1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 35 #define MAX_KEY_LEN 100 36 37 /* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44 static DEFINE_MUTEX(blkcg_pol_register_mutex); 45 static DEFINE_MUTEX(blkcg_pol_mutex); 46 47 struct blkcg blkcg_root; 48 EXPORT_SYMBOL_GPL(blkcg_root); 49 50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51 EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57 bool blkcg_debug_stats = false; 58 static struct workqueue_struct *blkcg_punt_bio_wq; 59 60 static bool blkcg_policy_enabled(struct request_queue *q, 61 const struct blkcg_policy *pol) 62 { 63 return pol && test_bit(pol->plid, q->blkcg_pols); 64 } 65 66 /** 67 * blkg_free - free a blkg 68 * @blkg: blkg to free 69 * 70 * Free @blkg which may be partially allocated. 71 */ 72 static void blkg_free(struct blkcg_gq *blkg) 73 { 74 int i; 75 76 if (!blkg) 77 return; 78 79 for (i = 0; i < BLKCG_MAX_POLS; i++) 80 if (blkg->pd[i]) 81 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 82 83 free_percpu(blkg->iostat_cpu); 84 percpu_ref_exit(&blkg->refcnt); 85 kfree(blkg); 86 } 87 88 static void __blkg_release(struct rcu_head *rcu) 89 { 90 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 91 92 WARN_ON(!bio_list_empty(&blkg->async_bios)); 93 94 /* release the blkcg and parent blkg refs this blkg has been holding */ 95 css_put(&blkg->blkcg->css); 96 if (blkg->parent) 97 blkg_put(blkg->parent); 98 99 wb_congested_put(blkg->wb_congested); 100 101 blkg_free(blkg); 102 } 103 104 /* 105 * A group is RCU protected, but having an rcu lock does not mean that one 106 * can access all the fields of blkg and assume these are valid. For 107 * example, don't try to follow throtl_data and request queue links. 108 * 109 * Having a reference to blkg under an rcu allows accesses to only values 110 * local to groups like group stats and group rate limits. 111 */ 112 static void blkg_release(struct percpu_ref *ref) 113 { 114 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 115 116 call_rcu(&blkg->rcu_head, __blkg_release); 117 } 118 119 static void blkg_async_bio_workfn(struct work_struct *work) 120 { 121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 122 async_bio_work); 123 struct bio_list bios = BIO_EMPTY_LIST; 124 struct bio *bio; 125 126 /* as long as there are pending bios, @blkg can't go away */ 127 spin_lock_bh(&blkg->async_bio_lock); 128 bio_list_merge(&bios, &blkg->async_bios); 129 bio_list_init(&blkg->async_bios); 130 spin_unlock_bh(&blkg->async_bio_lock); 131 132 while ((bio = bio_list_pop(&bios))) 133 submit_bio(bio); 134 } 135 136 /** 137 * blkg_alloc - allocate a blkg 138 * @blkcg: block cgroup the new blkg is associated with 139 * @q: request_queue the new blkg is associated with 140 * @gfp_mask: allocation mask to use 141 * 142 * Allocate a new blkg assocating @blkcg and @q. 143 */ 144 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 145 gfp_t gfp_mask) 146 { 147 struct blkcg_gq *blkg; 148 int i, cpu; 149 150 /* alloc and init base part */ 151 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 152 if (!blkg) 153 return NULL; 154 155 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 156 goto err_free; 157 158 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 159 if (!blkg->iostat_cpu) 160 goto err_free; 161 162 blkg->q = q; 163 INIT_LIST_HEAD(&blkg->q_node); 164 spin_lock_init(&blkg->async_bio_lock); 165 bio_list_init(&blkg->async_bios); 166 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 167 blkg->blkcg = blkcg; 168 169 u64_stats_init(&blkg->iostat.sync); 170 for_each_possible_cpu(cpu) 171 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 172 173 for (i = 0; i < BLKCG_MAX_POLS; i++) { 174 struct blkcg_policy *pol = blkcg_policy[i]; 175 struct blkg_policy_data *pd; 176 177 if (!blkcg_policy_enabled(q, pol)) 178 continue; 179 180 /* alloc per-policy data and attach it to blkg */ 181 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 182 if (!pd) 183 goto err_free; 184 185 blkg->pd[i] = pd; 186 pd->blkg = blkg; 187 pd->plid = i; 188 } 189 190 return blkg; 191 192 err_free: 193 blkg_free(blkg); 194 return NULL; 195 } 196 197 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 198 struct request_queue *q, bool update_hint) 199 { 200 struct blkcg_gq *blkg; 201 202 /* 203 * Hint didn't match. Look up from the radix tree. Note that the 204 * hint can only be updated under queue_lock as otherwise @blkg 205 * could have already been removed from blkg_tree. The caller is 206 * responsible for grabbing queue_lock if @update_hint. 207 */ 208 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 209 if (blkg && blkg->q == q) { 210 if (update_hint) { 211 lockdep_assert_held(&q->queue_lock); 212 rcu_assign_pointer(blkcg->blkg_hint, blkg); 213 } 214 return blkg; 215 } 216 217 return NULL; 218 } 219 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 220 221 /* 222 * If @new_blkg is %NULL, this function tries to allocate a new one as 223 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 224 */ 225 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 226 struct request_queue *q, 227 struct blkcg_gq *new_blkg) 228 { 229 struct blkcg_gq *blkg; 230 struct bdi_writeback_congested *wb_congested; 231 int i, ret; 232 233 WARN_ON_ONCE(!rcu_read_lock_held()); 234 lockdep_assert_held(&q->queue_lock); 235 236 /* request_queue is dying, do not create/recreate a blkg */ 237 if (blk_queue_dying(q)) { 238 ret = -ENODEV; 239 goto err_free_blkg; 240 } 241 242 /* blkg holds a reference to blkcg */ 243 if (!css_tryget_online(&blkcg->css)) { 244 ret = -ENODEV; 245 goto err_free_blkg; 246 } 247 248 wb_congested = wb_congested_get_create(q->backing_dev_info, 249 blkcg->css.id, 250 GFP_NOWAIT | __GFP_NOWARN); 251 if (!wb_congested) { 252 ret = -ENOMEM; 253 goto err_put_css; 254 } 255 256 /* allocate */ 257 if (!new_blkg) { 258 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 259 if (unlikely(!new_blkg)) { 260 ret = -ENOMEM; 261 goto err_put_congested; 262 } 263 } 264 blkg = new_blkg; 265 blkg->wb_congested = wb_congested; 266 267 /* link parent */ 268 if (blkcg_parent(blkcg)) { 269 