xref: /openbmc/linux/block/blk-cgroup.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/genhd.h>
27 #include <linux/delay.h>
28 #include <linux/atomic.h>
29 #include <linux/ctype.h>
30 #include <linux/blk-cgroup.h>
31 #include <linux/tracehook.h>
32 #include <linux/psi.h>
33 #include "blk.h"
34 #include "blk-ioprio.h"
35 
36 /*
37  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
38  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
39  * policy [un]register operations including cgroup file additions /
40  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
41  * allows grabbing it from cgroup callbacks.
42  */
43 static DEFINE_MUTEX(blkcg_pol_register_mutex);
44 static DEFINE_MUTEX(blkcg_pol_mutex);
45 
46 struct blkcg blkcg_root;
47 EXPORT_SYMBOL_GPL(blkcg_root);
48 
49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
50 EXPORT_SYMBOL_GPL(blkcg_root_css);
51 
52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
53 
54 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
55 
56 bool blkcg_debug_stats = false;
57 static struct workqueue_struct *blkcg_punt_bio_wq;
58 
59 #define BLKG_DESTROY_BATCH_SIZE  64
60 
61 static bool blkcg_policy_enabled(struct request_queue *q,
62 				 const struct blkcg_policy *pol)
63 {
64 	return pol && test_bit(pol->plid, q->blkcg_pols);
65 }
66 
67 /**
68  * blkg_free - free a blkg
69  * @blkg: blkg to free
70  *
71  * Free @blkg which may be partially allocated.
72  */
73 static void blkg_free(struct blkcg_gq *blkg)
74 {
75 	int i;
76 
77 	if (!blkg)
78 		return;
79 
80 	for (i = 0; i < BLKCG_MAX_POLS; i++)
81 		if (blkg->pd[i])
82 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
83 
84 	free_percpu(blkg->iostat_cpu);
85 	percpu_ref_exit(&blkg->refcnt);
86 	kfree(blkg);
87 }
88 
89 static void __blkg_release(struct rcu_head *rcu)
90 {
91 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
92 
93 	WARN_ON(!bio_list_empty(&blkg->async_bios));
94 
95 	/* release the blkcg and parent blkg refs this blkg has been holding */
96 	css_put(&blkg->blkcg->css);
97 	if (blkg->parent)
98 		blkg_put(blkg->parent);
99 	blkg_free(blkg);
100 }
101 
102 /*
103  * A group is RCU protected, but having an rcu lock does not mean that one
104  * can access all the fields of blkg and assume these are valid.  For
105  * example, don't try to follow throtl_data and request queue links.
106  *
107  * Having a reference to blkg under an rcu allows accesses to only values
108  * local to groups like group stats and group rate limits.
109  */
110 static void blkg_release(struct percpu_ref *ref)
111 {
112 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
113 
114 	call_rcu(&blkg->rcu_head, __blkg_release);
115 }
116 
117 static void blkg_async_bio_workfn(struct work_struct *work)
118 {
119 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
120 					     async_bio_work);
121 	struct bio_list bios = BIO_EMPTY_LIST;
122 	struct bio *bio;
123 	struct blk_plug plug;
124 	bool need_plug = false;
125 
126 	/* as long as there are pending bios, @blkg can't go away */
127 	spin_lock_bh(&blkg->async_bio_lock);
128 	bio_list_merge(&bios, &blkg->async_bios);
129 	bio_list_init(&blkg->async_bios);
130 	spin_unlock_bh(&blkg->async_bio_lock);
131 
132 	/* start plug only when bio_list contains at least 2 bios */
133 	if (bios.head && bios.head->bi_next) {
134 		need_plug = true;
135 		blk_start_plug(&plug);
136 	}
137 	while ((bio = bio_list_pop(&bios)))
138 		submit_bio(bio);
139 	if (need_plug)
140 		blk_finish_plug(&plug);
141 }
142 
143 /**
144  * blkg_alloc - allocate a blkg
145  * @blkcg: block cgroup the new blkg is associated with
146  * @q: request_queue the new blkg is associated with
147  * @gfp_mask: allocation mask to use
148  *
149  * Allocate a new blkg assocating @blkcg and @q.
150  */
151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
152 				   gfp_t gfp_mask)
153 {
154 	struct blkcg_gq *blkg;
155 	int i, cpu;
156 
157 	/* alloc and init base part */
158 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
159 	if (!blkg)
160 		return NULL;
161 
162 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
163 		goto err_free;
164 
165 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
166 	if (!blkg->iostat_cpu)
167 		goto err_free;
168 
169 	blkg->q = q;
170 	INIT_LIST_HEAD(&blkg->q_node);
171 	spin_lock_init(&blkg->async_bio_lock);
172 	bio_list_init(&blkg->async_bios);
173 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
174 	blkg->blkcg = blkcg;
175 
176 	u64_stats_init(&blkg->iostat.sync);
177 	for_each_possible_cpu(cpu)
178 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
179 
180 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
181 		struct blkcg_policy *pol = blkcg_policy[i];
182 		struct blkg_policy_data *pd;
183 
184 		if (!blkcg_policy_enabled(q, pol))
185 			continue;
186 
187 		/* alloc per-policy data and attach it to blkg */
188 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
189 		if (!pd)
190 			goto err_free;
191 
192 		blkg->pd[i] = pd;
193 		pd->blkg = blkg;
194 		pd->plid = i;
195 	}
196 
197 	return blkg;
198 
199 err_free:
200 	blkg_free(blkg);
201 	return NULL;
202 }
203 
204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
205 				      struct request_queue *q, bool update_hint)
206 {
207 	struct blkcg_gq *blkg;
208 
209 	/*
210 	 * Hint didn't match.  Look up from the radix tree.  Note that the
211 	 * hint can only be updated under queue_lock as otherwise @blkg
212 	 * could have already been removed from blkg_tree.  The caller is
213 	 * responsible for grabbing queue_lock if @update_hint.
214 	 */
215 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
216 	if (blkg && blkg->q == q) {
217 		if (update_hint) {
218 			lockdep_assert_held(&q->queue_lock);
219 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
220 		}
221 		return blkg;
222 	}
223 
224 	return NULL;
225 }
226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
227 
228 /*
229  * If @new_blkg is %NULL, this function tries to allocate a new one as
230  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
231  */
232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
233 				    struct request_queue *q,
234 				    struct blkcg_gq *new_blkg)
235 {
236 	struct blkcg_gq *blkg;
237 	int i, ret;
238 
239 	WARN_ON_ONCE(!rcu_read_lock_held());
240 	lockdep_assert_held(&q->queue_lock);
241 
242 	/* request_queue is dying, do not create/recreate a blkg */
243 	if (blk_queue_dying(q)) {
244 		ret = -ENODEV;
245 		goto err_free_blkg;
246 	}
247 
248 	/* blkg holds a reference to blkcg */
249 	if (!css_tryget_online(&blkcg->css)) {
250 		ret = -ENODEV;
251 		goto err_free_blkg;
252 	}
253 
254 	/* allocate */
255 	if (!new_blkg) {
256 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
257 		if (unlikely(!new_blkg)) {
258 			ret = -ENOMEM;
259 			goto err_put_css;
260 		}
261 	}
262 	blkg = new_blkg;
263 
264 	/* link parent */
265 	if (blkcg_parent(blkcg)) {
266 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
267 		if (WARN_ON_ONCE(!blkg->parent)) {
268 			ret = -ENODEV;
269 			goto err_put_css;
270 		}
271 		blkg_get(blkg->parent);
272 	}
273 
274 	/* invoke per-policy init */
275 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
276 		struct blkcg_policy *pol = blkcg_policy[i];
277 
278 		if (blkg->pd[i] && pol->pd_init_fn)
279 			pol->pd_init_fn(blkg->pd[i]);
280 	}
281 
282 	/* insert */
283 	spin_lock(&blkcg->lock);
284 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
285 	if (likely(!ret)) {
286 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
287 		list_add(&blkg->q_node, &q->blkg_list);
288 
289 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
290 			struct blkcg_policy *pol = blkcg_policy[i];
291 
292 			if (blkg->pd[i] && pol->pd_online_fn)
293 				pol->pd_online_fn(blkg->pd[i]);
294 		}
295 	}
296 	blkg->online = true;
297 	spin_unlock(&blkcg->lock);
298 
299 	if (!ret)
300 		return blkg;
301 
302 	/* @blkg failed fully initialized, use the usual release path */
303 	blkg_put(blkg);
304 	return ERR_PTR(ret);
305 
306 err_put_css:
307 	css_put(&blkcg->css);
308 err_free_blkg:
309 	blkg_free(new_blkg);
310 	return ERR_PTR(ret);
311 }
312 
313 /**
314  * blkg_lookup_create - lookup blkg, try to create one if not there
315  * @blkcg: blkcg of interest
316  * @q: request_queue of interest
317  *
318  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
319  * create one.  blkg creation is performed recursively from blkcg_root such
320  * that all non-root blkg's have access to the parent blkg.  This function
321  * should be called under RCU read lock and takes @q->queue_lock.
