1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 /* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44 static DEFINE_MUTEX(blkcg_pol_register_mutex); 45 static DEFINE_MUTEX(blkcg_pol_mutex); 46 47 struct blkcg blkcg_root; 48 EXPORT_SYMBOL_GPL(blkcg_root); 49 50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51 EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57 bool blkcg_debug_stats = false; 58 static struct workqueue_struct *blkcg_punt_bio_wq; 59 60 #define BLKG_DESTROY_BATCH_SIZE 64 61 62 /** 63 * blkcg_css - find the current css 64 * 65 * Find the css associated with either the kthread or the current task. 66 * This may return a dying css, so it is up to the caller to use tryget logic 67 * to confirm it is alive and well. 68 */ 69 static struct cgroup_subsys_state *blkcg_css(void) 70 { 71 struct cgroup_subsys_state *css; 72 73 css = kthread_blkcg(); 74 if (css) 75 return css; 76 return task_css(current, io_cgrp_id); 77 } 78 79 static bool blkcg_policy_enabled(struct request_queue *q, 80 const struct blkcg_policy *pol) 81 { 82 return pol && test_bit(pol->plid, q->blkcg_pols); 83 } 84 85 static void blkg_free_workfn(struct work_struct *work) 86 { 87 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 88 free_work); 89 int i; 90 91 for (i = 0; i < BLKCG_MAX_POLS; i++) 92 if (blkg->pd[i]) 93 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 94 95 if (blkg->q) 96 blk_put_queue(blkg->q); 97 free_percpu(blkg->iostat_cpu); 98 percpu_ref_exit(&blkg->refcnt); 99 kfree(blkg); 100 } 101 102 /** 103 * blkg_free - free a blkg 104 * @blkg: blkg to free 105 * 106 * Free @blkg which may be partially allocated. 107 */ 108 static void blkg_free(struct blkcg_gq *blkg) 109 { 110 if (!blkg) 111 return; 112 113 /* 114 * Both ->pd_free_fn() and request queue's release handler may 115 * sleep, so free us by scheduling one work func 116 */ 117 INIT_WORK(&blkg->free_work, blkg_free_workfn); 118 schedule_work(&blkg->free_work); 119 } 120 121 static void __blkg_release(struct rcu_head *rcu) 122 { 123 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 124 125 WARN_ON(!bio_list_empty(&blkg->async_bios)); 126 127 /* release the blkcg and parent blkg refs this blkg has been holding */ 128 css_put(&blkg->blkcg->css); 129 if (blkg->parent) 130 blkg_put(blkg->parent); 131 blkg_free(blkg); 132 } 133 134 /* 135 * A group is RCU protected, but having an rcu lock does not mean that one 136 * can access all the fields of blkg and assume these are valid. For 137 * example, don't try to follow throtl_data and request queue links. 138 * 139 * Having a reference to blkg under an rcu allows accesses to only values 140 * local to groups like group stats and group rate limits. 141 */ 142 static void blkg_release(struct percpu_ref *ref) 143 { 144 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 145 146 call_rcu(&blkg->rcu_head, __blkg_release); 147 } 148 149 static void blkg_async_bio_workfn(struct work_struct *work) 150 { 151 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 152 async_bio_work); 153 struct bio_list bios = BIO_EMPTY_LIST; 154 struct bio *bio; 155 struct blk_plug plug; 156 bool need_plug = false; 157 158 /* as long as there are pending bios, @blkg can't go away */ 159 spin_lock_bh(&blkg->async_bio_lock); 160 bio_list_merge(&bios, &blkg->async_bios); 161 bio_list_init(&blkg->async_bios); 162 spin_unlock_bh(&blkg->async_bio_lock); 163 164 /* start plug only when bio_list contains at least 2 bios */ 165 if (bios.head && bios.head->bi_next) { 166 need_plug = true; 167 blk_start_plug(&plug); 168 } 169 while ((bio = bio_list_pop(&bios))) 170 submit_bio(bio); 171 if (need_plug) 172 blk_finish_plug(&plug); 173 } 174 175 /** 176 * bio_blkcg_css - return the blkcg CSS associated with a bio 177 * @bio: target bio 178 * 179 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 180 * associated. Callers are expected to either handle %NULL or know association 181 * has been done prior to calling this. 182 */ 183 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 184 { 185 if (!bio || !bio->bi_blkg) 186 return NULL; 187 return &bio->bi_blkg->blkcg->css; 188 } 189 EXPORT_SYMBOL_GPL(bio_blkcg_css); 190 191 /** 192 * blkcg_parent - get the parent of a blkcg 193 * @blkcg: blkcg of interest 194 * 195 * Return the parent blkcg of @blkcg. Can be called anytime. 196 */ 197 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 198 { 199 return css_to_blkcg(blkcg->css.parent); 200 } 201 202 /** 203 * blkg_alloc - allocate a blkg 204 * @blkcg: block cgroup the new blkg is associated with 205 * @disk: gendisk the new blkg is associated with 206 * @gfp_mask: allocation mask to use 207 * 208 * Allocate a new blkg assocating @blkcg and @q. 209 */ 210 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 211 gfp_t gfp_mask) 212 { 213 struct blkcg_gq *blkg; 214 int i, cpu; 215 216 /* alloc and init base part */ 217 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 218 if (!blkg) 219 return NULL; 220 221 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 222 goto err_free; 223 224 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 225 if (!blkg->iostat_cpu) 226 goto err_free; 227 228 if (!blk_get_queue(disk->queue)) 229 goto err_free; 230 231 blkg->q = disk->queue; 232 INIT_LIST_HEAD(&blkg->q_node); 233 spin_lock_init(&blkg->async_bio_lock); 234 bio_list_init(&blkg->async_bios); 235 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 236 blkg->blkcg = blkcg; 237 238 u64_stats_init(&blkg->iostat.sync); 239 for_each_possible_cpu(cpu) 240 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 241 242 for (i = 0; i < BLKCG_MAX_POLS; i++) { 243 struct blkcg_policy *pol = blkcg_policy[i]; 244 struct blkg_policy_data *pd; 245 246 if (!blkcg_policy_enabled(disk->queue, pol)) 247 continue; 248 249 /* alloc per-policy data and attach it to blkg */ 250 pd = pol->pd_alloc_fn(gfp_mask, disk->queue, blkcg); 251 if (!pd) 252 goto err_free; 253 254 blkg->pd[i] = pd; 255 pd->blkg = blkg; 256 pd->plid = i; 257 } 258 259 return blkg; 260 261 err_free: 262 blkg_free(blkg); 263 return NULL; 264 } 265 266 /* 267 * If @new_blkg is %NULL, this function tries to allocate a new one as 268 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 269 */ 270 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 271 struct blkcg_gq *new_blkg) 272 { 273 struct blkcg_gq *blkg; 274 int i, ret; 275 276 lockdep_assert_held(&disk->queue->queue_lock); 277 278 /* request_queue is dying, do not create/recreate a blkg */ 279 if (blk_queue_dying(disk->queue)) { 280 ret = -ENODEV; 281 goto err_free_blkg; 282 } 283 284 /* blkg holds a reference to blkcg */ 285 if (!css_tryget_online(&blkcg->css)) { 286 ret = -ENODEV; 287 goto err_free_blkg; 288 } 289 290 /* allocate */ 291 if (!new_blkg) { 292 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 293 if (unlikely(!new_blkg)) { 294 ret = -ENOMEM; 295 goto err_put_css; 296 } 297 } 298 blkg = new_blkg; 299 300 /* link parent */ 301 if (blkcg_parent(blkcg)) { 302 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 