xref: /openbmc/linux/block/blk-cgroup.c (revision c9dc580c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 #include "blk-rq-qos.h"
37 
38 /*
39  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
40  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
41  * policy [un]register operations including cgroup file additions /
42  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
43  * allows grabbing it from cgroup callbacks.
44  */
45 static DEFINE_MUTEX(blkcg_pol_register_mutex);
46 static DEFINE_MUTEX(blkcg_pol_mutex);
47 
48 struct blkcg blkcg_root;
49 EXPORT_SYMBOL_GPL(blkcg_root);
50 
51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
52 EXPORT_SYMBOL_GPL(blkcg_root_css);
53 
54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
55 
56 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
57 
58 bool blkcg_debug_stats = false;
59 static struct workqueue_struct *blkcg_punt_bio_wq;
60 
61 #define BLKG_DESTROY_BATCH_SIZE  64
62 
63 /*
64  * Lockless lists for tracking IO stats update
65  *
66  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
67  * There are multiple blkg's (one for each block device) attached to each
68  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
69  * but it doesn't know which blkg has the updated stats. If there are many
70  * block devices in a system, the cost of iterating all the blkg's to flush
71  * out the IO stats can be high. To reduce such overhead, a set of percpu
72  * lockless lists (lhead) per blkcg are used to track the set of recently
73  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
74  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
75  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
76  * References to blkg are gotten and then put back in the process to
77  * protect against blkg removal.
78  *
79  * Return: 0 if successful or -ENOMEM if allocation fails.
80  */
81 static int init_blkcg_llists(struct blkcg *blkcg)
82 {
83 	int cpu;
84 
85 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
86 	if (!blkcg->lhead)
87 		return -ENOMEM;
88 
89 	for_each_possible_cpu(cpu)
90 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
91 	return 0;
92 }
93 
94 /**
95  * blkcg_css - find the current css
96  *
97  * Find the css associated with either the kthread or the current task.
98  * This may return a dying css, so it is up to the caller to use tryget logic
99  * to confirm it is alive and well.
100  */
101 static struct cgroup_subsys_state *blkcg_css(void)
102 {
103 	struct cgroup_subsys_state *css;
104 
105 	css = kthread_blkcg();
106 	if (css)
107 		return css;
108 	return task_css(current, io_cgrp_id);
109 }
110 
111 static bool blkcg_policy_enabled(struct request_queue *q,
112 				 const struct blkcg_policy *pol)
113 {
114 	return pol && test_bit(pol->plid, q->blkcg_pols);
115 }
116 
117 static void blkg_free_workfn(struct work_struct *work)
118 {
119 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 					     free_work);
121 	struct request_queue *q = blkg->q;
122 	int i;
123 
124 	/*
125 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
126 	 * in order to make sure pd_free_fn() is called in order, the deletion
127 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
128 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
129 	 * blkcg_deactivate_policy().
130 	 */
131 	mutex_lock(&q->blkcg_mutex);
132 	for (i = 0; i < BLKCG_MAX_POLS; i++)
133 		if (blkg->pd[i])
134 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
135 	if (blkg->parent)
136 		blkg_put(blkg->parent);
137 	list_del_init(&blkg->q_node);
138 	mutex_unlock(&q->blkcg_mutex);
139 
140 	blk_put_queue(q);
141 	free_percpu(blkg->iostat_cpu);
142 	percpu_ref_exit(&blkg->refcnt);
143 	kfree(blkg);
144 }
145 
146 /**
147  * blkg_free - free a blkg
148  * @blkg: blkg to free
149  *
150  * Free @blkg which may be partially allocated.
151  */
152 static void blkg_free(struct blkcg_gq *blkg)
153 {
154 	if (!blkg)
155 		return;
156 
157 	/*
158 	 * Both ->pd_free_fn() and request queue's release handler may
159 	 * sleep, so free us by scheduling one work func
160 	 */
161 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
162 	schedule_work(&blkg->free_work);
163 }
164 
165 static void __blkg_release(struct rcu_head *rcu)
166 {
167 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
168 
169 	WARN_ON(!bio_list_empty(&blkg->async_bios));
170 
171 	/* release the blkcg and parent blkg refs this blkg has been holding */
172 	css_put(&blkg->blkcg->css);
173 	blkg_free(blkg);
174 }
175 
176 /*
177  * A group is RCU protected, but having an rcu lock does not mean that one
178  * can access all the fields of blkg and assume these are valid.  For
179  * example, don't try to follow throtl_data and request queue links.
180  *
181  * Having a reference to blkg under an rcu allows accesses to only values
182  * local to groups like group stats and group rate limits.
183  */
184 static void blkg_release(struct percpu_ref *ref)
185 {
186 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
187 
188 	call_rcu(&blkg->rcu_head, __blkg_release);
189 }
190 
191 static void blkg_async_bio_workfn(struct work_struct *work)
192 {
193 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
194 					     async_bio_work);
195 	struct bio_list bios = BIO_EMPTY_LIST;
196 	struct bio *bio;
197 	struct blk_plug plug;
198 	bool need_plug = false;
199 
200 	/* as long as there are pending bios, @blkg can't go away */
201 	spin_lock_bh(&blkg->async_bio_lock);
202 	bio_list_merge(&bios, &blkg->async_bios);
203 	bio_list_init(&blkg->async_bios);
204 	spin_unlock_bh(&blkg->async_bio_lock);
205 
206 	/* start plug only when bio_list contains at least 2 bios */
207 	if (bios.head && bios.head->bi_next) {
208 		need_plug = true;
209 		blk_start_plug(&plug);
210 	}
211 	while ((bio = bio_list_pop(&bios)))
212 		submit_bio(bio);
213 	if (need_plug)
214 		blk_finish_plug(&plug);
215 }
216 
217 /**
218  * bio_blkcg_css - return the blkcg CSS associated with a bio
219  * @bio: target bio
220  *
221  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
222  * associated. Callers are expected to either handle %NULL or know association
223  * has been done prior to calling this.
224  */
225 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
226 {
227 	if (!bio || !bio->bi_blkg)
228 		return NULL;
229 	return &bio->bi_blkg->blkcg->css;
230 }
231 EXPORT_SYMBOL_GPL(bio_blkcg_css);
232 
233 /**
234  * blkcg_parent - get the parent of a blkcg
235  * @blkcg: blkcg of interest
236  *
237  * Return the parent blkcg of @blkcg.  Can be called anytime.
238  */
239 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
240 {
241 	return css_to_blkcg(blkcg->css.parent);
242 }
243 
244 /**
245  * blkg_alloc - allocate a blkg
246  * @blkcg: block cgroup the new blkg is associated with
247  * @disk: gendisk the new blkg is associated with
248  * @gfp_mask: allocation mask to use
249  *
250  * Allocate a new blkg assocating @blkcg and @q.