322  *
323  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
324  * down from root.
325  */
326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
327 		struct request_queue *q)
328 {
329 	struct blkcg_gq *blkg;
330 	unsigned long flags;
331 
332 	WARN_ON_ONCE(!rcu_read_lock_held());
333 
334 	blkg = blkg_lookup(blkcg, q);
335 	if (blkg)
336 		return blkg;
337 
338 	spin_lock_irqsave(&q->queue_lock, flags);
339 	blkg = __blkg_lookup(blkcg, q, true);
340 	if (blkg)
341 		goto found;
342 
343 	/*
344 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
345 	 * non-root blkgs have access to their parents.  Returns the closest
346 	 * blkg to the intended blkg should blkg_create() fail.
347 	 */
348 	while (true) {
349 		struct blkcg *pos = blkcg;
350 		struct blkcg *parent = blkcg_parent(blkcg);
351 		struct blkcg_gq *ret_blkg = q->root_blkg;
352 
353 		while (parent) {
354 			blkg = __blkg_lookup(parent, q, false);
355 			if (blkg) {
356 				/* remember closest blkg */
357 				ret_blkg = blkg;
358 				break;
359 			}
360 			pos = parent;
361 			parent = blkcg_parent(parent);
362 		}
363 
364 		blkg = blkg_create(pos, q, NULL);
365 		if (IS_ERR(blkg)) {
366 			blkg = ret_blkg;
367 			break;
368 		}
369 		if (pos == blkcg)
370 			break;
371 	}
372 
373 found:
374 	spin_unlock_irqrestore(&q->queue_lock, flags);
375 	return blkg;
376 }
377 
378 static void blkg_destroy(struct blkcg_gq *blkg)
379 {
380 	struct blkcg *blkcg = blkg->blkcg;
381 	int i;
382 
383 	lockdep_assert_held(&blkg->q->queue_lock);
384 	lockdep_assert_held(&blkcg->lock);
385 
386 	/* Something wrong if we are trying to remove same group twice */
387 	WARN_ON_ONCE(list_empty(&blkg->q_node));
388 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
389 
390 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
391 		struct blkcg_policy *pol = blkcg_policy[i];
392 
393 		if (blkg->pd[i] && pol->pd_offline_fn)
394 			pol->pd_offline_fn(blkg->pd[i]);
395 	}
396 
397 	blkg->online = false;
398 
399 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
400 	list_del_init(&blkg->q_node);
401 	hlist_del_init_rcu(&blkg->blkcg_node);
402 
403 	/*
404 	 * Both setting lookup hint to and clearing it from @blkg are done
405 	 * under queue_lock.  If it's not pointing to @blkg now, it never
406 	 * will.  Hint assignment itself can race safely.
407 	 */
408 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
409 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
410 
411 	/*
412 	 * Put the reference taken at the time of creation so that when all
413 	 * queues are gone, group can be destroyed.
414 	 */
415 	percpu_ref_kill(&blkg->refcnt);
416 }
417 
418 /**
419  * blkg_destroy_all - destroy all blkgs associated with a request_queue
420  * @q: request_queue of interest
421  *
422  * Destroy all blkgs associated with @q.
423  */
424 static void blkg_destroy_all(struct request_queue *q)
425 {
426 	struct blkcg_gq *blkg, *n;
427 	int count = BLKG_DESTROY_BATCH_SIZE;
428 
429 restart:
430 	spin_lock_irq(&q->queue_lock);
431 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
432 		struct blkcg *blkcg = blkg->blkcg;
433 
434 		spin_lock(&blkcg->lock);
435 		blkg_destroy(blkg);
436 		spin_unlock(&blkcg->lock);
437 
438 		/*
439 		 * in order to avoid holding the spin lock for too long, release
440 		 * it when a batch of blkgs are destroyed.
441 		 */
442 		if (!(--count)) {
443 			count = BLKG_DESTROY_BATCH_SIZE;
444 			spin_unlock_irq(&q->queue_lock);
445 			cond_resched();
446 			goto restart;
447 		}
448 	}
449 
450 	q->root_blkg = NULL;
451 	spin_unlock_irq(&q->queue_lock);
452 }
453 
454 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
455 			     struct cftype *cftype, u64 val)
456 {
457 	struct blkcg *blkcg = css_to_blkcg(css);
458 	struct blkcg_gq *blkg;
459 	int i, cpu;
460 
461 	mutex_lock(&blkcg_pol_mutex);
462 	spin_lock_irq(&blkcg->lock);
463 
464 	/*
465 	 * Note that stat reset is racy - it doesn't synchronize against
466 	 * stat updates.  This is a debug feature which shouldn't exist
467 	 * anyway.  If you get hit by a race, retry.
468 	 */
469 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
470 		for_each_possible_cpu(cpu) {
471 			struct blkg_iostat_set *bis =
472 				per_cpu_ptr(blkg->iostat_cpu, cpu);
473 			memset(bis, 0, sizeof(*bis));
474 		}
475 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
476 
477 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
478 			struct blkcg_policy *pol = blkcg_policy[i];
479 
480 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
481 				pol->pd_reset_stats_fn(blkg->pd[i]);
482 		}
483 	}
484 
485 	spin_unlock_irq(&blkcg->lock);
486 	mutex_unlock(&blkcg_pol_mutex);
487 	return 0;
488 }
489 
490 const char *blkg_dev_name(struct blkcg_gq *blkg)
491 {
492 	/* some drivers (floppy) instantiate a queue w/o disk registered */
493 	if (blkg->q->backing_dev_info->dev)
494 		return bdi_dev_name(blkg->q->backing_dev_info);
495 	return NULL;
496 }
497 
498 /**
499  * blkcg_print_blkgs - helper for printing per-blkg data
500  * @sf: seq_file to print to
501  * @blkcg: blkcg of interest
502  * @prfill: fill function to print out a blkg
503  * @pol: policy in question
504  * @data: data to be passed to @prfill
505  * @show_total: to print out sum of prfill return values or not
506  *
507  * This function invokes @prfill on each blkg of @blkcg if pd for the
508  * policy specified by @pol exists.  @prfill is invoked with @sf, the
509  * policy data and @data and the matching queue lock held.  If @show_total
510  * is %true, the sum of the return values from @prfill is printed with
511  * "Total" label at the end.