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 270 if (WARN_ON_ONCE(!blkg->parent)) { 271 ret = -ENODEV; 272 goto err_put_congested; 273 } 274 blkg_get(blkg->parent); 275 } 276 277 /* invoke per-policy init */ 278 for (i = 0; i < BLKCG_MAX_POLS; i++) { 279 struct blkcg_policy *pol = blkcg_policy[i]; 280 281 if (blkg->pd[i] && pol->pd_init_fn) 282 pol->pd_init_fn(blkg->pd[i]); 283 } 284 285 /* insert */ 286 spin_lock(&blkcg->lock); 287 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 288 if (likely(!ret)) { 289 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 290 list_add(&blkg->q_node, &q->blkg_list); 291 292 for (i = 0; i < BLKCG_MAX_POLS; i++) { 293 struct blkcg_policy *pol = blkcg_policy[i]; 294 295 if (blkg->pd[i] && pol->pd_online_fn) 296 pol->pd_online_fn(blkg->pd[i]); 297 } 298 } 299 blkg->online = true; 300 spin_unlock(&blkcg->lock); 301 302 if (!ret) 303 return blkg; 304 305 /* @blkg failed fully initialized, use the usual release path */ 306 blkg_put(blkg); 307 return ERR_PTR(ret); 308 309 err_put_congested: 310 wb_congested_put(wb_congested); 311 err_put_css: 312 css_put(&blkcg->css); 313 err_free_blkg: 314 blkg_free(new_blkg); 315 return ERR_PTR(ret); 316 } 317 318 /** 319 * __blkg_lookup_create - lookup blkg, try to create one if not there 320 * @blkcg: blkcg of interest 321 * @q: request_queue of interest 322 * 323 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 324 * create one. blkg creation is performed recursively from blkcg_root such 325 * that all non-root blkg's have access to the parent blkg. This function 326 * should be called under RCU read lock and @q->queue_lock. 327 * 328 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 329 * down from root. 330 */ 331 struct blkcg_gq *__blkg_lookup_create(struct blkcg *blkcg, 332 struct request_queue *q) 333 { 334 struct blkcg_gq *blkg; 335 336 WARN_ON_ONCE(!rcu_read_lock_held()); 337 lockdep_assert_held(&q->queue_lock); 338 339 blkg = __blkg_lookup(blkcg, q, true); 340 if (blkg) 341 return blkg; 342 343 /* 344 * Create blkgs walking down from blkcg_root to @blkcg, so that all 345 * non-root blkgs have access to their parents. Returns the closest 346 * blkg to the intended blkg should blkg_create() fail. 347 */ 348 while (true) { 349 struct blkcg *pos = blkcg; 350 struct blkcg *parent = blkcg_parent(blkcg); 351 struct blkcg_gq *ret_blkg = q->root_blkg; 352 353 while (parent) { 354 blkg = __blkg_lookup(parent, q, false); 355 if (blkg) { 356 /* remember closest blkg */ 357 ret_blkg = blkg; 358 break; 359 } 360 pos = parent; 361 parent = blkcg_parent(parent); 362 } 363 364 blkg = blkg_create(pos, q, NULL); 365 if (IS_ERR(blkg)) 366 return ret_blkg; 367 if (pos == blkcg) 368 return blkg; 369 } 370 } 371 372 /** 373 * blkg_lookup_create - find or create a blkg 374 * @blkcg: target block cgroup 375 * @q: target request_queue 376 * 377 * This looks up or creates the blkg representing the unique pair 378 * of the blkcg and the request_queue. 379 */ 380 struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 381 struct request_queue *q) 382 { 383 struct blkcg_gq *blkg = blkg_lookup(blkcg, q); 384 385 if (unlikely(!blkg)) { 386 unsigned long flags; 387 388 spin_lock_irqsave(&q->queue_lock, flags); 389 blkg = __blkg_lookup_create(blkcg, q); 390 spin_unlock_irqrestore(&q->queue_lock, flags); 391 } 392 393 return blkg; 394 } 395 396 static void blkg_destroy(struct blkcg_gq *blkg) 397 { 398 struct blkcg *blkcg = blkg->blkcg; 399 int i; 400 401 lockdep_assert_held(&blkg->q->queue_lock); 402 lockdep_assert_held(&blkcg->lock); 403 404 /* Something wrong if we are trying to remove same group twice */ 405 WARN_ON_ONCE(list_empty(&blkg->q_node)); 406 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 407 408 for (i = 0; i < BLKCG_MAX_POLS; i++) { 409 struct blkcg_policy *pol = blkcg_policy[i]; 410 411 if (blkg->pd[i] && pol->pd_offline_fn) 412 pol->pd_offline_fn(blkg->pd[i]); 413 } 414 415 blkg->online = false; 416 417 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 418 list_del_init(&blkg->q_node); 419 hlist_del_init_rcu(&blkg->blkcg_node); 420 421 /* 422 * Both setting lookup hint to and clearing it from @blkg are done 423 * under queue_lock. If it's not pointing to @blkg now, it never 424 * will. Hint assignment itself can race safely. 425 */ 426 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 427 rcu_assign_pointer(blkcg->blkg_hint, NULL); 428 429 /* 430 * Put the reference taken at the time of creation so that when all 431 * queues are gone, group can be destroyed. 432 */ 433 percpu_ref_kill(&blkg->refcnt); 434 } 435 436 /** 437 * blkg_destroy_all - destroy all blkgs associated with a request_queue 438 * @q: request_queue of interest 439 * 440 * Destroy all blkgs associated with @q. 441 */ 442 static void blkg_destroy_all(struct request_queue *q) 443 { 444 struct blkcg_gq *blkg, *n; 445 446 spin_lock_irq(&q->queue_lock); 447 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 448 struct blkcg *blkcg = blkg->blkcg; 449 450 spin_lock(&blkcg->lock); 451 blkg_destroy(blkg); 452 spin_unlock(&blkcg->lock); 453 } 454 455 q->root_blkg = NULL; 456 spin_unlock_irq(&q->queue_lock); 457 } 458 459 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 460 struct cftype *cftype, u64 val) 461 { 462 struct blkcg *blkcg = css_to_blkcg(css); 463 struct blkcg_gq *blkg; 464 int i, cpu; 465 466 mutex_lock(&blkcg_pol_mutex); 467 spin_lock_irq(&blkcg->lock); 468 469 /* 470 * Note that stat reset is racy - it doesn't synchronize against 471 * stat updates. This is a debug feature which shouldn't exist 472 * anyway. If you get hit by a race, retry. 