xref: /openbmc/linux/block/blk-cgroup.c (revision d5a05299)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38 
39 /*
40  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42  * policy [un]register operations including cgroup file additions /
43  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44  * allows grabbing it from cgroup callbacks.
45  */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48 
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51 
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 
57 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58 
59 bool blkcg_debug_stats = false;
60 
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62 
63 #define BLKG_DESTROY_BATCH_SIZE  64
64 
65 /*
66  * Lockless lists for tracking IO stats update
67  *
68  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69  * There are multiple blkg's (one for each block device) attached to each
70  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71  * but it doesn't know which blkg has the updated stats. If there are many
72  * block devices in a system, the cost of iterating all the blkg's to flush
73  * out the IO stats can be high. To reduce such overhead, a set of percpu
74  * lockless lists (lhead) per blkcg are used to track the set of recently
75  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78  * References to blkg are gotten and then put back in the process to
79  * protect against blkg removal.
80  *
81  * Return: 0 if successful or -ENOMEM if allocation fails.
82  */
83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 	int cpu;
86 
87 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 	if (!blkcg->lhead)
89 		return -ENOMEM;
90 
91 	for_each_possible_cpu(cpu)
92 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 	return 0;
94 }
95 
96 /**
97  * blkcg_css - find the current css
98  *
99  * Find the css associated with either the kthread or the current task.
100  * This may return a dying css, so it is up to the caller to use tryget logic
101  * to confirm it is alive and well.
102  */
103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 	struct cgroup_subsys_state *css;
106 
107 	css = kthread_blkcg();
108 	if (css)
109 		return css;
110 	return task_css(current, io_cgrp_id);
111 }
112 
113 static bool blkcg_policy_enabled(struct request_queue *q,
114 				 const struct blkcg_policy *pol)
115 {
116 	return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118 
119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     free_work);
123 	struct request_queue *q = blkg->q;
124 	int i;
125 
126 	/*
127 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 	 * in order to make sure pd_free_fn() is called in order, the deletion
129 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 	 * blkcg_deactivate_policy().
132 	 */
133 	mutex_lock(&q->blkcg_mutex);
134 	for (i = 0; i < BLKCG_MAX_POLS; i++)
135 		if (blkg->pd[i])
136 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 	if (blkg->parent)
138 		blkg_put(blkg->parent);
139 	list_del_init(&blkg->q_node);
140 	mutex_unlock(&q->blkcg_mutex);
141 
142 	blk_put_queue(q);
143 	free_percpu(blkg->iostat_cpu);
144 	percpu_ref_exit(&blkg->refcnt);
145 	kfree(blkg);
146 }
147 
148 /**
149  * blkg_free - free a blkg
150  * @blkg: blkg to free
151  *
152  * Free @blkg which may be partially allocated.
153  */
154 static void blkg_free(struct blkcg_gq *blkg)
155 {
156 	if (!blkg)
157 		return;
158 
159 	/*
160 	 * Both ->pd_free_fn() and request queue's release handler may
161 	 * sleep, so free us by scheduling one work func
162 	 */
163 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
164 	schedule_work(&blkg->free_work);
165 }
166 
167 static void __blkg_release(struct rcu_head *rcu)
168 {
169 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
170 	struct blkcg *blkcg = blkg->blkcg;
171 	int cpu;
172 
173 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
174 	WARN_ON(!bio_list_empty(&blkg->async_bios));
175 #endif
176 	/*
177 	 * Flush all the non-empty percpu lockless lists before releasing
178 	 * us, given these stat belongs to us.
179 	 *
180 	 * blkg_stat_lock is for serializing blkg stat update
181 	 */
182 	for_each_possible_cpu(cpu)
183 		__blkcg_rstat_flush(blkcg, cpu);
184 
185 	/* release the blkcg and parent blkg refs this blkg has been holding */
186 	css_put(&blkg->blkcg->css);
187 	blkg_free(blkg);
188 }
189 
190 /*
191  * A group is RCU protected, but having an rcu lock does not mean that one
192  * can access all the fields of blkg and assume these are valid.  For
193  * example, don't try to follow throtl_data and request queue links.
194  *
195  * Having a reference to blkg under an rcu allows accesses to only values
196  * local to groups like group stats and group rate limits.
197  */
198 static void blkg_release(struct percpu_ref *ref)
199 {
200 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
201 
202 	call_rcu(&blkg->rcu_head, __blkg_release);
203 }
204 
205 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
206 static struct workqueue_struct *blkcg_punt_bio_wq;
207 
208 static void blkg_async_bio_workfn(struct work_struct *work)
209 {
210 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
211 					     async_bio_work);
212 	struct bio_list bios = BIO_EMPTY_LIST;
213 	struct bio *bio;
214 	struct blk_plug plug;
215 	bool need_plug = false;
216 
217 	/* as long as there are pending bios, @blkg can't go away */
218 	spin_lock(&blkg->async_bio_lock);
219 	bio_list_merge(&bios, &blkg->async_bios);
220 	bio_list_init(&blkg->async_bios);
221 	spin_unlock(&blkg->async_bio_lock);
222 
223 	/* start plug only when bio_list contains at least 2 bios */
224 	if (bios.head && bios.head->bi_next) {
225 		need_plug = true;
226 		blk_start_plug(&plug);
227 	}
228 	while ((bio = bio_list_pop(&bios)))
229 		submit_bio(bio);
230 	if (need_plug)
231 		blk_finish_plug(&plug);
232 }
233 
234 /*
235  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
236  * lead to priority inversions as the kthread can be trapped waiting for that
237  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
238  * a dedicated per-blkcg work item to avoid such priority inversions.
239  */
240 void blkcg_punt_bio_submit(struct bio *bio)
241 {
242 	struct blkcg_gq *blkg = bio->bi_blkg;
243 
244 	if (blkg->parent) {
245 		spin_lock(&blkg->async_bio_lock);
246 		bio_list_add(&blkg->async_bios, bio);
247 		spin_unlock(&blkg->async_bio_lock);
248 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
249 	} else {
250 		/* never bounce for the root cgroup */
251 		submit_bio(bio);
252 	}
253 }
254 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
255 
256 static int __init blkcg_punt_bio_init(void)
257 {
258 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
259 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
260 					    WQ_UNBOUND | WQ_SYSFS, 0);
261 	if (!blkcg_punt_bio_wq)
262 		return -ENOMEM;
263 	return 0;
264 }
265 subsys_initcall(blkcg_punt_bio_init);
266 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
267 
268 /**
269  * bio_blkcg_css - return the blkcg CSS associated with a bio
270  * @bio: target bio
271  *
272  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
273  * associated. Callers are expected to either handle %NULL or know association
274  * has been done prior to calling this.
275  */
276 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
277 {
278 	if (!bio || !bio->bi_blkg)
279 		return NULL;
280 	return &bio->bi_blkg->blkcg->css;
281 }
282 EXPORT_SYMBOL_GPL(bio_blkcg_css);
283 
284 /**
285  * blkcg_parent - get the parent of a blkcg
286  * @blkcg: blkcg of interest
287  *
288  * Return the parent blkcg of @blkcg.  Can be called anytime.
289  */
290 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
291 {
292 	return css_to_blkcg(blkcg->css.parent);
293 }
294 
295 /**
296  * blkg_alloc - allocate a blkg
297  * @blkcg: block cgroup the new blkg is associated with
298  * @disk: gendisk the new blkg is associated with
299  * @gfp_mask: allocation mask to use
300  *
301  * Allocate a new blkg assocating @blkcg and @q.
