1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 #include "blk-ioprio.h" 35 36 /* 37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 39 * policy [un]register operations including cgroup file additions / 40 * removals. Putting cgroup file registration outside blkcg_pol_mutex 41 * allows grabbing it from cgroup callbacks. 42 */ 43 static DEFINE_MUTEX(blkcg_pol_register_mutex); 44 static DEFINE_MUTEX(blkcg_pol_mutex); 45 46 struct blkcg blkcg_root; 47 EXPORT_SYMBOL_GPL(blkcg_root); 48 49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 50 EXPORT_SYMBOL_GPL(blkcg_root_css); 51 52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 53 54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 55 56 bool blkcg_debug_stats = false; 57 static struct workqueue_struct *blkcg_punt_bio_wq; 58 59 #define BLKG_DESTROY_BATCH_SIZE 64 60 61 static bool blkcg_policy_enabled(struct request_queue *q, 62 const struct blkcg_policy *pol) 63 { 64 return pol && test_bit(pol->plid, q->blkcg_pols); 65 } 66 67 /** 68 * blkg_free - free a blkg 69 * @blkg: blkg to free 70 * 71 * Free @blkg which may be partially allocated. 72 */ 73 static void blkg_free(struct blkcg_gq *blkg) 74 { 75 int i; 76 77 if (!blkg) 78 return; 79 80 for (i = 0; i < BLKCG_MAX_POLS; i++) 81 if (blkg->pd[i]) 82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 83 84 free_percpu(blkg->iostat_cpu); 85 percpu_ref_exit(&blkg->refcnt); 86 kfree(blkg); 87 } 88 89 static void __blkg_release(struct rcu_head *rcu) 90 { 91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 92 93 WARN_ON(!bio_list_empty(&blkg->async_bios)); 94 95 /* release the blkcg and parent blkg refs this blkg has been holding */ 96 css_put(&blkg->blkcg->css); 97 if (blkg->parent) 98 blkg_put(blkg->parent); 99 blkg_free(blkg); 100 } 101 102 /* 103 * A group is RCU protected, but having an rcu lock does not mean that one 104 * can access all the fields of blkg and assume these are valid. For 105 * example, don't try to follow throtl_data and request queue links. 106 * 107 * Having a reference to blkg under an rcu allows accesses to only values 108 * local to groups like group stats and group rate limits. 109 */ 110 static void blkg_release(struct percpu_ref *ref) 111 { 112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 113 114 call_rcu(&blkg->rcu_head, __blkg_release); 115 } 116 117 static void blkg_async_bio_workfn(struct work_struct *work) 118 { 119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 120 async_bio_work); 121 struct bio_list bios = BIO_EMPTY_LIST; 122 struct bio *bio; 123 struct blk_plug plug; 124 bool need_plug = false; 125 126 /* as long as there are pending bios, @blkg can't go away */ 127 spin_lock_bh(&blkg->async_bio_lock); 128 bio_list_merge(&bios, &blkg->async_bios); 129 bio_list_init(&blkg->async_bios); 130 spin_unlock_bh(&blkg->async_bio_lock); 131 132 /* start plug only when bio_list contains at least 2 bios */ 133 if (bios.head && bios.head->bi_next) { 134 need_plug = true; 135 blk_start_plug(&plug); 136 } 137 while ((bio = bio_list_pop(&bios))) 138 submit_bio(bio); 139 if (need_plug) 140 blk_finish_plug(&plug); 141 } 142 143 /** 144 * blkg_alloc - allocate a blkg 145 * @blkcg: block cgroup the new blkg is associated with 146 * @q: request_queue the new blkg is associated with 147 * @gfp_mask: allocation mask to use 148 * 149 * Allocate a new blkg assocating @blkcg and @q. 150 */ 151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 152 gfp_t gfp_mask) 153 { 154 struct blkcg_gq *blkg; 155 int i, cpu; 156 157 /* alloc and init base part */ 158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 159 if (!blkg) 160 return NULL; 161 162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 163 goto err_free; 164 165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 166 if (!blkg->iostat_cpu) 167 goto err_free; 168 169 blkg->q = q; 170 INIT_LIST_HEAD(&blkg->q_node); 171 spin_lock_init(&blkg->async_bio_lock); 172 bio_list_init(&blkg->async_bios); 173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 174 blkg->blkcg = blkcg; 175 176 u64_stats_init(&blkg->iostat.sync); 177 for_each_possible_cpu(cpu) 178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 179 180 for (i = 0; i < BLKCG_MAX_POLS; i++) { 181 struct blkcg_policy *pol = blkcg_policy[i]; 182 struct blkg_policy_data *pd; 183 184 if (!blkcg_policy_enabled(q, pol)) 185 continue; 186 187 /* alloc per-policy data and attach it to blkg */ 188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 189 if (!pd) 190 goto err_free; 191 192 blkg->pd[i] = pd; 193 pd->blkg = blkg; 194 pd->plid = i; 195 } 196 197 return blkg; 198 199 err_free: 200 blkg_free(blkg); 201 return NULL; 202 } 203 204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 205 struct request_queue *q, bool update_hint) 206 { 207 struct blkcg_gq *blkg; 208 209 /* 210 * Hint didn't match. Look up from the radix tree. Note that the 211 * hint can only be updated under queue_lock as otherwise @blkg 212 * could have already been removed from blkg_tree. The caller is 213 * responsible for grabbing queue_lock if @update_hint. 214 */ 215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 216 if (blkg && blkg->q == q) { 217 if (update_hint) { 218 lockdep_assert_held(&q->queue_lock); 219 rcu_assign_pointer(blkcg->blkg_hint, blkg); 220 } 221 return blkg; 222 } 223 224 return NULL; 225 } 226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 227 228 /* 229 * If @new_blkg is %NULL, this function tries to allocate a new one as 230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 231 */ 232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 233 struct request_queue *q, 234 struct blkcg_gq *new_blkg) 235 { 236 struct blkcg_gq *blkg; 237 int i, ret; 238 239 WARN_ON_ONCE(!rcu_read_lock_held()); 240 lockdep_assert_held(&q->queue_lock); 241 242 /* request_queue is dying, do not create/recreate a blkg */ 243 if (blk_queue_dying(q)) { 244 ret = -ENODEV; 245 goto err_free_blkg; 246 } 247 248 /* blkg holds a reference to blkcg */ 249 if (!css_tryget_online(&blkcg->css)) { 250 ret = -ENODEV; 251 goto err_free_blkg; 252 } 253 254 /* allocate */ 255 if (!new_blkg) { 256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 257 if (unlikely(!new_blkg)) { 258 ret = -ENOMEM; 259 goto err_put_css; 260 } 261 } 262 blkg = new_blkg; 263 264 /* link parent */ 265 if (blkcg_parent(blkcg)) { 266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 267 if (WARN_ON_ONCE(!blkg->parent)) { 268 ret = -ENODEV; 269 goto err_put_css; 270 } 271 blkg_get(blkg->parent); 272 } 273 274 /* invoke per-policy init */ 275 for (i = 0; i < BLKCG_MAX_POLS; i++) { 276 struct blkcg_policy *pol = blkcg_policy[i]; 277 278 if (blkg->pd[i] && pol->pd_init_fn) 279 pol->pd_init_fn(blkg->pd[i]); 280 } 281 282 /* insert */ 283 spin_lock(&blkcg->lock); 284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 285 if (likely(!ret)) { 