xref: /openbmc/linux/block/blk-cgroup.c (revision 9ad685db)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 /*
38  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
39  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
40  * policy [un]register operations including cgroup file additions /
41  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
42  * allows grabbing it from cgroup callbacks.
43  */
44 static DEFINE_MUTEX(blkcg_pol_register_mutex);
45 static DEFINE_MUTEX(blkcg_pol_mutex);
46 
47 struct blkcg blkcg_root;
48 EXPORT_SYMBOL_GPL(blkcg_root);
49 
50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
51 EXPORT_SYMBOL_GPL(blkcg_root_css);
52 
53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
54 
55 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
56 
57 bool blkcg_debug_stats = false;
58 
59 #define BLKG_DESTROY_BATCH_SIZE  64
60 
61 /*
62  * Lockless lists for tracking IO stats update
63  *
64  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
65  * There are multiple blkg's (one for each block device) attached to each
66  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
67  * but it doesn't know which blkg has the updated stats. If there are many
68  * block devices in a system, the cost of iterating all the blkg's to flush
69  * out the IO stats can be high. To reduce such overhead, a set of percpu
70  * lockless lists (lhead) per blkcg are used to track the set of recently
71  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
72  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
73  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
74  * References to blkg are gotten and then put back in the process to
75  * protect against blkg removal.
76  *
77  * Return: 0 if successful or -ENOMEM if allocation fails.
78  */
79 static int init_blkcg_llists(struct blkcg *blkcg)
80 {
81 	int cpu;
82 
83 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
84 	if (!blkcg->lhead)
85 		return -ENOMEM;
86 
87 	for_each_possible_cpu(cpu)
88 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
89 	return 0;
90 }
91 
92 /**
93  * blkcg_css - find the current css
94  *
95  * Find the css associated with either the kthread or the current task.
96  * This may return a dying css, so it is up to the caller to use tryget logic
97  * to confirm it is alive and well.
98  */
99 static struct cgroup_subsys_state *blkcg_css(void)
100 {
101 	struct cgroup_subsys_state *css;
102 
103 	css = kthread_blkcg();
104 	if (css)
105 		return css;
106 	return task_css(current, io_cgrp_id);
107 }
108 
109 static bool blkcg_policy_enabled(struct request_queue *q,
110 				 const struct blkcg_policy *pol)
111 {
112 	return pol && test_bit(pol->plid, q->blkcg_pols);
113 }
114 
115 static void blkg_free_workfn(struct work_struct *work)
116 {
117 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
118 					     free_work);
119 	struct request_queue *q = blkg->q;
120 	int i;
121 
122 	/*
123 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
124 	 * in order to make sure pd_free_fn() is called in order, the deletion
125 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
126 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
127 	 * blkcg_deactivate_policy().
128 	 */
129 	mutex_lock(&q->blkcg_mutex);
130 	for (i = 0; i < BLKCG_MAX_POLS; i++)
131 		if (blkg->pd[i])
132 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
133 	if (blkg->parent)
134 		blkg_put(blkg->parent);
135 	list_del_init(&blkg->q_node);
136 	mutex_unlock(&q->blkcg_mutex);
137 
138 	blk_put_queue(q);
139 	free_percpu(blkg->iostat_cpu);
140 	percpu_ref_exit(&blkg->refcnt);
141 	kfree(blkg);
142 }
143 
144 /**
145  * blkg_free - free a blkg
146  * @blkg: blkg to free
147  *
148  * Free @blkg which may be partially allocated.
149  */
150 static void blkg_free(struct blkcg_gq *blkg)
151 {
152 	if (!blkg)
153 		return;
154 
155 	/*
156 	 * Both ->pd_free_fn() and request queue's release handler may
157 	 * sleep, so free us by scheduling one work func
158 	 */
159 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
160 	schedule_work(&blkg->free_work);
161 }
162 
163 static void __blkg_release(struct rcu_head *rcu)
164 {
165 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
166 
167 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
168 	WARN_ON(!bio_list_empty(&blkg->async_bios));
169 #endif
170 
171 	/* release the blkcg and parent blkg refs this blkg has been holding */
172 	css_put(&blkg->blkcg->css);
173 	blkg_free(blkg);
174 }
175 
176 /*
177  * A group is RCU protected, but having an rcu lock does not mean that one
178  * can access all the fields of blkg and assume these are valid.  For
179  * example, don't try to follow throtl_data and request queue links.
180  *
181  * Having a reference to blkg under an rcu allows accesses to only values
182  * local to groups like group stats and group rate limits.
183  */
184 static void blkg_release(struct percpu_ref *ref)
185 {
186 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
187 
188 	call_rcu(&blkg->rcu_head, __blkg_release);
189 }
190 
191 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
192 static struct workqueue_struct *blkcg_punt_bio_wq;
193 
194 static void blkg_async_bio_workfn(struct work_struct *work)
195 {
196 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
197 					     async_bio_work);
198 	struct bio_list bios = BIO_EMPTY_LIST;
199 	struct bio *bio;
200 	struct blk_plug plug;
201 	bool need_plug = false;
202 
203 	/* as long as there are pending bios, @blkg can't go away */
204 	spin_lock(&blkg->async_bio_lock);
205 	bio_list_merge(&bios, &blkg->async_bios);
206 	bio_list_init(&blkg->async_bios);
207 	spin_unlock(&blkg->async_bio_lock);
208 
209 	/* start plug only when bio_list contains at least 2 bios */
210 	if (bios.head && bios.head->bi_next) {
211 		need_plug = true;
212 		blk_start_plug(&plug);
213 	}
214 	while ((bio = bio_list_pop(&bios)))
215 		submit_bio(bio);
216 	if (need_plug)
217 		blk_finish_plug(&plug);
218 }
219 
220 /*
221  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
222  * lead to priority inversions as the kthread can be trapped waiting for that
223  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
224  * a dedicated per-blkcg work item to avoid such priority inversions.
225  */
226 void blkcg_punt_bio_submit(struct bio *bio)
227 {
228 	struct blkcg_gq *blkg = bio->bi_blkg;
229 
230 	if (blkg->parent) {
231 		spin_lock(&blkg->async_bio_lock);
232 		bio_list_add(&blkg->async_bios, bio);
233 		spin_unlock(&blkg->async_bio_lock);
234 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
235 	} else {
236 		/* never bounce for the root cgroup */
237 		submit_bio(bio);
238 	}
239 }
240 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
241 
242 static int __init blkcg_punt_bio_init(void)
243 {
244 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
245 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
246 					    WQ_UNBOUND | WQ_SYSFS, 0);
247 	if (!blkcg_punt_bio_wq)
248 		return -ENOMEM;
249 	return 0;
250 }
251 subsys_initcall(blkcg_punt_bio_init);
252 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
253 
254 /**
255  * bio_blkcg_css - return the blkcg CSS associated with a bio
256  * @bio: target bio
257  *
258  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
259  * associated. Callers are expected to either handle %NULL or know association
260  * has been done prior to calling this.
261  */
262 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
263 {
264 	if (!bio || !bio->bi_blkg)
265 		return NULL;
266 	return &bio->bi_blkg->blkcg->css;
267 }
268 EXPORT_SYMBOL_GPL(bio_blkcg_css);
269 
270 /**
271  * blkcg_parent - get the parent of a blkcg
272  * @blkcg: blkcg of interest
273  *
274  * Return the parent blkcg of @blkcg.  Can be called anytime.
275  */
276 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
277 {
278 	return css_to_blkcg(blkcg->css.parent);
279 }
280 
281 /**
282  * blkg_alloc - allocate a blkg
283  * @blkcg: block cgroup the new blkg is associated with
284  * @disk: gendisk the new blkg is associated with
285  * @gfp_mask: allocation mask to use
286  *
287  * Allocate a new blkg assocating @blkcg and @q.
