xref: /openbmc/linux/block/blk-cgroup.c (revision b4bc93bd76d4da32600795cd323c971f00a2e788)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/tracehook.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59 
60 #define BLKG_DESTROY_BATCH_SIZE  64
61 
62 static bool blkcg_policy_enabled(struct request_queue *q,
63 				 const struct blkcg_policy *pol)
64 {
65 	return pol && test_bit(pol->plid, q->blkcg_pols);
66 }
67 
68 /**
69  * blkg_free - free a blkg
70  * @blkg: blkg to free
71  *
72  * Free @blkg which may be partially allocated.
73  */
74 static void blkg_free(struct blkcg_gq *blkg)
75 {
76 	int i;
77 
78 	if (!blkg)
79 		return;
80 
81 	for (i = 0; i < BLKCG_MAX_POLS; i++)
82 		if (blkg->pd[i])
83 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
84 
85 	if (blkg->q)
86 		blk_put_queue(blkg->q);
87 	free_percpu(blkg->iostat_cpu);
88 	percpu_ref_exit(&blkg->refcnt);
89 	kfree(blkg);
90 }
91 
92 static void __blkg_release(struct rcu_head *rcu)
93 {
94 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
95 
96 	WARN_ON(!bio_list_empty(&blkg->async_bios));
97 
98 	/* release the blkcg and parent blkg refs this blkg has been holding */
99 	css_put(&blkg->blkcg->css);
100 	if (blkg->parent)
101 		blkg_put(blkg->parent);
102 	blkg_free(blkg);
103 }
104 
105 /*
106  * A group is RCU protected, but having an rcu lock does not mean that one
107  * can access all the fields of blkg and assume these are valid.  For
108  * example, don't try to follow throtl_data and request queue links.
109  *
110  * Having a reference to blkg under an rcu allows accesses to only values
111  * local to groups like group stats and group rate limits.
112  */
113 static void blkg_release(struct percpu_ref *ref)
114 {
115 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
116 
117 	call_rcu(&blkg->rcu_head, __blkg_release);
118 }
119 
120 static void blkg_async_bio_workfn(struct work_struct *work)
121 {
122 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
123 					     async_bio_work);
124 	struct bio_list bios = BIO_EMPTY_LIST;
125 	struct bio *bio;
126 	struct blk_plug plug;
127 	bool need_plug = false;
128 
129 	/* as long as there are pending bios, @blkg can't go away */
130 	spin_lock_bh(&blkg->async_bio_lock);
131 	bio_list_merge(&bios, &blkg->async_bios);
132 	bio_list_init(&blkg->async_bios);
133 	spin_unlock_bh(&blkg->async_bio_lock);
134 
135 	/* start plug only when bio_list contains at least 2 bios */
136 	if (bios.head && bios.head->bi_next) {
137 		need_plug = true;
138 		blk_start_plug(&plug);
139 	}
140 	while ((bio = bio_list_pop(&bios)))
141 		submit_bio(bio);
142 	if (need_plug)
143 		blk_finish_plug(&plug);
144 }
145 
146 /**
147  * blkg_alloc - allocate a blkg
148  * @blkcg: block cgroup the new blkg is associated with
149  * @q: request_queue the new blkg is associated with
150  * @gfp_mask: allocation mask to use
151  *
152  * Allocate a new blkg assocating @blkcg and @q.
153  */
154 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
155 				   gfp_t gfp_mask)
156 {
157 	struct blkcg_gq *blkg;
158 	int i, cpu;
159 
160 	/* alloc and init base part */
161 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
162 	if (!blkg)
163 		return NULL;
164 
165 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
166 		goto err_free;
167 
168 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
169 	if (!blkg->iostat_cpu)
170 		goto err_free;
171 
172 	if (!blk_get_queue(q))
173 		goto err_free;
174 
175 	blkg->q = q;
176 	INIT_LIST_HEAD(&blkg->q_node);
177 	spin_lock_init(&blkg->async_bio_lock);
178 	bio_list_init(&blkg->async_bios);
179 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
180 	blkg->blkcg = blkcg;
181 
182 	u64_stats_init(&blkg->iostat.sync);
183 	for_each_possible_cpu(cpu)
184 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
185 
186 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
187 		struct blkcg_policy *pol = blkcg_policy[i];
188 		struct blkg_policy_data *pd;
189 
190 		if (!blkcg_policy_enabled(q, pol))
191 			continue;
192 
193 		/* alloc per-policy data and attach it to blkg */
194 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
195 		if (!pd)
196 			goto err_free;
197 
198 		blkg->pd[i] = pd;
199 		pd->blkg = blkg;
200 		pd->plid = i;
201 	}
202 
203 	return blkg;
204 
205 err_free:
206 	blkg_free(blkg);
207 	return NULL;
208 }
209 
210 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
211 				      struct request_queue *q, bool update_hint)
212 {
213 	struct blkcg_gq *blkg;
214 
215 	/*
216 	 * Hint didn't match.  Look up from the radix tree.  Note that the
217 	 * hint can only be updated under queue_lock as otherwise @blkg
218 	 * could have already been removed from blkg_tree.  The caller is
219 	 * responsible for grabbing queue_lock if @update_hint.
220 	 */
221 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
222 	if (blkg && blkg->q == q) {
223 		if (update_hint) {
224 			lockdep_assert_held(&q->queue_lock);
225 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
226 		}
227 		return blkg;
228 	}
229 
230 	return NULL;
231 }
232 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
233 
234 /*
235  * If @new_blkg is %NULL, this function tries to allocate a new one as
236  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
237  */
238 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
239 				    struct request_queue *q,
240 				    struct blkcg_gq *new_blkg)
241 {
242 	struct blkcg_gq *blkg;
243 	int i, ret;
244 
245 	WARN_ON_ONCE(!rcu_read_lock_held());
246 	lockdep_assert_held(&q->queue_lock);
247 
248 	/* request_queue is dying, do not create/recreate a blkg */
249 	if (blk_queue_dying(q)) {
250 		ret = -ENODEV;
251 		goto err_free_blkg;
252 	}
253 
254 	/* blkg holds a reference to blkcg */
255 	if (!css_tryget_online(&blkcg->css)) {
256 		ret = -ENODEV;
257 		goto err_free_blkg;
258 	}
259 
260 	/* allocate */
261 	if (!new_blkg) {
262 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
263 		if (unlikely(!new_blkg)) {
264 			ret = -ENOMEM;
265 			goto err_put_css;
266 		}
267 	}
268 	blkg = new_blkg;
269 
270 	/* link parent */
271 	if (blkcg_parent(blkcg)) {
272 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
273 		if (WARN_ON_ONCE(!blkg->parent)) {
274 			ret = -ENODEV;
275 			goto err_put_css;
276 		}
277 		blkg_get(blkg->parent);
278 	}
279 
280 	/* invoke per-policy init */
281 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
282 		struct blkcg_policy *pol = blkcg_policy[i];
283 
284 		if (blkg->pd[i] && pol->pd_init_fn)
285 			pol->pd_init_fn(blkg->pd[i]);
286 	}
287 
288 	/* insert */
289 	spin_lock(&blkcg->lock);
290 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
291 	if (likely(!ret)) {
292 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
293 		list_add(&blkg->q_node, &q->blkg_list);
294 
295 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
296 			struct blkcg_policy *pol = blkcg_policy[i];
297 
298 			if (blkg->pd[i] && pol->pd_online_fn)
299 				pol->pd_online_fn(blkg->pd[i]);
300 		}
301 	}
302 	blkg->online = true;
303 	spin_unlock(&blkcg->lock);
304 
305 	if (!ret)
306 		return blkg;
307 
308 	/* @blkg failed fully initialized, use the usual release path */
309 	blkg_put(blkg);
310 	return ERR_PTR(ret);
311 
312 err_put_css:
313 	css_put(&blkcg->css);
314 err_free_blkg:
315 	blkg_free(new_blkg);
316 	return ERR_PTR(ret);
317 }
318 
319 /**
320  * blkg_lookup_create - lookup blkg, try to create one if not there
321  * @blkcg: blkcg of interest
322  * @q: request_queue of interest
323  *
324  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
325  * create one.  blkg creation is performed recursively from blkcg_root such
326  * that all non-root blkg's have access to the parent blkg.  This function
327  * should be called under RCU read lock and takes @q->queue_lock.
