1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 35 /* 36 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 37 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 38 * policy [un]register operations including cgroup file additions / 39 * removals. Putting cgroup file registration outside blkcg_pol_mutex 40 * allows grabbing it from cgroup callbacks. 41 */ 42 static DEFINE_MUTEX(blkcg_pol_register_mutex); 43 static DEFINE_MUTEX(blkcg_pol_mutex); 44 45 struct blkcg blkcg_root; 46 EXPORT_SYMBOL_GPL(blkcg_root); 47 48 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 49 EXPORT_SYMBOL_GPL(blkcg_root_css); 50 51 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 52 53 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 54 55 bool blkcg_debug_stats = false; 56 static struct workqueue_struct *blkcg_punt_bio_wq; 57 58 static bool blkcg_policy_enabled(struct request_queue *q, 59 const struct blkcg_policy *pol) 60 { 61 return pol && test_bit(pol->plid, q->blkcg_pols); 62 } 63 64 /** 65 * blkg_free - free a blkg 66 * @blkg: blkg to free 67 * 68 * Free @blkg which may be partially allocated. 69 */ 70 static void blkg_free(struct blkcg_gq *blkg) 71 { 72 int i; 73 74 if (!blkg) 75 return; 76 77 for (i = 0; i < BLKCG_MAX_POLS; i++) 78 if (blkg->pd[i]) 79 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 80 81 free_percpu(blkg->iostat_cpu); 82 percpu_ref_exit(&blkg->refcnt); 83 kfree(blkg); 84 } 85 86 static void __blkg_release(struct rcu_head *rcu) 87 { 88 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 89 90 WARN_ON(!bio_list_empty(&blkg->async_bios)); 91 92 /* release the blkcg and parent blkg refs this blkg has been holding */ 93 css_put(&blkg->blkcg->css); 94 if (blkg->parent) 95 blkg_put(blkg->parent); 96 blkg_free(blkg); 97 } 98 99 /* 100 * A group is RCU protected, but having an rcu lock does not mean that one 101 * can access all the fields of blkg and assume these are valid. For 102 * example, don't try to follow throtl_data and request queue links. 103 * 104 * Having a reference to blkg under an rcu allows accesses to only values 105 * local to groups like group stats and group rate limits. 106 */ 107 static void blkg_release(struct percpu_ref *ref) 108 { 109 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 110 111 call_rcu(&blkg->rcu_head, __blkg_release); 112 } 113 114 static void blkg_async_bio_workfn(struct work_struct *work) 115 { 116 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 117 async_bio_work); 118 struct bio_list bios = BIO_EMPTY_LIST; 119 struct bio *bio; 120 struct blk_plug plug; 121 bool need_plug = false; 122 123 /* as long as there are pending bios, @blkg can't go away */ 124 spin_lock_bh(&blkg->async_bio_lock); 125 bio_list_merge(&bios, &blkg->async_bios); 126 bio_list_init(&blkg->async_bios); 127 spin_unlock_bh(&blkg->async_bio_lock); 128 129 /* start plug only when bio_list contains at least 2 bios */ 130 if (bios.head && bios.head->bi_next) { 131 need_plug = true; 132 blk_start_plug(&plug); 133 } 134 while ((bio = bio_list_pop(&bios))) 135 submit_bio(bio); 136 if (need_plug) 137 blk_finish_plug(&plug); 138 } 139 140 /** 141 * blkg_alloc - allocate a blkg 142 * @blkcg: block cgroup the new blkg is associated with 143 * @q: request_queue the new blkg is associated with 144 * @gfp_mask: allocation mask to use 145 * 146 * Allocate a new blkg assocating @blkcg and @q. 147 */ 148 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 149 gfp_t gfp_mask) 150 { 151 struct blkcg_gq *blkg; 152 int i, cpu; 153 154 /* alloc and init base part */ 155 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 156 if (!blkg) 157 return NULL; 158 159 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 160 goto err_free; 161 162 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 163 if (!blkg->iostat_cpu) 164 goto err_free; 165 166 blkg->q = q; 167 INIT_LIST_HEAD(&blkg->q_node); 168 spin_lock_init(&blkg->async_bio_lock); 169 bio_list_init(&blkg->async_bios); 170 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 171 blkg->blkcg = blkcg; 172 173 u64_stats_init(&blkg->iostat.sync); 174 for_each_possible_cpu(cpu) 175 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 176 177 for (i = 0; i < BLKCG_MAX_POLS; i++) { 178 struct blkcg_policy *pol = blkcg_policy[i]; 179 struct blkg_policy_data *pd; 180 181 if (!blkcg_policy_enabled(q, pol)) 182 continue; 183 184 /* alloc per-policy data and attach it to blkg */ 185 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 186 if (!pd) 187 goto err_free; 188 189 blkg->pd[i] = pd; 190 pd->blkg = blkg; 191 pd->plid = i; 192 } 193 194 return blkg; 195 196 err_free: 197 blkg_free(blkg); 198 return NULL; 199 } 200 201 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 202 struct request_queue *q, bool update_hint) 203 { 204 struct blkcg_gq *blkg; 205 206 /* 207 * Hint didn't match. Look up from the radix tree. Note that the 208 * hint can only be updated under queue_lock as otherwise @blkg 209 * could have already been removed from blkg_tree. The caller is 210 * responsible for grabbing queue_lock if @update_hint. 211 */ 212 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 213 if (blkg && blkg->q == q) { 214 if (update_hint) { 215 lockdep_assert_held(&q->queue_lock); 216 rcu_assign_pointer(blkcg->blkg_hint, blkg); 217 } 218 return blkg; 219 } 220 221 return NULL; 222 } 223 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 224 225 /* 226 * If @new_blkg is %NULL, this function tries to allocate a new one as 227 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 228 */ 229 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 230 struct request_queue *q, 231 struct blkcg_gq *new_blkg) 232 { 233 struct blkcg_gq *blkg; 234 int i, ret; 235 236 WARN_ON_ONCE(!rcu_read_lock_held()); 237 lockdep_assert_held(&q->queue_lock); 238 239 /* request_queue is dying, do not create/recreate a blkg */ 240 if (blk_queue_dying(q)) { 241 ret = -ENODEV; 242 goto err_free_blkg; 243 } 244 245 /* blkg holds a reference to blkcg */ 246 if (!css_tryget_online(&blkcg->css)) { 247 ret = -ENODEV; 248 goto err_free_blkg; 249 } 250 251 /* allocate */ 252 if (!new_blkg) { 253 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 254 if (unlikely(!new_blkg)) { 255 ret = -ENOMEM; 256 goto err_put_css; 257 } 258 } 259 blkg = new_blkg; 260 261 /* link parent */ 262 if (blkcg_parent(blkcg)) { 263 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 264 if (WARN_ON_ONCE(!blkg->parent)) { 265 ret = -ENODEV; 266 goto err_put_css; 267 } 268 blkg_get(blkg->parent); 269 } 270 271 /* invoke per-policy init */ 272 for (i = 0; i < BLKCG_MAX_POLS; i++) { 273 struct blkcg_policy *pol = blkcg_policy[i]; 274 275 if (blkg->pd[i] && pol->pd_init_fn) 276 pol->pd_init_fn(blkg->pd[i]); 277 } 278 279 /* insert */ 280 spin_lock(&blkcg->lock); 281 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 282 if (likely(!ret)) { 283 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 