files[] = {
974 	{
975 		.name = "reset_stats",
976 		.write_u64 = blkcg_reset_stats,
977 	},
978 	{ }	/* terminate */
979 };
980 
981 /*
982  * blkcg destruction is a three-stage process.
983  *
984  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
985  *    which offlines writeback.  Here we tie the next stage of blkg destruction
986  *    to the completion of writeback associated with the blkcg.  This lets us
987  *    avoid punting potentially large amounts of outstanding writeback to root
988  *    while maintaining any ongoing policies.  The next stage is triggered when
989  *    the nr_cgwbs count goes to zero.
990  *
991  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
992  *    and handles the destruction of blkgs.  Here the css reference held by
993  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
994  *    This work may occur in cgwb_release_workfn() on the cgwb_release
995  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
996  *    punted to the root_blkg.
997  *
998  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
999  *    This finally frees the blkcg.
1000  */
1001 
1002 /**
1003  * blkcg_css_offline - cgroup css_offline callback
1004  * @css: css of interest
1005  *
1006  * This function is called when @css is about to go away.  Here the cgwbs are
1007  * offlined first and only once writeback associated with the blkcg has
1008  * finished do we start step 2 (see above).
1009  */
1010 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1011 {
1012 	struct blkcg *blkcg = css_to_blkcg(css);
1013 
1014 	/* this prevents anyone from attaching or migrating to this blkcg */
1015 	wb_blkcg_offline(blkcg);
1016 
1017 	/* put the base online pin allowing step 2 to be triggered */
1018 	blkcg_unpin_online(blkcg);
1019 }
1020 
1021 /**
1022  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1023  * @blkcg: blkcg of interest
1024  *
1025  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1026  * is nested inside q lock, this function performs reverse double lock dancing.
1027  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1028  * blkcg_css_free to eventually be called.
1029  *
1030  * This is the blkcg counterpart of ioc_release_fn().
1031  */
1032 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1033 {
1034 	might_sleep();
1035 
1036 	spin_lock_irq(&blkcg->lock);
1037 
1038 	while (!hlist_empty(&blkcg->blkg_list)) {
1039 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1040 						struct blkcg_gq, blkcg_node);
1041 		struct request_queue *q = blkg->q;
1042 
1043 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1044 			/*
1045 			 * Given that the system can accumulate a huge number
1046 			 * of blkgs in pathological cases, check to see if we
1047 			 * need to rescheduling to avoid softlockup.
1048 			 */
1049 			spin_unlock_irq(&blkcg->lock);
1050 			cond_resched();
1051 			spin_lock_irq(&blkcg->lock);
1052 			continue;
1053 		}
1054 
1055 		blkg_destroy(blkg);
1056 		spin_unlock(&q->queue_lock);
1057 	}
1058 
1059 	spin_unlock_irq(&blkcg->lock);
1060 }
1061 
1062 static void blkcg_css_free(struct cgroup_subsys_state *css)
1063 {
1064 	struct blkcg *blkcg = css_to_blkcg(css);
1065 	int i;
1066 
1067 	mutex_lock(&blkcg_pol_mutex);
1068 
1069 	list_del(&blkcg->all_blkcgs_node);
1070 
1071 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1072 		if (blkcg->cpd[i])
1073 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1074 
1075 	mutex_unlock(&blkcg_pol_mutex);
1076 
1077 	kfree(blkcg);
1078 }
1079 
1080 static struct cgroup_subsys_state *
1081 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1082 {
1083 	struct blkcg *blkcg;
1084 	struct cgroup_subsys_state *ret;
1085 	int i;
1086 
1087 	mutex_lock(&blkcg_pol_mutex);
1088 
1089 	if (!parent_css) {
1090 		blkcg = &blkcg_root;
1091 	} else {
1092 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1093 		if (!blkcg) {
1094 			ret = ERR_PTR(-ENOMEM);
1095 			goto unlock;
1096 		}
1097 	}
1098 
1099 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1100 		struct blkcg_policy *pol = blkcg_policy[i];
1101 		struct blkcg_policy_data *cpd;
1102 
1103 		/*
1104 		 * If the policy hasn't been attached yet, wait for it
1105 		 * to be attached before doing anything else. Otherwise,
1106 		 * check if the policy requires any specific per-cgroup
1107 		 * data: if it does, allocate and initialize it.