328  *
329  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
330  * down from root.
331  */
332 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
333 		struct request_queue *q)
334 {
335 	struct blkcg_gq *blkg;
336 	unsigned long flags;
337 
338 	WARN_ON_ONCE(!rcu_read_lock_held());
339 
340 	blkg = blkg_lookup(blkcg, q);
341 	if (blkg)
342 		return blkg;
343 
344 	spin_lock_irqsave(&q->queue_lock, flags);
345 	blkg = __blkg_lookup(blkcg, q, true);
346 	if (blkg)
347 		goto found;
348 
349 	/*
350 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
351 	 * non-root blkgs have access to their parents.  Returns the closest
352 	 * blkg to the intended blkg should blkg_create() fail.
353 	 */
354 	while (true) {
355 		struct blkcg *pos = blkcg;
356 		struct blkcg *parent = blkcg_parent(blkcg);
357 		struct blkcg_gq *ret_blkg = q->root_blkg;
358 
359 		while (parent) {
360 			blkg = __blkg_lookup(parent, q, false);
361 			if (blkg) {
362 				/* remember closest blkg */
363 				ret_blkg = blkg;
364 				break;
365 			}
366 			pos = parent;
367 			parent = blkcg_parent(parent);
368 		}
369 
370 		blkg = blkg_create(pos, q, NULL);
371 		if (IS_ERR(blkg)) {
372 			blkg = ret_blkg;
373 			break;
374 		}
375 		if (pos == blkcg)
376 			break;
377 	}
378 
379 found:
380 	spin_unlock_irqrestore(&q->queue_lock, flags);
381 	return blkg;
382 }
383 
384 static void blkg_destroy(struct blkcg_gq *blkg)
385 {
386 	struct blkcg *blkcg = blkg->blkcg;
387 	int i;
388 
389 	lockdep_assert_held(&blkg->q->queue_lock);
390 	lockdep_assert_held(&blkcg->lock);
391 
392 	/* Something wrong if we are trying to remove same group twice */
393 	WARN_ON_ONCE(list_empty(&blkg->q_node));
394 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
395 
396 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
397 		struct blkcg_policy *pol = blkcg_policy[i];
398 
399 		if (blkg->pd[i] && pol->pd_offline_fn)
400 			pol->pd_offline_fn(blkg->pd[i]);
401 	}
402 
403 	blkg->online = false;
404 
405 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
406 	list_del_init(&blkg->q_node);
407 	hlist_del_init_rcu(&blkg->blkcg_node);
408 
409 	/*
410 	 * Both setting lookup hint to and clearing it from @blkg are done
411 	 * under queue_lock.  If it's not pointing to @blkg now, it never
412 	 * will.  Hint assignment itself can race safely.
413 	 */
414 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
415 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
416 
417 	/*
418 	 * Put the reference taken at the time of creation so that when all
419 	 * queues are gone, group can be destroyed.
420 	 */
421 	percpu_ref_kill(&blkg->refcnt);
422 }
423 
424 /**
425  * blkg_destroy_all - destroy all blkgs associated with a request_queue
426  * @q: request_queue of interest
427  *
428  * Destroy all blkgs associated with @q.
429  */
430 static void blkg_destroy_all(struct request_queue *q)
431 {
432 	struct blkcg_gq *blkg, *n;
433 	int count = BLKG_DESTROY_BATCH_SIZE;
434 
435 restart:
436 	spin_lock_irq(&q->queue_lock);
437 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
438 		struct blkcg *blkcg = blkg->blkcg;
439 
440 		spin_lock(&blkcg->lock);
441 		blkg_destroy(blkg);
442 		spin_unlock(&blkcg->lock);
443 
444 		/*
445 		 * in order to avoid holding the spin lock for too long, release
446 		 * it when a batch of blkgs are destroyed.
447 		 */
448 		if (!(--count)) {
449 			count = BLKG_DESTROY_BATCH_SIZE;
450 			spin_unlock_irq(&q->queue_lock);
451 			cond_resched();
452 			goto restart;
453 		}
454 	}
455 
456 	q->root_blkg = NULL;
457 	spin_unlock_irq(&q->queue_lock);
458 }
459 
460 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
461 			     struct cftype *cftype, u64 val)
462 {
463 	struct blkcg *blkcg = css_to_blkcg(css);
464 	struct blkcg_gq *blkg;
465 	int i, cpu;
466 
467 	mutex_lock(&blkcg_pol_mutex);
468 	spin_lock_irq(&blkcg->lock);
469 
470 	/*
471 	 * Note that stat reset is racy - it doesn't synchronize against
472 	 * stat updates.  This is a debug feature which shouldn't exist
473 	 * anyway.  If you get hit by a race, retry.
474 	 */
475 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
476 		for_each_possible_cpu(cpu) {
477 			struct blkg_iostat_set *bis =
478 				per_cpu_ptr(blkg->iostat_cpu, cpu);
479 			memset(bis, 0, sizeof(*bis));
480 		}
481 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
482 
483 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
484 			struct blkcg_policy *pol = blkcg_policy[i];
485 
486 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
487 				pol->pd_reset_stats_fn(blkg->pd[i]);
488 		}
489 	}
490 
491 	spin_unlock_irq(&blkcg->lock);
492 	mutex_unlock(&blkcg_pol_mutex);
493 	return 0;
494 }
495 
496 const char *blkg_dev_name(struct blkcg_gq *blkg)
497 {
498 	if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
499 		return NULL;
500 	return bdi_dev_name(blkg->q->disk->bdi);
501 }
502 
503 /**
504  * blkcg_print_blkgs - helper for printing per-blkg data
505  * @sf: seq_file to print to
506  * @blkcg: blkcg of interest
507  * @prfill: fill function to print out a blkg
508  * @pol: policy in question
509  * @data: data to be passed to @prfill
510  * @show_total: to print out sum of prfill return values or not
511  *
512  * This function invokes @prfill on each blkg of @blkcg if pd for the
513  * policy specified by @pol exists.  @prfill is invoked with @sf, the
514  * policy data and @data and the matching queue lock held.  If @show_total
515  * is %true, the sum of the return values from @prfill is printed with
516  * "Total" label at the end.
517  *
518  * This is to be used to construct print functions for
519  * cftype->read_seq_string method.