286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 287 list_add(&blkg->q_node, &q->blkg_list); 288 289 for (i = 0; i < BLKCG_MAX_POLS; i++) { 290 struct blkcg_policy *pol = blkcg_policy[i]; 291 292 if (blkg->pd[i] && pol->pd_online_fn) 293 pol->pd_online_fn(blkg->pd[i]); 294 } 295 } 296 blkg->online = true; 297 spin_unlock(&blkcg->lock); 298 299 if (!ret) 300 return blkg; 301 302 /* @blkg failed fully initialized, use the usual release path */ 303 blkg_put(blkg); 304 return ERR_PTR(ret); 305 306 err_put_css: 307 css_put(&blkcg->css); 308 err_free_blkg: 309 blkg_free(new_blkg); 310 return ERR_PTR(ret); 311 } 312 313 /** 314 * blkg_lookup_create - lookup blkg, try to create one if not there 315 * @blkcg: blkcg of interest 316 * @q: request_queue of interest 317 * 318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 319 * create one. blkg creation is performed recursively from blkcg_root such 320 * that all non-root blkg's have access to the parent blkg. This function 321 * should be called under RCU read lock and takes @q->queue_lock. 322 * 323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 324 * down from root. 325 */ 326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 327 struct request_queue *q) 328 { 329 struct blkcg_gq *blkg; 330 unsigned long flags; 331 332 WARN_ON_ONCE(!rcu_read_lock_held()); 333 334 blkg = blkg_lookup(blkcg, q); 335 if (blkg) 336 return blkg; 337 338 spin_lock_irqsave(&q->queue_lock, flags); 339 blkg = __blkg_lookup(blkcg, q, true); 340 if (blkg) 341 goto found; 342 343 /* 344 * Create blkgs walking down from blkcg_root to @blkcg, so that all 345 * non-root blkgs have access to their parents. Returns the closest 346 * blkg to the intended blkg should blkg_create() fail. 347 */ 348 while (true) { 349 struct blkcg *pos = blkcg; 350 struct blkcg *parent = blkcg_parent(blkcg); 351 struct blkcg_gq *ret_blkg = q->root_blkg; 352 353 while (parent) { 354 blkg = __blkg_lookup(parent, q, false); 355 if (blkg) { 356 /* remember closest blkg */ 357 ret_blkg = blkg; 358 break; 359 } 360 pos = parent; 361 parent = blkcg_parent(parent); 362 } 363 364 blkg = blkg_create(pos, q, NULL); 365 if (IS_ERR(blkg)) { 366 blkg = ret_blkg; 367 break; 368 } 369 if (pos == blkcg) 370 break; 371 } 372 373 found: 374 spin_unlock_irqrestore(&q->queue_lock, flags); 375 return blkg; 376 } 377 378 static void blkg_destroy(struct blkcg_gq *blkg) 379 { 380 struct blkcg *blkcg = blkg->blkcg; 381 int i; 382 383 lockdep_assert_held(&blkg->q->queue_lock); 384 lockdep_assert_held(&blkcg->lock); 385 386 /* Something wrong if we are trying to remove same group twice */ 387 WARN_ON_ONCE(list_empty(&blkg->q_node)); 388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 389 390 for (i = 0; i < BLKCG_MAX_POLS; i++) { 391 struct blkcg_policy *pol = blkcg_policy[i]; 392 393 if (blkg->pd[i] && pol->pd_offline_fn) 394 pol->pd_offline_fn(blkg->pd[i]); 395 } 396 397 blkg->online = false; 398 399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 400 list_del_init(&blkg->q_node); 401 hlist_del_init_rcu(&blkg->blkcg_node); 402 403 /* 404 * Both setting lookup hint to and clearing it from @blkg are done 405 * under queue_lock. If it's not pointing to @blkg now, it never 406 * will. Hint assignment itself can race safely. 407 */ 408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 409 rcu_assign_pointer(blkcg->blkg_hint, NULL); 410 411 /* 412 * Put the reference taken at the time of creation so that when all 413 * queues are gone, group can be destroyed. 414 */ 415 percpu_ref_kill(&blkg->refcnt); 416 } 417 418 /** 419 * blkg_destroy_all - destroy all blkgs associated with a request_queue 420 * @q: request_queue of interest 421 * 422 * Destroy all blkgs associated with @q. 423 */ 424 static void blkg_destroy_all(struct request_queue *q) 425 { 426 struct blkcg_gq *blkg, *n; 427 int count = BLKG_DESTROY_BATCH_SIZE; 428 429 restart: 430 spin_lock_irq(&q->queue_lock); 431 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 432 struct blkcg *blkcg = blkg->blkcg; 433 434 spin_lock(&blkcg->lock); 435 blkg_destroy(blkg); 436 spin_unlock(&blkcg->lock); 437 438 /* 439 * in order to avoid holding the spin lock for too long, release 440 * it when a batch of blkgs are destroyed. 441 */ 442 if (!(--count)) { 443 count = BLKG_DESTROY_BATCH_SIZE; 444 spin_unlock_irq(&q->queue_lock); 445 cond_resched(); 446 goto restart; 447 } 448 } 449 450 q->root_blkg = NULL; 451 spin_unlock_irq(&q->queue_lock); 452 } 453 454 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 455 struct cftype *cftype, u64 val) 456 { 457 struct blkcg *blkcg = css_to_blkcg(css); 458 struct blkcg_gq *blkg; 459 int i, cpu; 460 461 mutex_lock(&blkcg_pol_mutex); 462 spin_lock_irq(&blkcg->lock); 463 464 /* 465 * Note that stat reset is racy - it doesn't synchronize against 466 * stat updates. This is a debug feature which shouldn't exist 467 * anyway. If you get hit by a race, retry. 468 */ 469 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 470 for_each_possible_cpu(cpu) { 471 struct blkg_iostat_set *bis = 472 per_cpu_ptr(blkg->iostat_cpu, cpu); 473 memset(bis, 0, sizeof(*bis)); 474 } 475 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 476 477 for (i = 0; i < BLKCG_MAX_POLS; i++) { 478 struct blkcg_policy *pol = blkcg_policy[i]; 479 480 if (blkg->pd[i] && pol->pd_reset_stats_fn) 481 pol->pd_reset_stats_fn(blkg->pd[i]); 482 } 483 } 484 485 spin_unlock_irq(&blkcg->lock); 486 mutex_unlock(&blkcg_pol_mutex); 487 return 0; 488 } 489 490 const char *blkg_dev_name(struct blkcg_gq *blkg) 491 { 492 /* some drivers (floppy) instantiate a queue w/o disk registered */ 493 if (blkg->q->backing_dev_info->dev) 494 return bdi_dev_name(blkg->q->backing_dev_info); 495 return NULL; 496 } 497 498 /** 499 * blkcg_print_blkgs - helper for printing per-blkg data 500 * @sf: seq_file to print to 501 * @blkcg: blkcg of interest 502 * @prfill: fill function to print out a blkg 503 * @pol: policy in question 504 * @data: data to be passed to @prfill 505 * @show_total: to print out sum of prfill return values or not 506 * 507 * This function invokes @prfill on each blkg of @blkcg if pd for the 508 * policy specified by @pol exists. @prfill is invoked with @sf, the 509 * policy data and @data and the matching queue lock held. If @show_total 510 * is %true, the sum of the return values from @prfill is printed with 511 * "Total" label at the end. 512 * 513 * This is to be used to construct print functions for 514 * cftype->read_seq_string method. 