303 if (WARN_ON_ONCE(!blkg->parent)) { 304 ret = -ENODEV; 305 goto err_put_css; 306 } 307 blkg_get(blkg->parent); 308 } 309 310 /* invoke per-policy init */ 311 for (i = 0; i < BLKCG_MAX_POLS; i++) { 312 struct blkcg_policy *pol = blkcg_policy[i]; 313 314 if (blkg->pd[i] && pol->pd_init_fn) 315 pol->pd_init_fn(blkg->pd[i]); 316 } 317 318 /* insert */ 319 spin_lock(&blkcg->lock); 320 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 321 if (likely(!ret)) { 322 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 323 list_add(&blkg->q_node, &disk->queue->blkg_list); 324 325 for (i = 0; i < BLKCG_MAX_POLS; i++) { 326 struct blkcg_policy *pol = blkcg_policy[i]; 327 328 if (blkg->pd[i] && pol->pd_online_fn) 329 pol->pd_online_fn(blkg->pd[i]); 330 } 331 } 332 blkg->online = true; 333 spin_unlock(&blkcg->lock); 334 335 if (!ret) 336 return blkg; 337 338 /* @blkg failed fully initialized, use the usual release path */ 339 blkg_put(blkg); 340 return ERR_PTR(ret); 341 342 err_put_css: 343 css_put(&blkcg->css); 344 err_free_blkg: 345 blkg_free(new_blkg); 346 return ERR_PTR(ret); 347 } 348 349 /** 350 * blkg_lookup_create - lookup blkg, try to create one if not there 351 * @blkcg: blkcg of interest 352 * @disk: gendisk of interest 353 * 354 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 355 * create one. blkg creation is performed recursively from blkcg_root such 356 * that all non-root blkg's have access to the parent blkg. This function 357 * should be called under RCU read lock and takes @disk->queue->queue_lock. 358 * 359 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 360 * down from root. 361 */ 362 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 363 struct gendisk *disk) 364 { 365 struct request_queue *q = disk->queue; 366 struct blkcg_gq *blkg; 367 unsigned long flags; 368 369 WARN_ON_ONCE(!rcu_read_lock_held()); 370 371 blkg = blkg_lookup(blkcg, q); 372 if (blkg) 373 return blkg; 374 375 spin_lock_irqsave(&q->queue_lock, flags); 376 blkg = blkg_lookup(blkcg, q); 377 if (blkg) { 378 if (blkcg != &blkcg_root && 379 blkg != rcu_dereference(blkcg->blkg_hint)) 380 rcu_assign_pointer(blkcg->blkg_hint, blkg); 381 goto found; 382 } 383 384 /* 385 * Create blkgs walking down from blkcg_root to @blkcg, so that all 386 * non-root blkgs have access to their parents. Returns the closest 387 * blkg to the intended blkg should blkg_create() fail. 388 */ 389 while (true) { 390 struct blkcg *pos = blkcg; 391 struct blkcg *parent = blkcg_parent(blkcg); 392 struct blkcg_gq *ret_blkg = q->root_blkg; 393 394 while (parent) { 395 blkg = blkg_lookup(parent, q); 396 if (blkg) { 397 /* remember closest blkg */ 398 ret_blkg = blkg; 399 break; 400 } 401 pos = parent; 402 parent = blkcg_parent(parent); 403 } 404 405 blkg = blkg_create(pos, disk, NULL); 406 if (IS_ERR(blkg)) { 407 blkg = ret_blkg; 408 break; 409 } 410 if (pos == blkcg) 411 break; 412 } 413 414 found: 415 spin_unlock_irqrestore(&q->queue_lock, flags); 416 return blkg; 417 } 418 419 static void blkg_destroy(struct blkcg_gq *blkg) 420 { 421 struct blkcg *blkcg = blkg->blkcg; 422 int i; 423 424 lockdep_assert_held(&blkg->q->queue_lock); 425 lockdep_assert_held(&blkcg->lock); 426 427 /* Something wrong if we are trying to remove same group twice */ 428 WARN_ON_ONCE(list_empty(&blkg->q_node)); 429 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 430 431 for (i = 0; i < BLKCG_MAX_POLS; i++) { 432 struct blkcg_policy *pol = blkcg_policy[i]; 433 434 if (blkg->pd[i] && pol->pd_offline_fn) 435 pol->pd_offline_fn(blkg->pd[i]); 436 } 437 438 blkg->online = false; 439 440 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 441 list_del_init(&blkg->q_node); 442 hlist_del_init_rcu(&blkg->blkcg_node); 443 444 /* 445 * Both setting lookup hint to and clearing it from @blkg are done 446 * under queue_lock. If it's not pointing to @blkg now, it never 447 * will. Hint assignment itself can race safely. 448 */ 449 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 450 rcu_assign_pointer(blkcg->blkg_hint, NULL); 451 452 /* 453 * Put the reference taken at the time of creation so that when all 454 * queues are gone, group can be destroyed. 455 */ 456 percpu_ref_kill(&blkg->refcnt); 457 } 458 459 static void blkg_destroy_all(struct gendisk *disk) 460 { 461 struct request_queue *q = disk->queue; 462 struct blkcg_gq *blkg, *n; 463 int count = BLKG_DESTROY_BATCH_SIZE; 464 465 restart: 466 spin_lock_irq(&q->queue_lock); 467 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 468 struct blkcg *blkcg = blkg->blkcg; 469 470 spin_lock(&blkcg->lock); 471 blkg_destroy(blkg); 472 spin_unlock(&blkcg->lock); 473 474 /* 475 * in order to avoid holding the spin lock for too long, release 476 * it when a batch of blkgs are destroyed. 477 */ 478 if (!(--count)) { 479 count = BLKG_DESTROY_BATCH_SIZE; 480 spin_unlock_irq(&q->queue_lock); 481 cond_resched(); 482 goto restart; 483 } 484 } 485 486 q->root_blkg = NULL; 487 spin_unlock_irq(&q->queue_lock); 488 } 489 490 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 491 struct cftype *cftype, u64 val) 492 { 493 struct blkcg *blkcg = css_to_blkcg(css); 494 struct blkcg_gq *blkg; 495 int i, cpu; 496 497 mutex_lock(&blkcg_pol_mutex); 498 spin_lock_irq(&blkcg->lock); 499 500 /* 501 * Note that stat reset is racy - it doesn't synchronize against 502 * stat updates. This is a debug feature which shouldn't exist 503 * anyway. If you get hit by a race, retry. 504 */ 505 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 506 for_each_possible_cpu(cpu) { 507 struct blkg_iostat_set *bis = 508 per_cpu_ptr(blkg->iostat_cpu, cpu); 509 memset(bis, 0, sizeof(*bis)); 510 } 511 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 512 513 for (i = 0; i < BLKCG_MAX_POLS; i++) { 514 struct blkcg_policy *pol = blkcg_policy[i]; 515 516 if (blkg->pd[i] && pol->pd_reset_stats_fn) 517 pol->pd_reset_stats_fn(blkg->pd[i]); 518 } 519 } 520 521 spin_unlock_irq(&blkcg->lock); 522 mutex_unlock(&blkcg_pol_mutex); 523 return 0; 524 } 525 526 const char *blkg_dev_name(struct blkcg_gq *blkg) 527 { 528 if (!blkg->q->disk || !blkg->q->disk->bdi->dev) 529 return NULL; 530 return bdi_dev_name(blkg->q->disk->bdi); 531 } 532 533 /** 534 * blkcg_print_blkgs - helper for printing per-blkg data 535 * @sf: seq_file to print to 536 * @blkcg: blkcg of interest 537 * @prfill: fill function to print out a blkg 538 * @pol: policy in question 539 * @data: data to be passed to @prfill 540 * @show_total: to print out sum of prfill return values or not 541 * 542 * This function invokes @prfill on each blkg of @blkcg if pd for the 543 * policy specified by @pol exists. @prfill is invoked with @sf, the 544 * policy data and @data and the matching queue lock held. If @show_total 545 * is %true, the sum of the return values from @prfill is printed with 546 * "Total" label at the end. 547 * 548 * This is to be used to construct print functions for 549 * cftype->read_seq_string method. 