284 list_add(&blkg->q_node, &q->blkg_list); 285 286 for (i = 0; i < BLKCG_MAX_POLS; i++) { 287 struct blkcg_policy *pol = blkcg_policy[i]; 288 289 if (blkg->pd[i] && pol->pd_online_fn) 290 pol->pd_online_fn(blkg->pd[i]); 291 } 292 } 293 blkg->online = true; 294 spin_unlock(&blkcg->lock); 295 296 if (!ret) 297 return blkg; 298 299 /* @blkg failed fully initialized, use the usual release path */ 300 blkg_put(blkg); 301 return ERR_PTR(ret); 302 303 err_put_css: 304 css_put(&blkcg->css); 305 err_free_blkg: 306 blkg_free(new_blkg); 307 return ERR_PTR(ret); 308 } 309 310 /** 311 * blkg_lookup_create - lookup blkg, try to create one if not there 312 * @blkcg: blkcg of interest 313 * @q: request_queue of interest 314 * 315 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 316 * create one. blkg creation is performed recursively from blkcg_root such 317 * that all non-root blkg's have access to the parent blkg. This function 318 * should be called under RCU read lock and takes @q->queue_lock. 319 * 320 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 321 * down from root. 322 */ 323 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 324 struct request_queue *q) 325 { 326 struct blkcg_gq *blkg; 327 unsigned long flags; 328 329 WARN_ON_ONCE(!rcu_read_lock_held()); 330 331 blkg = blkg_lookup(blkcg, q); 332 if (blkg) 333 return blkg; 334 335 spin_lock_irqsave(&q->queue_lock, flags); 336 blkg = __blkg_lookup(blkcg, q, true); 337 if (blkg) 338 goto found; 339 340 /* 341 * Create blkgs walking down from blkcg_root to @blkcg, so that all 342 * non-root blkgs have access to their parents. Returns the closest 343 * blkg to the intended blkg should blkg_create() fail. 344 */ 345 while (true) { 346 struct blkcg *pos = blkcg; 347 struct blkcg *parent = blkcg_parent(blkcg); 348 struct blkcg_gq *ret_blkg = q->root_blkg; 349 350 while (parent) { 351 blkg = __blkg_lookup(parent, q, false); 352 if (blkg) { 353 /* remember closest blkg */ 354 ret_blkg = blkg; 355 break; 356 } 357 pos = parent; 358 parent = blkcg_parent(parent); 359 } 360 361 blkg = blkg_create(pos, q, NULL); 362 if (IS_ERR(blkg)) { 363 blkg = ret_blkg; 364 break; 365 } 366 if (pos == blkcg) 367 break; 368 } 369 370 found: 371 spin_unlock_irqrestore(&q->queue_lock, flags); 372 return blkg; 373 } 374 375 static void blkg_destroy(struct blkcg_gq *blkg) 376 { 377 struct blkcg *blkcg = blkg->blkcg; 378 int i; 379 380 lockdep_assert_held(&blkg->q->queue_lock); 381 lockdep_assert_held(&blkcg->lock); 382 383 /* Something wrong if we are trying to remove same group twice */ 384 WARN_ON_ONCE(list_empty(&blkg->q_node)); 385 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 386 387 for (i = 0; i < BLKCG_MAX_POLS; i++) { 388 struct blkcg_policy *pol = blkcg_policy[i]; 389 390 if (blkg->pd[i] && pol->pd_offline_fn) 391 pol->pd_offline_fn(blkg->pd[i]); 392 } 393 394 blkg->online = false; 395 396 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 397 list_del_init(&blkg->q_node); 398 hlist_del_init_rcu(&blkg->blkcg_node); 399 400 /* 401 * Both setting lookup hint to and clearing it from @blkg are done 402 * under queue_lock. If it's not pointing to @blkg now, it never 403 * will. Hint assignment itself can race safely. 404 */ 405 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 406 rcu_assign_pointer(blkcg->blkg_hint, NULL); 407 408 /* 409 * Put the reference taken at the time of creation so that when all 410 * queues are gone, group can be destroyed. 411 */ 412 percpu_ref_kill(&blkg->refcnt); 413 } 414 415 /** 416 * blkg_destroy_all - destroy all blkgs associated with a request_queue 417 * @q: request_queue of interest 418 * 419 * Destroy all blkgs associated with @q. 420 */ 421 static void blkg_destroy_all(struct request_queue *q) 422 { 423 struct blkcg_gq *blkg, *n; 424 425 spin_lock_irq(&q->queue_lock); 426 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 427 struct blkcg *blkcg = blkg->blkcg; 428 429 spin_lock(&blkcg->lock); 430 blkg_destroy(blkg); 431 spin_unlock(&blkcg->lock); 432 } 433 434 q->root_blkg = NULL; 435 spin_unlock_irq(&q->queue_lock); 436 } 437 438 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 439 struct cftype *cftype, u64 val) 440 { 441 struct blkcg *blkcg = css_to_blkcg(css); 442 struct blkcg_gq *blkg; 443 int i, cpu; 444 445 mutex_lock(&blkcg_pol_mutex); 446 spin_lock_irq(&blkcg->lock); 447 448 /* 449 * Note that stat reset is racy - it doesn't synchronize against 450 * stat updates. This is a debug feature which shouldn't exist 451 * anyway. If you get hit by a race, retry. 452 */ 453 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 454 for_each_possible_cpu(cpu) { 455 struct blkg_iostat_set *bis = 456 per_cpu_ptr(blkg->iostat_cpu, cpu); 457 memset(bis, 0, sizeof(*bis)); 458 } 459 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 460 461 for (i = 0; i < BLKCG_MAX_POLS; i++) { 462 struct blkcg_policy *pol = blkcg_policy[i]; 463 464 if (blkg->pd[i] && pol->pd_reset_stats_fn) 465 pol->pd_reset_stats_fn(blkg->pd[i]); 466 } 467 } 468 469 spin_unlock_irq(&blkcg->lock); 470 mutex_unlock(&blkcg_pol_mutex); 471 return 0; 472 } 473 474 const char *blkg_dev_name(struct blkcg_gq *blkg) 475 { 476 /* some drivers (floppy) instantiate a queue w/o disk registered */ 477 if (blkg->q->backing_dev_info->dev) 478 return bdi_dev_name(blkg->q->backing_dev_info); 479 return NULL; 480 } 481 482 /** 483 * blkcg_print_blkgs - helper for printing per-blkg data 484 * @sf: seq_file to print to 485 * @blkcg: blkcg of interest 486 * @prfill: fill function to print out a blkg 487 * @pol: policy in question 488 * @data: data to be passed to @prfill 489 * @show_total: to print out sum of prfill return values or not 490 * 491 * This function invokes @prfill on each blkg of @blkcg if pd for the 492 * policy specified by @pol exists. @prfill is invoked with @sf, the 493 * policy data and @data and the matching queue lock held. If @show_total 494 * is %true, the sum of the return values from @prfill is printed with 495 * "Total" label at the end. 496 * 497 * This is to be used to construct print functions for 498 * cftype->read_seq_string method. 