1108 		 */
1109 		if (!pol || !pol->cpd_alloc_fn)
1110 			continue;
1111 
1112 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1113 		if (!cpd) {
1114 			ret = ERR_PTR(-ENOMEM);
1115 			goto free_pd_blkcg;
1116 		}
1117 		blkcg->cpd[i] = cpd;
1118 		cpd->blkcg = blkcg;
1119 		cpd->plid = i;
1120 		if (pol->cpd_init_fn)
1121 			pol->cpd_init_fn(cpd);
1122 	}
1123 
1124 	spin_lock_init(&blkcg->lock);
1125 	refcount_set(&blkcg->online_pin, 1);
1126 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1127 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1128 #ifdef CONFIG_CGROUP_WRITEBACK
1129 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1130 #endif
1131 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1132 
1133 	mutex_unlock(&blkcg_pol_mutex);
1134 	return &blkcg->css;
1135 
1136 free_pd_blkcg:
1137 	for (i--; i >= 0; i--)
1138 		if (blkcg->cpd[i])
1139 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1140 
1141 	if (blkcg != &blkcg_root)
1142 		kfree(blkcg);
1143 unlock:
1144 	mutex_unlock(&blkcg_pol_mutex);
1145 	return ret;
1146 }
1147 
1148 static int blkcg_css_online(struct cgroup_subsys_state *css)
1149 {
1150 	struct blkcg *blkcg = css_to_blkcg(css);
1151 	struct blkcg *parent = blkcg_parent(blkcg);
1152 
1153 	/*
1154 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1155 	 * don't go offline while cgwbs are still active on them.  Pin the
1156 	 * parent so that offline always happens towards the root.
1157 	 */
1158 	if (parent)
1159 		blkcg_pin_online(parent);
1160 	return 0;
1161 }
1162 
1163 /**
1164  * blkcg_init_queue - initialize blkcg part of request queue
1165  * @q: request_queue to initialize
1166  *
1167  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1168  * part of new request_queue @q.
1169  *
1170  * RETURNS:
1171  * 0 on success, -errno on failure.
1172  */
1173 int blkcg_init_queue(struct request_queue *q)
1174 {
1175 	struct blkcg_gq *new_blkg, *blkg;
1176 	bool preloaded;
1177 	int ret;
1178 
1179 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1180 	if (!new_blkg)
1181 		return -ENOMEM;
1182 
1183 	preloaded = !radix_tree_preload(GFP_KERNEL);
1184 
1185 	/* Make sure the root blkg exists. */
1186 	rcu_read_lock();
1187 	spin_lock_irq(&q->queue_lock);
1188 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1189 	if (IS_ERR(blkg))
1190 		goto err_unlock;
1191 	q->root_blkg = blkg;
1192 	spin_unlock_irq(&q->queue_lock);
1193 	rcu_read_unlock();
1194 
1195 	if (preloaded)
1196 		radix_tree_preload_end();
1197 
1198 	ret = blk_ioprio_init(q);
1199 	if (ret)
1200 		goto err_destroy_all;
1201 
1202 	ret = blk_throtl_init(q);
1203 	if (ret)
1204 		goto err_destroy_all;
1205 
1206 	ret = blk_iolatency_init(q);
1207 	if (ret) {
1208 		blk_throtl_exit(q);
1209 		goto err_destroy_all;
1210 	}
1211 
1212 	return 0;
1213 
1214 err_destroy_all:
1215 	blkg_destroy_all(q);
1216 	return ret;
1217 err_unlock:
1218 	spin_unlock_irq(&q->queue_lock);
1219 	rcu_read_unlock();
1220 	if (preloaded)
1221 		radix_tree_preload_end();
1222 	return PTR_ERR(blkg);
1223 }
1224 
1225 /**
1226  * blkcg_exit_queue - exit and release blkcg part of request_queue
1227  * @q: request_queue being released
1228  *
1229  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1230  */
1231 void blkcg_exit_queue(struct request_queue *q)