288  */
289 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
290 				   gfp_t gfp_mask)
291 {
292 	struct blkcg_gq *blkg;
293 	int i, cpu;
294 
295 	/* alloc and init base part */
296 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
297 	if (!blkg)
298 		return NULL;
299 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
300 		goto out_free_blkg;
301 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
302 	if (!blkg->iostat_cpu)
303 		goto out_exit_refcnt;
304 	if (!blk_get_queue(disk->queue))
305 		goto out_free_iostat;
306 
307 	blkg->q = disk->queue;
308 	INIT_LIST_HEAD(&blkg->q_node);
309 	blkg->blkcg = blkcg;
310 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
311 	spin_lock_init(&blkg->async_bio_lock);
312 	bio_list_init(&blkg->async_bios);
313 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
314 #endif
315 
316 	u64_stats_init(&blkg->iostat.sync);
317 	for_each_possible_cpu(cpu) {
318 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
319 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
320 	}
321 
322 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
323 		struct blkcg_policy *pol = blkcg_policy[i];
324 		struct blkg_policy_data *pd;
325 
326 		if (!blkcg_policy_enabled(disk->queue, pol))
327 			continue;
328 
329 		/* alloc per-policy data and attach it to blkg */
330 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
331 		if (!pd)
332 			goto out_free_pds;
333 		blkg->pd[i] = pd;
334 		pd->blkg = blkg;
335 		pd->plid = i;
336 		pd->online = false;
337 	}
338 
339 	return blkg;
340 
341 out_free_pds:
342 	while (--i >= 0)
343 		if (blkg->pd[i])
344 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
345 	blk_put_queue(disk->queue);
346 out_free_iostat:
347 	free_percpu(blkg->iostat_cpu);
348 out_exit_refcnt:
349 	percpu_ref_exit(&blkg->refcnt);
350 out_free_blkg:
351 	kfree(blkg);
352 	return NULL;
353 }
354 
355 /*
356  * If @new_blkg is %NULL, this function tries to allocate a new one as
357  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
358  */
359 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
360 				    struct blkcg_gq *new_blkg)
361 {
362 	struct blkcg_gq *blkg;
363 	int i, ret;
364 
365 	lockdep_assert_held(&disk->queue->queue_lock);
366 
367 	/* request_queue is dying, do not create/recreate a blkg */
368 	if (blk_queue_dying(disk->queue)) {
369 		ret = -ENODEV;
370 		goto err_free_blkg;
371 	}
372 
373 	/* blkg holds a reference to blkcg */
374 	if (!css_tryget_online(&blkcg->css)) {
375 		ret = -ENODEV;
376 		goto err_free_blkg;
377 	}
378 
379 	/* allocate */
380 	if (!new_blkg) {
381 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
382 		if (unlikely(!new_blkg)) {
383 			ret = -ENOMEM;
384 			goto err_put_css;
385 		}
386 	}
387 	blkg = new_blkg;
388 
389 	/* link parent */
390 	if (blkcg_parent(blkcg)) {
391 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
392 		if (WARN_ON_ONCE(!blkg->parent)) {
393 			ret = -ENODEV;
394 			goto err_put_css;
395 		}
396 		blkg_get(blkg->parent);
397 	}
398 
399 	/* invoke per-policy init */
400 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
401 		struct blkcg_policy *pol = blkcg_policy[i];
402 
403 		if (blkg->pd[i] && pol->pd_init_fn)
404 			pol->pd_init_fn(blkg->pd[i]);
405 	}
406 
407 	/* insert */
408 	spin_lock(&blkcg->lock);
409 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
410 	if (likely(!ret)) {
411 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
412 		list_add(&blkg->q_node, &disk->queue->blkg_list);
413 
414 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
415 			struct blkcg_policy *pol = blkcg_policy[i];
416 
417 			if (blkg->pd[i]) {
418 				if (pol->pd_online_fn)
419 					pol->pd_online_fn(blkg->pd[i]);
420 				blkg->pd[i]->online = true;
421 			}
422 		}
423 	}
424 	blkg->online = true;
425 	spin_unlock(&blkcg->lock);
426 
427 	if (!ret)
428 		return blkg;
429 
430 	/* @blkg failed fully initialized, use the usual release path */
431 	blkg_put(blkg);
432 	return ERR_PTR(ret);
433 
434 err_put_css:
435 	css_put(&blkcg->css);
436 err_free_blkg:
437 	if (new_blkg)
438 		blkg_free(new_blkg);
439 	return ERR_PTR(ret);
440 }
441 
442 /**
443  * blkg_lookup_create - lookup blkg, try to create one if not there
444  * @blkcg: blkcg of interest
445  * @disk: gendisk of interest
446  *
447  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
448  * create one.  blkg creation is performed recursively from blkcg_root such
449  * that all non-root blkg's have access to the parent blkg.  This function
450  * should be called under RCU read lock and takes @disk->queue->queue_lock.
451  *
452  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
453  * down from root.
454  */
455 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
456 		struct gendisk *disk)
457 {
458 	struct request_queue *q = disk->queue;
459 	struct blkcg_gq *blkg;
460 	unsigned long flags;
461 
462 	WARN_ON_ONCE(!rcu_read_lock_held());
463 
464 	blkg = blkg_lookup(blkcg, q);
465 	if (blkg)
466 		return blkg;
467 
468 	spin_lock_irqsave(&q->queue_lock, flags);
469 	blkg = blkg_lookup(blkcg, q);
470 	if (blkg) {
471 		if (blkcg != &blkcg_root &&
472 		    blkg != rcu_dereference(blkcg->blkg_hint))
473 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
474 		goto found;
475 	}
476 
477 	/*
478 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
479 	 * non-root blkgs have access to their parents.  Returns the closest
480 	 * blkg to the intended blkg should blkg_create() fail.
481 	 */
482 	while (true) {
483 		struct blkcg *pos = blkcg;
484 		struct blkcg *parent = blkcg_parent(blkcg);
485 		struct blkcg_gq *ret_blkg = q->root_blkg;
486 
487 		while (parent) {
488 			blkg = blkg_lookup(parent, q);
489 			if (blkg) {
490 				/* remember closest blkg */
491 				ret_blkg = blkg;
492 				break;
493 			}
494 			pos = parent;
495 			parent = blkcg_parent(parent);
496 		}
497 
498 		blkg = blkg_create(pos, disk, NULL);
499 		if (IS_ERR(blkg)) {
500 			blkg = ret_blkg;
501 			break;
502 		}
503 		if (pos == blkcg)
504 			break;
505 	}
506 
507 found:
508 	spin_unlock_irqrestore(&q->queue_lock, flags);
509 	return blkg;
510 }
511 
512 static void blkg_destroy(struct blkcg_gq *blkg)
513 {
514 	struct blkcg *blkcg = blkg->blkcg;
515 	int i;
516 
517 	lockdep_assert_held(&blkg->q->queue_lock);
518 	lockdep_assert_held(&blkcg->lock);
519 
520 	/*
521 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
522 	 * blkg_free_workfn(), hence this function can be called from
523 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
524 	 * blkg_free_workfn().
525 	 */
526 	if (hlist_unhashed(&blkg->blkcg_node))
527 		return;
528 
529 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
530 		struct blkcg_policy *pol = blkcg_policy[i];
531 
532 		if (blkg->pd[i] && blkg->pd[i]->online) {
533 			blkg->pd[i]->online = false;
534 			if (pol->pd_offline_fn)
535 				pol->pd_offline_fn(blkg->pd[i]);
536 		}
537 	}
538 
539 	blkg->online = false;
540 
541 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
542 	hlist_del_init_rcu(&blkg->blkcg_node);
543 
544 	/*
545 	 * Both setting lookup hint to and clearing it from @blkg are done
546 	 * under queue_lock.  If it's not pointing to @blkg now, it never
547 	 * will.  Hint assignment itself can race safely.
548 	 */
549 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
550 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
551 
552 	/*
553 	 * Put the reference taken at the time of creation so that when all
554 	 * queues are gone, group can be destroyed.