499 */ 500 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 501 u64 (*prfill)(struct seq_file *, 502 struct blkg_policy_data *, int), 503 const struct blkcg_policy *pol, int data, 504 bool show_total) 505 { 506 struct blkcg_gq *blkg; 507 u64 total = 0; 508 509 rcu_read_lock(); 510 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 511 spin_lock_irq(&blkg->q->queue_lock); 512 if (blkcg_policy_enabled(blkg->q, pol)) 513 total += prfill(sf, blkg->pd[pol->plid], data); 514 spin_unlock_irq(&blkg->q->queue_lock); 515 } 516 rcu_read_unlock(); 517 518 if (show_total) 519 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 520 } 521 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 522 523 /** 524 * __blkg_prfill_u64 - prfill helper for a single u64 value 525 * @sf: seq_file to print to 526 * @pd: policy private data of interest 527 * @v: value to print 528 * 529 * Print @v to @sf for the device assocaited with @pd. 530 */ 531 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 532 { 533 const char *dname = blkg_dev_name(pd->blkg); 534 535 if (!dname) 536 return 0; 537 538 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 539 return v; 540 } 541 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 542 543 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 544 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 545 const struct blkcg_policy *pol, 546 struct request_queue *q) 547 { 548 WARN_ON_ONCE(!rcu_read_lock_held()); 549 lockdep_assert_held(&q->queue_lock); 550 551 if (!blkcg_policy_enabled(q, pol)) 552 return ERR_PTR(-EOPNOTSUPP); 553 return __blkg_lookup(blkcg, q, true /* update_hint */); 554 } 555 556 /** 557 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 558 * @inputp: input string pointer 559 * 560 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 561 * from @input and get and return the matching bdev. *@inputp is 562 * updated to point past the device node prefix. Returns an ERR_PTR() 563 * value on error. 564 * 565 * Use this function iff blkg_conf_prep() can't be used for some reason. 566 */ 567 struct block_device *blkcg_conf_open_bdev(char **inputp) 568 { 569 char *input = *inputp; 570 unsigned int major, minor; 571 struct block_device *bdev; 572 int key_len; 573 574 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 575 return ERR_PTR(-EINVAL); 576 577 input += key_len; 578 if (!isspace(*input)) 579 return ERR_PTR(-EINVAL); 580 input = skip_spaces(input); 581 582 bdev = blkdev_get_no_open(MKDEV(major, minor)); 583 if (!bdev) 584 return ERR_PTR(-ENODEV); 585 if (bdev_is_partition(bdev)) { 586 blkdev_put_no_open(bdev); 587 return ERR_PTR(-ENODEV); 588 } 589 590 *inputp = input; 591 return bdev; 592 } 593 594 /** 595 * blkg_conf_prep - parse and prepare for per-blkg config update 596 * @blkcg: target block cgroup 597 * @pol: target policy 598 * @input: input string 599 * @ctx: blkg_conf_ctx to be filled 600 * 601 * Parse per-blkg config update from @input and initialize @ctx with the 602 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 603 * part of @input following MAJ:MIN. This function returns with RCU read 604 * lock and queue lock held and must be paired with blkg_conf_finish(). 605 */ 606 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 607 char *input, struct blkg_conf_ctx *ctx) 608 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock) 609 { 610 struct block_device *bdev; 611 struct request_queue *q; 612 struct blkcg_gq *blkg; 613 int ret; 614 615 bdev = blkcg_conf_open_bdev(&input); 616 if (IS_ERR(bdev)) 617 return PTR_ERR(bdev); 618 619 q = bdev->bd_disk->queue; 620 621 rcu_read_lock(); 622 spin_lock_irq(&q->queue_lock); 623 624 blkg = blkg_lookup_check(blkcg, pol, q); 625 if (IS_ERR(blkg)) { 626 ret = PTR_ERR(blkg); 627 goto fail_unlock; 628 } 629 630 if (blkg) 631 goto success; 632 633 /* 634 * Create blkgs walking down from blkcg_root to @blkcg, so that all 635 * non-root blkgs have access to their parents. 636 */ 637 while (true) { 638 struct blkcg *pos = blkcg; 639 struct blkcg *parent; 640 struct blkcg_gq *new_blkg; 641 642 parent = blkcg_parent(blkcg); 643 while (parent && !__blkg_lookup(parent, q, false)) { 644 pos = parent; 645 parent = blkcg_parent(parent); 646 } 647 648 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 649 spin_unlock_irq(&q->queue_lock); 650 rcu_read_unlock(); 651 652 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 653 if (unlikely(!new_blkg)) { 654 ret = -ENOMEM; 655 goto fail; 656 } 657 658 if (radix_tree_preload(GFP_KERNEL)) { 659 blkg_free(new_blkg); 660 ret = -ENOMEM; 661 goto fail; 662 } 663 664 rcu_read_lock(); 665 spin_lock_irq(&q->queue_lock); 666 667 blkg = blkg_lookup_check(pos, pol, q); 668 if (IS_ERR(blkg)) { 669 ret = PTR_ERR(blkg); 670 blkg_free(new_blkg); 671 goto fail_preloaded; 672 } 673 674 if (blkg) { 675 blkg_free(new_blkg); 676 } else { 677 blkg = blkg_create(pos, q, new_blkg); 678 if (IS_ERR(blkg)) { 679 ret = PTR_ERR(blkg); 680 goto fail_preloaded; 681 } 682 } 683 684 radix_tree_preload_end(); 685 686 if (pos == blkcg) 687 goto success; 688 } 689 success: 690 ctx->bdev = bdev; 691 ctx->blkg = blkg; 692 ctx->body = input; 693 return 0; 694 695 fail_preloaded: 696 radix_tree_preload_end(); 697 fail_unlock: 698 spin_unlock_irq(&q->queue_lock); 699 rcu_read_unlock(); 700 fail: 701 blkdev_put_no_open(bdev); 702 /* 703 * If queue was bypassing, we should retry. Do so after a 704 * short msleep(). It isn't strictly necessary but queue 705 * can be bypassing for some time and it's always nice to 706 * avoid busy looping. 707 */ 708 if (ret == -EBUSY) { 709 msleep(10); 710 ret = restart_syscall(); 711 } 712 return ret; 713 } 714 EXPORT_SYMBOL_GPL(blkg_conf_prep); 715 716 /** 717 * blkg_conf_finish - finish up per-blkg config update 718 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 719 * 720 * Finish up after per-blkg config update. This function must be paired 721 * with blkg_conf_prep(). 722 */ 723 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 724 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu) 725 { 726 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock); 727 rcu_read_unlock(); 728 blkdev_put_no_open(ctx->bdev); 729 } 730 EXPORT_SYMBOL_GPL(blkg_conf_finish); 731 732 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 733 { 734 int i; 735 736 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 737 dst->bytes[i] = src->bytes[i]; 738 dst->ios[i] = src->ios[i]; 739 } 740 } 741 742 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 743 { 744 int i; 745 746 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 747 dst->bytes[i] += src->bytes[i]; 748 dst->ios[i] += src->ios[i]; 749 } 750 } 751 752 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 753 { 754 int i; 755 756 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 757 dst->bytes[i] -= src->bytes[i]; 758 dst->ios[i] -= src->ios[i]; 759 } 760 } 761 762 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 763 { 764 struct blkcg *blkcg = css_to_blkcg(css); 765 struct blkcg_gq *blkg; 766 767 rcu_read_lock(); 768 769 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 770 struct blkcg_gq *parent = blkg->parent; 771 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 772 struct blkg_iostat cur, delta; 773 unsigned int seq; 774 775 /* fetch the current per-cpu values */ 776 do { 777 seq = u64_stats_fetch_begin(&bisc->sync); 778 blkg_iostat_set(&cur, &bisc->cur); 779 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 780 781 /* propagate percpu delta to global */ 782 u64_stats_update_begin(&blkg->iostat.sync); 783 blkg_iostat_set(&delta, &cur); 784 blkg_iostat_sub(&delta, &bisc->last); 785 blkg_iostat_add(&blkg->iostat.cur, &delta); 786 blkg_iostat_add(&bisc->last, &delta); 787 u64_stats_update_end(&blkg->iostat.sync); 788 789 /* propagate global delta to parent */ 790 if (parent) { 791 u64_stats_update_begin(&parent->iostat.sync); 792 blkg_iostat_set(&delta, &blkg->iostat.cur); 793 blkg_iostat_sub(&delta, &blkg->iostat.last); 794 blkg_iostat_add(&parent->iostat.cur, &delta); 795 blkg_iostat_add(&blkg->iostat.last, &delta); 796 u64_stats_update_end(&parent->iostat.sync); 797 } 798 } 799 800 rcu_read_unlock(); 801 } 802 803 /* 804 * The rstat algorithms intentionally don't handle the root cgroup to avoid 805 * incurring overhead when no cgroups are defined. For that reason, 806 * cgroup_rstat_flush in blkcg_print_stat does not actually fill out the 807 * iostat in the root cgroup's blkcg_gq. 808 * 809 * However, we would like to re-use the printing code between the root and 810 * non-root cgroups to the extent possible. For that reason, we simulate 811 * flushing the root cgroup's stats by explicitly filling in the iostat 812 * with disk level statistics. 