550 */ 551 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 552 u64 (*prfill)(struct seq_file *, 553 struct blkg_policy_data *, int), 554 const struct blkcg_policy *pol, int data, 555 bool show_total) 556 { 557 struct blkcg_gq *blkg; 558 u64 total = 0; 559 560 rcu_read_lock(); 561 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 562 spin_lock_irq(&blkg->q->queue_lock); 563 if (blkcg_policy_enabled(blkg->q, pol)) 564 total += prfill(sf, blkg->pd[pol->plid], data); 565 spin_unlock_irq(&blkg->q->queue_lock); 566 } 567 rcu_read_unlock(); 568 569 if (show_total) 570 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 571 } 572 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 573 574 /** 575 * __blkg_prfill_u64 - prfill helper for a single u64 value 576 * @sf: seq_file to print to 577 * @pd: policy private data of interest 578 * @v: value to print 579 * 580 * Print @v to @sf for the device assocaited with @pd. 581 */ 582 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 583 { 584 const char *dname = blkg_dev_name(pd->blkg); 585 586 if (!dname) 587 return 0; 588 589 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 590 return v; 591 } 592 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 593 594 /** 595 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 596 * @inputp: input string pointer 597 * 598 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 599 * from @input and get and return the matching bdev. *@inputp is 600 * updated to point past the device node prefix. Returns an ERR_PTR() 601 * value on error. 602 * 603 * Use this function iff blkg_conf_prep() can't be used for some reason. 604 */ 605 struct block_device *blkcg_conf_open_bdev(char **inputp) 606 { 607 char *input = *inputp; 608 unsigned int major, minor; 609 struct block_device *bdev; 610 int key_len; 611 612 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 613 return ERR_PTR(-EINVAL); 614 615 input += key_len; 616 if (!isspace(*input)) 617 return ERR_PTR(-EINVAL); 618 input = skip_spaces(input); 619 620 bdev = blkdev_get_no_open(MKDEV(major, minor)); 621 if (!bdev) 622 return ERR_PTR(-ENODEV); 623 if (bdev_is_partition(bdev)) { 624 blkdev_put_no_open(bdev); 625 return ERR_PTR(-ENODEV); 626 } 627 628 *inputp = input; 629 return bdev; 630 } 631 632 /** 633 * blkg_conf_prep - parse and prepare for per-blkg config update 634 * @blkcg: target block cgroup 635 * @pol: target policy 636 * @input: input string 637 * @ctx: blkg_conf_ctx to be filled 638 * 639 * Parse per-blkg config update from @input and initialize @ctx with the 640 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 641 * part of @input following MAJ:MIN. This function returns with RCU read 642 * lock and queue lock held and must be paired with blkg_conf_finish(). 643 */ 644 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 645 char *input, struct blkg_conf_ctx *ctx) 646 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock) 647 { 648 struct block_device *bdev; 649 struct gendisk *disk; 650 struct request_queue *q; 651 struct blkcg_gq *blkg; 652 int ret; 653 654 bdev = blkcg_conf_open_bdev(&input); 655 if (IS_ERR(bdev)) 656 return PTR_ERR(bdev); 657 disk = bdev->bd_disk; 658 q = disk->queue; 659 660 /* 661 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 662 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 663 */ 664 ret = blk_queue_enter(q, 0); 665 if (ret) 666 goto fail; 667 668 rcu_read_lock(); 669 spin_lock_irq(&q->queue_lock); 670 671 if (!blkcg_policy_enabled(q, pol)) { 672 ret = -EOPNOTSUPP; 673 goto fail_unlock; 674 } 675 676 blkg = blkg_lookup(blkcg, q); 677 if (blkg) 678 goto success; 679 680 /* 681 * Create blkgs walking down from blkcg_root to @blkcg, so that all 682 * non-root blkgs have access to their parents. 683 */ 684 while (true) { 685 struct blkcg *pos = blkcg; 686 struct blkcg *parent; 687 struct blkcg_gq *new_blkg; 688 689 parent = blkcg_parent(blkcg); 690 while (parent && !blkg_lookup(parent, q)) { 691 pos = parent; 692 parent = blkcg_parent(parent); 693 } 694 695 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 696 spin_unlock_irq(&q->queue_lock); 697 rcu_read_unlock(); 698 699 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 700 if (unlikely(!new_blkg)) { 701 ret = -ENOMEM; 702 goto fail_exit_queue; 703 } 704 705 if (radix_tree_preload(GFP_KERNEL)) { 706 blkg_free(new_blkg); 707 ret = -ENOMEM; 708 goto fail_exit_queue; 709 } 710 711 rcu_read_lock(); 712 spin_lock_irq(&q->queue_lock); 713 714 if (!blkcg_policy_enabled(q, pol)) { 715 blkg_free(new_blkg); 716 ret = -EOPNOTSUPP; 717 goto fail_preloaded; 718 } 719 720 blkg = blkg_lookup(pos, q); 721 if (blkg) { 722 blkg_free(new_blkg); 723 } else { 724 blkg = blkg_create(pos, disk, new_blkg); 725 if (IS_ERR(blkg)) { 726 ret = PTR_ERR(blkg); 727 goto fail_preloaded; 728 } 729 } 730 731 radix_tree_preload_end(); 732 733 if (pos == blkcg) 734 goto success; 735 } 736 success: 737 blk_queue_exit(q); 738 ctx->bdev = bdev; 739 ctx->blkg = blkg; 740 ctx->body = input; 741 return 0; 742 743 fail_preloaded: 744 radix_tree_preload_end(); 745 fail_unlock: 746 spin_unlock_irq(&q->queue_lock); 747 rcu_read_unlock(); 748 fail_exit_queue: 749 blk_queue_exit(q); 750 fail: 751 blkdev_put_no_open(bdev); 752 /* 753 * If queue was bypassing, we should retry. Do so after a 754 * short msleep(). It isn't strictly necessary but queue 755 * can be bypassing for some time and it's always nice to 756 * avoid busy looping. 757 */ 758 if (ret == -EBUSY) { 759 msleep(10); 760 ret = restart_syscall(); 761 } 762 return ret; 763 } 764 EXPORT_SYMBOL_GPL(blkg_conf_prep); 765 766 /** 767 * blkg_conf_finish - finish up per-blkg config update 768 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 769 * 770 * Finish up after per-blkg config update. This function must be paired 771 * with blkg_conf_prep(). 772 */ 773 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 774 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu) 775 { 776 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 777 rcu_read_unlock(); 778 blkdev_put_no_open(ctx->bdev); 779 } 780 EXPORT_SYMBOL_GPL(blkg_conf_finish); 781 782 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 783 { 784 int i; 785 786 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 787 dst->bytes[i] = src->bytes[i]; 788 dst->ios[i] = src->ios[i]; 789 } 790 } 791 792 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 793 { 794 int i; 795 796 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 797 dst->bytes[i] += src->bytes[i]; 798 dst->ios[i] += src->ios[i]; 799 } 800 } 801 802 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 803 { 804 int i; 805 806 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 807 dst->bytes[i] -= src->bytes[i]; 808 dst->ios[i] -= src->ios[i]; 809 } 810 } 811 812 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 813 struct blkg_iostat *last) 814 { 815 struct blkg_iostat delta; 816 unsigned long flags; 817 818 /* propagate percpu delta to global */ 819 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 820 blkg_iostat_set(&delta, cur); 821 blkg_iostat_sub(&delta, last); 822 