512  *
513  * This is to be used to construct print functions for
514  * cftype->read_seq_string method.
515  */
516 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
517 		       u64 (*prfill)(struct seq_file *,
518 				     struct blkg_policy_data *, int),
519 		       const struct blkcg_policy *pol, int data,
520 		       bool show_total)
521 {
522 	struct blkcg_gq *blkg;
523 	u64 total = 0;
524 
525 	rcu_read_lock();
526 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
527 		spin_lock_irq(&blkg->q->queue_lock);
528 		if (blkcg_policy_enabled(blkg->q, pol))
529 			total += prfill(sf, blkg->pd[pol->plid], data);
530 		spin_unlock_irq(&blkg->q->queue_lock);
531 	}
532 	rcu_read_unlock();
533 
534 	if (show_total)
535 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
536 }
537 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
538 
539 /**
540  * __blkg_prfill_u64 - prfill helper for a single u64 value
541  * @sf: seq_file to print to
542  * @pd: policy private data of interest
543  * @v: value to print
544  *
545  * Print @v to @sf for the device assocaited with @pd.
546  */
547 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
548 {
549 	const char *dname = blkg_dev_name(pd->blkg);
550 
551 	if (!dname)
552 		return 0;
553 
554 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
555 	return v;
556 }
557 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
558 
559 /* Performs queue bypass and policy enabled checks then looks up blkg. */
560 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
561 					  const struct blkcg_policy *pol,
562 					  struct request_queue *q)
563 {
564 	WARN_ON_ONCE(!rcu_read_lock_held());
565 	lockdep_assert_held(&q->queue_lock);
566 
567 	if (!blkcg_policy_enabled(q, pol))
568 		return ERR_PTR(-EOPNOTSUPP);
569 	return __blkg_lookup(blkcg, q, true /* update_hint */);
570 }
571 
572 /**
573  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
574  * @inputp: input string pointer
575  *
576  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
577  * from @input and get and return the matching bdev.  *@inputp is
578  * updated to point past the device node prefix.  Returns an ERR_PTR()
579  * value on error.
580  *
581  * Use this function iff blkg_conf_prep() can't be used for some reason.
582  */
583 struct block_device *blkcg_conf_open_bdev(char **inputp)
584 {
585 	char *input = *inputp;
586 	unsigned int major, minor;
587 	struct block_device *bdev;
588 	int key_len;
589 
590 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
591 		return ERR_PTR(-EINVAL);
592 
593 	input += key_len;
594 	if (!isspace(*input))
595 		return ERR_PTR(-EINVAL);
596 	input = skip_spaces(input);
597 
598 	bdev = blkdev_get_no_open(MKDEV(major, minor));
599 	if (!bdev)
600 		return ERR_PTR(-ENODEV);
601 	if (bdev_is_partition(bdev)) {
602 		blkdev_put_no_open(bdev);
603 		return ERR_PTR(-ENODEV);
604 	}
605 
606 	*inputp = input;
607 	return bdev;
608 }
609 
610 /**
611  * blkg_conf_prep - parse and prepare for per-blkg config update
612  * @blkcg: target block cgroup
613  * @pol: target policy
614  * @input: input string
615  * @ctx: blkg_conf_ctx to be filled
616  *
617  * Parse per-blkg config update from @input and initialize @ctx with the
618  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
619  * part of @input following MAJ:MIN.  This function returns with RCU read
620  * lock and queue lock held and must be paired with blkg_conf_finish().
621  */
622 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
623 		   char *input, struct blkg_conf_ctx *ctx)
624 	__acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock)
625 {
626 	struct block_device *bdev;
627 	struct request_queue *q;
628 	struct blkcg_gq *blkg;
629 	int ret;
630 
631 	bdev = blkcg_conf_open_bdev(&input);
632 	if (IS_ERR(bdev))
633 		return PTR_ERR(bdev);
634 
635 	q = bdev->bd_disk->queue;
636 
637 	rcu_read_lock();
638 	spin_lock_irq(&q->queue_lock);
639 
640 	blkg = blkg_lookup_check(blkcg, pol, q);
641 	if (IS_ERR(blkg)) {
642 		ret = PTR_ERR(blkg);
643 		goto fail_unlock;
644 	}
645 
646 	if (blkg)
647 		goto success;
648 
649 	/*
650 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
651 	 * non-root blkgs have access to their parents.
652 	 */
653 	while (true) {
654 		struct blkcg *pos = blkcg;
655 		struct blkcg *parent;
656 		struct blkcg_gq *new_blkg;
657 
658 		parent = blkcg_parent(blkcg);
659 		while (parent && !__blkg_lookup(parent, q, false)) {
660 			pos = parent;
661 			parent = blkcg_parent(parent);
662 		}
663 
664 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
665 		spin_unlock_irq(&q->queue_lock);
666 		rcu_read_unlock();
667 
668 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
669 		if (unlikely(!new_blkg)) {
670 			ret = -ENOMEM;
671 			goto fail;
672 		}
673 
674 		if (radix_tree_preload(GFP_KERNEL)) {
675 			blkg_free(new_blkg);
676 			ret = -ENOMEM;
677 			goto fail;
678 		}
679 
680 		rcu_read_lock();
681 		spin_lock_irq(&q->queue_lock);
682 
683 		blkg = blkg_lookup_check(pos, pol, q);
684 		if (IS_ERR(blkg)) {
685 			ret = PTR_ERR(blkg);
686 			blkg_free(new_blkg);
687 			goto fail_preloaded;
688 		}
689 
690 		if (blkg) {
691 			blkg_free(new_blkg);
692 		} else {
693 			blkg = blkg_create(pos, q, new_blkg);
694 			if (IS_ERR(blkg)) {
695 				ret = PTR_ERR(blkg);
696 				goto fail_preloaded;
697 			}
698 		}
699 
700 		radix_tree_preload_end();
701 
702 		if (pos == blkcg)
703 			goto success;
704 	}
705 success:
706 	ctx->bdev = bdev;
707 	ctx->blkg = blkg;
708 	ctx->body = input;
709 	return 0;
710 
711 fail_preloaded:
712 	radix_tree_preload_end();
713 fail_unlock:
714 	spin_unlock_irq(&q->queue_lock);
715 	rcu_read_unlock();
716 fail:
717 	blkdev_put_no_open(bdev);
718 	/*
719 	 * If queue was bypassing, we should retry.  Do so after a
720 	 * short msleep().  It isn't strictly necessary but queue
721 	 * can be bypassing for some time and it's always nice to
722 	 * avoid busy looping.
723 	 */
724 	if (ret == -EBUSY) {
725 		msleep(10);
726 		ret = restart_syscall();
727 	}
728 	return ret;
729 }
730 EXPORT_SYMBOL_GPL(blkg_conf_prep);
731 
732 /**
733  * blkg_conf_finish - finish up per-blkg config update
734  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
735  *
736  * Finish up after per-blkg config update.  This function must be paired
737  * with blkg_conf_prep().
