1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu); 38 39 /* 40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 42 * policy [un]register operations including cgroup file additions / 43 * removals. Putting cgroup file registration outside blkcg_pol_mutex 44 * allows grabbing it from cgroup callbacks. 45 */ 46 static DEFINE_MUTEX(blkcg_pol_register_mutex); 47 static DEFINE_MUTEX(blkcg_pol_mutex); 48 49 struct blkcg blkcg_root; 50 EXPORT_SYMBOL_GPL(blkcg_root); 51 52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 53 EXPORT_SYMBOL_GPL(blkcg_root_css); 54 55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 56 57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 58 59 bool blkcg_debug_stats = false; 60 61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock); 62 63 #define BLKG_DESTROY_BATCH_SIZE 64 64 65 /* 66 * Lockless lists for tracking IO stats update 67 * 68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 69 * There are multiple blkg's (one for each block device) attached to each 70 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 71 * but it doesn't know which blkg has the updated stats. If there are many 72 * block devices in a system, the cost of iterating all the blkg's to flush 73 * out the IO stats can be high. To reduce such overhead, a set of percpu 74 * lockless lists (lhead) per blkcg are used to track the set of recently 75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 77 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 78 * References to blkg are gotten and then put back in the process to 79 * protect against blkg removal. 80 * 81 * Return: 0 if successful or -ENOMEM if allocation fails. 82 */ 83 static int init_blkcg_llists(struct blkcg *blkcg) 84 { 85 int cpu; 86 87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 88 if (!blkcg->lhead) 89 return -ENOMEM; 90 91 for_each_possible_cpu(cpu) 92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 93 return 0; 94 } 95 96 /** 97 * blkcg_css - find the current css 98 * 99 * Find the css associated with either the kthread or the current task. 100 * This may return a dying css, so it is up to the caller to use tryget logic 101 * to confirm it is alive and well. 102 */ 103 static struct cgroup_subsys_state *blkcg_css(void) 104 { 105 struct cgroup_subsys_state *css; 106 107 css = kthread_blkcg(); 108 if (css) 109 return css; 110 return task_css(current, io_cgrp_id); 111 } 112 113 static bool blkcg_policy_enabled(struct request_queue *q, 114 const struct blkcg_policy *pol) 115 { 116 return pol && test_bit(pol->plid, q->blkcg_pols); 117 } 118 119 static void blkg_free_workfn(struct work_struct *work) 120 { 121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 122 free_work); 123 struct request_queue *q = blkg->q; 124 int i; 125 126 /* 127 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 128 * in order to make sure pd_free_fn() is called in order, the deletion 129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 130 * blkcg_mutex is used to synchronize blkg_free_workfn() and 131 * blkcg_deactivate_policy(). 132 */ 133 mutex_lock(&q->blkcg_mutex); 134 for (i = 0; i < BLKCG_MAX_POLS; i++) 135 if (blkg->pd[i]) 136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 137 if (blkg->parent) 138 blkg_put(blkg->parent); 139 list_del_init(&blkg->q_node); 140 mutex_unlock(&q->blkcg_mutex); 141 142 blk_put_queue(q); 143 free_percpu(blkg->iostat_cpu); 144 percpu_ref_exit(&blkg->refcnt); 145 kfree(blkg); 146 } 147 148 /** 149 * blkg_free - free a blkg 150 * @blkg: blkg to free 151 * 152 * Free @blkg which may be partially allocated. 153 */ 154 static void blkg_free(struct blkcg_gq *blkg) 155 { 156 if (!blkg) 157 return; 158 159 /* 160 * Both ->pd_free_fn() and request queue's release handler may 161 * sleep, so free us by scheduling one work func 162 */ 163 INIT_WORK(&blkg->free_work, blkg_free_workfn); 164 schedule_work(&blkg->free_work); 165 } 166 167 static void __blkg_release(struct rcu_head *rcu) 168 { 169 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 170 struct blkcg *blkcg = blkg->blkcg; 171 int cpu; 172 173 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 174 WARN_ON(!bio_list_empty(&blkg->async_bios)); 175 #endif 176 /* 177 * Flush all the non-empty percpu lockless lists before releasing 178 * us, given these stat belongs to us. 179 * 180 * blkg_stat_lock is for serializing blkg stat update 181 */ 182 for_each_possible_cpu(cpu) 183 __blkcg_rstat_flush(blkcg, cpu); 184 185 /* release the blkcg and parent blkg refs this blkg has been holding */ 186 css_put(&blkg->blkcg->css); 187 blkg_free(blkg); 188 } 189 190 /* 191 * A group is RCU protected, but having an rcu lock does not mean that one 192 * can access all the fields of blkg and assume these are valid. For 193 * example, don't try to follow throtl_data and request queue links. 194 * 195 * Having a reference to blkg under an rcu allows accesses to only values 196 * local to groups like group stats and group rate limits. 197 */ 198 static void blkg_release(struct percpu_ref *ref) 199 { 200 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 201 202 call_rcu(&blkg->rcu_head, __blkg_release); 203 } 204 205 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 206 static struct workqueue_struct *blkcg_punt_bio_wq; 207 208 static void blkg_async_bio_workfn(struct work_struct *work) 209 { 210 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 211 async_bio_work); 212 struct bio_list bios = BIO_EMPTY_LIST; 213 struct bio *bio; 214 struct blk_plug plug; 215 bool need_plug = false; 216 217 /* as long as there are pending bios, @blkg can't go away */ 218 spin_lock(&blkg->async_bio_lock); 219 bio_list_merge(&bios, &blkg->async_bios); 220 bio_list_init(&blkg->async_bios); 221 spin_unlock(&blkg->async_bio_lock); 222 223 /* start plug only when bio_list contains at least 2 bios */ 224 if (bios.head && bios.head->bi_next) { 225 need_plug = true; 226 blk_start_plug(&plug); 227 } 228 while ((bio = bio_list_pop(&bios))) 229 submit_bio(bio); 230 if (need_plug) 231 blk_finish_plug(&plug); 232 } 233 234 /* 235 * When a shared kthread issues a bio for a cgroup, doing so synchronously can 236 * lead to priority inversions as the kthread can be trapped waiting for that 237 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to 238 * a dedicated per-blkcg work item to avoid such priority inversions. 239 */ 240 void blkcg_punt_bio_submit(struct bio *bio) 241 { 242 struct blkcg_gq *blkg = bio->bi_blkg; 243 244 if (blkg->parent) { 245 spin_lock(&blkg->async_bio_lock); 246 bio_list_add(&blkg->async_bios, bio); 247 spin_unlock(&blkg->async_bio_lock); 248 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 249 } else { 250 /* never bounce for the root cgroup */ 251 submit_bio(bio); 252 } 253 } 254 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit); 255 256 static int __init blkcg_punt_bio_init(void) 257 { 258 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 259 WQ_MEM_RECLAIM | WQ_FREEZABLE | 260 WQ_UNBOUND | WQ_SYSFS, 0); 261 if (!blkcg_punt_bio_wq) 262 return -ENOMEM; 263 return 0; 264 } 265 subsys_initcall(blkcg_punt_bio_init); 266 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */ 267 268 /** 269 * bio_blkcg_css - return the blkcg CSS associated with a bio 270 * @bio: target bio 271 * 272 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 273 * associated. Callers are expected to either handle %NULL or know association 274 * has been done prior to calling this. 275 */ 276 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 277 { 278 if (!bio || !bio->bi_blkg) 279 return NULL; 280 return &bio->bi_blkg->blkcg->css; 281 } 282 EXPORT_SYMBOL_GPL(bio_blkcg_css); 283 284 /** 285 * blkcg_parent - get the parent of a blkcg 286 * @blkcg: blkcg of interest 287 * 288 * Return the parent blkcg of @blkcg. Can be called anytime. 