251  */
252 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
253 				   gfp_t gfp_mask)
254 {
255 	struct blkcg_gq *blkg;
256 	int i, cpu;
257 
258 	/* alloc and init base part */
259 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
260 	if (!blkg)
261 		return NULL;
262 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
263 		goto out_free_blkg;
264 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
265 	if (!blkg->iostat_cpu)
266 		goto out_exit_refcnt;
267 	if (!blk_get_queue(disk->queue))
268 		goto out_free_iostat;
269 
270 	blkg->q = disk->queue;
271 	INIT_LIST_HEAD(&blkg->q_node);
272 	spin_lock_init(&blkg->async_bio_lock);
273 	bio_list_init(&blkg->async_bios);
274 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
275 	blkg->blkcg = blkcg;
276 
277 	u64_stats_init(&blkg->iostat.sync);
278 	for_each_possible_cpu(cpu) {
279 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
280 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
281 	}
282 
283 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
284 		struct blkcg_policy *pol = blkcg_policy[i];
285 		struct blkg_policy_data *pd;
286 
287 		if (!blkcg_policy_enabled(disk->queue, pol))
288 			continue;
289 
290 		/* alloc per-policy data and attach it to blkg */
291 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
292 		if (!pd)
293 			goto out_free_pds;
294 		blkg->pd[i] = pd;
295 		pd->blkg = blkg;
296 		pd->plid = i;
297 		pd->online = false;
298 	}
299 
300 	return blkg;
301 
302 out_free_pds:
303 	while (--i >= 0)
304 		if (blkg->pd[i])
305 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
306 	blk_put_queue(disk->queue);
307 out_free_iostat:
308 	free_percpu(blkg->iostat_cpu);
309 out_exit_refcnt:
310 	percpu_ref_exit(&blkg->refcnt);
311 out_free_blkg:
312 	kfree(blkg);
313 	return NULL;
314 }
315 
316 /*
317  * If @new_blkg is %NULL, this function tries to allocate a new one as
318  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
319  */
320 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
321 				    struct blkcg_gq *new_blkg)
322 {
323 	struct blkcg_gq *blkg;
324 	int i, ret;
325 
326 	lockdep_assert_held(&disk->queue->queue_lock);
327 
328 	/* request_queue is dying, do not create/recreate a blkg */
329 	if (blk_queue_dying(disk->queue)) {
330 		ret = -ENODEV;
331 		goto err_free_blkg;
332 	}
333 
334 	/* blkg holds a reference to blkcg */
335 	if (!css_tryget_online(&blkcg->css)) {
336 		ret = -ENODEV;
337 		goto err_free_blkg;
338 	}
339 
340 	/* allocate */
341 	if (!new_blkg) {
342 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
343 		if (unlikely(!new_blkg)) {
344 			ret = -ENOMEM;
345 			goto err_put_css;
346 		}
347 	}
348 	blkg = new_blkg;
349 
350 	/* link parent */
351 	if (blkcg_parent(blkcg)) {
352 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
353 		if (WARN_ON_ONCE(!blkg->parent)) {
354 			ret = -ENODEV;
355 			goto err_put_css;
356 		}
357 		blkg_get(blkg->parent);
358 	}
359 
360 	/* invoke per-policy init */
361 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
362 		struct blkcg_policy *pol = blkcg_policy[i];
363 
364 		if (blkg->pd[i] && pol->pd_init_fn)
365 			pol->pd_init_fn(blkg->pd[i]);
366 	}
367 
368 	/* insert */
369 	spin_lock(&blkcg->lock);
370 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
371 	if (likely(!ret)) {
372 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
373 		list_add(&blkg->q_node, &disk->queue->blkg_list);
374 
375 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
376 			struct blkcg_policy *pol = blkcg_policy[i];
377 
378 			if (blkg->pd[i]) {
379 				if (pol->pd_online_fn)
380 					pol->pd_online_fn(blkg->pd[i]);
381 				blkg->pd[i]->online = true;
382 			}
383 		}
384 	}
385 	blkg->online = true;
386 	spin_unlock(&blkcg->lock);
387 
388 	if (!ret)
389 		return blkg;
390 
391 	/* @blkg failed fully initialized, use the usual release path */
392 	blkg_put(blkg);
393 	return ERR_PTR(ret);
394 
395 err_put_css:
396 	css_put(&blkcg->css);
397 err_free_blkg:
398 	if (new_blkg)
399 		blkg_free(new_blkg);
400 	return ERR_PTR(ret);
401 }
402 
403 /**
404  * blkg_lookup_create - lookup blkg, try to create one if not there
405  * @blkcg: blkcg of interest
406  * @disk: gendisk of interest
407  *
408  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
409  * create one.  blkg creation is performed recursively from blkcg_root such
410  * that all non-root blkg's have access to the parent blkg.  This function
411  * should be called under RCU read lock and takes @disk->queue->queue_lock.
412  *
413  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
414  * down from root.
415  */
416 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
417 		struct gendisk *disk)
418 {
419 	struct request_queue *q = disk->queue;
420 	struct blkcg_gq *blkg;
421 	unsigned long flags;
422 
423 	WARN_ON_ONCE(!rcu_read_lock_held());
424 
425 	blkg = blkg_lookup(blkcg, q);
426 	if (blkg)
427 		return blkg;
428 
429 	spin_lock_irqsave(&q->queue_lock, flags);
430 	blkg = blkg_lookup(blkcg, q);
431 	if (blkg) {
432 		if (blkcg != &blkcg_root &&
433 		    blkg != rcu_dereference(blkcg->blkg_hint))
434 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
435 		goto found;
436 	}
437 
438 	/*
439 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
440 	 * non-root blkgs have access to their parents.  Returns the closest
441 	 * blkg to the intended blkg should blkg_create() fail.
442 	 */
443 	while (true) {
444 		struct blkcg *pos = blkcg;
445 		struct blkcg *parent = blkcg_parent(blkcg);
446 		struct blkcg_gq *ret_blkg = q->root_blkg;
447 
448 		while (parent) {
449 			blkg = blkg_lookup(parent, q);
450 			if (blkg) {
451 				/* remember closest blkg */
452 				ret_blkg = blkg;
453 				break;
454 			}
455 			pos = parent;
456 			parent = blkcg_parent(parent);
457 		}
458 
459 		blkg = blkg_create(pos, disk, NULL);
460 		if (IS_ERR(blkg)) {
461 			blkg = ret_blkg;
462 			break;
463 		}
464 		if (pos == blkcg)
465 			break;
466 	}
467 
468 found:
469 	spin_unlock_irqrestore(&q->queue_lock, flags);
470 	return blkg;
471 }
472 
473 static void blkg_destroy(struct blkcg_gq *blkg)
474 {
475 	struct blkcg *blkcg = blkg->blkcg;
476 	int i;
477 
478 	lockdep_assert_held(&blkg->q->queue_lock);
479 	lockdep_assert_held(&blkcg->lock);
480 
481 	/*
482 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
483 	 * blkg_free_workfn(), hence this function can be called from
484 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
485 	 * blkg_free_workfn().
486 	 */
487 	if (hlist_unhashed(&blkg->blkcg_node))
488 		return;
489 
490 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
491 		struct blkcg_policy *pol = blkcg_policy[i];
492 
493 		if (blkg->pd[i] && blkg->pd[i]->online) {
494 			blkg->pd[i]->online = false;
495 			if (pol->pd_offline_fn)
496 				pol->pd_offline_fn(blkg->pd[i]);
497 		}
498 	}
499 
500 	blkg->online = false;
501 
502 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
503 	hlist_del_init_rcu(&blkg->blkcg_node);
504 
505 	/*
506 	 * Both setting lookup hint to and clearing it from @blkg are done
507 	 * under queue_lock.  If it's not pointing to @blkg now, it never
508 	 * will.  Hint assignment itself can race safely.
509 	 */
510 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
511 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
512 
513 	/*
514 	 * Put the reference taken at the time of creation so that when all
515 	 * queues are gone, group can be destroyed.
516 	 */
517 	percpu_ref_kill(&blkg->refcnt);
518 }
519 
520 static void blkg_destroy_all(struct gendisk *disk)
521 {
522 	struct request_queue *q = disk->queue;
523 	struct blkcg_gq *blkg, *n;
524 	int count = BLKG_DESTROY_BATCH_SIZE;
525 
526 restart:
527 	spin_lock_irq(&q->queue_lock);
528 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
529 		struct blkcg *blkcg = blkg->blkcg;
530 
531 		spin_lock(&blkcg->lock);
532 		blkg_destroy(blkg);
533 		spin_unlock(&blkcg->lock);
534 
535 		/*
536 		 * in order to avoid holding the spin lock for too long, release
537 		 * it when a batch of blkgs are destroyed.
538 		 */
539 		if (!(--count)) {
540 			count = BLKG_DESTROY_BATCH_SIZE;
541 			spin_unlock_irq(&q->queue_lock);
542 			cond_resched();
543 			goto restart;
544 		}
545 	}
546 
547 	q->root_blkg = NULL;
548 	spin_unlock_irq(&q->queue_lock);
549 }
550 
551 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
552 			     struct cftype *cftype, u64 val)
553 {
554 	struct blkcg *blkcg = css_to_blkcg(css);
555 	struct blkcg_gq *blkg;
556 	int i, cpu;
557 
558 	mutex_lock(&blkcg_pol_mutex);
559 	spin_lock_irq(&blkcg->lock);
560 
561 	/*
562 	 * Note that stat reset is racy - it doesn't synchronize against
563 	 * stat updates.  This is a debug feature which shouldn't exist
564 	 * anyway.  If you get hit by a race, retry.