blkg_iostat_add(&blkg->iostat.cur, &delta); 823 blkg_iostat_add(last, &delta); 824 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 825 } 826 827 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 828 { 829 struct blkcg *blkcg = css_to_blkcg(css); 830 struct blkcg_gq *blkg; 831 832 /* Root-level stats are sourced from system-wide IO stats */ 833 if (!cgroup_parent(css->cgroup)) 834 return; 835 836 rcu_read_lock(); 837 838 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 839 struct blkcg_gq *parent = blkg->parent; 840 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 841 struct blkg_iostat cur; 842 unsigned int seq; 843 844 /* fetch the current per-cpu values */ 845 do { 846 seq = u64_stats_fetch_begin(&bisc->sync); 847 blkg_iostat_set(&cur, &bisc->cur); 848 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 849 850 blkcg_iostat_update(blkg, &cur, &bisc->last); 851 852 /* propagate global delta to parent (unless that's root) */ 853 if (parent && parent->parent) 854 blkcg_iostat_update(parent, &blkg->iostat.cur, 855 &blkg->iostat.last); 856 } 857 858 rcu_read_unlock(); 859 } 860 861 /* 862 * We source root cgroup stats from the system-wide stats to avoid 863 * tracking the same information twice and incurring overhead when no 864 * cgroups are defined. For that reason, cgroup_rstat_flush in 865 * blkcg_print_stat does not actually fill out the iostat in the root 866 * cgroup's blkcg_gq. 867 * 868 * However, we would like to re-use the printing code between the root and 869 * non-root cgroups to the extent possible. For that reason, we simulate 870 * flushing the root cgroup's stats by explicitly filling in the iostat 871 * with disk level statistics. 872 */ 873 static void blkcg_fill_root_iostats(void) 874 { 875 struct class_dev_iter iter; 876 struct device *dev; 877 878 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 879 while ((dev = class_dev_iter_next(&iter))) { 880 struct block_device *bdev = dev_to_bdev(dev); 881 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 882 struct blkg_iostat tmp; 883 int cpu; 884 unsigned long flags; 885 886 memset(&tmp, 0, sizeof(tmp)); 887 for_each_possible_cpu(cpu) { 888 struct disk_stats *cpu_dkstats; 889 890 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 891 tmp.ios[BLKG_IOSTAT_READ] += 892 cpu_dkstats->ios[STAT_READ]; 893 tmp.ios[BLKG_IOSTAT_WRITE] += 894 cpu_dkstats->ios[STAT_WRITE]; 895 tmp.ios[BLKG_IOSTAT_DISCARD] += 896 cpu_dkstats->ios[STAT_DISCARD]; 897 // convert sectors to bytes 898 tmp.bytes[BLKG_IOSTAT_READ] += 899 cpu_dkstats->sectors[STAT_READ] << 9; 900 tmp.bytes[BLKG_IOSTAT_WRITE] += 901 cpu_dkstats->sectors[STAT_WRITE] << 9; 902 tmp.bytes[BLKG_IOSTAT_DISCARD] += 903 cpu_dkstats->sectors[STAT_DISCARD] << 9; 904 } 905 906 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 907 blkg_iostat_set(&blkg->iostat.cur, &tmp); 908 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 909 } 910 } 911 912 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 913 { 914 struct blkg_iostat_set *bis = &blkg->iostat; 915 u64 rbytes, wbytes, rios, wios, dbytes, dios; 916 const char *dname; 917 unsigned seq; 918 int i; 919 920 if (!blkg->online) 921 return; 922 923 dname = blkg_dev_name(blkg); 924 if (!dname) 925 return; 926 927 seq_printf(s, "%s ", dname); 928 929 do { 930 seq = u64_stats_fetch_begin(&bis->sync); 931 932 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 933 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 934 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 935 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 936 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 937 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 938 } while (u64_stats_fetch_retry(&bis->sync, seq)); 939 940 if (rbytes || wbytes || rios || wios) { 941 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 942 rbytes, wbytes, rios, wios, 943 dbytes, dios); 944 } 945 946 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 947 seq_printf(s, " use_delay=%d delay_nsec=%llu", 948 atomic_read(&blkg->use_delay), 949 atomic64_read(&blkg->delay_nsec)); 950 } 951 952 for (i = 0; i < BLKCG_MAX_POLS; i++) { 953 struct blkcg_policy *pol = blkcg_policy[i]; 954 955 if (!blkg->pd[i] || !pol->pd_stat_fn) 956 continue; 957 958 pol->pd_stat_fn(blkg->pd[i], s); 959 } 960 961 seq_puts(s, "\n"); 962 } 963 964 static int blkcg_print_stat(struct seq_file *sf, void *v) 965 { 966 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 967 struct blkcg_gq *blkg; 968 969 if (!seq_css(sf)->parent) 970 blkcg_fill_root_iostats(); 971 else 972 cgroup_rstat_flush(blkcg->css.cgroup); 973 974 rcu_read_lock(); 975 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 976 spin_lock_irq(&blkg->q->queue_lock); 977 blkcg_print_one_stat(blkg, sf); 978 spin_unlock_irq(&blkg->q->queue_lock); 979 } 980 rcu_read_unlock(); 981 return 0; 982 } 983 984 static struct cftype blkcg_files[] = { 985 { 986 .name = "stat", 987 .seq_show = blkcg_print_stat, 988 }, 989 { } /* terminate */ 990 }; 991 992 static struct cftype blkcg_legacy_files[] = { 993 { 994 .name = "reset_stats", 995 .write_u64 = blkcg_reset_stats, 996 }, 997 { } /* terminate */ 998 }; 999 1000 #ifdef CONFIG_CGROUP_WRITEBACK 1001 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1002 { 1003 return &css_to_blkcg(css)->cgwb_list; 1004 } 1005 #endif 1006 1007 /* 1008 * blkcg destruction is a three-stage process. 1009 * 1010 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1011 * which offlines writeback. Here we tie the next stage of blkg destruction 1012 * to the completion of writeback associated with the blkcg. This lets us 1013 * avoid punting potentially large amounts of outstanding writeback to root 1014 * while maintaining any ongoing policies. The next stage is triggered when 1015 * the nr_cgwbs count goes to zero. 1016 * 1017 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1018 * and handles the destruction of blkgs. Here the css reference held by 1019 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1020 * This work may occur in cgwb_release_workfn() on the cgwb_release 1021 * workqueue. Any submitted ios that fail to get the blkg ref will be 1022 * punted to the root_blkg. 1023 * 1024 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1025 * This finally frees the blkcg. 1026 */ 1027 1028 /** 1029 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1030 * @blkcg: blkcg of interest 1031 * 1032 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1033 * is nested inside q lock, this function performs reverse double lock dancing. 1034 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1035 * blkcg_css_free to eventually be called. 1036 * 1037 * This is the blkcg counterpart of ioc_release_fn(). 1038 */ 1039 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1040 { 1041 might_sleep(); 1042 1043 spin_lock_irq(&blkcg->lock); 1044 1045 while (!hlist_empty(&blkcg->blkg_list)) { 1046 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1047 struct blkcg_gq, blkcg_node); 1048 struct request_queue *q = blkg->q; 1049 1050 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1051 /* 1052 * Given that the system can accumulate a huge number 1053 * of blkgs in pathological cases, check to see if we 1054 * need to rescheduling to avoid softlockup. 