xref: /openbmc/linux/block/blk-cgroup.c (revision a93fbb00)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 static struct workqueue_struct *blkcg_punt_bio_wq;
59 
60 #define BLKG_DESTROY_BATCH_SIZE  64
61 
62 static bool blkcg_policy_enabled(struct request_queue *q,
63 				 const struct blkcg_policy *pol)
64 {
65 	return pol && test_bit(pol->plid, q->blkcg_pols);
66 }
67 
68 static void blkg_free_workfn(struct work_struct *work)
69 {
70 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
71 					     free_work);
72 	int i;
73 
74 	for (i = 0; i < BLKCG_MAX_POLS; i++)
75 		if (blkg->pd[i])
76 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
77 
78 	if (blkg->q)
79 		blk_put_queue(blkg->q);
80 	free_percpu(blkg->iostat_cpu);
81 	percpu_ref_exit(&blkg->refcnt);
82 	kfree(blkg);
83 }
84 
85 /**
86  * blkg_free - free a blkg
87  * @blkg: blkg to free
88  *
89  * Free @blkg which may be partially allocated.
90  */
91 static void blkg_free(struct blkcg_gq *blkg)
92 {
93 	if (!blkg)
94 		return;
95 
96 	/*
97 	 * Both ->pd_free_fn() and request queue's release handler may
98 	 * sleep, so free us by scheduling one work func
99 	 */
100 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
101 	schedule_work(&blkg->free_work);
102 }
103 
104 static void __blkg_release(struct rcu_head *rcu)
105 {
106 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
107 
108 	WARN_ON(!bio_list_empty(&blkg->async_bios));
109 
110 	/* release the blkcg and parent blkg refs this blkg has been holding */
111 	css_put(&blkg->blkcg->css);
112 	if (blkg->parent)
113 		blkg_put(blkg->parent);
114 	blkg_free(blkg);
115 }
116 
117 /*
118  * A group is RCU protected, but having an rcu lock does not mean that one
119  * can access all the fields of blkg and assume these are valid.  For
120  * example, don't try to follow throtl_data and request queue links.
121  *
122  * Having a reference to blkg under an rcu allows accesses to only values
123  * local to groups like group stats and group rate limits.
124  */
125 static void blkg_release(struct percpu_ref *ref)
126 {
127 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
128 
129 	call_rcu(&blkg->rcu_head, __blkg_release);
130 }
131 
132 static void blkg_async_bio_workfn(struct work_struct *work)
133 {
134 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
135 					     async_bio_work);
136 	struct bio_list bios = BIO_EMPTY_LIST;
137 	struct bio *bio;
138 	struct blk_plug plug;
139 	bool need_plug = false;
140 
141 	/* as long as there are pending bios, @blkg can't go away */
142 	spin_lock_bh(&blkg->async_bio_lock);
143 	bio_list_merge(&bios, &blkg->async_bios);
144 	bio_list_init(&blkg->async_bios);
145 	spin_unlock_bh(&blkg->async_bio_lock);
146 
147 	/* start plug only when bio_list contains at least 2 bios */
148 	if (bios.head && bios.head->bi_next) {
149 		need_plug = true;
150 		blk_start_plug(&plug);
151 	}
152 	while ((bio = bio_list_pop(&bios)))
153 		submit_bio(bio);
154 	if (need_plug)
155 		blk_finish_plug(&plug);
156 }
157 
158 /**
159  * blkg_alloc - allocate a blkg
160  * @blkcg: block cgroup the new blkg is associated with
161  * @q: request_queue the new blkg is associated with
162  * @gfp_mask: allocation mask to use
163  *
164  * Allocate a new blkg assocating @blkcg and @q.
165  */
166 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q,
167 				   gfp_t gfp_mask)
168 {
169 	struct blkcg_gq *blkg;
170 	int i, cpu;
171 
172 	/* alloc and init base part */
173 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node);
174 	if (!blkg)
175 		return NULL;
176 
177 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
178 		goto err_free;
179 
180 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
181 	if (!blkg->iostat_cpu)
182 		goto err_free;
183 
184 	if (!blk_get_queue(q))
185 		goto err_free;
186 
187 	blkg->q = q;
188 	INIT_LIST_HEAD(&blkg->q_node);
189 	spin_lock_init(&blkg->async_bio_lock);
190 	bio_list_init(&blkg->async_bios);
191 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
192 	blkg->blkcg = blkcg;
193 
194 	u64_stats_init(&blkg->iostat.sync);
195 	for_each_possible_cpu(cpu)
196 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
197 
198 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
199 		struct blkcg_policy *pol = blkcg_policy[i];
200 		struct blkg_policy_data *pd;
201 
202 		if (!blkcg_policy_enabled(q, pol))
203 			continue;
204 
205 		/* alloc per-policy data and attach it to blkg */
206 		pd = pol->pd_alloc_fn(gfp_mask, q, blkcg);
207 		if (!pd)
208 			goto err_free;
209 
210 		blkg->pd[i] = pd;
211 		pd->blkg = blkg;
212 		pd->plid = i;
213 	}
214 
215 	return blkg;
216 
217 err_free:
218 	blkg_free(blkg);
219 	return NULL;
220 }
221 
222 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg,
223 				      struct request_queue *q, bool update_hint)
224 {
225 	struct blkcg_gq *blkg;
226 
227 	/*
228 	 * Hint didn't match.  Look up from the radix tree.  Note that the
229 	 * hint can only be updated under queue_lock as otherwise @blkg
230 	 * could have already been removed from blkg_tree.  The caller is
231 	 * responsible for grabbing queue_lock if @update_hint.
232 	 */
233 	blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id);
234 	if (blkg && blkg->q == q) {
235 		if (update_hint) {
236 			lockdep_assert_held(&q->queue_lock);
237 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
238 		}
239 		return blkg;
240 	}
241 
242 	return NULL;
243 }
244 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath);
245 
246 /*
247  * If @new_blkg is %NULL, this function tries to allocate a new one as
248  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
249  */
250 static struct blkcg_gq *blkg_create(struct blkcg *blkcg,
251 				    struct request_queue *q,
252 				    struct blkcg_gq *new_blkg)
253 {
254 	struct blkcg_gq *blkg;
255 	int i, ret;
256 
257 	WARN_ON_ONCE(!rcu_read_lock_held());
258 	lockdep_assert_held(&q->queue_lock);
259 
260 	/* request_queue is dying, do not create/recreate a blkg */
261 	if (blk_queue_dying(q)) {
262 		ret = -ENODEV;
263 		goto err_free_blkg;
264 	}
265 
266 	/* blkg holds a reference to blkcg */
267 	if (!css_tryget_online(&blkcg->css)) {
268 		ret = -ENODEV;
269 		goto err_free_blkg;
270 	}
271 
272 	/* allocate */
273 	if (!new_blkg) {
274 		new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN);
275 		if (unlikely(!new_blkg)) {
276 			ret = -ENOMEM;
277 			goto err_put_css;
278 		}
279 	}
280 	blkg = new_blkg;
281 
282 	/* link parent */
283 	if (blkcg_parent(blkcg)) {
284 		blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false);
285 		if (WARN_ON_ONCE(!blkg->parent)) {
286 			ret = -ENODEV;
287 			goto err_put_css;
288 		}
289 		blkg_get(blkg->parent);
290 	}
291 
292 	/* invoke per-policy init */
293 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
294 		struct blkcg_policy *pol = blkcg_policy[i];
295 
296 		if (blkg->pd[i] && pol->pd_init_fn)
297 			pol->pd_init_fn(blkg->pd[i]);
298 	}
299 
300 	/* insert */
301 	spin_lock(&blkcg->lock);
302 	ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg);
303 	if (likely(!ret)) {
304 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
305 		list_add(&blkg->q_node, &q->blkg_list);
306 
307 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
308 			struct blkcg_policy *pol = blkcg_policy[i];
309 
310 			if (blkg->pd[i] && pol->pd_online_fn)
311 				pol->pd_online_fn(blkg->pd[i]);
312 		}
313 	}
314 	blkg->online = true;
315 	spin_unlock(&blkcg->lock);
316 
317 	if (!ret)
318 		return blkg;
319 
320 	/* @blkg failed fully initialized, use the usual release path */
321 	blkg_put(blkg);
322 	return ERR_PTR(ret);
323 
324 err_put_css:
325 	css_put(&blkcg->css);
326 err_free_blkg:
327 	blkg_free(new_blkg);
328 	return ERR_PTR(ret);
329 }
330 
331 /**
332  * blkg_lookup_create - lookup blkg, try to create one if not there
333  * @blkcg: blkcg of interest
334  * @q: request_queue of interest
335  *
336  * Lookup blkg for the @blkcg - @q pair.  If it doesn't exist, try to
337  * create one.  blkg creation is performed recursively from blkcg_root such
338  * that all non-root blkg's have access to the parent blkg.  This function
339  * should be called under RCU read lock and takes @q->queue_lock.