520  */
521 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
522 		       u64 (*prfill)(struct seq_file *,
523 				     struct blkg_policy_data *, int),
524 		       const struct blkcg_policy *pol, int data,
525 		       bool show_total)
526 {
527 	struct blkcg_gq *blkg;
528 	u64 total = 0;
529 
530 	rcu_read_lock();
531 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
532 		spin_lock_irq(&blkg->q->queue_lock);
533 		if (blkcg_policy_enabled(blkg->q, pol))
534 			total += prfill(sf, blkg->pd[pol->plid], data);
535 		spin_unlock_irq(&blkg->q->queue_lock);
536 	}
537 	rcu_read_unlock();
538 
539 	if (show_total)
540 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
541 }
542 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
543 
544 /**
545  * __blkg_prfill_u64 - prfill helper for a single u64 value
546  * @sf: seq_file to print to
547  * @pd: policy private data of interest
548  * @v: value to print
549  *
550  * Print @v to @sf for the device assocaited with @pd.
551  */
552 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
553 {
554 	const char *dname = blkg_dev_name(pd->blkg);
555 
556 	if (!dname)
557 		return 0;
558 
559 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
560 	return v;
561 }
562 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
563 
564 /* Performs queue bypass and policy enabled checks then looks up blkg. */
565 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
566 					  const struct blkcg_policy *pol,
567 					  struct request_queue *q)
568 {
569 	WARN_ON_ONCE(!rcu_read_lock_held());
570 	lockdep_assert_held(&q->queue_lock);
571 
572 	if (!blkcg_policy_enabled(q, pol))
573 		return ERR_PTR(-EOPNOTSUPP);
574 	return __blkg_lookup(blkcg, q, true /* update_hint */);
575 }
576 
577 /**
578  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
579  * @inputp: input string pointer
580  *
581  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
582  * from @input and get and return the matching bdev.  *@inputp is
583  * updated to point past the device node prefix.  Returns an ERR_PTR()
584  * value on error.
585  *
586  * Use this function iff blkg_conf_prep() can't be used for some reason.
587  */
588 struct block_device *blkcg_conf_open_bdev(char **inputp)
589 {
590 	char *input = *inputp;
591 	unsigned int major, minor;
592 	struct block_device *bdev;
593 	int key_len;
594 
595 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
596 		return ERR_PTR(-EINVAL);
597 
598 	input += key_len;
599 	if (!isspace(*input))
600 		return ERR_PTR(-EINVAL);
601 	input = skip_spaces(input);
602 
603 	bdev = blkdev_get_no_open(MKDEV(major, minor));
604 	if (!bdev)
605 		return ERR_PTR(-ENODEV);
606 	if (bdev_is_partition(bdev)) {
607 		blkdev_put_no_open(bdev);
608 		return ERR_PTR(-ENODEV);
609 	}
610 
611 	*inputp = input;
612 	return bdev;
613 }
614 
615 /**
616  * blkg_conf_prep - parse and prepare for per-blkg config update
617  * @blkcg: target block cgroup
618  * @pol: target policy
619  * @input: input string
620  * @ctx: blkg_conf_ctx to be filled
621  *
622  * Parse per-blkg config update from @input and initialize @ctx with the
623  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
624  * part of @input following MAJ:MIN.  This function returns with RCU read
625  * lock and queue lock held and must be paired with blkg_conf_finish().
626  */
627 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
628 		   char *input, struct blkg_conf_ctx *ctx)
629 	__acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
630 {
631 	struct block_device *bdev;
632 	struct request_queue *q;
633 	struct blkcg_gq *blkg;
634 	int ret;
635 
636 	bdev = blkcg_conf_open_bdev(&input);
637 	if (IS_ERR(bdev))
638 		return PTR_ERR(bdev);
639 
640 	q = bdev_get_queue(bdev);
641 
642 	/*
643 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
644 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
645 	 */
646 	ret = blk_queue_enter(q, 0);
647 	if (ret)
648 		goto fail;
649 
650 	rcu_read_lock();
651 	spin_lock_irq(&q->queue_lock);
652 
653 	blkg = blkg_lookup_check(blkcg, pol, q);
654 	if (IS_ERR(blkg)) {
655 		ret = PTR_ERR(blkg);
656 		goto fail_unlock;
657 	}
658 
659 	if (blkg)
660 		goto success;
661 
662 	/*
663 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
664 	 * non-root blkgs have access to their parents.
665 	 */
666 	while (true) {
667 		struct blkcg *pos = blkcg;
668 		struct blkcg *parent;
669 		struct blkcg_gq *new_blkg;
670 
671 		parent = blkcg_parent(blkcg);
672 		while (parent && !__blkg_lookup(parent, q, false)) {
673 			pos = parent;
674 			parent = blkcg_parent(parent);
675 		}
676 
677 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
678 		spin_unlock_irq(&q->queue_lock);
679 		rcu_read_unlock();
680 
681 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
682 		if (unlikely(!new_blkg)) {
683 			ret = -ENOMEM;
684 			goto fail_exit_queue;
685 		}
686 
687 		if (radix_tree_preload(GFP_KERNEL)) {
688 			blkg_free(new_blkg);
689 			ret = -ENOMEM;
690 			goto fail_exit_queue;
691 		}
692 
693 		rcu_read_lock();
694 		spin_lock_irq(&q->queue_lock);
695 
696 		blkg = blkg_lookup_check(pos, pol, q);
697 		if (IS_ERR(blkg)) {
698 			ret = PTR_ERR(blkg);
699 			blkg_free(new_blkg);
700 			goto fail_preloaded;
701 		}
702 
703 		if (blkg) {
704 			blkg_free(new_blkg);
705 		} else {
706 			blkg = blkg_create(pos, q, new_blkg);
707 			if (IS_ERR(blkg)) {
708 				ret = PTR_ERR(blkg);
709 				goto fail_preloaded;
710 			}
711 		}
712 
713 		radix_tree_preload_end();
714 
715 		if (pos == blkcg)
716 			goto success;
717 	}
718 success:
719 	blk_queue_exit(q);
720 	ctx->bdev = bdev;
721 	ctx->blkg = blkg;
722 	ctx->body = input;
723 	return 0;
724 
725 fail_preloaded:
726 	radix_tree_preload_end();
727 fail_unlock:
728 	spin_unlock_irq(&q->queue_lock);
729 	rcu_read_unlock();
730 fail_exit_queue:
731 	blk_queue_exit(q);
732 fail:
733 	blkdev_put_no_open(bdev);
734 	/*
735 	 * If queue was bypassing, we should retry.  Do so after a
736 	 * short msleep().  It isn't strictly necessary but queue
737 	 * can be bypassing for some time and it's always nice to
738 	 * avoid busy looping.
739 	 */
740 	if (ret == -EBUSY) {
741 		msleep(10);
742 		ret = restart_syscall();
743 	}
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(blkg_conf_prep);
747 
748 /**
749  * blkg_conf_finish - finish up per-blkg config update
750  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
751  *
752  * Finish up after per-blkg config update.  This function must be paired
753  * with blkg_conf_prep().