813 */ 814 static void blkcg_fill_root_iostats(void) 815 { 816 struct class_dev_iter iter; 817 struct device *dev; 818 819 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 820 while ((dev = class_dev_iter_next(&iter))) { 821 struct block_device *bdev = dev_to_bdev(dev); 822 struct blkcg_gq *blkg = 823 blk_queue_root_blkg(bdev->bd_disk->queue); 824 struct blkg_iostat tmp; 825 int cpu; 826 827 memset(&tmp, 0, sizeof(tmp)); 828 for_each_possible_cpu(cpu) { 829 struct disk_stats *cpu_dkstats; 830 831 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 832 tmp.ios[BLKG_IOSTAT_READ] += 833 cpu_dkstats->ios[STAT_READ]; 834 tmp.ios[BLKG_IOSTAT_WRITE] += 835 cpu_dkstats->ios[STAT_WRITE]; 836 tmp.ios[BLKG_IOSTAT_DISCARD] += 837 cpu_dkstats->ios[STAT_DISCARD]; 838 // convert sectors to bytes 839 tmp.bytes[BLKG_IOSTAT_READ] += 840 cpu_dkstats->sectors[STAT_READ] << 9; 841 tmp.bytes[BLKG_IOSTAT_WRITE] += 842 cpu_dkstats->sectors[STAT_WRITE] << 9; 843 tmp.bytes[BLKG_IOSTAT_DISCARD] += 844 cpu_dkstats->sectors[STAT_DISCARD] << 9; 845 846 u64_stats_update_begin(&blkg->iostat.sync); 847 blkg_iostat_set(&blkg->iostat.cur, &tmp); 848 u64_stats_update_end(&blkg->iostat.sync); 849 } 850 } 851 } 852 853 static int blkcg_print_stat(struct seq_file *sf, void *v) 854 { 855 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 856 struct blkcg_gq *blkg; 857 858 if (!seq_css(sf)->parent) 859 blkcg_fill_root_iostats(); 860 else 861 cgroup_rstat_flush(blkcg->css.cgroup); 862 863 rcu_read_lock(); 864 865 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 866 struct blkg_iostat_set *bis = &blkg->iostat; 867 const char *dname; 868 char *buf; 869 u64 rbytes, wbytes, rios, wios, dbytes, dios; 870 size_t size = seq_get_buf(sf, &buf), off = 0; 871 int i; 872 bool has_stats = false; 873 unsigned seq; 874 875 spin_lock_irq(&blkg->q->queue_lock); 876 877 if (!blkg->online) 878 goto skip; 879 880 dname = blkg_dev_name(blkg); 881 if (!dname) 882 goto skip; 883 884 /* 885 * Hooray string manipulation, count is the size written NOT 886 * INCLUDING THE \0, so size is now count+1 less than what we 887 * had before, but we want to start writing the next bit from 888 * the \0 so we only add count to buf. 889 */ 890 off += scnprintf(buf+off, size-off, "%s ", dname); 891 892 do { 893 seq = u64_stats_fetch_begin(&bis->sync); 894 895 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 896 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 897 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 898 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 899 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 900 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 901 } while (u64_stats_fetch_retry(&bis->sync, seq)); 902 903 if (rbytes || wbytes || rios || wios) { 904 has_stats = true; 905 off += scnprintf(buf+off, size-off, 906 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 907 rbytes, wbytes, rios, wios, 908 dbytes, dios); 909 } 910 911 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 912 has_stats = true; 913 off += scnprintf(buf+off, size-off, 914 " use_delay=%d delay_nsec=%llu", 915 atomic_read(&blkg->use_delay), 916 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 917 } 918 919 for (i = 0; i < BLKCG_MAX_POLS; i++) { 920 struct blkcg_policy *pol = blkcg_policy[i]; 921 size_t written; 922 923 if (!blkg->pd[i] || !pol->pd_stat_fn) 924 continue; 925 926 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 927 if (written) 928 has_stats = true; 929 off += written; 930 } 931 932 if (has_stats) { 933 if (off < size - 1) { 934 off += scnprintf(buf+off, size-off, "\n"); 935 seq_commit(sf, off); 936 } else { 937 seq_commit(sf, -1); 938 } 939 } 940 skip: 941 spin_unlock_irq(&blkg->q->queue_lock); 942 } 943 944 rcu_read_unlock(); 945 return 0; 946 } 947 948 static struct cftype blkcg_files[] = { 949 { 950 .name = "stat", 951 .seq_show = blkcg_print_stat, 952 }, 953 { } /* terminate */ 954 }; 955 956 static struct cftype blkcg_legacy_files[] = { 957 { 958 .name = "reset_stats", 959 .write_u64 = blkcg_reset_stats, 960 }, 961 { } /* terminate */ 962 }; 963 964 /* 965 * blkcg destruction is a three-stage process. 966 * 967 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 968 * which offlines writeback. Here we tie the next stage of blkg destruction 969 * to the completion of writeback associated with the blkcg. This lets us 970 * avoid punting potentially large amounts of outstanding writeback to root 971 * while maintaining any ongoing policies. The next stage is triggered when 972 * the nr_cgwbs count goes to zero. 973 * 974 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 975 * and handles the destruction of blkgs. Here the css reference held by 976 * the blkg is put back eventually allowing blkcg_css_free() to be called. 977 * This work may occur in cgwb_release_workfn() on the cgwb_release 978 * workqueue. Any submitted ios that fail to get the blkg ref will be 979 * punted to the root_blkg. 980 * 981 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 982 * This finally frees the blkcg. 983 */ 984 985 /** 986 * blkcg_css_offline - cgroup css_offline callback 987 * @css: css of interest 988 * 989 * This function is called when @css is about to go away. Here the cgwbs are 990 * offlined first and only once writeback associated with the blkcg has 991 * finished do we start step 2 (see above). 992 */ 993 static void blkcg_css_offline(struct cgroup_subsys_state *css) 994 { 995 struct blkcg *blkcg = css_to_blkcg(css); 996 997 /* this prevents anyone from attaching or migrating to this blkcg */ 998 wb_blkcg_offline(blkcg); 999 1000 /* put the base online pin allowing step 2 to be triggered */ 1001 blkcg_unpin_online(blkcg); 1002 } 1003 1004 /** 1005 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1006 * @blkcg: blkcg of interest 1007 * 1008 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1009 * is nested inside q lock, this function performs reverse double lock dancing. 