1232 {
1233 	blkg_destroy_all(q);
1234 	blk_throtl_exit(q);
1235 }
1236 
1237 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1238 {
1239 	int i;
1240 
1241 	mutex_lock(&blkcg_pol_mutex);
1242 
1243 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1244 		struct blkcg_policy *pol = blkcg_policy[i];
1245 		struct blkcg *blkcg;
1246 
1247 		if (!pol || !pol->cpd_bind_fn)
1248 			continue;
1249 
1250 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1251 			if (blkcg->cpd[pol->plid])
1252 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1253 	}
1254 	mutex_unlock(&blkcg_pol_mutex);
1255 }
1256 
1257 static void blkcg_exit(struct task_struct *tsk)
1258 {
1259 	if (tsk->throttle_queue)
1260 		blk_put_queue(tsk->throttle_queue);
1261 	tsk->throttle_queue = NULL;
1262 }
1263 
1264 struct cgroup_subsys io_cgrp_subsys = {
1265 	.css_alloc = blkcg_css_alloc,
1266 	.css_online = blkcg_css_online,
1267 	.css_offline = blkcg_css_offline,
1268 	.css_free = blkcg_css_free,
1269 	.css_rstat_flush = blkcg_rstat_flush,
1270 	.bind = blkcg_bind,
1271 	.dfl_cftypes = blkcg_files,
1272 	.legacy_cftypes = blkcg_legacy_files,
1273 	.legacy_name = "blkio",
1274 	.exit = blkcg_exit,
1275 #ifdef CONFIG_MEMCG
1276 	/*
1277 	 * This ensures that, if available, memcg is automatically enabled
1278 	 * together on the default hierarchy so that the owner cgroup can
1279 	 * be retrieved from writeback pages.
1280 	 */
1281 	.depends_on = 1 << memory_cgrp_id,
1282 #endif
1283 };
1284 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1285 
1286 /**
1287  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1288  * @q: request_queue of interest
1289  * @pol: blkcg policy to activate
1290  *
1291  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1292  * bypass mode to populate its blkgs with policy_data for @pol.
1293  *
1294  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1295  * from IO path.  Update of each blkg is protected by both queue and blkcg
1296  * locks so that holding either lock and testing blkcg_policy_enabled() is
1297  * always enough for dereferencing policy data.
1298  *
1299  * The caller is responsible for synchronizing [de]activations and policy
1300  * [un]registerations.  Returns 0 on success, -errno on failure.
1301  */
1302 int blkcg_activate_policy(struct request_queue *q,
1303 			  const struct blkcg_policy *pol)
1304 {
1305 	struct blkg_policy_data *pd_prealloc = NULL;
1306 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1307 	int ret;
1308 
1309 	if (blkcg_policy_enabled(q, pol))
1310 		return 0;
1311 
1312 	if (queue_is_mq(q))
1313 		blk_mq_freeze_queue(q);
1314 retry:
1315 	spin_lock_irq(&q->queue_lock);
1316 
1317 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1318 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1319 		struct blkg_policy_data *pd;
1320 
1321 		if (blkg->pd[pol->plid])
1322 			continue;
1323 
1324 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1325 		if (blkg == pinned_blkg) {
1326 			pd = pd_prealloc;
1327 			pd_prealloc = NULL;
1328 		} else {
1329 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1330 					      blkg->blkcg);
1331 		}
1332 
1333 		if (!pd) {
1334 			/*
1335 			 * GFP_NOWAIT failed.  Free the existing one and
1336 			 * prealloc for @blkg w/ GFP_KERNEL.