302  */
303 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
304 				   gfp_t gfp_mask)
305 {
306 	struct blkcg_gq *blkg;
307 	int i, cpu;
308 
309 	/* alloc and init base part */
310 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
311 	if (!blkg)
312 		return NULL;
313 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
314 		goto out_free_blkg;
315 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
316 	if (!blkg->iostat_cpu)
317 		goto out_exit_refcnt;
318 	if (!blk_get_queue(disk->queue))
319 		goto out_free_iostat;
320 
321 	blkg->q = disk->queue;
322 	INIT_LIST_HEAD(&blkg->q_node);
323 	blkg->blkcg = blkcg;
324 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
325 	spin_lock_init(&blkg->async_bio_lock);
326 	bio_list_init(&blkg->async_bios);
327 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
328 #endif
329 
330 	u64_stats_init(&blkg->iostat.sync);
331 	for_each_possible_cpu(cpu) {
332 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
333 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
334 	}
335 
336 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
337 		struct blkcg_policy *pol = blkcg_policy[i];
338 		struct blkg_policy_data *pd;
339 
340 		if (!blkcg_policy_enabled(disk->queue, pol))
341 			continue;
342 
343 		/* alloc per-policy data and attach it to blkg */
344 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
345 		if (!pd)
346 			goto out_free_pds;
347 		blkg->pd[i] = pd;
348 		pd->blkg = blkg;
349 		pd->plid = i;
350 		pd->online = false;
351 	}
352 
353 	return blkg;
354 
355 out_free_pds:
356 	while (--i >= 0)
357 		if (blkg->pd[i])
358 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
359 	blk_put_queue(disk->queue);
360 out_free_iostat:
361 	free_percpu(blkg->iostat_cpu);
362 out_exit_refcnt:
363 	percpu_ref_exit(&blkg->refcnt);
364 out_free_blkg:
365 	kfree(blkg);
366 	return NULL;
367 }
368 
369 /*
370  * If @new_blkg is %NULL, this function tries to allocate a new one as
371  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
372  */
373 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
374 				    struct blkcg_gq *new_blkg)
375 {
376 	struct blkcg_gq *blkg;
377 	int i, ret;
378 
379 	lockdep_assert_held(&disk->queue->queue_lock);
380 
381 	/* request_queue is dying, do not create/recreate a blkg */
382 	if (blk_queue_dying(disk->queue)) {
383 		ret = -ENODEV;
384 		goto err_free_blkg;
385 	}
386 
387 	/* blkg holds a reference to blkcg */
388 	if (!css_tryget_online(&blkcg->css)) {
389 		ret = -ENODEV;
390 		goto err_free_blkg;
391 	}
392 
393 	/* allocate */
394 	if (!new_blkg) {
395 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
396 		if (unlikely(!new_blkg)) {
397 			ret = -ENOMEM;
398 			goto err_put_css;
399 		}
400 	}
401 	blkg = new_blkg;
402 
403 	/* link parent */
404 	if (blkcg_parent(blkcg)) {
405 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
406 		if (WARN_ON_ONCE(!blkg->parent)) {
407 			ret = -ENODEV;
408 			goto err_put_css;
409 		}
410 		blkg_get(blkg->parent);
411 	}
412 
413 	/* invoke per-policy init */
414 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 		struct blkcg_policy *pol = blkcg_policy[i];
416 
417 		if (blkg->pd[i] && pol->pd_init_fn)
418 			pol->pd_init_fn(blkg->pd[i]);
419 	}
420 
421 	/* insert */
422 	spin_lock(&blkcg->lock);
423 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
424 	if (likely(!ret)) {
425 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
426 		list_add(&blkg->q_node, &disk->queue->blkg_list);
427 
428 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
429 			struct blkcg_policy *pol = blkcg_policy[i];
430 
431 			if (blkg->pd[i]) {
432 				if (pol->pd_online_fn)
433 					pol->pd_online_fn(blkg->pd[i]);
434 				blkg->pd[i]->online = true;
435 			}
436 		}
437 	}
438 	blkg->online = true;
439 	spin_unlock(&blkcg->lock);
440 
441 	if (!ret)
442 		return blkg;
443 
444 	/* @blkg failed fully initialized, use the usual release path */
445 	blkg_put(blkg);
446 	return ERR_PTR(ret);
447 
448 err_put_css:
449 	css_put(&blkcg->css);
450 err_free_blkg:
451 	if (new_blkg)
452 		blkg_free(new_blkg);
453 	return ERR_PTR(ret);
454 }
455 
456 /**
457  * blkg_lookup_create - lookup blkg, try to create one if not there
458  * @blkcg: blkcg of interest
459  * @disk: gendisk of interest
460  *
461  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
462  * create one.  blkg creation is performed recursively from blkcg_root such
463  * that all non-root blkg's have access to the parent blkg.  This function
464  * should be called under RCU read lock and takes @disk->queue->queue_lock.
465  *
466  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
467  * down from root.
468  */
469 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
470 		struct gendisk *disk)
471 {
472 	struct request_queue *q = disk->queue;
473 	struct blkcg_gq *blkg;
474 	unsigned long flags;
475 
476 	WARN_ON_ONCE(!rcu_read_lock_held());
477 
478 	blkg = blkg_lookup(blkcg, q);
479 	if (blkg)
480 		return blkg;
481 
482 	spin_lock_irqsave(&q->queue_lock, flags);
483 	blkg = blkg_lookup(blkcg, q);
484 	if (blkg) {
485 		if (blkcg != &blkcg_root &&
486 		    blkg != rcu_dereference(blkcg->blkg_hint))
487 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
488 		goto found;
489 	}
490 
491 	/*
492 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
493 	 * non-root blkgs have access to their parents.  Returns the closest
494 	 * blkg to the intended blkg should blkg_create() fail.
495 	 */
496 	while (true) {
497 		struct blkcg *pos = blkcg;
498 		struct blkcg *parent = blkcg_parent(blkcg);
499 		struct blkcg_gq *ret_blkg = q->root_blkg;
500 
501 		while (parent) {
502 			blkg = blkg_lookup(parent, q);
503 			if (blkg) {
504 				/* remember closest blkg */
505 				ret_blkg = blkg;
506 				break;
507 			}
508 			pos = parent;
509 			parent = blkcg_parent(parent);
510 		}
511 
512 		blkg = blkg_create(pos, disk, NULL);
513 		if (IS_ERR(blkg)) {
514 			blkg = ret_blkg;
515 			break;
516 		}
517 		if (pos == blkcg)
518 			break;
519 	}
520 
521 found:
522 	spin_unlock_irqrestore(&q->queue_lock, flags);
523 	return blkg;
524 }
525 
526 static void blkg_destroy(struct blkcg_gq *blkg)
527 {
528 	struct blkcg *blkcg = blkg->blkcg;
529 	int i;
530 
531 	lockdep_assert_held(&blkg->q->queue_lock);
532 	lockdep_assert_held(&blkcg->lock);
533 
534 	/*
535 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
536 	 * blkg_free_workfn(), hence this function can be called from
537 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
538 	 * blkg_free_workfn().
539 	 */
540 	if (hlist_unhashed(&blkg->blkcg_node))
541 		return;
542 
543 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
544 		struct blkcg_policy *pol = blkcg_policy[i];
545 
546 		if (blkg->pd[i] && blkg->pd[i]->online) {
547 			blkg->pd[i]->online = false;
548 			if (pol->pd_offline_fn)
549 				pol->pd_offline_fn(blkg->pd[i]);
550 		}
551 	}
552 
553 	blkg->online = false;
554 
555 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
556 	hlist_del_init_rcu(&blkg->blkcg_node);
557 
558 	/*
559 	 * Both setting lookup hint to and clearing it from @blkg are done
560 	 * under queue_lock.  If it's not pointing to @blkg now, it never
561 	 * will.  Hint assignment itself can race safely.
562 	 */
563 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
564 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
565 
566 	/*
567 	 * Put the reference taken at the time of creation so that when all
568 	 * queues are gone, group can be destroyed.
569 	 */
570 	percpu_ref_kill(&blkg->refcnt);
571 }
572 
573 static void blkg_destroy_all(struct gendisk *disk)
574 {
575 	struct request_queue *q = disk->queue;
576 	struct blkcg_gq *blkg, *n;
577 	int count = BLKG_DESTROY_BATCH_SIZE;
578 
579 restart:
580 	spin_lock_irq(&q->queue_lock);
581 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
582 		struct blkcg *blkcg = blkg->blkcg;
583 
584 		if (hlist_unhashed(&blkg->blkcg_node))
585 			continue;
586 
587 		spin_lock(&blkcg->lock);
588 		blkg_destroy(blkg);
589 		spin_unlock(&blkcg->lock);
590 
591 		/*
592 		 * in order to avoid holding the spin lock for too long, release
593 		 * it when a batch of blkgs are destroyed.