565 	 */
566 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
567 		for_each_possible_cpu(cpu) {
568 			struct blkg_iostat_set *bis =
569 				per_cpu_ptr(blkg->iostat_cpu, cpu);
570 			memset(bis, 0, sizeof(*bis));
571 		}
572 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
573 
574 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
575 			struct blkcg_policy *pol = blkcg_policy[i];
576 
577 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
578 				pol->pd_reset_stats_fn(blkg->pd[i]);
579 		}
580 	}
581 
582 	spin_unlock_irq(&blkcg->lock);
583 	mutex_unlock(&blkcg_pol_mutex);
584 	return 0;
585 }
586 
587 const char *blkg_dev_name(struct blkcg_gq *blkg)
588 {
589 	if (!blkg->q->disk)
590 		return NULL;
591 	return bdi_dev_name(blkg->q->disk->bdi);
592 }
593 
594 /**
595  * blkcg_print_blkgs - helper for printing per-blkg data
596  * @sf: seq_file to print to
597  * @blkcg: blkcg of interest
598  * @prfill: fill function to print out a blkg
599  * @pol: policy in question
600  * @data: data to be passed to @prfill
601  * @show_total: to print out sum of prfill return values or not
602  *
603  * This function invokes @prfill on each blkg of @blkcg if pd for the
604  * policy specified by @pol exists.  @prfill is invoked with @sf, the
605  * policy data and @data and the matching queue lock held.  If @show_total
606  * is %true, the sum of the return values from @prfill is printed with
607  * "Total" label at the end.
608  *
609  * This is to be used to construct print functions for
610  * cftype->read_seq_string method.
611  */
612 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
613 		       u64 (*prfill)(struct seq_file *,
614 				     struct blkg_policy_data *, int),
615 		       const struct blkcg_policy *pol, int data,
616 		       bool show_total)
617 {
618 	struct blkcg_gq *blkg;
619 	u64 total = 0;
620 
621 	rcu_read_lock();
622 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
623 		spin_lock_irq(&blkg->q->queue_lock);
624 		if (blkcg_policy_enabled(blkg->q, pol))
625 			total += prfill(sf, blkg->pd[pol->plid], data);
626 		spin_unlock_irq(&blkg->q->queue_lock);
627 	}
628 	rcu_read_unlock();
629 
630 	if (show_total)
631 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
632 }
633 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
634 
635 /**
636  * __blkg_prfill_u64 - prfill helper for a single u64 value
637  * @sf: seq_file to print to
638  * @pd: policy private data of interest
639  * @v: value to print
640  *
641  * Print @v to @sf for the device associated with @pd.
642  */
643 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
644 {
645 	const char *dname = blkg_dev_name(pd->blkg);
646 
647 	if (!dname)
648 		return 0;
649 
650 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
651 	return v;
652 }
653 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
654 
655 /**
656  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
657  * @inputp: input string pointer
658  *
659  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
660  * from @input and get and return the matching bdev.  *@inputp is
661  * updated to point past the device node prefix.  Returns an ERR_PTR()
662  * value on error.
663  *
664  * Use this function iff blkg_conf_prep() can't be used for some reason.
665  */
666 struct block_device *blkcg_conf_open_bdev(char **inputp)
667 {
668 	char *input = *inputp;
669 	unsigned int major, minor;
670 	struct block_device *bdev;
671 	int key_len;
672 
673 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
674 		return ERR_PTR(-EINVAL);
675 
676 	input += key_len;
677 	if (!isspace(*input))
678 		return ERR_PTR(-EINVAL);
679 	input = skip_spaces(input);
680 
681 	bdev = blkdev_get_no_open(MKDEV(major, minor));
682 	if (!bdev)
683 		return ERR_PTR(-ENODEV);
684 	if (bdev_is_partition(bdev)) {
685 		blkdev_put_no_open(bdev);
686 		return ERR_PTR(-ENODEV);
687 	}
688 
689 	*inputp = input;
690 	return bdev;
691 }
692 
693 /**
694  * blkg_conf_prep - parse and prepare for per-blkg config update
695  * @blkcg: target block cgroup
696  * @pol: target policy
697  * @input: input string
698  * @ctx: blkg_conf_ctx to be filled
699  *
700  * Parse per-blkg config update from @input and initialize @ctx with the
701  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
702  * part of @input following MAJ:MIN.  This function returns with RCU read
703  * lock and queue lock held and must be paired with blkg_conf_finish().
704  */
705 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
706 		   char *input, struct blkg_conf_ctx *ctx)
707 	__acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
708 {
709 	struct block_device *bdev;
710 	struct gendisk *disk;
711 	struct request_queue *q;
712 	struct blkcg_gq *blkg;
713 	int ret;
714 
715 	bdev = blkcg_conf_open_bdev(&input);
716 	if (IS_ERR(bdev))
717 		return PTR_ERR(bdev);
718 	disk = bdev->bd_disk;
719 	q = disk->queue;
720 
721 	/*
722 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
723 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
724 	 */
725 	ret = blk_queue_enter(q, 0);
726 	if (ret)
727 		goto fail;
728 
729 	rcu_read_lock();
730 	spin_lock_irq(&q->queue_lock);
731 
732 	if (!blkcg_policy_enabled(q, pol)) {
733 		ret = -EOPNOTSUPP;
734 		goto fail_unlock;
735 	}
736 
737 	blkg = blkg_lookup(blkcg, q);
738 	if (blkg)
739 		goto success;
740 
741 	/*
742 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
743 	 * non-root blkgs have access to their parents.
744 	 */
745 	while (true) {
746 		struct blkcg *pos = blkcg;
747 		struct blkcg *parent;
748 		struct blkcg_gq *new_blkg;
749 
750 		parent = blkcg_parent(blkcg);
751 		while (parent && !blkg_lookup(parent, q)) {
752 			pos = parent;
753 			parent = blkcg_parent(parent);
754 		}
755 
756 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
757 		spin_unlock_irq(&q->queue_lock);
758 		rcu_read_unlock();
759 
760 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
761 		if (unlikely(!new_blkg)) {
762 			ret = -ENOMEM;
763 			goto fail_exit_queue;
764 		}
765 
766 		if (radix_tree_preload(GFP_KERNEL)) {
767 			blkg_free(new_blkg);
768 			ret = -ENOMEM;
769 			goto fail_exit_queue;
770 		}
771 
772 		rcu_read_lock();
773 		spin_lock_irq(&q->queue_lock);
774 
775 		if (!blkcg_policy_enabled(q, pol)) {
776 			blkg_free(new_blkg);
777 			ret = -EOPNOTSUPP;
778 			goto fail_preloaded;
779 		}
780 
781 		blkg = blkg_lookup(pos, q);
782 		if (blkg) {
783 			blkg_free(new_blkg);
784 		} else {
785 			blkg = blkg_create(pos, disk, new_blkg);
786 			if (IS_ERR(blkg)) {
787 				ret = PTR_ERR(blkg);
788 				goto fail_preloaded;
789 			}
790 		}
791 
792 		radix_tree_preload_end();
793 
794 		if (pos == blkcg)
795 			goto success;
796 	}
797 success:
798 	blk_queue_exit(q);
799 	ctx->bdev = bdev;
800 	ctx->blkg = blkg;
801 	ctx->body = input;
802 	return 0;
803 
804 fail_preloaded:
805 	radix_tree_preload_end();
806 fail_unlock:
807 	spin_unlock_irq(&q->queue_lock);
808 	rcu_read_unlock();
809 fail_exit_queue:
810 	blk_queue_exit(q);
811 fail:
812 	blkdev_put_no_open(bdev);
813 	/*
814 	 * If queue was bypassing, we should retry.  Do so after a
815 	 * short msleep().  It isn't strictly necessary but queue
816 	 * can be bypassing for some time and it's always nice to
817 	 * avoid busy looping.