515 */ 516 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 517 u64 (*prfill)(struct seq_file *, 518 struct blkg_policy_data *, int), 519 const struct blkcg_policy *pol, int data, 520 bool show_total) 521 { 522 struct blkcg_gq *blkg; 523 u64 total = 0; 524 525 rcu_read_lock(); 526 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 527 spin_lock_irq(&blkg->q->queue_lock); 528 if (blkcg_policy_enabled(blkg->q, pol)) 529 total += prfill(sf, blkg->pd[pol->plid], data); 530 spin_unlock_irq(&blkg->q->queue_lock); 531 } 532 rcu_read_unlock(); 533 534 if (show_total) 535 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 536 } 537 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 538 539 /** 540 * __blkg_prfill_u64 - prfill helper for a single u64 value 541 * @sf: seq_file to print to 542 * @pd: policy private data of interest 543 * @v: value to print 544 * 545 * Print @v to @sf for the device assocaited with @pd. 546 */ 547 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 548 { 549 const char *dname = blkg_dev_name(pd->blkg); 550 551 if (!dname) 552 return 0; 553 554 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 555 return v; 556 } 557 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 558 559 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 560 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 561 const struct blkcg_policy *pol, 562 struct request_queue *q) 563 { 564 WARN_ON_ONCE(!rcu_read_lock_held()); 565 lockdep_assert_held(&q->queue_lock); 566 567 if (!blkcg_policy_enabled(q, pol)) 568 return ERR_PTR(-EOPNOTSUPP); 569 return __blkg_lookup(blkcg, q, true /* update_hint */); 570 } 571 572 /** 573 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 574 * @inputp: input string pointer 575 * 576 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 577 * from @input and get and return the matching bdev. *@inputp is 578 * updated to point past the device node prefix. Returns an ERR_PTR() 579 * value on error. 580 * 581 * Use this function iff blkg_conf_prep() can't be used for some reason. 582 */ 583 struct block_device *blkcg_conf_open_bdev(char **inputp) 584 { 585 char *input = *inputp; 586 unsigned int major, minor; 587 struct block_device *bdev; 588 int key_len; 589 590 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 591 return ERR_PTR(-EINVAL); 592 593 input += key_len; 594 if (!isspace(*input)) 595 return ERR_PTR(-EINVAL); 596 input = skip_spaces(input); 597 598 bdev = blkdev_get_no_open(MKDEV(major, minor)); 599 if (!bdev) 600 return ERR_PTR(-ENODEV); 601 if (bdev_is_partition(bdev)) { 602 blkdev_put_no_open(bdev); 603 return ERR_PTR(-ENODEV); 604 } 605 606 *inputp = input; 607 return bdev; 608 } 609 610 /** 611 * blkg_conf_prep - parse and prepare for per-blkg config update 612 * @blkcg: target block cgroup 613 * @pol: target policy 614 * @input: input string 615 * @ctx: blkg_conf_ctx to be filled 616 * 617 * Parse per-blkg config update from @input and initialize @ctx with the 618 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 619 * part of @input following MAJ:MIN. This function returns with RCU read 620 * lock and queue lock held and must be paired with blkg_conf_finish(). 621 */ 622 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 623 char *input, struct blkg_conf_ctx *ctx) 624 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock) 625 { 626 struct block_device *bdev; 627 struct request_queue *q; 628 struct blkcg_gq *blkg; 629 int ret; 630 631 bdev = blkcg_conf_open_bdev(&input); 632 if (IS_ERR(bdev)) 633 return PTR_ERR(bdev); 634 635 q = bdev->bd_disk->queue; 636 637 rcu_read_lock(); 638 spin_lock_irq(&q->queue_lock); 639 640 blkg = blkg_lookup_check(blkcg, pol, q); 641 if (IS_ERR(blkg)) { 642 ret = PTR_ERR(blkg); 643 goto fail_unlock; 644 } 645 646 if (blkg) 647 goto success; 648 649 /* 650 * Create blkgs walking down from blkcg_root to @blkcg, so that all 651 * non-root blkgs have access to their parents. 652 */ 653 while (true) { 654 struct blkcg *pos = blkcg; 655 struct blkcg *parent; 656 struct blkcg_gq *new_blkg; 657 658 parent = blkcg_parent(blkcg); 659 while (parent && !__blkg_lookup(parent, q, false)) { 660 pos = parent; 661 parent = blkcg_parent(parent); 662 } 663 664 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 665 spin_unlock_irq(&q->queue_lock); 666 rcu_read_unlock(); 667 668 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 669 if (unlikely(!new_blkg)) { 670 ret = -ENOMEM; 671 goto fail; 672 } 673 674 if (radix_tree_preload(GFP_KERNEL)) { 675 blkg_free(new_blkg); 676 ret = -ENOMEM; 677 goto fail; 678 } 679 680 rcu_read_lock(); 681 spin_lock_irq(&q->queue_lock); 682 683 blkg = blkg_lookup_check(pos, pol, q); 684 if (IS_ERR(blkg)) { 685 ret = PTR_ERR(blkg); 686 blkg_free(new_blkg); 687 goto fail_preloaded; 688 } 689 690 if (blkg) { 691 blkg_free(new_blkg); 692 } else { 693 blkg = blkg_create(pos, q, new_blkg); 694 if (IS_ERR(blkg)) { 695 ret = PTR_ERR(blkg); 696 goto fail_preloaded; 697 } 698 } 699 700 radix_tree_preload_end(); 701 702 if (pos == blkcg) 703 goto success; 704 } 705 success: 706 ctx->bdev = bdev; 707 ctx->blkg = blkg; 708 ctx->body = input; 709 return 0; 710 711 fail_preloaded: 712 radix_tree_preload_end(); 713 fail_unlock: 714 spin_unlock_irq(&q->queue_lock); 715 rcu_read_unlock(); 716 fail: 717 blkdev_put_no_open(bdev); 718 /* 719 * If queue was bypassing, we should retry. Do so after a 720 * short msleep(). It isn't strictly necessary but queue 721 * can be bypassing for some time and it's always nice to 722 * avoid busy looping. 723 */ 724 if (ret == -EBUSY) { 725 msleep(10); 726 ret = restart_syscall(); 727 } 728 return ret; 729 } 730 EXPORT_SYMBOL_GPL(blkg_conf_prep); 731 732 /** 733 * blkg_conf_finish - finish up per-blkg config update 734 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 735 * 736 * Finish up after per-blkg config update. This function must be paired 737 * with blkg_conf_prep(). 738 */ 739 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 740 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu) 741 { 742 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock); 743 rcu_read_unlock(); 744 blkdev_put_no_open(ctx->bdev); 745 } 746 EXPORT_SYMBOL_GPL(blkg_conf_finish); 747 748 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 749 { 750 int i; 751 752 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 753 dst->bytes[i] = src->bytes[i]; 754 dst->ios[i] = src->ios[i]; 755 } 756 } 757 758 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 759 { 760 int i; 761 762 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 763 dst->bytes[i] += src->bytes[i]; 764 dst->ios[i] += src->ios[i]; 765 } 766 } 767 768 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 769 { 770 int i; 771 772 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 773 dst->bytes[i] -= src->bytes[i]; 774 dst->ios[i] -= src->ios[i]; 775 } 776 } 777 778 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 779 { 780 struct blkcg *blkcg = css_to_blkcg(css); 781 struct blkcg_gq *blkg; 782 783 /* Root-level stats are sourced from system-wide IO stats */ 784 if (!cgroup_parent(css->cgroup)) 785 return; 786 787 rcu_read_lock(); 788 789 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 790 struct blkcg_gq *parent = blkg->parent; 791 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 792 