594 		 */
595 		if (!(--count)) {
596 			count = BLKG_DESTROY_BATCH_SIZE;
597 			spin_unlock_irq(&q->queue_lock);
598 			cond_resched();
599 			goto restart;
600 		}
601 	}
602 
603 	q->root_blkg = NULL;
604 	spin_unlock_irq(&q->queue_lock);
605 }
606 
607 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
608 			     struct cftype *cftype, u64 val)
609 {
610 	struct blkcg *blkcg = css_to_blkcg(css);
611 	struct blkcg_gq *blkg;
612 	int i, cpu;
613 
614 	mutex_lock(&blkcg_pol_mutex);
615 	spin_lock_irq(&blkcg->lock);
616 
617 	/*
618 	 * Note that stat reset is racy - it doesn't synchronize against
619 	 * stat updates.  This is a debug feature which shouldn't exist
620 	 * anyway.  If you get hit by a race, retry.
621 	 */
622 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
623 		for_each_possible_cpu(cpu) {
624 			struct blkg_iostat_set *bis =
625 				per_cpu_ptr(blkg->iostat_cpu, cpu);
626 			memset(bis, 0, sizeof(*bis));
627 		}
628 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
629 
630 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
631 			struct blkcg_policy *pol = blkcg_policy[i];
632 
633 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
634 				pol->pd_reset_stats_fn(blkg->pd[i]);
635 		}
636 	}
637 
638 	spin_unlock_irq(&blkcg->lock);
639 	mutex_unlock(&blkcg_pol_mutex);
640 	return 0;
641 }
642 
643 const char *blkg_dev_name(struct blkcg_gq *blkg)
644 {
645 	if (!blkg->q->disk)
646 		return NULL;
647 	return bdi_dev_name(blkg->q->disk->bdi);
648 }
649 
650 /**
651  * blkcg_print_blkgs - helper for printing per-blkg data
652  * @sf: seq_file to print to
653  * @blkcg: blkcg of interest
654  * @prfill: fill function to print out a blkg
655  * @pol: policy in question
656  * @data: data to be passed to @prfill
657  * @show_total: to print out sum of prfill return values or not
658  *
659  * This function invokes @prfill on each blkg of @blkcg if pd for the
660  * policy specified by @pol exists.  @prfill is invoked with @sf, the
661  * policy data and @data and the matching queue lock held.  If @show_total
662  * is %true, the sum of the return values from @prfill is printed with
663  * "Total" label at the end.
664  *
665  * This is to be used to construct print functions for
666  * cftype->read_seq_string method.
667  */
668 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
669 		       u64 (*prfill)(struct seq_file *,
670 				     struct blkg_policy_data *, int),
671 		       const struct blkcg_policy *pol, int data,
672 		       bool show_total)
673 {
674 	struct blkcg_gq *blkg;
675 	u64 total = 0;
676 
677 	rcu_read_lock();
678 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
679 		spin_lock_irq(&blkg->q->queue_lock);
680 		if (blkcg_policy_enabled(blkg->q, pol))
681 			total += prfill(sf, blkg->pd[pol->plid], data);
682 		spin_unlock_irq(&blkg->q->queue_lock);
683 	}
684 	rcu_read_unlock();
685 
686 	if (show_total)
687 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
688 }
689 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
690 
691 /**
692  * __blkg_prfill_u64 - prfill helper for a single u64 value
693  * @sf: seq_file to print to
694  * @pd: policy private data of interest
695  * @v: value to print
696  *
697  * Print @v to @sf for the device associated with @pd.
698  */
699 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
700 {
701 	const char *dname = blkg_dev_name(pd->blkg);
702 
703 	if (!dname)
704 		return 0;
705 
706 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
707 	return v;
708 }
709 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
710 
711 /**
712  * blkg_conf_init - initialize a blkg_conf_ctx
713  * @ctx: blkg_conf_ctx to initialize
714  * @input: input string
715  *
716  * Initialize @ctx which can be used to parse blkg config input string @input.
717  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
718  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
719  */
720 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
721 {
722 	*ctx = (struct blkg_conf_ctx){ .input = input };
723 }
724 EXPORT_SYMBOL_GPL(blkg_conf_init);
725 
726 /**
727  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
728  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
729  *
730  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
731  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
732  * set to point past the device node prefix.
733  *
734  * This function may be called multiple times on @ctx and the extra calls become
735  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
736  * explicitly if bdev access is needed without resolving the blkcg / policy part
737  * of @ctx->input. Returns -errno on error.
738  */
739 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
740 {
741 	char *input = ctx->input;
742 	unsigned int major, minor;
743 	struct block_device *bdev;
744 	int key_len;
745 
746 	if (ctx->bdev)
747 		return 0;
748 
749 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
750 		return -EINVAL;
751 
752 	input += key_len;
753 	if (!isspace(*input))
754 		return -EINVAL;
755 	input = skip_spaces(input);
756 
757 	bdev = blkdev_get_no_open(MKDEV(major, minor));
758 	if (!bdev)
759 		return -ENODEV;
760 	if (bdev_is_partition(bdev)) {
761 		blkdev_put_no_open(bdev);
762 		return -ENODEV;
763 	}
764 
765 	ctx->body = input;
766 	ctx->bdev = bdev;
767 	return 0;
768 }
769 
770 /**
771  * blkg_conf_prep - parse and prepare for per-blkg config update
772  * @blkcg: target block cgroup
773  * @pol: target policy
774  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
775  *
776  * Parse per-blkg config update from @ctx->input and initialize @ctx
777  * accordingly. On success, @ctx->body points to the part of @ctx->input
778  * following MAJ:MIN, @ctx->bdev points to the target block device and
779  * @ctx->blkg to the blkg being configured.
780  *
781  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
782  * function returns with queue lock held and must be followed by
783  * blkg_conf_exit().
784  */
785 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
786 		   struct blkg_conf_ctx *ctx)
787 	__acquires(&bdev->bd_queue->queue_lock)
788 {
789 	struct gendisk *disk;
790 	struct request_queue *q;
791 	struct blkcg_gq *blkg;
792 	int ret;
793 
794 	ret = blkg_conf_open_bdev(ctx);
795 	if (ret)
796 		return ret;
797 
798 	disk = ctx->bdev->bd_disk;
799 	q = disk->queue;
800 
801 	/*
802 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
803 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
804 	 */
805 	ret = blk_queue_enter(q, 0);
806 	if (ret)
807 		goto fail;
808 
809 	spin_lock_irq(&q->queue_lock);
810 
811 	if (!blkcg_policy_enabled(q, pol)) {
812 		ret = -EOPNOTSUPP;
813 		goto fail_unlock;
814 	}
815 
816 	blkg = blkg_lookup(blkcg, q);
817 	if (blkg)
818 		goto success;
819 
820 	/*
821 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
822 	 * non-root blkgs have access to their parents.