1055 */ 1056 spin_unlock_irq(&blkcg->lock); 1057 cond_resched(); 1058 spin_lock_irq(&blkcg->lock); 1059 continue; 1060 } 1061 1062 blkg_destroy(blkg); 1063 spin_unlock(&q->queue_lock); 1064 } 1065 1066 spin_unlock_irq(&blkcg->lock); 1067 } 1068 1069 /** 1070 * blkcg_pin_online - pin online state 1071 * @blkcg_css: blkcg of interest 1072 * 1073 * While pinned, a blkcg is kept online. This is primarily used to 1074 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1075 * while an associated cgwb is still active. 1076 */ 1077 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1078 { 1079 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1080 } 1081 1082 /** 1083 * blkcg_unpin_online - unpin online state 1084 * @blkcg_css: blkcg of interest 1085 * 1086 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1087 * that blkg doesn't go offline while an associated cgwb is still active. 1088 * When this count goes to zero, all active cgwbs have finished so the 1089 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1090 */ 1091 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1092 { 1093 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1094 1095 do { 1096 if (!refcount_dec_and_test(&blkcg->online_pin)) 1097 break; 1098 blkcg_destroy_blkgs(blkcg); 1099 blkcg = blkcg_parent(blkcg); 1100 } while (blkcg); 1101 } 1102 1103 /** 1104 * blkcg_css_offline - cgroup css_offline callback 1105 * @css: css of interest 1106 * 1107 * This function is called when @css is about to go away. Here the cgwbs are 1108 * offlined first and only once writeback associated with the blkcg has 1109 * finished do we start step 2 (see above). 1110 */ 1111 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1112 { 1113 /* this prevents anyone from attaching or migrating to this blkcg */ 1114 wb_blkcg_offline(css); 1115 1116 /* put the base online pin allowing step 2 to be triggered */ 1117 blkcg_unpin_online(css); 1118 } 1119 1120 static void blkcg_css_free(struct cgroup_subsys_state *css) 1121 { 1122 struct blkcg *blkcg = css_to_blkcg(css); 1123 int i; 1124 1125 mutex_lock(&blkcg_pol_mutex); 1126 1127 list_del(&blkcg->all_blkcgs_node); 1128 1129 for (i = 0; i < BLKCG_MAX_POLS; i++) 1130 if (blkcg->cpd[i]) 1131 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1132 1133 mutex_unlock(&blkcg_pol_mutex); 1134 1135 kfree(blkcg); 1136 } 1137 1138 static struct cgroup_subsys_state * 1139 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1140 { 1141 struct blkcg *blkcg; 1142 struct cgroup_subsys_state *ret; 1143 int i; 1144 1145 mutex_lock(&blkcg_pol_mutex); 1146 1147 if (!parent_css) { 1148 blkcg = &blkcg_root; 1149 } else { 1150 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1151 if (!blkcg) { 1152 ret = ERR_PTR(-ENOMEM); 1153 goto unlock; 1154 } 1155 } 1156 1157 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1158 struct blkcg_policy *pol = blkcg_policy[i]; 1159 struct blkcg_policy_data *cpd; 1160 1161 /* 1162 * If the policy hasn't been attached yet, wait for it 1163 * to be attached before doing anything else. Otherwise, 1164 * check if the policy requires any specific per-cgroup 1165 * data: if it does, allocate and initialize it. 1166 */ 1167 if (!pol || !pol->cpd_alloc_fn) 1168 continue; 1169 1170 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1171 if (!cpd) { 1172 ret = ERR_PTR(-ENOMEM); 1173 goto free_pd_blkcg; 1174 } 1175 blkcg->cpd[i] = cpd; 1176 cpd->blkcg = blkcg; 1177 cpd->plid = i; 1178 if (pol->cpd_init_fn) 1179 pol->cpd_init_fn(cpd); 1180 } 1181 1182 spin_lock_init(&blkcg->lock); 1183 refcount_set(&blkcg->online_pin, 1); 1184 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1185 INIT_HLIST_HEAD(&blkcg->blkg_list); 1186 #ifdef CONFIG_CGROUP_WRITEBACK 1187 INIT_LIST_HEAD(&blkcg->cgwb_list); 1188 #endif 1189 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1190 1191 mutex_unlock(&blkcg_pol_mutex); 1192 return &blkcg->css; 1193 1194 free_pd_blkcg: 1195 for (i--; i >= 0; i--) 1196 if (blkcg->cpd[i]) 1197 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1198 1199 if (blkcg != &blkcg_root) 1200 kfree(blkcg); 1201 unlock: 1202 mutex_unlock(&blkcg_pol_mutex); 1203 return ret; 1204 } 1205 1206 static int blkcg_css_online(struct cgroup_subsys_state *css) 1207 { 1208 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1209 1210 /* 1211 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1212 * don't go offline while cgwbs are still active on them. Pin the 1213 * parent so that offline always happens towards the root. 1214 */ 1215 if (parent) 1216 blkcg_pin_online(&parent->css); 1217 return 0; 1218 } 1219 1220 int blkcg_init_disk(struct gendisk *disk) 1221 { 1222 struct request_queue *q = disk->queue; 1223 struct blkcg_gq *new_blkg, *blkg; 1224 bool preloaded; 1225 int ret; 1226 1227 INIT_LIST_HEAD(&q->blkg_list); 1228 1229 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1230 if (!new_blkg) 1231 return -ENOMEM; 1232 1233 preloaded = !radix_tree_preload(GFP_KERNEL); 1234 1235 /* Make sure the root blkg exists. */ 1236 /* spin_lock_irq can serve as RCU read-side critical section. */ 1237 spin_lock_irq(&q->queue_lock); 1238 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1239 if (IS_ERR(blkg)) 1240 goto err_unlock; 1241 q->root_blkg = blkg; 1242 spin_unlock_irq(&q->queue_lock); 1243 1244 if (preloaded) 1245 radix_tree_preload_end(); 1246 1247 ret = blk_ioprio_init(disk); 1248 if (ret) 1249 goto err_destroy_all; 1250 1251 ret = blk_throtl_init(disk); 1252 if (ret) 1253 goto err_ioprio_exit; 1254 1255 ret = blk_iolatency_init(disk); 1256 if (ret) 1257 goto err_throtl_exit; 1258 1259 return 0; 1260 1261 err_throtl_exit: 1262 blk_throtl_exit(disk); 1263 err_ioprio_exit: 1264 blk_ioprio_exit(disk); 1265 err_destroy_all: 1266 blkg_destroy_all(disk); 1267 return ret; 1268 err_unlock: 1269 spin_unlock_irq(&q->queue_lock); 1270 if (preloaded) 1271 radix_tree_preload_end(); 1272 return PTR_ERR(blkg); 1273 } 1274 1275 void blkcg_exit_disk(struct gendisk *disk) 1276 { 1277 blkg_destroy_all(disk); 1278 blk_throtl_exit(disk); 1279 } 1280 1281 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1282 { 1283 int i; 1284 1285 mutex_lock(&blkcg_pol_mutex); 1286 1287 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1288 struct blkcg_policy *pol = blkcg_policy[i]; 1289 struct blkcg *blkcg; 1290 1291 if (!pol || !pol->cpd_bind_fn) 1292 continue; 1293 1294 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1295 if (blkcg->cpd[pol->plid]) 1296 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1297 } 1298 mutex_unlock(&blkcg_pol_mutex); 1299 } 1300 1301 static void blkcg_exit(struct task_struct *tsk) 1302 { 1303 if (tsk->throttle_queue) 1304 blk_put_queue(tsk->throttle_queue); 1305 tsk->throttle_queue = NULL; 1306 } 1307 1308 struct cgroup_subsys io_cgrp_subsys = { 1309 .css_alloc = blkcg_css_alloc, 1310 .css_online = blkcg_css_online, 1311 .css_offline = blkcg_css_offline, 1312 .css_free = blkcg_css_free, 1313 .css_rstat_flush = blkcg_rstat_flush, 1314 .bind = blkcg_bind, 1315 .dfl_cftypes = blkcg_files, 1316 .legacy_cftypes = blkcg_legacy_files, 1317 .legacy_name = "blkio", 1318 .exit = blkcg_exit, 1319 #ifdef CONFIG_MEMCG 1320 /* 1321 * This ensures that, if available, memcg is automatically enabled 1322 * together on the default hierarchy so that the owner cgroup can 1323 * be retrieved from writeback pages. 