1337 			 */
1338 			if (pinned_blkg)
1339 				blkg_put(pinned_blkg);
1340 			blkg_get(blkg);
1341 			pinned_blkg = blkg;
1342 
1343 			spin_unlock_irq(&q->queue_lock);
1344 
1345 			if (pd_prealloc)
1346 				pol->pd_free_fn(pd_prealloc);
1347 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1348 						       blkg->blkcg);
1349 			if (pd_prealloc)
1350 				goto retry;
1351 			else
1352 				goto enomem;
1353 		}
1354 
1355 		blkg->pd[pol->plid] = pd;
1356 		pd->blkg = blkg;
1357 		pd->plid = pol->plid;
1358 	}
1359 
1360 	/* all allocated, init in the same order */
1361 	if (pol->pd_init_fn)
1362 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1363 			pol->pd_init_fn(blkg->pd[pol->plid]);
1364 
1365 	__set_bit(pol->plid, q->blkcg_pols);
1366 	ret = 0;
1367 
1368 	spin_unlock_irq(&q->queue_lock);
1369 out:
1370 	if (queue_is_mq(q))
1371 		blk_mq_unfreeze_queue(q);
1372 	if (pinned_blkg)
1373 		blkg_put(pinned_blkg);
1374 	if (pd_prealloc)
1375 		pol->pd_free_fn(pd_prealloc);
1376 	return ret;
1377 
1378 enomem:
1379 	/* alloc failed, nothing's initialized yet, free everything */
1380 	spin_lock_irq(&q->queue_lock);
1381 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1382 		struct blkcg *blkcg = blkg->blkcg;
1383 
1384 		spin_lock(&blkcg->lock);
1385 		if (blkg->pd[pol->plid]) {
1386 			pol->pd_free_fn(blkg->pd[pol->plid]);
1387 			blkg->pd[pol->plid] = NULL;
1388 		}
1389 		spin_unlock(&blkcg->lock);
1390 	}
1391 	spin_unlock_irq(&q->queue_lock);
1392 	ret = -ENOMEM;
1393 	goto out;
1394 }
1395 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1396 
1397 /**
1398  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1399  * @q: request_queue of interest
1400  * @pol: blkcg policy to deactivate
1401  *
1402  * Deactivate @pol on @q.  Follows the same synchronization rules as
1403  * blkcg_activate_policy().
1404  */
1405 void blkcg_deactivate_policy(struct request_queue *q,
1406 			     const struct blkcg_policy *pol)
1407 {
1408 	struct blkcg_gq *blkg;
1409 
1410 	if (!blkcg_policy_enabled(q, pol))
1411 		return;
1412 
1413 	if (queue_is_mq(q))
1414 		blk_mq_freeze_queue(q);
1415 
1416 	spin_lock_irq(&q->queue_lock);
1417 
1418 	__clear_bit(pol->plid, q->blkcg_pols);
1419 
1420 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1421 		struct blkcg *blkcg = blkg->blkcg;
1422 
1423 		spin_lock(&blkcg->lock);
1424 		if (blkg->pd[pol->plid]) {
1425 			if (pol->pd_offline_fn)
1426 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1427 			pol->pd_free_fn(blkg->pd[pol->plid]);
1428 			blkg->pd[pol->plid] = NULL;
1429 		}
1430 		spin_unlock(&blkcg->lock);
1431 	}
1432 
1433 	spin_unlock_irq(&q->queue_lock);
1434 
1435 	if (queue_is_mq(q))
1436 		blk_mq_unfreeze_queue(q);
1437 }
1438 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1439 
1440 /**
1441  * blkcg_policy_register - register a blkcg policy
1442  * @pol: blkcg policy to register
1443  *
1444  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1445  * successful registration.  Returns 0 on success and -errno on failure.