823 	 */
824 	while (true) {
825 		struct blkcg *pos = blkcg;
826 		struct blkcg *parent;
827 		struct blkcg_gq *new_blkg;
828 
829 		parent = blkcg_parent(blkcg);
830 		while (parent && !blkg_lookup(parent, q)) {
831 			pos = parent;
832 			parent = blkcg_parent(parent);
833 		}
834 
835 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
836 		spin_unlock_irq(&q->queue_lock);
837 
838 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
839 		if (unlikely(!new_blkg)) {
840 			ret = -ENOMEM;
841 			goto fail_exit_queue;
842 		}
843 
844 		if (radix_tree_preload(GFP_KERNEL)) {
845 			blkg_free(new_blkg);
846 			ret = -ENOMEM;
847 			goto fail_exit_queue;
848 		}
849 
850 		spin_lock_irq(&q->queue_lock);
851 
852 		if (!blkcg_policy_enabled(q, pol)) {
853 			blkg_free(new_blkg);
854 			ret = -EOPNOTSUPP;
855 			goto fail_preloaded;
856 		}
857 
858 		blkg = blkg_lookup(pos, q);
859 		if (blkg) {
860 			blkg_free(new_blkg);
861 		} else {
862 			blkg = blkg_create(pos, disk, new_blkg);
863 			if (IS_ERR(blkg)) {
864 				ret = PTR_ERR(blkg);
865 				goto fail_preloaded;
866 			}
867 		}
868 
869 		radix_tree_preload_end();
870 
871 		if (pos == blkcg)
872 			goto success;
873 	}
874 success:
875 	blk_queue_exit(q);
876 	ctx->blkg = blkg;
877 	return 0;
878 
879 fail_preloaded:
880 	radix_tree_preload_end();
881 fail_unlock:
882 	spin_unlock_irq(&q->queue_lock);
883 fail_exit_queue:
884 	blk_queue_exit(q);
885 fail:
886 	/*
887 	 * If queue was bypassing, we should retry.  Do so after a
888 	 * short msleep().  It isn't strictly necessary but queue
889 	 * can be bypassing for some time and it's always nice to
890 	 * avoid busy looping.
891 	 */
892 	if (ret == -EBUSY) {
893 		msleep(10);
894 		ret = restart_syscall();
895 	}
896 	return ret;
897 }
898 EXPORT_SYMBOL_GPL(blkg_conf_prep);
899 
900 /**
901  * blkg_conf_exit - clean up per-blkg config update
902  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
903  *
904  * Clean up after per-blkg config update. This function must be called on all
905  * blkg_conf_ctx's initialized with blkg_conf_init().
906  */
907 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
908 	__releases(&ctx->bdev->bd_queue->queue_lock)
909 {
910 	if (ctx->blkg) {
911 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
912 		ctx->blkg = NULL;
913 	}
914 
915 	if (ctx->bdev) {
916 		blkdev_put_no_open(ctx->bdev);
917 		ctx->body = NULL;
918 		ctx->bdev = NULL;
919 	}
920 }
921 EXPORT_SYMBOL_GPL(blkg_conf_exit);
922 
923 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
924 {
925 	int i;
926 
927 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
928 		dst->bytes[i] = src->bytes[i];
929 		dst->ios[i] = src->ios[i];
930 	}
931 }
932 
933 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
934 {
935 	int i;
936 
937 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
938 		dst->bytes[i] += src->bytes[i];
939 		dst->ios[i] += src->ios[i];
940 	}
941 }
942 
943 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
944 {
945 	int i;
946 
947 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
948 		dst->bytes[i] -= src->bytes[i];
949 		dst->ios[i] -= src->ios[i];
950 	}
951 }
952 
953 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
954 				struct blkg_iostat *last)
955 {
956 	struct blkg_iostat delta;
957 	unsigned long flags;
958 
959 	/* propagate percpu delta to global */
960 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
961 	blkg_iostat_set(&delta, cur);
962 	blkg_iostat_sub(&delta, last);
963 	blkg_iostat_add(&blkg->iostat.cur, &delta);
964 	blkg_iostat_add(last, &delta);
965 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
966 }
967 
968 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
969 {
970 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
971 	struct llist_node *lnode;
972 	struct blkg_iostat_set *bisc, *next_bisc;
973 
974 	rcu_read_lock();
975 
976 	lnode = llist_del_all(lhead);
977 	if (!lnode)
978 		goto out;
979 
980 	/*
981 	 * For covering concurrent parent blkg update from blkg_release().
982 	 *
983 	 * When flushing from cgroup, cgroup_rstat_lock is always held, so
984 	 * this lock won't cause contention most of time.
985 	 */
986 	raw_spin_lock(&blkg_stat_lock);
987 
988 	/*
989 	 * Iterate only the iostat_cpu's queued in the lockless list.
990 	 */
991 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
992 		struct blkcg_gq *blkg = bisc->blkg;
993 		struct blkcg_gq *parent = blkg->parent;
994 		struct blkg_iostat cur;
995 		unsigned int seq;
996 
997 		WRITE_ONCE(bisc->lqueued, false);
998 
999 		/* fetch the current per-cpu values */
1000 		do {
1001 			seq = u64_stats_fetch_begin(&bisc->sync);
1002 			blkg_iostat_set(&cur, &bisc->cur);
1003 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1004 
1005 		blkcg_iostat_update(blkg, &cur, &bisc->last);
1006 
1007 		/* propagate global delta to parent (unless that's root) */
1008 		if (parent && parent->parent)
1009 			blkcg_iostat_update(parent, &blkg->iostat.cur,
1010 					    &blkg->iostat.last);
1011 	}
1012 	raw_spin_unlock(&blkg_stat_lock);
1013 out:
1014 	rcu_read_unlock();
1015 }
1016 
1017 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1018 {
1019 	/* Root-level stats are sourced from system-wide IO stats */
1020 	if (cgroup_parent(css->cgroup))
1021 		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1022 }
1023 
1024 /*
1025  * We source root cgroup stats from the system-wide stats to avoid
1026  * tracking the same information twice and incurring overhead when no
1027  * cgroups are defined. For that reason, cgroup_rstat_flush in
1028  * blkcg_print_stat does not actually fill out the iostat in the root
1029  * cgroup's blkcg_gq.
1030  *
1031  * However, we would like to re-use the printing code between the root and
1032  * non-root cgroups to the extent possible. For that reason, we simulate
1033  * flushing the root cgroup's stats by explicitly filling in the iostat
1034  * with disk level statistics.
1035  */
1036 static void blkcg_fill_root_iostats(void)
1037 {
1038 	struct class_dev_iter iter;
1039 	struct device *dev;
1040 
1041 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1042 	while ((dev = class_dev_iter_next(&iter))) {
1043 		struct block_device *bdev = dev_to_bdev(dev);
1044 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1045 		struct blkg_iostat tmp;
1046 		int cpu;
1047 		unsigned long flags;
1048 
1049 		memset(&tmp, 0, sizeof(tmp));
1050 		for_each_possible_cpu(cpu) {
1051 			struct disk_stats *cpu_dkstats;
1052 
1053 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1054 			tmp.ios[BLKG_IOSTAT_READ] +=
1055 				cpu_dkstats->ios[STAT_READ];
1056 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1057 				cpu_dkstats->ios[STAT_WRITE];
1058 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1059 				cpu_dkstats->ios[STAT_DISCARD];
1060 			// convert sectors to bytes
1061 			tmp.bytes[BLKG_IOSTAT_READ] +=
1062 				cpu_dkstats->sectors[STAT_READ] << 9;
1063 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1064 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1065 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1066 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1067 		}
1068 
1069 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1070 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1071 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1072 	}
1073 }
1074 
1075 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1076 {
1077 	struct blkg_iostat_set *bis = &blkg->iostat;
1078 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1079 	const char *dname;
1080 	unsigned seq;
1081 	int i;
1082 
1083 	if (!blkg->online)
1084 		return;
1085 
1086 	dname = blkg_dev_name(blkg);
1087 	if (!dname)
1088 		return;
1089 
1090 	seq_printf(s, "%s ", dname);
1091 
1092 	do {
1093 		seq = u64_stats_fetch_begin(&bis->sync);
1094 
1095 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1096 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1097 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1098 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1099 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1100 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1101 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1102 
1103 	if (rbytes || wbytes || rios || wios) {
1104 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1105 			rbytes, wbytes, rios, wios,
1106 			dbytes, dios);
1107 	}
1108 
1109 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1110 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1111 			atomic_read(&blkg->use_delay),
1112 			atomic64_read(&blkg->delay_nsec));
1113 	}
1114 
1115 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1116 		struct blkcg_policy *pol = blkcg_policy[i];
1117 
1118 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1119 			continue;
1120 
1121 		pol->pd_stat_fn(blkg->pd[i], s);
1122 	}
1123 
1124 	seq_puts(s, "\n");
1125 }
1126 
1127 static int blkcg_print_stat(struct seq_file *sf, void *v)
1128 {
1129 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1130 	struct blkcg_gq *blkg;
1131 
1132 	if (!seq_css(sf)->parent)
1133 		blkcg_fill_root_iostats();
1134 	else
1135 		cgroup_rstat_flush(blkcg->css.cgroup);
1136 
1137 	rcu_read_lock();
1138 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1139 		spin_lock_irq(&blkg->q->queue_lock);
1140 		blkcg_print_one_stat(blkg, sf);
1141 		spin_unlock_irq(&blkg->q->queue_lock);
1142 	}
1143 	rcu_read_unlock();
1144 	return 0;
1145 }
1146 
1147 static struct cftype blkcg_files[] = {
1148 	{
1149 		.name = "stat",
1150 		.seq_show = blkcg_print_stat,
1151 	},
1152 	{ }	/* terminate */
1153 };
1154 
1155 static struct cftype blkcg_legacy_files[] = {
1156 	{
1157 		.name = "reset_stats",
1158 		.write_u64 = blkcg_reset_stats,
1159 	},
1160 	{ }	/* terminate */
1161 };
1162 
1163 #ifdef CONFIG_CGROUP_WRITEBACK
1164 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1165 {
1166 	return &css_to_blkcg(css)->cgwb_list;
1167 }
1168 #endif
1169 
1170 /*
1171  * blkcg destruction is a three-stage process.