1324 */ 1325 .depends_on = 1 << memory_cgrp_id, 1326 #endif 1327 }; 1328 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1329 1330 /** 1331 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1332 * @q: request_queue of interest 1333 * @pol: blkcg policy to activate 1334 * 1335 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1336 * bypass mode to populate its blkgs with policy_data for @pol. 1337 * 1338 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1339 * from IO path. Update of each blkg is protected by both queue and blkcg 1340 * locks so that holding either lock and testing blkcg_policy_enabled() is 1341 * always enough for dereferencing policy data. 1342 * 1343 * The caller is responsible for synchronizing [de]activations and policy 1344 * [un]registerations. Returns 0 on success, -errno on failure. 1345 */ 1346 int blkcg_activate_policy(struct request_queue *q, 1347 const struct blkcg_policy *pol) 1348 { 1349 struct blkg_policy_data *pd_prealloc = NULL; 1350 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1351 int ret; 1352 1353 if (blkcg_policy_enabled(q, pol)) 1354 return 0; 1355 1356 if (queue_is_mq(q)) 1357 blk_mq_freeze_queue(q); 1358 retry: 1359 spin_lock_irq(&q->queue_lock); 1360 1361 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1362 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1363 struct blkg_policy_data *pd; 1364 1365 if (blkg->pd[pol->plid]) 1366 continue; 1367 1368 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1369 if (blkg == pinned_blkg) { 1370 pd = pd_prealloc; 1371 pd_prealloc = NULL; 1372 } else { 1373 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1374 blkg->blkcg); 1375 } 1376 1377 if (!pd) { 1378 /* 1379 * GFP_NOWAIT failed. Free the existing one and 1380 * prealloc for @blkg w/ GFP_KERNEL. 1381 */ 1382 if (pinned_blkg) 1383 blkg_put(pinned_blkg); 1384 blkg_get(blkg); 1385 pinned_blkg = blkg; 1386 1387 spin_unlock_irq(&q->queue_lock); 1388 1389 if (pd_prealloc) 1390 pol->pd_free_fn(pd_prealloc); 1391 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1392 blkg->blkcg); 1393 if (pd_prealloc) 1394 goto retry; 1395 else 1396 goto enomem; 1397 } 1398 1399 blkg->pd[pol->plid] = pd; 1400 pd->blkg = blkg; 1401 pd->plid = pol->plid; 1402 } 1403 1404 /* all allocated, init in the same order */ 1405 if (pol->pd_init_fn) 1406 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1407 pol->pd_init_fn(blkg->pd[pol->plid]); 1408 1409 __set_bit(pol->plid, q->blkcg_pols); 1410 ret = 0; 1411 1412 spin_unlock_irq(&q->queue_lock); 1413 out: 1414 if (queue_is_mq(q)) 1415 blk_mq_unfreeze_queue(q); 1416 if (pinned_blkg) 1417 blkg_put(pinned_blkg); 1418 if (pd_prealloc) 1419 pol->pd_free_fn(pd_prealloc); 1420 return ret; 1421 1422 enomem: 1423 /* alloc failed, nothing's initialized yet, free everything */ 1424 spin_lock_irq(&q->queue_lock); 1425 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1426 struct blkcg *blkcg = blkg->blkcg; 1427 1428 spin_lock(&blkcg->lock); 1429 if (blkg->pd[pol->plid]) { 1430 pol->pd_free_fn(blkg->pd[pol->plid]); 1431 blkg->pd[pol->plid] = NULL; 1432 } 1433 spin_unlock(&blkcg->lock); 1434 } 1435 spin_unlock_irq(&q->queue_lock); 1436 ret = -ENOMEM; 1437 goto out; 1438 } 1439 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1440 1441 /** 1442 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1443 * @q: request_queue of interest 1444 * @pol: blkcg policy to deactivate 1445 * 1446 * Deactivate @pol on @q. Follows the same synchronization rules as 1447 * blkcg_activate_policy(). 1448 */ 1449 void blkcg_deactivate_policy(struct request_queue *q, 1450 const struct blkcg_policy *pol) 1451 { 1452 struct blkcg_gq *blkg; 1453 1454 if (!blkcg_policy_enabled(q, pol)) 1455 return; 1456 1457 if (queue_is_mq(q)) 1458 blk_mq_freeze_queue(q); 1459 1460 spin_lock_irq(&q->queue_lock); 1461 1462 __clear_bit(pol->plid, q->blkcg_pols); 1463 1464 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1465 struct blkcg *blkcg = blkg->blkcg; 1466 1467 spin_lock(&blkcg->lock); 1468 if (blkg->pd[pol->plid]) { 1469 if (pol->pd_offline_fn) 1470 pol->pd_offline_fn(blkg->pd[pol->plid]); 1471 pol->pd_free_fn(blkg->pd[pol->plid]); 1472 blkg->pd[pol->plid] = NULL; 1473 } 1474 spin_unlock(&blkcg->lock); 1475 } 1476 1477 spin_unlock_irq(&q->queue_lock); 1478 1479 if (queue_is_mq(q)) 1480 blk_mq_unfreeze_queue(q); 1481 } 1482 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1483 1484 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1485 { 1486 struct blkcg *blkcg; 1487 1488 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1489 if (blkcg->cpd[pol->plid]) { 1490 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1491 blkcg->cpd[pol->plid] = NULL; 1492 } 1493 } 1494 } 1495 1496 /** 1497 * blkcg_policy_register - register a blkcg policy 1498 * @pol: blkcg policy to register 1499 * 1500 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1501 * successful registration. Returns 0 on success and -errno on failure. 1502 */ 1503 int blkcg_policy_register(struct blkcg_policy *pol) 1504 { 1505 struct blkcg *blkcg; 1506 int i, ret; 1507 1508 mutex_lock(&blkcg_pol_register_mutex); 1509 mutex_lock(&blkcg_pol_mutex); 1510 1511 /* find an empty slot */ 1512 ret = -ENOSPC; 1513 for (i = 0; i < BLKCG_MAX_POLS; i++) 1514 if (!blkcg_policy[i]) 1515 break; 1516 if (i >= BLKCG_MAX_POLS) { 1517 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1518 goto err_unlock; 1519 } 1520 1521 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1522 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1523 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1524 goto err_unlock; 1525 1526 /* register @pol */ 1527 pol->plid = i; 1528 blkcg_policy[pol->plid] = pol; 1529 1530 /* allocate and install cpd's */ 1531 if (pol->cpd_alloc_fn) { 1532 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1533 struct blkcg_policy_data *cpd; 1534 1535 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1536 if (!cpd) 1537 goto err_free_cpds; 1538 1539 blkcg->cpd[pol->plid] = cpd; 1540 cpd->blkcg = blkcg; 1541 cpd->plid = pol->plid; 1542 if (pol->cpd_init_fn) 1543 pol->cpd_init_fn(cpd); 1544 } 1545 } 1546 1547 mutex_unlock(&blkcg_pol_mutex); 1548 1549 /* everything is in place, add intf files for the new policy */ 1550 if (pol->dfl_cftypes) 1551 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1552 pol->dfl_cftypes)); 1553 if (pol->legacy_cftypes) 1554 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1555 pol->legacy_cftypes)); 1556 mutex_unlock(&blkcg_pol_register_mutex); 1557 return 0; 1558 1559 err_free_cpds: 1560 if (pol->cpd_free_fn) 1561 blkcg_free_all_cpd(pol); 1562 1563 blkcg_policy[pol->plid] = NULL; 1564 err_unlock: 1565 mutex_unlock(&blkcg_pol_mutex); 1566 mutex_unlock(&blkcg_pol_register_mutex); 1567 return ret; 1568 } 1569 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1570 1571 /** 1572 * blkcg_policy_unregister - unregister a blkcg policy 1573 * @pol: blkcg policy to unregister 1574 * 1575 * Undo blkcg_policy_register(@pol). Might sleep. 