818 	 */
819 	if (ret == -EBUSY) {
820 		msleep(10);
821 		ret = restart_syscall();
822 	}
823 	return ret;
824 }
825 EXPORT_SYMBOL_GPL(blkg_conf_prep);
826 
827 /**
828  * blkg_conf_finish - finish up per-blkg config update
829  * @ctx: blkg_conf_ctx initialized by blkg_conf_prep()
830  *
831  * Finish up after per-blkg config update.  This function must be paired
832  * with blkg_conf_prep().
833  */
834 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
835 	__releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
836 {
837 	spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
838 	rcu_read_unlock();
839 	blkdev_put_no_open(ctx->bdev);
840 }
841 EXPORT_SYMBOL_GPL(blkg_conf_finish);
842 
843 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
844 {
845 	int i;
846 
847 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
848 		dst->bytes[i] = src->bytes[i];
849 		dst->ios[i] = src->ios[i];
850 	}
851 }
852 
853 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
854 {
855 	int i;
856 
857 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
858 		dst->bytes[i] += src->bytes[i];
859 		dst->ios[i] += src->ios[i];
860 	}
861 }
862 
863 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
864 {
865 	int i;
866 
867 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
868 		dst->bytes[i] -= src->bytes[i];
869 		dst->ios[i] -= src->ios[i];
870 	}
871 }
872 
873 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
874 				struct blkg_iostat *last)
875 {
876 	struct blkg_iostat delta;
877 	unsigned long flags;
878 
879 	/* propagate percpu delta to global */
880 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
881 	blkg_iostat_set(&delta, cur);
882 	blkg_iostat_sub(&delta, last);
883 	blkg_iostat_add(&blkg->iostat.cur, &delta);
884 	blkg_iostat_add(last, &delta);
885 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
886 }
887 
888 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
889 {
890 	struct blkcg *blkcg = css_to_blkcg(css);
891 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
892 	struct llist_node *lnode;
893 	struct blkg_iostat_set *bisc, *next_bisc;
894 
895 	/* Root-level stats are sourced from system-wide IO stats */
896 	if (!cgroup_parent(css->cgroup))
897 		return;
898 
899 	rcu_read_lock();
900 
901 	lnode = llist_del_all(lhead);
902 	if (!lnode)
903 		goto out;
904 
905 	/*
906 	 * Iterate only the iostat_cpu's queued in the lockless list.
907 	 */
908 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
909 		struct blkcg_gq *blkg = bisc->blkg;
910 		struct blkcg_gq *parent = blkg->parent;
911 		struct blkg_iostat cur;
912 		unsigned int seq;
913 
914 		WRITE_ONCE(bisc->lqueued, false);
915 
916 		/* fetch the current per-cpu values */
917 		do {
918 			seq = u64_stats_fetch_begin(&bisc->sync);
919 			blkg_iostat_set(&cur, &bisc->cur);
920 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
921 
922 		blkcg_iostat_update(blkg, &cur, &bisc->last);
923 
924 		/* propagate global delta to parent (unless that's root) */
925 		if (parent && parent->parent)
926 			blkcg_iostat_update(parent, &blkg->iostat.cur,
927 					    &blkg->iostat.last);
928 		percpu_ref_put(&blkg->refcnt);
929 	}
930 
931 out:
932 	rcu_read_unlock();
933 }
934 
935 /*
936  * We source root cgroup stats from the system-wide stats to avoid
937  * tracking the same information twice and incurring overhead when no
938  * cgroups are defined. For that reason, cgroup_rstat_flush in
939  * blkcg_print_stat does not actually fill out the iostat in the root
940  * cgroup's blkcg_gq.
941  *
942  * However, we would like to re-use the printing code between the root and
943  * non-root cgroups to the extent possible. For that reason, we simulate
944  * flushing the root cgroup's stats by explicitly filling in the iostat
945  * with disk level statistics.
946  */
947 static void blkcg_fill_root_iostats(void)
948 {
949 	struct class_dev_iter iter;
950 	struct device *dev;
951 
952 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
953 	while ((dev = class_dev_iter_next(&iter))) {
954 		struct block_device *bdev = dev_to_bdev(dev);
955 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
956 		struct blkg_iostat tmp;
957 		int cpu;
958 		unsigned long flags;
959 
960 		memset(&tmp, 0, sizeof(tmp));
961 		for_each_possible_cpu(cpu) {
962 			struct disk_stats *cpu_dkstats;
963 
964 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
965 			tmp.ios[BLKG_IOSTAT_READ] +=
966 				cpu_dkstats->ios[STAT_READ];
967 			tmp.ios[BLKG_IOSTAT_WRITE] +=
968 				cpu_dkstats->ios[STAT_WRITE];
969 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
970 				cpu_dkstats->ios[STAT_DISCARD];
971 			// convert sectors to bytes
972 			tmp.bytes[BLKG_IOSTAT_READ] +=
973 				cpu_dkstats->sectors[STAT_READ] << 9;
974 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
975 				cpu_dkstats->sectors[STAT_WRITE] << 9;
976 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
977 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
978 		}
979 
980 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
981 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
982 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
983 	}
984 }
985 
986 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
987 {
988 	struct blkg_iostat_set *bis = &blkg->iostat;
989 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
990 	const char *dname;
991 	unsigned seq;
992 	int i;
993 
994 	if (!blkg->online)
995 		return;
996 
997 	dname = blkg_dev_name(blkg);
998 	if (!dname)
999 		return;
1000 
1001 	seq_printf(s, "%s ", dname);
1002 
1003 	do {
1004 		seq = u64_stats_fetch_begin(&bis->sync);
1005 
1006 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1007 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1008 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1009 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1010 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1011 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1012 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1013 
1014 	if (rbytes || wbytes || rios || wios) {
1015 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1016 			rbytes, wbytes, rios, wios,
1017 			dbytes, dios);
1018 	}
1019 
1020 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1021 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1022 			atomic_read(&blkg->use_delay),
1023 			atomic64_read(&blkg->delay_nsec));
1024 	}
1025 
1026 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1027 		struct blkcg_policy *pol = blkcg_policy[i];
1028 
1029 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1030 			continue;
1031 
1032 		pol->pd_stat_fn(blkg->pd[i], s);
1033 	}
1034 
1035 	seq_puts(s, "\n");
1036 }
1037 
1038 static int blkcg_print_stat(struct seq_file *sf, void *v)
1039 {
1040 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1041 	struct blkcg_gq *blkg;
1042 
1043 	if (!seq_css(sf)->parent)
1044 		blkcg_fill_root_iostats();
1045 	else
1046 		cgroup_rstat_flush(blkcg->css.cgroup);
1047 
1048 	rcu_read_lock();
1049 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1050 		spin_lock_irq(&blkg->q->queue_lock);
1051 		blkcg_print_one_stat(blkg, sf);
1052 		spin_unlock_irq(&blkg->q->queue_lock);
1053 	}
1054 	rcu_read_unlock();
1055 	return 0;
1056 }
1057 
1058 static struct cftype blkcg_files[] = {
1059 	{
1060 		.name = "stat",
1061 		.seq_show = blkcg_print_stat,
1062 	},
1063 	{ }	/* terminate */
1064 };
1065 
1066 static struct cftype blkcg_legacy_files[] = {
1067 	{
1068 		.name = "reset_stats",
1069 		.write_u64 = blkcg_reset_stats,
1070 	},
1071 	{ }	/* terminate */
1072 };
1073 
1074 #ifdef CONFIG_CGROUP_WRITEBACK
1075 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1076 {
1077 	return &css_to_blkcg(css)->cgwb_list;
1078 }
1079 #endif
1080 
1081 /*
1082  * blkcg destruction is a three-stage process.
1083  *
1084  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1085  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1086  *    to the completion of writeback associated with the blkcg.  This lets us
1087  *    avoid punting potentially large amounts of outstanding writeback to root
1088  *    while maintaining any ongoing policies.  The next stage is triggered when
1089  *    the nr_cgwbs count goes to zero.