473 */ 474 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 475 for_each_possible_cpu(cpu) { 476 struct blkg_iostat_set *bis = 477 per_cpu_ptr(blkg->iostat_cpu, cpu); 478 memset(bis, 0, sizeof(*bis)); 479 } 480 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 481 482 for (i = 0; i < BLKCG_MAX_POLS; i++) { 483 struct blkcg_policy *pol = blkcg_policy[i]; 484 485 if (blkg->pd[i] && pol->pd_reset_stats_fn) 486 pol->pd_reset_stats_fn(blkg->pd[i]); 487 } 488 } 489 490 spin_unlock_irq(&blkcg->lock); 491 mutex_unlock(&blkcg_pol_mutex); 492 return 0; 493 } 494 495 const char *blkg_dev_name(struct blkcg_gq *blkg) 496 { 497 /* some drivers (floppy) instantiate a queue w/o disk registered */ 498 if (blkg->q->backing_dev_info->dev) 499 return dev_name(blkg->q->backing_dev_info->dev); 500 return NULL; 501 } 502 503 /** 504 * blkcg_print_blkgs - helper for printing per-blkg data 505 * @sf: seq_file to print to 506 * @blkcg: blkcg of interest 507 * @prfill: fill function to print out a blkg 508 * @pol: policy in question 509 * @data: data to be passed to @prfill 510 * @show_total: to print out sum of prfill return values or not 511 * 512 * This function invokes @prfill on each blkg of @blkcg if pd for the 513 * policy specified by @pol exists. @prfill is invoked with @sf, the 514 * policy data and @data and the matching queue lock held. If @show_total 515 * is %true, the sum of the return values from @prfill is printed with 516 * "Total" label at the end. 517 * 518 * This is to be used to construct print functions for 519 * cftype->read_seq_string method. 520 */ 521 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 522 u64 (*prfill)(struct seq_file *, 523 struct blkg_policy_data *, int), 524 const struct blkcg_policy *pol, int data, 525 bool show_total) 526 { 527 struct blkcg_gq *blkg; 528 u64 total = 0; 529 530 rcu_read_lock(); 531 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 532 spin_lock_irq(&blkg->q->queue_lock); 533 if (blkcg_policy_enabled(blkg->q, pol)) 534 total += prfill(sf, blkg->pd[pol->plid], data); 535 spin_unlock_irq(&blkg->q->queue_lock); 536 } 537 rcu_read_unlock(); 538 539 if (show_total) 540 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 541 } 542 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 543 544 /** 545 * __blkg_prfill_u64 - prfill helper for a single u64 value 546 * @sf: seq_file to print to 547 * @pd: policy private data of interest 548 * @v: value to print 549 * 550 * Print @v to @sf for the device assocaited with @pd. 551 */ 552 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 553 { 554 const char *dname = blkg_dev_name(pd->blkg); 555 556 if (!dname) 557 return 0; 558 559 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 560 return v; 561 } 562 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 563 564 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 565 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 566 const struct blkcg_policy *pol, 567 struct request_queue *q) 568 { 569 WARN_ON_ONCE(!rcu_read_lock_held()); 570 lockdep_assert_held(&q->queue_lock); 571 572 if (!blkcg_policy_enabled(q, pol)) 573 return ERR_PTR(-EOPNOTSUPP); 574 return __blkg_lookup(blkcg, q, true /* update_hint */); 575 } 576 577 /** 578 * blkg_conf_prep - parse and prepare for per-blkg config update 579 * @inputp: input string pointer 580 * 581 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 582 * from @input and get and return the matching gendisk. *@inputp is 583 * updated to point past the device node prefix. Returns an ERR_PTR() 584 * value on error. 585 * 586 * Use this function iff blkg_conf_prep() can't be used for some reason. 587 */ 588 struct gendisk *blkcg_conf_get_disk(char **inputp) 589 { 590 char *input = *inputp; 591 unsigned int major, minor; 592 struct gendisk *disk; 593 int key_len, part; 594 595 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 596 return ERR_PTR(-EINVAL); 597 598 input += key_len; 599 if (!isspace(*input)) 600 return ERR_PTR(-EINVAL); 601 input = skip_spaces(input); 602 603 disk = get_gendisk(MKDEV(major, minor), &part); 604 if (!disk) 605 return ERR_PTR(-ENODEV); 606 if (part) { 607 put_disk_and_module(disk); 608 return ERR_PTR(-ENODEV); 609 } 610 611 *inputp = input; 612 return disk; 613 } 614 615 /** 616 * blkg_conf_prep - parse and prepare for per-blkg config update 617 * @blkcg: target block cgroup 618 * @pol: target policy 619 * @input: input string 620 * @ctx: blkg_conf_ctx to be filled 621 * 622 * Parse per-blkg config update from @input and initialize @ctx with the 623 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 624 * part of @input following MAJ:MIN. This function returns with RCU read 625 * lock and queue lock held and must be paired with blkg_conf_finish(). 626 */ 627 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 628 char *input, struct blkg_conf_ctx *ctx) 629 __acquires(rcu) __acquires(&disk->queue->queue_lock) 630 { 631 struct gendisk *disk; 632 struct request_queue *q; 633 struct blkcg_gq *blkg; 634 int ret; 635 636 disk = blkcg_conf_get_disk(&input); 637 if (IS_ERR(disk)) 638 return PTR_ERR(disk); 639 640 q = disk->queue; 641 642 rcu_read_lock(); 643 spin_lock_irq(&q->queue_lock); 644 645 blkg = blkg_lookup_check(blkcg, pol, q); 646 if (IS_ERR(blkg)) { 647 ret = PTR_ERR(blkg); 648 goto fail_unlock; 649 } 650 651 if (blkg) 652 goto success; 653 654 /* 655 * Create blkgs walking down from blkcg_root to @blkcg, so that all 656 * non-root blkgs have access to their parents. 657 */ 658 while (true) { 659 struct blkcg *pos = blkcg; 660 struct blkcg *parent; 661 struct blkcg_gq *new_blkg; 662 663 parent = blkcg_parent(blkcg); 664 while (parent && !__blkg_lookup(parent, q, false)) { 665 pos = parent; 666 parent = blkcg_parent(parent); 667 } 668 669 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 670 spin_unlock_irq(&q->queue_lock); 671 rcu_read_unlock(); 672 673 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 674 if (unlikely(!new_blkg)) { 675 ret = -ENOMEM; 676 goto fail; 677 } 678 679 rcu_read_lock(); 680 spin_lock_irq(&q->queue_lock); 681 682 blkg = blkg_lookup_check(pos, pol, q); 683 if (IS_ERR(blkg)) { 684 ret = PTR_ERR(blkg); 685 goto fail_unlock; 686 } 687 688 if (blkg) { 689 blkg_free(new_blkg); 690 } else { 691 blkg = blkg_create(pos, q, new_blkg); 692 if (IS_ERR(blkg)) { 693 ret = PTR_ERR(blkg); 694 goto fail_unlock; 695 } 696 } 697 698 if (pos == blkcg) 699 goto success; 700 } 701 success: 702 ctx->disk = disk; 703 ctx->blkg = blkg; 704 ctx->body = input; 705 return 0; 706 707 fail_unlock: 708 spin_unlock_irq(&q->queue_lock); 709 rcu_read_unlock(); 710 fail: 711 put_disk_and_module(disk); 712 /* 713 * If queue was bypassing, we should retry. Do so after a 714 * short msleep(). It isn't strictly necessary but queue 715 * can be bypassing for some time and it's always nice to 716 * avoid busy looping. 