738  */
739 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
740 	__releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu)
741 {
742 	spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock);
743 	rcu_read_unlock();
744 	blkdev_put_no_open(ctx->bdev);
745 }
746 EXPORT_SYMBOL_GPL(blkg_conf_finish);
747 
748 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
749 {
750 	int i;
751 
752 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
753 		dst->bytes[i] = src->bytes[i];
754 		dst->ios[i] = src->ios[i];
755 	}
756 }
757 
758 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
759 {
760 	int i;
761 
762 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
763 		dst->bytes[i] += src->bytes[i];
764 		dst->ios[i] += src->ios[i];
765 	}
766 }
767 
768 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
769 {
770 	int i;
771 
772 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
773 		dst->bytes[i] -= src->bytes[i];
774 		dst->ios[i] -= src->ios[i];
775 	}
776 }
777 
778 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
779 {
780 	struct blkcg *blkcg = css_to_blkcg(css);
781 	struct blkcg_gq *blkg;
782 
783 	/* Root-level stats are sourced from system-wide IO stats */
784 	if (!cgroup_parent(css->cgroup))
785 		return;
786 
787 	rcu_read_lock();
788 
789 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
790 		struct blkcg_gq *parent = blkg->parent;
791 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
792 		struct blkg_iostat cur, delta;
793 		unsigned long flags;
794 		unsigned int seq;
795 
796 		/* fetch the current per-cpu values */
797 		do {
798 			seq = u64_stats_fetch_begin(&bisc->sync);
799 			blkg_iostat_set(&cur, &bisc->cur);
800 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
801 
802 		/* propagate percpu delta to global */
803 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
804 		blkg_iostat_set(&delta, &cur);
805 		blkg_iostat_sub(&delta, &bisc->last);
806 		blkg_iostat_add(&blkg->iostat.cur, &delta);
807 		blkg_iostat_add(&bisc->last, &delta);
808 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
809 
810 		/* propagate global delta to parent (unless that's root) */
811 		if (parent && parent->parent) {
812 			flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
813 			blkg_iostat_set(&delta, &blkg->iostat.cur);
814 			blkg_iostat_sub(&delta, &blkg->iostat.last);
815 			blkg_iostat_add(&parent->iostat.cur, &delta);
816 			blkg_iostat_add(&blkg->iostat.last, &delta);
817 			u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
818 		}
819 	}
820 
821 	rcu_read_unlock();
822 }
823 
824 /*
825  * We source root cgroup stats from the system-wide stats to avoid
826  * tracking the same information twice and incurring overhead when no
827  * cgroups are defined. For that reason, cgroup_rstat_flush in
828  * blkcg_print_stat does not actually fill out the iostat in the root
829  * cgroup's blkcg_gq.
830  *
831  * However, we would like to re-use the printing code between the root and
832  * non-root cgroups to the extent possible. For that reason, we simulate
833  * flushing the root cgroup's stats by explicitly filling in the iostat
834  * with disk level statistics.
835  */
836 static void blkcg_fill_root_iostats(void)
837 {
838 	struct class_dev_iter iter;
839 	struct device *dev;
840 
841 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
842 	while ((dev = class_dev_iter_next(&iter))) {
843 		struct block_device *bdev = dev_to_bdev(dev);
844 		struct blkcg_gq *blkg =
845 			blk_queue_root_blkg(bdev->bd_disk->queue);
846 		struct blkg_iostat tmp;
847 		int cpu;
848 
849 		memset(&tmp, 0, sizeof(tmp));
850 		for_each_possible_cpu(cpu) {
851 			struct disk_stats *cpu_dkstats;
852 			unsigned long flags;
853 
854 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
855 			tmp.ios[BLKG_IOSTAT_READ] +=
856 				cpu_dkstats->ios[STAT_READ];
857 			tmp.ios[BLKG_IOSTAT_WRITE] +=
858 				cpu_dkstats->ios[STAT_WRITE];
859 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
860 				cpu_dkstats->ios[STAT_DISCARD];
861 			// convert sectors to bytes
862 			tmp.bytes[BLKG_IOSTAT_READ] +=
863 				cpu_dkstats->sectors[STAT_READ] << 9;
864 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
865 				cpu_dkstats->sectors[STAT_WRITE] << 9;
866 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
867 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
868 
869 			flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
870 			blkg_iostat_set(&blkg->iostat.cur, &tmp);
871 			u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
872 		}
873 	}
874 }
875 
876 static int blkcg_print_stat(struct seq_file *sf, void *v)
877 {
878 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
879 	struct blkcg_gq *blkg;
880 
881 	if (!seq_css(sf)->parent)
882 		blkcg_fill_root_iostats();
883 	else
884 		cgroup_rstat_flush(blkcg->css.cgroup);
885 
886 	rcu_read_lock();
887 
888 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
889 		struct blkg_iostat_set *bis = &blkg->iostat;
890 		const char *dname;
891 		char *buf;
892 		u64 rbytes, wbytes, rios, wios, dbytes, dios;
893 		size_t size = seq_get_buf(sf, &buf), off = 0;
894 		int i;
895 		bool has_stats = false;
896 		unsigned seq;
897 
898 		spin_lock_irq(&blkg->q->queue_lock);
899 
900 		if (!blkg->online)
901 			goto skip;
902 
903 		dname = blkg_dev_name(blkg);
904 		if (!dname)
905 			goto skip;
906 
907 		/*
908 		 * Hooray string manipulation, count is the size written NOT
909 		 * INCLUDING THE \0, so size is now count+1 less than what we
910 		 * had before, but we want to start writing the next bit from
911 		 * the \0 so we only add count to buf.
912 		 */
913 		off += scnprintf(buf+off, size-off, "%s ", dname);
914 
915 		do {
916 			seq = u64_stats_fetch_begin(&bis->sync);
917 
918 			rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
919 			wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
920 			dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
921 			rios = bis->cur.ios[BLKG_IOSTAT_READ];
922 			wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
923 			dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
924 		} while (u64_stats_fetch_retry(&bis->sync, seq));
925 
926 		if (rbytes || wbytes || rios || wios) {
927 			has_stats = true;
928 			off += scnprintf(buf+off, size-off,
929 					 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
930 					 rbytes, wbytes, rios, wios,
931 					 dbytes, dios);
932 		}
933 
934 		if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
935 			has_stats = true;
936 			off += scnprintf(buf+off, size-off,
937 					 " use_delay=%d delay_nsec=%llu",
938 					 atomic_read(&blkg->use_delay),
939 					(unsigned long long)atomic64_read(&blkg->delay_nsec));
940 		}
941 
942 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
943 			struct blkcg_policy *pol = blkcg_policy[i];
944 			size_t written;
945 
946 			if (!blkg->pd[i] || !pol->pd_stat_fn)
947 				continue;
948 
949 			written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off);
950 			if (written)
951 				has_stats = true;
952 			off += written;
953 		}
954 
955 		if (has_stats) {
956 			if (off < size - 1) {
957 				off += scnprintf(buf+off, size-off, "\n");
958 				seq_commit(sf, off);
959 			} else {
960 				seq_commit(sf, -1);
961 			}
962 		}
963 	skip:
964 		spin_unlock_irq(&blkg->q->queue_lock);
965 	}
966 
967 	rcu_read_unlock();
968 	return 0;
969 }
970 
971 static struct cftype blkcg_files[] = {
972 	{
973 		.name = "stat",
974 		.seq_show = blkcg_print_stat,
975 	},
976 	{ }	/* terminate */
977 };
978 
979 static struct cftype blkcg_legacy_files[] = {
980 	{
981 		.name = "reset_stats",
982 		.write_u64 = blkcg_reset_stats,
983 	},
984 	{ }	/* terminate */
985 };
986 
987 /*
988  * blkcg destruction is a three-stage process.
989  *
990  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
991  *    which offlines writeback.  Here we tie the next stage of blkg destruction
992  *    to the completion of writeback associated with the blkcg.  This lets us
993  *    avoid punting potentially large amounts of outstanding writeback to root
994  *    while maintaining any ongoing policies.  The next stage is triggered when
995  *    the nr_cgwbs count goes to zero.
996  *
997  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
998  *    and handles the destruction of blkgs.  Here the css reference held by
999  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1000  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1001  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1002  *    punted to the root_blkg.