340  *
341  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
342  * down from root.
343  */
344 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
345 		struct request_queue *q)
346 {
347 	struct blkcg_gq *blkg;
348 	unsigned long flags;
349 
350 	WARN_ON_ONCE(!rcu_read_lock_held());
351 
352 	blkg = blkg_lookup(blkcg, q);
353 	if (blkg)
354 		return blkg;
355 
356 	spin_lock_irqsave(&q->queue_lock, flags);
357 	blkg = __blkg_lookup(blkcg, q, true);
358 	if (blkg)
359 		goto found;
360 
361 	/*
362 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
363 	 * non-root blkgs have access to their parents.  Returns the closest
364 	 * blkg to the intended blkg should blkg_create() fail.
365 	 */
366 	while (true) {
367 		struct blkcg *pos = blkcg;
368 		struct blkcg *parent = blkcg_parent(blkcg);
369 		struct blkcg_gq *ret_blkg = q->root_blkg;
370 
371 		while (parent) {
372 			blkg = __blkg_lookup(parent, q, false);
373 			if (blkg) {
374 				/* remember closest blkg */
375 				ret_blkg = blkg;
376 				break;
377 			}
378 			pos = parent;
379 			parent = blkcg_parent(parent);
380 		}
381 
382 		blkg = blkg_create(pos, q, NULL);
383 		if (IS_ERR(blkg)) {
384 			blkg = ret_blkg;
385 			break;
386 		}
387 		if (pos == blkcg)
388 			break;
389 	}
390 
391 found:
392 	spin_unlock_irqrestore(&q->queue_lock, flags);
393 	return blkg;
394 }
395 
396 static void blkg_destroy(struct blkcg_gq *blkg)
397 {
398 	struct blkcg *blkcg = blkg->blkcg;
399 	int i;
400 
401 	lockdep_assert_held(&blkg->q->queue_lock);
402 	lockdep_assert_held(&blkcg->lock);
403 
404 	/* Something wrong if we are trying to remove same group twice */
405 	WARN_ON_ONCE(list_empty(&blkg->q_node));
406 	WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node));
407 
408 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
409 		struct blkcg_policy *pol = blkcg_policy[i];
410 
411 		if (blkg->pd[i] && pol->pd_offline_fn)
412 			pol->pd_offline_fn(blkg->pd[i]);
413 	}
414 
415 	blkg->online = false;
416 
417 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
418 	list_del_init(&blkg->q_node);
419 	hlist_del_init_rcu(&blkg->blkcg_node);
420 
421 	/*
422 	 * Both setting lookup hint to and clearing it from @blkg are done
423 	 * under queue_lock.  If it's not pointing to @blkg now, it never
424 	 * will.  Hint assignment itself can race safely.
425 	 */
426 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
427 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
428 
429 	/*
430 	 * Put the reference taken at the time of creation so that when all
431 	 * queues are gone, group can be destroyed.
432 	 */
433 	percpu_ref_kill(&blkg->refcnt);
434 }
435 
436 /**
437  * blkg_destroy_all - destroy all blkgs associated with a request_queue
438  * @q: request_queue of interest
439  *
440  * Destroy all blkgs associated with @q.
441  */
442 static void blkg_destroy_all(struct request_queue *q)
443 {
444 	struct blkcg_gq *blkg, *n;
445 	int count = BLKG_DESTROY_BATCH_SIZE;
446 
447 restart:
448 	spin_lock_irq(&q->queue_lock);
449 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
450 		struct blkcg *blkcg = blkg->blkcg;
451 
452 		spin_lock(&blkcg->lock);
453 		blkg_destroy(blkg);
454 		spin_unlock(&blkcg->lock);
455 
456 		/*
457 		 * in order to avoid holding the spin lock for too long, release
458 		 * it when a batch of blkgs are destroyed.
459 		 */
460 		if (!(--count)) {
461 			count = BLKG_DESTROY_BATCH_SIZE;
462 			spin_unlock_irq(&q->queue_lock);
463 			cond_resched();
464 			goto restart;
465 		}
466 	}
467 
468 	q->root_blkg = NULL;
469 	spin_unlock_irq(&q->queue_lock);
470 }
471 
472 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
473 			     struct cftype *cftype, u64 val)
474 {
475 	struct blkcg *blkcg = css_to_blkcg(css);
476 	struct blkcg_gq *blkg;
477 	int i, cpu;
478 
479 	mutex_lock(&blkcg_pol_mutex);
480 	spin_lock_irq(&blkcg->lock);
481 
482 	/*
483 	 * Note that stat reset is racy - it doesn't synchronize against
484 	 * stat updates.  This is a debug feature which shouldn't exist
485 	 * anyway.  If you get hit by a race, retry.
486 	 */
487 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
488 		for_each_possible_cpu(cpu) {
489 			struct blkg_iostat_set *bis =
490 				per_cpu_ptr(blkg->iostat_cpu, cpu);
491 			memset(bis, 0, sizeof(*bis));
492 		}
493 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
494 
495 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
496 			struct blkcg_policy *pol = blkcg_policy[i];
497 
498 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
499 				pol->pd_reset_stats_fn(blkg->pd[i]);
500 		}
501 	}
502 
503 	spin_unlock_irq(&blkcg->lock);
504 	mutex_unlock(&blkcg_pol_mutex);
505 	return 0;
506 }
507 
508 const char *blkg_dev_name(struct blkcg_gq *blkg)
509 {
510 	if (!blkg->q->disk || !blkg->q->disk->bdi->dev)
511 		return NULL;
512 	return bdi_dev_name(blkg->q->disk->bdi);
513 }
514 
515 /**
516  * blkcg_print_blkgs - helper for printing per-blkg data
517  * @sf: seq_file to print to
518  * @blkcg: blkcg of interest
519  * @prfill: fill function to print out a blkg
520  * @pol: policy in question
521  * @data: data to be passed to @prfill
522  * @show_total: to print out sum of prfill return values or not
523  *
524  * This function invokes @prfill on each blkg of @blkcg if pd for the
525  * policy specified by @pol exists.  @prfill is invoked with @sf, the
526  * policy data and @data and the matching queue lock held.  If @show_total
527  * is %true, the sum of the return values from @prfill is printed with
528  * "Total" label at the end.
529  *
530  * This is to be used to construct print functions for
531  * cftype->read_seq_string method.