1446  */
1447 int blkcg_policy_register(struct blkcg_policy *pol)
1448 {
1449 	struct blkcg *blkcg;
1450 	int i, ret;
1451 
1452 	mutex_lock(&blkcg_pol_register_mutex);
1453 	mutex_lock(&blkcg_pol_mutex);
1454 
1455 	/* find an empty slot */
1456 	ret = -ENOSPC;
1457 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1458 		if (!blkcg_policy[i])
1459 			break;
1460 	if (i >= BLKCG_MAX_POLS) {
1461 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1462 		goto err_unlock;
1463 	}
1464 
1465 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1466 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1467 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1468 		goto err_unlock;
1469 
1470 	/* register @pol */
1471 	pol->plid = i;
1472 	blkcg_policy[pol->plid] = pol;
1473 
1474 	/* allocate and install cpd's */
1475 	if (pol->cpd_alloc_fn) {
1476 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1477 			struct blkcg_policy_data *cpd;
1478 
1479 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1480 			if (!cpd)
1481 				goto err_free_cpds;
1482 
1483 			blkcg->cpd[pol->plid] = cpd;
1484 			cpd->blkcg = blkcg;
1485 			cpd->plid = pol->plid;
1486 			if (pol->cpd_init_fn)
1487 				pol->cpd_init_fn(cpd);
1488 		}
1489 	}
1490 
1491 	mutex_unlock(&blkcg_pol_mutex);
1492 
1493 	/* everything is in place, add intf files for the new policy */
1494 	if (pol->dfl_cftypes)
1495 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1496 					       pol->dfl_cftypes));
1497 	if (pol->legacy_cftypes)
1498 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1499 						  pol->legacy_cftypes));
1500 	mutex_unlock(&blkcg_pol_register_mutex);
1501 	return 0;
1502 
1503 err_free_cpds:
1504 	if (pol->cpd_free_fn) {
1505 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1506 			if (blkcg->cpd[pol->plid]) {
1507 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1508 				blkcg->cpd[pol->plid] = NULL;
1509 			}
1510 		}
1511 	}
1512 	blkcg_policy[pol->plid] = NULL;
1513 err_unlock:
1514 	mutex_unlock(&blkcg_pol_mutex);
1515 	mutex_unlock(&blkcg_pol_register_mutex);
1516 	return ret;
1517 }
1518 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1519 
1520 /**
1521  * blkcg_policy_unregister - unregister a blkcg policy
1522  * @pol: blkcg policy to unregister
1523  *
1524  * Undo blkcg_policy_register(@pol).  Might sleep.
1525  */
1526 void blkcg_policy_unregister(struct blkcg_policy *pol)
1527 {
1528 	struct blkcg *blkcg;
1529 
1530 	mutex_lock(&blkcg_pol_register_mutex);
1531 
1532 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1533 		goto out_unlock;
1534 
1535 	/* kill the intf files first */
1536 	if (pol->dfl_cftypes)
1537 		cgroup_rm_cftypes(pol->dfl_cftypes);
1538 	if (pol->legacy_cftypes)
1539 		cgroup_rm_cftypes(pol->legacy_cftypes);
1540 
1541 	/* remove cpds and unregister */
1542 	mutex_lock(&blkcg_pol_mutex);
1543 
1544 	if (pol->cpd_free_fn) {
1545 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1546 			if (blkcg->cpd[pol->plid]) {
1547 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1548 				blkcg->cpd[pol->plid] = NULL;
1549 			}
1550 		}
1551 	}
1552 	blkcg_policy[pol->plid] = NULL;
1553 
1554 	mutex_unlock(&blkcg_pol_mutex);
1555 out_unlock:
1556 	mutex_unlock(&blkcg_pol_register_mutex);
1557 }
1558 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1559 
1560 bool __blkcg_punt_bio_submit(struct bio *bio)
1561 {
1562 	struct blkcg_gq *blkg = bio->bi_blkg;
1563 
1564 	/* consume the flag first */
1565 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1566 
1567 	/* never bounce for the root cgroup */
1568 	if (!blkg->parent)
1569 		return false;
1570 
1571 	spin_lock_bh(&blkg->async_bio_lock);
1572 	bio_list_add(&blkg->async_bios, bio);
1573 	spin_unlock_bh(&blkg->async_bio_lock);
1574 
1575 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1576 	return true;
1577 }
1578 
1579 /*
1580  * Scale the accumulated delay based on how long it has been since we updated
1581  * the delay.  We only call this when we are adding delay, in case it's been a
1582  * while since we added delay, and when we are checking to see if we need to
1583  * delay a task, to account for any delays that may have occurred.