289 */ 290 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 291 { 292 return css_to_blkcg(blkcg->css.parent); 293 } 294 295 /** 296 * blkg_alloc - allocate a blkg 297 * @blkcg: block cgroup the new blkg is associated with 298 * @disk: gendisk the new blkg is associated with 299 * @gfp_mask: allocation mask to use 300 * 301 * Allocate a new blkg assocating @blkcg and @q. 302 */ 303 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 304 gfp_t gfp_mask) 305 { 306 struct blkcg_gq *blkg; 307 int i, cpu; 308 309 /* alloc and init base part */ 310 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 311 if (!blkg) 312 return NULL; 313 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 314 goto out_free_blkg; 315 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 316 if (!blkg->iostat_cpu) 317 goto out_exit_refcnt; 318 if (!blk_get_queue(disk->queue)) 319 goto out_free_iostat; 320 321 blkg->q = disk->queue; 322 INIT_LIST_HEAD(&blkg->q_node); 323 blkg->blkcg = blkcg; 324 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 325 spin_lock_init(&blkg->async_bio_lock); 326 bio_list_init(&blkg->async_bios); 327 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 328 #endif 329 330 u64_stats_init(&blkg->iostat.sync); 331 for_each_possible_cpu(cpu) { 332 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 333 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 334 } 335 336 for (i = 0; i < BLKCG_MAX_POLS; i++) { 337 struct blkcg_policy *pol = blkcg_policy[i]; 338 struct blkg_policy_data *pd; 339 340 if (!blkcg_policy_enabled(disk->queue, pol)) 341 continue; 342 343 /* alloc per-policy data and attach it to blkg */ 344 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 345 if (!pd) 346 goto out_free_pds; 347 blkg->pd[i] = pd; 348 pd->blkg = blkg; 349 pd->plid = i; 350 pd->online = false; 351 } 352 353 return blkg; 354 355 out_free_pds: 356 while (--i >= 0) 357 if (blkg->pd[i]) 358 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 359 blk_put_queue(disk->queue); 360 out_free_iostat: 361 free_percpu(blkg->iostat_cpu); 362 out_exit_refcnt: 363 percpu_ref_exit(&blkg->refcnt); 364 out_free_blkg: 365 kfree(blkg); 366 return NULL; 367 } 368 369 /* 370 * If @new_blkg is %NULL, this function tries to allocate a new one as 371 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 372 */ 373 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 374 struct blkcg_gq *new_blkg) 375 { 376 struct blkcg_gq *blkg; 377 int i, ret; 378 379 lockdep_assert_held(&disk->queue->queue_lock); 380 381 /* request_queue is dying, do not create/recreate a blkg */ 382 if (blk_queue_dying(disk->queue)) { 383 ret = -ENODEV; 384 goto err_free_blkg; 385 } 386 387 /* blkg holds a reference to blkcg */ 388 if (!css_tryget_online(&blkcg->css)) { 389 ret = -ENODEV; 390 goto err_free_blkg; 391 } 392 393 /* allocate */ 394 if (!new_blkg) { 395 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 396 if (unlikely(!new_blkg)) { 397 ret = -ENOMEM; 398 goto err_put_css; 399 } 400 } 401 blkg = new_blkg; 402 403 /* link parent */ 404 if (blkcg_parent(blkcg)) { 405 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 406 if (WARN_ON_ONCE(!blkg->parent)) { 407 ret = -ENODEV; 408 goto err_put_css; 409 } 410 blkg_get(blkg->parent); 411 } 412 413 /* invoke per-policy init */ 414 for (i = 0; i < BLKCG_MAX_POLS; i++) { 415 struct blkcg_policy *pol = blkcg_policy[i]; 416 417 if (blkg->pd[i] && pol->pd_init_fn) 418 pol->pd_init_fn(blkg->pd[i]); 419 } 420 421 /* insert */ 422 spin_lock(&blkcg->lock); 423 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 424 if (likely(!ret)) { 425 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 426 list_add(&blkg->q_node, &disk->queue->blkg_list); 427 428 for (i = 0; i < BLKCG_MAX_POLS; i++) { 429 struct blkcg_policy *pol = blkcg_policy[i]; 430 431 if (blkg->pd[i]) { 432 if (pol->pd_online_fn) 433 pol->pd_online_fn(blkg->pd[i]); 434 blkg->pd[i]->online = true; 435 } 436 } 437 } 438 blkg->online = true; 439 spin_unlock(&blkcg->lock); 440 441 if (!ret) 442 return blkg; 443 444 /* @blkg failed fully initialized, use the usual release path */ 445 blkg_put(blkg); 446 return ERR_PTR(ret); 447 448 err_put_css: 449 css_put(&blkcg->css); 450 err_free_blkg: 451 if (new_blkg) 452 blkg_free(new_blkg); 453 return ERR_PTR(ret); 454 } 455 456 /** 457 * blkg_lookup_create - lookup blkg, try to create one if not there 458 * @blkcg: blkcg of interest 459 * @disk: gendisk of interest 460 * 461 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 462 * create one. blkg creation is performed recursively from blkcg_root such 463 * that all non-root blkg's have access to the parent blkg. This function 464 * should be called under RCU read lock and takes @disk->queue->queue_lock. 465 * 466 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 467 * down from root. 468 */ 469 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 470 struct gendisk *disk) 471 { 472 struct request_queue *q = disk->queue; 473 struct blkcg_gq *blkg; 474 unsigned long flags; 475 476 WARN_ON_ONCE(!rcu_read_lock_held()); 477 478 blkg = blkg_lookup(blkcg, q); 479 if (blkg) 480 return blkg; 481 482 spin_lock_irqsave(&q->queue_lock, flags); 483 blkg = blkg_lookup(blkcg, q); 484 if (blkg) { 485 if (blkcg != &blkcg_root && 486 blkg != rcu_dereference(blkcg->blkg_hint)) 487 rcu_assign_pointer(blkcg->blkg_hint, blkg); 488 goto found; 489 } 490 491 /* 492 * Create blkgs walking down from blkcg_root to @blkcg, so that all 493 * non-root blkgs have access to their parents. Returns the closest 494 * blkg to the intended blkg should blkg_create() fail. 495 */ 496 while (true) { 497 struct blkcg *pos = blkcg; 498 struct blkcg *parent = blkcg_parent(blkcg); 499 struct blkcg_gq *ret_blkg = q->root_blkg; 500 501 while (parent) { 502 blkg = blkg_lookup(parent, q); 503 if (blkg) { 504 /* remember closest blkg */ 505 ret_blkg = blkg; 506 break; 507 } 508 pos = parent; 509 parent = blkcg_parent(parent); 510 } 511 512 blkg = blkg_create(pos, disk, NULL); 513 if (IS_ERR(blkg)) { 514 blkg = ret_blkg; 515 break; 516 } 517 if (pos == blkcg) 518 break; 519 } 520 521 found: 522 spin_unlock_irqrestore(&q->queue_lock, flags); 523 return blkg; 524 } 525 526 static void blkg_destroy(struct blkcg_gq *blkg) 527 { 528 struct blkcg *blkcg = blkg->blkcg; 529 int i; 530 531 lockdep_assert_held(&blkg->q->queue_lock); 532 lockdep_assert_held(&blkcg->lock); 533 534 /* 535 * blkg stays on the queue list until blkg_free_workfn(), see details in 536 * blkg_free_workfn(), hence this function can be called from 537 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 538 * blkg_free_workfn(). 539 */ 540 if (hlist_unhashed(&blkg->blkcg_node)) 541 return; 542 543 for (i = 0; i < BLKCG_MAX_POLS; i++) { 544 struct blkcg_policy *pol = blkcg_policy[i]; 545 546 if (blkg->pd[i] && blkg->pd[i]->online) { 547 blkg->pd[i]->online = false; 548 if (pol->pd_offline_fn) 549 pol->pd_offline_fn(blkg->pd[i]); 550 } 551 } 552 553 blkg->online = false; 554 555 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 556 hlist_del_init_rcu(&blkg->blkcg_node); 557 558 /* 559 * Both setting lookup hint to and clearing it from @blkg are done 560 * under queue_lock. If it's not pointing to @blkg now, it never 561 * will. Hint assignment itself can race safely. 562 */ 563 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 564 rcu_assign_pointer(blkcg->blkg_hint, NULL); 565 566 /* 567 * Put the reference taken at the time of creation so that when all 568 * queues are gone, group can be destroyed. 