532  */
533 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
534 		       u64 (*prfill)(struct seq_file *,
535 				     struct blkg_policy_data *, int),
536 		       const struct blkcg_policy *pol, int data,
537 		       bool show_total)
538 {
539 	struct blkcg_gq *blkg;
540 	u64 total = 0;
541 
542 	rcu_read_lock();
543 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
544 		spin_lock_irq(&blkg->q->queue_lock);
545 		if (blkcg_policy_enabled(blkg->q, pol))
546 			total += prfill(sf, blkg->pd[pol->plid], data);
547 		spin_unlock_irq(&blkg->q->queue_lock);
548 	}
549 	rcu_read_unlock();
550 
551 	if (show_total)
552 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
553 }
554 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
555 
556 /**
557  * __blkg_prfill_u64 - prfill helper for a single u64 value
558  * @sf: seq_file to print to
559  * @pd: policy private data of interest
560  * @v: value to print
561  *
562  * Print @v to @sf for the device assocaited with @pd.
563  */
564 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
565 {
566 	const char *dname = blkg_dev_name(pd->blkg);
567 
568 	if (!dname)
569 		return 0;
570 
571 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
572 	return v;
573 }
574 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
575 
576 /* Performs queue bypass and policy enabled checks then looks up blkg. */
577 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg,
578 					  const struct blkcg_policy *pol,
579 					  struct request_queue *q)
580 {
581 	WARN_ON_ONCE(!rcu_read_lock_held());
582 	lockdep_assert_held(&q->queue_lock);
583 
584 	if (!blkcg_policy_enabled(q, pol))
585 		return ERR_PTR(-EOPNOTSUPP);
586 	return __blkg_lookup(blkcg, q, true /* update_hint */);
587 }
588 
589 /**
590  * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update
591  * @inputp: input string pointer
592  *
593  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update
594  * from @input and get and return the matching bdev.  *@inputp is
595  * updated to point past the device node prefix.  Returns an ERR_PTR()
596  * value on error.
597  *
598  * Use this function iff blkg_conf_prep() can't be used for some reason.
599  */
600 struct block_device *blkcg_conf_open_bdev(char **inputp)
601 {
602 	char *input = *inputp;
603 	unsigned int major, minor;
604 	struct block_device *bdev;
605 	int key_len;
606 
607 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
608 		return ERR_PTR(-EINVAL);
609 
610 	input += key_len;
611 	if (!isspace(*input))
612 		return ERR_PTR(-EINVAL);
613 	input = skip_spaces(input);
614 
615 	bdev = blkdev_get_no_open(MKDEV(major, minor));
616 	if (!bdev)
617 		return ERR_PTR(-ENODEV);
618 	if (bdev_is_partition(bdev)) {
619 		blkdev_put_no_open(bdev);
620 		return ERR_PTR(-ENODEV);
621 	}
622 
623 	*inputp = input;
624 	return bdev;
625 }
626 
627 /**
628  * blkg_conf_prep - parse and prepare for per-blkg config update
629  * @blkcg: target block cgroup
630  * @pol: target policy
631  * @input: input string
632  * @ctx: blkg_conf_ctx to be filled
633  *
634  * Parse per-blkg config update from @input and initialize @ctx with the
635  * result.  @ctx->blkg points to the blkg to be updated and @ctx->body the
636  * part of @input following MAJ:MIN.  This function returns with RCU read
637  * lock and queue lock held and must be paired with blkg_conf_finish().
638  */
639 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
640 		   char *input, struct blkg_conf_ctx *ctx)
641 	__acquires(rcu) __acquires(&bdev->bd_queue->queue_lock)
642 {
643 	struct block_device *bdev;
644 	struct request_queue *q;
645 	struct blkcg_gq *blkg;
646 	int ret;
647 
648 	bdev = blkcg_conf_open_bdev(&input);
649 	if (IS_ERR(bdev))
650 		return PTR_ERR(bdev);
651 
652 	q = bdev_get_queue(bdev);
653 
654 	/*
655 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
656 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
657 	 */
658 	ret = blk_queue_enter(q, 0);
659 	if (ret)
660 		goto fail;
661 
662 	rcu_read_lock();
663 	spin_lock_irq(&q->queue_lock);
664 
665 	blkg = blkg_lookup_check(blkcg, pol, q);
666 	if (IS_ERR(blkg)) {
667 		ret = PTR_ERR(blkg);
668 		goto fail_unlock;
669 	}
670 
671 	if (blkg)
672 		goto success;
673 
674 	/*
675 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
676 	 * non-root blkgs have access to their parents.
677 	 */
678 	while (true) {
679 		struct blkcg *pos = blkcg;
680 		struct blkcg *parent;
681 		struct blkcg_gq *new_blkg;
682 
683 		parent = blkcg_parent(blkcg);
684 		while (parent && !__blkg_lookup(parent, q, false)) {
685 			pos = parent;
686 			parent = blkcg_parent(parent);
687 		}
688 
689 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
690 		spin_unlock_irq(&q->queue_lock);
691 		rcu_read_unlock();
692 
693 		new_blkg = blkg_alloc(pos, q, GFP_KERNEL);
694 		if (unlikely(!new_blkg)) {
695 			ret = -ENOMEM;
696 			goto fail_exit_queue;
697 		}
698 
699 		if (radix_tree_preload(GFP_KERNEL)) {
700 			blkg_free(new_blkg);
701 			ret = -ENOMEM;
702 			goto fail_exit_queue;
703 		}
704 
705 		rcu_read_lock();
706 		spin_lock_irq(&q->queue_lock);
707 
708 		blkg = blkg_lookup_check(pos, pol, q);
709 		if (IS_ERR(blkg)) {
710 			ret = PTR_ERR(blkg);
711 			blkg_free(new_blkg);
712 			goto fail_preloaded;
713 		}
714 
715 		if (blkg) {
716 			blkg_free(new_blkg);
717 		} else {
718 			blkg = blkg_create(pos, q, new_blkg);
719 			if (IS_ERR(blkg)) {
720 				ret = PTR_ERR(blkg);
721 				goto fail_preloaded;
722 			}
723 		}
724 
725 		radix_tree_preload_end();
726 
727 		if (pos == blkcg)
728 			goto success;
729 	}
730 success:
731 	blk_queue_exit(q);
732 	ctx->bdev = bdev;
733 	ctx->blkg = blkg;
734 	ctx->body = input;
735 	return 0;
736 
737 fail_preloaded:
738 	radix_tree_preload_end();
739 fail_unlock:
740 	spin_unlock_irq(&q->queue_lock);
741 	rcu_read_unlock();
742 fail_exit_queue:
743 	blk_queue_exit(q);
744 fail:
745 	blkdev_put_no_open(bdev);
746 	/*
747 	 * If queue was bypassing, we should retry.  Do so after a
748 	 * short msleep().  It isn't strictly necessary but queue
749 	 * can be bypassing for some time and it's always nice to
750 	 * avoid busy looping.
751 	 */
752 	if (ret == -EBUSY) {
753 		msleep(10);
754 		ret = restart_syscall();
755 	}
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(blkg_conf_prep);
759 
760 /**
761  * blkg_conf_finish - finish up per-blkg config update
762  * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep()
763  *
764  * Finish up after per-blkg config update.  This function must be paired
765  * with blkg_conf_prep().