1584  */
1585 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1586 {
1587 	u64 old = atomic64_read(&blkg->delay_start);
1588 
1589 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1590 	if (atomic_read(&blkg->use_delay) < 0)
1591 		return;
1592 
1593 	/*
1594 	 * We only want to scale down every second.  The idea here is that we
1595 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1596 	 * time window.  We only want to throttle tasks for recent delay that
1597 	 * has occurred, in 1 second time windows since that's the maximum
1598 	 * things can be throttled.  We save the current delay window in
1599 	 * blkg->last_delay so we know what amount is still left to be charged
1600 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1601 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1602 	 * are ok with whatever is happening now, and we can take away more of
1603 	 * the accumulated delay as we've already throttled enough that
1604 	 * everybody is happy with their IO latencies.
1605 	 */
1606 	if (time_before64(old + NSEC_PER_SEC, now) &&
1607 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1608 		u64 cur = atomic64_read(&blkg->delay_nsec);
1609 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1610 		int cur_use = atomic_read(&blkg->use_delay);
1611 
1612 		/*
1613 		 * We've been unthrottled, subtract a larger chunk of our
1614 		 * accumulated delay.
1615 		 */
1616 		if (cur_use < blkg->last_use)
1617 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1618 
1619 		/*
1620 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1621 		 * should only ever be growing except here where we subtract out
1622 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1623 		 * rather not end up with negative numbers.
1624 		 */
1625 		if (unlikely(cur < sub)) {
1626 			atomic64_set(&blkg->delay_nsec, 0);
1627 			blkg->last_delay = 0;
1628 		} else {
1629 			atomic64_sub(sub, &blkg->delay_nsec);
1630 			blkg->last_delay = cur - sub;
1631 		}
1632 		blkg->last_use = cur_use;
1633 	}
1634 }
1635 
1636 /*
1637  * This is called when we want to actually walk up the hierarchy and check to
1638  * see if we need to throttle, and then actually throttle if there is some
1639  * accumulated delay.  This should only be called upon return to user space so
1640  * we're not holding some lock that would induce a priority inversion.
1641  */
1642 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1643 {
1644 	unsigned long pflags;
1645 	bool clamp;
1646 	u64 now = ktime_to_ns(ktime_get());
1647 	u64 exp;
1648 	u64 delay_nsec = 0;
1649 	int tok;
1650 
1651 	while (blkg->parent) {
1652 		int use_delay = atomic_read(&blkg->use_delay);
1653 
1654 		if (use_delay) {
1655 			u64 this_delay;
1656 
1657 			blkcg_scale_delay(blkg, now);
1658 			this_delay = atomic64_read(&blkg->delay_nsec);
1659 			if (this_delay > delay_nsec) {
1660 				delay_nsec = this_delay;
1661 				clamp = use_delay > 0;
1662 			}
1663 		}
1664 		blkg = blkg->parent;
1665 	}
1666 
1667 	if (!delay_nsec)
1668 		return;
1669 
1670 	/*
1671 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1672 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1673 	 * delay, and we want userspace to be able to do _something_ so cap the
1674 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1675 	 * tasks will be delayed for 0.25 second for every syscall. If
1676 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1677 	 * caller is responsible for regulating the range.
1678 	 */
1679 	if (clamp)
1680 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1681 
1682 	if (use_memdelay)
1683 		psi_memstall_enter(&pflags);
1684 
1685 	exp = ktime_add_ns(now, delay_nsec);
1686 	tok = io_schedule_prepare();
1687 	do {
1688 		__set_current_state(TASK_KILLABLE);
1689 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1690 			break;
1691 	} while (!fatal_signal_pending(current));
1692 	io_schedule_finish(tok);
1693 
1694 	if (use_memdelay)
1695 		psi_memstall_leave(&pflags);
1696 }
1697 
1698 /**
1699  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1700  *
1701  * This is only called if we've been marked with set_notify_resume().  Obviously
1702  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1703  * check to see if current->throttle_queue is set and if not this doesn't do
1704  * anything.  This should only ever be called by the resume code, it's not meant
1705  * to be called by people willy-nilly as it will actually do the work to
1706  * throttle the task if it is setup for throttling.