1576 */ 1577 void blkcg_policy_unregister(struct blkcg_policy *pol) 1578 { 1579 mutex_lock(&blkcg_pol_register_mutex); 1580 1581 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1582 goto out_unlock; 1583 1584 /* kill the intf files first */ 1585 if (pol->dfl_cftypes) 1586 cgroup_rm_cftypes(pol->dfl_cftypes); 1587 if (pol->legacy_cftypes) 1588 cgroup_rm_cftypes(pol->legacy_cftypes); 1589 1590 /* remove cpds and unregister */ 1591 mutex_lock(&blkcg_pol_mutex); 1592 1593 if (pol->cpd_free_fn) 1594 blkcg_free_all_cpd(pol); 1595 1596 blkcg_policy[pol->plid] = NULL; 1597 1598 mutex_unlock(&blkcg_pol_mutex); 1599 out_unlock: 1600 mutex_unlock(&blkcg_pol_register_mutex); 1601 } 1602 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1603 1604 bool __blkcg_punt_bio_submit(struct bio *bio) 1605 { 1606 struct blkcg_gq *blkg = bio->bi_blkg; 1607 1608 /* consume the flag first */ 1609 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1610 1611 /* never bounce for the root cgroup */ 1612 if (!blkg->parent) 1613 return false; 1614 1615 spin_lock_bh(&blkg->async_bio_lock); 1616 bio_list_add(&blkg->async_bios, bio); 1617 spin_unlock_bh(&blkg->async_bio_lock); 1618 1619 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1620 return true; 1621 } 1622 1623 /* 1624 * Scale the accumulated delay based on how long it has been since we updated 1625 * the delay. We only call this when we are adding delay, in case it's been a 1626 * while since we added delay, and when we are checking to see if we need to 1627 * delay a task, to account for any delays that may have occurred. 1628 */ 1629 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1630 { 1631 u64 old = atomic64_read(&blkg->delay_start); 1632 1633 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1634 if (atomic_read(&blkg->use_delay) < 0) 1635 return; 1636 1637 /* 1638 * We only want to scale down every second. The idea here is that we 1639 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1640 * time window. We only want to throttle tasks for recent delay that 1641 * has occurred, in 1 second time windows since that's the maximum 1642 * things can be throttled. We save the current delay window in 1643 * blkg->last_delay so we know what amount is still left to be charged 1644 * to the blkg from this point onward. blkg->last_use keeps track of 1645 * the use_delay counter. The idea is if we're unthrottling the blkg we 1646 * are ok with whatever is happening now, and we can take away more of 1647 * the accumulated delay as we've already throttled enough that 1648 * everybody is happy with their IO latencies. 1649 */ 1650 if (time_before64(old + NSEC_PER_SEC, now) && 1651 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1652 u64 cur = atomic64_read(&blkg->delay_nsec); 1653 u64 sub = min_t(u64, blkg->last_delay, now - old); 1654 int cur_use = atomic_read(&blkg->use_delay); 1655 1656 /* 1657 * We've been unthrottled, subtract a larger chunk of our 1658 * accumulated delay. 1659 */ 1660 if (cur_use < blkg->last_use) 1661 sub = max_t(u64, sub, blkg->last_delay >> 1); 1662 1663 /* 1664 * This shouldn't happen, but handle it anyway. Our delay_nsec 1665 * should only ever be growing except here where we subtract out 1666 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1667 * rather not end up with negative numbers. 1668 */ 1669 if (unlikely(cur < sub)) { 1670 atomic64_set(&blkg->delay_nsec, 0); 1671 blkg->last_delay = 0; 1672 } else { 1673 atomic64_sub(sub, &blkg->delay_nsec); 1674 blkg->last_delay = cur - sub; 1675 } 1676 blkg->last_use = cur_use; 1677 } 1678 } 1679 1680 /* 1681 * This is called when we want to actually walk up the hierarchy and check to 1682 * see if we need to throttle, and then actually throttle if there is some 1683 * accumulated delay. This should only be called upon return to user space so 1684 * we're not holding some lock that would induce a priority inversion. 1685 */ 1686 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1687 { 1688 unsigned long pflags; 1689 bool clamp; 1690 u64 now = ktime_to_ns(ktime_get()); 1691 u64 exp; 1692 u64 delay_nsec = 0; 1693 int tok; 1694 1695 while (blkg->parent) { 1696 int use_delay = atomic_read(&blkg->use_delay); 1697 1698 if (use_delay) { 1699 u64 this_delay; 1700 1701 blkcg_scale_delay(blkg, now); 1702 this_delay = atomic64_read(&blkg->delay_nsec); 1703 if (this_delay > delay_nsec) { 1704 delay_nsec = this_delay; 1705 clamp = use_delay > 0; 1706 } 1707 } 1708 blkg = blkg->parent; 1709 } 1710 1711 if (!delay_nsec) 1712 return; 1713 1714 /* 1715 * Let's not sleep for all eternity if we've amassed a huge delay. 1716 * Swapping or metadata IO can accumulate 10's of seconds worth of 1717 * delay, and we want userspace to be able to do _something_ so cap the 1718 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1719 * tasks will be delayed for 0.25 second for every syscall. If 1720 * blkcg_set_delay() was used as indicated by negative use_delay, the 1721 * caller is responsible for regulating the range. 1722 */ 1723 if (clamp) 1724 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1725 1726 if (use_memdelay) 1727 psi_memstall_enter(&pflags); 1728 1729 exp = ktime_add_ns(now, delay_nsec); 1730 tok = io_schedule_prepare(); 1731 do { 1732 __set_current_state(TASK_KILLABLE); 1733 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1734 break; 1735 } while (!fatal_signal_pending(current)); 1736 io_schedule_finish(tok); 1737 1738 if (use_memdelay) 1739 psi_memstall_leave(&pflags); 1740 } 1741 1742 /** 1743 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1744 * 1745 * This is only called if we've been marked with set_notify_resume(). Obviously 1746 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1747 * check to see if current->throttle_queue is set and if not this doesn't do 1748 * anything. This should only ever be called by the resume code, it's not meant 1749 * to be called by people willy-nilly as it will actually do the work to 1750 * throttle the task if it is setup for throttling. 