766  */
767 void blkg_conf_finish(struct blkg_conf_ctx *ctx)
768 	__releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu)
769 {
770 	spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
771 	rcu_read_unlock();
772 	blkdev_put_no_open(ctx->bdev);
773 }
774 EXPORT_SYMBOL_GPL(blkg_conf_finish);
775 
776 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
777 {
778 	int i;
779 
780 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
781 		dst->bytes[i] = src->bytes[i];
782 		dst->ios[i] = src->ios[i];
783 	}
784 }
785 
786 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
787 {
788 	int i;
789 
790 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
791 		dst->bytes[i] += src->bytes[i];
792 		dst->ios[i] += src->ios[i];
793 	}
794 }
795 
796 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
797 {
798 	int i;
799 
800 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
801 		dst->bytes[i] -= src->bytes[i];
802 		dst->ios[i] -= src->ios[i];
803 	}
804 }
805 
806 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
807 {
808 	struct blkcg *blkcg = css_to_blkcg(css);
809 	struct blkcg_gq *blkg;
810 
811 	/* Root-level stats are sourced from system-wide IO stats */
812 	if (!cgroup_parent(css->cgroup))
813 		return;
814 
815 	rcu_read_lock();
816 
817 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
818 		struct blkcg_gq *parent = blkg->parent;
819 		struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu);
820 		struct blkg_iostat cur, delta;
821 		unsigned long flags;
822 		unsigned int seq;
823 
824 		/* fetch the current per-cpu values */
825 		do {
826 			seq = u64_stats_fetch_begin(&bisc->sync);
827 			blkg_iostat_set(&cur, &bisc->cur);
828 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
829 
830 		/* propagate percpu delta to global */
831 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
832 		blkg_iostat_set(&delta, &cur);
833 		blkg_iostat_sub(&delta, &bisc->last);
834 		blkg_iostat_add(&blkg->iostat.cur, &delta);
835 		blkg_iostat_add(&bisc->last, &delta);
836 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
837 
838 		/* propagate global delta to parent (unless that's root) */
839 		if (parent && parent->parent) {
840 			flags = u64_stats_update_begin_irqsave(&parent->iostat.sync);
841 			blkg_iostat_set(&delta, &blkg->iostat.cur);
842 			blkg_iostat_sub(&delta, &blkg->iostat.last);
843 			blkg_iostat_add(&parent->iostat.cur, &delta);
844 			blkg_iostat_add(&blkg->iostat.last, &delta);
845 			u64_stats_update_end_irqrestore(&parent->iostat.sync, flags);
846 		}
847 	}
848 
849 	rcu_read_unlock();
850 }
851 
852 /*
853  * We source root cgroup stats from the system-wide stats to avoid
854  * tracking the same information twice and incurring overhead when no
855  * cgroups are defined. For that reason, cgroup_rstat_flush in
856  * blkcg_print_stat does not actually fill out the iostat in the root
857  * cgroup's blkcg_gq.
858  *
859  * However, we would like to re-use the printing code between the root and
860  * non-root cgroups to the extent possible. For that reason, we simulate
861  * flushing the root cgroup's stats by explicitly filling in the iostat
862  * with disk level statistics.
863  */
864 static void blkcg_fill_root_iostats(void)
865 {
866 	struct class_dev_iter iter;
867 	struct device *dev;
868 
869 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
870 	while ((dev = class_dev_iter_next(&iter))) {
871 		struct block_device *bdev = dev_to_bdev(dev);
872 		struct blkcg_gq *blkg =
873 			blk_queue_root_blkg(bdev_get_queue(bdev));
874 		struct blkg_iostat tmp;
875 		int cpu;
876 		unsigned long flags;
877 
878 		memset(&tmp, 0, sizeof(tmp));
879 		for_each_possible_cpu(cpu) {
880 			struct disk_stats *cpu_dkstats;
881 
882 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
883 			tmp.ios[BLKG_IOSTAT_READ] +=
884 				cpu_dkstats->ios[STAT_READ];
885 			tmp.ios[BLKG_IOSTAT_WRITE] +=
886 				cpu_dkstats->ios[STAT_WRITE];
887 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
888 				cpu_dkstats->ios[STAT_DISCARD];
889 			// convert sectors to bytes
890 			tmp.bytes[BLKG_IOSTAT_READ] +=
891 				cpu_dkstats->sectors[STAT_READ] << 9;
892 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
893 				cpu_dkstats->sectors[STAT_WRITE] << 9;
894 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
895 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
896 		}
897 
898 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
899 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
900 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
901 	}
902 }
903 
904 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
905 {
906 	struct blkg_iostat_set *bis = &blkg->iostat;
907 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
908 	bool has_stats = false;
909 	const char *dname;
910 	unsigned seq;
911 	int i;
912 
913 	if (!blkg->online)
914 		return;
915 
916 	dname = blkg_dev_name(blkg);
917 	if (!dname)
918 		return;
919 
920 	seq_printf(s, "%s ", dname);
921 
922 	do {
923 		seq = u64_stats_fetch_begin(&bis->sync);
924 
925 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
926 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
927 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
928 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
929 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
930 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
931 	} while (u64_stats_fetch_retry(&bis->sync, seq));
932 
933 	if (rbytes || wbytes || rios || wios) {
934 		has_stats = true;
935 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
936 			rbytes, wbytes, rios, wios,
937 			dbytes, dios);
938 	}
939 
940 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
941 		has_stats = true;
942 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
943 			atomic_read(&blkg->use_delay),
944 			atomic64_read(&blkg->delay_nsec));
945 	}
946 
947 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
948 		struct blkcg_policy *pol = blkcg_policy[i];
949 
950 		if (!blkg->pd[i] || !pol->pd_stat_fn)
951 			continue;
952 
953 		if (pol->pd_stat_fn(blkg->pd[i], s))
954 			has_stats = true;
955 	}
956 
957 	if (has_stats)
958 		seq_printf(s, "\n");
959 }
960 
961 static int blkcg_print_stat(struct seq_file *sf, void *v)
962 {
963 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
964 	struct blkcg_gq *blkg;
965 
966 	if (!seq_css(sf)->parent)
967 		blkcg_fill_root_iostats();
968 	else
969 		cgroup_rstat_flush(blkcg->css.cgroup);
970 
971 	rcu_read_lock();
972 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
973 		spin_lock_irq(&blkg->q->queue_lock);
974 		blkcg_print_one_stat(blkg, sf);
975 		spin_unlock_irq(&blkg->q->queue_lock);
976 	}
977 	rcu_read_unlock();
978 	return 0;
979 }
980 
981 static struct cftype blkcg_files[] = {
982 	{
983 		.name = "stat",
984 		.seq_show = blkcg_print_stat,
985 	},
986 	{ }	/* terminate */
987 };
988 
989 static struct cftype blkcg_legacy_files[] = {
990 	{
991 		.name = "reset_stats",
992 		.write_u64 = blkcg_reset_stats,
993 	},
994 	{ }	/* terminate */
995 };
996 
997 /*
998  * blkcg destruction is a three-stage process.
999  *
1000  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1001  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1002  *    to the completion of writeback associated with the blkcg.  This lets us
1003  *    avoid punting potentially large amounts of outstanding writeback to root
1004  *    while maintaining any ongoing policies.  The next stage is triggered when
1005  *    the nr_cgwbs count goes to zero.
1006  *
1007  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1008  *    and handles the destruction of blkgs.  Here the css reference held by
1009  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1010  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1011  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1012  *    punted to the root_blkg.
1013  *
1014  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1015  *    This finally frees the blkcg.
1016  */
1017 
1018 /**
1019  * blkcg_css_offline - cgroup css_offline callback
1020  * @css: css of interest
1021  *
1022  * This function is called when @css is about to go away.  Here the cgwbs are
1023  * offlined first and only once writeback associated with the blkcg has
1024  * finished do we start step 2 (see above).
1025  */
1026 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1027 {
1028 	struct blkcg *blkcg = css_to_blkcg(css);
1029 
1030 	/* this prevents anyone from attaching or migrating to this blkcg */
1031 	wb_blkcg_offline(blkcg);
1032 
1033 	/* put the base online pin allowing step 2 to be triggered */
1034 	blkcg_unpin_online(blkcg);
1035 }
1036 
1037 /**
1038  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1039  * @blkcg: blkcg of interest
1040  *
1041  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1042  * is nested inside q lock, this function performs reverse double lock dancing.
1043  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1044  * blkcg_css_free to eventually be called.