754  */
755 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
756 	__releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
757 {
758 	spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
759 	rcu_read_unlock();
760 	blkdev_put_no_open(ctx->bdev);
761 }
762 EXPORT_SYMBOL_GPL(blkg_conf_finish);
763 
764 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
765 {
766 	int i;
767 
768 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
769 		dst->bytes[i] = src->bytes[i];
770 		dst->ios[i] = src->ios[i];
771 	}
772 }
773 
774 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
775 {
776 	int i;
777 
778 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
779 		dst->bytes[i] += src->bytes[i];
780 		dst->ios[i] += src->ios[i];
781 	}
782 }
783 
784 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
785 {
786 	int i;
787 
788 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
789 		dst->bytes[i] -= src->bytes[i];
790 		dst->ios[i] -= src->ios[i];
791 	}
792 }
793 
794 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
795 {
796 	struct blkcg *blkcg = css_to_blkcg(css);
797 	struct blkcg_gq *blkg;
798 
799 	/* Root-level stats are sourced from system-wide IO stats */
800 	if (!cgroup_parent(css->cgroup))
801 		return;
802 
803 	rcu_read_lock();
804 
805 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
806 		struct blkcg_gq *parent = blkg->parent;
807 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
808 		struct blkg_iostat cur, delta;
809 		unsigned long flags;
810 		unsigned int seq;
811 
812 		/* fetch the current per-cpu values */
813 		do {
814 			seq = u64_stats_fetch_begin(&bisc->sync);
815 			blkg_iostat_set(&cur, &bisc->cur);
816 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
817 
818 		/* propagate percpu delta to global */
819 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
820 		blkg_iostat_set(&delta, &cur);
821 		blkg_iostat_sub(&delta, &bisc->last);
822 		blkg_iostat_add(&blkg->iostat.cur, &delta);
823 		blkg_iostat_add(&bisc->last, &delta);
824 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
825 
826 		/* propagate global delta to parent (unless that's root) */
827 		if (parent && parent->parent) {
828 			flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
829 			blkg_iostat_set(&delta, &blkg->iostat.cur);
830 			blkg_iostat_sub(&delta, &blkg->iostat.last);
831 			blkg_iostat_add(&parent->iostat.cur, &delta);
832 			blkg_iostat_add(&blkg->iostat.last, &delta);
833 			u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
834 		}
835 	}
836 
837 	rcu_read_unlock();
838 }
839 
840 /*
841  * We source root cgroup stats from the system-wide stats to avoid
842  * tracking the same information twice and incurring overhead when no
843  * cgroups are defined. For that reason, cgroup_rstat_flush in
844  * blkcg_print_stat does not actually fill out the iostat in the root
845  * cgroup's blkcg_gq.
846  *
847  * However, we would like to re-use the printing code between the root and
848  * non-root cgroups to the extent possible. For that reason, we simulate
849  * flushing the root cgroup's stats by explicitly filling in the iostat
850  * with disk level statistics.
851  */
852 static void blkcg_fill_root_iostats(void)
853 {
854 	struct class_dev_iter iter;
855 	struct device *dev;
856 
857 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
858 	while ((dev = class_dev_iter_next(&iter))) {
859 		struct block_device *bdev = dev_to_bdev(dev);
860 		struct blkcg_gq *blkg =
861 			blk_queue_root_blkg(bdev_get_queue(bdev));
862 		struct blkg_iostat tmp;
863 		int cpu;
864 		unsigned long flags;
865 
866 		memset(&tmp, 0, sizeof(tmp));
867 		for_each_possible_cpu(cpu) {
868 			struct disk_stats *cpu_dkstats;
869 
870 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
871 			tmp.ios[BLKG_IOSTAT_READ] +=
872 				cpu_dkstats->ios[STAT_READ];
873 			tmp.ios[BLKG_IOSTAT_WRITE] +=
874 				cpu_dkstats->ios[STAT_WRITE];
875 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
876 				cpu_dkstats->ios[STAT_DISCARD];
877 			// convert sectors to bytes
878 			tmp.bytes[BLKG_IOSTAT_READ] +=
879 				cpu_dkstats->sectors[STAT_READ] << 9;
880 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
881 				cpu_dkstats->sectors[STAT_WRITE] << 9;
882 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
883 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
884 		}
885 
886 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
887 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
888 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
889 	}
890 }
891 
892 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
893 {
894 	struct blkg_iostat_set *bis = &blkg->iostat;
895 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
896 	bool has_stats = false;
897 	const char *dname;
898 	unsigned seq;
899 	int i;
900 
901 	if (!blkg->online)
902 		return;
903 
904 	dname = blkg_dev_name(blkg);
905 	if (!dname)
906 		return;
907 
908 	seq_printf(s, "%s ", dname);
909 
910 	do {
911 		seq = u64_stats_fetch_begin(&bis->sync);
912 
913 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
914 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
915 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
916 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
917 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
918 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
919 	} while (u64_stats_fetch_retry(&bis->sync, seq));
920 
921 	if (rbytes || wbytes || rios || wios) {
922 		has_stats = true;
923 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
924 			rbytes, wbytes, rios, wios,
925 			dbytes, dios);
926 	}
927 
928 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
929 		has_stats = true;
930 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
931 			atomic_read(&blkg->use_delay),
932 			atomic64_read(&blkg->delay_nsec));
933 	}
934 
935 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
936 		struct blkcg_policy *pol = blkcg_policy[i];
937 
938 		if (!blkg->pd[i] || !pol->pd_stat_fn)
939 			continue;
940 
941 		if (pol->pd_stat_fn(blkg->pd[i], s))
942 			has_stats = true;
943 	}
944 
945 	if (has_stats)
946 		seq_printf(s, "\n");
947 }
948 
949 static int blkcg_print_stat(struct seq_file *sf, void *v)
950 {
951 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
952 	struct blkcg_gq *blkg;
953 
954 	if (!seq_css(sf)->parent)
955 		blkcg_fill_root_iostats();
956 	else
957 		cgroup_rstat_flush(blkcg->css.cgroup);
958 
959 	rcu_read_lock();
960 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
961 		spin_lock_irq(&blkg->q->queue_lock);
962 		blkcg_print_one_stat(blkg, sf);
963 		spin_unlock_irq(&blkg->q->queue_lock);
964 	}
965 	rcu_read_unlock();
966 	return 0;
967 }
968 
969 static struct cftype blkcg_files[] = {
970 	{
971 		.name = "stat",
972 		.seq_show = blkcg_print_stat,
973 	},
974 	{ }	/* terminate */
975 };
976 
977 static struct cftype blkcg_legacy_files[] = {
978 	{
979 		.name = "reset_stats",
980 		.write_u64 = blkcg_reset_stats,
981 	},
982 	{ }	/* terminate */
983 };
984 
985 /*
986  * blkcg destruction is a three-stage process.
987  *
988  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
989  *    which offlines writeback.  Here we tie the next stage of blkg destruction
990  *    to the completion of writeback associated with the blkcg.  This lets us
991  *    avoid punting potentially large amounts of outstanding writeback to root
992  *    while maintaining any ongoing policies.  The next stage is triggered when
993  *    the nr_cgwbs count goes to zero.
994  *
995  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
996  *    and handles the destruction of blkgs.  Here the css reference held by
997  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
998  *    This work may occur in cgwb_release_workfn() on the cgwb_release
999  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1000  *    punted to the root_blkg.
1001  *
1002  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1003  *    This finally frees the blkcg.
1004  */
1005 
1006 /**
1007  * blkcg_css_offline - cgroup css_offline callback
1008  * @css: css of interest
1009  *
1010  * This function is called when @css is about to go away.  Here the cgwbs are
1011  * offlined first and only once writeback associated with the blkcg has
1012  * finished do we start step 2 (see above).
1013  */
1014 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1015 {
1016 	struct blkcg *blkcg = css_to_blkcg(css);
1017 
1018 	/* this prevents anyone from attaching or migrating to this blkcg */
1019 	wb_blkcg_offline(blkcg);
1020 
1021 	/* put the base online pin allowing step 2 to be triggered */
1022 	blkcg_unpin_online(blkcg);
1023 }
1024 
1025 /**
1026  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1027  * @blkcg: blkcg of interest
1028  *
1029  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1030  * is nested inside q lock, this function performs reverse double lock dancing.
1031  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1032  * blkcg_css_free to eventually be called.