717 */ 718 if (ret == -EBUSY) { 719 msleep(10); 720 ret = restart_syscall(); 721 } 722 return ret; 723 } 724 EXPORT_SYMBOL_GPL(blkg_conf_prep); 725 726 /** 727 * blkg_conf_finish - finish up per-blkg config update 728 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 729 * 730 * Finish up after per-blkg config update. This function must be paired 731 * with blkg_conf_prep(). 732 */ 733 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 734 __releases(&ctx->disk->queue->queue_lock) __releases(rcu) 735 { 736 spin_unlock_irq(&ctx->disk->queue->queue_lock); 737 rcu_read_unlock(); 738 put_disk_and_module(ctx->disk); 739 } 740 EXPORT_SYMBOL_GPL(blkg_conf_finish); 741 742 static int blkcg_print_stat(struct seq_file *sf, void *v) 743 { 744 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 745 struct blkcg_gq *blkg; 746 747 cgroup_rstat_flush(blkcg->css.cgroup); 748 rcu_read_lock(); 749 750 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 751 struct blkg_iostat_set *bis = &blkg->iostat; 752 const char *dname; 753 char *buf; 754 u64 rbytes, wbytes, rios, wios, dbytes, dios; 755 size_t size = seq_get_buf(sf, &buf), off = 0; 756 int i; 757 bool has_stats = false; 758 unsigned seq; 759 760 spin_lock_irq(&blkg->q->queue_lock); 761 762 if (!blkg->online) 763 goto skip; 764 765 dname = blkg_dev_name(blkg); 766 if (!dname) 767 goto skip; 768 769 /* 770 * Hooray string manipulation, count is the size written NOT 771 * INCLUDING THE \0, so size is now count+1 less than what we 772 * had before, but we want to start writing the next bit from 773 * the \0 so we only add count to buf. 774 */ 775 off += scnprintf(buf+off, size-off, "%s ", dname); 776 777 do { 778 seq = u64_stats_fetch_begin(&bis->sync); 779 780 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 781 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 782 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 783 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 784 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 785 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 786 } while (u64_stats_fetch_retry(&bis->sync, seq)); 787 788 if (rbytes || wbytes || rios || wios) { 789 has_stats = true; 790 off += scnprintf(buf+off, size-off, 791 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 792 rbytes, wbytes, rios, wios, 793 dbytes, dios); 794 } 795 796 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 797 has_stats = true; 798 off += scnprintf(buf+off, size-off, 799 " use_delay=%d delay_nsec=%llu", 800 atomic_read(&blkg->use_delay), 801 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 802 } 803 804 for (i = 0; i < BLKCG_MAX_POLS; i++) { 805 struct blkcg_policy *pol = blkcg_policy[i]; 806 size_t written; 807 808 if (!blkg->pd[i] || !pol->pd_stat_fn) 809 continue; 810 811 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 812 if (written) 813 has_stats = true; 814 off += written; 815 } 816 817 if (has_stats) { 818 if (off < size - 1) { 819 off += scnprintf(buf+off, size-off, "\n"); 820 seq_commit(sf, off); 821 } else { 822 seq_commit(sf, -1); 823 } 824 } 825 skip: 826 spin_unlock_irq(&blkg->q->queue_lock); 827 } 828 829 rcu_read_unlock(); 830 return 0; 831 } 832 833 static struct cftype blkcg_files[] = { 834 { 835 .name = "stat", 836 .flags = CFTYPE_NOT_ON_ROOT, 837 .seq_show = blkcg_print_stat, 838 }, 839 { } /* terminate */ 840 }; 841 842 static struct cftype blkcg_legacy_files[] = { 843 { 844 .name = "reset_stats", 845 .write_u64 = blkcg_reset_stats, 846 }, 847 { } /* terminate */ 848 }; 849 850 /* 851 * blkcg destruction is a three-stage process. 852 * 853 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 854 * which offlines writeback. Here we tie the next stage of blkg destruction 855 * to the completion of writeback associated with the blkcg. This lets us 856 * avoid punting potentially large amounts of outstanding writeback to root 857 * while maintaining any ongoing policies. The next stage is triggered when 858 * the nr_cgwbs count goes to zero. 859 * 860 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 861 * and handles the destruction of blkgs. Here the css reference held by 862 * the blkg is put back eventually allowing blkcg_css_free() to be called. 863 * This work may occur in cgwb_release_workfn() on the cgwb_release 864 * workqueue. Any submitted ios that fail to get the blkg ref will be 865 * punted to the root_blkg. 866 * 867 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 868 * This finally frees the blkcg. 869 */ 870 871 /** 872 * blkcg_css_offline - cgroup css_offline callback 873 * @css: css of interest 874 * 875 * This function is called when @css is about to go away. Here the cgwbs are 876 * offlined first and only once writeback associated with the blkcg has 877 * finished do we start step 2 (see above). 878 */ 879 static void blkcg_css_offline(struct cgroup_subsys_state *css) 880 { 881 struct blkcg *blkcg = css_to_blkcg(css); 882 883 /* this prevents anyone from attaching or migrating to this blkcg */ 884 wb_blkcg_offline(blkcg); 885 886 /* put the base online pin allowing step 2 to be triggered */ 887 blkcg_unpin_online(blkcg); 888 } 889 890 /** 891 * blkcg_destroy_blkgs - responsible for shooting down blkgs 892 * @blkcg: blkcg of interest 893 * 894 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 895 * is nested inside q lock, this function performs reverse double lock dancing. 896 * Destroying the blkgs releases the reference held on the blkcg's css allowing 897 * blkcg_css_free to eventually be called. 898 * 899 * This is the blkcg counterpart of ioc_release_fn(). 