1003  *
1004  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1005  *    This finally frees the blkcg.
1006  */
1007 
1008 /**
1009  * blkcg_css_offline - cgroup css_offline callback
1010  * @css: css of interest
1011  *
1012  * This function is called when @css is about to go away.  Here the cgwbs are
1013  * offlined first and only once writeback associated with the blkcg has
1014  * finished do we start step 2 (see above).
1015  */
1016 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1017 {
1018 	struct blkcg *blkcg = css_to_blkcg(css);
1019 
1020 	/* this prevents anyone from attaching or migrating to this blkcg */
1021 	wb_blkcg_offline(blkcg);
1022 
1023 	/* put the base online pin allowing step 2 to be triggered */
1024 	blkcg_unpin_online(blkcg);
1025 }
1026 
1027 /**
1028  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1029  * @blkcg: blkcg of interest
1030  *
1031  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1032  * is nested inside q lock, this function performs reverse double lock dancing.
1033  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1034  * blkcg_css_free to eventually be called.
1035  *
1036  * This is the blkcg counterpart of ioc_release_fn().
1037  */
1038 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1039 {
1040 	might_sleep();
1041 
1042 	spin_lock_irq(&blkcg->lock);
1043 
1044 	while (!hlist_empty(&blkcg->blkg_list)) {
1045 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1046 						struct blkcg_gq, blkcg_node);
1047 		struct request_queue *q = blkg->q;
1048 
1049 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1050 			/*
1051 			 * Given that the system can accumulate a huge number
1052 			 * of blkgs in pathological cases, check to see if we
1053 			 * need to rescheduling to avoid softlockup.
1054 			 */
1055 			spin_unlock_irq(&blkcg->lock);
1056 			cond_resched();
1057 			spin_lock_irq(&blkcg->lock);
1058 			continue;
1059 		}
1060 
1061 		blkg_destroy(blkg);
1062 		spin_unlock(&q->queue_lock);
1063 	}
1064 
1065 	spin_unlock_irq(&blkcg->lock);
1066 }
1067 
1068 static void blkcg_css_free(struct cgroup_subsys_state *css)
1069 {
1070 	struct blkcg *blkcg = css_to_blkcg(css);
1071 	int i;
1072 
1073 	mutex_lock(&blkcg_pol_mutex);
1074 
1075 	list_del(&blkcg->all_blkcgs_node);
1076 
1077 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1078 		if (blkcg->cpd[i])
1079 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1080 
1081 	mutex_unlock(&blkcg_pol_mutex);
1082 
1083 	kfree(blkcg);
1084 }
1085 
1086 static struct cgroup_subsys_state *
1087 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1088 {
1089 	struct blkcg *blkcg;
1090 	struct cgroup_subsys_state *ret;
1091 	int i;
1092 
1093 	mutex_lock(&blkcg_pol_mutex);
1094 
1095 	if (!parent_css) {
1096 		blkcg = &blkcg_root;
1097 	} else {
1098 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1099 		if (!blkcg) {
1100 			ret = ERR_PTR(-ENOMEM);
1101 			goto unlock;
1102 		}
1103 	}
1104 
1105 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1106 		struct blkcg_policy *pol = blkcg_policy[i];
1107 		struct blkcg_policy_data *cpd;
1108 
1109 		/*
1110 		 * If the policy hasn't been attached yet, wait for it
1111 		 * to be attached before doing anything else. Otherwise,
1112 		 * check if the policy requires any specific per-cgroup
1113 		 * data: if it does, allocate and initialize it.
1114 		 */
1115 		if (!pol || !pol->cpd_alloc_fn)
1116 			continue;
1117 
1118 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1119 		if (!cpd) {
1120 			ret = ERR_PTR(-ENOMEM);
1121 			goto free_pd_blkcg;
1122 		}
1123 		blkcg->cpd[i] = cpd;
1124 		cpd->blkcg = blkcg;
1125 		cpd->plid = i;
1126 		if (pol->cpd_init_fn)
1127 			pol->cpd_init_fn(cpd);
1128 	}
1129 
1130 	spin_lock_init(&blkcg->lock);
1131 	refcount_set(&blkcg->online_pin, 1);
1132 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1133 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1134 #ifdef CONFIG_CGROUP_WRITEBACK
1135 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1136 #endif
1137 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1138 
1139 	mutex_unlock(&blkcg_pol_mutex);
1140 	return &blkcg->css;
1141 
1142 free_pd_blkcg:
1143 	for (i--; i >= 0; i--)
1144 		if (blkcg->cpd[i])
1145 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1146 
1147 	if (blkcg != &blkcg_root)
1148 		kfree(blkcg);
1149 unlock:
1150 	mutex_unlock(&blkcg_pol_mutex);
1151 	return ret;
1152 }
1153 
1154 static int blkcg_css_online(struct cgroup_subsys_state *css)
1155 {
1156 	struct blkcg *blkcg = css_to_blkcg(css);
1157 	struct blkcg *parent = blkcg_parent(blkcg);
1158 
1159 	/*
1160 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1161 	 * don't go offline while cgwbs are still active on them.  Pin the
1162 	 * parent so that offline always happens towards the root.
1163 	 */
1164 	if (parent)
1165 		blkcg_pin_online(parent);
1166 	return 0;
1167 }
1168 
1169 /**
1170  * blkcg_init_queue - initialize blkcg part of request queue
1171  * @q: request_queue to initialize
1172  *
1173  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1174  * part of new request_queue @q.
1175  *
1176  * RETURNS:
1177  * 0 on success, -errno on failure.
1178  */
1179 int blkcg_init_queue(struct request_queue *q)
1180 {
1181 	struct blkcg_gq *new_blkg, *blkg;
1182 	bool preloaded;
1183 	int ret;
1184 
1185 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1186 	if (!new_blkg)
1187 		return -ENOMEM;
1188 
1189 	preloaded = !radix_tree_preload(GFP_KERNEL);
1190 
1191 	/* Make sure the root blkg exists. */
1192 	rcu_read_lock();
1193 	spin_lock_irq(&q->queue_lock);
1194 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1195 	if (IS_ERR(blkg))
1196 		goto err_unlock;
1197 	q->root_blkg = blkg;
1198 	spin_unlock_irq(&q->queue_lock);
1199 	rcu_read_unlock();
1200 
1201 	if (preloaded)
1202 		radix_tree_preload_end();
1203 
1204 	ret = blk_iolatency_init(q);
1205 	if (ret)
1206 		goto err_destroy_all;
1207 
1208 	ret = blk_ioprio_init(q);
1209 	if (ret)
1210 		goto err_destroy_all;
1211 
1212 	ret = blk_throtl_init(q);
1213 	if (ret)
1214 		goto err_destroy_all;
1215 
1216 	return 0;
1217 
1218 err_destroy_all:
1219 	blkg_destroy_all(q);
1220 	return ret;
1221 err_unlock:
1222 	spin_unlock_irq(&q->queue_lock);
1223 	rcu_read_unlock();
1224 	if (preloaded)
1225 		radix_tree_preload_end();
1226 	return PTR_ERR(blkg);
1227 }
1228 
1229 /**
1230  * blkcg_exit_queue - exit and release blkcg part of request_queue
1231  * @q: request_queue being released
1232  *
1233  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1234  */
1235 void blkcg_exit_queue(struct request_queue *q)
1236 {
1237 	blkg_destroy_all(q);
1238 	blk_throtl_exit(q);
1239 }
1240 
1241 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1242 {
1243 	int i;
1244 
1245 	mutex_lock(&blkcg_pol_mutex);
1246 
1247 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1248 		struct blkcg_policy *pol = blkcg_policy[i];
1249 		struct blkcg *blkcg;
1250 
1251 		if (!pol || !pol->cpd_bind_fn)
1252 			continue;
1253 
1254 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1255 			if (blkcg->cpd[pol->plid])
1256 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1257 	}
1258 	mutex_unlock(&blkcg_pol_mutex);
1259 }
1260 
1261 static void blkcg_exit(struct task_struct *tsk)
1262 {
1263 	if (tsk->throttle_queue)
1264 		blk_put_queue(tsk->throttle_queue);
1265 	tsk->throttle_queue = NULL;
1266 }
1267 
1268 struct cgroup_subsys io_cgrp_subsys = {
1269 	.css_alloc = blkcg_css_alloc,
1270 	.css_online = blkcg_css_online,
1271 	.css_offline = blkcg_css_offline,
1272 	.css_free = blkcg_css_free,
1273 	.css_rstat_flush = blkcg_rstat_flush,
1274 	.bind = blkcg_bind,
1275 	.dfl_cftypes = blkcg_files,
1276 	.legacy_cftypes = blkcg_legacy_files,
1277 	.legacy_name = "blkio",
1278 	.exit = blkcg_exit,
1279 #ifdef CONFIG_MEMCG
1280 	/*
1281 	 * This ensures that, if available, memcg is automatically enabled
1282 	 * together on the default hierarchy so that the owner cgroup can
1283 	 * be retrieved from writeback pages.