1033  *
1034  * This is the blkcg counterpart of ioc_release_fn().
1035  */
1036 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1037 {
1038 	might_sleep();
1039 
1040 	spin_lock_irq(&blkcg->lock);
1041 
1042 	while (!hlist_empty(&blkcg->blkg_list)) {
1043 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1044 						struct blkcg_gq, blkcg_node);
1045 		struct request_queue *q = blkg->q;
1046 
1047 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1048 			/*
1049 			 * Given that the system can accumulate a huge number
1050 			 * of blkgs in pathological cases, check to see if we
1051 			 * need to rescheduling to avoid softlockup.
1052 			 */
1053 			spin_unlock_irq(&blkcg->lock);
1054 			cond_resched();
1055 			spin_lock_irq(&blkcg->lock);
1056 			continue;
1057 		}
1058 
1059 		blkg_destroy(blkg);
1060 		spin_unlock(&q->queue_lock);
1061 	}
1062 
1063 	spin_unlock_irq(&blkcg->lock);
1064 }
1065 
1066 static void blkcg_css_free(struct cgroup_subsys_state *css)
1067 {
1068 	struct blkcg *blkcg = css_to_blkcg(css);
1069 	int i;
1070 
1071 	mutex_lock(&blkcg_pol_mutex);
1072 
1073 	list_del(&blkcg->all_blkcgs_node);
1074 
1075 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1076 		if (blkcg->cpd[i])
1077 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1078 
1079 	mutex_unlock(&blkcg_pol_mutex);
1080 
1081 	kfree(blkcg);
1082 }
1083 
1084 static struct cgroup_subsys_state *
1085 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1086 {
1087 	struct blkcg *blkcg;
1088 	struct cgroup_subsys_state *ret;
1089 	int i;
1090 
1091 	mutex_lock(&blkcg_pol_mutex);
1092 
1093 	if (!parent_css) {
1094 		blkcg = &blkcg_root;
1095 	} else {
1096 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1097 		if (!blkcg) {
1098 			ret = ERR_PTR(-ENOMEM);
1099 			goto unlock;
1100 		}
1101 	}
1102 
1103 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1104 		struct blkcg_policy *pol = blkcg_policy[i];
1105 		struct blkcg_policy_data *cpd;
1106 
1107 		/*
1108 		 * If the policy hasn't been attached yet, wait for it
1109 		 * to be attached before doing anything else. Otherwise,
1110 		 * check if the policy requires any specific per-cgroup
1111 		 * data: if it does, allocate and initialize it.
1112 		 */
1113 		if (!pol || !pol->cpd_alloc_fn)
1114 			continue;
1115 
1116 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1117 		if (!cpd) {
1118 			ret = ERR_PTR(-ENOMEM);
1119 			goto free_pd_blkcg;
1120 		}
1121 		blkcg->cpd[i] = cpd;
1122 		cpd->blkcg = blkcg;
1123 		cpd->plid = i;
1124 		if (pol->cpd_init_fn)
1125 			pol->cpd_init_fn(cpd);
1126 	}
1127 
1128 	spin_lock_init(&blkcg->lock);
1129 	refcount_set(&blkcg->online_pin, 1);
1130 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1131 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1132 #ifdef CONFIG_CGROUP_WRITEBACK
1133 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1134 #endif
1135 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1136 
1137 	mutex_unlock(&blkcg_pol_mutex);
1138 	return &blkcg->css;
1139 
1140 free_pd_blkcg:
1141 	for (i--; i >= 0; i--)
1142 		if (blkcg->cpd[i])
1143 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1144 
1145 	if (blkcg != &blkcg_root)
1146 		kfree(blkcg);
1147 unlock:
1148 	mutex_unlock(&blkcg_pol_mutex);
1149 	return ret;
1150 }
1151 
1152 static int blkcg_css_online(struct cgroup_subsys_state *css)
1153 {
1154 	struct blkcg *blkcg = css_to_blkcg(css);
1155 	struct blkcg *parent = blkcg_parent(blkcg);
1156 
1157 	/*
1158 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1159 	 * don't go offline while cgwbs are still active on them.  Pin the
1160 	 * parent so that offline always happens towards the root.
1161 	 */
1162 	if (parent)
1163 		blkcg_pin_online(parent);
1164 	return 0;
1165 }
1166 
1167 /**
1168  * blkcg_init_queue - initialize blkcg part of request queue
1169  * @q: request_queue to initialize
1170  *
1171  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1172  * part of new request_queue @q.
1173  *
1174  * RETURNS:
1175  * 0 on success, -errno on failure.
1176  */
1177 int blkcg_init_queue(struct request_queue *q)
1178 {
1179 	struct blkcg_gq *new_blkg, *blkg;
1180 	bool preloaded;
1181 	int ret;
1182 
1183 	INIT_LIST_HEAD(&q->blkg_list);
1184 
1185 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1186 	if (!new_blkg)
1187 		return -ENOMEM;
1188 
1189 	preloaded = !radix_tree_preload(GFP_KERNEL);
1190 
1191 	/* Make sure the root blkg exists. */
1192 	rcu_read_lock();
1193 	spin_lock_irq(&q->queue_lock);
1194 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1195 	if (IS_ERR(blkg))
1196 		goto err_unlock;
1197 	q->root_blkg = blkg;
1198 	spin_unlock_irq(&q->queue_lock);
1199 	rcu_read_unlock();
1200 
1201 	if (preloaded)
1202 		radix_tree_preload_end();
1203 
1204 	ret = blk_ioprio_init(q);
1205 	if (ret)
1206 		goto err_destroy_all;
1207 
1208 	ret = blk_throtl_init(q);
1209 	if (ret)
1210 		goto err_destroy_all;
1211 
1212 	ret = blk_iolatency_init(q);
1213 	if (ret) {
1214 		blk_throtl_exit(q);
1215 		goto err_destroy_all;
1216 	}
1217 
1218 	return 0;
1219 
1220 err_destroy_all:
1221 	blkg_destroy_all(q);
1222 	return ret;
1223 err_unlock:
1224 	spin_unlock_irq(&q->queue_lock);
1225 	rcu_read_unlock();
1226 	if (preloaded)
1227 		radix_tree_preload_end();
1228 	return PTR_ERR(blkg);
1229 }
1230 
1231 /**
1232  * blkcg_exit_queue - exit and release blkcg part of request_queue
1233  * @q: request_queue being released
1234  *
1235  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1236  */
1237 void blkcg_exit_queue(struct request_queue *q)
1238 {
1239 	blkg_destroy_all(q);
1240 	blk_throtl_exit(q);
1241 }
1242 
1243 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1244 {
1245 	int i;
1246 
1247 	mutex_lock(&blkcg_pol_mutex);
1248 
1249 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1250 		struct blkcg_policy *pol = blkcg_policy[i];
1251 		struct blkcg *blkcg;
1252 
1253 		if (!pol || !pol->cpd_bind_fn)
1254 			continue;
1255 
1256 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1257 			if (blkcg->cpd[pol->plid])
1258 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1259 	}
1260 	mutex_unlock(&blkcg_pol_mutex);
1261 }
1262 
1263 static void blkcg_exit(struct task_struct *tsk)
1264 {
1265 	if (tsk->throttle_queue)
1266 		blk_put_queue(tsk->throttle_queue);
1267 	tsk->throttle_queue = NULL;
1268 }
1269 
1270 struct cgroup_subsys io_cgrp_subsys = {
1271 	.css_alloc = blkcg_css_alloc,
1272 	.css_online = blkcg_css_online,
1273 	.css_offline = blkcg_css_offline,
1274 	.css_free = blkcg_css_free,
1275 	.css_rstat_flush = blkcg_rstat_flush,
1276 	.bind = blkcg_bind,
1277 	.dfl_cftypes = blkcg_files,
1278 	.legacy_cftypes = blkcg_legacy_files,
1279 	.legacy_name = "blkio",
1280 	.exit = blkcg_exit,
1281 #ifdef CONFIG_MEMCG
1282 	/*
1283 	 * This ensures that, if available, memcg is automatically enabled
1284 	 * together on the default hierarchy so that the owner cgroup can
1285 	 * be retrieved from writeback pages.