900 */ 901 void blkcg_destroy_blkgs(struct blkcg *blkcg) 902 { 903 spin_lock_irq(&blkcg->lock); 904 905 while (!hlist_empty(&blkcg->blkg_list)) { 906 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 907 struct blkcg_gq, blkcg_node); 908 struct request_queue *q = blkg->q; 909 910 if (spin_trylock(&q->queue_lock)) { 911 blkg_destroy(blkg); 912 spin_unlock(&q->queue_lock); 913 } else { 914 spin_unlock_irq(&blkcg->lock); 915 cpu_relax(); 916 spin_lock_irq(&blkcg->lock); 917 } 918 } 919 920 spin_unlock_irq(&blkcg->lock); 921 } 922 923 static void blkcg_css_free(struct cgroup_subsys_state *css) 924 { 925 struct blkcg *blkcg = css_to_blkcg(css); 926 int i; 927 928 mutex_lock(&blkcg_pol_mutex); 929 930 list_del(&blkcg->all_blkcgs_node); 931 932 for (i = 0; i < BLKCG_MAX_POLS; i++) 933 if (blkcg->cpd[i]) 934 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 935 936 mutex_unlock(&blkcg_pol_mutex); 937 938 kfree(blkcg); 939 } 940 941 static struct cgroup_subsys_state * 942 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 943 { 944 struct blkcg *blkcg; 945 struct cgroup_subsys_state *ret; 946 int i; 947 948 mutex_lock(&blkcg_pol_mutex); 949 950 if (!parent_css) { 951 blkcg = &blkcg_root; 952 } else { 953 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 954 if (!blkcg) { 955 ret = ERR_PTR(-ENOMEM); 956 goto unlock; 957 } 958 } 959 960 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 961 struct blkcg_policy *pol = blkcg_policy[i]; 962 struct blkcg_policy_data *cpd; 963 964 /* 965 * If the policy hasn't been attached yet, wait for it 966 * to be attached before doing anything else. Otherwise, 967 * check if the policy requires any specific per-cgroup 968 * data: if it does, allocate and initialize it. 969 */ 970 if (!pol || !pol->cpd_alloc_fn) 971 continue; 972 973 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 974 if (!cpd) { 975 ret = ERR_PTR(-ENOMEM); 976 goto free_pd_blkcg; 977 } 978 blkcg->cpd[i] = cpd; 979 cpd->blkcg = blkcg; 980 cpd->plid = i; 981 if (pol->cpd_init_fn) 982 pol->cpd_init_fn(cpd); 983 } 984 985 spin_lock_init(&blkcg->lock); 986 refcount_set(&blkcg->online_pin, 1); 987 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 988 INIT_HLIST_HEAD(&blkcg->blkg_list); 989 #ifdef CONFIG_CGROUP_WRITEBACK 990 INIT_LIST_HEAD(&blkcg->cgwb_list); 991 #endif 992 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 993 994 mutex_unlock(&blkcg_pol_mutex); 995 return &blkcg->css; 996 997 free_pd_blkcg: 998 for (i--; i >= 0; i--) 999 if (blkcg->cpd[i]) 1000 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1001 1002 if (blkcg != &blkcg_root) 1003 kfree(blkcg); 1004 unlock: 1005 mutex_unlock(&blkcg_pol_mutex); 1006 return ret; 1007 } 1008 1009 static int blkcg_css_online(struct cgroup_subsys_state *css) 1010 { 1011 struct blkcg *blkcg = css_to_blkcg(css); 1012 struct blkcg *parent = blkcg_parent(blkcg); 1013 1014 /* 1015 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1016 * don't go offline while cgwbs are still active on them. Pin the 1017 * parent so that offline always happens towards the root. 1018 */ 1019 if (parent) 1020 blkcg_pin_online(parent); 1021 return 0; 1022 } 1023 1024 /** 1025 * blkcg_init_queue - initialize blkcg part of request queue 1026 * @q: request_queue to initialize 1027 * 1028 * Called from __blk_alloc_queue(). Responsible for initializing blkcg 1029 * part of new request_queue @q. 1030 * 1031 * RETURNS: 1032 * 0 on success, -errno on failure. 1033 */ 1034 int blkcg_init_queue(struct request_queue *q) 1035 { 1036 struct blkcg_gq *new_blkg, *blkg; 1037 bool preloaded; 1038 int ret; 1039 1040 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1041 if (!new_blkg) 1042 return -ENOMEM; 1043 1044 preloaded = !radix_tree_preload(GFP_KERNEL); 1045 1046 /* Make sure the root blkg exists. */ 1047 rcu_read_lock(); 1048 spin_lock_irq(&q->queue_lock); 1049 blkg = blkg_create(&blkcg_root, q, new_blkg); 1050 if (IS_ERR(blkg)) 1051 goto err_unlock; 1052 q->root_blkg = blkg; 1053 spin_unlock_irq(&q->queue_lock); 1054 rcu_read_unlock(); 1055 1056 if (preloaded) 1057 radix_tree_preload_end(); 1058 1059 ret = blk_iolatency_init(q); 1060 if (ret) 1061 goto err_destroy_all; 1062 1063 ret = blk_throtl_init(q); 1064 if (ret) 1065 goto err_destroy_all; 1066 return 0; 1067 1068 err_destroy_all: 1069 blkg_destroy_all(q); 1070 return ret; 1071 err_unlock: 1072 spin_unlock_irq(&q->queue_lock); 1073 rcu_read_unlock(); 1074 if (preloaded) 1075 radix_tree_preload_end(); 1076 return PTR_ERR(blkg); 1077 } 1078 1079 /** 1080 * blkcg_exit_queue - exit and release blkcg part of request_queue 1081 * @q: request_queue being released 1082 * 1083 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1084 */ 1085 void blkcg_exit_queue(struct request_queue *q) 1086 { 1087 blkg_destroy_all(q); 1088 blk_throtl_exit(q); 1089 } 1090 1091 /* 1092 * We cannot support shared io contexts, as we have no mean to support 1093 * two tasks with the same ioc in two different groups without major rework 1094 * of the main cic data structures. For now we allow a task to change 1095 * its cgroup only if it's the only owner of its ioc. 1096 */ 1097 static int blkcg_can_attach(struct cgroup_taskset *tset) 1098 { 1099 struct task_struct *task; 1100 struct cgroup_subsys_state *dst_css; 1101 struct io_context *ioc; 1102 int ret = 0; 1103 1104 /* task_lock() is needed to avoid races with exit_io_context() */ 1105 cgroup_taskset_for_each(task, dst_css, tset) { 1106 task_lock(task); 1107 ioc = task->io_context; 1108 if (ioc && atomic_read(&ioc->nr_tasks) > 1) 1109 ret = -EINVAL; 1110 task_unlock(task); 1111 if (ret) 1112 break; 1113 } 1114 return ret; 1115 } 1116 1117 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 1118 { 1119 int i; 1120 1121 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 1122 dst->bytes[i] = src->bytes[i]; 1123 dst->ios[i] = src->ios[i]; 1124 } 1125 } 1126 1127 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 1128 { 1129 int i; 1130 1131 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 1132 dst->bytes[i] += src->bytes[i]; 1133 dst->ios[i] += src->ios[i]; 1134 } 1135 } 1136 1137 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 1138 { 1139 int i; 1140 1141 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 1142 dst->bytes[i] -= src->bytes[i]; 1143 dst->ios[i] -= src->ios[i]; 1144 } 1145 } 1146 1147 