1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 /* 38 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 39 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 40 * policy [un]register operations including cgroup file additions / 41 * removals. Putting cgroup file registration outside blkcg_pol_mutex 42 * allows grabbing it from cgroup callbacks. 43 */ 44 static DEFINE_MUTEX(blkcg_pol_register_mutex); 45 static DEFINE_MUTEX(blkcg_pol_mutex); 46 47 struct blkcg blkcg_root; 48 EXPORT_SYMBOL_GPL(blkcg_root); 49 50 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 51 EXPORT_SYMBOL_GPL(blkcg_root_css); 52 53 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 54 55 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 56 57 bool blkcg_debug_stats = false; 58 59 #define BLKG_DESTROY_BATCH_SIZE 64 60 61 /* 62 * Lockless lists for tracking IO stats update 63 * 64 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 65 * There are multiple blkg's (one for each block device) attached to each 66 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 67 * but it doesn't know which blkg has the updated stats. If there are many 68 * block devices in a system, the cost of iterating all the blkg's to flush 69 * out the IO stats can be high. To reduce such overhead, a set of percpu 70 * lockless lists (lhead) per blkcg are used to track the set of recently 71 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 72 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 73 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 74 * References to blkg are gotten and then put back in the process to 75 * protect against blkg removal. 76 * 77 * Return: 0 if successful or -ENOMEM if allocation fails. 78 */ 79 static int init_blkcg_llists(struct blkcg *blkcg) 80 { 81 int cpu; 82 83 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 84 if (!blkcg->lhead) 85 return -ENOMEM; 86 87 for_each_possible_cpu(cpu) 88 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 89 return 0; 90 } 91 92 /** 93 * blkcg_css - find the current css 94 * 95 * Find the css associated with either the kthread or the current task. 96 * This may return a dying css, so it is up to the caller to use tryget logic 97 * to confirm it is alive and well. 98 */ 99 static struct cgroup_subsys_state *blkcg_css(void) 100 { 101 struct cgroup_subsys_state *css; 102 103 css = kthread_blkcg(); 104 if (css) 105 return css; 106 return task_css(current, io_cgrp_id); 107 } 108 109 static bool blkcg_policy_enabled(struct request_queue *q, 110 const struct blkcg_policy *pol) 111 { 112 return pol && test_bit(pol->plid, q->blkcg_pols); 113 } 114 115 static void blkg_free_workfn(struct work_struct *work) 116 { 117 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 118 free_work); 119 struct request_queue *q = blkg->q; 120 int i; 121 122 /* 123 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 124 * in order to make sure pd_free_fn() is called in order, the deletion 125 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 126 * blkcg_mutex is used to synchronize blkg_free_workfn() and 127 * blkcg_deactivate_policy(). 128 */ 129 mutex_lock(&q->blkcg_mutex); 130 for (i = 0; i < BLKCG_MAX_POLS; i++) 131 if (blkg->pd[i]) 132 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 133 if (blkg->parent) 134 blkg_put(blkg->parent); 135 list_del_init(&blkg->q_node); 136 mutex_unlock(&q->blkcg_mutex); 137 138 blk_put_queue(q); 139 free_percpu(blkg->iostat_cpu); 140 percpu_ref_exit(&blkg->refcnt); 141 kfree(blkg); 142 } 143 144 /** 145 * blkg_free - free a blkg 146 * @blkg: blkg to free 147 * 148 * Free @blkg which may be partially allocated. 149 */ 150 static void blkg_free(struct blkcg_gq *blkg) 151 { 152 if (!blkg) 153 return; 154 155 /* 156 * Both ->pd_free_fn() and request queue's release handler may 157 * sleep, so free us by scheduling one work func 158 */ 159 INIT_WORK(&blkg->free_work, blkg_free_workfn); 160 schedule_work(&blkg->free_work); 161 } 162 163 static void __blkg_release(struct rcu_head *rcu) 164 { 165 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 166 167 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 168 WARN_ON(!bio_list_empty(&blkg->async_bios)); 169 #endif 170 171 /* release the blkcg and parent blkg refs this blkg has been holding */ 172 css_put(&blkg->blkcg->css); 173 blkg_free(blkg); 174 } 175 176 /* 177 * A group is RCU protected, but having an rcu lock does not mean that one 178 * can access all the fields of blkg and assume these are valid. For 179 * example, don't try to follow throtl_data and request queue links. 180 * 181 * Having a reference to blkg under an rcu allows accesses to only values 182 * local to groups like group stats and group rate limits. 