1707  */
1708 void blkcg_maybe_throttle_current(void)
1709 {
1710 	struct request_queue *q = current->throttle_queue;
1711 	struct cgroup_subsys_state *css;
1712 	struct blkcg *blkcg;
1713 	struct blkcg_gq *blkg;
1714 	bool use_memdelay = current->use_memdelay;
1715 
1716 	if (!q)
1717 		return;
1718 
1719 	current->throttle_queue = NULL;
1720 	current->use_memdelay = false;
1721 
1722 	rcu_read_lock();
1723 	css = kthread_blkcg();
1724 	if (css)
1725 		blkcg = css_to_blkcg(css);
1726 	else
1727 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1728 
1729 	if (!blkcg)
1730 		goto out;
1731 	blkg = blkg_lookup(blkcg, q);
1732 	if (!blkg)
1733 		goto out;
1734 	if (!blkg_tryget(blkg))
1735 		goto out;
1736 	rcu_read_unlock();
1737 
1738 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1739 	blkg_put(blkg);
1740 	blk_put_queue(q);
1741 	return;
1742 out:
1743 	rcu_read_unlock();
1744 	blk_put_queue(q);
1745 }
1746 
1747 /**
1748  * blkcg_schedule_throttle - this task needs to check for throttling
1749  * @q: the request queue IO was submitted on
1750  * @use_memdelay: do we charge this to memory delay for PSI
1751  *
1752  * This is called by the IO controller when we know there's delay accumulated
1753  * for the blkg for this task.  We do not pass the blkg because there are places
1754  * we call this that may not have that information, the swapping code for
1755  * instance will only have a request_queue at that point.  This set's the
1756  * notify_resume for the task to check and see if it requires throttling before
1757  * returning to user space.
1758  *
1759  * We will only schedule once per syscall.  You can call this over and over
1760  * again and it will only do the check once upon return to user space, and only
1761  * throttle once.  If the task needs to be throttled again it'll need to be
1762  * re-set at the next time we see the task.
1763  */
1764 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1765 {
1766 	if (unlikely(current->flags & PF_KTHREAD))
1767 		return;
1768 
1769 	if (current->throttle_queue != q) {
1770 		if (!blk_get_queue(q))
1771 			return;
1772 
1773 		if (current->throttle_queue)
1774 			blk_put_queue(current->throttle_queue);
1775 		current->throttle_queue = q;
1776 	}
1777 
1778 	if (use_memdelay)
1779 		current->use_memdelay = use_memdelay;
1780 	set_notify_resume(current);
1781 }
1782 
1783 /**
1784  * blkcg_add_delay - add delay to this blkg
1785  * @blkg: blkg of interest
1786  * @now: the current time in nanoseconds
1787  * @delta: how many nanoseconds of delay to add
1788  *
1789  * Charge @delta to the blkg's current delay accumulation.  This is used to
1790  * throttle tasks if an IO controller thinks we need more throttling.
1791  */
1792 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1793 {
1794 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1795 		return;
1796 	blkcg_scale_delay(blkg, now);
1797 	atomic64_add(delta, &blkg->delay_nsec);
1798 }
1799 
1800 /**
1801  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1802  * @bio: target bio
1803  * @css: target css
1804  *
1805  * As the failure mode here is to walk up the blkg tree, this ensure that the
1806  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1807  * up taking a reference on or %NULL if no reference was taken.