1045  *
1046  * This is the blkcg counterpart of ioc_release_fn().
1047  */
1048 void blkcg_destroy_blkgs(struct blkcg *blkcg)
1049 {
1050 	might_sleep();
1051 
1052 	spin_lock_irq(&blkcg->lock);
1053 
1054 	while (!hlist_empty(&blkcg->blkg_list)) {
1055 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1056 						struct blkcg_gq, blkcg_node);
1057 		struct request_queue *q = blkg->q;
1058 
1059 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1060 			/*
1061 			 * Given that the system can accumulate a huge number
1062 			 * of blkgs in pathological cases, check to see if we
1063 			 * need to rescheduling to avoid softlockup.
1064 			 */
1065 			spin_unlock_irq(&blkcg->lock);
1066 			cond_resched();
1067 			spin_lock_irq(&blkcg->lock);
1068 			continue;
1069 		}
1070 
1071 		blkg_destroy(blkg);
1072 		spin_unlock(&q->queue_lock);
1073 	}
1074 
1075 	spin_unlock_irq(&blkcg->lock);
1076 }
1077 
1078 static void blkcg_css_free(struct cgroup_subsys_state *css)
1079 {
1080 	struct blkcg *blkcg = css_to_blkcg(css);
1081 	int i;
1082 
1083 	mutex_lock(&blkcg_pol_mutex);
1084 
1085 	list_del(&blkcg->all_blkcgs_node);
1086 
1087 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1088 		if (blkcg->cpd[i])
1089 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1090 
1091 	mutex_unlock(&blkcg_pol_mutex);
1092 
1093 	kfree(blkcg);
1094 }
1095 
1096 static struct cgroup_subsys_state *
1097 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1098 {
1099 	struct blkcg *blkcg;
1100 	struct cgroup_subsys_state *ret;
1101 	int i;
1102 
1103 	mutex_lock(&blkcg_pol_mutex);
1104 
1105 	if (!parent_css) {
1106 		blkcg = &blkcg_root;
1107 	} else {
1108 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1109 		if (!blkcg) {
1110 			ret = ERR_PTR(-ENOMEM);
1111 			goto unlock;
1112 		}
1113 	}
1114 
1115 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1116 		struct blkcg_policy *pol = blkcg_policy[i];
1117 		struct blkcg_policy_data *cpd;
1118 
1119 		/*
1120 		 * If the policy hasn't been attached yet, wait for it
1121 		 * to be attached before doing anything else. Otherwise,
1122 		 * check if the policy requires any specific per-cgroup
1123 		 * data: if it does, allocate and initialize it.
1124 		 */
1125 		if (!pol || !pol->cpd_alloc_fn)
1126 			continue;
1127 
1128 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1129 		if (!cpd) {
1130 			ret = ERR_PTR(-ENOMEM);
1131 			goto free_pd_blkcg;
1132 		}
1133 		blkcg->cpd[i] = cpd;
1134 		cpd->blkcg = blkcg;
1135 		cpd->plid = i;
1136 		if (pol->cpd_init_fn)
1137 			pol->cpd_init_fn(cpd);
1138 	}
1139 
1140 	spin_lock_init(&blkcg->lock);
1141 	refcount_set(&blkcg->online_pin, 1);
1142 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1143 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1144 #ifdef CONFIG_CGROUP_WRITEBACK
1145 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1146 #endif
1147 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1148 
1149 	mutex_unlock(&blkcg_pol_mutex);
1150 	return &blkcg->css;
1151 
1152 free_pd_blkcg:
1153 	for (i--; i >= 0; i--)
1154 		if (blkcg->cpd[i])
1155 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1156 
1157 	if (blkcg != &blkcg_root)
1158 		kfree(blkcg);
1159 unlock:
1160 	mutex_unlock(&blkcg_pol_mutex);
1161 	return ret;
1162 }
1163 
1164 static int blkcg_css_online(struct cgroup_subsys_state *css)
1165 {
1166 	struct blkcg *blkcg = css_to_blkcg(css);
1167 	struct blkcg *parent = blkcg_parent(blkcg);
1168 
1169 	/*
1170 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1171 	 * don't go offline while cgwbs are still active on them.  Pin the
1172 	 * parent so that offline always happens towards the root.
1173 	 */
1174 	if (parent)
1175 		blkcg_pin_online(parent);
1176 	return 0;
1177 }
1178 
1179 /**
1180  * blkcg_init_queue - initialize blkcg part of request queue
1181  * @q: request_queue to initialize
1182  *
1183  * Called from blk_alloc_queue(). Responsible for initializing blkcg
1184  * part of new request_queue @q.
1185  *
1186  * RETURNS:
1187  * 0 on success, -errno on failure.
1188  */
1189 int blkcg_init_queue(struct request_queue *q)
1190 {
1191 	struct blkcg_gq *new_blkg, *blkg;
1192 	bool preloaded;
1193 	int ret;
1194 
1195 	INIT_LIST_HEAD(&q->blkg_list);
1196 
1197 	new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL);
1198 	if (!new_blkg)
1199 		return -ENOMEM;
1200 
1201 	preloaded = !radix_tree_preload(GFP_KERNEL);
1202 
1203 	/* Make sure the root blkg exists. */
1204 	rcu_read_lock();
1205 	spin_lock_irq(&q->queue_lock);
1206 	blkg = blkg_create(&blkcg_root, q, new_blkg);
1207 	if (IS_ERR(blkg))
1208 		goto err_unlock;
1209 	q->root_blkg = blkg;
1210 	spin_unlock_irq(&q->queue_lock);
1211 	rcu_read_unlock();
1212 
1213 	if (preloaded)
1214 		radix_tree_preload_end();
1215 
1216 	ret = blk_ioprio_init(q);
1217 	if (ret)
1218 		goto err_destroy_all;
1219 
1220 	ret = blk_throtl_init(q);
1221 	if (ret)
1222 		goto err_destroy_all;
1223 
1224 	ret = blk_iolatency_init(q);
1225 	if (ret) {
1226 		blk_throtl_exit(q);
1227 		goto err_destroy_all;
1228 	}
1229 
1230 	return 0;
1231 
1232 err_destroy_all:
1233 	blkg_destroy_all(q);
1234 	return ret;
1235 err_unlock:
1236 	spin_unlock_irq(&q->queue_lock);
1237 	rcu_read_unlock();
1238 	if (preloaded)
1239 		radix_tree_preload_end();
1240 	return PTR_ERR(blkg);
1241 }
1242 
1243 /**
1244  * blkcg_exit_queue - exit and release blkcg part of request_queue
1245  * @q: request_queue being released
1246  *
1247  * Called from blk_exit_queue().  Responsible for exiting blkcg part.
1248  */
1249 void blkcg_exit_queue(struct request_queue *q)
1250 {
1251 	blkg_destroy_all(q);
1252 	blk_throtl_exit(q);
1253 }
1254 
1255 static void blkcg_bind(struct cgroup_subsys_state *root_css)
1256 {
1257 	int i;
1258 
1259 	mutex_lock(&blkcg_pol_mutex);
1260 
1261 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1262 		struct blkcg_policy *pol = blkcg_policy[i];
1263 		struct blkcg *blkcg;
1264 
1265 		if (!pol || !pol->cpd_bind_fn)
1266 			continue;
1267 
1268 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node)
1269 			if (blkcg->cpd[pol->plid])
1270 				pol->cpd_bind_fn(blkcg->cpd[pol->plid]);
1271 	}
1272 	mutex_unlock(&blkcg_pol_mutex);
1273 }
1274 
1275 static void blkcg_exit(struct task_struct *tsk)
1276 {
1277 	if (tsk->throttle_queue)
1278 		blk_put_queue(tsk->throttle_queue);
1279 	tsk->throttle_queue = NULL;
1280 }
1281 
1282 struct cgroup_subsys io_cgrp_subsys = {
1283 	.css_alloc = blkcg_css_alloc,
1284 	.css_online = blkcg_css_online,
1285 	.css_offline = blkcg_css_offline,
1286 	.css_free = blkcg_css_free,
1287 	.css_rstat_flush = blkcg_rstat_flush,
1288 	.bind = blkcg_bind,
1289 	.dfl_cftypes = blkcg_files,
1290 	.legacy_cftypes = blkcg_legacy_files,
1291 	.legacy_name = "blkio",
1292 	.exit = blkcg_exit,
1293 #ifdef CONFIG_MEMCG
1294 	/*
1295 	 * This ensures that, if available, memcg is automatically enabled
1296 	 * together on the default hierarchy so that the owner cgroup can
1297 	 * be retrieved from writeback pages.