1172  *
1173  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1174  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1175  *    to the completion of writeback associated with the blkcg.  This lets us
1176  *    avoid punting potentially large amounts of outstanding writeback to root
1177  *    while maintaining any ongoing policies.  The next stage is triggered when
1178  *    the nr_cgwbs count goes to zero.
1179  *
1180  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1181  *    and handles the destruction of blkgs.  Here the css reference held by
1182  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1183  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1184  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1185  *    punted to the root_blkg.
1186  *
1187  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1188  *    This finally frees the blkcg.
1189  */
1190 
1191 /**
1192  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1193  * @blkcg: blkcg of interest
1194  *
1195  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1196  * is nested inside q lock, this function performs reverse double lock dancing.
1197  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1198  * blkcg_css_free to eventually be called.
1199  *
1200  * This is the blkcg counterpart of ioc_release_fn().
1201  */
1202 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1203 {
1204 	might_sleep();
1205 
1206 	spin_lock_irq(&blkcg->lock);
1207 
1208 	while (!hlist_empty(&blkcg->blkg_list)) {
1209 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1210 						struct blkcg_gq, blkcg_node);
1211 		struct request_queue *q = blkg->q;
1212 
1213 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1214 			/*
1215 			 * Given that the system can accumulate a huge number
1216 			 * of blkgs in pathological cases, check to see if we
1217 			 * need to rescheduling to avoid softlockup.
1218 			 */
1219 			spin_unlock_irq(&blkcg->lock);
1220 			cond_resched();
1221 			spin_lock_irq(&blkcg->lock);
1222 			continue;
1223 		}
1224 
1225 		blkg_destroy(blkg);
1226 		spin_unlock(&q->queue_lock);
1227 	}
1228 
1229 	spin_unlock_irq(&blkcg->lock);
1230 }
1231 
1232 /**
1233  * blkcg_pin_online - pin online state
1234  * @blkcg_css: blkcg of interest
1235  *
1236  * While pinned, a blkcg is kept online.  This is primarily used to
1237  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1238  * while an associated cgwb is still active.
1239  */
1240 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1241 {
1242 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1243 }
1244 
1245 /**
1246  * blkcg_unpin_online - unpin online state
1247  * @blkcg_css: blkcg of interest
1248  *
1249  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1250  * that blkg doesn't go offline while an associated cgwb is still active.
1251  * When this count goes to zero, all active cgwbs have finished so the
1252  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1253  */
1254 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1255 {
1256 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1257 
1258 	do {
1259 		if (!refcount_dec_and_test(&blkcg->online_pin))
1260 			break;
1261 		blkcg_destroy_blkgs(blkcg);
1262 		blkcg = blkcg_parent(blkcg);
1263 	} while (blkcg);
1264 }
1265 
1266 /**
1267  * blkcg_css_offline - cgroup css_offline callback
1268  * @css: css of interest
1269  *
1270  * This function is called when @css is about to go away.  Here the cgwbs are
1271  * offlined first and only once writeback associated with the blkcg has
1272  * finished do we start step 2 (see above).
1273  */
1274 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1275 {
1276 	/* this prevents anyone from attaching or migrating to this blkcg */
1277 	wb_blkcg_offline(css);
1278 
1279 	/* put the base online pin allowing step 2 to be triggered */
1280 	blkcg_unpin_online(css);
1281 }
1282 
1283 static void blkcg_css_free(struct cgroup_subsys_state *css)
1284 {
1285 	struct blkcg *blkcg = css_to_blkcg(css);
1286 	int i;
1287 
1288 	mutex_lock(&blkcg_pol_mutex);
1289 
1290 	list_del(&blkcg->all_blkcgs_node);
1291 
1292 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1293 		if (blkcg->cpd[i])
1294 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1295 
1296 	mutex_unlock(&blkcg_pol_mutex);
1297 
1298 	free_percpu(blkcg->lhead);
1299 	kfree(blkcg);
1300 }
1301 
1302 static struct cgroup_subsys_state *
1303 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1304 {
1305 	struct blkcg *blkcg;
1306 	int i;
1307 
1308 	mutex_lock(&blkcg_pol_mutex);
1309 
1310 	if (!parent_css) {
1311 		blkcg = &blkcg_root;
1312 	} else {
1313 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1314 		if (!blkcg)
1315 			goto unlock;
1316 	}
1317 
1318 	if (init_blkcg_llists(blkcg))
1319 		goto free_blkcg;
1320 
1321 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1322 		struct blkcg_policy *pol = blkcg_policy[i];
1323 		struct blkcg_policy_data *cpd;
1324 
1325 		/*
1326 		 * If the policy hasn't been attached yet, wait for it
1327 		 * to be attached before doing anything else. Otherwise,
1328 		 * check if the policy requires any specific per-cgroup
1329 		 * data: if it does, allocate and initialize it.
1330 		 */
1331 		if (!pol || !pol->cpd_alloc_fn)
1332 			continue;
1333 
1334 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1335 		if (!cpd)
1336 			goto free_pd_blkcg;
1337 
1338 		blkcg->cpd[i] = cpd;
1339 		cpd->blkcg = blkcg;
1340 		cpd->plid = i;
1341 	}
1342 
1343 	spin_lock_init(&blkcg->lock);
1344 	refcount_set(&blkcg->online_pin, 1);
1345 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1346 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1347 #ifdef CONFIG_CGROUP_WRITEBACK
1348 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1349 #endif
1350 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1351 
1352 	mutex_unlock(&blkcg_pol_mutex);
1353 	return &blkcg->css;
1354 
1355 free_pd_blkcg:
1356 	for (i--; i >= 0; i--)
1357 		if (blkcg->cpd[i])
1358 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1359 	free_percpu(blkcg->lhead);
1360 free_blkcg:
1361 	if (blkcg != &blkcg_root)
1362 		kfree(blkcg);
1363 unlock:
1364 	mutex_unlock(&blkcg_pol_mutex);
1365 	return ERR_PTR(-ENOMEM);
1366 }
1367 
1368 static int blkcg_css_online(struct cgroup_subsys_state *css)
1369 {
1370 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1371 
1372 	/*
1373 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1374 	 * don't go offline while cgwbs are still active on them.  Pin the
1375 	 * parent so that offline always happens towards the root.