1286 	 */
1287 	.depends_on = 1 << memory_cgrp_id,
1288 #endif
1289 };
1290 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1291 
1292 /**
1293  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1294  * @q: request_queue of interest
1295  * @pol: blkcg policy to activate
1296  *
1297  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1298  * bypass mode to populate its blkgs with policy_data for @pol.
1299  *
1300  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1301  * from IO path.  Update of each blkg is protected by both queue and blkcg
1302  * locks so that holding either lock and testing blkcg_policy_enabled() is
1303  * always enough for dereferencing policy data.
1304  *
1305  * The caller is responsible for synchronizing [de]activations and policy
1306  * [un]registerations.  Returns 0 on success, -errno on failure.
1307  */
1308 int blkcg_activate_policy(struct request_queue *q,
1309 			  const struct blkcg_policy *pol)
1310 {
1311 	struct blkg_policy_data *pd_prealloc = NULL;
1312 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1313 	int ret;
1314 
1315 	if (blkcg_policy_enabled(q, pol))
1316 		return 0;
1317 
1318 	if (queue_is_mq(q))
1319 		blk_mq_freeze_queue(q);
1320 retry:
1321 	spin_lock_irq(&q->queue_lock);
1322 
1323 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1324 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1325 		struct blkg_policy_data *pd;
1326 
1327 		if (blkg->pd[pol->plid])
1328 			continue;
1329 
1330 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1331 		if (blkg == pinned_blkg) {
1332 			pd = pd_prealloc;
1333 			pd_prealloc = NULL;
1334 		} else {
1335 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1336 					      blkg->blkcg);
1337 		}
1338 
1339 		if (!pd) {
1340 			/*
1341 			 * GFP_NOWAIT failed.  Free the existing one and
1342 			 * prealloc for @blkg w/ GFP_KERNEL.
1343 			 */
1344 			if (pinned_blkg)
1345 				blkg_put(pinned_blkg);
1346 			blkg_get(blkg);
1347 			pinned_blkg = blkg;
1348 
1349 			spin_unlock_irq(&q->queue_lock);
1350 
1351 			if (pd_prealloc)
1352 				pol->pd_free_fn(pd_prealloc);
1353 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1354 						       blkg->blkcg);
1355 			if (pd_prealloc)
1356 				goto retry;
1357 			else
1358 				goto enomem;
1359 		}
1360 
1361 		blkg->pd[pol->plid] = pd;
1362 		pd->blkg = blkg;
1363 		pd->plid = pol->plid;
1364 	}
1365 
1366 	/* all allocated, init in the same order */
1367 	if (pol->pd_init_fn)
1368 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1369 			pol->pd_init_fn(blkg->pd[pol->plid]);
1370 
1371 	__set_bit(pol->plid, q->blkcg_pols);
1372 	ret = 0;
1373 
1374 	spin_unlock_irq(&q->queue_lock);
1375 out:
1376 	if (queue_is_mq(q))
1377 		blk_mq_unfreeze_queue(q);
1378 	if (pinned_blkg)
1379 		blkg_put(pinned_blkg);
1380 	if (pd_prealloc)
1381 		pol->pd_free_fn(pd_prealloc);
1382 	return ret;
1383 
1384 enomem:
1385 	/* alloc failed, nothing's initialized yet, free everything */
1386 	spin_lock_irq(&q->queue_lock);
1387 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1388 		struct blkcg *blkcg = blkg->blkcg;
1389 
1390 		spin_lock(&blkcg->lock);
1391 		if (blkg->pd[pol->plid]) {
1392 			pol->pd_free_fn(blkg->pd[pol->plid]);
1393 			blkg->pd[pol->plid] = NULL;
1394 		}
1395 		spin_unlock(&blkcg->lock);
1396 	}
1397 	spin_unlock_irq(&q->queue_lock);
1398 	ret = -ENOMEM;
1399 	goto out;
1400 }
1401 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1402 
1403 /**
1404  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1405  * @q: request_queue of interest
1406  * @pol: blkcg policy to deactivate
1407  *
1408  * Deactivate @pol on @q.  Follows the same synchronization rules as
1409  * blkcg_activate_policy().
1410  */
1411 void blkcg_deactivate_policy(struct request_queue *q,
1412 			     const struct blkcg_policy *pol)
1413 {
1414 	struct blkcg_gq *blkg;
1415 
1416 	if (!blkcg_policy_enabled(q, pol))
1417 		return;
1418 
1419 	if (queue_is_mq(q))
1420 		blk_mq_freeze_queue(q);
1421 
1422 	spin_lock_irq(&q->queue_lock);
1423 
1424 	__clear_bit(pol->plid, q->blkcg_pols);
1425 
1426 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1427 		struct blkcg *blkcg = blkg->blkcg;
1428 
1429 		spin_lock(&blkcg->lock);
1430 		if (blkg->pd[pol->plid]) {
1431 			if (pol->pd_offline_fn)
1432 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1433 			pol->pd_free_fn(blkg->pd[pol->plid]);
1434 			blkg->pd[pol->plid] = NULL;
1435 		}
1436 		spin_unlock(&blkcg->lock);
1437 	}
1438 
1439 	spin_unlock_irq(&q->queue_lock);
1440 
1441 	if (queue_is_mq(q))
1442 		blk_mq_unfreeze_queue(q);
1443 }
1444 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1445 
1446 /**
1447  * blkcg_policy_register - register a blkcg policy
1448  * @pol: blkcg policy to register
1449  *
1450  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1451  * successful registration.  Returns 0 on success and -errno on failure.
1452  */
1453 int blkcg_policy_register(struct blkcg_policy *pol)
1454 {
1455 	struct blkcg *blkcg;
1456 	int i, ret;
1457 
1458 	mutex_lock(&blkcg_pol_register_mutex);
1459 	mutex_lock(&blkcg_pol_mutex);
1460 
1461 	/* find an empty slot */
1462 	ret = -ENOSPC;
1463 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1464 		if (!blkcg_policy[i])
1465 			break;
1466 	if (i >= BLKCG_MAX_POLS) {
1467 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1468 		goto err_unlock;
1469 	}
1470 
1471 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1472 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1473 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1474 		goto err_unlock;
1475 
1476 	/* register @pol */
1477 	pol->plid = i;
1478 	blkcg_policy[pol->plid] = pol;
1479 
1480 	/* allocate and install cpd's */
1481 	if (pol->cpd_alloc_fn) {
1482 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1483 			struct blkcg_policy_data *cpd;
1484 
1485 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1486 			if (!cpd)
1487 				goto err_free_cpds;
1488 
1489 			blkcg->cpd[pol->plid] = cpd;
1490 			cpd->blkcg = blkcg;
1491 			cpd->plid = pol->plid;
1492 			if (pol->cpd_init_fn)
1493 				pol->cpd_init_fn(cpd);
1494 		}
1495 	}
1496 
1497 	mutex_unlock(&blkcg_pol_mutex);
1498 
1499 	/* everything is in place, add intf files for the new policy */
1500 	if (pol->dfl_cftypes)
1501 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1502 					       pol->dfl_cftypes));
1503 	if (pol->legacy_cftypes)
1504 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1505 						  pol->legacy_cftypes));
1506 	mutex_unlock(&blkcg_pol_register_mutex);
1507 	return 0;
1508 
1509 err_free_cpds:
1510 	if (pol->cpd_free_fn) {
1511 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1512 			if (blkcg->cpd[pol->plid]) {
1513 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1514 				blkcg->cpd[pol->plid] = NULL;
1515 			}
1516 		}
1517 	}
1518 	blkcg_policy[pol->plid] = NULL;
1519 err_unlock:
1520 	mutex_unlock(&blkcg_pol_mutex);
1521 	mutex_unlock(&blkcg_pol_register_mutex);
1522 	return ret;
1523 }
1524 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1525 
1526 /**
1527  * blkcg_policy_unregister - unregister a blkcg policy
1528  * @pol: blkcg policy to unregister
1529  *
1530  * Undo blkcg_policy_register(@pol).  Might sleep.