569 */ 570 percpu_ref_kill(&blkg->refcnt); 571 } 572 573 static void blkg_destroy_all(struct gendisk *disk) 574 { 575 struct request_queue *q = disk->queue; 576 struct blkcg_gq *blkg, *n; 577 int count = BLKG_DESTROY_BATCH_SIZE; 578 579 restart: 580 spin_lock_irq(&q->queue_lock); 581 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 582 struct blkcg *blkcg = blkg->blkcg; 583 584 if (hlist_unhashed(&blkg->blkcg_node)) 585 continue; 586 587 spin_lock(&blkcg->lock); 588 blkg_destroy(blkg); 589 spin_unlock(&blkcg->lock); 590 591 /* 592 * in order to avoid holding the spin lock for too long, release 593 * it when a batch of blkgs are destroyed. 594 */ 595 if (!(--count)) { 596 count = BLKG_DESTROY_BATCH_SIZE; 597 spin_unlock_irq(&q->queue_lock); 598 cond_resched(); 599 goto restart; 600 } 601 } 602 603 q->root_blkg = NULL; 604 spin_unlock_irq(&q->queue_lock); 605 } 606 607 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 608 struct cftype *cftype, u64 val) 609 { 610 struct blkcg *blkcg = css_to_blkcg(css); 611 struct blkcg_gq *blkg; 612 int i, cpu; 613 614 mutex_lock(&blkcg_pol_mutex); 615 spin_lock_irq(&blkcg->lock); 616 617 /* 618 * Note that stat reset is racy - it doesn't synchronize against 619 * stat updates. This is a debug feature which shouldn't exist 620 * anyway. If you get hit by a race, retry. 621 */ 622 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 623 for_each_possible_cpu(cpu) { 624 struct blkg_iostat_set *bis = 625 per_cpu_ptr(blkg->iostat_cpu, cpu); 626 memset(bis, 0, sizeof(*bis)); 627 } 628 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 629 630 for (i = 0; i < BLKCG_MAX_POLS; i++) { 631 struct blkcg_policy *pol = blkcg_policy[i]; 632 633 if (blkg->pd[i] && pol->pd_reset_stats_fn) 634 pol->pd_reset_stats_fn(blkg->pd[i]); 635 } 636 } 637 638 spin_unlock_irq(&blkcg->lock); 639 mutex_unlock(&blkcg_pol_mutex); 640 return 0; 641 } 642 643 const char *blkg_dev_name(struct blkcg_gq *blkg) 644 { 645 if (!blkg->q->disk) 646 return NULL; 647 return bdi_dev_name(blkg->q->disk->bdi); 648 } 649 650 /** 651 * blkcg_print_blkgs - helper for printing per-blkg data 652 * @sf: seq_file to print to 653 * @blkcg: blkcg of interest 654 * @prfill: fill function to print out a blkg 655 * @pol: policy in question 656 * @data: data to be passed to @prfill 657 * @show_total: to print out sum of prfill return values or not 658 * 659 * This function invokes @prfill on each blkg of @blkcg if pd for the 660 * policy specified by @pol exists. @prfill is invoked with @sf, the 661 * policy data and @data and the matching queue lock held. If @show_total 662 * is %true, the sum of the return values from @prfill is printed with 663 * "Total" label at the end. 664 * 665 * This is to be used to construct print functions for 666 * cftype->read_seq_string method. 667 */ 668 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 669 u64 (*prfill)(struct seq_file *, 670 struct blkg_policy_data *, int), 671 const struct blkcg_policy *pol, int data, 672 bool show_total) 673 { 674 struct blkcg_gq *blkg; 675 u64 total = 0; 676 677 rcu_read_lock(); 678 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 679 spin_lock_irq(&blkg->q->queue_lock); 680 if (blkcg_policy_enabled(blkg->q, pol)) 681 total += prfill(sf, blkg->pd[pol->plid], data); 682 spin_unlock_irq(&blkg->q->queue_lock); 683 } 684 rcu_read_unlock(); 685 686 if (show_total) 687 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 688 } 689 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 690 691 /** 692 * __blkg_prfill_u64 - prfill helper for a single u64 value 693 * @sf: seq_file to print to 694 * @pd: policy private data of interest 695 * @v: value to print 696 * 697 * Print @v to @sf for the device associated with @pd. 698 */ 699 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 700 { 701 const char *dname = blkg_dev_name(pd->blkg); 702 703 if (!dname) 704 return 0; 705 706 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 707 return v; 708 } 709 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 710 711 /** 712 * blkg_conf_init - initialize a blkg_conf_ctx 713 * @ctx: blkg_conf_ctx to initialize 714 * @input: input string 715 * 716 * Initialize @ctx which can be used to parse blkg config input string @input. 717 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and 718 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit(). 719 */ 720 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input) 721 { 722 *ctx = (struct blkg_conf_ctx){ .input = input }; 723 } 724 EXPORT_SYMBOL_GPL(blkg_conf_init); 725 726 /** 727 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update 728 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 729 * 730 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from 731 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is 732 * set to point past the device node prefix. 733 * 734 * This function may be called multiple times on @ctx and the extra calls become 735 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function 736 * explicitly if bdev access is needed without resolving the blkcg / policy part 737 * of @ctx->input. Returns -errno on error. 738 */ 739 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx) 740 { 741 char *input = ctx->input; 742 unsigned int major, minor; 743 struct block_device *bdev; 744 int key_len; 745 746 if (ctx->bdev) 747 return 0; 748 749 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 750 return -EINVAL; 751 752 input += key_len; 753 if (!isspace(*input)) 754 return -EINVAL; 755 input = skip_spaces(input); 756 757 bdev = blkdev_get_no_open(MKDEV(major, minor)); 758 if (!bdev) 759 return -ENODEV; 760 if (bdev_is_partition(bdev)) { 761 blkdev_put_no_open(bdev); 762 return -ENODEV; 763 } 764 765 ctx->body = input; 766 ctx->bdev = bdev; 767 return 0; 768 } 769 770 /** 771 * blkg_conf_prep - parse and prepare for per-blkg config update 772 * @blkcg: target block cgroup 773 * @pol: target policy 774 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 775 * 776 * Parse per-blkg config update from @ctx->input and initialize @ctx 777 * accordingly. On success, @ctx->body points to the part of @ctx->input 778 * following MAJ:MIN, @ctx->bdev points to the target block device and 779 * @ctx->blkg to the blkg being configured. 780 * 781 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this 782 * function returns with queue lock held and must be followed by 783 * blkg_conf_exit(). 784 */ 785 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 786 struct blkg_conf_ctx *ctx) 787 __acquires(&bdev->bd_queue->queue_lock) 788 { 789 struct gendisk *disk; 790 struct request_queue *q; 791 struct blkcg_gq *blkg; 792 int ret; 793 794 ret = blkg_conf_open_bdev(ctx); 795 if (ret) 796 return ret; 797 798 disk = ctx->bdev->bd_disk; 799 q = disk->queue; 800 801 /* 802 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 803 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 804 */ 805 ret = blk_queue_enter(q, 0); 806 if (ret) 807 goto fail; 808 809 spin_lock_irq(&q->queue_lock); 810 811 if (!blkcg_policy_enabled(q, pol)) { 812 ret = -EOPNOTSUPP; 813 goto fail_unlock; 814 } 815 816 blkg = blkg_lookup(blkcg, q); 817 if (blkg) 818 goto success; 819 820 /* 821 * Create blkgs walking down from blkcg_root to @blkcg, so that all 822 * non-root blkgs have access to their parents. 