struct blkg_iostat cur, delta; 793 unsigned int seq; 794 795 /* fetch the current per-cpu values */ 796 do { 797 seq = u64_stats_fetch_begin(&bisc->sync); 798 blkg_iostat_set(&cur, &bisc->cur); 799 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 800 801 /* propagate percpu delta to global */ 802 u64_stats_update_begin(&blkg->iostat.sync); 803 blkg_iostat_set(&delta, &cur); 804 blkg_iostat_sub(&delta, &bisc->last); 805 blkg_iostat_add(&blkg->iostat.cur, &delta); 806 blkg_iostat_add(&bisc->last, &delta); 807 u64_stats_update_end(&blkg->iostat.sync); 808 809 /* propagate global delta to parent (unless that's root) */ 810 if (parent && parent->parent) { 811 u64_stats_update_begin(&parent->iostat.sync); 812 blkg_iostat_set(&delta, &blkg->iostat.cur); 813 blkg_iostat_sub(&delta, &blkg->iostat.last); 814 blkg_iostat_add(&parent->iostat.cur, &delta); 815 blkg_iostat_add(&blkg->iostat.last, &delta); 816 u64_stats_update_end(&parent->iostat.sync); 817 } 818 } 819 820 rcu_read_unlock(); 821 } 822 823 /* 824 * We source root cgroup stats from the system-wide stats to avoid 825 * tracking the same information twice and incurring overhead when no 826 * cgroups are defined. For that reason, cgroup_rstat_flush in 827 * blkcg_print_stat does not actually fill out the iostat in the root 828 * cgroup's blkcg_gq. 829 * 830 * However, we would like to re-use the printing code between the root and 831 * non-root cgroups to the extent possible. For that reason, we simulate 832 * flushing the root cgroup's stats by explicitly filling in the iostat 833 * with disk level statistics. 834 */ 835 static void blkcg_fill_root_iostats(void) 836 { 837 struct class_dev_iter iter; 838 struct device *dev; 839 840 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 841 while ((dev = class_dev_iter_next(&iter))) { 842 struct block_device *bdev = dev_to_bdev(dev); 843 struct blkcg_gq *blkg = 844 blk_queue_root_blkg(bdev->bd_disk->queue); 845 struct blkg_iostat tmp; 846 int cpu; 847 848 memset(&tmp, 0, sizeof(tmp)); 849 for_each_possible_cpu(cpu) { 850 struct disk_stats *cpu_dkstats; 851 852 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 853 tmp.ios[BLKG_IOSTAT_READ] += 854 cpu_dkstats->ios[STAT_READ]; 855 tmp.ios[BLKG_IOSTAT_WRITE] += 856 cpu_dkstats->ios[STAT_WRITE]; 857 tmp.ios[BLKG_IOSTAT_DISCARD] += 858 cpu_dkstats->ios[STAT_DISCARD]; 859 // convert sectors to bytes 860 tmp.bytes[BLKG_IOSTAT_READ] += 861 cpu_dkstats->sectors[STAT_READ] << 9; 862 tmp.bytes[BLKG_IOSTAT_WRITE] += 863 cpu_dkstats->sectors[STAT_WRITE] << 9; 864 tmp.bytes[BLKG_IOSTAT_DISCARD] += 865 cpu_dkstats->sectors[STAT_DISCARD] << 9; 866 867 u64_stats_update_begin(&blkg->iostat.sync); 868 blkg_iostat_set(&blkg->iostat.cur, &tmp); 869 u64_stats_update_end(&blkg->iostat.sync); 870 } 871 } 872 } 873 874 static int blkcg_print_stat(struct seq_file *sf, void *v) 875 { 876 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 877 struct blkcg_gq *blkg; 878 879 if (!seq_css(sf)->parent) 880 blkcg_fill_root_iostats(); 881 else 882 cgroup_rstat_flush(blkcg->css.cgroup); 883 884 rcu_read_lock(); 885 886 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 887 struct blkg_iostat_set *bis = &blkg->iostat; 888 const char *dname; 889 char *buf; 890 u64 rbytes, wbytes, rios, wios, dbytes, dios; 891 size_t size = seq_get_buf(sf, &buf), off = 0; 892 int i; 893 bool has_stats = false; 894 unsigned seq; 895 896 spin_lock_irq(&blkg->q->queue_lock); 897 898 if (!blkg->online) 899 goto skip; 900 901 dname = blkg_dev_name(blkg); 902 if (!dname) 903 goto skip; 904 905 /* 906 * Hooray string manipulation, count is the size written NOT 907 * INCLUDING THE \0, so size is now count+1 less than what we 908 * had before, but we want to start writing the next bit from 909 * the \0 so we only add count to buf. 910 */ 911 off += scnprintf(buf+off, size-off, "%s ", dname); 912 913 do { 914 seq = u64_stats_fetch_begin(&bis->sync); 915 916 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 917 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 918 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 919 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 920 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 921 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 922 } while (u64_stats_fetch_retry(&bis->sync, seq)); 923 924 if (rbytes || wbytes || rios || wios) { 925 has_stats = true; 926 off += scnprintf(buf+off, size-off, 927 "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 928 rbytes, wbytes, rios, wios, 929 dbytes, dios); 930 } 931 932 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 933 has_stats = true; 934 off += scnprintf(buf+off, size-off, 935 " use_delay=%d delay_nsec=%llu", 936 atomic_read(&blkg->use_delay), 937 (unsigned long long)atomic64_read(&blkg->delay_nsec)); 938 } 939 940 for (i = 0; i < BLKCG_MAX_POLS; i++) { 941 struct blkcg_policy *pol = blkcg_policy[i]; 942 size_t written; 943 944 if (!blkg->pd[i] || !pol->pd_stat_fn) 945 continue; 946 947 written = pol->pd_stat_fn(blkg->pd[i], buf+off, size-off); 948 if (written) 949 has_stats = true; 950 off += written; 951 } 952 953 if (has_stats) { 954 if (off < size - 1) { 955 off += scnprintf(buf+off, size-off, "\n"); 956 seq_commit(sf, off); 957 } else { 958 seq_commit(sf, -1); 959 } 960 } 961 skip: 962 spin_unlock_irq(&blkg->q->queue_lock); 963 } 964 965 rcu_read_unlock(); 966 return 0; 967 } 968 969 static struct cftype blkcg_files[] = { 970 { 971 .name = "stat", 972 .seq_show = blkcg_print_stat, 973 }, 974 { } /* terminate */ 975 }; 976 977 static struct cftype blkcg_legacy_files[] = { 978 { 979 .name = "reset_stats", 980 .write_u64 = blkcg_reset_stats, 981 }, 982 { } /* terminate */ 983 }; 984 985 /* 986 * blkcg destruction is a three-stage process. 987 * 988 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 989 * which offlines writeback. Here we tie the next stage of blkg destruction 990 * to the completion of writeback associated with the blkcg. This lets us 991 * avoid punting potentially large amounts of outstanding writeback to root 992 * while maintaining any ongoing policies. The next stage is triggered when 993 * the nr_cgwbs count goes to zero. 994 * 995 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 996 * and handles the destruction of blkgs. Here the css reference held by 997 * the blkg is put back eventually allowing blkcg_css_free() to be called. 998 * This work may occur in cgwb_release_workfn() on the cgwb_release 999 * workqueue. Any submitted ios that fail to get the blkg ref will be 1000 * punted to the root_blkg. 1001 * 1002 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1003 * This finally frees the blkcg. 1004 */ 1005 1006 /** 1007 * blkcg_css_offline - cgroup css_offline callback 1008 * @css: css of interest 1009 * 1010 * This function is called when @css is about to go away. Here the cgwbs are 1011 * offlined first and only once writeback associated with the blkcg has 1012 * finished do we start step 2 (see above). 