1298 	 */
1299 	.depends_on = 1 << memory_cgrp_id,
1300 #endif
1301 };
1302 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1303 
1304 /**
1305  * blkcg_activate_policy - activate a blkcg policy on a request_queue
1306  * @q: request_queue of interest
1307  * @pol: blkcg policy to activate
1308  *
1309  * Activate @pol on @q.  Requires %GFP_KERNEL context.  @q goes through
1310  * bypass mode to populate its blkgs with policy_data for @pol.
1311  *
1312  * Activation happens with @q bypassed, so nobody would be accessing blkgs
1313  * from IO path.  Update of each blkg is protected by both queue and blkcg
1314  * locks so that holding either lock and testing blkcg_policy_enabled() is
1315  * always enough for dereferencing policy data.
1316  *
1317  * The caller is responsible for synchronizing [de]activations and policy
1318  * [un]registerations.  Returns 0 on success, -errno on failure.
1319  */
1320 int blkcg_activate_policy(struct request_queue *q,
1321 			  const struct blkcg_policy *pol)
1322 {
1323 	struct blkg_policy_data *pd_prealloc = NULL;
1324 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1325 	int ret;
1326 
1327 	if (blkcg_policy_enabled(q, pol))
1328 		return 0;
1329 
1330 	if (queue_is_mq(q))
1331 		blk_mq_freeze_queue(q);
1332 retry:
1333 	spin_lock_irq(&q->queue_lock);
1334 
1335 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1336 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1337 		struct blkg_policy_data *pd;
1338 
1339 		if (blkg->pd[pol->plid])
1340 			continue;
1341 
1342 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1343 		if (blkg == pinned_blkg) {
1344 			pd = pd_prealloc;
1345 			pd_prealloc = NULL;
1346 		} else {
1347 			pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q,
1348 					      blkg->blkcg);
1349 		}
1350 
1351 		if (!pd) {
1352 			/*
1353 			 * GFP_NOWAIT failed.  Free the existing one and
1354 			 * prealloc for @blkg w/ GFP_KERNEL.
1355 			 */
1356 			if (pinned_blkg)
1357 				blkg_put(pinned_blkg);
1358 			blkg_get(blkg);
1359 			pinned_blkg = blkg;
1360 
1361 			spin_unlock_irq(&q->queue_lock);
1362 
1363 			if (pd_prealloc)
1364 				pol->pd_free_fn(pd_prealloc);
1365 			pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q,
1366 						       blkg->blkcg);
1367 			if (pd_prealloc)
1368 				goto retry;
1369 			else
1370 				goto enomem;
1371 		}
1372 
1373 		blkg->pd[pol->plid] = pd;
1374 		pd->blkg = blkg;
1375 		pd->plid = pol->plid;
1376 	}
1377 
1378 	/* all allocated, init in the same order */
1379 	if (pol->pd_init_fn)
1380 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1381 			pol->pd_init_fn(blkg->pd[pol->plid]);
1382 
1383 	__set_bit(pol->plid, q->blkcg_pols);
1384 	ret = 0;
1385 
1386 	spin_unlock_irq(&q->queue_lock);
1387 out:
1388 	if (queue_is_mq(q))
1389 		blk_mq_unfreeze_queue(q);
1390 	if (pinned_blkg)
1391 		blkg_put(pinned_blkg);
1392 	if (pd_prealloc)
1393 		pol->pd_free_fn(pd_prealloc);
1394 	return ret;
1395 
1396 enomem:
1397 	/* alloc failed, nothing's initialized yet, free everything */
1398 	spin_lock_irq(&q->queue_lock);
1399 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1400 		struct blkcg *blkcg = blkg->blkcg;
1401 
1402 		spin_lock(&blkcg->lock);
1403 		if (blkg->pd[pol->plid]) {
1404 			pol->pd_free_fn(blkg->pd[pol->plid]);
1405 			blkg->pd[pol->plid] = NULL;
1406 		}
1407 		spin_unlock(&blkcg->lock);
1408 	}
1409 	spin_unlock_irq(&q->queue_lock);
1410 	ret = -ENOMEM;
1411 	goto out;
1412 }
1413 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1414 
1415 /**
1416  * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue
1417  * @q: request_queue of interest
1418  * @pol: blkcg policy to deactivate
1419  *
1420  * Deactivate @pol on @q.  Follows the same synchronization rules as
1421  * blkcg_activate_policy().
1422  */
1423 void blkcg_deactivate_policy(struct request_queue *q,
1424 			     const struct blkcg_policy *pol)
1425 {
1426 	struct blkcg_gq *blkg;
1427 
1428 	if (!blkcg_policy_enabled(q, pol))
1429 		return;
1430 
1431 	if (queue_is_mq(q))
1432 		blk_mq_freeze_queue(q);
1433 
1434 	spin_lock_irq(&q->queue_lock);
1435 
1436 	__clear_bit(pol->plid, q->blkcg_pols);
1437 
1438 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1439 		struct blkcg *blkcg = blkg->blkcg;
1440 
1441 		spin_lock(&blkcg->lock);
1442 		if (blkg->pd[pol->plid]) {
1443 			if (pol->pd_offline_fn)
1444 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1445 			pol->pd_free_fn(blkg->pd[pol->plid]);
1446 			blkg->pd[pol->plid] = NULL;
1447 		}
1448 		spin_unlock(&blkcg->lock);
1449 	}
1450 
1451 	spin_unlock_irq(&q->queue_lock);
1452 
1453 	if (queue_is_mq(q))
1454 		blk_mq_unfreeze_queue(q);
1455 }
1456 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1457 
1458 /**
1459  * blkcg_policy_register - register a blkcg policy
1460  * @pol: blkcg policy to register
1461  *
1462  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1463  * successful registration.  Returns 0 on success and -errno on failure.