823 */ 824 while (true) { 825 struct blkcg *pos = blkcg; 826 struct blkcg *parent; 827 struct blkcg_gq *new_blkg; 828 829 parent = blkcg_parent(blkcg); 830 while (parent && !blkg_lookup(parent, q)) { 831 pos = parent; 832 parent = blkcg_parent(parent); 833 } 834 835 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 836 spin_unlock_irq(&q->queue_lock); 837 838 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 839 if (unlikely(!new_blkg)) { 840 ret = -ENOMEM; 841 goto fail_exit_queue; 842 } 843 844 if (radix_tree_preload(GFP_KERNEL)) { 845 blkg_free(new_blkg); 846 ret = -ENOMEM; 847 goto fail_exit_queue; 848 } 849 850 spin_lock_irq(&q->queue_lock); 851 852 if (!blkcg_policy_enabled(q, pol)) { 853 blkg_free(new_blkg); 854 ret = -EOPNOTSUPP; 855 goto fail_preloaded; 856 } 857 858 blkg = blkg_lookup(pos, q); 859 if (blkg) { 860 blkg_free(new_blkg); 861 } else { 862 blkg = blkg_create(pos, disk, new_blkg); 863 if (IS_ERR(blkg)) { 864 ret = PTR_ERR(blkg); 865 goto fail_preloaded; 866 } 867 } 868 869 radix_tree_preload_end(); 870 871 if (pos == blkcg) 872 goto success; 873 } 874 success: 875 blk_queue_exit(q); 876 ctx->blkg = blkg; 877 return 0; 878 879 fail_preloaded: 880 radix_tree_preload_end(); 881 fail_unlock: 882 spin_unlock_irq(&q->queue_lock); 883 fail_exit_queue: 884 blk_queue_exit(q); 885 fail: 886 /* 887 * If queue was bypassing, we should retry. Do so after a 888 * short msleep(). It isn't strictly necessary but queue 889 * can be bypassing for some time and it's always nice to 890 * avoid busy looping. 891 */ 892 if (ret == -EBUSY) { 893 msleep(10); 894 ret = restart_syscall(); 895 } 896 return ret; 897 } 898 EXPORT_SYMBOL_GPL(blkg_conf_prep); 899 900 /** 901 * blkg_conf_exit - clean up per-blkg config update 902 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 903 * 904 * Clean up after per-blkg config update. This function must be called on all 905 * blkg_conf_ctx's initialized with blkg_conf_init(). 906 */ 907 void blkg_conf_exit(struct blkg_conf_ctx *ctx) 908 __releases(&ctx->bdev->bd_queue->queue_lock) 909 { 910 if (ctx->blkg) { 911 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 912 ctx->blkg = NULL; 913 } 914 915 if (ctx->bdev) { 916 blkdev_put_no_open(ctx->bdev); 917 ctx->body = NULL; 918 ctx->bdev = NULL; 919 } 920 } 921 EXPORT_SYMBOL_GPL(blkg_conf_exit); 922 923 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 924 { 925 int i; 926 927 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 928 dst->bytes[i] = src->bytes[i]; 929 dst->ios[i] = src->ios[i]; 930 } 931 } 932 933 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 934 { 935 int i; 936 937 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 938 dst->bytes[i] += src->bytes[i]; 939 dst->ios[i] += src->ios[i]; 940 } 941 } 942 943 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 944 { 945 int i; 946 947 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 948 dst->bytes[i] -= src->bytes[i]; 949 dst->ios[i] -= src->ios[i]; 950 } 951 } 952 953 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 954 struct blkg_iostat *last) 955 { 956 struct blkg_iostat delta; 957 unsigned long flags; 958 959 /* propagate percpu delta to global */ 960 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 961 blkg_iostat_set(&delta, cur); 962 blkg_iostat_sub(&delta, last); 963 blkg_iostat_add(&blkg->iostat.cur, &delta); 964 blkg_iostat_add(last, &delta); 965 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 966 } 967 968 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu) 969 { 970 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 971 struct llist_node *lnode; 972 struct blkg_iostat_set *bisc, *next_bisc; 973 974 rcu_read_lock(); 975 976 lnode = llist_del_all(lhead); 977 if (!lnode) 978 goto out; 979 980 /* 981 * For covering concurrent parent blkg update from blkg_release(). 982 * 983 * When flushing from cgroup, cgroup_rstat_lock is always held, so 984 * this lock won't cause contention most of time. 985 */ 986 raw_spin_lock(&blkg_stat_lock); 987 988 /* 989 * Iterate only the iostat_cpu's queued in the lockless list. 990 */ 991 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 992 struct blkcg_gq *blkg = bisc->blkg; 993 struct blkcg_gq *parent = blkg->parent; 994 struct blkg_iostat cur; 995 unsigned int seq; 996 997 WRITE_ONCE(bisc->lqueued, false); 998 999 /* fetch the current per-cpu values */ 1000 do { 1001 seq = u64_stats_fetch_begin(&bisc->sync); 1002 blkg_iostat_set(&cur, &bisc->cur); 1003 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 1004 1005 blkcg_iostat_update(blkg, &cur, &bisc->last); 1006 1007 /* propagate global delta to parent (unless that's root) */ 1008 if (parent && parent->parent) 1009 blkcg_iostat_update(parent, &blkg->iostat.cur, 1010 &blkg->iostat.last); 1011 } 1012 raw_spin_unlock(&blkg_stat_lock); 1013 out: 1014 rcu_read_unlock(); 1015 } 1016 1017 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 1018 { 1019 /* Root-level stats are sourced from system-wide IO stats */ 1020 if (cgroup_parent(css->cgroup)) 1021 __blkcg_rstat_flush(css_to_blkcg(css), cpu); 1022 } 1023 1024 /* 1025 * We source root cgroup stats from the system-wide stats to avoid 1026 * tracking the same information twice and incurring overhead when no 1027 * cgroups are defined. For that reason, cgroup_rstat_flush in 1028 * blkcg_print_stat does not actually fill out the iostat in the root 1029 * cgroup's blkcg_gq. 1030 * 1031 * However, we would like to re-use the printing code between the root and 1032 * non-root cgroups to the extent possible. For that reason, we simulate 1033 * flushing the root cgroup's stats by explicitly filling in the iostat 1034 * with disk level statistics. 1035 */ 1036 static void blkcg_fill_root_iostats(void) 1037 { 1038 struct class_dev_iter iter; 1039 struct device *dev; 1040 1041 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1042 while ((dev = class_dev_iter_next(&iter))) { 1043 struct block_device *bdev = dev_to_bdev(dev); 1044 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 1045 struct blkg_iostat tmp; 1046 int cpu; 1047 unsigned long flags; 1048 1049 memset(&tmp, 0, sizeof(tmp)); 1050 for_each_possible_cpu(cpu) { 1051 struct disk_stats *cpu_dkstats; 1052 1053 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 1054 tmp.ios[BLKG_IOSTAT_READ] += 1055 cpu_dkstats->ios[STAT_READ]; 1056 tmp.ios[BLKG_IOSTAT_WRITE] += 1057 cpu_dkstats->ios[STAT_WRITE]; 1058 tmp.ios[BLKG_IOSTAT_DISCARD] += 1059 cpu_dkstats->ios[STAT_DISCARD]; 1060 // convert sectors to bytes 1061 tmp.bytes[BLKG_IOSTAT_READ] += 1062 cpu_dkstats->sectors[STAT_READ] << 9; 1063 tmp.bytes[BLKG_IOSTAT_WRITE] += 1064 cpu_dkstats->sectors[STAT_WRITE] << 9; 1065 tmp.bytes[BLKG_IOSTAT_DISCARD] += 1066 cpu_dkstats->sectors[STAT_DISCARD] << 9; 1067 } 1068 1069 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1070 blkg_iostat_set(&blkg->iostat.cur, &tmp); 1071 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1072 } 1073 } 1074 1075 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 1076 { 1077 struct blkg_iostat_set *bis = &blkg->iostat; 1078 u64 rbytes, wbytes, rios, wios, dbytes, dios; 1079 const char *dname; 1080 unsigned seq; 1081 int i; 1082 1083 if (!blkg->online) 1084 return; 1085 1086 dname = blkg_dev_name(blkg); 1087 if (!dname) 1088 return; 1089 1090 seq_printf(s, "%s ", dname); 1091 1092 do { 1093 seq = u64_stats_fetch_begin(&bis->sync); 1094 1095 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1096 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1097 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1098 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1099 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1100 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1101 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1102 1103 if (rbytes || wbytes || rios || wios) { 1104 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1105 rbytes, wbytes, rios, wios, 1106 dbytes, dios); 1107 } 1108 1109 