555 	 */
556 	percpu_ref_kill(&blkg->refcnt);
557 }
558 
559 static void blkg_destroy_all(struct gendisk *disk)
560 {
561 	struct request_queue *q = disk->queue;
562 	struct blkcg_gq *blkg, *n;
563 	int count = BLKG_DESTROY_BATCH_SIZE;
564 
565 restart:
566 	spin_lock_irq(&q->queue_lock);
567 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
568 		struct blkcg *blkcg = blkg->blkcg;
569 
570 		spin_lock(&blkcg->lock);
571 		blkg_destroy(blkg);
572 		spin_unlock(&blkcg->lock);
573 
574 		/*
575 		 * in order to avoid holding the spin lock for too long, release
576 		 * it when a batch of blkgs are destroyed.
577 		 */
578 		if (!(--count)) {
579 			count = BLKG_DESTROY_BATCH_SIZE;
580 			spin_unlock_irq(&q->queue_lock);
581 			cond_resched();
582 			goto restart;
583 		}
584 	}
585 
586 	q->root_blkg = NULL;
587 	spin_unlock_irq(&q->queue_lock);
588 }
589 
590 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
591 			     struct cftype *cftype, u64 val)
592 {
593 	struct blkcg *blkcg = css_to_blkcg(css);
594 	struct blkcg_gq *blkg;
595 	int i, cpu;
596 
597 	mutex_lock(&blkcg_pol_mutex);
598 	spin_lock_irq(&blkcg->lock);
599 
600 	/*
601 	 * Note that stat reset is racy - it doesn't synchronize against
602 	 * stat updates.  This is a debug feature which shouldn't exist
603 	 * anyway.  If you get hit by a race, retry.
604 	 */
605 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
606 		for_each_possible_cpu(cpu) {
607 			struct blkg_iostat_set *bis =
608 				per_cpu_ptr(blkg->iostat_cpu, cpu);
609 			memset(bis, 0, sizeof(*bis));
610 		}
611 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
612 
613 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
614 			struct blkcg_policy *pol = blkcg_policy[i];
615 
616 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
617 				pol->pd_reset_stats_fn(blkg->pd[i]);
618 		}
619 	}
620 
621 	spin_unlock_irq(&blkcg->lock);
622 	mutex_unlock(&blkcg_pol_mutex);
623 	return 0;
624 }
625 
626 const char *blkg_dev_name(struct blkcg_gq *blkg)
627 {
628 	if (!blkg->q->disk)
629 		return NULL;
630 	return bdi_dev_name(blkg->q->disk->bdi);
631 }
632 
633 /**
634  * blkcg_print_blkgs - helper for printing per-blkg data
635  * @sf: seq_file to print to
636  * @blkcg: blkcg of interest
637  * @prfill: fill function to print out a blkg
638  * @pol: policy in question
639  * @data: data to be passed to @prfill
640  * @show_total: to print out sum of prfill return values or not
641  *
642  * This function invokes @prfill on each blkg of @blkcg if pd for the
643  * policy specified by @pol exists.  @prfill is invoked with @sf, the
644  * policy data and @data and the matching queue lock held.  If @show_total
645  * is %true, the sum of the return values from @prfill is printed with
646  * "Total" label at the end.
647  *
648  * This is to be used to construct print functions for
649  * cftype->read_seq_string method.
650  */
651 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
652 		       u64 (*prfill)(struct seq_file *,
653 				     struct blkg_policy_data *, int),
654 		       const struct blkcg_policy *pol, int data,
655 		       bool show_total)
656 {
657 	struct blkcg_gq *blkg;
658 	u64 total = 0;
659 
660 	rcu_read_lock();
661 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
662 		spin_lock_irq(&blkg->q->queue_lock);
663 		if (blkcg_policy_enabled(blkg->q, pol))
664 			total += prfill(sf, blkg->pd[pol->plid], data);
665 		spin_unlock_irq(&blkg->q->queue_lock);
666 	}
667 	rcu_read_unlock();
668 
669 	if (show_total)
670 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
671 }
672 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
673 
674 /**
675  * __blkg_prfill_u64 - prfill helper for a single u64 value
676  * @sf: seq_file to print to
677  * @pd: policy private data of interest
678  * @v: value to print
679  *
680  * Print @v to @sf for the device associated with @pd.
681  */
682 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
683 {
684 	const char *dname = blkg_dev_name(pd->blkg);
685 
686 	if (!dname)
687 		return 0;
688 
689 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
690 	return v;
691 }
692 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
693 
694 /**
695  * blkg_conf_init - initialize a blkg_conf_ctx
696  * @ctx: blkg_conf_ctx to initialize
697  * @input: input string
698  *
699  * Initialize @ctx which can be used to parse blkg config input string @input.
700  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
701  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
702  */
703 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
704 {
705 	*ctx = (struct blkg_conf_ctx){ .input = input };
706 }
707 EXPORT_SYMBOL_GPL(blkg_conf_init);
708 
709 /**
710  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
711  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
712  *
713  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
714  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
715  * set to point past the device node prefix.
716  *
717  * This function may be called multiple times on @ctx and the extra calls become
718  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
719  * explicitly if bdev access is needed without resolving the blkcg / policy part
720  * of @ctx->input. Returns -errno on error.
721  */
722 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
723 {
724 	char *input = ctx->input;
725 	unsigned int major, minor;
726 	struct block_device *bdev;
727 	int key_len;
728 
729 	if (ctx->bdev)
730 		return 0;
731 
732 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
733 		return -EINVAL;
734 
735 	input += key_len;
736 	if (!isspace(*input))
737 		return -EINVAL;
738 	input = skip_spaces(input);
739 
740 	bdev = blkdev_get_no_open(MKDEV(major, minor));
741 	if (!bdev)
742 		return -ENODEV;
743 	if (bdev_is_partition(bdev)) {
744 		blkdev_put_no_open(bdev);
745 		return -ENODEV;
746 	}
747 
748 	ctx->body = input;
749 	ctx->bdev = bdev;
750 	return 0;
751 }
752 
753 /**
754  * blkg_conf_prep - parse and prepare for per-blkg config update
755  * @blkcg: target block cgroup
756  * @pol: target policy
757  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
758  *
759  * Parse per-blkg config update from @ctx->input and initialize @ctx
760  * accordingly. On success, @ctx->body points to the part of @ctx->input
761  * following MAJ:MIN, @ctx->bdev points to the target block device and
762  * @ctx->blkg to the blkg being configured.
763  *
764  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
765  * function returns with queue lock held and must be followed by
766  * blkg_conf_exit().
767  */
768 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
769 		   struct blkg_conf_ctx *ctx)
770 	__acquires(&bdev->bd_queue->queue_lock)
771 {
772 	struct gendisk *disk;
773 	struct request_queue *q;
774 	struct blkcg_gq *blkg;
775 	int ret;
776 
777 	ret = blkg_conf_open_bdev(ctx);
778 	if (ret)
779 		return ret;
780 
781 	disk = ctx->bdev->bd_disk;
782 	q = disk->queue;
783 
784 	/*
785 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
786 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
787 	 */
788 	ret = blk_queue_enter(q, 0);
789 	if (ret)
790 		goto fail;
791 
792 	spin_lock_irq(&q->queue_lock);
793 
794 	if (!blkcg_policy_enabled(q, pol)) {
795 		ret = -EOPNOTSUPP;
796 		goto fail_unlock;
797 	}
798 
799 	blkg = blkg_lookup(blkcg, q);
800 	if (blkg)
801 		goto success;
802 
803 	/*
804 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
805 	 * non-root blkgs have access to their parents.