1376 	 */
1377 	if (parent)
1378 		blkcg_pin_online(&parent->css);
1379 	return 0;
1380 }
1381 
1382 int blkcg_init_disk(struct gendisk *disk)
1383 {
1384 	struct request_queue *q = disk->queue;
1385 	struct blkcg_gq *new_blkg, *blkg;
1386 	bool preloaded;
1387 	int ret;
1388 
1389 	INIT_LIST_HEAD(&q->blkg_list);
1390 	mutex_init(&q->blkcg_mutex);
1391 
1392 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1393 	if (!new_blkg)
1394 		return -ENOMEM;
1395 
1396 	preloaded = !radix_tree_preload(GFP_KERNEL);
1397 
1398 	/* Make sure the root blkg exists. */
1399 	/* spin_lock_irq can serve as RCU read-side critical section. */
1400 	spin_lock_irq(&q->queue_lock);
1401 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1402 	if (IS_ERR(blkg))
1403 		goto err_unlock;
1404 	q->root_blkg = blkg;
1405 	spin_unlock_irq(&q->queue_lock);
1406 
1407 	if (preloaded)
1408 		radix_tree_preload_end();
1409 
1410 	ret = blk_ioprio_init(disk);
1411 	if (ret)
1412 		goto err_destroy_all;
1413 
1414 	ret = blk_throtl_init(disk);
1415 	if (ret)
1416 		goto err_ioprio_exit;
1417 
1418 	return 0;
1419 
1420 err_ioprio_exit:
1421 	blk_ioprio_exit(disk);
1422 err_destroy_all:
1423 	blkg_destroy_all(disk);
1424 	return ret;
1425 err_unlock:
1426 	spin_unlock_irq(&q->queue_lock);
1427 	if (preloaded)
1428 		radix_tree_preload_end();
1429 	return PTR_ERR(blkg);
1430 }
1431 
1432 void blkcg_exit_disk(struct gendisk *disk)
1433 {
1434 	blkg_destroy_all(disk);
1435 	blk_throtl_exit(disk);
1436 }
1437 
1438 static void blkcg_exit(struct task_struct *tsk)
1439 {
1440 	if (tsk->throttle_disk)
1441 		put_disk(tsk->throttle_disk);
1442 	tsk->throttle_disk = NULL;
1443 }
1444 
1445 struct cgroup_subsys io_cgrp_subsys = {
1446 	.css_alloc = blkcg_css_alloc,
1447 	.css_online = blkcg_css_online,
1448 	.css_offline = blkcg_css_offline,
1449 	.css_free = blkcg_css_free,
1450 	.css_rstat_flush = blkcg_rstat_flush,
1451 	.dfl_cftypes = blkcg_files,
1452 	.legacy_cftypes = blkcg_legacy_files,
1453 	.legacy_name = "blkio",
1454 	.exit = blkcg_exit,
1455 #ifdef CONFIG_MEMCG
1456 	/*
1457 	 * This ensures that, if available, memcg is automatically enabled
1458 	 * together on the default hierarchy so that the owner cgroup can
1459 	 * be retrieved from writeback pages.
1460 	 */
1461 	.depends_on = 1 << memory_cgrp_id,
1462 #endif
1463 };
1464 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1465 
1466 /**
1467  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1468  * @disk: gendisk of interest
1469  * @pol: blkcg policy to activate
1470  *
1471  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1472  * bypass mode to populate its blkgs with policy_data for @pol.
1473  *
1474  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1475  * from IO path.  Update of each blkg is protected by both queue and blkcg
1476  * locks so that holding either lock and testing blkcg_policy_enabled() is
1477  * always enough for dereferencing policy data.
1478  *
1479  * The caller is responsible for synchronizing [de]activations and policy
1480  * [un]registerations.  Returns 0 on success, -errno on failure.
1481  */
1482 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1483 {
1484 	struct request_queue *q = disk->queue;
1485 	struct blkg_policy_data *pd_prealloc = NULL;
1486 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1487 	int ret;
1488 
1489 	if (blkcg_policy_enabled(q, pol))
1490 		return 0;
1491 
1492 	if (queue_is_mq(q))
1493 		blk_mq_freeze_queue(q);
1494 retry:
1495 	spin_lock_irq(&q->queue_lock);
1496 
1497 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1498 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1499 		struct blkg_policy_data *pd;
1500 
1501 		if (blkg->pd[pol->plid])
1502 			continue;
1503 
1504 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1505 		if (blkg == pinned_blkg) {
1506 			pd = pd_prealloc;
1507 			pd_prealloc = NULL;
1508 		} else {
1509 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1510 					      GFP_NOWAIT | __GFP_NOWARN);
1511 		}
1512 
1513 		if (!pd) {
1514 			/*
1515 			 * GFP_NOWAIT failed.  Free the existing one and
1516 			 * prealloc for @blkg w/ GFP_KERNEL.
1517 			 */
1518 			if (pinned_blkg)
1519 				blkg_put(pinned_blkg);
1520 			blkg_get(blkg);
1521 			pinned_blkg = blkg;
1522 
1523 			spin_unlock_irq(&q->queue_lock);
1524 
1525 			if (pd_prealloc)
1526 				pol->pd_free_fn(pd_prealloc);
1527 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1528 						       GFP_KERNEL);
1529 			if (pd_prealloc)
1530 				goto retry;
1531 			else
1532 				goto enomem;
1533 		}
1534 
1535 		blkg->pd[pol->plid] = pd;
1536 		pd->blkg = blkg;
1537 		pd->plid = pol->plid;
1538 		pd->online = false;
1539 	}
1540 
1541 	/* all allocated, init in the same order */
1542 	if (pol->pd_init_fn)
1543 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1544 			pol->pd_init_fn(blkg->pd[pol->plid]);
1545 
1546 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1547 		if (pol->pd_online_fn)
1548 			pol->pd_online_fn(blkg->pd[pol->plid]);
1549 		blkg->pd[pol->plid]->online = true;
1550 	}
1551 
1552 	__set_bit(pol->plid, q->blkcg_pols);
1553 	ret = 0;
1554 
1555 	spin_unlock_irq(&q->queue_lock);
1556 out:
1557 	if (queue_is_mq(q))
1558 		blk_mq_unfreeze_queue(q);
1559 	if (pinned_blkg)
1560 		blkg_put(pinned_blkg);
1561 	if (pd_prealloc)
1562 		pol->pd_free_fn(pd_prealloc);
1563 	return ret;
1564 
1565 enomem:
1566 	/* alloc failed, nothing's initialized yet, free everything */
1567 	spin_lock_irq(&q->queue_lock);
1568 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1569 		struct blkcg *blkcg = blkg->blkcg;
1570 
1571 		spin_lock(&blkcg->lock);
1572 		if (blkg->pd[pol->plid]) {
1573 			pol->pd_free_fn(blkg->pd[pol->plid]);
1574 			blkg->pd[pol->plid] = NULL;
1575 		}
1576 		spin_unlock(&blkcg->lock);
1577 	}
1578 	spin_unlock_irq(&q->queue_lock);
1579 	ret = -ENOMEM;
1580 	goto out;
1581 }
1582 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1583 
1584 /**
1585  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1586  * @disk: gendisk of interest
1587  * @pol: blkcg policy to deactivate
1588  *
1589  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1590  * blkcg_activate_policy().
1591  */
1592 void blkcg_deactivate_policy(struct gendisk *disk,
1593 			     const struct blkcg_policy *pol)
1594 {
1595 	struct request_queue *q = disk->queue;
1596 	struct blkcg_gq *blkg;
1597 
1598 	if (!blkcg_policy_enabled(q, pol))
1599 		return;
1600 
1601 	if (queue_is_mq(q))
1602 		blk_mq_freeze_queue(q);
1603 
1604 	mutex_lock(&q->blkcg_mutex);
1605 	spin_lock_irq(&q->queue_lock);
1606 
1607 	__clear_bit(pol->plid, q->blkcg_pols);
1608 
1609 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1610 		struct blkcg *blkcg = blkg->blkcg;
1611 
1612 		spin_lock(&blkcg->lock);
1613 		if (blkg->pd[pol->plid]) {
1614 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1615 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1616 			pol->pd_free_fn(blkg->pd[pol->plid]);
1617 			blkg->pd[pol->plid] = NULL;
1618 		}
1619 		spin_unlock(&blkcg->lock);
1620 	}
1621 
1622 	spin_unlock_irq(&q->queue_lock);
1623 	mutex_unlock(&q->blkcg_mutex);
1624 
1625 	if (queue_is_mq(q))
1626 		blk_mq_unfreeze_queue(q);
1627 }
1628 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1629 
1630 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1631 {
1632 	struct blkcg *blkcg;
1633 
1634 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1635 		if (blkcg->cpd[pol->plid]) {
1636 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1637 			blkcg->cpd[pol->plid] = NULL;
1638 		}
1639 	}
1640 }
1641 
1642 /**
1643  * blkcg_policy_register - register a blkcg policy
1644  * @pol: blkcg policy to register
1645  *
1646  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1647  * successful registration.  Returns 0 on success and -errno on failure.