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1110 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1111 atomic_read(&blkg->use_delay), 1112 atomic64_read(&blkg->delay_nsec)); 1113 } 1114 1115 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1116 struct blkcg_policy *pol = blkcg_policy[i]; 1117 1118 if (!blkg->pd[i] || !pol->pd_stat_fn) 1119 continue; 1120 1121 pol->pd_stat_fn(blkg->pd[i], s); 1122 } 1123 1124 seq_puts(s, "\n"); 1125 } 1126 1127 static int blkcg_print_stat(struct seq_file *sf, void *v) 1128 { 1129 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1130 struct blkcg_gq *blkg; 1131 1132 if (!seq_css(sf)->parent) 1133 blkcg_fill_root_iostats(); 1134 else 1135 cgroup_rstat_flush(blkcg->css.cgroup); 1136 1137 rcu_read_lock(); 1138 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1139 spin_lock_irq(&blkg->q->queue_lock); 1140 blkcg_print_one_stat(blkg, sf); 1141 spin_unlock_irq(&blkg->q->queue_lock); 1142 } 1143 rcu_read_unlock(); 1144 return 0; 1145 } 1146 1147 static struct cftype blkcg_files[] = { 1148 { 1149 .name = "stat", 1150 .seq_show = blkcg_print_stat, 1151 }, 1152 { } /* terminate */ 1153 }; 1154 1155 static struct cftype blkcg_legacy_files[] = { 1156 { 1157 .name = "reset_stats", 1158 .write_u64 = blkcg_reset_stats, 1159 }, 1160 { } /* terminate */ 1161 }; 1162 1163 #ifdef CONFIG_CGROUP_WRITEBACK 1164 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1165 { 1166 return &css_to_blkcg(css)->cgwb_list; 1167 } 1168 #endif 1169 1170 /* 1171 * blkcg destruction is a three-stage process. 1172 * 1173 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1174 * which offlines writeback. Here we tie the next stage of blkg destruction 1175 * to the completion of writeback associated with the blkcg. This lets us 1176 * avoid punting potentially large amounts of outstanding writeback to root 1177 * while maintaining any ongoing policies. The next stage is triggered when 1178 * the nr_cgwbs count goes to zero. 1179 * 1180 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1181 * and handles the destruction of blkgs. Here the css reference held by 1182 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1183 * This work may occur in cgwb_release_workfn() on the cgwb_release 1184 * workqueue. Any submitted ios that fail to get the blkg ref will be 1185 * punted to the root_blkg. 1186 * 1187 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1188 * This finally frees the blkcg. 1189 */ 1190 1191 /** 1192 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1193 * @blkcg: blkcg of interest 1194 * 1195 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1196 * is nested inside q lock, this function performs reverse double lock dancing. 1197 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1198 * blkcg_css_free to eventually be called. 1199 * 1200 * This is the blkcg counterpart of ioc_release_fn(). 1201 */ 1202 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1203 { 1204 might_sleep(); 1205 1206 spin_lock_irq(&blkcg->lock); 1207 1208 while (!hlist_empty(&blkcg->blkg_list)) { 1209 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1210 struct blkcg_gq, blkcg_node); 1211 struct request_queue *q = blkg->q; 1212 1213 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1214 /* 1215 * Given that the system can accumulate a huge number 1216 * of blkgs in pathological cases, check to see if we 1217 * need to rescheduling to avoid softlockup. 1218 */ 1219 spin_unlock_irq(&blkcg->lock); 1220 cond_resched(); 1221 spin_lock_irq(&blkcg->lock); 1222 continue; 1223 } 1224 1225 blkg_destroy(blkg); 1226 spin_unlock(&q->queue_lock); 1227 } 1228 1229 spin_unlock_irq(&blkcg->lock); 1230 } 1231 1232 /** 1233 * blkcg_pin_online - pin online state 1234 * @blkcg_css: blkcg of interest 1235 * 1236 * While pinned, a blkcg is kept online. This is primarily used to 1237 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1238 * while an associated cgwb is still active. 1239 */ 1240 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1241 { 1242 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1243 } 1244 1245 /** 1246 * blkcg_unpin_online - unpin online state 1247 * @blkcg_css: blkcg of interest 1248 * 1249 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1250 * that blkg doesn't go offline while an associated cgwb is still active. 1251 * When this count goes to zero, all active cgwbs have finished so the 1252 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1253 */ 1254 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1255 { 1256 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1257 1258 do { 1259 if (!refcount_dec_and_test(&blkcg->online_pin)) 1260 break; 1261 blkcg_destroy_blkgs(blkcg); 1262 blkcg = blkcg_parent(blkcg); 1263 } while (blkcg); 1264 } 1265 1266 /** 1267 * blkcg_css_offline - cgroup css_offline callback 1268 * @css: css of interest 1269 * 1270 * This function is called when @css is about to go away. Here the cgwbs are 1271 * offlined first and only once writeback associated with the blkcg has 1272 * finished do we start step 2 (see above). 1273 */ 1274 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1275 { 1276 /* this prevents anyone from attaching or migrating to this blkcg */ 1277 wb_blkcg_offline(css); 1278 1279 /* put the base online pin allowing step 2 to be triggered */ 1280 blkcg_unpin_online(css); 1281 } 1282 1283 static void blkcg_css_free(struct cgroup_subsys_state *css) 1284 { 1285 struct blkcg *blkcg = css_to_blkcg(css); 1286 int i; 1287 1288 mutex_lock(&blkcg_pol_mutex); 1289 1290 list_del(&blkcg->all_blkcgs_node); 1291 1292 for (i = 0; i < BLKCG_MAX_POLS; i++) 1293 if (blkcg->cpd[i]) 1294 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1295 1296 mutex_unlock(&blkcg_pol_mutex); 1297 1298 free_percpu(blkcg->lhead); 1299 kfree(blkcg); 1300 } 1301 1302 static struct cgroup_subsys_state * 1303 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1304 { 1305 struct blkcg *blkcg; 1306 int i; 1307 1308 mutex_lock(&blkcg_pol_mutex); 1309 1310 if (!parent_css) { 1311 blkcg = &blkcg_root; 1312 } else { 1313 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1314 if (!blkcg) 1315 goto unlock; 1316 } 1317 1318 if (init_blkcg_llists(blkcg)) 1319 goto free_blkcg; 1320 1321 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1322 struct blkcg_policy *pol = blkcg_policy[i]; 1323 struct blkcg_policy_data *cpd; 1324 1325 /* 1326 * If the policy hasn't been attached yet, wait for it 1327 * to be attached before doing anything else. Otherwise, 1328 * check if the policy requires any specific per-cgroup 1329 * data: if it does, allocate and initialize it. 1330 */ 1331 if (!pol || !pol->cpd_alloc_fn) 1332 continue; 1333 1334 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1335 if (!cpd) 1336 goto free_pd_blkcg; 1337 1338 blkcg->cpd[i] = cpd; 1339 cpd->blkcg = blkcg; 1340 cpd->plid = i; 1341 } 1342 1343 spin_lock_init(&blkcg->lock); 1344 refcount_set(&blkcg->online_pin, 1); 1345 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1346 INIT_HLIST_HEAD(&blkcg->blkg_list); 1347 #ifdef CONFIG_CGROUP_WRITEBACK 1348 INIT_LIST_HEAD(&blkcg->cgwb_list); 1349 #endif 1350 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1351 1352 mutex_unlock(&blkcg_pol_mutex); 1353 return &blkcg->css; 1354 1355 free_pd_blkcg: 1356 for (i--; i >= 0; i--) 1357 if (blkcg->cpd[i]) 1358 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1359 free_percpu(blkcg->lhead); 1360 free_blkcg: 1361 if (blkcg != &blkcg_root) 1362 kfree(blkcg); 1363 unlock: 1364 mutex_unlock(&blkcg_pol_mutex); 1365 return ERR_PTR(-ENOMEM); 1366 } 1367 1368 static int blkcg_css_online(struct cgroup_subsys_state *css) 