1284 	 */
1285 	.depends_on = 1 << memory_cgrp_id,
1286 #endif
1287 };
1288 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1289 
1290 /**
1291  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1292  * @q: request_queue of interest
1293  * @pol: blkcg policy to activate
1294  *
1295  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1296  * bypass mode to populate its blkgs with policy_data for @pol.
1297  *
1298  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1299  * from IO path.  Update of each blkg is protected by both queue and blkcg
1300  * locks so that holding either lock and testing blkcg_policy_enabled() is
1301  * always enough for dereferencing policy data.
1302  *
1303  * The caller is responsible for synchronizing [de]activations and policy
1304  * [un]registerations.  Returns 0 on success, -errno on failure.
1305  */
1306 int blkcg_activate_policy(struct request_queue *q,
1307 			  const struct blkcg_policy *pol)
1308 {
1309 	struct blkg_policy_data *pd_prealloc = NULL;
1310 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1311 	int ret;
1312 
1313 	if (blkcg_policy_enabled(q, pol))
1314 		return 0;
1315 
1316 	if (queue_is_mq(q))
1317 		blk_mq_freeze_queue(q);
1318 retry:
1319 	spin_lock_irq(&q->queue_lock);
1320 
1321 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1322 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1323 		struct blkg_policy_data *pd;
1324 
1325 		if (blkg->pd[pol->plid])
1326 			continue;
1327 
1328 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1329 		if (blkg == pinned_blkg) {
1330 			pd = pd_prealloc;
1331 			pd_prealloc = NULL;
1332 		} else {
1333 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1334 					      blkg->blkcg);
1335 		}
1336 
1337 		if (!pd) {
1338 			/*
1339 			 * GFP_NOWAIT failed.  Free the existing one and
1340 			 * prealloc for @blkg w/ GFP_KERNEL.
1341 			 */
1342 			if (pinned_blkg)
1343 				blkg_put(pinned_blkg);
1344 			blkg_get(blkg);
1345 			pinned_blkg = blkg;
1346 
1347 			spin_unlock_irq(&q->queue_lock);
1348 
1349 			if (pd_prealloc)
1350 				pol->pd_free_fn(pd_prealloc);
1351 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1352 						       blkg->blkcg);
1353 			if (pd_prealloc)
1354 				goto retry;
1355 			else
1356 				goto enomem;
1357 		}
1358 
1359 		blkg->pd[pol->plid] = pd;
1360 		pd->blkg = blkg;
1361 		pd->plid = pol->plid;
1362 	}
1363 
1364 	/* all allocated, init in the same order */
1365 	if (pol->pd_init_fn)
1366 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1367 			pol->pd_init_fn(blkg->pd[pol->plid]);
1368 
1369 	__set_bit(pol->plid, q->blkcg_pols);
1370 	ret = 0;
1371 
1372 	spin_unlock_irq(&q->queue_lock);
1373 out:
1374 	if (queue_is_mq(q))
1375 		blk_mq_unfreeze_queue(q);
1376 	if (pinned_blkg)
1377 		blkg_put(pinned_blkg);
1378 	if (pd_prealloc)
1379 		pol->pd_free_fn(pd_prealloc);
1380 	return ret;
1381 
1382 enomem:
1383 	/* alloc failed, nothing's initialized yet, free everything */
1384 	spin_lock_irq(&q->queue_lock);
1385 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1386 		if (blkg->pd[pol->plid]) {
1387 			pol->pd_free_fn(blkg->pd[pol->plid]);
1388 			blkg->pd[pol->plid] = NULL;
1389 		}
1390 	}
1391 	spin_unlock_irq(&q->queue_lock);
1392 	ret = -ENOMEM;
1393 	goto out;
1394 }
1395 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1396 
1397 /**
1398  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1399  * @q: request_queue of interest
1400  * @pol: blkcg policy to deactivate
1401  *
1402  * Deactivate @pol on @q.  Follows the same synchronization rules as
1403  * blkcg_activate_policy().
1404  */
1405 void blkcg_deactivate_policy(struct request_queue *q,
1406 			     const struct blkcg_policy *pol)
1407 {
1408 	struct blkcg_gq *blkg;
1409 
1410 	if (!blkcg_policy_enabled(q, pol))
1411 		return;
1412 
1413 	if (queue_is_mq(q))
1414 		blk_mq_freeze_queue(q);
1415 
1416 	spin_lock_irq(&q->queue_lock);
1417 
1418 	__clear_bit(pol->plid, q->blkcg_pols);
1419 
1420 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1421 		if (blkg->pd[pol->plid]) {
1422 			if (pol->pd_offline_fn)
1423 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1424 			pol->pd_free_fn(blkg->pd[pol->plid]);
1425 			blkg->pd[pol->plid] = NULL;
1426 		}
1427 	}
1428 
1429 	spin_unlock_irq(&q->queue_lock);
1430 
1431 	if (queue_is_mq(q))
1432 		blk_mq_unfreeze_queue(q);
1433 }
1434 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1435 
1436 /**
1437  * blkcg_policy_register - register a blkcg policy
1438  * @pol: blkcg policy to register
1439  *
1440  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1441  * successful registration.  Returns 0 on success and -errno on failure.