1090  *
1091  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1092  *    and handles the destruction of blkgs.  Here the css reference held by
1093  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1094  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1095  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1096  *    punted to the root_blkg.
1097  *
1098  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1099  *    This finally frees the blkcg.
1100  */
1101 
1102 /**
1103  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1104  * @blkcg: blkcg of interest
1105  *
1106  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1107  * is nested inside q lock, this function performs reverse double lock dancing.
1108  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1109  * blkcg_css_free to eventually be called.
1110  *
1111  * This is the blkcg counterpart of ioc_release_fn().
1112  */
1113 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1114 {
1115 	might_sleep();
1116 
1117 	spin_lock_irq(&blkcg->lock);
1118 
1119 	while (!hlist_empty(&blkcg->blkg_list)) {
1120 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1121 						struct blkcg_gq, blkcg_node);
1122 		struct request_queue *q = blkg->q;
1123 
1124 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1125 			/*
1126 			 * Given that the system can accumulate a huge number
1127 			 * of blkgs in pathological cases, check to see if we
1128 			 * need to rescheduling to avoid softlockup.
1129 			 */
1130 			spin_unlock_irq(&blkcg->lock);
1131 			cond_resched();
1132 			spin_lock_irq(&blkcg->lock);
1133 			continue;
1134 		}
1135 
1136 		blkg_destroy(blkg);
1137 		spin_unlock(&q->queue_lock);
1138 	}
1139 
1140 	spin_unlock_irq(&blkcg->lock);
1141 }
1142 
1143 /**
1144  * blkcg_pin_online - pin online state
1145  * @blkcg_css: blkcg of interest
1146  *
1147  * While pinned, a blkcg is kept online.  This is primarily used to
1148  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1149  * while an associated cgwb is still active.
1150  */
1151 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1152 {
1153 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1154 }
1155 
1156 /**
1157  * blkcg_unpin_online - unpin online state
1158  * @blkcg_css: blkcg of interest
1159  *
1160  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1161  * that blkg doesn't go offline while an associated cgwb is still active.
1162  * When this count goes to zero, all active cgwbs have finished so the
1163  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1164  */
1165 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1166 {
1167 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1168 
1169 	do {
1170 		if (!refcount_dec_and_test(&blkcg->online_pin))
1171 			break;
1172 		blkcg_destroy_blkgs(blkcg);
1173 		blkcg = blkcg_parent(blkcg);
1174 	} while (blkcg);
1175 }
1176 
1177 /**
1178  * blkcg_css_offline - cgroup css_offline callback
1179  * @css: css of interest
1180  *
1181  * This function is called when @css is about to go away.  Here the cgwbs are
1182  * offlined first and only once writeback associated with the blkcg has
1183  * finished do we start step 2 (see above).
1184  */
1185 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1186 {
1187 	/* this prevents anyone from attaching or migrating to this blkcg */
1188 	wb_blkcg_offline(css);
1189 
1190 	/* put the base online pin allowing step 2 to be triggered */
1191 	blkcg_unpin_online(css);
1192 }
1193 
1194 static void blkcg_css_free(struct cgroup_subsys_state *css)
1195 {
1196 	struct blkcg *blkcg = css_to_blkcg(css);
1197 	int i;
1198 
1199 	mutex_lock(&blkcg_pol_mutex);
1200 
1201 	list_del(&blkcg->all_blkcgs_node);
1202 
1203 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1204 		if (blkcg->cpd[i])
1205 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1206 
1207 	mutex_unlock(&blkcg_pol_mutex);
1208 
1209 	free_percpu(blkcg->lhead);
1210 	kfree(blkcg);
1211 }
1212 
1213 static struct cgroup_subsys_state *
1214 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1215 {
1216 	struct blkcg *blkcg;
1217 	int i;
1218 
1219 	mutex_lock(&blkcg_pol_mutex);
1220 
1221 	if (!parent_css) {
1222 		blkcg = &blkcg_root;
1223 	} else {
1224 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1225 		if (!blkcg)
1226 			goto unlock;
1227 	}
1228 
1229 	if (init_blkcg_llists(blkcg))
1230 		goto free_blkcg;
1231 
1232 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1233 		struct blkcg_policy *pol = blkcg_policy[i];
1234 		struct blkcg_policy_data *cpd;
1235 
1236 		/*
1237 		 * If the policy hasn't been attached yet, wait for it
1238 		 * to be attached before doing anything else. Otherwise,
1239 		 * check if the policy requires any specific per-cgroup
1240 		 * data: if it does, allocate and initialize it.
1241 		 */
1242 		if (!pol || !pol->cpd_alloc_fn)
1243 			continue;
1244 
1245 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1246 		if (!cpd)
1247 			goto free_pd_blkcg;
1248 
1249 		blkcg->cpd[i] = cpd;
1250 		cpd->blkcg = blkcg;
1251 		cpd->plid = i;
1252 		if (pol->cpd_init_fn)
1253 			pol->cpd_init_fn(cpd);
1254 	}
1255 
1256 	spin_lock_init(&blkcg->lock);
1257 	refcount_set(&blkcg->online_pin, 1);
1258 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1259 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1260 #ifdef CONFIG_CGROUP_WRITEBACK
1261 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1262 #endif
1263 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1264 
1265 	mutex_unlock(&blkcg_pol_mutex);
1266 	return &blkcg->css;
1267 
1268 free_pd_blkcg:
1269 	for (i--; i >= 0; i--)
1270 		if (blkcg->cpd[i])
1271 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1272 	free_percpu(blkcg->lhead);
1273 free_blkcg:
1274 	if (blkcg != &blkcg_root)
1275 		kfree(blkcg);
1276 unlock:
1277 	mutex_unlock(&blkcg_pol_mutex);
1278 	return ERR_PTR(-ENOMEM);
1279 }
1280 
1281 static int blkcg_css_online(struct cgroup_subsys_state *css)
1282 {
1283 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1284 
1285 	/*
1286 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1287 	 * don't go offline while cgwbs are still active on them.  Pin the
1288 	 * parent so that offline always happens towards the root.
1289 	 */
1290 	if (parent)
1291 		blkcg_pin_online(&parent->css);
1292 	return 0;
1293 }
1294 
1295 int blkcg_init_disk(struct gendisk *disk)
1296 {
1297 	struct request_queue *q = disk->queue;
1298 	struct blkcg_gq *new_blkg, *blkg;
1299 	bool preloaded;
1300 	int ret;
1301 
1302 	INIT_LIST_HEAD(&q->blkg_list);
1303 	mutex_init(&q->blkcg_mutex);
1304 
1305 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1306 	if (!new_blkg)
1307 		return -ENOMEM;
1308 
1309 	preloaded = !radix_tree_preload(GFP_KERNEL);
1310 
1311 	/* Make sure the root blkg exists. */
1312 	/* spin_lock_irq can serve as RCU read-side critical section. */
1313 	spin_lock_irq(&q->queue_lock);
1314 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1315 	if (IS_ERR(blkg))
1316 		goto err_unlock;
1317 	q->root_blkg = blkg;
1318 	spin_unlock_irq(&q->queue_lock);
1319 
1320 	if (preloaded)
1321 		radix_tree_preload_end();
1322 
1323 	ret = blk_ioprio_init(disk);
1324 	if (ret)
1325 		goto err_destroy_all;
1326 
1327 	ret = blk_throtl_init(disk);
1328 	if (ret)
1329 		goto err_ioprio_exit;
1330 
1331 	ret = blk_iolatency_init(disk);
1332 	if (ret)
1333 		goto err_throtl_exit;
1334 
1335 	return 0;
1336 
1337 err_throtl_exit:
1338 	blk_throtl_exit(disk);
1339 err_ioprio_exit:
1340 	blk_ioprio_exit(disk);
1341 err_destroy_all:
1342 	blkg_destroy_all(disk);
1343 	return ret;
1344 err_unlock:
1345 	spin_unlock_irq(&q->queue_lock);
1346 	if (preloaded)
1347 		radix_tree_preload_end();
1348 	return PTR_ERR(blkg);
1349 }
1350 
1351 void blkcg_exit_disk(struct gendisk *disk)
1352 {
1353 	blkg_destroy_all(disk);
1354 	rq_qos_exit(disk->queue);
1355 	blk_throtl_exit(disk);
1356 }
1357 
1358 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1359 {
1360 	int i;
1361 
1362 	mutex_lock(&blkcg_pol_mutex);
1363 
1364 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1365 		struct blkcg_policy *pol = blkcg_policy[i];
1366 		struct blkcg *blkcg;
1367 
1368 		if (!pol || !pol->cpd_bind_fn)
1369 			continue;
1370 
1371 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1372 			if (blkcg->cpd[pol->plid])
1373 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1374 	}
1375 	mutex_unlock(&blkcg_pol_mutex);
1376 }
1377 
1378 static void blkcg_exit(struct task_struct *tsk)
1379 {
1380 	if (tsk->throttle_disk)
1381 		put_disk(tsk->throttle_disk);
1382 	tsk->throttle_disk = NULL;
1383 }
1384 
1385 struct cgroup_subsys io_cgrp_subsys = {
1386 	.css_alloc = blkcg_css_alloc,
1387 	.css_online = blkcg_css_online,
1388 	.css_offline = blkcg_css_offline,
1389 	.css_free = blkcg_css_free,
1390 	.css_rstat_flush = blkcg_rstat_flush,
1391 	.bind = blkcg_bind,
1392 	.dfl_cftypes = blkcg_files,
1393 	.legacy_cftypes = blkcg_legacy_files,
1394 	.legacy_name = "blkio",
1395 	.exit = blkcg_exit,
1396 #ifdef CONFIG_MEMCG
1397 	/*
1398 	 * This ensures that, if available, memcg is automatically enabled
1399 	 * together on the default hierarchy so that the owner cgroup can
1400 	 * be retrieved from writeback pages.