1464  */
1465 int blkcg_policy_register(struct blkcg_policy *pol)
1466 {
1467 	struct blkcg *blkcg;
1468 	int i, ret;
1469 
1470 	mutex_lock(&blkcg_pol_register_mutex);
1471 	mutex_lock(&blkcg_pol_mutex);
1472 
1473 	/* find an empty slot */
1474 	ret = -ENOSPC;
1475 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1476 		if (!blkcg_policy[i])
1477 			break;
1478 	if (i >= BLKCG_MAX_POLS) {
1479 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1480 		goto err_unlock;
1481 	}
1482 
1483 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1484 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1485 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1486 		goto err_unlock;
1487 
1488 	/* register @pol */
1489 	pol->plid = i;
1490 	blkcg_policy[pol->plid] = pol;
1491 
1492 	/* allocate and install cpd's */
1493 	if (pol->cpd_alloc_fn) {
1494 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1495 			struct blkcg_policy_data *cpd;
1496 
1497 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1498 			if (!cpd)
1499 				goto err_free_cpds;
1500 
1501 			blkcg->cpd[pol->plid] = cpd;
1502 			cpd->blkcg = blkcg;
1503 			cpd->plid = pol->plid;
1504 			if (pol->cpd_init_fn)
1505 				pol->cpd_init_fn(cpd);
1506 		}
1507 	}
1508 
1509 	mutex_unlock(&blkcg_pol_mutex);
1510 
1511 	/* everything is in place, add intf files for the new policy */
1512 	if (pol->dfl_cftypes)
1513 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1514 					       pol->dfl_cftypes));
1515 	if (pol->legacy_cftypes)
1516 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1517 						  pol->legacy_cftypes));
1518 	mutex_unlock(&blkcg_pol_register_mutex);
1519 	return 0;
1520 
1521 err_free_cpds:
1522 	if (pol->cpd_free_fn) {
1523 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1524 			if (blkcg->cpd[pol->plid]) {
1525 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1526 				blkcg->cpd[pol->plid] = NULL;
1527 			}
1528 		}
1529 	}
1530 	blkcg_policy[pol->plid] = NULL;
1531 err_unlock:
1532 	mutex_unlock(&blkcg_pol_mutex);
1533 	mutex_unlock(&blkcg_pol_register_mutex);
1534 	return ret;
1535 }
1536 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1537 
1538 /**
1539  * blkcg_policy_unregister - unregister a blkcg policy
1540  * @pol: blkcg policy to unregister
1541  *
1542  * Undo blkcg_policy_register(@pol).  Might sleep.
1543  */
1544 void blkcg_policy_unregister(struct blkcg_policy *pol)
1545 {
1546 	struct blkcg *blkcg;
1547 
1548 	mutex_lock(&blkcg_pol_register_mutex);
1549 
1550 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1551 		goto out_unlock;
1552 
1553 	/* kill the intf files first */
1554 	if (pol->dfl_cftypes)
1555 		cgroup_rm_cftypes(pol->dfl_cftypes);
1556 	if (pol->legacy_cftypes)
1557 		cgroup_rm_cftypes(pol->legacy_cftypes);
1558 
1559 	/* remove cpds and unregister */
1560 	mutex_lock(&blkcg_pol_mutex);
1561 
1562 	if (pol->cpd_free_fn) {
1563 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1564 			if (blkcg->cpd[pol->plid]) {
1565 				pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1566 				blkcg->cpd[pol->plid] = NULL;
1567 			}
1568 		}
1569 	}
1570 	blkcg_policy[pol->plid] = NULL;
1571 
1572 	mutex_unlock(&blkcg_pol_mutex);
1573 out_unlock:
1574 	mutex_unlock(&blkcg_pol_register_mutex);
1575 }
1576 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1577 
1578 bool __blkcg_punt_bio_submit(struct bio *bio)
1579 {
1580 	struct blkcg_gq *blkg = bio->bi_blkg;
1581 
1582 	/* consume the flag first */
1583 	bio->bi_opf &= ~REQ_CGROUP_PUNT;
1584 
1585 	/* never bounce for the root cgroup */
1586 	if (!blkg->parent)
1587 		return false;
1588 
1589 	spin_lock_bh(&blkg->async_bio_lock);
1590 	bio_list_add(&blkg->async_bios, bio);
1591 	spin_unlock_bh(&blkg->async_bio_lock);
1592 
1593 	queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
1594 	return true;
1595 }
1596 
1597 /*
1598  * Scale the accumulated delay based on how long it has been since we updated
1599  * the delay.  We only call this when we are adding delay, in case it's been a
1600  * while since we added delay, and when we are checking to see if we need to
1601  * delay a task, to account for any delays that may have occurred.
1602  */
1603 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1604 {
1605 	u64 old = atomic64_read(&blkg->delay_start);
1606 
1607 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1608 	if (atomic_read(&blkg->use_delay) < 0)
1609 		return;
1610 
1611 	/*
1612 	 * We only want to scale down every second.  The idea here is that we
1613 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1614 	 * time window.  We only want to throttle tasks for recent delay that
1615 	 * has occurred, in 1 second time windows since that's the maximum
1616 	 * things can be throttled.  We save the current delay window in
1617 	 * blkg->last_delay so we know what amount is still left to be charged
1618 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1619 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1620 	 * are ok with whatever is happening now, and we can take away more of
1621 	 * the accumulated delay as we've already throttled enough that
1622 	 * everybody is happy with their IO latencies.
1623 	 */
1624 	if (time_before64(old + NSEC_PER_SEC, now) &&
1625 	    atomic64_cmpxchg(&blkg->delay_start, old, now) == old) {
1626 		u64 cur = atomic64_read(&blkg->delay_nsec);
1627 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1628 		int cur_use = atomic_read(&blkg->use_delay);
1629 
1630 		/*
1631 		 * We've been unthrottled, subtract a larger chunk of our
1632 		 * accumulated delay.
1633 		 */
1634 		if (cur_use < blkg->last_use)
1635 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1636 
1637 		/*
1638 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1639 		 * should only ever be growing except here where we subtract out
1640 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1641 		 * rather not end up with negative numbers.
1642 		 */
1643 		if (unlikely(cur < sub)) {
1644 			atomic64_set(&blkg->delay_nsec, 0);
1645 			blkg->last_delay = 0;
1646 		} else {
1647 			atomic64_sub(sub, &blkg->delay_nsec);
1648 			blkg->last_delay = cur - sub;
1649 		}
1650 		blkg->last_use = cur_use;
1651 	}
1652 }
1653 
1654 /*
1655  * This is called when we want to actually walk up the hierarchy and check to
1656  * see if we need to throttle, and then actually throttle if there is some
1657  * accumulated delay.  This should only be called upon return to user space so
1658  * we're not holding some lock that would induce a priority inversion.
1659  */
1660 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1661 {
1662 	unsigned long pflags;
1663 	bool clamp;
1664 	u64 now = ktime_to_ns(ktime_get());
1665 	u64 exp;
1666 	u64 delay_nsec = 0;
1667 	int tok;
1668 
1669 	while (blkg->parent) {
1670 		int use_delay = atomic_read(&blkg->use_delay);
1671 
1672 		if (use_delay) {
1673 			u64 this_delay;
1674 
1675 			blkcg_scale_delay(blkg, now);
1676 			this_delay = atomic64_read(&blkg->delay_nsec);
1677 			if (this_delay > delay_nsec) {
1678 				delay_nsec = this_delay;
1679 				clamp = use_delay > 0;
1680 			}
1681 		}
1682 		blkg = blkg->parent;
1683 	}
1684 
1685 	if (!delay_nsec)
1686 		return;
1687 
1688 	/*
1689 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1690 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1691 	 * delay, and we want userspace to be able to do _something_ so cap the
1692 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1693 	 * tasks will be delayed for 0.25 second for every syscall. If
1694 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1695 	 * caller is responsible for regulating the range.
1696 	 */
1697 	if (clamp)
1698 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1699 
1700 	if (use_memdelay)
1701 		psi_memstall_enter(&pflags);
1702 
1703 	exp = ktime_add_ns(now, delay_nsec);
1704 	tok = io_schedule_prepare();
1705 	do {
1706 		__set_current_state(TASK_KILLABLE);
1707 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1708 			break;
1709 	} while (!fatal_signal_pending(current));
1710 	io_schedule_finish(tok);
1711 
1712 	if (use_memdelay)
1713 		psi_memstall_leave(&pflags);
1714 }
1715 
1716 /**
1717  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1718  *
1719  * This is only called if we've been marked with set_notify_resume().  Obviously
1720  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1721  * check to see if current->throttle_queue is set and if not this doesn't do
1722  * anything.  This should only ever be called by the resume code, it's not meant
1723  * to be called by people willy-nilly as it will actually do the work to
1724  * throttle the task if it is setup for throttling.