1369 { 1370 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1371 1372 /* 1373 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1374 * don't go offline while cgwbs are still active on them. Pin the 1375 * parent so that offline always happens towards the root. 1376 */ 1377 if (parent) 1378 blkcg_pin_online(&parent->css); 1379 return 0; 1380 } 1381 1382 int blkcg_init_disk(struct gendisk *disk) 1383 { 1384 struct request_queue *q = disk->queue; 1385 struct blkcg_gq *new_blkg, *blkg; 1386 bool preloaded; 1387 int ret; 1388 1389 INIT_LIST_HEAD(&q->blkg_list); 1390 mutex_init(&q->blkcg_mutex); 1391 1392 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1393 if (!new_blkg) 1394 return -ENOMEM; 1395 1396 preloaded = !radix_tree_preload(GFP_KERNEL); 1397 1398 /* Make sure the root blkg exists. */ 1399 /* spin_lock_irq can serve as RCU read-side critical section. */ 1400 spin_lock_irq(&q->queue_lock); 1401 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1402 if (IS_ERR(blkg)) 1403 goto err_unlock; 1404 q->root_blkg = blkg; 1405 spin_unlock_irq(&q->queue_lock); 1406 1407 if (preloaded) 1408 radix_tree_preload_end(); 1409 1410 ret = blk_ioprio_init(disk); 1411 if (ret) 1412 goto err_destroy_all; 1413 1414 ret = blk_throtl_init(disk); 1415 if (ret) 1416 goto err_ioprio_exit; 1417 1418 return 0; 1419 1420 err_ioprio_exit: 1421 blk_ioprio_exit(disk); 1422 err_destroy_all: 1423 blkg_destroy_all(disk); 1424 return ret; 1425 err_unlock: 1426 spin_unlock_irq(&q->queue_lock); 1427 if (preloaded) 1428 radix_tree_preload_end(); 1429 return PTR_ERR(blkg); 1430 } 1431 1432 void blkcg_exit_disk(struct gendisk *disk) 1433 { 1434 blkg_destroy_all(disk); 1435 blk_throtl_exit(disk); 1436 } 1437 1438 static void blkcg_exit(struct task_struct *tsk) 1439 { 1440 if (tsk->throttle_disk) 1441 put_disk(tsk->throttle_disk); 1442 tsk->throttle_disk = NULL; 1443 } 1444 1445 struct cgroup_subsys io_cgrp_subsys = { 1446 .css_alloc = blkcg_css_alloc, 1447 .css_online = blkcg_css_online, 1448 .css_offline = blkcg_css_offline, 1449 .css_free = blkcg_css_free, 1450 .css_rstat_flush = blkcg_rstat_flush, 1451 .dfl_cftypes = blkcg_files, 1452 .legacy_cftypes = blkcg_legacy_files, 1453 .legacy_name = "blkio", 1454 .exit = blkcg_exit, 1455 #ifdef CONFIG_MEMCG 1456 /* 1457 * This ensures that, if available, memcg is automatically enabled 1458 * together on the default hierarchy so that the owner cgroup can 1459 * be retrieved from writeback pages. 1460 */ 1461 .depends_on = 1 << memory_cgrp_id, 1462 #endif 1463 }; 1464 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1465 1466 /** 1467 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1468 * @disk: gendisk of interest 1469 * @pol: blkcg policy to activate 1470 * 1471 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1472 * bypass mode to populate its blkgs with policy_data for @pol. 1473 * 1474 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1475 * from IO path. Update of each blkg is protected by both queue and blkcg 1476 * locks so that holding either lock and testing blkcg_policy_enabled() is 1477 * always enough for dereferencing policy data. 1478 * 1479 * The caller is responsible for synchronizing [de]activations and policy 1480 * [un]registerations. Returns 0 on success, -errno on failure. 1481 */ 1482 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1483 { 1484 struct request_queue *q = disk->queue; 1485 struct blkg_policy_data *pd_prealloc = NULL; 1486 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1487 int ret; 1488 1489 if (blkcg_policy_enabled(q, pol)) 1490 return 0; 1491 1492 if (queue_is_mq(q)) 1493 blk_mq_freeze_queue(q); 1494 retry: 1495 spin_lock_irq(&q->queue_lock); 1496 1497 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1498 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1499 struct blkg_policy_data *pd; 1500 1501 if (blkg->pd[pol->plid]) 1502 continue; 1503 1504 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1505 if (blkg == pinned_blkg) { 1506 pd = pd_prealloc; 1507 pd_prealloc = NULL; 1508 } else { 1509 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1510 GFP_NOWAIT | __GFP_NOWARN); 1511 } 1512 1513 if (!pd) { 1514 /* 1515 * GFP_NOWAIT failed. Free the existing one and 1516 * prealloc for @blkg w/ GFP_KERNEL. 1517 */ 1518 if (pinned_blkg) 1519 blkg_put(pinned_blkg); 1520 blkg_get(blkg); 1521 pinned_blkg = blkg; 1522 1523 spin_unlock_irq(&q->queue_lock); 1524 1525 if (pd_prealloc) 1526 pol->pd_free_fn(pd_prealloc); 1527 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1528 GFP_KERNEL); 1529 if (pd_prealloc) 1530 goto retry; 1531 else 1532 goto enomem; 1533 } 1534 1535 blkg->pd[pol->plid] = pd; 1536 pd->blkg = blkg; 1537 pd->plid = pol->plid; 1538 pd->online = false; 1539 } 1540 1541 /* all allocated, init in the same order */ 1542 if (pol->pd_init_fn) 1543 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1544 pol->pd_init_fn(blkg->pd[pol->plid]); 1545 1546 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1547 if (pol->pd_online_fn) 1548 pol->pd_online_fn(blkg->pd[pol->plid]); 1549 blkg->pd[pol->plid]->online = true; 1550 } 1551 1552 __set_bit(pol->plid, q->blkcg_pols); 1553 ret = 0; 1554 1555 spin_unlock_irq(&q->queue_lock); 1556 out: 1557 if (queue_is_mq(q)) 1558 blk_mq_unfreeze_queue(q); 1559 if (pinned_blkg) 1560 blkg_put(pinned_blkg); 1561 if (pd_prealloc) 1562 pol->pd_free_fn(pd_prealloc); 1563 return ret; 1564 1565 enomem: 1566 /* alloc failed, nothing's initialized yet, free everything */ 1567 spin_lock_irq(&q->queue_lock); 1568 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1569 struct blkcg *blkcg = blkg->blkcg; 1570 1571 spin_lock(&blkcg->lock); 1572 if (blkg->pd[pol->plid]) { 1573 pol->pd_free_fn(blkg->pd[pol->plid]); 1574 blkg->pd[pol->plid] = NULL; 1575 } 1576 spin_unlock(&blkcg->lock); 1577 } 1578 spin_unlock_irq(&q->queue_lock); 1579 ret = -ENOMEM; 1580 goto out; 1581 } 1582 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1583 1584 /** 1585 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1586 * @disk: gendisk of interest 1587 * @pol: blkcg policy to deactivate 1588 * 1589 * Deactivate @pol on @disk. Follows the same synchronization rules as 1590 * blkcg_activate_policy(). 1591 */ 1592 void blkcg_deactivate_policy(struct gendisk *disk, 1593 const struct blkcg_policy *pol) 1594 { 1595 struct request_queue *q = disk->queue; 1596 struct blkcg_gq *blkg; 1597 1598 if (!blkcg_policy_enabled(q, pol)) 1599 return; 1600 1601 if (queue_is_mq(q)) 1602 blk_mq_freeze_queue(q); 1603 1604 mutex_lock(&q->blkcg_mutex); 1605 spin_lock_irq(&q->queue_lock); 1606 1607 __clear_bit(pol->plid, q->blkcg_pols); 1608 1609 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1610 struct blkcg *blkcg = blkg->blkcg; 1611 1612 spin_lock(&blkcg->lock); 1613 if (blkg->pd[pol->plid]) { 1614 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1615 pol->pd_offline_fn(blkg->pd[pol->plid]); 1616 pol->pd_free_fn(blkg->pd[pol->plid]); 1617 blkg->pd[pol->plid] = NULL; 1618 } 1619 spin_unlock(&blkcg->lock); 1620 } 1621 1622 spin_unlock_irq(&q->queue_lock); 1623 mutex_unlock(&q->blkcg_mutex); 1624 1625 if (queue_is_mq(q)) 1626 blk_mq_unfreeze_queue(q); 1627 } 1628 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1629 1630 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1631 { 1632 struct blkcg *blkcg; 1633 1634 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1635 if (blkcg->cpd[pol->plid]) { 1636 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1637 blkcg->cpd[pol->plid] = NULL; 1638 } 1639 } 1640 } 1641 1642 /** 1643 * blkcg_policy_register - register a blkcg policy 1644 * @pol: blkcg policy to register 1645 * 1646 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1647 * successful registration. Returns 0 on success and -errno on failure. 