1751 */ 1752 void blkcg_maybe_throttle_current(void) 1753 { 1754 struct request_queue *q = current->throttle_queue; 1755 struct blkcg *blkcg; 1756 struct blkcg_gq *blkg; 1757 bool use_memdelay = current->use_memdelay; 1758 1759 if (!q) 1760 return; 1761 1762 current->throttle_queue = NULL; 1763 current->use_memdelay = false; 1764 1765 rcu_read_lock(); 1766 blkcg = css_to_blkcg(blkcg_css()); 1767 if (!blkcg) 1768 goto out; 1769 blkg = blkg_lookup(blkcg, q); 1770 if (!blkg) 1771 goto out; 1772 if (!blkg_tryget(blkg)) 1773 goto out; 1774 rcu_read_unlock(); 1775 1776 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1777 blkg_put(blkg); 1778 blk_put_queue(q); 1779 return; 1780 out: 1781 rcu_read_unlock(); 1782 blk_put_queue(q); 1783 } 1784 1785 /** 1786 * blkcg_schedule_throttle - this task needs to check for throttling 1787 * @gendisk: disk to throttle 1788 * @use_memdelay: do we charge this to memory delay for PSI 1789 * 1790 * This is called by the IO controller when we know there's delay accumulated 1791 * for the blkg for this task. We do not pass the blkg because there are places 1792 * we call this that may not have that information, the swapping code for 1793 * instance will only have a block_device at that point. This set's the 1794 * notify_resume for the task to check and see if it requires throttling before 1795 * returning to user space. 1796 * 1797 * We will only schedule once per syscall. You can call this over and over 1798 * again and it will only do the check once upon return to user space, and only 1799 * throttle once. If the task needs to be throttled again it'll need to be 1800 * re-set at the next time we see the task. 1801 */ 1802 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1803 { 1804 struct request_queue *q = disk->queue; 1805 1806 if (unlikely(current->flags & PF_KTHREAD)) 1807 return; 1808 1809 if (current->throttle_queue != q) { 1810 if (!blk_get_queue(q)) 1811 return; 1812 1813 if (current->throttle_queue) 1814 blk_put_queue(current->throttle_queue); 1815 current->throttle_queue = q; 1816 } 1817 1818 if (use_memdelay) 1819 current->use_memdelay = use_memdelay; 1820 set_notify_resume(current); 1821 } 1822 1823 /** 1824 * blkcg_add_delay - add delay to this blkg 1825 * @blkg: blkg of interest 1826 * @now: the current time in nanoseconds 1827 * @delta: how many nanoseconds of delay to add 1828 * 1829 * Charge @delta to the blkg's current delay accumulation. This is used to 1830 * throttle tasks if an IO controller thinks we need more throttling. 1831 */ 1832 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1833 { 1834 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1835 return; 1836 blkcg_scale_delay(blkg, now); 1837 atomic64_add(delta, &blkg->delay_nsec); 1838 } 1839 1840 /** 1841 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1842 * @bio: target bio 1843 * @css: target css 1844 * 1845 * As the failure mode here is to walk up the blkg tree, this ensure that the 1846 * blkg->parent pointers are always valid. This returns the blkg that it ended 1847 * up taking a reference on or %NULL if no reference was taken. 1848 */ 1849 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1850 struct cgroup_subsys_state *css) 1851 { 1852 struct blkcg_gq *blkg, *ret_blkg = NULL; 1853 1854 rcu_read_lock(); 1855 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1856 while (blkg) { 1857 if (blkg_tryget(blkg)) { 1858 ret_blkg = blkg; 1859 break; 1860 } 1861 blkg = blkg->parent; 1862 } 1863 rcu_read_unlock(); 1864 1865 return ret_blkg; 1866 } 1867 1868 /** 1869 * bio_associate_blkg_from_css - associate a bio with a specified css 1870 * @bio: target bio 1871 * @css: target css 1872 * 1873 * Associate @bio with the blkg found by combining the css's blkg and the 1874 * request_queue of the @bio. An association failure is handled by walking up 1875 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1876 * and q->root_blkg. This situation only happens when a cgroup is dying and 1877 * then the remaining bios will spill to the closest alive blkg. 1878 * 1879 * A reference will be taken on the blkg and will be released when @bio is 1880 * freed. 1881 */ 1882 void bio_associate_blkg_from_css(struct bio *bio, 1883 struct cgroup_subsys_state *css) 1884 { 1885 if (bio->bi_blkg) 1886 blkg_put(bio->bi_blkg); 1887 1888 if (css && css->parent) { 1889 bio->bi_blkg = blkg_tryget_closest(bio, css); 1890 } else { 1891 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1892 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1893 } 1894 } 1895 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1896 1897 /** 1898 * bio_associate_blkg - associate a bio with a blkg 1899 * @bio: target bio 1900 * 1901 * Associate @bio with the blkg found from the bio's css and request_queue. 1902 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1903 * already associated, the css is reused and association redone as the 1904 * request_queue may have changed. 1905 */ 1906 void bio_associate_blkg(struct bio *bio) 1907 { 1908 struct cgroup_subsys_state *css; 1909 1910 rcu_read_lock(); 1911 1912 if (bio->bi_blkg) 1913 css = bio_blkcg_css(bio); 1914 else 1915 css = blkcg_css(); 1916 1917 bio_associate_blkg_from_css(bio, css); 1918 1919 rcu_read_unlock(); 1920 } 1921 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1922 1923 /** 1924 * bio_clone_blkg_association - clone blkg association from src to dst bio 1925 * @dst: destination bio 1926 * @src: source bio 1927 */ 1928 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1929 { 1930 if (src->bi_blkg) 1931 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 1932 } 1933 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1934 1935 static int blk_cgroup_io_type(struct bio *bio) 1936 { 1937 if (op_is_discard(bio->bi_opf)) 1938 return BLKG_IOSTAT_DISCARD; 1939 if (op_is_write(bio->bi_opf)) 1940 return BLKG_IOSTAT_WRITE; 1941 return BLKG_IOSTAT_READ; 1942 } 1943 1944 void blk_cgroup_bio_start(struct bio *bio) 1945 { 1946 int rwd = blk_cgroup_io_type(bio), cpu; 1947 struct blkg_iostat_set *bis; 1948 unsigned long flags; 1949 1950 cpu = get_cpu(); 1951 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1952 flags = u64_stats_update_begin_irqsave(&bis->sync); 1953 1954 /* 1955 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1956 * bio and we would have already accounted for the size of the bio. 1957 */ 1958 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1959 bio_set_flag(bio, BIO_CGROUP_ACCT); 1960 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1961 } 1962 bis->cur.ios[rwd]++; 1963 1964 u64_stats_update_end_irqrestore(&bis->sync, flags); 1965 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1966 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1967 put_cpu(); 1968 } 1969 1970 bool blk_cgroup_congested(void) 1971 { 1972 struct cgroup_subsys_state *css; 1973 bool ret = false; 1974 1975 rcu_read_lock(); 1976 for (css = blkcg_css(); css; css = css->parent) { 1977 if (atomic_read(&css->cgroup->congestion_count)) { 1978 ret = true; 1979 break; 1980 } 1981 } 1982 rcu_read_unlock(); 1983 return ret; 1984 } 1985 1986 static int __init blkcg_init(void) 1987 { 1988 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1989 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1990 WQ_UNBOUND | WQ_SYSFS, 0); 1991 if (!blkcg_punt_bio_wq) 1992 return -ENOMEM; 1993 return 0; 1994 } 1995 subsys_initcall(blkcg_init); 1996 1997 module_param(blkcg_debug_stats, bool, 0644); 1998 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1999