1531  */
1532 void blkcg_policy_unregister(struct blkcg_policy *pol)
1533 {
1534 	struct blkcg *blkcg;
1535 
1536 	mutex_lock(&blkcg_pol_register_mutex);
1537 
1538 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1539 		goto out_unlock;
1540 
1541 	/* kill the intf files first */
1542 	if (pol->dfl_cftypes)
1543 		cgroup_rm_cftypes(pol->dfl_cftypes);
1544 	if (pol->legacy_cftypes)
1545 		cgroup_rm_cftypes(pol->legacy_cftypes);
1546 
1547 	/* remove cpds and unregister */
1548 	mutex_lock(&blkcg_pol_mutex);
1549 
1550 	if (pol->cpd_free_fn) {
1551 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1552 			if (blkcg->cpd[pol->plid]) {
1553 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1554 				blkcg->cpd[pol->plid] = NULL;
1555 			}
1556 		}
1557 	}
1558 	blkcg_policy[pol->plid] = NULL;
1559 
1560 	mutex_unlock(&blkcg_pol_mutex);
1561 out_unlock:
1562 	mutex_unlock(&blkcg_pol_register_mutex);
1563 }
1564 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1565 
1566 bool __blkcg_punt_bio_submit(struct bio *bio)
1567 {
1568 	struct blkcg_gq *blkg = bio->bi_blkg;
1569 
1570 	/* consume the flag first */
1571 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1572 
1573 	/* never bounce for the root cgroup */
1574 	if (!blkg->parent)
1575 		return false;
1576 
1577 	spin_lock_bh(&blkg->async_bio_lock);
1578 	bio_list_add(&blkg->async_bios, bio);
1579 	spin_unlock_bh(&blkg->async_bio_lock);
1580 
1581 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1582 	return true;
1583 }
1584 
1585 /*
1586  * Scale the accumulated delay based on how long it has been since we updated
1587  * the delay.  We only call this when we are adding delay, in case it's been a
1588  * while since we added delay, and when we are checking to see if we need to
1589  * delay a task, to account for any delays that may have occurred.
1590  */
1591 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1592 {
1593 	u64 old = atomic64_read(&blkg->delay_start);
1594 
1595 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1596 	if (atomic_read(&blkg->use_delay) < 0)
1597 		return;
1598 
1599 	/*
1600 	 * We only want to scale down every second.  The idea here is that we
1601 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1602 	 * time window.  We only want to throttle tasks for recent delay that
1603 	 * has occurred, in 1 second time windows since that's the maximum
1604 	 * things can be throttled.  We save the current delay window in
1605 	 * blkg->last_delay so we know what amount is still left to be charged
1606 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1607 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1608 	 * are ok with whatever is happening now, and we can take away more of
1609 	 * the accumulated delay as we've already throttled enough that
1610 	 * everybody is happy with their IO latencies.
1611 	 */
1612 	if (time_before64(old + NSEC_PER_SEC, now) &&
1613 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1614 		u64 cur = atomic64_read(&blkg->delay_nsec);
1615 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1616 		int cur_use = atomic_read(&blkg->use_delay);
1617 
1618 		/*
1619 		 * We've been unthrottled, subtract a larger chunk of our
1620 		 * accumulated delay.
1621 		 */
1622 		if (cur_use < blkg->last_use)
1623 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1624 
1625 		/*
1626 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1627 		 * should only ever be growing except here where we subtract out
1628 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1629 		 * rather not end up with negative numbers.
1630 		 */
1631 		if (unlikely(cur < sub)) {
1632 			atomic64_set(&blkg->delay_nsec, 0);
1633 			blkg->last_delay = 0;
1634 		} else {
1635 			atomic64_sub(sub, &blkg->delay_nsec);
1636 			blkg->last_delay = cur - sub;
1637 		}
1638 		blkg->last_use = cur_use;
1639 	}
1640 }
1641 
1642 /*
1643  * This is called when we want to actually walk up the hierarchy and check to
1644  * see if we need to throttle, and then actually throttle if there is some
1645  * accumulated delay.  This should only be called upon return to user space so
1646  * we're not holding some lock that would induce a priority inversion.
1647  */
1648 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1649 {
1650 	unsigned long pflags;
1651 	bool clamp;
1652 	u64 now = ktime_to_ns(ktime_get());
1653 	u64 exp;
1654 	u64 delay_nsec = 0;
1655 	int tok;
1656 
1657 	while (blkg->parent) {
1658 		int use_delay = atomic_read(&blkg->use_delay);
1659 
1660 		if (use_delay) {
1661 			u64 this_delay;
1662 
1663 			blkcg_scale_delay(blkg, now);
1664 			this_delay = atomic64_read(&blkg->delay_nsec);
1665 			if (this_delay > delay_nsec) {
1666 				delay_nsec = this_delay;
1667 				clamp = use_delay > 0;
1668 			}
1669 		}
1670 		blkg = blkg->parent;
1671 	}
1672 
1673 	if (!delay_nsec)
1674 		return;
1675 
1676 	/*
1677 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1678 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1679 	 * delay, and we want userspace to be able to do _something_ so cap the
1680 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1681 	 * tasks will be delayed for 0.25 second for every syscall. If
1682 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1683 	 * caller is responsible for regulating the range.
1684 	 */
1685 	if (clamp)
1686 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1687 
1688 	if (use_memdelay)
1689 		psi_memstall_enter(&pflags);
1690 
1691 	exp = ktime_add_ns(now, delay_nsec);
1692 	tok = io_schedule_prepare();
1693 	do {
1694 		__set_current_state(TASK_KILLABLE);
1695 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1696 			break;
1697 	} while (!fatal_signal_pending(current));
1698 	io_schedule_finish(tok);
1699 
1700 	if (use_memdelay)
1701 		psi_memstall_leave(&pflags);
1702 }
1703 
1704 /**
1705  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1706  *
1707  * This is only called if we've been marked with set_notify_resume().  Obviously
1708  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1709  * check to see if current->throttle_queue is set and if not this doesn't do
1710  * anything.  This should only ever be called by the resume code, it's not meant
1711  * to be called by people willy-nilly as it will actually do the work to
1712  * throttle the task if it is setup for throttling.