1401 	 */
1402 	.depends_on = 1 << memory_cgrp_id,
1403 #endif
1404 };
1405 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1406 
1407 /**
1408  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1409  * @disk: gendisk of interest
1410  * @pol: blkcg policy to activate
1411  *
1412  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1413  * bypass mode to populate its blkgs with policy_data for @pol.
1414  *
1415  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1416  * from IO path.  Update of each blkg is protected by both queue and blkcg
1417  * locks so that holding either lock and testing blkcg_policy_enabled() is
1418  * always enough for dereferencing policy data.
1419  *
1420  * The caller is responsible for synchronizing [de]activations and policy
1421  * [un]registerations.  Returns 0 on success, -errno on failure.
1422  */
1423 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1424 {
1425 	struct request_queue *q = disk->queue;
1426 	struct blkg_policy_data *pd_prealloc = NULL;
1427 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1428 	int ret;
1429 
1430 	if (blkcg_policy_enabled(q, pol))
1431 		return 0;
1432 
1433 	if (queue_is_mq(q))
1434 		blk_mq_freeze_queue(q);
1435 retry:
1436 	spin_lock_irq(&q->queue_lock);
1437 
1438 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1439 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1440 		struct blkg_policy_data *pd;
1441 
1442 		if (blkg->pd[pol->plid])
1443 			continue;
1444 
1445 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1446 		if (blkg == pinned_blkg) {
1447 			pd = pd_prealloc;
1448 			pd_prealloc = NULL;
1449 		} else {
1450 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1451 					      GFP_NOWAIT | __GFP_NOWARN);
1452 		}
1453 
1454 		if (!pd) {
1455 			/*
1456 			 * GFP_NOWAIT failed.  Free the existing one and
1457 			 * prealloc for @blkg w/ GFP_KERNEL.
1458 			 */
1459 			if (pinned_blkg)
1460 				blkg_put(pinned_blkg);
1461 			blkg_get(blkg);
1462 			pinned_blkg = blkg;
1463 
1464 			spin_unlock_irq(&q->queue_lock);
1465 
1466 			if (pd_prealloc)
1467 				pol->pd_free_fn(pd_prealloc);
1468 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1469 						       GFP_KERNEL);
1470 			if (pd_prealloc)
1471 				goto retry;
1472 			else
1473 				goto enomem;
1474 		}
1475 
1476 		blkg->pd[pol->plid] = pd;
1477 		pd->blkg = blkg;
1478 		pd->plid = pol->plid;
1479 		pd->online = false;
1480 	}
1481 
1482 	/* all allocated, init in the same order */
1483 	if (pol->pd_init_fn)
1484 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1485 			pol->pd_init_fn(blkg->pd[pol->plid]);
1486 
1487 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1488 		if (pol->pd_online_fn)
1489 			pol->pd_online_fn(blkg->pd[pol->plid]);
1490 		blkg->pd[pol->plid]->online = true;
1491 	}
1492 
1493 	__set_bit(pol->plid, q->blkcg_pols);
1494 	ret = 0;
1495 
1496 	spin_unlock_irq(&q->queue_lock);
1497 out:
1498 	if (queue_is_mq(q))
1499 		blk_mq_unfreeze_queue(q);
1500 	if (pinned_blkg)
1501 		blkg_put(pinned_blkg);
1502 	if (pd_prealloc)
1503 		pol->pd_free_fn(pd_prealloc);
1504 	return ret;
1505 
1506 enomem:
1507 	/* alloc failed, nothing's initialized yet, free everything */
1508 	spin_lock_irq(&q->queue_lock);
1509 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1510 		struct blkcg *blkcg = blkg->blkcg;
1511 
1512 		spin_lock(&blkcg->lock);
1513 		if (blkg->pd[pol->plid]) {
1514 			pol->pd_free_fn(blkg->pd[pol->plid]);
1515 			blkg->pd[pol->plid] = NULL;
1516 		}
1517 		spin_unlock(&blkcg->lock);
1518 	}
1519 	spin_unlock_irq(&q->queue_lock);
1520 	ret = -ENOMEM;
1521 	goto out;
1522 }
1523 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1524 
1525 /**
1526  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1527  * @disk: gendisk of interest
1528  * @pol: blkcg policy to deactivate
1529  *
1530  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1531  * blkcg_activate_policy().
1532  */
1533 void blkcg_deactivate_policy(struct gendisk *disk,
1534 			     const struct blkcg_policy *pol)
1535 {
1536 	struct request_queue *q = disk->queue;
1537 	struct blkcg_gq *blkg;
1538 
1539 	if (!blkcg_policy_enabled(q, pol))
1540 		return;
1541 
1542 	if (queue_is_mq(q))
1543 		blk_mq_freeze_queue(q);
1544 
1545 	mutex_lock(&q->blkcg_mutex);
1546 	spin_lock_irq(&q->queue_lock);
1547 
1548 	__clear_bit(pol->plid, q->blkcg_pols);
1549 
1550 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1551 		struct blkcg *blkcg = blkg->blkcg;
1552 
1553 		spin_lock(&blkcg->lock);
1554 		if (blkg->pd[pol->plid]) {
1555 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1556 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1557 			pol->pd_free_fn(blkg->pd[pol->plid]);
1558 			blkg->pd[pol->plid] = NULL;
1559 		}
1560 		spin_unlock(&blkcg->lock);
1561 	}
1562 
1563 	spin_unlock_irq(&q->queue_lock);
1564 	mutex_unlock(&q->blkcg_mutex);
1565 
1566 	if (queue_is_mq(q))
1567 		blk_mq_unfreeze_queue(q);
1568 }
1569 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1570 
1571 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1572 {
1573 	struct blkcg *blkcg;
1574 
1575 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1576 		if (blkcg->cpd[pol->plid]) {
1577 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1578 			blkcg->cpd[pol->plid] = NULL;
1579 		}
1580 	}
1581 }
1582 
1583 /**
1584  * blkcg_policy_register - register a blkcg policy
1585  * @pol: blkcg policy to register
1586  *
1587  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1588  * successful registration.  Returns 0 on success and -errno on failure.