806 	 */
807 	while (true) {
808 		struct blkcg *pos = blkcg;
809 		struct blkcg *parent;
810 		struct blkcg_gq *new_blkg;
811 
812 		parent = blkcg_parent(blkcg);
813 		while (parent && !blkg_lookup(parent, q)) {
814 			pos = parent;
815 			parent = blkcg_parent(parent);
816 		}
817 
818 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
819 		spin_unlock_irq(&q->queue_lock);
820 
821 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
822 		if (unlikely(!new_blkg)) {
823 			ret = -ENOMEM;
824 			goto fail_exit_queue;
825 		}
826 
827 		if (radix_tree_preload(GFP_KERNEL)) {
828 			blkg_free(new_blkg);
829 			ret = -ENOMEM;
830 			goto fail_exit_queue;
831 		}
832 
833 		spin_lock_irq(&q->queue_lock);
834 
835 		if (!blkcg_policy_enabled(q, pol)) {
836 			blkg_free(new_blkg);
837 			ret = -EOPNOTSUPP;
838 			goto fail_preloaded;
839 		}
840 
841 		blkg = blkg_lookup(pos, q);
842 		if (blkg) {
843 			blkg_free(new_blkg);
844 		} else {
845 			blkg = blkg_create(pos, disk, new_blkg);
846 			if (IS_ERR(blkg)) {
847 				ret = PTR_ERR(blkg);
848 				goto fail_preloaded;
849 			}
850 		}
851 
852 		radix_tree_preload_end();
853 
854 		if (pos == blkcg)
855 			goto success;
856 	}
857 success:
858 	blk_queue_exit(q);
859 	ctx->blkg = blkg;
860 	return 0;
861 
862 fail_preloaded:
863 	radix_tree_preload_end();
864 fail_unlock:
865 	spin_unlock_irq(&q->queue_lock);
866 fail_exit_queue:
867 	blk_queue_exit(q);
868 fail:
869 	/*
870 	 * If queue was bypassing, we should retry.  Do so after a
871 	 * short msleep().  It isn't strictly necessary but queue
872 	 * can be bypassing for some time and it's always nice to
873 	 * avoid busy looping.
874 	 */
875 	if (ret == -EBUSY) {
876 		msleep(10);
877 		ret = restart_syscall();
878 	}
879 	return ret;
880 }
881 EXPORT_SYMBOL_GPL(blkg_conf_prep);
882 
883 /**
884  * blkg_conf_exit - clean up per-blkg config update
885  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
886  *
887  * Clean up after per-blkg config update. This function must be called on all
888  * blkg_conf_ctx's initialized with blkg_conf_init().
889  */
890 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
891 	__releases(&ctx->bdev->bd_queue->queue_lock)
892 {
893 	if (ctx->blkg) {
894 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
895 		ctx->blkg = NULL;
896 	}
897 
898 	if (ctx->bdev) {
899 		blkdev_put_no_open(ctx->bdev);
900 		ctx->body = NULL;
901 		ctx->bdev = NULL;
902 	}
903 }
904 EXPORT_SYMBOL_GPL(blkg_conf_exit);
905 
906 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
907 {
908 	int i;
909 
910 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
911 		dst->bytes[i] = src->bytes[i];
912 		dst->ios[i] = src->ios[i];
913 	}
914 }
915 
916 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
917 {
918 	int i;
919 
920 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
921 		dst->bytes[i] += src->bytes[i];
922 		dst->ios[i] += src->ios[i];
923 	}
924 }
925 
926 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
927 {
928 	int i;
929 
930 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
931 		dst->bytes[i] -= src->bytes[i];
932 		dst->ios[i] -= src->ios[i];
933 	}
934 }
935 
936 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
937 				struct blkg_iostat *last)
938 {
939 	struct blkg_iostat delta;
940 	unsigned long flags;
941 
942 	/* propagate percpu delta to global */
943 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
944 	blkg_iostat_set(&delta, cur);
945 	blkg_iostat_sub(&delta, last);
946 	blkg_iostat_add(&blkg->iostat.cur, &delta);
947 	blkg_iostat_add(last, &delta);
948 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
949 }
950 
951 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
952 {
953 	struct blkcg *blkcg = css_to_blkcg(css);
954 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
955 	struct llist_node *lnode;
956 	struct blkg_iostat_set *bisc, *next_bisc;
957 
958 	/* Root-level stats are sourced from system-wide IO stats */
959 	if (!cgroup_parent(css->cgroup))
960 		return;
961 
962 	rcu_read_lock();
963 
964 	lnode = llist_del_all(lhead);
965 	if (!lnode)
966 		goto out;
967 
968 	/*
969 	 * Iterate only the iostat_cpu's queued in the lockless list.
970 	 */
971 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
972 		struct blkcg_gq *blkg = bisc->blkg;
973 		struct blkcg_gq *parent = blkg->parent;
974 		struct blkg_iostat cur;
975 		unsigned int seq;
976 
977 		WRITE_ONCE(bisc->lqueued, false);
978 
979 		/* fetch the current per-cpu values */
980 		do {
981 			seq = u64_stats_fetch_begin(&bisc->sync);
982 			blkg_iostat_set(&cur, &bisc->cur);
983 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
984 
985 		blkcg_iostat_update(blkg, &cur, &bisc->last);
986 
987 		/* propagate global delta to parent (unless that's root) */
988 		if (parent && parent->parent)
989 			blkcg_iostat_update(parent, &blkg->iostat.cur,
990 					    &blkg->iostat.last);
991 		percpu_ref_put(&blkg->refcnt);
992 	}
993 
994 out:
995 	rcu_read_unlock();
996 }
997 
998 /*
999  * We source root cgroup stats from the system-wide stats to avoid
1000  * tracking the same information twice and incurring overhead when no
1001  * cgroups are defined. For that reason, cgroup_rstat_flush in
1002  * blkcg_print_stat does not actually fill out the iostat in the root
1003  * cgroup's blkcg_gq.
1004  *
1005  * However, we would like to re-use the printing code between the root and
1006  * non-root cgroups to the extent possible. For that reason, we simulate
1007  * flushing the root cgroup's stats by explicitly filling in the iostat
1008  * with disk level statistics.
1009  */
1010 static void blkcg_fill_root_iostats(void)
1011 {
1012 	struct class_dev_iter iter;
1013 	struct device *dev;
1014 
1015 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1016 	while ((dev = class_dev_iter_next(&iter))) {
1017 		struct block_device *bdev = dev_to_bdev(dev);
1018 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1019 		struct blkg_iostat tmp;
1020 		int cpu;
1021 		unsigned long flags;
1022 
1023 		memset(&tmp, 0, sizeof(tmp));
1024 		for_each_possible_cpu(cpu) {
1025 			struct disk_stats *cpu_dkstats;
1026 
1027 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1028 			tmp.ios[BLKG_IOSTAT_READ] +=
1029 				cpu_dkstats->ios[STAT_READ];
1030 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1031 				cpu_dkstats->ios[STAT_WRITE];
1032 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1033 				cpu_dkstats->ios[STAT_DISCARD];
1034 			// convert sectors to bytes
1035 			tmp.bytes[BLKG_IOSTAT_READ] +=
1036 				cpu_dkstats->sectors[STAT_READ] << 9;
1037 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1038 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1039 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1040 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1041 		}
1042 
1043 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1044 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1045 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1046 	}
1047 }
1048 
1049 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1050 {
1051 	struct blkg_iostat_set *bis = &blkg->iostat;
1052 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1053 	const char *dname;
1054 	unsigned seq;
1055 	int i;
1056 
1057 	if (!blkg->online)
1058 		return;
1059 
1060 	dname = blkg_dev_name(blkg);
1061 	if (!dname)
1062 		return;
1063 
1064 	seq_printf(s, "%s ", dname);
1065 
1066 	do {
1067 		seq = u64_stats_fetch_begin(&bis->sync);
1068 
1069 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1070 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1071 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1072 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1073 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1074 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1075 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1076 
1077 	if (rbytes || wbytes || rios || wios) {
1078 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1079 			rbytes, wbytes, rios, wios,
1080 			dbytes, dios);
1081 	}
1082 
1083 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1084 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1085 			atomic_read(&blkg->use_delay),
1086 			atomic64_read(&blkg->delay_nsec));
1087 	}
1088 
1089 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1090 		struct blkcg_policy *pol = blkcg_policy[i];
1091 
1092 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1093 			continue;
1094 
1095 		pol->pd_stat_fn(blkg->pd[i], s);
1096 	}
1097 
1098 	seq_puts(s, "\n");
1099 }
1100 
1101 static int blkcg_print_stat(struct seq_file *sf, void *v)
1102 {
1103 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1104 	struct blkcg_gq *blkg;
1105 
1106 	if (!seq_css(sf)->parent)
1107 		blkcg_fill_root_iostats();
1108 	else
1109 		cgroup_rstat_flush(blkcg->css.cgroup);
1110 
1111 	rcu_read_lock();
1112 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1113 		spin_lock_irq(&blkg->q->queue_lock);
1114 		blkcg_print_one_stat(blkg, sf);
1115 		spin_unlock_irq(&blkg->q->queue_lock);
1116 	}
1117 	rcu_read_unlock();
1118 	return 0;
1119 }
1120 
1121 static struct cftype blkcg_files[] = {
1122 	{
1123 		.name = "stat",
1124 		.seq_show = blkcg_print_stat,
1125 	},
1126 	{ }	/* terminate */
1127 };
1128 
1129 static struct cftype blkcg_legacy_files[] = {
1130 	{
1131 		.name = "reset_stats",
1132 		.write_u64 = blkcg_reset_stats,
1133 	},
1134 	{ }	/* terminate */
1135 };
1136 
1137 #ifdef CONFIG_CGROUP_WRITEBACK
1138 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1139 {
1140 	return &css_to_blkcg(css)->cgwb_list;
1141 }
1142 #endif
1143 
1144 /*
1145  * blkcg destruction is a three-stage process.