1713  */
1714 void blkcg_maybe_throttle_current(void)
1715 {
1716 	struct request_queue *q = current->throttle_queue;
1717 	struct cgroup_subsys_state *css;
1718 	struct blkcg *blkcg;
1719 	struct blkcg_gq *blkg;
1720 	bool use_memdelay = current->use_memdelay;
1721 
1722 	if (!q)
1723 		return;
1724 
1725 	current->throttle_queue = NULL;
1726 	current->use_memdelay = false;
1727 
1728 	rcu_read_lock();
1729 	css = kthread_blkcg();
1730 	if (css)
1731 		blkcg = css_to_blkcg(css);
1732 	else
1733 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1734 
1735 	if (!blkcg)
1736 		goto out;
1737 	blkg = blkg_lookup(blkcg, q);
1738 	if (!blkg)
1739 		goto out;
1740 	if (!blkg_tryget(blkg))
1741 		goto out;
1742 	rcu_read_unlock();
1743 
1744 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1745 	blkg_put(blkg);
1746 	blk_put_queue(q);
1747 	return;
1748 out:
1749 	rcu_read_unlock();
1750 	blk_put_queue(q);
1751 }
1752 
1753 /**
1754  * blkcg_schedule_throttle - this task needs to check for throttling
1755  * @q: the request queue IO was submitted on
1756  * @use_memdelay: do we charge this to memory delay for PSI
1757  *
1758  * This is called by the IO controller when we know there's delay accumulated
1759  * for the blkg for this task.  We do not pass the blkg because there are places
1760  * we call this that may not have that information, the swapping code for
1761  * instance will only have a request_queue at that point.  This set's the
1762  * notify_resume for the task to check and see if it requires throttling before
1763  * returning to user space.
1764  *
1765  * We will only schedule once per syscall.  You can call this over and over
1766  * again and it will only do the check once upon return to user space, and only
1767  * throttle once.  If the task needs to be throttled again it'll need to be
1768  * re-set at the next time we see the task.
1769  */
1770 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1771 {
1772 	if (unlikely(current->flags & PF_KTHREAD))
1773 		return;
1774 
1775 	if (current->throttle_queue != q) {
1776 		if (!blk_get_queue(q))
1777 			return;
1778 
1779 		if (current->throttle_queue)
1780 			blk_put_queue(current->throttle_queue);
1781 		current->throttle_queue = q;
1782 	}
1783 
1784 	if (use_memdelay)
1785 		current->use_memdelay = use_memdelay;
1786 	set_notify_resume(current);
1787 }
1788 
1789 /**
1790  * blkcg_add_delay - add delay to this blkg
1791  * @blkg: blkg of interest
1792  * @now: the current time in nanoseconds
1793  * @delta: how many nanoseconds of delay to add
1794  *
1795  * Charge @delta to the blkg's current delay accumulation.  This is used to
1796  * throttle tasks if an IO controller thinks we need more throttling.
1797  */
1798 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1799 {
1800 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1801 		return;
1802 	blkcg_scale_delay(blkg, now);
1803 	atomic64_add(delta, &blkg->delay_nsec);
1804 }
1805 
1806 /**
1807  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1808  * @bio: target bio
1809  * @css: target css
1810  *
1811  * As the failure mode here is to walk up the blkg tree, this ensure that the
1812  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1813  * up taking a reference on or %NULL if no reference was taken.
1814  */
1815 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1816 		struct cgroup_subsys_state *css)
1817 {
1818 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1819 
1820 	rcu_read_lock();
1821 	blkg = blkg_lookup_create(css_to_blkcg(css),
1822 				  bdev_get_queue(bio->bi_bdev));
1823 	while (blkg) {
1824 		if (blkg_tryget(blkg)) {
1825 			ret_blkg = blkg;
1826 			break;
1827 		}
1828 		blkg = blkg->parent;
1829 	}
1830 	rcu_read_unlock();
1831 
1832 	return ret_blkg;
1833 }
1834 
1835 /**
1836  * bio_associate_blkg_from_css - associate a bio with a specified css
1837  * @bio: target bio
1838  * @css: target css
1839  *
1840  * Associate @bio with the blkg found by combining the css's blkg and the
1841  * request_queue of the @bio.  An association failure is handled by walking up
1842  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1843  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1844  * then the remaining bios will spill to the closest alive blkg.
1845  *
1846  * A reference will be taken on the blkg and will be released when @bio is
1847  * freed.
1848  */
1849 void bio_associate_blkg_from_css(struct bio *bio,
1850 				 struct cgroup_subsys_state *css)
1851 {
1852 	if (bio->bi_blkg)
1853 		blkg_put(bio->bi_blkg);
1854 
1855 	if (css && css->parent) {
1856 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1857 	} else {
1858 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1859 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1860 	}
1861 }
1862 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1863 
1864 /**
1865  * bio_associate_blkg - associate a bio with a blkg
1866  * @bio: target bio
1867  *
1868  * Associate @bio with the blkg found from the bio's css and request_queue.
1869  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1870  * already associated, the css is reused and association redone as the
1871  * request_queue may have changed.
1872  */
1873 void bio_associate_blkg(struct bio *bio)
1874 {
1875 	struct cgroup_subsys_state *css;
1876 
1877 	rcu_read_lock();
1878 
1879 	if (bio->bi_blkg)
1880 		css = &bio_blkcg(bio)->css;
1881 	else
1882 		css = blkcg_css();
1883 
1884 	bio_associate_blkg_from_css(bio, css);
1885 
1886 	rcu_read_unlock();
1887 }
1888 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1889 
1890 /**
1891  * bio_clone_blkg_association - clone blkg association from src to dst bio
1892  * @dst: destination bio
1893  * @src: source bio
1894  */
1895 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1896 {
1897 	if (src->bi_blkg) {
1898 		if (dst->bi_blkg)
1899 			blkg_put(dst->bi_blkg);
1900 		blkg_get(src->bi_blkg);
1901 		dst->bi_blkg = src->bi_blkg;
1902 	}
1903 }
1904 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1905 
1906 static int blk_cgroup_io_type(struct bio *bio)
1907 {
1908 	if (op_is_discard(bio->bi_opf))
1909 		return BLKG_IOSTAT_DISCARD;
1910 	if (op_is_write(bio->bi_opf))
1911 		return BLKG_IOSTAT_WRITE;
1912 	return BLKG_IOSTAT_READ;
1913 }
1914 
1915 void blk_cgroup_bio_start(struct bio *bio)
1916 {
1917 	int rwd = blk_cgroup_io_type(bio), cpu;
1918 	struct blkg_iostat_set *bis;
1919 	unsigned long flags;
1920 
1921 	cpu = get_cpu();
1922 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1923 	flags = u64_stats_update_begin_irqsave(&bis->sync);
1924 
1925 	/*
1926 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1927 	 * bio and we would have already accounted for the size of the bio.
1928 	 */
1929 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1930 		bio_set_flag(bio, BIO_CGROUP_ACCT);
1931 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1932 	}
1933 	bis->cur.ios[rwd]++;
1934 
1935 	u64_stats_update_end_irqrestore(&bis->sync, flags);
1936 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1937 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1938 	put_cpu();
1939 }
1940 
1941 static int __init blkcg_init(void)
1942 {
1943 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1944 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1945 					    WQ_UNBOUND | WQ_SYSFS, 0);
1946 	if (!blkcg_punt_bio_wq)
1947 		return -ENOMEM;
1948 	return 0;
1949 }
1950 subsys_initcall(blkcg_init);
1951 
1952 module_param(blkcg_debug_stats, bool, 0644);
1953 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1954