1648  */
1649 int blkcg_policy_register(struct blkcg_policy *pol)
1650 {
1651 	struct blkcg *blkcg;
1652 	int i, ret;
1653 
1654 	mutex_lock(&blkcg_pol_register_mutex);
1655 	mutex_lock(&blkcg_pol_mutex);
1656 
1657 	/* find an empty slot */
1658 	ret = -ENOSPC;
1659 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1660 		if (!blkcg_policy[i])
1661 			break;
1662 	if (i >= BLKCG_MAX_POLS) {
1663 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1664 		goto err_unlock;
1665 	}
1666 
1667 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1668 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1669 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1670 		goto err_unlock;
1671 
1672 	/* register @pol */
1673 	pol->plid = i;
1674 	blkcg_policy[pol->plid] = pol;
1675 
1676 	/* allocate and install cpd's */
1677 	if (pol->cpd_alloc_fn) {
1678 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1679 			struct blkcg_policy_data *cpd;
1680 
1681 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1682 			if (!cpd)
1683 				goto err_free_cpds;
1684 
1685 			blkcg->cpd[pol->plid] = cpd;
1686 			cpd->blkcg = blkcg;
1687 			cpd->plid = pol->plid;
1688 		}
1689 	}
1690 
1691 	mutex_unlock(&blkcg_pol_mutex);
1692 
1693 	/* everything is in place, add intf files for the new policy */
1694 	if (pol->dfl_cftypes)
1695 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1696 					       pol->dfl_cftypes));
1697 	if (pol->legacy_cftypes)
1698 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1699 						  pol->legacy_cftypes));
1700 	mutex_unlock(&blkcg_pol_register_mutex);
1701 	return 0;
1702 
1703 err_free_cpds:
1704 	if (pol->cpd_free_fn)
1705 		blkcg_free_all_cpd(pol);
1706 
1707 	blkcg_policy[pol->plid] = NULL;
1708 err_unlock:
1709 	mutex_unlock(&blkcg_pol_mutex);
1710 	mutex_unlock(&blkcg_pol_register_mutex);
1711 	return ret;
1712 }
1713 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1714 
1715 /**
1716  * blkcg_policy_unregister - unregister a blkcg policy
1717  * @pol: blkcg policy to unregister
1718  *
1719  * Undo blkcg_policy_register(@pol).  Might sleep.
1720  */
1721 void blkcg_policy_unregister(struct blkcg_policy *pol)
1722 {
1723 	mutex_lock(&blkcg_pol_register_mutex);
1724 
1725 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1726 		goto out_unlock;
1727 
1728 	/* kill the intf files first */
1729 	if (pol->dfl_cftypes)
1730 		cgroup_rm_cftypes(pol->dfl_cftypes);
1731 	if (pol->legacy_cftypes)
1732 		cgroup_rm_cftypes(pol->legacy_cftypes);
1733 
1734 	/* remove cpds and unregister */
1735 	mutex_lock(&blkcg_pol_mutex);
1736 
1737 	if (pol->cpd_free_fn)
1738 		blkcg_free_all_cpd(pol);
1739 
1740 	blkcg_policy[pol->plid] = NULL;
1741 
1742 	mutex_unlock(&blkcg_pol_mutex);
1743 out_unlock:
1744 	mutex_unlock(&blkcg_pol_register_mutex);
1745 }
1746 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1747 
1748 /*
1749  * Scale the accumulated delay based on how long it has been since we updated
1750  * the delay.  We only call this when we are adding delay, in case it's been a
1751  * while since we added delay, and when we are checking to see if we need to
1752  * delay a task, to account for any delays that may have occurred.
1753  */
1754 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1755 {
1756 	u64 old = atomic64_read(&blkg->delay_start);
1757 
1758 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1759 	if (atomic_read(&blkg->use_delay) < 0)
1760 		return;
1761 
1762 	/*
1763 	 * We only want to scale down every second.  The idea here is that we
1764 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1765 	 * time window.  We only want to throttle tasks for recent delay that
1766 	 * has occurred, in 1 second time windows since that's the maximum
1767 	 * things can be throttled.  We save the current delay window in
1768 	 * blkg->last_delay so we know what amount is still left to be charged
1769 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1770 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1771 	 * are ok with whatever is happening now, and we can take away more of
1772 	 * the accumulated delay as we've already throttled enough that
1773 	 * everybody is happy with their IO latencies.
1774 	 */
1775 	if (time_before64(old + NSEC_PER_SEC, now) &&
1776 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1777 		u64 cur = atomic64_read(&blkg->delay_nsec);
1778 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1779 		int cur_use = atomic_read(&blkg->use_delay);
1780 
1781 		/*
1782 		 * We've been unthrottled, subtract a larger chunk of our
1783 		 * accumulated delay.
1784 		 */
1785 		if (cur_use < blkg->last_use)
1786 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1787 
1788 		/*
1789 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1790 		 * should only ever be growing except here where we subtract out
1791 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1792 		 * rather not end up with negative numbers.
1793 		 */
1794 		if (unlikely(cur < sub)) {
1795 			atomic64_set(&blkg->delay_nsec, 0);
1796 			blkg->last_delay = 0;
1797 		} else {
1798 			atomic64_sub(sub, &blkg->delay_nsec);
1799 			blkg->last_delay = cur - sub;
1800 		}
1801 		blkg->last_use = cur_use;
1802 	}
1803 }
1804 
1805 /*
1806  * This is called when we want to actually walk up the hierarchy and check to
1807  * see if we need to throttle, and then actually throttle if there is some
1808  * accumulated delay.  This should only be called upon return to user space so
1809  * we're not holding some lock that would induce a priority inversion.
1810  */
1811 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1812 {
1813 	unsigned long pflags;
1814 	bool clamp;
1815 	u64 now = ktime_to_ns(ktime_get());
1816 	u64 exp;
1817 	u64 delay_nsec = 0;
1818 	int tok;
1819 
1820 	while (blkg->parent) {
1821 		int use_delay = atomic_read(&blkg->use_delay);
1822 
1823 		if (use_delay) {
1824 			u64 this_delay;
1825 
1826 			blkcg_scale_delay(blkg, now);
1827 			this_delay = atomic64_read(&blkg->delay_nsec);
1828 			if (this_delay > delay_nsec) {
1829 				delay_nsec = this_delay;
1830 				clamp = use_delay > 0;
1831 			}
1832 		}
1833 		blkg = blkg->parent;
1834 	}
1835 
1836 	if (!delay_nsec)
1837 		return;
1838 
1839 	/*
1840 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1841 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1842 	 * delay, and we want userspace to be able to do _something_ so cap the
1843 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1844 	 * tasks will be delayed for 0.25 second for every syscall. If
1845 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1846 	 * caller is responsible for regulating the range.
1847 	 */
1848 	if (clamp)
1849 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1850 
1851 	if (use_memdelay)
1852 		psi_memstall_enter(&pflags);
1853 
1854 	exp = ktime_add_ns(now, delay_nsec);
1855 	tok = io_schedule_prepare();
1856 	do {
1857 		__set_current_state(TASK_KILLABLE);
1858 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1859 			break;
1860 	} while (!fatal_signal_pending(current));
1861 	io_schedule_finish(tok);
1862 
1863 	if (use_memdelay)
1864 		psi_memstall_leave(&pflags);
1865 }
1866 
1867 /**
1868  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1869  *
1870  * This is only called if we've been marked with set_notify_resume().  Obviously
1871  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1872  * check to see if current->throttle_disk is set and if not this doesn't do
1873  * anything.  This should only ever be called by the resume code, it's not meant
1874  * to be called by people willy-nilly as it will actually do the work to
1875  * throttle the task if it is setup for throttling.