1146  *
1147  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1148  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1149  *    to the completion of writeback associated with the blkcg.  This lets us
1150  *    avoid punting potentially large amounts of outstanding writeback to root
1151  *    while maintaining any ongoing policies.  The next stage is triggered when
1152  *    the nr_cgwbs count goes to zero.
1153  *
1154  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1155  *    and handles the destruction of blkgs.  Here the css reference held by
1156  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1157  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1158  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1159  *    punted to the root_blkg.
1160  *
1161  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1162  *    This finally frees the blkcg.
1163  */
1164 
1165 /**
1166  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1167  * @blkcg: blkcg of interest
1168  *
1169  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1170  * is nested inside q lock, this function performs reverse double lock dancing.
1171  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1172  * blkcg_css_free to eventually be called.
1173  *
1174  * This is the blkcg counterpart of ioc_release_fn().
1175  */
1176 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1177 {
1178 	might_sleep();
1179 
1180 	spin_lock_irq(&blkcg->lock);
1181 
1182 	while (!hlist_empty(&blkcg->blkg_list)) {
1183 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1184 						struct blkcg_gq, blkcg_node);
1185 		struct request_queue *q = blkg->q;
1186 
1187 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1188 			/*
1189 			 * Given that the system can accumulate a huge number
1190 			 * of blkgs in pathological cases, check to see if we
1191 			 * need to rescheduling to avoid softlockup.
1192 			 */
1193 			spin_unlock_irq(&blkcg->lock);
1194 			cond_resched();
1195 			spin_lock_irq(&blkcg->lock);
1196 			continue;
1197 		}
1198 
1199 		blkg_destroy(blkg);
1200 		spin_unlock(&q->queue_lock);
1201 	}
1202 
1203 	spin_unlock_irq(&blkcg->lock);
1204 }
1205 
1206 /**
1207  * blkcg_pin_online - pin online state
1208  * @blkcg_css: blkcg of interest
1209  *
1210  * While pinned, a blkcg is kept online.  This is primarily used to
1211  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1212  * while an associated cgwb is still active.
1213  */
1214 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1215 {
1216 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1217 }
1218 
1219 /**
1220  * blkcg_unpin_online - unpin online state
1221  * @blkcg_css: blkcg of interest
1222  *
1223  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1224  * that blkg doesn't go offline while an associated cgwb is still active.
1225  * When this count goes to zero, all active cgwbs have finished so the
1226  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1227  */
1228 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1229 {
1230 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1231 
1232 	do {
1233 		if (!refcount_dec_and_test(&blkcg->online_pin))
1234 			break;
1235 		blkcg_destroy_blkgs(blkcg);
1236 		blkcg = blkcg_parent(blkcg);
1237 	} while (blkcg);
1238 }
1239 
1240 /**
1241  * blkcg_css_offline - cgroup css_offline callback
1242  * @css: css of interest
1243  *
1244  * This function is called when @css is about to go away.  Here the cgwbs are
1245  * offlined first and only once writeback associated with the blkcg has
1246  * finished do we start step 2 (see above).
1247  */
1248 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1249 {
1250 	/* this prevents anyone from attaching or migrating to this blkcg */
1251 	wb_blkcg_offline(css);
1252 
1253 	/* put the base online pin allowing step 2 to be triggered */
1254 	blkcg_unpin_online(css);
1255 }
1256 
1257 static void blkcg_css_free(struct cgroup_subsys_state *css)
1258 {
1259 	struct blkcg *blkcg = css_to_blkcg(css);
1260 	int i;
1261 
1262 	mutex_lock(&blkcg_pol_mutex);
1263 
1264 	list_del(&blkcg->all_blkcgs_node);
1265 
1266 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1267 		if (blkcg->cpd[i])
1268 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1269 
1270 	mutex_unlock(&blkcg_pol_mutex);
1271 
1272 	free_percpu(blkcg->lhead);
1273 	kfree(blkcg);
1274 }
1275 
1276 static struct cgroup_subsys_state *
1277 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1278 {
1279 	struct blkcg *blkcg;
1280 	int i;
1281 
1282 	mutex_lock(&blkcg_pol_mutex);
1283 
1284 	if (!parent_css) {
1285 		blkcg = &blkcg_root;
1286 	} else {
1287 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1288 		if (!blkcg)
1289 			goto unlock;
1290 	}
1291 
1292 	if (init_blkcg_llists(blkcg))
1293 		goto free_blkcg;
1294 
1295 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1296 		struct blkcg_policy *pol = blkcg_policy[i];
1297 		struct blkcg_policy_data *cpd;
1298 
1299 		/*
1300 		 * If the policy hasn't been attached yet, wait for it
1301 		 * to be attached before doing anything else. Otherwise,
1302 		 * check if the policy requires any specific per-cgroup
1303 		 * data: if it does, allocate and initialize it.
1304 		 */
1305 		if (!pol || !pol->cpd_alloc_fn)
1306 			continue;
1307 
1308 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1309 		if (!cpd)
1310 			goto free_pd_blkcg;
1311 
1312 		blkcg->cpd[i] = cpd;
1313 		cpd->blkcg = blkcg;
1314 		cpd->plid = i;
1315 	}
1316 
1317 	spin_lock_init(&blkcg->lock);
1318 	refcount_set(&blkcg->online_pin, 1);
1319 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1320 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1321 #ifdef CONFIG_CGROUP_WRITEBACK
1322 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1323 #endif
1324 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1325 
1326 	mutex_unlock(&blkcg_pol_mutex);
1327 	return &blkcg->css;
1328 
1329 free_pd_blkcg:
1330 	for (i--; i >= 0; i--)
1331 		if (blkcg->cpd[i])
1332 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1333 	free_percpu(blkcg->lhead);
1334 free_blkcg:
1335 	if (blkcg != &blkcg_root)
1336 		kfree(blkcg);
1337 unlock:
1338 	mutex_unlock(&blkcg_pol_mutex);
1339 	return ERR_PTR(-ENOMEM);
1340 }
1341 
1342 static int blkcg_css_online(struct cgroup_subsys_state *css)
1343 {
1344 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1345 
1346 	/*
1347 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1348 	 * don't go offline while cgwbs are still active on them.  Pin the
1349 	 * parent so that offline always happens towards the root.