1013 */ 1014 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1015 { 1016 struct blkcg *blkcg = css_to_blkcg(css); 1017 1018 /* this prevents anyone from attaching or migrating to this blkcg */ 1019 wb_blkcg_offline(blkcg); 1020 1021 /* put the base online pin allowing step 2 to be triggered */ 1022 blkcg_unpin_online(blkcg); 1023 } 1024 1025 /** 1026 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1027 * @blkcg: blkcg of interest 1028 * 1029 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1030 * is nested inside q lock, this function performs reverse double lock dancing. 1031 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1032 * blkcg_css_free to eventually be called. 1033 * 1034 * This is the blkcg counterpart of ioc_release_fn(). 1035 */ 1036 void blkcg_destroy_blkgs(struct blkcg *blkcg) 1037 { 1038 might_sleep(); 1039 1040 spin_lock_irq(&blkcg->lock); 1041 1042 while (!hlist_empty(&blkcg->blkg_list)) { 1043 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1044 struct blkcg_gq, blkcg_node); 1045 struct request_queue *q = blkg->q; 1046 1047 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1048 /* 1049 * Given that the system can accumulate a huge number 1050 * of blkgs in pathological cases, check to see if we 1051 * need to rescheduling to avoid softlockup. 1052 */ 1053 spin_unlock_irq(&blkcg->lock); 1054 cond_resched(); 1055 spin_lock_irq(&blkcg->lock); 1056 continue; 1057 } 1058 1059 blkg_destroy(blkg); 1060 spin_unlock(&q->queue_lock); 1061 } 1062 1063 spin_unlock_irq(&blkcg->lock); 1064 } 1065 1066 static void blkcg_css_free(struct cgroup_subsys_state *css) 1067 { 1068 struct blkcg *blkcg = css_to_blkcg(css); 1069 int i; 1070 1071 mutex_lock(&blkcg_pol_mutex); 1072 1073 list_del(&blkcg->all_blkcgs_node); 1074 1075 for (i = 0; i < BLKCG_MAX_POLS; i++) 1076 if (blkcg->cpd[i]) 1077 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1078 1079 mutex_unlock(&blkcg_pol_mutex); 1080 1081 kfree(blkcg); 1082 } 1083 1084 static struct cgroup_subsys_state * 1085 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1086 { 1087 struct blkcg *blkcg; 1088 struct cgroup_subsys_state *ret; 1089 int i; 1090 1091 mutex_lock(&blkcg_pol_mutex); 1092 1093 if (!parent_css) { 1094 blkcg = &blkcg_root; 1095 } else { 1096 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1097 if (!blkcg) { 1098 ret = ERR_PTR(-ENOMEM); 1099 goto unlock; 1100 } 1101 } 1102 1103 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1104 struct blkcg_policy *pol = blkcg_policy[i]; 1105 struct blkcg_policy_data *cpd; 1106 1107 /* 1108 * If the policy hasn't been attached yet, wait for it 1109 * to be attached before doing anything else. Otherwise, 1110 * check if the policy requires any specific per-cgroup 1111 * data: if it does, allocate and initialize it. 1112 */ 1113 if (!pol || !pol->cpd_alloc_fn) 1114 continue; 1115 1116 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1117 if (!cpd) { 1118 ret = ERR_PTR(-ENOMEM); 1119 goto free_pd_blkcg; 1120 } 1121 blkcg->cpd[i] = cpd; 1122 cpd->blkcg = blkcg; 1123 cpd->plid = i; 1124 if (pol->cpd_init_fn) 1125 pol->cpd_init_fn(cpd); 1126 } 1127 1128 spin_lock_init(&blkcg->lock); 1129 refcount_set(&blkcg->online_pin, 1); 1130 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1131 INIT_HLIST_HEAD(&blkcg->blkg_list); 1132 #ifdef CONFIG_CGROUP_WRITEBACK 1133 INIT_LIST_HEAD(&blkcg->cgwb_list); 1134 #endif 1135 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1136 1137 mutex_unlock(&blkcg_pol_mutex); 1138 return &blkcg->css; 1139 1140 free_pd_blkcg: 1141 for (i--; i >= 0; i--) 1142 if (blkcg->cpd[i]) 1143 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1144 1145 if (blkcg != &blkcg_root) 1146 kfree(blkcg); 1147 unlock: 1148 mutex_unlock(&blkcg_pol_mutex); 1149 return ret; 1150 } 1151 1152 static int blkcg_css_online(struct cgroup_subsys_state *css) 1153 { 1154 struct blkcg *blkcg = css_to_blkcg(css); 1155 struct blkcg *parent = blkcg_parent(blkcg); 1156 1157 /* 1158 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1159 * don't go offline while cgwbs are still active on them. Pin the 1160 * parent so that offline always happens towards the root. 1161 */ 1162 if (parent) 1163 blkcg_pin_online(parent); 1164 return 0; 1165 } 1166 1167 /** 1168 * blkcg_init_queue - initialize blkcg part of request queue 1169 * @q: request_queue to initialize 1170 * 1171 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1172 * part of new request_queue @q. 1173 * 1174 * RETURNS: 1175 * 0 on success, -errno on failure. 1176 */ 1177 int blkcg_init_queue(struct request_queue *q) 1178 { 1179 struct blkcg_gq *new_blkg, *blkg; 1180 bool preloaded; 1181 int ret; 1182 1183 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1184 if (!new_blkg) 1185 return -ENOMEM; 1186 1187 preloaded = !radix_tree_preload(GFP_KERNEL); 1188 1189 /* Make sure the root blkg exists. */ 1190 rcu_read_lock(); 1191 spin_lock_irq(&q->queue_lock); 1192 blkg = blkg_create(&blkcg_root, q, new_blkg); 1193 if (IS_ERR(blkg)) 1194 goto err_unlock; 1195 q->root_blkg = blkg; 1196 spin_unlock_irq(&q->queue_lock); 1197 rcu_read_unlock(); 1198 1199 if (preloaded) 1200 radix_tree_preload_end(); 1201 1202 ret = blk_iolatency_init(q); 1203 if (ret) 1204 goto err_destroy_all; 1205 1206 ret = blk_ioprio_init(q); 1207 if (ret) 1208 goto err_destroy_all; 1209 1210 ret = blk_throtl_init(q); 1211 if (ret) 1212 goto err_destroy_all; 1213 1214 return 0; 1215 1216 err_destroy_all: 1217 blkg_destroy_all(q); 1218 return ret; 1219 err_unlock: 1220 spin_unlock_irq(&q->queue_lock); 1221 rcu_read_unlock(); 1222 if (preloaded) 1223 radix_tree_preload_end(); 1224 return PTR_ERR(blkg); 1225 } 1226 1227 /** 1228 * blkcg_exit_queue - exit and release blkcg part of request_queue 1229 * @q: request_queue being released 1230 * 1231 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1232 */ 1233 void blkcg_exit_queue(struct request_queue *q) 1234 { 1235 blkg_destroy_all(q); 1236 blk_throtl_exit(q); 1237 } 1238 1239 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1240 { 1241 int i; 1242 1243 mutex_lock(&blkcg_pol_mutex); 1244 1245 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1246 struct blkcg_policy *pol = blkcg_policy[i]; 1247 struct blkcg *blkcg; 1248 1249 if (!pol || !pol->cpd_bind_fn) 1250 continue; 1251 1252 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1253 if (blkcg->cpd[pol->plid]) 1254 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1255 } 1256 mutex_unlock(&blkcg_pol_mutex); 1257 } 1258 1259 static void blkcg_exit(struct task_struct *tsk) 1260 { 1261 if (tsk->throttle_queue) 1262 blk_put_queue(tsk->throttle_queue); 1263 tsk->throttle_queue = NULL; 1264 } 1265 1266 struct cgroup_subsys io_cgrp_subsys = { 1267 .css_alloc = blkcg_css_alloc, 1268 .css_online = blkcg_css_online, 1269 .css_offline = blkcg_css_offline, 1270 .css_free = blkcg_css_free, 1271 .css_rstat_flush = blkcg_rstat_flush, 1272 .bind = blkcg_bind, 1273 .dfl_cftypes = blkcg_files, 1274 .legacy_cftypes = blkcg_legacy_files, 1275 .legacy_name = "blkio", 1276 .exit = blkcg_exit, 1277 #ifdef CONFIG_MEMCG 1278 /* 1279 * This ensures that, if available, memcg is automatically enabled 1280 * together on the default hierarchy so that the owner cgroup can 1281 * be retrieved from writeback pages. 