1876  */
1877 void blkcg_maybe_throttle_current(void)
1878 {
1879 	struct gendisk *disk = current->throttle_disk;
1880 	struct blkcg *blkcg;
1881 	struct blkcg_gq *blkg;
1882 	bool use_memdelay = current->use_memdelay;
1883 
1884 	if (!disk)
1885 		return;
1886 
1887 	current->throttle_disk = NULL;
1888 	current->use_memdelay = false;
1889 
1890 	rcu_read_lock();
1891 	blkcg = css_to_blkcg(blkcg_css());
1892 	if (!blkcg)
1893 		goto out;
1894 	blkg = blkg_lookup(blkcg, disk->queue);
1895 	if (!blkg)
1896 		goto out;
1897 	if (!blkg_tryget(blkg))
1898 		goto out;
1899 	rcu_read_unlock();
1900 
1901 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1902 	blkg_put(blkg);
1903 	put_disk(disk);
1904 	return;
1905 out:
1906 	rcu_read_unlock();
1907 }
1908 
1909 /**
1910  * blkcg_schedule_throttle - this task needs to check for throttling
1911  * @disk: disk to throttle
1912  * @use_memdelay: do we charge this to memory delay for PSI
1913  *
1914  * This is called by the IO controller when we know there's delay accumulated
1915  * for the blkg for this task.  We do not pass the blkg because there are places
1916  * we call this that may not have that information, the swapping code for
1917  * instance will only have a block_device at that point.  This set's the
1918  * notify_resume for the task to check and see if it requires throttling before
1919  * returning to user space.
1920  *
1921  * We will only schedule once per syscall.  You can call this over and over
1922  * again and it will only do the check once upon return to user space, and only
1923  * throttle once.  If the task needs to be throttled again it'll need to be
1924  * re-set at the next time we see the task.
1925  */
1926 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1927 {
1928 	if (unlikely(current->flags & PF_KTHREAD))
1929 		return;
1930 
1931 	if (current->throttle_disk != disk) {
1932 		if (test_bit(GD_DEAD, &disk->state))
1933 			return;
1934 		get_device(disk_to_dev(disk));
1935 
1936 		if (current->throttle_disk)
1937 			put_disk(current->throttle_disk);
1938 		current->throttle_disk = disk;
1939 	}
1940 
1941 	if (use_memdelay)
1942 		current->use_memdelay = use_memdelay;
1943 	set_notify_resume(current);
1944 }
1945 
1946 /**
1947  * blkcg_add_delay - add delay to this blkg
1948  * @blkg: blkg of interest
1949  * @now: the current time in nanoseconds
1950  * @delta: how many nanoseconds of delay to add
1951  *
1952  * Charge @delta to the blkg's current delay accumulation.  This is used to
1953  * throttle tasks if an IO controller thinks we need more throttling.
1954  */
1955 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1956 {
1957 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1958 		return;
1959 	blkcg_scale_delay(blkg, now);
1960 	atomic64_add(delta, &blkg->delay_nsec);
1961 }
1962 
1963 /**
1964  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1965  * @bio: target bio
1966  * @css: target css
1967  *
1968  * As the failure mode here is to walk up the blkg tree, this ensure that the
1969  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1970  * up taking a reference on or %NULL if no reference was taken.
1971  */
1972 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1973 		struct cgroup_subsys_state *css)
1974 {
1975 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1976 
1977 	rcu_read_lock();
1978 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1979 	while (blkg) {
1980 		if (blkg_tryget(blkg)) {
1981 			ret_blkg = blkg;
1982 			break;
1983 		}
1984 		blkg = blkg->parent;
1985 	}
1986 	rcu_read_unlock();
1987 
1988 	return ret_blkg;
1989 }
1990 
1991 /**
1992  * bio_associate_blkg_from_css - associate a bio with a specified css
1993  * @bio: target bio
1994  * @css: target css
1995  *
1996  * Associate @bio with the blkg found by combining the css's blkg and the
1997  * request_queue of the @bio.  An association failure is handled by walking up
1998  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1999  * and q->root_blkg.  This situation only happens when a cgroup is dying and
2000  * then the remaining bios will spill to the closest alive blkg.
2001  *
2002  * A reference will be taken on the blkg and will be released when @bio is
2003  * freed.
2004  */
2005 void bio_associate_blkg_from_css(struct bio *bio,
2006 				 struct cgroup_subsys_state *css)
2007 {
2008 	if (bio->bi_blkg)
2009 		blkg_put(bio->bi_blkg);
2010 
2011 	if (css && css->parent) {
2012 		bio->bi_blkg = blkg_tryget_closest(bio, css);
2013 	} else {
2014 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2015 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2016 	}
2017 }
2018 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2019 
2020 /**
2021  * bio_associate_blkg - associate a bio with a blkg
2022  * @bio: target bio
2023  *
2024  * Associate @bio with the blkg found from the bio's css and request_queue.
2025  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2026  * already associated, the css is reused and association redone as the
2027  * request_queue may have changed.
2028  */
2029 void bio_associate_blkg(struct bio *bio)
2030 {
2031 	struct cgroup_subsys_state *css;
2032 
2033 	rcu_read_lock();
2034 
2035 	if (bio->bi_blkg)
2036 		css = bio_blkcg_css(bio);
2037 	else
2038 		css = blkcg_css();
2039 
2040 	bio_associate_blkg_from_css(bio, css);
2041 
2042 	rcu_read_unlock();
2043 }
2044 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2045 
2046 /**
2047  * bio_clone_blkg_association - clone blkg association from src to dst bio
2048  * @dst: destination bio
2049  * @src: source bio
2050  */
2051 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2052 {
2053 	if (src->bi_blkg)
2054 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2055 }
2056 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2057 
2058 static int blk_cgroup_io_type(struct bio *bio)
2059 {
2060 	if (op_is_discard(bio->bi_opf))
2061 		return BLKG_IOSTAT_DISCARD;
2062 	if (op_is_write(bio->bi_opf))
2063 		return BLKG_IOSTAT_WRITE;
2064 	return BLKG_IOSTAT_READ;
2065 }
2066 
2067 void blk_cgroup_bio_start(struct bio *bio)
2068 {
2069 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2070 	int rwd = blk_cgroup_io_type(bio), cpu;
2071 	struct blkg_iostat_set *bis;
2072 	unsigned long flags;
2073 
2074 	/* Root-level stats are sourced from system-wide IO stats */
2075 	if (!cgroup_parent(blkcg->css.cgroup))
2076 		return;
2077 
2078 	cpu = get_cpu();
2079 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2080 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2081 
2082 	/*
2083 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2084 	 * bio and we would have already accounted for the size of the bio.
2085 	 */
2086 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2087 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2088 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2089 	}
2090 	bis->cur.ios[rwd]++;
2091 
2092 	/*
2093 	 * If the iostat_cpu isn't in a lockless list, put it into the
2094 	 * list to indicate that a stat update is pending.
2095 	 */
2096 	if (!READ_ONCE(bis->lqueued)) {
2097 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2098 
2099 		llist_add(&bis->lnode, lhead);
2100 		WRITE_ONCE(bis->lqueued, true);
2101 	}
2102 
2103 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2104 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2105 		cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2106 	put_cpu();
2107 }
2108 
2109 bool blk_cgroup_congested(void)
2110 {
2111 	struct cgroup_subsys_state *css;
2112 	bool ret = false;
2113 
2114 	rcu_read_lock();
2115 	for (css = blkcg_css(); css; css = css->parent) {
2116 		if (atomic_read(&css->cgroup->congestion_count)) {
2117 			ret = true;
2118 			break;
2119 		}
2120 	}
2121 	rcu_read_unlock();
2122 	return ret;
2123 }
2124 
2125 module_param(blkcg_debug_stats, bool, 0644);
2126 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2127