1350 	 */
1351 	if (parent)
1352 		blkcg_pin_online(&parent->css);
1353 	return 0;
1354 }
1355 
1356 int blkcg_init_disk(struct gendisk *disk)
1357 {
1358 	struct request_queue *q = disk->queue;
1359 	struct blkcg_gq *new_blkg, *blkg;
1360 	bool preloaded;
1361 	int ret;
1362 
1363 	INIT_LIST_HEAD(&q->blkg_list);
1364 	mutex_init(&q->blkcg_mutex);
1365 
1366 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1367 	if (!new_blkg)
1368 		return -ENOMEM;
1369 
1370 	preloaded = !radix_tree_preload(GFP_KERNEL);
1371 
1372 	/* Make sure the root blkg exists. */
1373 	/* spin_lock_irq can serve as RCU read-side critical section. */
1374 	spin_lock_irq(&q->queue_lock);
1375 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1376 	if (IS_ERR(blkg))
1377 		goto err_unlock;
1378 	q->root_blkg = blkg;
1379 	spin_unlock_irq(&q->queue_lock);
1380 
1381 	if (preloaded)
1382 		radix_tree_preload_end();
1383 
1384 	ret = blk_ioprio_init(disk);
1385 	if (ret)
1386 		goto err_destroy_all;
1387 
1388 	ret = blk_throtl_init(disk);
1389 	if (ret)
1390 		goto err_ioprio_exit;
1391 
1392 	return 0;
1393 
1394 err_ioprio_exit:
1395 	blk_ioprio_exit(disk);
1396 err_destroy_all:
1397 	blkg_destroy_all(disk);
1398 	return ret;
1399 err_unlock:
1400 	spin_unlock_irq(&q->queue_lock);
1401 	if (preloaded)
1402 		radix_tree_preload_end();
1403 	return PTR_ERR(blkg);
1404 }
1405 
1406 void blkcg_exit_disk(struct gendisk *disk)
1407 {
1408 	blkg_destroy_all(disk);
1409 	blk_throtl_exit(disk);
1410 }
1411 
1412 static void blkcg_exit(struct task_struct *tsk)
1413 {
1414 	if (tsk->throttle_disk)
1415 		put_disk(tsk->throttle_disk);
1416 	tsk->throttle_disk = NULL;
1417 }
1418 
1419 struct cgroup_subsys io_cgrp_subsys = {
1420 	.css_alloc = blkcg_css_alloc,
1421 	.css_online = blkcg_css_online,
1422 	.css_offline = blkcg_css_offline,
1423 	.css_free = blkcg_css_free,
1424 	.css_rstat_flush = blkcg_rstat_flush,
1425 	.dfl_cftypes = blkcg_files,
1426 	.legacy_cftypes = blkcg_legacy_files,
1427 	.legacy_name = "blkio",
1428 	.exit = blkcg_exit,
1429 #ifdef CONFIG_MEMCG
1430 	/*
1431 	 * This ensures that, if available, memcg is automatically enabled
1432 	 * together on the default hierarchy so that the owner cgroup can
1433 	 * be retrieved from writeback pages.
1434 	 */
1435 	.depends_on = 1 << memory_cgrp_id,
1436 #endif
1437 };
1438 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1439 
1440 /**
1441  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1442  * @disk: gendisk of interest
1443  * @pol: blkcg policy to activate
1444  *
1445  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1446  * bypass mode to populate its blkgs with policy_data for @pol.
1447  *
1448  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1449  * from IO path.  Update of each blkg is protected by both queue and blkcg
1450  * locks so that holding either lock and testing blkcg_policy_enabled() is
1451  * always enough for dereferencing policy data.
1452  *
1453  * The caller is responsible for synchronizing [de]activations and policy
1454  * [un]registerations.  Returns 0 on success, -errno on failure.
1455  */
1456 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1457 {
1458 	struct request_queue *q = disk->queue;
1459 	struct blkg_policy_data *pd_prealloc = NULL;
1460 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1461 	int ret;
1462 
1463 	if (blkcg_policy_enabled(q, pol))
1464 		return 0;
1465 
1466 	if (queue_is_mq(q))
1467 		blk_mq_freeze_queue(q);
1468 retry:
1469 	spin_lock_irq(&q->queue_lock);
1470 
1471 	/* blkg_list is pushed at the head, reverse walk to allocate parents first */
1472 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1473 		struct blkg_policy_data *pd;
1474 
1475 		if (blkg->pd[pol->plid])
1476 			continue;
1477 
1478 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1479 		if (blkg == pinned_blkg) {
1480 			pd = pd_prealloc;
1481 			pd_prealloc = NULL;
1482 		} else {
1483 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1484 					      GFP_NOWAIT | __GFP_NOWARN);
1485 		}
1486 
1487 		if (!pd) {
1488 			/*
1489 			 * GFP_NOWAIT failed.  Free the existing one and
1490 			 * prealloc for @blkg w/ GFP_KERNEL.
1491 			 */
1492 			if (pinned_blkg)
1493 				blkg_put(pinned_blkg);
1494 			blkg_get(blkg);
1495 			pinned_blkg = blkg;
1496 
1497 			spin_unlock_irq(&q->queue_lock);
1498 
1499 			if (pd_prealloc)
1500 				pol->pd_free_fn(pd_prealloc);
1501 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1502 						       GFP_KERNEL);
1503 			if (pd_prealloc)
1504 				goto retry;
1505 			else
1506 				goto enomem;
1507 		}
1508 
1509 		blkg->pd[pol->plid] = pd;
1510 		pd->blkg = blkg;
1511 		pd->plid = pol->plid;
1512 		pd->online = false;
1513 	}
1514 
1515 	/* all allocated, init in the same order */
1516 	if (pol->pd_init_fn)
1517 		list_for_each_entry_reverse(blkg, &q->blkg_list, q_node)
1518 			pol->pd_init_fn(blkg->pd[pol->plid]);
1519 
1520 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1521 		if (pol->pd_online_fn)
1522 			pol->pd_online_fn(blkg->pd[pol->plid]);
1523 		blkg->pd[pol->plid]->online = true;
1524 	}
1525 
1526 	__set_bit(pol->plid, q->blkcg_pols);
1527 	ret = 0;
1528 
1529 	spin_unlock_irq(&q->queue_lock);
1530 out:
1531 	if (queue_is_mq(q))
1532 		blk_mq_unfreeze_queue(q);
1533 	if (pinned_blkg)
1534 		blkg_put(pinned_blkg);
1535 	if (pd_prealloc)
1536 		pol->pd_free_fn(pd_prealloc);
1537 	return ret;
1538 
1539 enomem:
1540 	/* alloc failed, nothing's initialized yet, free everything */
1541 	spin_lock_irq(&q->queue_lock);
1542 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1543 		struct blkcg *blkcg = blkg->blkcg;
1544 
1545 		spin_lock(&blkcg->lock);
1546 		if (blkg->pd[pol->plid]) {
1547 			pol->pd_free_fn(blkg->pd[pol->plid]);
1548 			blkg->pd[pol->plid] = NULL;
1549 		}
1550 		spin_unlock(&blkcg->lock);
1551 	}
1552 	spin_unlock_irq(&q->queue_lock);
1553 	ret = -ENOMEM;
1554 	goto out;
1555 }
1556 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1557 
1558 /**
1559  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1560  * @disk: gendisk of interest
1561  * @pol: blkcg policy to deactivate
1562  *
1563  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1564  * blkcg_activate_policy().
1565  */
1566 void blkcg_deactivate_policy(struct gendisk *disk,
1567 			     const struct blkcg_policy *pol)
1568 {
1569 	struct request_queue *q = disk->queue;
1570 	struct blkcg_gq *blkg;
1571 
1572 	if (!blkcg_policy_enabled(q, pol))
1573 		return;
1574 
1575 	if (queue_is_mq(q))
1576 		blk_mq_freeze_queue(q);
1577 
1578 	mutex_lock(&q->blkcg_mutex);
1579 	spin_lock_irq(&q->queue_lock);
1580 
1581 	__clear_bit(pol->plid, q->blkcg_pols);
1582 
1583 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1584 		struct blkcg *blkcg = blkg->blkcg;
1585 
1586 		spin_lock(&blkcg->lock);
1587 		if (blkg->pd[pol->plid]) {
1588 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1589 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1590 			pol->pd_free_fn(blkg->pd[pol->plid]);
1591 			blkg->pd[pol->plid] = NULL;
1592 		}
1593 		spin_unlock(&blkcg->lock);
1594 	}
1595 
1596 	spin_unlock_irq(&q->queue_lock);
1597 	mutex_unlock(&q->blkcg_mutex);
1598 
1599 	if (queue_is_mq(q))
1600 		blk_mq_unfreeze_queue(q);
1601 }
1602 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1603 
1604 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1605 {
1606 	struct blkcg *blkcg;
1607 
1608 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1609 		if (blkcg->cpd[pol->plid]) {
1610 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1611 			blkcg->cpd[pol->plid] = NULL;
1612 		}
1613 	}
1614 }
1615 
1616 /**
1617  * blkcg_policy_register - register a blkcg policy
1618  * @pol: blkcg policy to register
1619  *
1620  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1621  * successful registration.  Returns 0 on success and -errno on failure.