1442  */
1443 int blkcg_policy_register(struct blkcg_policy *pol)
1444 {
1445 	struct blkcg *blkcg;
1446 	int i, ret;
1447 
1448 	mutex_lock(&blkcg_pol_register_mutex);
1449 	mutex_lock(&blkcg_pol_mutex);
1450 
1451 	/* find an empty slot */
1452 	ret = -ENOSPC;
1453 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1454 		if (!blkcg_policy[i])
1455 			break;
1456 	if (i >= BLKCG_MAX_POLS) {
1457 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1458 		goto err_unlock;
1459 	}
1460 
1461 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1462 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1463 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1464 		goto err_unlock;
1465 
1466 	/* register @pol */
1467 	pol->plid = i;
1468 	blkcg_policy[pol->plid] = pol;
1469 
1470 	/* allocate and install cpd's */
1471 	if (pol->cpd_alloc_fn) {
1472 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1473 			struct blkcg_policy_data *cpd;
1474 
1475 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1476 			if (!cpd)
1477 				goto err_free_cpds;
1478 
1479 			blkcg->cpd[pol->plid] = cpd;
1480 			cpd->blkcg = blkcg;
1481 			cpd->plid = pol->plid;
1482 			if (pol->cpd_init_fn)
1483 				pol->cpd_init_fn(cpd);
1484 		}
1485 	}
1486 
1487 	mutex_unlock(&blkcg_pol_mutex);
1488 
1489 	/* everything is in place, add intf files for the new policy */
1490 	if (pol->dfl_cftypes)
1491 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1492 					       pol->dfl_cftypes));
1493 	if (pol->legacy_cftypes)
1494 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1495 						  pol->legacy_cftypes));
1496 	mutex_unlock(&blkcg_pol_register_mutex);
1497 	return 0;
1498 
1499 err_free_cpds:
1500 	if (pol->cpd_free_fn) {
1501 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1502 			if (blkcg->cpd[pol->plid]) {
1503 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1504 				blkcg->cpd[pol->plid] = NULL;
1505 			}
1506 		}
1507 	}
1508 	blkcg_policy[pol->plid] = NULL;
1509 err_unlock:
1510 	mutex_unlock(&blkcg_pol_mutex);
1511 	mutex_unlock(&blkcg_pol_register_mutex);
1512 	return ret;
1513 }
1514 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1515 
1516 /**
1517  * blkcg_policy_unregister - unregister a blkcg policy
1518  * @pol: blkcg policy to unregister
1519  *
1520  * Undo blkcg_policy_register(@pol).  Might sleep.
1521  */
1522 void blkcg_policy_unregister(struct blkcg_policy *pol)
1523 {
1524 	struct blkcg *blkcg;
1525 
1526 	mutex_lock(&blkcg_pol_register_mutex);
1527 
1528 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1529 		goto out_unlock;
1530 
1531 	/* kill the intf files first */
1532 	if (pol->dfl_cftypes)
1533 		cgroup_rm_cftypes(pol->dfl_cftypes);
1534 	if (pol->legacy_cftypes)
1535 		cgroup_rm_cftypes(pol->legacy_cftypes);
1536 
1537 	/* remove cpds and unregister */
1538 	mutex_lock(&blkcg_pol_mutex);
1539 
1540 	if (pol->cpd_free_fn) {
1541 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1542 			if (blkcg->cpd[pol->plid]) {
1543 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1544 				blkcg->cpd[pol->plid] = NULL;
1545 			}
1546 		}
1547 	}
1548 	blkcg_policy[pol->plid] = NULL;
1549 
1550 	mutex_unlock(&blkcg_pol_mutex);
1551 out_unlock:
1552 	mutex_unlock(&blkcg_pol_register_mutex);
1553 }
1554 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1555 
1556 bool __blkcg_punt_bio_submit(struct bio *bio)
1557 {
1558 	struct blkcg_gq *blkg = bio->bi_blkg;
1559 
1560 	/* consume the flag first */
1561 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1562 
1563 	/* never bounce for the root cgroup */
1564 	if (!blkg->parent)
1565 		return false;
1566 
1567 	spin_lock_bh(&blkg->async_bio_lock);
1568 	bio_list_add(&blkg->async_bios, bio);
1569 	spin_unlock_bh(&blkg->async_bio_lock);
1570 
1571 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1572 	return true;
1573 }
1574 
1575 /*
1576  * Scale the accumulated delay based on how long it has been since we updated
1577  * the delay.  We only call this when we are adding delay, in case it's been a
1578  * while since we added delay, and when we are checking to see if we need to
1579  * delay a task, to account for any delays that may have occurred.
1580  */
1581 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1582 {
1583 	u64 old = atomic64_read(&blkg->delay_start);
1584 
1585 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1586 	if (atomic_read(&blkg->use_delay) < 0)
1587 		return;
1588 
1589 	/*
1590 	 * We only want to scale down every second.  The idea here is that we
1591 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1592 	 * time window.  We only want to throttle tasks for recent delay that
1593 	 * has occurred, in 1 second time windows since that's the maximum
1594 	 * things can be throttled.  We save the current delay window in
1595 	 * blkg->last_delay so we know what amount is still left to be charged
1596 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1597 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1598 	 * are ok with whatever is happening now, and we can take away more of
1599 	 * the accumulated delay as we've already throttled enough that
1600 	 * everybody is happy with their IO latencies.
1601 	 */
1602 	if (time_before64(old + NSEC_PER_SEC, now) &&
1603 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1604 		u64 cur = atomic64_read(&blkg->delay_nsec);
1605 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1606 		int cur_use = atomic_read(&blkg->use_delay);
1607 
1608 		/*
1609 		 * We've been unthrottled, subtract a larger chunk of our
1610 		 * accumulated delay.
1611 		 */
1612 		if (cur_use < blkg->last_use)
1613 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1614 
1615 		/*
1616 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1617 		 * should only ever be growing except here where we subtract out
1618 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1619 		 * rather not end up with negative numbers.
1620 		 */
1621 		if (unlikely(cur < sub)) {
1622 			atomic64_set(&blkg->delay_nsec, 0);
1623 			blkg->last_delay = 0;
1624 		} else {
1625 			atomic64_sub(sub, &blkg->delay_nsec);
1626 			blkg->last_delay = cur - sub;
1627 		}
1628 		blkg->last_use = cur_use;
1629 	}
1630 }
1631 
1632 /*
1633  * This is called when we want to actually walk up the hierarchy and check to
1634  * see if we need to throttle, and then actually throttle if there is some
1635  * accumulated delay.  This should only be called upon return to user space so
1636  * we're not holding some lock that would induce a priority inversion.
1637  */
1638 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1639 {
1640 	unsigned long pflags;
1641 	bool clamp;
1642 	u64 now = ktime_to_ns(ktime_get());
1643 	u64 exp;
1644 	u64 delay_nsec = 0;
1645 	int tok;
1646 
1647 	while (blkg->parent) {
1648 		int use_delay = atomic_read(&blkg->use_delay);
1649 
1650 		if (use_delay) {
1651 			u64 this_delay;
1652 
1653 			blkcg_scale_delay(blkg, now);
1654 			this_delay = atomic64_read(&blkg->delay_nsec);
1655 			if (this_delay > delay_nsec) {
1656 				delay_nsec = this_delay;
1657 				clamp = use_delay > 0;
1658 			}
1659 		}
1660 		blkg = blkg->parent;
1661 	}
1662 
1663 	if (!delay_nsec)
1664 		return;
1665 
1666 	/*
1667 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1668 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1669 	 * delay, and we want userspace to be able to do _something_ so cap the
1670 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1671 	 * tasks will be delayed for 0.25 second for every syscall. If
1672 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1673 	 * caller is responsible for regulating the range.
1674 	 */
1675 	if (clamp)
1676 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1677 
1678 	if (use_memdelay)
1679 		psi_memstall_enter(&pflags);
1680 
1681 	exp = ktime_add_ns(now, delay_nsec);
1682 	tok = io_schedule_prepare();
1683 	do {
1684 		__set_current_state(TASK_KILLABLE);
1685 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1686 			break;
1687 	} while (!fatal_signal_pending(current));
1688 	io_schedule_finish(tok);
1689 
1690 	if (use_memdelay)
1691 		psi_memstall_leave(&pflags);
1692 }
1693 
1694 /**
1695  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1696  *
1697  * This is only called if we've been marked with set_notify_resume().  Obviously
1698  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1699  * check to see if current->throttle_queue is set and if not this doesn't do
1700  * anything.  This should only ever be called by the resume code, it's not meant
1701  * to be called by people willy-nilly as it will actually do the work to
1702  * throttle the task if it is setup for throttling.