1010 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1011 * blkcg_css_free to eventually be called. 1012 * 1013 * This is the blkcg counterpart of ioc_release_fn(). 1014 */ 1015 void blkcg_destroy_blkgs(struct blkcg *blkcg) 1016 { 1017 might_sleep(); 1018 1019 spin_lock_irq(&blkcg->lock); 1020 1021 while (!hlist_empty(&blkcg->blkg_list)) { 1022 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1023 struct blkcg_gq, blkcg_node); 1024 struct request_queue *q = blkg->q; 1025 1026 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1027 /* 1028 * Given that the system can accumulate a huge number 1029 * of blkgs in pathological cases, check to see if we 1030 * need to rescheduling to avoid softlockup. 1031 */ 1032 spin_unlock_irq(&blkcg->lock); 1033 cond_resched(); 1034 spin_lock_irq(&blkcg->lock); 1035 continue; 1036 } 1037 1038 blkg_destroy(blkg); 1039 spin_unlock(&q->queue_lock); 1040 } 1041 1042 spin_unlock_irq(&blkcg->lock); 1043 } 1044 1045 static void blkcg_css_free(struct cgroup_subsys_state *css) 1046 { 1047 struct blkcg *blkcg = css_to_blkcg(css); 1048 int i; 1049 1050 mutex_lock(&blkcg_pol_mutex); 1051 1052 list_del(&blkcg->all_blkcgs_node); 1053 1054 for (i = 0; i < BLKCG_MAX_POLS; i++) 1055 if (blkcg->cpd[i]) 1056 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1057 1058 mutex_unlock(&blkcg_pol_mutex); 1059 1060 kfree(blkcg); 1061 } 1062 1063 static struct cgroup_subsys_state * 1064 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1065 { 1066 struct blkcg *blkcg; 1067 struct cgroup_subsys_state *ret; 1068 int i; 1069 1070 mutex_lock(&blkcg_pol_mutex); 1071 1072 if (!parent_css) { 1073 blkcg = &blkcg_root; 1074 } else { 1075 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1076 if (!blkcg) { 1077 ret = ERR_PTR(-ENOMEM); 1078 goto unlock; 1079 } 1080 } 1081 1082 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1083 struct blkcg_policy *pol = blkcg_policy[i]; 1084 struct blkcg_policy_data *cpd; 1085 1086 /* 1087 * If the policy hasn't been attached yet, wait for it 1088 * to be attached before doing anything else. Otherwise, 1089 * check if the policy requires any specific per-cgroup 1090 * data: if it does, allocate and initialize it. 1091 */ 1092 if (!pol || !pol->cpd_alloc_fn) 1093 continue; 1094 1095 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1096 if (!cpd) { 1097 ret = ERR_PTR(-ENOMEM); 1098 goto free_pd_blkcg; 1099 } 1100 blkcg->cpd[i] = cpd; 1101 cpd->blkcg = blkcg; 1102 cpd->plid = i; 1103 if (pol->cpd_init_fn) 1104 pol->cpd_init_fn(cpd); 1105 } 1106 1107 spin_lock_init(&blkcg->lock); 1108 refcount_set(&blkcg->online_pin, 1); 1109 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1110 INIT_HLIST_HEAD(&blkcg->blkg_list); 1111 #ifdef CONFIG_CGROUP_WRITEBACK 1112 INIT_LIST_HEAD(&blkcg->cgwb_list); 1113 #endif 1114 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1115 1116 mutex_unlock(&blkcg_pol_mutex); 1117 return &blkcg->css; 1118 1119 free_pd_blkcg: 1120 for (i--; i >= 0; i--) 1121 if (blkcg->cpd[i]) 1122 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1123 1124 if (blkcg != &blkcg_root) 1125 kfree(blkcg); 1126 unlock: 1127 mutex_unlock(&blkcg_pol_mutex); 1128 return ret; 1129 } 1130 1131 static int blkcg_css_online(struct cgroup_subsys_state *css) 1132 { 1133 struct blkcg *blkcg = css_to_blkcg(css); 1134 struct blkcg *parent = blkcg_parent(blkcg); 1135 1136 /* 1137 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1138 * don't go offline while cgwbs are still active on them. Pin the 1139 * parent so that offline always happens towards the root. 1140 */ 1141 if (parent) 1142 blkcg_pin_online(parent); 1143 return 0; 1144 } 1145 1146 /** 1147 * blkcg_init_queue - initialize blkcg part of request queue 1148 * @q: request_queue to initialize 1149 * 1150 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1151 * part of new request_queue @q. 1152 * 1153 * RETURNS: 1154 * 0 on success, -errno on failure. 1155 */ 1156 int blkcg_init_queue(struct request_queue *q) 1157 { 1158 struct blkcg_gq *new_blkg, *blkg; 1159 bool preloaded; 1160 int ret; 1161 1162 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1163 if (!new_blkg) 1164 return -ENOMEM; 1165 1166 preloaded = !radix_tree_preload(GFP_KERNEL); 1167 1168 /* Make sure the root blkg exists. */ 1169 rcu_read_lock(); 1170 spin_lock_irq(&q->queue_lock); 1171 blkg = blkg_create(&blkcg_root, q, new_blkg); 1172 if (IS_ERR(blkg)) 1173 goto err_unlock; 1174 q->root_blkg = blkg; 1175 spin_unlock_irq(&q->queue_lock); 1176 rcu_read_unlock(); 1177 1178 if (preloaded) 1179 radix_tree_preload_end(); 1180 1181 ret = blk_throtl_init(q); 1182 if (ret) 1183 goto err_destroy_all; 1184 1185 ret = blk_iolatency_init(q); 1186 if (ret) { 1187 blk_throtl_exit(q); 1188 goto err_destroy_all; 1189 } 1190 return 0; 1191 1192 err_destroy_all: 1193 blkg_destroy_all(q); 1194 return ret; 1195 err_unlock: 1196 spin_unlock_irq(&q->queue_lock); 1197 rcu_read_unlock(); 1198 if (preloaded) 1199 radix_tree_preload_end(); 1200 return PTR_ERR(blkg); 1201 } 1202 1203 /** 1204 * blkcg_exit_queue - exit and release blkcg part of request_queue 1205 * @q: request_queue being released 1206 * 1207 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1208 */ 1209 void blkcg_exit_queue(struct request_queue *q) 1210 { 1211 blkg_destroy_all(q); 1212 blk_throtl_exit(q); 1213 } 1214 1215 /* 1216 * We cannot support shared io contexts, as we have no mean to support 1217 * two tasks with the same ioc in two different groups without major rework 1218 * of the main cic data structures. For now we allow a task to change 1219 * its cgroup only if it's the only owner of its ioc. 1220 */ 1221 static int blkcg_can_attach(struct cgroup_taskset *tset) 1222 { 1223 struct task_struct *task; 1224 struct cgroup_subsys_state *dst_css; 1225 struct io_context *ioc; 1226 int ret = 0; 1227 1228 /* task_lock() is needed to avoid races with exit_io_context() */ 1229 cgroup_taskset_for_each(task, dst_css, tset) { 1230 task_lock(task); 1231 ioc = task->io_context; 1232 if (ioc && atomic_read(&ioc->nr_tasks) > 1) 1233 ret = -EINVAL; 1234 task_unlock(task); 1235 if (ret) 1236 break; 1237 } 1238 return ret; 1239 } 1240 1241 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1242 { 1243 int i; 1244 1245 mutex_lock(&blkcg_pol_mutex); 1246 1247 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1248 struct blkcg_policy *pol = blkcg_policy[i]; 1249 struct blkcg *blkcg; 1250 1251 if (!pol || !pol->cpd_bind_fn) 1252 continue; 1253 1254 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1255 if (blkcg->cpd[pol->plid]) 1256 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1257 } 1258 mutex_unlock(&blkcg_pol_mutex); 1259 } 1260 1261 static void blkcg_exit(struct task_struct *tsk) 1262 { 1263 if (tsk->throttle_queue) 1264 blk_put_queue(tsk->throttle_queue); 1265 tsk->throttle_queue = NULL; 1266 } 1267 1268 struct cgroup_subsys io_cgrp_subsys = { 1269 .css_alloc = blkcg_css_alloc, 1270 .css_online = blkcg_css_online, 1271 .css_offline = blkcg_css_offline, 1272 .css_free = blkcg_css_free, 1273 .can_attach = blkcg_can_attach, 1274 .css_rstat_flush = blkcg_rstat_flush, 1275 .bind = blkcg_bind, 1276 .dfl_cftypes = blkcg_files, 1277 .legacy_cftypes = blkcg_legacy_files, 1278 .legacy_name = "blkio", 1279 .exit = blkcg_exit, 1280 #ifdef CONFIG_MEMCG 1281 /* 1282 * This ensures that, if available, memcg is automatically enabled 1283 * together on the default hierarchy so that the owner cgroup can 1284 * be retrieved from writeback pages. 