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 1148 { 1149 struct blkcg *blkcg = css_to_blkcg(css); 1150 struct blkcg_gq *blkg; 1151 1152 rcu_read_lock(); 1153 1154 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1155 struct blkcg_gq *parent = blkg->parent; 1156 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 1157 struct blkg_iostat cur, delta; 1158 unsigned seq; 1159 1160 /* fetch the current per-cpu values */ 1161 do { 1162 seq = u64_stats_fetch_begin(&bisc->sync); 1163 blkg_iostat_set(&cur, &bisc->cur); 1164 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 1165 1166 /* propagate percpu delta to global */ 1167 u64_stats_update_begin(&blkg->iostat.sync); 1168 blkg_iostat_set(&delta, &cur); 1169 blkg_iostat_sub(&delta, &bisc->last); 1170 blkg_iostat_add(&blkg->iostat.cur, &delta); 1171 blkg_iostat_add(&bisc->last, &delta); 1172 u64_stats_update_end(&blkg->iostat.sync); 1173 1174 /* propagate global delta to parent */ 1175 if (parent) { 1176 u64_stats_update_begin(&parent->iostat.sync); 1177 blkg_iostat_set(&delta, &blkg->iostat.cur); 1178 blkg_iostat_sub(&delta, &blkg->iostat.last); 1179 blkg_iostat_add(&parent->iostat.cur, &delta); 1180 blkg_iostat_add(&blkg->iostat.last, &delta); 1181 u64_stats_update_end(&parent->iostat.sync); 1182 } 1183 } 1184 1185 rcu_read_unlock(); 1186 } 1187 1188 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1189 { 1190 int i; 1191 1192 mutex_lock(&blkcg_pol_mutex); 1193 1194 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1195 struct blkcg_policy *pol = blkcg_policy[i]; 1196 struct blkcg *blkcg; 1197 1198 if (!pol || !pol->cpd_bind_fn) 1199 continue; 1200 1201 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1202 if (blkcg->cpd[pol->plid]) 1203 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1204 } 1205 mutex_unlock(&blkcg_pol_mutex); 1206 } 1207 1208 static void blkcg_exit(struct task_struct *tsk) 1209 { 1210 if (tsk->throttle_queue) 1211 blk_put_queue(tsk->throttle_queue); 1212 tsk->throttle_queue = NULL; 1213 } 1214 1215 struct cgroup_subsys io_cgrp_subsys = { 1216 .css_alloc = blkcg_css_alloc, 1217 .css_online = blkcg_css_online, 1218 .css_offline = blkcg_css_offline, 1219 .css_free = blkcg_css_free, 1220 .can_attach = blkcg_can_attach, 1221 .css_rstat_flush = blkcg_rstat_flush, 1222 .bind = blkcg_bind, 1223 .dfl_cftypes = blkcg_files, 1224 .legacy_cftypes = blkcg_legacy_files, 1225 .legacy_name = "blkio", 1226 .exit = blkcg_exit, 1227 #ifdef CONFIG_MEMCG 1228 /* 1229 * This ensures that, if available, memcg is automatically enabled 1230 * together on the default hierarchy so that the owner cgroup can 1231 * be retrieved from writeback pages. 1232 */ 1233 .depends_on = 1 << memory_cgrp_id, 1234 #endif 1235 }; 1236 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1237 1238 /** 1239 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1240 * @q: request_queue of interest 1241 * @pol: blkcg policy to activate 1242 * 1243 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1244 * bypass mode to populate its blkgs with policy_data for @pol. 1245 * 1246 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1247 * from IO path. Update of each blkg is protected by both queue and blkcg 1248 * locks so that holding either lock and testing blkcg_policy_enabled() is 1249 * always enough for dereferencing policy data. 1250 * 1251 * The caller is responsible for synchronizing [de]activations and policy 1252 * [un]registerations. Returns 0 on success, -errno on failure. 1253 */ 1254 int blkcg_activate_policy(struct request_queue *q, 1255 const struct blkcg_policy *pol) 1256 { 1257 struct blkg_policy_data *pd_prealloc = NULL; 1258 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1259 int ret; 1260 1261 if (blkcg_policy_enabled(q, pol)) 1262 return 0; 1263 1264 if (queue_is_mq(q)) 1265 blk_mq_freeze_queue(q); 1266 retry: 1267 spin_lock_irq(&q->queue_lock); 1268 1269 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1270 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1271 struct blkg_policy_data *pd; 1272 1273 if (blkg->pd[pol->plid]) 1274 continue; 1275 1276 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1277 if (blkg == pinned_blkg) { 1278 pd = pd_prealloc; 1279 pd_prealloc = NULL; 1280 } else { 1281 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1282 blkg->blkcg); 1283 } 1284 1285 if (!pd) { 1286 /* 1287 * GFP_NOWAIT failed. Free the existing one and 1288 * prealloc for @blkg w/ GFP_KERNEL. 1289 */ 1290 if (pinned_blkg) 1291 blkg_put(pinned_blkg); 1292 blkg_get(blkg); 1293 pinned_blkg = blkg; 1294 1295 spin_unlock_irq(&q->queue_lock); 1296 1297 if (pd_prealloc) 1298 pol->pd_free_fn(pd_prealloc); 1299 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1300 blkg->blkcg); 1301 if (pd_prealloc) 1302 goto retry; 1303 else 1304 goto enomem; 1305 } 1306 1307 blkg->pd[pol->plid] = pd; 1308 pd->blkg = blkg; 1309 pd->plid = pol->plid; 1310 } 1311 1312 /* all allocated, init in the same order */ 1313 if (pol->pd_init_fn) 1314 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1315 pol->pd_init_fn(blkg->pd[pol->plid]); 1316 1317 __set_bit(pol->plid, q->blkcg_pols); 1318 ret = 0; 1319 1320 spin_unlock_irq(&q->queue_lock); 1321 out: 1322 if (queue_is_mq(q)) 1323 blk_mq_unfreeze_queue(q); 1324 if (pinned_blkg) 1325 blkg_put(pinned_blkg); 1326 if (pd_prealloc) 1327 pol->pd_free_fn(pd_prealloc); 1328 return ret; 1329 1330 enomem: 1331 /* alloc failed, nothing's initialized yet, free everything */ 1332 spin_lock_irq(&q->queue_lock); 1333 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1334 if (blkg->pd[pol->plid]) { 1335 pol->pd_free_fn(blkg->pd[pol->plid]); 1336 blkg->pd[pol->plid] = NULL; 1337 } 1338 } 1339 spin_unlock_irq(&q->queue_lock); 1340 ret = -ENOMEM; 1341 goto out; 1342 } 1343 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1344 1345 /** 1346 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1347 * @q: request_queue of interest 1348 * @pol: blkcg policy to deactivate 1349 * 1350 * Deactivate @pol on @q. Follows the same synchronization rules as 1351 * blkcg_activate_policy(). 