1703  */
1704 void blkcg_maybe_throttle_current(void)
1705 {
1706 	struct request_queue *q = current->throttle_queue;
1707 	struct cgroup_subsys_state *css;
1708 	struct blkcg *blkcg;
1709 	struct blkcg_gq *blkg;
1710 	bool use_memdelay = current->use_memdelay;
1711 
1712 	if (!q)
1713 		return;
1714 
1715 	current->throttle_queue = NULL;
1716 	current->use_memdelay = false;
1717 
1718 	rcu_read_lock();
1719 	css = kthread_blkcg();
1720 	if (css)
1721 		blkcg = css_to_blkcg(css);
1722 	else
1723 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1724 
1725 	if (!blkcg)
1726 		goto out;
1727 	blkg = blkg_lookup(blkcg, q);
1728 	if (!blkg)
1729 		goto out;
1730 	if (!blkg_tryget(blkg))
1731 		goto out;
1732 	rcu_read_unlock();
1733 
1734 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1735 	blkg_put(blkg);
1736 	blk_put_queue(q);
1737 	return;
1738 out:
1739 	rcu_read_unlock();
1740 	blk_put_queue(q);
1741 }
1742 
1743 /**
1744  * blkcg_schedule_throttle - this task needs to check for throttling
1745  * @q: the request queue IO was submitted on
1746  * @use_memdelay: do we charge this to memory delay for PSI
1747  *
1748  * This is called by the IO controller when we know there's delay accumulated
1749  * for the blkg for this task.  We do not pass the blkg because there are places
1750  * we call this that may not have that information, the swapping code for
1751  * instance will only have a request_queue at that point.  This set's the
1752  * notify_resume for the task to check and see if it requires throttling before
1753  * returning to user space.
1754  *
1755  * We will only schedule once per syscall.  You can call this over and over
1756  * again and it will only do the check once upon return to user space, and only
1757  * throttle once.  If the task needs to be throttled again it'll need to be
1758  * re-set at the next time we see the task.
1759  */
1760 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1761 {
1762 	if (unlikely(current->flags & PF_KTHREAD))
1763 		return;
1764 
1765 	if (current->throttle_queue != q) {
1766 		if (!blk_get_queue(q))
1767 			return;
1768 
1769 		if (current->throttle_queue)
1770 			blk_put_queue(current->throttle_queue);
1771 		current->throttle_queue = q;
1772 	}
1773 
1774 	if (use_memdelay)
1775 		current->use_memdelay = use_memdelay;
1776 	set_notify_resume(current);
1777 }
1778 
1779 /**
1780  * blkcg_add_delay - add delay to this blkg
1781  * @blkg: blkg of interest
1782  * @now: the current time in nanoseconds
1783  * @delta: how many nanoseconds of delay to add
1784  *
1785  * Charge @delta to the blkg's current delay accumulation.  This is used to
1786  * throttle tasks if an IO controller thinks we need more throttling.
1787  */
1788 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1789 {
1790 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1791 		return;
1792 	blkcg_scale_delay(blkg, now);
1793 	atomic64_add(delta, &blkg->delay_nsec);
1794 }
1795 
1796 /**
1797  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1798  * @bio: target bio
1799  * @css: target css
1800  *
1801  * As the failure mode here is to walk up the blkg tree, this ensure that the
1802  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1803  * up taking a reference on or %NULL if no reference was taken.
1804  */
1805 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1806 		struct cgroup_subsys_state *css)
1807 {
1808 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1809 
1810 	rcu_read_lock();
1811 	blkg = blkg_lookup_create(css_to_blkcg(css),
1812 				  bio->bi_bdev->bd_disk->queue);
1813 	while (blkg) {
1814 		if (blkg_tryget(blkg)) {
1815 			ret_blkg = blkg;
1816 			break;
1817 		}
1818 		blkg = blkg->parent;
1819 	}
1820 	rcu_read_unlock();
1821 
1822 	return ret_blkg;
1823 }
1824 
1825 /**
1826  * bio_associate_blkg_from_css - associate a bio with a specified css
1827  * @bio: target bio
1828  * @css: target css
1829  *
1830  * Associate @bio with the blkg found by combining the css's blkg and the
1831  * request_queue of the @bio.  An association failure is handled by walking up
1832  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1833  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1834  * then the remaining bios will spill to the closest alive blkg.
1835  *
1836  * A reference will be taken on the blkg and will be released when @bio is
1837  * freed.
1838  */
1839 void bio_associate_blkg_from_css(struct bio *bio,
1840 				 struct cgroup_subsys_state *css)
1841 {
1842 	if (bio->bi_blkg)
1843 		blkg_put(bio->bi_blkg);
1844 
1845 	if (css && css->parent) {
1846 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1847 	} else {
1848 		blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg);
1849 		bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg;
1850 	}
1851 }
1852 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1853 
1854 /**
1855  * bio_associate_blkg - associate a bio with a blkg
1856  * @bio: target bio
1857  *
1858  * Associate @bio with the blkg found from the bio's css and request_queue.
1859  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1860  * already associated, the css is reused and association redone as the
1861  * request_queue may have changed.
1862  */
1863 void bio_associate_blkg(struct bio *bio)
1864 {
1865 	struct cgroup_subsys_state *css;
1866 
1867 	rcu_read_lock();
1868 
1869 	if (bio->bi_blkg)
1870 		css = &bio_blkcg(bio)->css;
1871 	else
1872 		css = blkcg_css();
1873 
1874 	bio_associate_blkg_from_css(bio, css);
1875 
1876 	rcu_read_unlock();
1877 }
1878 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1879 
1880 /**
1881  * bio_clone_blkg_association - clone blkg association from src to dst bio
1882  * @dst: destination bio
1883  * @src: source bio
1884  */
1885 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1886 {
1887 	if (src->bi_blkg) {
1888 		if (dst->bi_blkg)
1889 			blkg_put(dst->bi_blkg);
1890 		blkg_get(src->bi_blkg);
1891 		dst->bi_blkg = src->bi_blkg;
1892 	}
1893 }
1894 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1895 
1896 static int blk_cgroup_io_type(struct bio *bio)
1897 {
1898 	if (op_is_discard(bio->bi_opf))
1899 		return BLKG_IOSTAT_DISCARD;
1900 	if (op_is_write(bio->bi_opf))
1901 		return BLKG_IOSTAT_WRITE;
1902 	return BLKG_IOSTAT_READ;
1903 }
1904 
1905 void blk_cgroup_bio_start(struct bio *bio)
1906 {
1907 	int rwd = blk_cgroup_io_type(bio), cpu;
1908 	struct blkg_iostat_set *bis;
1909 
1910 	cpu = get_cpu();
1911 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1912 	u64_stats_update_begin(&bis->sync);
1913 
1914 	/*
1915 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1916 	 * bio and we would have already accounted for the size of the bio.
1917 	 */
1918 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1919 		bio_set_flag(bio, BIO_CGROUP_ACCT);
1920 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1921 	}
1922 	bis->cur.ios[rwd]++;
1923 
1924 	u64_stats_update_end(&bis->sync);
1925 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1926 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1927 	put_cpu();
1928 }
1929 
1930 static int __init blkcg_init(void)
1931 {
1932 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1933 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1934 					    WQ_UNBOUND | WQ_SYSFS, 0);
1935 	if (!blkcg_punt_bio_wq)
1936 		return -ENOMEM;
1937 	return 0;
1938 }
1939 subsys_initcall(blkcg_init);
1940 
1941 module_param(blkcg_debug_stats, bool, 0644);
1942 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1943