1285 */ 1286 .depends_on = 1 << memory_cgrp_id, 1287 #endif 1288 }; 1289 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1290 1291 /** 1292 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1293 * @q: request_queue of interest 1294 * @pol: blkcg policy to activate 1295 * 1296 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1297 * bypass mode to populate its blkgs with policy_data for @pol. 1298 * 1299 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1300 * from IO path. Update of each blkg is protected by both queue and blkcg 1301 * locks so that holding either lock and testing blkcg_policy_enabled() is 1302 * always enough for dereferencing policy data. 1303 * 1304 * The caller is responsible for synchronizing [de]activations and policy 1305 * [un]registerations. Returns 0 on success, -errno on failure. 1306 */ 1307 int blkcg_activate_policy(struct request_queue *q, 1308 const struct blkcg_policy *pol) 1309 { 1310 struct blkg_policy_data *pd_prealloc = NULL; 1311 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1312 int ret; 1313 1314 if (blkcg_policy_enabled(q, pol)) 1315 return 0; 1316 1317 if (queue_is_mq(q)) 1318 blk_mq_freeze_queue(q); 1319 retry: 1320 spin_lock_irq(&q->queue_lock); 1321 1322 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1323 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1324 struct blkg_policy_data *pd; 1325 1326 if (blkg->pd[pol->plid]) 1327 continue; 1328 1329 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1330 if (blkg == pinned_blkg) { 1331 pd = pd_prealloc; 1332 pd_prealloc = NULL; 1333 } else { 1334 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1335 blkg->blkcg); 1336 } 1337 1338 if (!pd) { 1339 /* 1340 * GFP_NOWAIT failed. Free the existing one and 1341 * prealloc for @blkg w/ GFP_KERNEL. 1342 */ 1343 if (pinned_blkg) 1344 blkg_put(pinned_blkg); 1345 blkg_get(blkg); 1346 pinned_blkg = blkg; 1347 1348 spin_unlock_irq(&q->queue_lock); 1349 1350 if (pd_prealloc) 1351 pol->pd_free_fn(pd_prealloc); 1352 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1353 blkg->blkcg); 1354 if (pd_prealloc) 1355 goto retry; 1356 else 1357 goto enomem; 1358 } 1359 1360 blkg->pd[pol->plid] = pd; 1361 pd->blkg = blkg; 1362 pd->plid = pol->plid; 1363 } 1364 1365 /* all allocated, init in the same order */ 1366 if (pol->pd_init_fn) 1367 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1368 pol->pd_init_fn(blkg->pd[pol->plid]); 1369 1370 __set_bit(pol->plid, q->blkcg_pols); 1371 ret = 0; 1372 1373 spin_unlock_irq(&q->queue_lock); 1374 out: 1375 if (queue_is_mq(q)) 1376 blk_mq_unfreeze_queue(q); 1377 if (pinned_blkg) 1378 blkg_put(pinned_blkg); 1379 if (pd_prealloc) 1380 pol->pd_free_fn(pd_prealloc); 1381 return ret; 1382 1383 enomem: 1384 /* alloc failed, nothing's initialized yet, free everything */ 1385 spin_lock_irq(&q->queue_lock); 1386 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1387 if (blkg->pd[pol->plid]) { 1388 pol->pd_free_fn(blkg->pd[pol->plid]); 1389 blkg->pd[pol->plid] = NULL; 1390 } 1391 } 1392 spin_unlock_irq(&q->queue_lock); 1393 ret = -ENOMEM; 1394 goto out; 1395 } 1396 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1397 1398 /** 1399 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1400 * @q: request_queue of interest 1401 * @pol: blkcg policy to deactivate 1402 * 1403 * Deactivate @pol on @q. Follows the same synchronization rules as 1404 * blkcg_activate_policy(). 1405 */ 1406 void blkcg_deactivate_policy(struct request_queue *q, 1407 const struct blkcg_policy *pol) 1408 { 1409 struct blkcg_gq *blkg; 1410 1411 if (!blkcg_policy_enabled(q, pol)) 1412 return; 1413 1414 if (queue_is_mq(q)) 1415 blk_mq_freeze_queue(q); 1416 1417 spin_lock_irq(&q->queue_lock); 1418 1419 __clear_bit(pol->plid, q->blkcg_pols); 1420 1421 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1422 if (blkg->pd[pol->plid]) { 1423 if (pol->pd_offline_fn) 1424 pol->pd_offline_fn(blkg->pd[pol->plid]); 1425 pol->pd_free_fn(blkg->pd[pol->plid]); 1426 blkg->pd[pol->plid] = NULL; 1427 } 1428 } 1429 1430 spin_unlock_irq(&q->queue_lock); 1431 1432 if (queue_is_mq(q)) 1433 blk_mq_unfreeze_queue(q); 1434 } 1435 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1436 1437 /** 1438 * blkcg_policy_register - register a blkcg policy 1439 * @pol: blkcg policy to register 1440 * 1441 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1442 * successful registration. Returns 0 on success and -errno on failure. 1443 */ 1444 int blkcg_policy_register(struct blkcg_policy *pol) 1445 { 1446 struct blkcg *blkcg; 1447 int i, ret; 1448 1449 mutex_lock(&blkcg_pol_register_mutex); 1450 mutex_lock(&blkcg_pol_mutex); 1451 1452 /* find an empty slot */ 1453 ret = -ENOSPC; 1454 for (i = 0; i < BLKCG_MAX_POLS; i++) 1455 if (!blkcg_policy[i]) 1456 break; 1457 if (i >= BLKCG_MAX_POLS) { 1458 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1459 goto err_unlock; 1460 } 1461 1462 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1463 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1464 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1465 goto err_unlock; 1466 1467 /* register @pol */ 1468 pol->plid = i; 1469 blkcg_policy[pol->plid] = pol; 1470 1471 /* allocate and install cpd's */ 1472 if (pol->cpd_alloc_fn) { 1473 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1474 struct blkcg_policy_data *cpd; 1475 1476 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1477 if (!cpd) 1478 goto err_free_cpds; 1479 1480 blkcg->cpd[pol->plid] = cpd; 1481 cpd->blkcg = blkcg; 1482 cpd->plid = pol->plid; 1483 if (pol->cpd_init_fn) 1484 pol->cpd_init_fn(cpd); 1485 } 1486 } 1487 1488 mutex_unlock(&blkcg_pol_mutex); 1489 1490 /* everything is in place, add intf files for the new policy */ 1491 if (pol->dfl_cftypes) 1492 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1493 pol->dfl_cftypes)); 1494 if (pol->legacy_cftypes) 1495 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1496 pol->legacy_cftypes)); 1497 mutex_unlock(&blkcg_pol_register_mutex); 1498 return 0; 1499 1500 err_free_cpds: 1501 if (pol->cpd_free_fn) { 1502 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1503 if (blkcg->cpd[pol->plid]) { 1504 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1505 blkcg->cpd[pol->plid] = NULL; 1506 } 1507 } 1508 } 1509 blkcg_policy[pol->plid] = NULL; 1510 err_unlock: 1511 mutex_unlock(&blkcg_pol_mutex); 1512 mutex_unlock(&blkcg_pol_register_mutex); 1513 return ret; 1514 } 1515 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1516 1517 /** 1518 * blkcg_policy_unregister - unregister a blkcg policy 1519 * @pol: blkcg policy to unregister 1520 * 1521 * Undo blkcg_policy_register(@pol). Might sleep. 