1282 */ 1283 .depends_on = 1 << memory_cgrp_id, 1284 #endif 1285 }; 1286 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1287 1288 /** 1289 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1290 * @q: request_queue of interest 1291 * @pol: blkcg policy to activate 1292 * 1293 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1294 * bypass mode to populate its blkgs with policy_data for @pol. 1295 * 1296 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1297 * from IO path. Update of each blkg is protected by both queue and blkcg 1298 * locks so that holding either lock and testing blkcg_policy_enabled() is 1299 * always enough for dereferencing policy data. 1300 * 1301 * The caller is responsible for synchronizing [de]activations and policy 1302 * [un]registerations. Returns 0 on success, -errno on failure. 1303 */ 1304 int blkcg_activate_policy(struct request_queue *q, 1305 const struct blkcg_policy *pol) 1306 { 1307 struct blkg_policy_data *pd_prealloc = NULL; 1308 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1309 int ret; 1310 1311 if (blkcg_policy_enabled(q, pol)) 1312 return 0; 1313 1314 if (queue_is_mq(q)) 1315 blk_mq_freeze_queue(q); 1316 retry: 1317 spin_lock_irq(&q->queue_lock); 1318 1319 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1320 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1321 struct blkg_policy_data *pd; 1322 1323 if (blkg->pd[pol->plid]) 1324 continue; 1325 1326 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1327 if (blkg == pinned_blkg) { 1328 pd = pd_prealloc; 1329 pd_prealloc = NULL; 1330 } else { 1331 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1332 blkg->blkcg); 1333 } 1334 1335 if (!pd) { 1336 /* 1337 * GFP_NOWAIT failed. Free the existing one and 1338 * prealloc for @blkg w/ GFP_KERNEL. 1339 */ 1340 if (pinned_blkg) 1341 blkg_put(pinned_blkg); 1342 blkg_get(blkg); 1343 pinned_blkg = blkg; 1344 1345 spin_unlock_irq(&q->queue_lock); 1346 1347 if (pd_prealloc) 1348 pol->pd_free_fn(pd_prealloc); 1349 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1350 blkg->blkcg); 1351 if (pd_prealloc) 1352 goto retry; 1353 else 1354 goto enomem; 1355 } 1356 1357 blkg->pd[pol->plid] = pd; 1358 pd->blkg = blkg; 1359 pd->plid = pol->plid; 1360 } 1361 1362 /* all allocated, init in the same order */ 1363 if (pol->pd_init_fn) 1364 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1365 pol->pd_init_fn(blkg->pd[pol->plid]); 1366 1367 __set_bit(pol->plid, q->blkcg_pols); 1368 ret = 0; 1369 1370 spin_unlock_irq(&q->queue_lock); 1371 out: 1372 if (queue_is_mq(q)) 1373 blk_mq_unfreeze_queue(q); 1374 if (pinned_blkg) 1375 blkg_put(pinned_blkg); 1376 if (pd_prealloc) 1377 pol->pd_free_fn(pd_prealloc); 1378 return ret; 1379 1380 enomem: 1381 /* alloc failed, nothing's initialized yet, free everything */ 1382 spin_lock_irq(&q->queue_lock); 1383 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1384 if (blkg->pd[pol->plid]) { 1385 pol->pd_free_fn(blkg->pd[pol->plid]); 1386 blkg->pd[pol->plid] = NULL; 1387 } 1388 } 1389 spin_unlock_irq(&q->queue_lock); 1390 ret = -ENOMEM; 1391 goto out; 1392 } 1393 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1394 1395 /** 1396 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1397 * @q: request_queue of interest 1398 * @pol: blkcg policy to deactivate 1399 * 1400 * Deactivate @pol on @q. Follows the same synchronization rules as 1401 * blkcg_activate_policy(). 1402 */ 1403 void blkcg_deactivate_policy(struct request_queue *q, 1404 const struct blkcg_policy *pol) 1405 { 1406 struct blkcg_gq *blkg; 1407 1408 if (!blkcg_policy_enabled(q, pol)) 1409 return; 1410 1411 if (queue_is_mq(q)) 1412 blk_mq_freeze_queue(q); 1413 1414 spin_lock_irq(&q->queue_lock); 1415 1416 __clear_bit(pol->plid, q->blkcg_pols); 1417 1418 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1419 if (blkg->pd[pol->plid]) { 1420 if (pol->pd_offline_fn) 1421 pol->pd_offline_fn(blkg->pd[pol->plid]); 1422 pol->pd_free_fn(blkg->pd[pol->plid]); 1423 blkg->pd[pol->plid] = NULL; 1424 } 1425 } 1426 1427 spin_unlock_irq(&q->queue_lock); 1428 1429 if (queue_is_mq(q)) 1430 blk_mq_unfreeze_queue(q); 1431 } 1432 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1433 1434 /** 1435 * blkcg_policy_register - register a blkcg policy 1436 * @pol: blkcg policy to register 1437 * 1438 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1439 * successful registration. Returns 0 on success and -errno on failure. 1440 */ 1441 int blkcg_policy_register(struct blkcg_policy *pol) 1442 { 1443 struct blkcg *blkcg; 1444 int i, ret; 1445 1446 mutex_lock(&blkcg_pol_register_mutex); 1447 mutex_lock(&blkcg_pol_mutex); 1448 1449 /* find an empty slot */ 1450 ret = -ENOSPC; 1451 for (i = 0; i < BLKCG_MAX_POLS; i++) 1452 if (!blkcg_policy[i]) 1453 break; 1454 if (i >= BLKCG_MAX_POLS) { 1455 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1456 goto err_unlock; 1457 } 1458 1459 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1460 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1461 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1462 goto err_unlock; 1463 1464 /* register @pol */ 1465 pol->plid = i; 1466 blkcg_policy[pol->plid] = pol; 1467 1468 /* allocate and install cpd's */ 1469 if (pol->cpd_alloc_fn) { 1470 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1471 struct blkcg_policy_data *cpd; 1472 1473 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1474 if (!cpd) 1475 goto err_free_cpds; 1476 1477 blkcg->cpd[pol->plid] = cpd; 1478 cpd->blkcg = blkcg; 1479 cpd->plid = pol->plid; 1480 if (pol->cpd_init_fn) 1481 pol->cpd_init_fn(cpd); 1482 } 1483 } 1484 1485 mutex_unlock(&blkcg_pol_mutex); 1486 1487 /* everything is in place, add intf files for the new policy */ 1488 if (pol->dfl_cftypes) 1489 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1490 pol->dfl_cftypes)); 1491 if (pol->legacy_cftypes) 1492 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1493 pol->legacy_cftypes)); 1494 mutex_unlock(&blkcg_pol_register_mutex); 1495 return 0; 1496 1497 err_free_cpds: 1498 if (pol->cpd_free_fn) { 1499 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1500 if (blkcg->cpd[pol->plid]) { 1501 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1502 blkcg->cpd[pol->plid] = NULL; 1503 } 1504 } 1505 } 1506 blkcg_policy[pol->plid] = NULL; 1507 err_unlock: 1508 mutex_unlock(&blkcg_pol_mutex); 1509 mutex_unlock(&blkcg_pol_register_mutex); 1510 return ret; 1511 } 1512 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1513 1514 /** 1515 * blkcg_policy_unregister - unregister a blkcg policy 1516 * @pol: blkcg policy to unregister 1517 * 1518 * Undo blkcg_policy_register(@pol). Might sleep. 