1725  */
1726 void blkcg_maybe_throttle_current(void)
1727 {
1728 	struct request_queue *q = current->throttle_queue;
1729 	struct cgroup_subsys_state *css;
1730 	struct blkcg *blkcg;
1731 	struct blkcg_gq *blkg;
1732 	bool use_memdelay = current->use_memdelay;
1733 
1734 	if (!q)
1735 		return;
1736 
1737 	current->throttle_queue = NULL;
1738 	current->use_memdelay = false;
1739 
1740 	rcu_read_lock();
1741 	css = kthread_blkcg();
1742 	if (css)
1743 		blkcg = css_to_blkcg(css);
1744 	else
1745 		blkcg = css_to_blkcg(task_css(current, io_cgrp_id));
1746 
1747 	if (!blkcg)
1748 		goto out;
1749 	blkg = blkg_lookup(blkcg, q);
1750 	if (!blkg)
1751 		goto out;
1752 	if (!blkg_tryget(blkg))
1753 		goto out;
1754 	rcu_read_unlock();
1755 
1756 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1757 	blkg_put(blkg);
1758 	blk_put_queue(q);
1759 	return;
1760 out:
1761 	rcu_read_unlock();
1762 	blk_put_queue(q);
1763 }
1764 
1765 /**
1766  * blkcg_schedule_throttle - this task needs to check for throttling
1767  * @q: the request queue IO was submitted on
1768  * @use_memdelay: do we charge this to memory delay for PSI
1769  *
1770  * This is called by the IO controller when we know there's delay accumulated
1771  * for the blkg for this task.  We do not pass the blkg because there are places
1772  * we call this that may not have that information, the swapping code for
1773  * instance will only have a request_queue at that point.  This set's the
1774  * notify_resume for the task to check and see if it requires throttling before
1775  * returning to user space.
1776  *
1777  * We will only schedule once per syscall.  You can call this over and over
1778  * again and it will only do the check once upon return to user space, and only
1779  * throttle once.  If the task needs to be throttled again it'll need to be
1780  * re-set at the next time we see the task.
1781  */
1782 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay)
1783 {
1784 	if (unlikely(current->flags & PF_KTHREAD))
1785 		return;
1786 
1787 	if (current->throttle_queue != q) {
1788 		if (!blk_get_queue(q))
1789 			return;
1790 
1791 		if (current->throttle_queue)
1792 			blk_put_queue(current->throttle_queue);
1793 		current->throttle_queue = q;
1794 	}
1795 
1796 	if (use_memdelay)
1797 		current->use_memdelay = use_memdelay;
1798 	set_notify_resume(current);
1799 }
1800 
1801 /**
1802  * blkcg_add_delay - add delay to this blkg
1803  * @blkg: blkg of interest
1804  * @now: the current time in nanoseconds
1805  * @delta: how many nanoseconds of delay to add
1806  *
1807  * Charge @delta to the blkg's current delay accumulation.  This is used to
1808  * throttle tasks if an IO controller thinks we need more throttling.
1809  */
1810 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1811 {
1812 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1813 		return;
1814 	blkcg_scale_delay(blkg, now);
1815 	atomic64_add(delta, &blkg->delay_nsec);
1816 }
1817 
1818 /**
1819  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1820  * @bio: target bio
1821  * @css: target css
1822  *
1823  * As the failure mode here is to walk up the blkg tree, this ensure that the
1824  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1825  * up taking a reference on or %NULL if no reference was taken.
1826  */
1827 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1828 		struct cgroup_subsys_state *css)
1829 {
1830 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1831 
1832 	rcu_read_lock();
1833 	blkg = blkg_lookup_create(css_to_blkcg(css),
1834 				  bdev_get_queue(bio->bi_bdev));
1835 	while (blkg) {
1836 		if (blkg_tryget(blkg)) {
1837 			ret_blkg = blkg;
1838 			break;
1839 		}
1840 		blkg = blkg->parent;
1841 	}
1842 	rcu_read_unlock();
1843 
1844 	return ret_blkg;
1845 }
1846 
1847 /**
1848  * bio_associate_blkg_from_css - associate a bio with a specified css
1849  * @bio: target bio
1850  * @css: target css
1851  *
1852  * Associate @bio with the blkg found by combining the css's blkg and the
1853  * request_queue of the @bio.  An association failure is handled by walking up
1854  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1855  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1856  * then the remaining bios will spill to the closest alive blkg.
1857  *
1858  * A reference will be taken on the blkg and will be released when @bio is
1859  * freed.
1860  */
1861 void bio_associate_blkg_from_css(struct bio *bio,
1862 				 struct cgroup_subsys_state *css)
1863 {
1864 	if (bio->bi_blkg)
1865 		blkg_put(bio->bi_blkg);
1866 
1867 	if (css && css->parent) {
1868 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1869 	} else {
1870 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1871 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1872 	}
1873 }
1874 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1875 
1876 /**
1877  * bio_associate_blkg - associate a bio with a blkg
1878  * @bio: target bio
1879  *
1880  * Associate @bio with the blkg found from the bio's css and request_queue.
1881  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
1882  * already associated, the css is reused and association redone as the
1883  * request_queue may have changed.
1884  */
1885 void bio_associate_blkg(struct bio *bio)
1886 {
1887 	struct cgroup_subsys_state *css;
1888 
1889 	rcu_read_lock();
1890 
1891 	if (bio->bi_blkg)
1892 		css = &bio_blkcg(bio)->css;
1893 	else
1894 		css = blkcg_css();
1895 
1896 	bio_associate_blkg_from_css(bio, css);
1897 
1898 	rcu_read_unlock();
1899 }
1900 EXPORT_SYMBOL_GPL(bio_associate_blkg);
1901 
1902 /**
1903  * bio_clone_blkg_association - clone blkg association from src to dst bio
1904  * @dst: destination bio
1905  * @src: source bio
1906  */
1907 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
1908 {
1909 	if (src->bi_blkg) {
1910 		if (dst->bi_blkg)
1911 			blkg_put(dst->bi_blkg);
1912 		blkg_get(src->bi_blkg);
1913 		dst->bi_blkg = src->bi_blkg;
1914 	}
1915 }
1916 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
1917 
1918 static int blk_cgroup_io_type(struct bio *bio)
1919 {
1920 	if (op_is_discard(bio->bi_opf))
1921 		return BLKG_IOSTAT_DISCARD;
1922 	if (op_is_write(bio->bi_opf))
1923 		return BLKG_IOSTAT_WRITE;
1924 	return BLKG_IOSTAT_READ;
1925 }
1926 
1927 void blk_cgroup_bio_start(struct bio *bio)
1928 {
1929 	int rwd = blk_cgroup_io_type(bio), cpu;
1930 	struct blkg_iostat_set *bis;
1931 	unsigned long flags;
1932 
1933 	cpu = get_cpu();
1934 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
1935 	flags = u64_stats_update_begin_irqsave(&bis->sync);
1936 
1937 	/*
1938 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
1939 	 * bio and we would have already accounted for the size of the bio.
1940 	 */
1941 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
1942 		bio_set_flag(bio, BIO_CGROUP_ACCT);
1943 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
1944 	}
1945 	bis->cur.ios[rwd]++;
1946 
1947 	u64_stats_update_end_irqrestore(&bis->sync, flags);
1948 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
1949 		cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu);
1950 	put_cpu();
1951 }
1952 
1953 static int __init blkcg_init(void)
1954 {
1955 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
1956 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
1957 					    WQ_UNBOUND | WQ_SYSFS, 0);
1958 	if (!blkcg_punt_bio_wq)
1959 		return -ENOMEM;
1960 	return 0;
1961 }
1962 subsys_initcall(blkcg_init);
1963 
1964 module_param(blkcg_debug_stats, bool, 0644);
1965 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
1966