1522 */ 1523 void blkcg_policy_unregister(struct blkcg_policy *pol) 1524 { 1525 struct blkcg *blkcg; 1526 1527 mutex_lock(&blkcg_pol_register_mutex); 1528 1529 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1530 goto out_unlock; 1531 1532 /* kill the intf files first */ 1533 if (pol->dfl_cftypes) 1534 cgroup_rm_cftypes(pol->dfl_cftypes); 1535 if (pol->legacy_cftypes) 1536 cgroup_rm_cftypes(pol->legacy_cftypes); 1537 1538 /* remove cpds and unregister */ 1539 mutex_lock(&blkcg_pol_mutex); 1540 1541 if (pol->cpd_free_fn) { 1542 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1543 if (blkcg->cpd[pol->plid]) { 1544 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1545 blkcg->cpd[pol->plid] = NULL; 1546 } 1547 } 1548 } 1549 blkcg_policy[pol->plid] = NULL; 1550 1551 mutex_unlock(&blkcg_pol_mutex); 1552 out_unlock: 1553 mutex_unlock(&blkcg_pol_register_mutex); 1554 } 1555 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1556 1557 bool __blkcg_punt_bio_submit(struct bio *bio) 1558 { 1559 struct blkcg_gq *blkg = bio->bi_blkg; 1560 1561 /* consume the flag first */ 1562 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1563 1564 /* never bounce for the root cgroup */ 1565 if (!blkg->parent) 1566 return false; 1567 1568 spin_lock_bh(&blkg->async_bio_lock); 1569 bio_list_add(&blkg->async_bios, bio); 1570 spin_unlock_bh(&blkg->async_bio_lock); 1571 1572 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1573 return true; 1574 } 1575 1576 /* 1577 * Scale the accumulated delay based on how long it has been since we updated 1578 * the delay. We only call this when we are adding delay, in case it's been a 1579 * while since we added delay, and when we are checking to see if we need to 1580 * delay a task, to account for any delays that may have occurred. 1581 */ 1582 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1583 { 1584 u64 old = atomic64_read(&blkg->delay_start); 1585 1586 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1587 if (atomic_read(&blkg->use_delay) < 0) 1588 return; 1589 1590 /* 1591 * We only want to scale down every second. The idea here is that we 1592 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1593 * time window. We only want to throttle tasks for recent delay that 1594 * has occurred, in 1 second time windows since that's the maximum 1595 * things can be throttled. We save the current delay window in 1596 * blkg->last_delay so we know what amount is still left to be charged 1597 * to the blkg from this point onward. blkg->last_use keeps track of 1598 * the use_delay counter. The idea is if we're unthrottling the blkg we 1599 * are ok with whatever is happening now, and we can take away more of 1600 * the accumulated delay as we've already throttled enough that 1601 * everybody is happy with their IO latencies. 1602 */ 1603 if (time_before64(old + NSEC_PER_SEC, now) && 1604 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1605 u64 cur = atomic64_read(&blkg->delay_nsec); 1606 u64 sub = min_t(u64, blkg->last_delay, now - old); 1607 int cur_use = atomic_read(&blkg->use_delay); 1608 1609 /* 1610 * We've been unthrottled, subtract a larger chunk of our 1611 * accumulated delay. 1612 */ 1613 if (cur_use < blkg->last_use) 1614 sub = max_t(u64, sub, blkg->last_delay >> 1); 1615 1616 /* 1617 * This shouldn't happen, but handle it anyway. Our delay_nsec 1618 * should only ever be growing except here where we subtract out 1619 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1620 * rather not end up with negative numbers. 1621 */ 1622 if (unlikely(cur < sub)) { 1623 atomic64_set(&blkg->delay_nsec, 0); 1624 blkg->last_delay = 0; 1625 } else { 1626 atomic64_sub(sub, &blkg->delay_nsec); 1627 blkg->last_delay = cur - sub; 1628 } 1629 blkg->last_use = cur_use; 1630 } 1631 } 1632 1633 /* 1634 * This is called when we want to actually walk up the hierarchy and check to 1635 * see if we need to throttle, and then actually throttle if there is some 1636 * accumulated delay. This should only be called upon return to user space so 1637 * we're not holding some lock that would induce a priority inversion. 1638 */ 1639 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1640 { 1641 unsigned long pflags; 1642 bool clamp; 1643 u64 now = ktime_to_ns(ktime_get()); 1644 u64 exp; 1645 u64 delay_nsec = 0; 1646 int tok; 1647 1648 while (blkg->parent) { 1649 int use_delay = atomic_read(&blkg->use_delay); 1650 1651 if (use_delay) { 1652 u64 this_delay; 1653 1654 blkcg_scale_delay(blkg, now); 1655 this_delay = atomic64_read(&blkg->delay_nsec); 1656 if (this_delay > delay_nsec) { 1657 delay_nsec = this_delay; 1658 clamp = use_delay > 0; 1659 } 1660 } 1661 blkg = blkg->parent; 1662 } 1663 1664 if (!delay_nsec) 1665 return; 1666 1667 /* 1668 * Let's not sleep for all eternity if we've amassed a huge delay. 1669 * Swapping or metadata IO can accumulate 10's of seconds worth of 1670 * delay, and we want userspace to be able to do _something_ so cap the 1671 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1672 * tasks will be delayed for 0.25 second for every syscall. If 1673 * blkcg_set_delay() was used as indicated by negative use_delay, the 1674 * caller is responsible for regulating the range. 1675 */ 1676 if (clamp) 1677 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1678 1679 if (use_memdelay) 1680 psi_memstall_enter(&pflags); 1681 1682 exp = ktime_add_ns(now, delay_nsec); 1683 tok = io_schedule_prepare(); 1684 do { 1685 __set_current_state(TASK_KILLABLE); 1686 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1687 break; 1688 } while (!fatal_signal_pending(current)); 1689 io_schedule_finish(tok); 1690 1691 if (use_memdelay) 1692 psi_memstall_leave(&pflags); 1693 } 1694 1695 /** 1696 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1697 * 1698 * This is only called if we've been marked with set_notify_resume(). Obviously 1699 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1700 * check to see if current->throttle_queue is set and if not this doesn't do 1701 * anything. This should only ever be called by the resume code, it's not meant 1702 * to be called by people willy-nilly as it will actually do the work to 1703 * throttle the task if it is setup for throttling. 