1589  */
1590 int blkcg_policy_register(struct blkcg_policy *pol)
1591 {
1592 	struct blkcg *blkcg;
1593 	int i, ret;
1594 
1595 	mutex_lock(&blkcg_pol_register_mutex);
1596 	mutex_lock(&blkcg_pol_mutex);
1597 
1598 	/* find an empty slot */
1599 	ret = -ENOSPC;
1600 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1601 		if (!blkcg_policy[i])
1602 			break;
1603 	if (i >= BLKCG_MAX_POLS) {
1604 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1605 		goto err_unlock;
1606 	}
1607 
1608 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1609 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1610 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1611 		goto err_unlock;
1612 
1613 	/* register @pol */
1614 	pol->plid = i;
1615 	blkcg_policy[pol->plid] = pol;
1616 
1617 	/* allocate and install cpd's */
1618 	if (pol->cpd_alloc_fn) {
1619 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1620 			struct blkcg_policy_data *cpd;
1621 
1622 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1623 			if (!cpd)
1624 				goto err_free_cpds;
1625 
1626 			blkcg->cpd[pol->plid] = cpd;
1627 			cpd->blkcg = blkcg;
1628 			cpd->plid = pol->plid;
1629 			if (pol->cpd_init_fn)
1630 				pol->cpd_init_fn(cpd);
1631 		}
1632 	}
1633 
1634 	mutex_unlock(&blkcg_pol_mutex);
1635 
1636 	/* everything is in place, add intf files for the new policy */
1637 	if (pol->dfl_cftypes)
1638 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1639 					       pol->dfl_cftypes));
1640 	if (pol->legacy_cftypes)
1641 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1642 						  pol->legacy_cftypes));
1643 	mutex_unlock(&blkcg_pol_register_mutex);
1644 	return 0;
1645 
1646 err_free_cpds:
1647 	if (pol->cpd_free_fn)
1648 		blkcg_free_all_cpd(pol);
1649 
1650 	blkcg_policy[pol->plid] = NULL;
1651 err_unlock:
1652 	mutex_unlock(&blkcg_pol_mutex);
1653 	mutex_unlock(&blkcg_pol_register_mutex);
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1657 
1658 /**
1659  * blkcg_policy_unregister - unregister a blkcg policy
1660  * @pol: blkcg policy to unregister
1661  *
1662  * Undo blkcg_policy_register(@pol).  Might sleep.
1663  */
1664 void blkcg_policy_unregister(struct blkcg_policy *pol)
1665 {
1666 	mutex_lock(&blkcg_pol_register_mutex);
1667 
1668 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1669 		goto out_unlock;
1670 
1671 	/* kill the intf files first */
1672 	if (pol->dfl_cftypes)
1673 		cgroup_rm_cftypes(pol->dfl_cftypes);
1674 	if (pol->legacy_cftypes)
1675 		cgroup_rm_cftypes(pol->legacy_cftypes);
1676 
1677 	/* remove cpds and unregister */
1678 	mutex_lock(&blkcg_pol_mutex);
1679 
1680 	if (pol->cpd_free_fn)
1681 		blkcg_free_all_cpd(pol);
1682 
1683 	blkcg_policy[pol->plid] = NULL;
1684 
1685 	mutex_unlock(&blkcg_pol_mutex);
1686 out_unlock:
1687 	mutex_unlock(&blkcg_pol_register_mutex);
1688 }
1689 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1690 
1691 bool __blkcg_punt_bio_submit(struct bio *bio)
1692 {
1693 	struct blkcg_gq *blkg = bio->bi_blkg;
1694 
1695 	/* consume the flag first */
1696 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1697 
1698 	/* never bounce for the root cgroup */
1699 	if (!blkg->parent)
1700 		return false;
1701 
1702 	spin_lock_bh(&blkg->async_bio_lock);
1703 	bio_list_add(&blkg->async_bios, bio);
1704 	spin_unlock_bh(&blkg->async_bio_lock);
1705 
1706 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1707 	return true;
1708 }
1709 
1710 /*
1711  * Scale the accumulated delay based on how long it has been since we updated
1712  * the delay.  We only call this when we are adding delay, in case it's been a
1713  * while since we added delay, and when we are checking to see if we need to
1714  * delay a task, to account for any delays that may have occurred.
1715  */
1716 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1717 {
1718 	u64 old = atomic64_read(&blkg->delay_start);
1719 
1720 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1721 	if (atomic_read(&blkg->use_delay) < 0)
1722 		return;
1723 
1724 	/*
1725 	 * We only want to scale down every second.  The idea here is that we
1726 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1727 	 * time window.  We only want to throttle tasks for recent delay that
1728 	 * has occurred, in 1 second time windows since that's the maximum
1729 	 * things can be throttled.  We save the current delay window in
1730 	 * blkg->last_delay so we know what amount is still left to be charged
1731 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1732 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1733 	 * are ok with whatever is happening now, and we can take away more of
1734 	 * the accumulated delay as we've already throttled enough that
1735 	 * everybody is happy with their IO latencies.
1736 	 */
1737 	if (time_before64(old + NSEC_PER_SEC, now) &&
1738 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1739 		u64 cur = atomic64_read(&blkg->delay_nsec);
1740 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1741 		int cur_use = atomic_read(&blkg->use_delay);
1742 
1743 		/*
1744 		 * We've been unthrottled, subtract a larger chunk of our
1745 		 * accumulated delay.
1746 		 */
1747 		if (cur_use < blkg->last_use)
1748 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1749 
1750 		/*
1751 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1752 		 * should only ever be growing except here where we subtract out
1753 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1754 		 * rather not end up with negative numbers.
1755 		 */
1756 		if (unlikely(cur < sub)) {
1757 			atomic64_set(&blkg->delay_nsec, 0);
1758 			blkg->last_delay = 0;
1759 		} else {
1760 			atomic64_sub(sub, &blkg->delay_nsec);
1761 			blkg->last_delay = cur - sub;
1762 		}
1763 		blkg->last_use = cur_use;
1764 	}
1765 }
1766 
1767 /*
1768  * This is called when we want to actually walk up the hierarchy and check to
1769  * see if we need to throttle, and then actually throttle if there is some
1770  * accumulated delay.  This should only be called upon return to user space so
1771  * we're not holding some lock that would induce a priority inversion.
1772  */
1773 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1774 {
1775 	unsigned long pflags;
1776 	bool clamp;
1777 	u64 now = ktime_to_ns(ktime_get());
1778 	u64 exp;
1779 	u64 delay_nsec = 0;
1780 	int tok;
1781 
1782 	while (blkg->parent) {
1783 		int use_delay = atomic_read(&blkg->use_delay);
1784 
1785 		if (use_delay) {
1786 			u64 this_delay;
1787 
1788 			blkcg_scale_delay(blkg, now);
1789 			this_delay = atomic64_read(&blkg->delay_nsec);
1790 			if (this_delay > delay_nsec) {
1791 				delay_nsec = this_delay;
1792 				clamp = use_delay > 0;
1793 			}
1794 		}
1795 		blkg = blkg->parent;
1796 	}
1797 
1798 	if (!delay_nsec)
1799 		return;
1800 
1801 	/*
1802 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1803 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1804 	 * delay, and we want userspace to be able to do _something_ so cap the
1805 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1806 	 * tasks will be delayed for 0.25 second for every syscall. If
1807 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1808 	 * caller is responsible for regulating the range.
1809 	 */
1810 	if (clamp)
1811 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1812 
1813 	if (use_memdelay)
1814 		psi_memstall_enter(&pflags);
1815 
1816 	exp = ktime_add_ns(now, delay_nsec);
1817 	tok = io_schedule_prepare();
1818 	do {
1819 		__set_current_state(TASK_KILLABLE);
1820 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1821 			break;
1822 	} while (!fatal_signal_pending(current));
1823 	io_schedule_finish(tok);
1824 
1825 	if (use_memdelay)
1826 		psi_memstall_leave(&pflags);
1827 }
1828 
1829 /**
1830  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1831  *
1832  * This is only called if we've been marked with set_notify_resume().  Obviously
1833  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1834  * check to see if current->throttle_disk is set and if not this doesn't do
1835  * anything.  This should only ever be called by the resume code, it's not meant
1836  * to be called by people willy-nilly as it will actually do the work to
1837  * throttle the task if it is setup for throttling.