1519 */ 1520 void blkcg_policy_unregister(struct blkcg_policy *pol) 1521 { 1522 struct blkcg *blkcg; 1523 1524 mutex_lock(&blkcg_pol_register_mutex); 1525 1526 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1527 goto out_unlock; 1528 1529 /* kill the intf files first */ 1530 if (pol->dfl_cftypes) 1531 cgroup_rm_cftypes(pol->dfl_cftypes); 1532 if (pol->legacy_cftypes) 1533 cgroup_rm_cftypes(pol->legacy_cftypes); 1534 1535 /* remove cpds and unregister */ 1536 mutex_lock(&blkcg_pol_mutex); 1537 1538 if (pol->cpd_free_fn) { 1539 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1540 if (blkcg->cpd[pol->plid]) { 1541 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1542 blkcg->cpd[pol->plid] = NULL; 1543 } 1544 } 1545 } 1546 blkcg_policy[pol->plid] = NULL; 1547 1548 mutex_unlock(&blkcg_pol_mutex); 1549 out_unlock: 1550 mutex_unlock(&blkcg_pol_register_mutex); 1551 } 1552 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1553 1554 bool __blkcg_punt_bio_submit(struct bio *bio) 1555 { 1556 struct blkcg_gq *blkg = bio->bi_blkg; 1557 1558 /* consume the flag first */ 1559 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1560 1561 /* never bounce for the root cgroup */ 1562 if (!blkg->parent) 1563 return false; 1564 1565 spin_lock_bh(&blkg->async_bio_lock); 1566 bio_list_add(&blkg->async_bios, bio); 1567 spin_unlock_bh(&blkg->async_bio_lock); 1568 1569 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1570 return true; 1571 } 1572 1573 /* 1574 * Scale the accumulated delay based on how long it has been since we updated 1575 * the delay. We only call this when we are adding delay, in case it's been a 1576 * while since we added delay, and when we are checking to see if we need to 1577 * delay a task, to account for any delays that may have occurred. 1578 */ 1579 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1580 { 1581 u64 old = atomic64_read(&blkg->delay_start); 1582 1583 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1584 if (atomic_read(&blkg->use_delay) < 0) 1585 return; 1586 1587 /* 1588 * We only want to scale down every second. The idea here is that we 1589 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1590 * time window. We only want to throttle tasks for recent delay that 1591 * has occurred, in 1 second time windows since that's the maximum 1592 * things can be throttled. We save the current delay window in 1593 * blkg->last_delay so we know what amount is still left to be charged 1594 * to the blkg from this point onward. blkg->last_use keeps track of 1595 * the use_delay counter. The idea is if we're unthrottling the blkg we 1596 * are ok with whatever is happening now, and we can take away more of 1597 * the accumulated delay as we've already throttled enough that 1598 * everybody is happy with their IO latencies. 1599 */ 1600 if (time_before64(old + NSEC_PER_SEC, now) && 1601 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1602 u64 cur = atomic64_read(&blkg->delay_nsec); 1603 u64 sub = min_t(u64, blkg->last_delay, now - old); 1604 int cur_use = atomic_read(&blkg->use_delay); 1605 1606 /* 1607 * We've been unthrottled, subtract a larger chunk of our 1608 * accumulated delay. 1609 */ 1610 if (cur_use < blkg->last_use) 1611 sub = max_t(u64, sub, blkg->last_delay >> 1); 1612 1613 /* 1614 * This shouldn't happen, but handle it anyway. Our delay_nsec 1615 * should only ever be growing except here where we subtract out 1616 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1617 * rather not end up with negative numbers. 1618 */ 1619 if (unlikely(cur < sub)) { 1620 atomic64_set(&blkg->delay_nsec, 0); 1621 blkg->last_delay = 0; 1622 } else { 1623 atomic64_sub(sub, &blkg->delay_nsec); 1624 blkg->last_delay = cur - sub; 1625 } 1626 blkg->last_use = cur_use; 1627 } 1628 } 1629 1630 /* 1631 * This is called when we want to actually walk up the hierarchy and check to 1632 * see if we need to throttle, and then actually throttle if there is some 1633 * accumulated delay. This should only be called upon return to user space so 1634 * we're not holding some lock that would induce a priority inversion. 1635 */ 1636 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1637 { 1638 unsigned long pflags; 1639 bool clamp; 1640 u64 now = ktime_to_ns(ktime_get()); 1641 u64 exp; 1642 u64 delay_nsec = 0; 1643 int tok; 1644 1645 while (blkg->parent) { 1646 int use_delay = atomic_read(&blkg->use_delay); 1647 1648 if (use_delay) { 1649 u64 this_delay; 1650 1651 blkcg_scale_delay(blkg, now); 1652 this_delay = atomic64_read(&blkg->delay_nsec); 1653 if (this_delay > delay_nsec) { 1654 delay_nsec = this_delay; 1655 clamp = use_delay > 0; 1656 } 1657 } 1658 blkg = blkg->parent; 1659 } 1660 1661 if (!delay_nsec) 1662 return; 1663 1664 /* 1665 * Let's not sleep for all eternity if we've amassed a huge delay. 1666 * Swapping or metadata IO can accumulate 10's of seconds worth of 1667 * delay, and we want userspace to be able to do _something_ so cap the 1668 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1669 * tasks will be delayed for 0.25 second for every syscall. If 1670 * blkcg_set_delay() was used as indicated by negative use_delay, the 1671 * caller is responsible for regulating the range. 1672 */ 1673 if (clamp) 1674 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1675 1676 if (use_memdelay) 1677 psi_memstall_enter(&pflags); 1678 1679 exp = ktime_add_ns(now, delay_nsec); 1680 tok = io_schedule_prepare(); 1681 do { 1682 __set_current_state(TASK_KILLABLE); 1683 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1684 break; 1685 } while (!fatal_signal_pending(current)); 1686 io_schedule_finish(tok); 1687 1688 if (use_memdelay) 1689 psi_memstall_leave(&pflags); 1690 } 1691 1692 /** 1693 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1694 * 1695 * This is only called if we've been marked with set_notify_resume(). Obviously 1696 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1697 * check to see if current->throttle_queue is set and if not this doesn't do 1698 * anything. This should only ever be called by the resume code, it's not meant 1699 * to be called by people willy-nilly as it will actually do the work to 1700 * throttle the task if it is setup for throttling. 