1704 */ 1705 void blkcg_maybe_throttle_current(void) 1706 { 1707 struct request_queue *q = current->throttle_queue; 1708 struct cgroup_subsys_state *css; 1709 struct blkcg *blkcg; 1710 struct blkcg_gq *blkg; 1711 bool use_memdelay = current->use_memdelay; 1712 1713 if (!q) 1714 return; 1715 1716 current->throttle_queue = NULL; 1717 current->use_memdelay = false; 1718 1719 rcu_read_lock(); 1720 css = kthread_blkcg(); 1721 if (css) 1722 blkcg = css_to_blkcg(css); 1723 else 1724 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1725 1726 if (!blkcg) 1727 goto out; 1728 blkg = blkg_lookup(blkcg, q); 1729 if (!blkg) 1730 goto out; 1731 if (!blkg_tryget(blkg)) 1732 goto out; 1733 rcu_read_unlock(); 1734 1735 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1736 blkg_put(blkg); 1737 blk_put_queue(q); 1738 return; 1739 out: 1740 rcu_read_unlock(); 1741 blk_put_queue(q); 1742 } 1743 1744 /** 1745 * blkcg_schedule_throttle - this task needs to check for throttling 1746 * @q: the request queue IO was submitted on 1747 * @use_memdelay: do we charge this to memory delay for PSI 1748 * 1749 * This is called by the IO controller when we know there's delay accumulated 1750 * for the blkg for this task. We do not pass the blkg because there are places 1751 * we call this that may not have that information, the swapping code for 1752 * instance will only have a request_queue at that point. This set's the 1753 * notify_resume for the task to check and see if it requires throttling before 1754 * returning to user space. 1755 * 1756 * We will only schedule once per syscall. You can call this over and over 1757 * again and it will only do the check once upon return to user space, and only 1758 * throttle once. If the task needs to be throttled again it'll need to be 1759 * re-set at the next time we see the task. 1760 */ 1761 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1762 { 1763 if (unlikely(current->flags & PF_KTHREAD)) 1764 return; 1765 1766 if (current->throttle_queue != q) { 1767 if (!blk_get_queue(q)) 1768 return; 1769 1770 if (current->throttle_queue) 1771 blk_put_queue(current->throttle_queue); 1772 current->throttle_queue = q; 1773 } 1774 1775 if (use_memdelay) 1776 current->use_memdelay = use_memdelay; 1777 set_notify_resume(current); 1778 } 1779 1780 /** 1781 * blkcg_add_delay - add delay to this blkg 1782 * @blkg: blkg of interest 1783 * @now: the current time in nanoseconds 1784 * @delta: how many nanoseconds of delay to add 1785 * 1786 * Charge @delta to the blkg's current delay accumulation. This is used to 1787 * throttle tasks if an IO controller thinks we need more throttling. 1788 */ 1789 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1790 { 1791 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1792 return; 1793 blkcg_scale_delay(blkg, now); 1794 atomic64_add(delta, &blkg->delay_nsec); 1795 } 1796 1797 /** 1798 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1799 * @bio: target bio 1800 * @css: target css 1801 * 1802 * As the failure mode here is to walk up the blkg tree, this ensure that the 1803 * blkg->parent pointers are always valid. This returns the blkg that it ended 1804 * up taking a reference on or %NULL if no reference was taken. 1805 */ 1806 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1807 struct cgroup_subsys_state *css) 1808 { 1809 struct blkcg_gq *blkg, *ret_blkg = NULL; 1810 1811 rcu_read_lock(); 1812 blkg = blkg_lookup_create(css_to_blkcg(css), 1813 bio->bi_bdev->bd_disk->queue); 1814 while (blkg) { 1815 if (blkg_tryget(blkg)) { 1816 ret_blkg = blkg; 1817 break; 1818 } 1819 blkg = blkg->parent; 1820 } 1821 rcu_read_unlock(); 1822 1823 return ret_blkg; 1824 } 1825 1826 /** 1827 * bio_associate_blkg_from_css - associate a bio with a specified css 1828 * @bio: target bio 1829 * @css: target css 1830 * 1831 * Associate @bio with the blkg found by combining the css's blkg and the 1832 * request_queue of the @bio. An association failure is handled by walking up 1833 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1834 * and q->root_blkg. This situation only happens when a cgroup is dying and 1835 * then the remaining bios will spill to the closest alive blkg. 1836 * 1837 * A reference will be taken on the blkg and will be released when @bio is 1838 * freed. 1839 */ 1840 void bio_associate_blkg_from_css(struct bio *bio, 1841 struct cgroup_subsys_state *css) 1842 { 1843 if (bio->bi_blkg) 1844 blkg_put(bio->bi_blkg); 1845 1846 if (css && css->parent) { 1847 bio->bi_blkg = blkg_tryget_closest(bio, css); 1848 } else { 1849 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg); 1850 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg; 1851 } 1852 } 1853 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1854 1855 /** 1856 * bio_associate_blkg - associate a bio with a blkg 1857 * @bio: target bio 1858 * 1859 * Associate @bio with the blkg found from the bio's css and request_queue. 1860 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1861 * already associated, the css is reused and association redone as the 1862 * request_queue may have changed. 1863 */ 1864 void bio_associate_blkg(struct bio *bio) 1865 { 1866 struct cgroup_subsys_state *css; 1867 1868 rcu_read_lock(); 1869 1870 if (bio->bi_blkg) 1871 css = &bio_blkcg(bio)->css; 1872 else 1873 css = blkcg_css(); 1874 1875 bio_associate_blkg_from_css(bio, css); 1876 1877 rcu_read_unlock(); 1878 } 1879 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1880 1881 /** 1882 * bio_clone_blkg_association - clone blkg association from src to dst bio 1883 * @dst: destination bio 1884 * @src: source bio 1885 */ 1886 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1887 { 1888 if (src->bi_blkg) { 1889 if (dst->bi_blkg) 1890 blkg_put(dst->bi_blkg); 1891 blkg_get(src->bi_blkg); 1892 dst->bi_blkg = src->bi_blkg; 1893 } 1894 } 1895 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1896 1897 static int blk_cgroup_io_type(struct bio *bio) 1898 { 1899 if (op_is_discard(bio->bi_opf)) 1900 return BLKG_IOSTAT_DISCARD; 1901 if (op_is_write(bio->bi_opf)) 1902 return BLKG_IOSTAT_WRITE; 1903 return BLKG_IOSTAT_READ; 1904 } 1905 1906 void blk_cgroup_bio_start(struct bio *bio) 1907 { 1908 int rwd = blk_cgroup_io_type(bio), cpu; 1909 struct blkg_iostat_set *bis; 1910 1911 cpu = get_cpu(); 1912 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1913 u64_stats_update_begin(&bis->sync); 1914 1915 /* 1916 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1917 * bio and we would have already accounted for the size of the bio. 1918 */ 1919 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1920 bio_set_flag(bio, BIO_CGROUP_ACCT); 1921 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1922 } 1923 bis->cur.ios[rwd]++; 1924 1925 u64_stats_update_end(&bis->sync); 1926 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1927 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1928 put_cpu(); 1929 } 1930 1931 static int __init blkcg_init(void) 1932 { 1933 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1934 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1935 WQ_UNBOUND | WQ_SYSFS, 0); 1936 if (!blkcg_punt_bio_wq) 1937 return -ENOMEM; 1938 return 0; 1939 } 1940 subsys_initcall(blkcg_init); 1941 1942 module_param(blkcg_debug_stats, bool, 0644); 1943 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1944