1352 */ 1353 void blkcg_deactivate_policy(struct request_queue *q, 1354 const struct blkcg_policy *pol) 1355 { 1356 struct blkcg_gq *blkg; 1357 1358 if (!blkcg_policy_enabled(q, pol)) 1359 return; 1360 1361 if (queue_is_mq(q)) 1362 blk_mq_freeze_queue(q); 1363 1364 spin_lock_irq(&q->queue_lock); 1365 1366 __clear_bit(pol->plid, q->blkcg_pols); 1367 1368 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1369 if (blkg->pd[pol->plid]) { 1370 if (pol->pd_offline_fn) 1371 pol->pd_offline_fn(blkg->pd[pol->plid]); 1372 pol->pd_free_fn(blkg->pd[pol->plid]); 1373 blkg->pd[pol->plid] = NULL; 1374 } 1375 } 1376 1377 spin_unlock_irq(&q->queue_lock); 1378 1379 if (queue_is_mq(q)) 1380 blk_mq_unfreeze_queue(q); 1381 } 1382 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1383 1384 /** 1385 * blkcg_policy_register - register a blkcg policy 1386 * @pol: blkcg policy to register 1387 * 1388 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1389 * successful registration. Returns 0 on success and -errno on failure. 1390 */ 1391 int blkcg_policy_register(struct blkcg_policy *pol) 1392 { 1393 struct blkcg *blkcg; 1394 int i, ret; 1395 1396 mutex_lock(&blkcg_pol_register_mutex); 1397 mutex_lock(&blkcg_pol_mutex); 1398 1399 /* find an empty slot */ 1400 ret = -ENOSPC; 1401 for (i = 0; i < BLKCG_MAX_POLS; i++) 1402 if (!blkcg_policy[i]) 1403 break; 1404 if (i >= BLKCG_MAX_POLS) { 1405 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1406 goto err_unlock; 1407 } 1408 1409 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1410 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1411 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1412 goto err_unlock; 1413 1414 /* register @pol */ 1415 pol->plid = i; 1416 blkcg_policy[pol->plid] = pol; 1417 1418 /* allocate and install cpd's */ 1419 if (pol->cpd_alloc_fn) { 1420 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1421 struct blkcg_policy_data *cpd; 1422 1423 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1424 if (!cpd) 1425 goto err_free_cpds; 1426 1427 blkcg->cpd[pol->plid] = cpd; 1428 cpd->blkcg = blkcg; 1429 cpd->plid = pol->plid; 1430 if (pol->cpd_init_fn) 1431 pol->cpd_init_fn(cpd); 1432 } 1433 } 1434 1435 mutex_unlock(&blkcg_pol_mutex); 1436 1437 /* everything is in place, add intf files for the new policy */ 1438 if (pol->dfl_cftypes) 1439 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1440 pol->dfl_cftypes)); 1441 if (pol->legacy_cftypes) 1442 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1443 pol->legacy_cftypes)); 1444 mutex_unlock(&blkcg_pol_register_mutex); 1445 return 0; 1446 1447 err_free_cpds: 1448 if (pol->cpd_free_fn) { 1449 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1450 if (blkcg->cpd[pol->plid]) { 1451 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1452 blkcg->cpd[pol->plid] = NULL; 1453 } 1454 } 1455 } 1456 blkcg_policy[pol->plid] = NULL; 1457 err_unlock: 1458 mutex_unlock(&blkcg_pol_mutex); 1459 mutex_unlock(&blkcg_pol_register_mutex); 1460 return ret; 1461 } 1462 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1463 1464 /** 1465 * blkcg_policy_unregister - unregister a blkcg policy 1466 * @pol: blkcg policy to unregister 1467 * 1468 * Undo blkcg_policy_register(@pol). Might sleep. 1469 */ 1470 void blkcg_policy_unregister(struct blkcg_policy *pol) 1471 { 1472 struct blkcg *blkcg; 1473 1474 mutex_lock(&blkcg_pol_register_mutex); 1475 1476 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1477 goto out_unlock; 1478 1479 /* kill the intf files first */ 1480 if (pol->dfl_cftypes) 1481 cgroup_rm_cftypes(pol->dfl_cftypes); 1482 if (pol->legacy_cftypes) 1483 cgroup_rm_cftypes(pol->legacy_cftypes); 1484 1485 /* remove cpds and unregister */ 1486 mutex_lock(&blkcg_pol_mutex); 1487 1488 if (pol->cpd_free_fn) { 1489 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1490 if (blkcg->cpd[pol->plid]) { 1491 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1492 blkcg->cpd[pol->plid] = NULL; 1493 } 1494 } 1495 } 1496 blkcg_policy[pol->plid] = NULL; 1497 1498 mutex_unlock(&blkcg_pol_mutex); 1499 out_unlock: 1500 mutex_unlock(&blkcg_pol_register_mutex); 1501 } 1502 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1503 1504 bool __blkcg_punt_bio_submit(struct bio *bio) 1505 { 1506 struct blkcg_gq *blkg = bio->bi_blkg; 1507 1508 /* consume the flag first */ 1509 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1510 1511 /* never bounce for the root cgroup */ 1512 if (!blkg->parent) 1513 return false; 1514 1515 spin_lock_bh(&blkg->async_bio_lock); 1516 bio_list_add(&blkg->async_bios, bio); 1517 spin_unlock_bh(&blkg->async_bio_lock); 1518 1519 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1520 return true; 1521 } 1522 1523 /* 1524 * Scale the accumulated delay based on how long it has been since we updated 1525 * the delay. We only call this when we are adding delay, in case it's been a 1526 * while since we added delay, and when we are checking to see if we need to 1527 * delay a task, to account for any delays that may have occurred. 1528 */ 1529 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1530 { 1531 u64 old = atomic64_read(&blkg->delay_start); 1532 1533 /* 1534 * We only want to scale down every second. The idea here is that we 1535 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1536 * time window. We only want to throttle tasks for recent delay that 1537 * has occurred, in 1 second time windows since that's the maximum 1538 * things can be throttled. We save the current delay window in 1539 * blkg->last_delay so we know what amount is still left to be charged 1540 * to the blkg from this point onward. blkg->last_use keeps track of 1541 * the use_delay counter. The idea is if we're unthrottling the blkg we 1542 * are ok with whatever is happening now, and we can take away more of 1543 * the accumulated delay as we've already throttled enough that 1544 * everybody is happy with their IO latencies. 1545 */ 1546 if (time_before64(old + NSEC_PER_SEC, now) && 1547 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1548 u64 cur = atomic64_read(&blkg->delay_nsec); 1549 u64 sub = min_t(u64, blkg->last_delay, now - old); 1550 int cur_use = atomic_read(&blkg->use_delay); 1551 1552 /* 1553 * We've been unthrottled, subtract a larger chunk of our 1554 * accumulated delay. 