1648 */ 1649 int blkcg_policy_register(struct blkcg_policy *pol) 1650 { 1651 struct blkcg *blkcg; 1652 int i, ret; 1653 1654 mutex_lock(&blkcg_pol_register_mutex); 1655 mutex_lock(&blkcg_pol_mutex); 1656 1657 /* find an empty slot */ 1658 ret = -ENOSPC; 1659 for (i = 0; i < BLKCG_MAX_POLS; i++) 1660 if (!blkcg_policy[i]) 1661 break; 1662 if (i >= BLKCG_MAX_POLS) { 1663 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1664 goto err_unlock; 1665 } 1666 1667 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1668 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1669 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1670 goto err_unlock; 1671 1672 /* register @pol */ 1673 pol->plid = i; 1674 blkcg_policy[pol->plid] = pol; 1675 1676 /* allocate and install cpd's */ 1677 if (pol->cpd_alloc_fn) { 1678 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1679 struct blkcg_policy_data *cpd; 1680 1681 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1682 if (!cpd) 1683 goto err_free_cpds; 1684 1685 blkcg->cpd[pol->plid] = cpd; 1686 cpd->blkcg = blkcg; 1687 cpd->plid = pol->plid; 1688 } 1689 } 1690 1691 mutex_unlock(&blkcg_pol_mutex); 1692 1693 /* everything is in place, add intf files for the new policy */ 1694 if (pol->dfl_cftypes) 1695 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1696 pol->dfl_cftypes)); 1697 if (pol->legacy_cftypes) 1698 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1699 pol->legacy_cftypes)); 1700 mutex_unlock(&blkcg_pol_register_mutex); 1701 return 0; 1702 1703 err_free_cpds: 1704 if (pol->cpd_free_fn) 1705 blkcg_free_all_cpd(pol); 1706 1707 blkcg_policy[pol->plid] = NULL; 1708 err_unlock: 1709 mutex_unlock(&blkcg_pol_mutex); 1710 mutex_unlock(&blkcg_pol_register_mutex); 1711 return ret; 1712 } 1713 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1714 1715 /** 1716 * blkcg_policy_unregister - unregister a blkcg policy 1717 * @pol: blkcg policy to unregister 1718 * 1719 * Undo blkcg_policy_register(@pol). Might sleep. 1720 */ 1721 void blkcg_policy_unregister(struct blkcg_policy *pol) 1722 { 1723 mutex_lock(&blkcg_pol_register_mutex); 1724 1725 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1726 goto out_unlock; 1727 1728 /* kill the intf files first */ 1729 if (pol->dfl_cftypes) 1730 cgroup_rm_cftypes(pol->dfl_cftypes); 1731 if (pol->legacy_cftypes) 1732 cgroup_rm_cftypes(pol->legacy_cftypes); 1733 1734 /* remove cpds and unregister */ 1735 mutex_lock(&blkcg_pol_mutex); 1736 1737 if (pol->cpd_free_fn) 1738 blkcg_free_all_cpd(pol); 1739 1740 blkcg_policy[pol->plid] = NULL; 1741 1742 mutex_unlock(&blkcg_pol_mutex); 1743 out_unlock: 1744 mutex_unlock(&blkcg_pol_register_mutex); 1745 } 1746 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1747 1748 /* 1749 * Scale the accumulated delay based on how long it has been since we updated 1750 * the delay. We only call this when we are adding delay, in case it's been a 1751 * while since we added delay, and when we are checking to see if we need to 1752 * delay a task, to account for any delays that may have occurred. 1753 */ 1754 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1755 { 1756 u64 old = atomic64_read(&blkg->delay_start); 1757 1758 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1759 if (atomic_read(&blkg->use_delay) < 0) 1760 return; 1761 1762 /* 1763 * We only want to scale down every second. The idea here is that we 1764 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1765 * time window. We only want to throttle tasks for recent delay that 1766 * has occurred, in 1 second time windows since that's the maximum 1767 * things can be throttled. We save the current delay window in 1768 * blkg->last_delay so we know what amount is still left to be charged 1769 * to the blkg from this point onward. blkg->last_use keeps track of 1770 * the use_delay counter. The idea is if we're unthrottling the blkg we 1771 * are ok with whatever is happening now, and we can take away more of 1772 * the accumulated delay as we've already throttled enough that 1773 * everybody is happy with their IO latencies. 1774 */ 1775 if (time_before64(old + NSEC_PER_SEC, now) && 1776 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1777 u64 cur = atomic64_read(&blkg->delay_nsec); 1778 u64 sub = min_t(u64, blkg->last_delay, now - old); 1779 int cur_use = atomic_read(&blkg->use_delay); 1780 1781 /* 1782 * We've been unthrottled, subtract a larger chunk of our 1783 * accumulated delay. 1784 */ 1785 if (cur_use < blkg->last_use) 1786 sub = max_t(u64, sub, blkg->last_delay >> 1); 1787 1788 /* 1789 * This shouldn't happen, but handle it anyway. Our delay_nsec 1790 * should only ever be growing except here where we subtract out 1791 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1792 * rather not end up with negative numbers. 1793 */ 1794 if (unlikely(cur < sub)) { 1795 atomic64_set(&blkg->delay_nsec, 0); 1796 blkg->last_delay = 0; 1797 } else { 1798 atomic64_sub(sub, &blkg->delay_nsec); 1799 blkg->last_delay = cur - sub; 1800 } 1801 blkg->last_use = cur_use; 1802 } 1803 } 1804 1805 /* 1806 * This is called when we want to actually walk up the hierarchy and check to 1807 * see if we need to throttle, and then actually throttle if there is some 1808 * accumulated delay. This should only be called upon return to user space so 1809 * we're not holding some lock that would induce a priority inversion. 1810 */ 1811 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1812 { 1813 unsigned long pflags; 1814 bool clamp; 1815 u64 now = ktime_to_ns(ktime_get()); 1816 u64 exp; 1817 u64 delay_nsec = 0; 1818 int tok; 1819 1820 while (blkg->parent) { 1821 int use_delay = atomic_read(&blkg->use_delay); 1822 1823 if (use_delay) { 1824 u64 this_delay; 1825 1826 blkcg_scale_delay(blkg, now); 1827 this_delay = atomic64_read(&blkg->delay_nsec); 1828 if (this_delay > delay_nsec) { 1829 delay_nsec = this_delay; 1830 clamp = use_delay > 0; 1831 } 1832 } 1833 blkg = blkg->parent; 1834 } 1835 1836 if (!delay_nsec) 1837 return; 1838 1839 /* 1840 * Let's not sleep for all eternity if we've amassed a huge delay. 1841 * Swapping or metadata IO can accumulate 10's of seconds worth of 1842 * delay, and we want userspace to be able to do _something_ so cap the 1843 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1844 * tasks will be delayed for 0.25 second for every syscall. If 1845 * blkcg_set_delay() was used as indicated by negative use_delay, the 1846 * caller is responsible for regulating the range. 1847 */ 1848 if (clamp) 1849 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1850 1851 if (use_memdelay) 1852 psi_memstall_enter(&pflags); 1853 1854 exp = ktime_add_ns(now, delay_nsec); 1855 tok = io_schedule_prepare(); 1856 do { 1857 __set_current_state(TASK_KILLABLE); 1858 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1859 break; 1860 } while (!fatal_signal_pending(current)); 1861 io_schedule_finish(tok); 1862 1863 if (use_memdelay) 1864 psi_memstall_leave(&pflags); 1865 } 1866 1867 /** 1868 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1869 * 1870 * This is only called if we've been marked with set_notify_resume(). Obviously 1871 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1872 * check to see if current->throttle_disk is set and if not this doesn't do 1873 * anything. This should only ever be called by the resume code, it's not meant 1874 * to be called by people willy-nilly as it will actually do the work to 1875 * throttle the task if it is setup for throttling. 