1838  */
1839 void blkcg_maybe_throttle_current(void)
1840 {
1841 	struct gendisk *disk = current->throttle_disk;
1842 	struct blkcg *blkcg;
1843 	struct blkcg_gq *blkg;
1844 	bool use_memdelay = current->use_memdelay;
1845 
1846 	if (!disk)
1847 		return;
1848 
1849 	current->throttle_disk = NULL;
1850 	current->use_memdelay = false;
1851 
1852 	rcu_read_lock();
1853 	blkcg = css_to_blkcg(blkcg_css());
1854 	if (!blkcg)
1855 		goto out;
1856 	blkg = blkg_lookup(blkcg, disk->queue);
1857 	if (!blkg)
1858 		goto out;
1859 	if (!blkg_tryget(blkg))
1860 		goto out;
1861 	rcu_read_unlock();
1862 
1863 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1864 	blkg_put(blkg);
1865 	put_disk(disk);
1866 	return;
1867 out:
1868 	rcu_read_unlock();
1869 }
1870 
1871 /**
1872  * blkcg_schedule_throttle - this task needs to check for throttling
1873  * @disk: disk to throttle
1874  * @use_memdelay: do we charge this to memory delay for PSI
1875  *
1876  * This is called by the IO controller when we know there's delay accumulated
1877  * for the blkg for this task.  We do not pass the blkg because there are places
1878  * we call this that may not have that information, the swapping code for
1879  * instance will only have a block_device at that point.  This set's the
1880  * notify_resume for the task to check and see if it requires throttling before
1881  * returning to user space.
1882  *
1883  * We will only schedule once per syscall.  You can call this over and over
1884  * again and it will only do the check once upon return to user space, and only
1885  * throttle once.  If the task needs to be throttled again it'll need to be
1886  * re-set at the next time we see the task.
1887  */
1888 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1889 {
1890 	if (unlikely(current->flags & PF_KTHREAD))
1891 		return;
1892 
1893 	if (current->throttle_disk != disk) {
1894 		if (test_bit(GD_DEAD, &disk->state))
1895 			return;
1896 		get_device(disk_to_dev(disk));
1897 
1898 		if (current->throttle_disk)
1899 			put_disk(current->throttle_disk);
1900 		current->throttle_disk = disk;
1901 	}
1902 
1903 	if (use_memdelay)
1904 		current->use_memdelay = use_memdelay;
1905 	set_notify_resume(current);
1906 }
1907 
1908 /**
1909  * blkcg_add_delay - add delay to this blkg
1910  * @blkg: blkg of interest
1911  * @now: the current time in nanoseconds
1912  * @delta: how many nanoseconds of delay to add
1913  *
1914  * Charge @delta to the blkg's current delay accumulation.  This is used to
1915  * throttle tasks if an IO controller thinks we need more throttling.
1916  */
1917 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1918 {
1919 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1920 		return;
1921 	blkcg_scale_delay(blkg, now);
1922 	atomic64_add(delta, &blkg->delay_nsec);
1923 }
1924 
1925 /**
1926  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1927  * @bio: target bio
1928  * @css: target css
1929  *
1930  * As the failure mode here is to walk up the blkg tree, this ensure that the
1931  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1932  * up taking a reference on or %NULL if no reference was taken.
1933  */
1934 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1935 		struct cgroup_subsys_state *css)
1936 {
1937 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1938 
1939 	rcu_read_lock();
1940 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1941 	while (blkg) {
1942 		if (blkg_tryget(blkg)) {
1943 			ret_blkg = blkg;
1944 			break;
1945 		}
1946 		blkg = blkg->parent;
1947 	}
1948 	rcu_read_unlock();
1949 
1950 	return ret_blkg;
1951 }
1952 
1953 /**
1954  * bio_associate_blkg_from_css - associate a bio with a specified css
1955  * @bio: target bio
1956  * @css: target css
1957  *
1958  * Associate @bio with the blkg found by combining the css's blkg and the
1959  * request_queue of the @bio.  An association failure is handled by walking up
1960  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1961  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1962  * then the remaining bios will spill to the closest alive blkg.
1963  *
1964  * A reference will be taken on the blkg and will be released when @bio is
1965  * freed.
1966  */
1967 void bio_associate_blkg_from_css(struct bio *bio,
1968 				 struct cgroup_subsys_state *css)
1969 {
1970 	if (bio->bi_blkg)
1971 		blkg_put(bio->bi_blkg);
1972 
1973 	if (css && css->parent) {
1974 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1975 	} else {
1976 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1977 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1978 	}
1979 }
1980 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1981 
1982 /**
1983  * bio_associate_blkg - associate a bio with a blkg
1984  * @bio: target bio
1985  *
1986  * Associate @bio with the blkg found from the bio's css and request_queue.
1987  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1988  * already associated, the css is reused and association redone as the
1989  * request_queue may have changed.
1990  */
1991 void bio_associate_blkg(struct bio *bio)
1992 {
1993 	struct cgroup_subsys_state *css;
1994 
1995 	rcu_read_lock();
1996 
1997 	if (bio->bi_blkg)
1998 		css = bio_blkcg_css(bio);
1999 	else
2000 		css = blkcg_css();
2001 
2002 	bio_associate_blkg_from_css(bio, css);
2003 
2004 	rcu_read_unlock();
2005 }
2006 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2007 
2008 /**
2009  * bio_clone_blkg_association - clone blkg association from src to dst bio
2010  * @dst: destination bio
2011  * @src: source bio
2012  */
2013 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2014 {
2015 	if (src->bi_blkg)
2016 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2017 }
2018 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2019 
2020 static int blk_cgroup_io_type(struct bio *bio)
2021 {
2022 	if (op_is_discard(bio->bi_opf))
2023 		return BLKG_IOSTAT_DISCARD;
2024 	if (op_is_write(bio->bi_opf))
2025 		return BLKG_IOSTAT_WRITE;
2026 	return BLKG_IOSTAT_READ;
2027 }
2028 
2029 void blk_cgroup_bio_start(struct bio *bio)
2030 {
2031 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2032 	int rwd = blk_cgroup_io_type(bio), cpu;
2033 	struct blkg_iostat_set *bis;
2034 	unsigned long flags;
2035 
2036 	/* Root-level stats are sourced from system-wide IO stats */
2037 	if (!cgroup_parent(blkcg->css.cgroup))
2038 		return;
2039 
2040 	cpu = get_cpu();
2041 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2042 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2043 
2044 	/*
2045 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2046 	 * bio and we would have already accounted for the size of the bio.
2047 	 */
2048 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2049 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2050 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2051 	}
2052 	bis->cur.ios[rwd]++;
2053 
2054 	/*
2055 	 * If the iostat_cpu isn't in a lockless list, put it into the
2056 	 * list to indicate that a stat update is pending.
2057 	 */
2058 	if (!READ_ONCE(bis->lqueued)) {
2059 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2060 
2061 		llist_add(&bis->lnode, lhead);
2062 		WRITE_ONCE(bis->lqueued, true);
2063 		percpu_ref_get(&bis->blkg->refcnt);
2064 	}
2065 
2066 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2067 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2068 		cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2069 	put_cpu();
2070 }
2071 
2072 bool blk_cgroup_congested(void)
2073 {
2074 	struct cgroup_subsys_state *css;
2075 	bool ret = false;
2076 
2077 	rcu_read_lock();
2078 	for (css = blkcg_css(); css; css = css->parent) {
2079 		if (atomic_read(&css->cgroup->congestion_count)) {
2080 			ret = true;
2081 			break;
2082 		}
2083 	}
2084 	rcu_read_unlock();
2085 	return ret;
2086 }
2087 
2088 static int __init blkcg_init(void)
2089 {
2090 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
2091 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
2092 					    WQ_UNBOUND | WQ_SYSFS, 0);
2093 	if (!blkcg_punt_bio_wq)
2094 		return -ENOMEM;
2095 	return 0;
2096 }
2097 subsys_initcall(blkcg_init);
2098 
2099 module_param(blkcg_debug_stats, bool, 0644);
2100 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2101