1701 */ 1702 void blkcg_maybe_throttle_current(void) 1703 { 1704 struct request_queue *q = current->throttle_queue; 1705 struct cgroup_subsys_state *css; 1706 struct blkcg *blkcg; 1707 struct blkcg_gq *blkg; 1708 bool use_memdelay = current->use_memdelay; 1709 1710 if (!q) 1711 return; 1712 1713 current->throttle_queue = NULL; 1714 current->use_memdelay = false; 1715 1716 rcu_read_lock(); 1717 css = kthread_blkcg(); 1718 if (css) 1719 blkcg = css_to_blkcg(css); 1720 else 1721 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1722 1723 if (!blkcg) 1724 goto out; 1725 blkg = blkg_lookup(blkcg, q); 1726 if (!blkg) 1727 goto out; 1728 if (!blkg_tryget(blkg)) 1729 goto out; 1730 rcu_read_unlock(); 1731 1732 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1733 blkg_put(blkg); 1734 blk_put_queue(q); 1735 return; 1736 out: 1737 rcu_read_unlock(); 1738 blk_put_queue(q); 1739 } 1740 1741 /** 1742 * blkcg_schedule_throttle - this task needs to check for throttling 1743 * @q: the request queue IO was submitted on 1744 * @use_memdelay: do we charge this to memory delay for PSI 1745 * 1746 * This is called by the IO controller when we know there's delay accumulated 1747 * for the blkg for this task. We do not pass the blkg because there are places 1748 * we call this that may not have that information, the swapping code for 1749 * instance will only have a request_queue at that point. This set's the 1750 * notify_resume for the task to check and see if it requires throttling before 1751 * returning to user space. 1752 * 1753 * We will only schedule once per syscall. You can call this over and over 1754 * again and it will only do the check once upon return to user space, and only 1755 * throttle once. If the task needs to be throttled again it'll need to be 1756 * re-set at the next time we see the task. 1757 */ 1758 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1759 { 1760 if (unlikely(current->flags & PF_KTHREAD)) 1761 return; 1762 1763 if (current->throttle_queue != q) { 1764 if (!blk_get_queue(q)) 1765 return; 1766 1767 if (current->throttle_queue) 1768 blk_put_queue(current->throttle_queue); 1769 current->throttle_queue = q; 1770 } 1771 1772 if (use_memdelay) 1773 current->use_memdelay = use_memdelay; 1774 set_notify_resume(current); 1775 } 1776 1777 /** 1778 * blkcg_add_delay - add delay to this blkg 1779 * @blkg: blkg of interest 1780 * @now: the current time in nanoseconds 1781 * @delta: how many nanoseconds of delay to add 1782 * 1783 * Charge @delta to the blkg's current delay accumulation. This is used to 1784 * throttle tasks if an IO controller thinks we need more throttling. 1785 */ 1786 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1787 { 1788 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1789 return; 1790 blkcg_scale_delay(blkg, now); 1791 atomic64_add(delta, &blkg->delay_nsec); 1792 } 1793 1794 /** 1795 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1796 * @bio: target bio 1797 * @css: target css 1798 * 1799 * As the failure mode here is to walk up the blkg tree, this ensure that the 1800 * blkg->parent pointers are always valid. This returns the blkg that it ended 1801 * up taking a reference on or %NULL if no reference was taken. 1802 */ 1803 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1804 struct cgroup_subsys_state *css) 1805 { 1806 struct blkcg_gq *blkg, *ret_blkg = NULL; 1807 1808 rcu_read_lock(); 1809 blkg = blkg_lookup_create(css_to_blkcg(css), 1810 bio->bi_bdev->bd_disk->queue); 1811 while (blkg) { 1812 if (blkg_tryget(blkg)) { 1813 ret_blkg = blkg; 1814 break; 1815 } 1816 blkg = blkg->parent; 1817 } 1818 rcu_read_unlock(); 1819 1820 return ret_blkg; 1821 } 1822 1823 /** 1824 * bio_associate_blkg_from_css - associate a bio with a specified css 1825 * @bio: target bio 1826 * @css: target css 1827 * 1828 * Associate @bio with the blkg found by combining the css's blkg and the 1829 * request_queue of the @bio. An association failure is handled by walking up 1830 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1831 * and q->root_blkg. This situation only happens when a cgroup is dying and 1832 * then the remaining bios will spill to the closest alive blkg. 1833 * 1834 * A reference will be taken on the blkg and will be released when @bio is 1835 * freed. 1836 */ 1837 void bio_associate_blkg_from_css(struct bio *bio, 1838 struct cgroup_subsys_state *css) 1839 { 1840 if (bio->bi_blkg) 1841 blkg_put(bio->bi_blkg); 1842 1843 if (css && css->parent) { 1844 bio->bi_blkg = blkg_tryget_closest(bio, css); 1845 } else { 1846 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg); 1847 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg; 1848 } 1849 } 1850 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1851 1852 /** 1853 * bio_associate_blkg - associate a bio with a blkg 1854 * @bio: target bio 1855 * 1856 * Associate @bio with the blkg found from the bio's css and request_queue. 1857 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1858 * already associated, the css is reused and association redone as the 1859 * request_queue may have changed. 1860 */ 1861 void bio_associate_blkg(struct bio *bio) 1862 { 1863 struct cgroup_subsys_state *css; 1864 1865 rcu_read_lock(); 1866 1867 if (bio->bi_blkg) 1868 css = &bio_blkcg(bio)->css; 1869 else 1870 css = blkcg_css(); 1871 1872 bio_associate_blkg_from_css(bio, css); 1873 1874 rcu_read_unlock(); 1875 } 1876 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1877 1878 /** 1879 * bio_clone_blkg_association - clone blkg association from src to dst bio 1880 * @dst: destination bio 1881 * @src: source bio 1882 */ 1883 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1884 { 1885 if (src->bi_blkg) { 1886 if (dst->bi_blkg) 1887 blkg_put(dst->bi_blkg); 1888 blkg_get(src->bi_blkg); 1889 dst->bi_blkg = src->bi_blkg; 1890 } 1891 } 1892 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1893 1894 static int blk_cgroup_io_type(struct bio *bio) 1895 { 1896 if (op_is_discard(bio->bi_opf)) 1897 return BLKG_IOSTAT_DISCARD; 1898 if (op_is_write(bio->bi_opf)) 1899 return BLKG_IOSTAT_WRITE; 1900 return BLKG_IOSTAT_READ; 1901 } 1902 1903 void blk_cgroup_bio_start(struct bio *bio) 1904 { 1905 int rwd = blk_cgroup_io_type(bio), cpu; 1906 struct blkg_iostat_set *bis; 1907 1908 cpu = get_cpu(); 1909 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1910 u64_stats_update_begin(&bis->sync); 1911 1912 /* 1913 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1914 * bio and we would have already accounted for the size of the bio. 1915 */ 1916 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1917 bio_set_flag(bio, BIO_CGROUP_ACCT); 1918 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1919 } 1920 bis->cur.ios[rwd]++; 1921 1922 u64_stats_update_end(&bis->sync); 1923 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1924 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1925 put_cpu(); 1926 } 1927 1928 static int __init blkcg_init(void) 1929 { 1930 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1931 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1932 WQ_UNBOUND | WQ_SYSFS, 0); 1933 if (!blkcg_punt_bio_wq) 1934 return -ENOMEM; 1935 return 0; 1936 } 1937 subsys_initcall(blkcg_init); 1938 1939 module_param(blkcg_debug_stats, bool, 0644); 1940 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1941