1555 */ 1556 if (cur_use < blkg->last_use) 1557 sub = max_t(u64, sub, blkg->last_delay >> 1); 1558 1559 /* 1560 * This shouldn't happen, but handle it anyway. Our delay_nsec 1561 * should only ever be growing except here where we subtract out 1562 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1563 * rather not end up with negative numbers. 1564 */ 1565 if (unlikely(cur < sub)) { 1566 atomic64_set(&blkg->delay_nsec, 0); 1567 blkg->last_delay = 0; 1568 } else { 1569 atomic64_sub(sub, &blkg->delay_nsec); 1570 blkg->last_delay = cur - sub; 1571 } 1572 blkg->last_use = cur_use; 1573 } 1574 } 1575 1576 /* 1577 * This is called when we want to actually walk up the hierarchy and check to 1578 * see if we need to throttle, and then actually throttle if there is some 1579 * accumulated delay. This should only be called upon return to user space so 1580 * we're not holding some lock that would induce a priority inversion. 1581 */ 1582 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1583 { 1584 unsigned long pflags; 1585 u64 now = ktime_to_ns(ktime_get()); 1586 u64 exp; 1587 u64 delay_nsec = 0; 1588 int tok; 1589 1590 while (blkg->parent) { 1591 if (atomic_read(&blkg->use_delay)) { 1592 blkcg_scale_delay(blkg, now); 1593 delay_nsec = max_t(u64, delay_nsec, 1594 atomic64_read(&blkg->delay_nsec)); 1595 } 1596 blkg = blkg->parent; 1597 } 1598 1599 if (!delay_nsec) 1600 return; 1601 1602 /* 1603 * Let's not sleep for all eternity if we've amassed a huge delay. 1604 * Swapping or metadata IO can accumulate 10's of seconds worth of 1605 * delay, and we want userspace to be able to do _something_ so cap the 1606 * delays at 1 second. If there's 10's of seconds worth of delay then 1607 * the tasks will be delayed for 1 second for every syscall. 1608 */ 1609 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1610 1611 if (use_memdelay) 1612 psi_memstall_enter(&pflags); 1613 1614 exp = ktime_add_ns(now, delay_nsec); 1615 tok = io_schedule_prepare(); 1616 do { 1617 __set_current_state(TASK_KILLABLE); 1618 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1619 break; 1620 } while (!fatal_signal_pending(current)); 1621 io_schedule_finish(tok); 1622 1623 if (use_memdelay) 1624 psi_memstall_leave(&pflags); 1625 } 1626 1627 /** 1628 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1629 * 1630 * This is only called if we've been marked with set_notify_resume(). Obviously 1631 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1632 * check to see if current->throttle_queue is set and if not this doesn't do 1633 * anything. This should only ever be called by the resume code, it's not meant 1634 * to be called by people willy-nilly as it will actually do the work to 1635 * throttle the task if it is setup for throttling. 1636 */ 1637 void blkcg_maybe_throttle_current(void) 1638 { 1639 struct request_queue *q = current->throttle_queue; 1640 struct cgroup_subsys_state *css; 1641 struct blkcg *blkcg; 1642 struct blkcg_gq *blkg; 1643 bool use_memdelay = current->use_memdelay; 1644 1645 if (!q) 1646 return; 1647 1648 current->throttle_queue = NULL; 1649 current->use_memdelay = false; 1650 1651 rcu_read_lock(); 1652 css = kthread_blkcg(); 1653 if (css) 1654 blkcg = css_to_blkcg(css); 1655 else 1656 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1657 1658 if (!blkcg) 1659 goto out; 1660 blkg = blkg_lookup(blkcg, q); 1661 if (!blkg) 1662 goto out; 1663 if (!blkg_tryget(blkg)) 1664 goto out; 1665 rcu_read_unlock(); 1666 1667 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1668 blkg_put(blkg); 1669 blk_put_queue(q); 1670 return; 1671 out: 1672 rcu_read_unlock(); 1673 blk_put_queue(q); 1674 } 1675 1676 /** 1677 * blkcg_schedule_throttle - this task needs to check for throttling 1678 * @q: the request queue IO was submitted on 1679 * @use_memdelay: do we charge this to memory delay for PSI 1680 * 1681 * This is called by the IO controller when we know there's delay accumulated 1682 * for the blkg for this task. We do not pass the blkg because there are places 1683 * we call this that may not have that information, the swapping code for 1684 * instance will only have a request_queue at that point. This set's the 1685 * notify_resume for the task to check and see if it requires throttling before 1686 * returning to user space. 1687 * 1688 * We will only schedule once per syscall. You can call this over and over 1689 * again and it will only do the check once upon return to user space, and only 1690 * throttle once. If the task needs to be throttled again it'll need to be 1691 * re-set at the next time we see the task. 1692 */ 1693 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1694 { 1695 if (unlikely(current->flags & PF_KTHREAD)) 1696 return; 1697 1698 if (!blk_get_queue(q)) 1699 return; 1700 1701 if (current->throttle_queue) 1702 blk_put_queue(current->throttle_queue); 1703 current->throttle_queue = q; 1704 if (use_memdelay) 1705 current->use_memdelay = use_memdelay; 1706 set_notify_resume(current); 1707 } 1708 1709 /** 1710 * blkcg_add_delay - add delay to this blkg 1711 * @blkg: blkg of interest 1712 * @now: the current time in nanoseconds 1713 * @delta: how many nanoseconds of delay to add 1714 * 1715 * Charge @delta to the blkg's current delay accumulation. This is used to 1716 * throttle tasks if an IO controller thinks we need more throttling. 1717 */ 1718 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1719 { 1720 blkcg_scale_delay(blkg, now); 1721 atomic64_add(delta, &blkg->delay_nsec); 1722 } 1723 1724 static int __init blkcg_init(void) 1725 { 1726 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1727 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1728 WQ_UNBOUND | WQ_SYSFS, 0); 1729 if (!blkcg_punt_bio_wq) 1730 return -ENOMEM; 1731 return 0; 1732 } 1733 subsys_initcall(blkcg_init); 1734 1735 module_param(blkcg_debug_stats, bool, 0644); 1736 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1737