1876 */ 1877 void blkcg_maybe_throttle_current(void) 1878 { 1879 struct gendisk *disk = current->throttle_disk; 1880 struct blkcg *blkcg; 1881 struct blkcg_gq *blkg; 1882 bool use_memdelay = current->use_memdelay; 1883 1884 if (!disk) 1885 return; 1886 1887 current->throttle_disk = NULL; 1888 current->use_memdelay = false; 1889 1890 rcu_read_lock(); 1891 blkcg = css_to_blkcg(blkcg_css()); 1892 if (!blkcg) 1893 goto out; 1894 blkg = blkg_lookup(blkcg, disk->queue); 1895 if (!blkg) 1896 goto out; 1897 if (!blkg_tryget(blkg)) 1898 goto out; 1899 rcu_read_unlock(); 1900 1901 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1902 blkg_put(blkg); 1903 put_disk(disk); 1904 return; 1905 out: 1906 rcu_read_unlock(); 1907 } 1908 1909 /** 1910 * blkcg_schedule_throttle - this task needs to check for throttling 1911 * @disk: disk to throttle 1912 * @use_memdelay: do we charge this to memory delay for PSI 1913 * 1914 * This is called by the IO controller when we know there's delay accumulated 1915 * for the blkg for this task. We do not pass the blkg because there are places 1916 * we call this that may not have that information, the swapping code for 1917 * instance will only have a block_device at that point. This set's the 1918 * notify_resume for the task to check and see if it requires throttling before 1919 * returning to user space. 1920 * 1921 * We will only schedule once per syscall. You can call this over and over 1922 * again and it will only do the check once upon return to user space, and only 1923 * throttle once. If the task needs to be throttled again it'll need to be 1924 * re-set at the next time we see the task. 1925 */ 1926 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1927 { 1928 if (unlikely(current->flags & PF_KTHREAD)) 1929 return; 1930 1931 if (current->throttle_disk != disk) { 1932 if (test_bit(GD_DEAD, &disk->state)) 1933 return; 1934 get_device(disk_to_dev(disk)); 1935 1936 if (current->throttle_disk) 1937 put_disk(current->throttle_disk); 1938 current->throttle_disk = disk; 1939 } 1940 1941 if (use_memdelay) 1942 current->use_memdelay = use_memdelay; 1943 set_notify_resume(current); 1944 } 1945 1946 /** 1947 * blkcg_add_delay - add delay to this blkg 1948 * @blkg: blkg of interest 1949 * @now: the current time in nanoseconds 1950 * @delta: how many nanoseconds of delay to add 1951 * 1952 * Charge @delta to the blkg's current delay accumulation. This is used to 1953 * throttle tasks if an IO controller thinks we need more throttling. 1954 */ 1955 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1956 { 1957 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1958 return; 1959 blkcg_scale_delay(blkg, now); 1960 atomic64_add(delta, &blkg->delay_nsec); 1961 } 1962 1963 /** 1964 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1965 * @bio: target bio 1966 * @css: target css 1967 * 1968 * As the failure mode here is to walk up the blkg tree, this ensure that the 1969 * blkg->parent pointers are always valid. This returns the blkg that it ended 1970 * up taking a reference on or %NULL if no reference was taken. 1971 */ 1972 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1973 struct cgroup_subsys_state *css) 1974 { 1975 struct blkcg_gq *blkg, *ret_blkg = NULL; 1976 1977 rcu_read_lock(); 1978 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1979 while (blkg) { 1980 if (blkg_tryget(blkg)) { 1981 ret_blkg = blkg; 1982 break; 1983 } 1984 blkg = blkg->parent; 1985 } 1986 rcu_read_unlock(); 1987 1988 return ret_blkg; 1989 } 1990 1991 /** 1992 * bio_associate_blkg_from_css - associate a bio with a specified css 1993 * @bio: target bio 1994 * @css: target css 1995 * 1996 * Associate @bio with the blkg found by combining the css's blkg and the 1997 * request_queue of the @bio. An association failure is handled by walking up 1998 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1999 * and q->root_blkg. This situation only happens when a cgroup is dying and 2000 * then the remaining bios will spill to the closest alive blkg. 2001 * 2002 * A reference will be taken on the blkg and will be released when @bio is 2003 * freed. 2004 */ 2005 void bio_associate_blkg_from_css(struct bio *bio, 2006 struct cgroup_subsys_state *css) 2007 { 2008 if (bio->bi_blkg) 2009 blkg_put(bio->bi_blkg); 2010 2011 if (css && css->parent) { 2012 bio->bi_blkg = blkg_tryget_closest(bio, css); 2013 } else { 2014 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 2015 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 2016 } 2017 } 2018 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2019 2020 /** 2021 * bio_associate_blkg - associate a bio with a blkg 2022 * @bio: target bio 2023 * 2024 * Associate @bio with the blkg found from the bio's css and request_queue. 2025 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2026 * already associated, the css is reused and association redone as the 2027 * request_queue may have changed. 2028 */ 2029 void bio_associate_blkg(struct bio *bio) 2030 { 2031 struct cgroup_subsys_state *css; 2032 2033 rcu_read_lock(); 2034 2035 if (bio->bi_blkg) 2036 css = bio_blkcg_css(bio); 2037 else 2038 css = blkcg_css(); 2039 2040 bio_associate_blkg_from_css(bio, css); 2041 2042 rcu_read_unlock(); 2043 } 2044 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2045 2046 /** 2047 * bio_clone_blkg_association - clone blkg association from src to dst bio 2048 * @dst: destination bio 2049 * @src: source bio 2050 */ 2051 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2052 { 2053 if (src->bi_blkg) 2054 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2055 } 2056 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2057 2058 static int blk_cgroup_io_type(struct bio *bio) 2059 { 2060 if (op_is_discard(bio->bi_opf)) 2061 return BLKG_IOSTAT_DISCARD; 2062 if (op_is_write(bio->bi_opf)) 2063 return BLKG_IOSTAT_WRITE; 2064 return BLKG_IOSTAT_READ; 2065 } 2066 2067 void blk_cgroup_bio_start(struct bio *bio) 2068 { 2069 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2070 int rwd = blk_cgroup_io_type(bio), cpu; 2071 struct blkg_iostat_set *bis; 2072 unsigned long flags; 2073 2074 /* Root-level stats are sourced from system-wide IO stats */ 2075 if (!cgroup_parent(blkcg->css.cgroup)) 2076 return; 2077 2078 cpu = get_cpu(); 2079 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2080 flags = u64_stats_update_begin_irqsave(&bis->sync); 2081 2082 /* 2083 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2084 * bio and we would have already accounted for the size of the bio. 2085 */ 2086 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2087 bio_set_flag(bio, BIO_CGROUP_ACCT); 2088 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2089 } 2090 bis->cur.ios[rwd]++; 2091 2092 /* 2093 * If the iostat_cpu isn't in a lockless list, put it into the 2094 * list to indicate that a stat update is pending. 2095 */ 2096 if (!READ_ONCE(bis->lqueued)) { 2097 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2098 2099 llist_add(&bis->lnode, lhead); 2100 WRITE_ONCE(bis->lqueued, true); 2101 } 2102 2103 u64_stats_update_end_irqrestore(&bis->sync, flags); 2104 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 2105 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2106 put_cpu(); 2107 } 2108 2109 bool blk_cgroup_congested(void) 2110 { 2111 struct cgroup_subsys_state *css; 2112 bool ret = false; 2113 2114 rcu_read_lock(); 2115 for (css = blkcg_css(); css; css = css->parent) { 2116 if (atomic_read(&css->cgroup->congestion_count)) { 2117 ret = true; 2118 break; 2119 } 2120 } 2121 rcu_read_unlock(); 2122 return ret; 2123 } 2124 2125 module_param(blkcg_debug_stats, bool, 0644); 2126 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2127