1622  */
1623 int blkcg_policy_register(struct blkcg_policy *pol)
1624 {
1625 	struct blkcg *blkcg;
1626 	int i, ret;
1627 
1628 	mutex_lock(&blkcg_pol_register_mutex);
1629 	mutex_lock(&blkcg_pol_mutex);
1630 
1631 	/* find an empty slot */
1632 	ret = -ENOSPC;
1633 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1634 		if (!blkcg_policy[i])
1635 			break;
1636 	if (i >= BLKCG_MAX_POLS) {
1637 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1638 		goto err_unlock;
1639 	}
1640 
1641 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1642 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1643 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1644 		goto err_unlock;
1645 
1646 	/* register @pol */
1647 	pol->plid = i;
1648 	blkcg_policy[pol->plid] = pol;
1649 
1650 	/* allocate and install cpd's */
1651 	if (pol->cpd_alloc_fn) {
1652 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1653 			struct blkcg_policy_data *cpd;
1654 
1655 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1656 			if (!cpd)
1657 				goto err_free_cpds;
1658 
1659 			blkcg->cpd[pol->plid] = cpd;
1660 			cpd->blkcg = blkcg;
1661 			cpd->plid = pol->plid;
1662 		}
1663 	}
1664 
1665 	mutex_unlock(&blkcg_pol_mutex);
1666 
1667 	/* everything is in place, add intf files for the new policy */
1668 	if (pol->dfl_cftypes)
1669 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1670 					       pol->dfl_cftypes));
1671 	if (pol->legacy_cftypes)
1672 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1673 						  pol->legacy_cftypes));
1674 	mutex_unlock(&blkcg_pol_register_mutex);
1675 	return 0;
1676 
1677 err_free_cpds:
1678 	if (pol->cpd_free_fn)
1679 		blkcg_free_all_cpd(pol);
1680 
1681 	blkcg_policy[pol->plid] = NULL;
1682 err_unlock:
1683 	mutex_unlock(&blkcg_pol_mutex);
1684 	mutex_unlock(&blkcg_pol_register_mutex);
1685 	return ret;
1686 }
1687 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1688 
1689 /**
1690  * blkcg_policy_unregister - unregister a blkcg policy
1691  * @pol: blkcg policy to unregister
1692  *
1693  * Undo blkcg_policy_register(@pol).  Might sleep.
1694  */
1695 void blkcg_policy_unregister(struct blkcg_policy *pol)
1696 {
1697 	mutex_lock(&blkcg_pol_register_mutex);
1698 
1699 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1700 		goto out_unlock;
1701 
1702 	/* kill the intf files first */
1703 	if (pol->dfl_cftypes)
1704 		cgroup_rm_cftypes(pol->dfl_cftypes);
1705 	if (pol->legacy_cftypes)
1706 		cgroup_rm_cftypes(pol->legacy_cftypes);
1707 
1708 	/* remove cpds and unregister */
1709 	mutex_lock(&blkcg_pol_mutex);
1710 
1711 	if (pol->cpd_free_fn)
1712 		blkcg_free_all_cpd(pol);
1713 
1714 	blkcg_policy[pol->plid] = NULL;
1715 
1716 	mutex_unlock(&blkcg_pol_mutex);
1717 out_unlock:
1718 	mutex_unlock(&blkcg_pol_register_mutex);
1719 }
1720 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1721 
1722 /*
1723  * Scale the accumulated delay based on how long it has been since we updated
1724  * the delay.  We only call this when we are adding delay, in case it's been a
1725  * while since we added delay, and when we are checking to see if we need to
1726  * delay a task, to account for any delays that may have occurred.
1727  */
1728 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1729 {
1730 	u64 old = atomic64_read(&blkg->delay_start);
1731 
1732 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1733 	if (atomic_read(&blkg->use_delay) < 0)
1734 		return;
1735 
1736 	/*
1737 	 * We only want to scale down every second.  The idea here is that we
1738 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1739 	 * time window.  We only want to throttle tasks for recent delay that
1740 	 * has occurred, in 1 second time windows since that's the maximum
1741 	 * things can be throttled.  We save the current delay window in
1742 	 * blkg->last_delay so we know what amount is still left to be charged
1743 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1744 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1745 	 * are ok with whatever is happening now, and we can take away more of
1746 	 * the accumulated delay as we've already throttled enough that
1747 	 * everybody is happy with their IO latencies.
1748 	 */
1749 	if (time_before64(old + NSEC_PER_SEC, now) &&
1750 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1751 		u64 cur = atomic64_read(&blkg->delay_nsec);
1752 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1753 		int cur_use = atomic_read(&blkg->use_delay);
1754 
1755 		/*
1756 		 * We've been unthrottled, subtract a larger chunk of our
1757 		 * accumulated delay.
1758 		 */
1759 		if (cur_use < blkg->last_use)
1760 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1761 
1762 		/*
1763 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1764 		 * should only ever be growing except here where we subtract out
1765 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1766 		 * rather not end up with negative numbers.
1767 		 */
1768 		if (unlikely(cur < sub)) {
1769 			atomic64_set(&blkg->delay_nsec, 0);
1770 			blkg->last_delay = 0;
1771 		} else {
1772 			atomic64_sub(sub, &blkg->delay_nsec);
1773 			blkg->last_delay = cur - sub;
1774 		}
1775 		blkg->last_use = cur_use;
1776 	}
1777 }
1778 
1779 /*
1780  * This is called when we want to actually walk up the hierarchy and check to
1781  * see if we need to throttle, and then actually throttle if there is some
1782  * accumulated delay.  This should only be called upon return to user space so
1783  * we're not holding some lock that would induce a priority inversion.
1784  */
1785 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1786 {
1787 	unsigned long pflags;
1788 	bool clamp;
1789 	u64 now = ktime_to_ns(ktime_get());
1790 	u64 exp;
1791 	u64 delay_nsec = 0;
1792 	int tok;
1793 
1794 	while (blkg->parent) {
1795 		int use_delay = atomic_read(&blkg->use_delay);
1796 
1797 		if (use_delay) {
1798 			u64 this_delay;
1799 
1800 			blkcg_scale_delay(blkg, now);
1801 			this_delay = atomic64_read(&blkg->delay_nsec);
1802 			if (this_delay > delay_nsec) {
1803 				delay_nsec = this_delay;
1804 				clamp = use_delay > 0;
1805 			}
1806 		}
1807 		blkg = blkg->parent;
1808 	}
1809 
1810 	if (!delay_nsec)
1811 		return;
1812 
1813 	/*
1814 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1815 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1816 	 * delay, and we want userspace to be able to do _something_ so cap the
1817 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1818 	 * tasks will be delayed for 0.25 second for every syscall. If
1819 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1820 	 * caller is responsible for regulating the range.
1821 	 */
1822 	if (clamp)
1823 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1824 
1825 	if (use_memdelay)
1826 		psi_memstall_enter(&pflags);
1827 
1828 	exp = ktime_add_ns(now, delay_nsec);
1829 	tok = io_schedule_prepare();
1830 	do {
1831 		__set_current_state(TASK_KILLABLE);
1832 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1833 			break;
1834 	} while (!fatal_signal_pending(current));
1835 	io_schedule_finish(tok);
1836 
1837 	if (use_memdelay)
1838 		psi_memstall_leave(&pflags);
1839 }
1840 
1841 /**
1842  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1843  *
1844  * This is only called if we've been marked with set_notify_resume().  Obviously
1845  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1846  * check to see if current->throttle_disk is set and if not this doesn't do
1847  * anything.  This should only ever be called by the resume code, it's not meant
1848  * to be called by people willy-nilly as it will actually do the work to
1849  * throttle the task if it is setup for throttling.