1808  */
1809 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1810 		struct cgroup_subsys_state *css)
1811 {
1812 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1813 
1814 	rcu_read_lock();
1815 	blkg = blkg_lookup_create(css_to_blkcg(css),
1816 				  bdev_get_queue(bio->bi_bdev));
1817 	while (blkg) {
1818 		if (blkg_tryget(blkg)) {
1819 			ret_blkg = blkg;
1820 			break;
1821 		}
1822 		blkg = blkg->parent;
1823 	}
1824 	rcu_read_unlock();
1825 
1826 	return ret_blkg;
1827 }
1828 
1829 /**
1830  * bio_associate_blkg_from_css - associate a bio with a specified css
1831  * @bio: target bio
1832  * @css: target css
1833  *
1834  * Associate @bio with the blkg found by combining the css's blkg and the
1835  * request_queue of the @bio.  An association failure is handled by walking up
1836  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1837  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1838  * then the remaining bios will spill to the closest alive blkg.
1839  *
1840  * A reference will be taken on the blkg and will be released when @bio is
1841  * freed.
1842  */
1843 void bio_associate_blkg_from_css(struct bio *bio,
1844 				 struct cgroup_subsys_state *css)
1845 {
1846 	if (bio->bi_blkg)
1847 		blkg_put(bio->bi_blkg);
1848 
1849 	if (css && css->parent) {
1850 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1851 	} else {
1852 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1853 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1854 	}
1855 }
1856 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1857 
1858 /**
1859  * bio_associate_blkg - associate a bio with a blkg
1860  * @bio: target bio
1861  *
1862  * Associate @bio with the blkg found from the bio's css and request_queue.
1863  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1864  * already associated, the css is reused and association redone as the
1865  * request_queue may have changed.
1866  */
1867 void bio_associate_blkg(struct bio *bio)
1868 {
1869 	struct cgroup_subsys_state *css;
1870 
1871 	rcu_read_lock();
1872 
1873 	if (bio->bi_blkg)
1874 		css = &bio_blkcg(bio)->css;
1875 	else
1876 		css = blkcg_css();
1877 
1878 	bio_associate_blkg_from_css(bio, css);
1879 
1880 	rcu_read_unlock();
1881 }
1882 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1883 
1884 /**
1885  * bio_clone_blkg_association - clone blkg association from src to dst bio
1886  * @dst: destination bio
1887  * @src: source bio
1888  */
1889 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1890 {
1891 	if (src->bi_blkg) {
1892 		if (dst->bi_blkg)
1893 			blkg_put(dst->bi_blkg);
1894 		blkg_get(src->bi_blkg);
1895 		dst->bi_blkg = src->bi_blkg;
1896 	}
1897 }
1898 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1899 
1900 static int blk_cgroup_io_type(struct bio *bio)
1901 {
1902 	if (op_is_discard(bio->bi_opf))
1903 		return BLKG_IOSTAT_DISCARD;
1904 	if (op_is_write(bio->bi_opf))
1905 		return BLKG_IOSTAT_WRITE;
1906 	return BLKG_IOSTAT_READ;
1907 }
1908 
1909 void blk_cgroup_bio_start(struct bio *bio)
1910 {
1911 	int rwd = blk_cgroup_io_type(bio), cpu;
1912 	struct blkg_iostat_set *bis;
1913 	unsigned long flags;
1914 
1915 	cpu = get_cpu();
1916 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1917 	flags = u64_stats_update_begin_irqsave(&bis->sync);
1918 
1919 	/*
1920 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1921 	 * bio and we would have already accounted for the size of the bio.
1922 	 */
1923 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1924 		bio_set_flag(bio, BIO_CGROUP_ACCT);
1925 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1926 	}
1927 	bis->cur.ios[rwd]++;
1928 
1929 	u64_stats_update_end_irqrestore(&bis->sync, flags);
1930 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1931 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1932 	put_cpu();
1933 }
1934 
1935 static int __init blkcg_init(void)
1936 {
1937 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1938 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1939 					    WQ_UNBOUND | WQ_SYSFS, 0);
1940 	if (!blkcg_punt_bio_wq)
1941 		return -ENOMEM;
1942 	return 0;
1943 }
1944 subsys_initcall(blkcg_init);
1945 
1946 module_param(blkcg_debug_stats, bool, 0644);
1947 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1948