1850  */
1851 void blkcg_maybe_throttle_current(void)
1852 {
1853 	struct gendisk *disk = current->throttle_disk;
1854 	struct blkcg *blkcg;
1855 	struct blkcg_gq *blkg;
1856 	bool use_memdelay = current->use_memdelay;
1857 
1858 	if (!disk)
1859 		return;
1860 
1861 	current->throttle_disk = NULL;
1862 	current->use_memdelay = false;
1863 
1864 	rcu_read_lock();
1865 	blkcg = css_to_blkcg(blkcg_css());
1866 	if (!blkcg)
1867 		goto out;
1868 	blkg = blkg_lookup(blkcg, disk->queue);
1869 	if (!blkg)
1870 		goto out;
1871 	if (!blkg_tryget(blkg))
1872 		goto out;
1873 	rcu_read_unlock();
1874 
1875 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1876 	blkg_put(blkg);
1877 	put_disk(disk);
1878 	return;
1879 out:
1880 	rcu_read_unlock();
1881 }
1882 
1883 /**
1884  * blkcg_schedule_throttle - this task needs to check for throttling
1885  * @disk: disk to throttle
1886  * @use_memdelay: do we charge this to memory delay for PSI
1887  *
1888  * This is called by the IO controller when we know there's delay accumulated
1889  * for the blkg for this task.  We do not pass the blkg because there are places
1890  * we call this that may not have that information, the swapping code for
1891  * instance will only have a block_device at that point.  This set's the
1892  * notify_resume for the task to check and see if it requires throttling before
1893  * returning to user space.
1894  *
1895  * We will only schedule once per syscall.  You can call this over and over
1896  * again and it will only do the check once upon return to user space, and only
1897  * throttle once.  If the task needs to be throttled again it'll need to be
1898  * re-set at the next time we see the task.
1899  */
1900 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1901 {
1902 	if (unlikely(current->flags & PF_KTHREAD))
1903 		return;
1904 
1905 	if (current->throttle_disk != disk) {
1906 		if (test_bit(GD_DEAD, &disk->state))
1907 			return;
1908 		get_device(disk_to_dev(disk));
1909 
1910 		if (current->throttle_disk)
1911 			put_disk(current->throttle_disk);
1912 		current->throttle_disk = disk;
1913 	}
1914 
1915 	if (use_memdelay)
1916 		current->use_memdelay = use_memdelay;
1917 	set_notify_resume(current);
1918 }
1919 
1920 /**
1921  * blkcg_add_delay - add delay to this blkg
1922  * @blkg: blkg of interest
1923  * @now: the current time in nanoseconds
1924  * @delta: how many nanoseconds of delay to add
1925  *
1926  * Charge @delta to the blkg's current delay accumulation.  This is used to
1927  * throttle tasks if an IO controller thinks we need more throttling.
1928  */
1929 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1930 {
1931 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1932 		return;
1933 	blkcg_scale_delay(blkg, now);
1934 	atomic64_add(delta, &blkg->delay_nsec);
1935 }
1936 
1937 /**
1938  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1939  * @bio: target bio
1940  * @css: target css
1941  *
1942  * As the failure mode here is to walk up the blkg tree, this ensure that the
1943  * blkg->parent pointers are always valid.  This returns the blkg that it ended
1944  * up taking a reference on or %NULL if no reference was taken.
1945  */
1946 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
1947 		struct cgroup_subsys_state *css)
1948 {
1949 	struct blkcg_gq *blkg, *ret_blkg = NULL;
1950 
1951 	rcu_read_lock();
1952 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
1953 	while (blkg) {
1954 		if (blkg_tryget(blkg)) {
1955 			ret_blkg = blkg;
1956 			break;
1957 		}
1958 		blkg = blkg->parent;
1959 	}
1960 	rcu_read_unlock();
1961 
1962 	return ret_blkg;
1963 }
1964 
1965 /**
1966  * bio_associate_blkg_from_css - associate a bio with a specified css
1967  * @bio: target bio
1968  * @css: target css
1969  *
1970  * Associate @bio with the blkg found by combining the css's blkg and the
1971  * request_queue of the @bio.  An association failure is handled by walking up
1972  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
1973  * and q->root_blkg.  This situation only happens when a cgroup is dying and
1974  * then the remaining bios will spill to the closest alive blkg.
1975  *
1976  * A reference will be taken on the blkg and will be released when @bio is
1977  * freed.
1978  */
1979 void bio_associate_blkg_from_css(struct bio *bio,
1980 				 struct cgroup_subsys_state *css)
1981 {
1982 	if (bio->bi_blkg)
1983 		blkg_put(bio->bi_blkg);
1984 
1985 	if (css && css->parent) {
1986 		bio->bi_blkg = blkg_tryget_closest(bio, css);
1987 	} else {
1988 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
1989 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
1990 	}
1991 }
1992 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
1993 
1994 /**
1995  * bio_associate_blkg - associate a bio with a blkg
1996  * @bio: target bio
1997  *
1998  * Associate @bio with the blkg found from the bio's css and request_queue.
1999  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2000  * already associated, the css is reused and association redone as the
2001  * request_queue may have changed.
2002  */
2003 void bio_associate_blkg(struct bio *bio)
2004 {
2005 	struct cgroup_subsys_state *css;
2006 
2007 	rcu_read_lock();
2008 
2009 	if (bio->bi_blkg)
2010 		css = bio_blkcg_css(bio);
2011 	else
2012 		css = blkcg_css();
2013 
2014 	bio_associate_blkg_from_css(bio, css);
2015 
2016 	rcu_read_unlock();
2017 }
2018 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2019 
2020 /**
2021  * bio_clone_blkg_association - clone blkg association from src to dst bio
2022  * @dst: destination bio
2023  * @src: source bio
2024  */
2025 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2026 {
2027 	if (src->bi_blkg)
2028 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2029 }
2030 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2031 
2032 static int blk_cgroup_io_type(struct bio *bio)
2033 {
2034 	if (op_is_discard(bio->bi_opf))
2035 		return BLKG_IOSTAT_DISCARD;
2036 	if (op_is_write(bio->bi_opf))
2037 		return BLKG_IOSTAT_WRITE;
2038 	return BLKG_IOSTAT_READ;
2039 }
2040 
2041 void blk_cgroup_bio_start(struct bio *bio)
2042 {
2043 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2044 	int rwd = blk_cgroup_io_type(bio), cpu;
2045 	struct blkg_iostat_set *bis;
2046 	unsigned long flags;
2047 
2048 	/* Root-level stats are sourced from system-wide IO stats */
2049 	if (!cgroup_parent(blkcg->css.cgroup))
2050 		return;
2051 
2052 	cpu = get_cpu();
2053 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2054 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2055 
2056 	/*
2057 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2058 	 * bio and we would have already accounted for the size of the bio.
2059 	 */
2060 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2061 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2062 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2063 	}
2064 	bis->cur.ios[rwd]++;
2065 
2066 	/*
2067 	 * If the iostat_cpu isn't in a lockless list, put it into the
2068 	 * list to indicate that a stat update is pending.
2069 	 */
2070 	if (!READ_ONCE(bis->lqueued)) {
2071 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2072 
2073 		llist_add(&bis->lnode, lhead);
2074 		WRITE_ONCE(bis->lqueued, true);
2075 		percpu_ref_get(&bis->blkg->refcnt);
2076 	}
2077 
2078 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2079 	if (cgroup_subsys_on_dfl(io_cgrp_subsys))
2080 		cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2081 	put_cpu();
2082 }
2083 
2084 bool blk_cgroup_congested(void)
2085 {
2086 	struct cgroup_subsys_state *css;
2087 	bool ret = false;
2088 
2089 	rcu_read_lock();
2090 	for (css = blkcg_css(); css; css = css->parent) {
2091 		if (atomic_read(&css->cgroup->congestion_count)) {
2092 			ret = true;
2093 			break;
2094 		}
2095 	}
2096 	rcu_read_unlock();
2097 	return ret;
2098 }
2099 
2100 module_param(blkcg_debug_stats, bool, 0644);
2101 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2102