183 */ 184 static void blkg_release(struct percpu_ref *ref) 185 { 186 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 187 188 call_rcu(&blkg->rcu_head, __blkg_release); 189 } 190 191 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 192 static struct workqueue_struct *blkcg_punt_bio_wq; 193 194 static void blkg_async_bio_workfn(struct work_struct *work) 195 { 196 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 197 async_bio_work); 198 struct bio_list bios = BIO_EMPTY_LIST; 199 struct bio *bio; 200 struct blk_plug plug; 201 bool need_plug = false; 202 203 /* as long as there are pending bios, @blkg can't go away */ 204 spin_lock(&blkg->async_bio_lock); 205 bio_list_merge(&bios, &blkg->async_bios); 206 bio_list_init(&blkg->async_bios); 207 spin_unlock(&blkg->async_bio_lock); 208 209 /* start plug only when bio_list contains at least 2 bios */ 210 if (bios.head && bios.head->bi_next) { 211 need_plug = true; 212 blk_start_plug(&plug); 213 } 214 while ((bio = bio_list_pop(&bios))) 215 submit_bio(bio); 216 if (need_plug) 217 blk_finish_plug(&plug); 218 } 219 220 /* 221 * When a shared kthread issues a bio for a cgroup, doing so synchronously can 222 * lead to priority inversions as the kthread can be trapped waiting for that 223 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to 224 * a dedicated per-blkcg work item to avoid such priority inversions. 225 */ 226 void blkcg_punt_bio_submit(struct bio *bio) 227 { 228 struct blkcg_gq *blkg = bio->bi_blkg; 229 230 if (blkg->parent) { 231 spin_lock(&blkg->async_bio_lock); 232 bio_list_add(&blkg->async_bios, bio); 233 spin_unlock(&blkg->async_bio_lock); 234 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 235 } else { 236 /* never bounce for the root cgroup */ 237 submit_bio(bio); 238 } 239 } 240 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit); 241 242 static int __init blkcg_punt_bio_init(void) 243 { 244 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 245 WQ_MEM_RECLAIM | WQ_FREEZABLE | 246 WQ_UNBOUND | WQ_SYSFS, 0); 247 if (!blkcg_punt_bio_wq) 248 return -ENOMEM; 249 return 0; 250 } 251 subsys_initcall(blkcg_punt_bio_init); 252 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */ 253 254 /** 255 * bio_blkcg_css - return the blkcg CSS associated with a bio 256 * @bio: target bio 257 * 258 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 259 * associated. Callers are expected to either handle %NULL or know association 260 * has been done prior to calling this. 261 */ 262 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 263 { 264 if (!bio || !bio->bi_blkg) 265 return NULL; 266 return &bio->bi_blkg->blkcg->css; 267 } 268 EXPORT_SYMBOL_GPL(bio_blkcg_css); 269 270 /** 271 * blkcg_parent - get the parent of a blkcg 272 * @blkcg: blkcg of interest 273 * 274 * Return the parent blkcg of @blkcg. Can be called anytime. 275 */ 276 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 277 { 278 return css_to_blkcg(blkcg->css.parent); 279 } 280 281 /** 282 * blkg_alloc - allocate a blkg 283 * @blkcg: block cgroup the new blkg is associated with 284 * @disk: gendisk the new blkg is associated with 285 * @gfp_mask: allocation mask to use 286 * 287 * Allocate a new blkg assocating @blkcg and @q. 288 */ 289 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 290 gfp_t gfp_mask) 291 { 292 struct blkcg_gq *blkg; 293 int i, cpu; 294 295 /* alloc and init base part */ 296 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 297 if (!blkg) 298 return NULL; 299 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 300 goto out_free_blkg; 301 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 302 if (!blkg->iostat_cpu) 303 goto out_exit_refcnt; 304 if (!blk_get_queue(disk->queue)) 305 goto out_free_iostat; 306 307 blkg->q = disk->queue; 308 INIT_LIST_HEAD(&blkg->q_node); 309 blkg->blkcg = blkcg; 310 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 311 spin_lock_init(&blkg->async_bio_lock); 312 bio_list_init(&blkg->async_bios); 313 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 314 #endif 315 316 u64_stats_init(&blkg->iostat.sync); 317 for_each_possible_cpu(cpu) { 318 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 319 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 320 } 321 322 for (i = 0; i < BLKCG_MAX_POLS; i++) { 323 struct blkcg_policy *pol = blkcg_policy[i]; 324 struct blkg_policy_data *pd; 325 326 if (!blkcg_policy_enabled(disk->queue, pol)) 327 continue; 328 329 /* alloc per-policy data and attach it to blkg */ 330 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 331 if (!pd) 332 goto out_free_pds; 333 blkg->pd[i] = pd; 334 pd->blkg = blkg; 335 pd->plid = i; 336 pd->online = false; 337 } 338 339 return blkg; 340 341 out_free_pds: 342 while (--i >= 0) 343 if (blkg->pd[i]) 344 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 345 blk_put_queue(disk->queue); 346 out_free_iostat: 347 free_percpu(blkg->iostat_cpu); 348 out_exit_refcnt: 349 percpu_ref_exit(&blkg->refcnt); 350 out_free_blkg: 351 kfree(blkg); 352 return NULL; 353 } 354 355 /* 356 * If @new_blkg is %NULL, this function tries to allocate a new one as 357 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 358 */ 359 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 360 struct blkcg_gq *new_blkg) 361 { 362 struct blkcg_gq *blkg; 363 int i, ret; 364 365 lockdep_assert_held(&disk->queue->queue_lock); 366 367 /* request_queue is dying, do not create/recreate a blkg */ 368 if (blk_queue_dying(disk->queue)) { 369 ret = -ENODEV; 370 goto err_free_blkg; 371 } 372 373 /* blkg holds a reference to blkcg */ 374 if (!css_tryget_online(&blkcg->css)) { 375 ret = -ENODEV; 376 goto err_free_blkg; 377 } 378 379 /* allocate */ 380 if (!new_blkg) { 381 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 382 if (unlikely(!new_blkg)) { 383 ret = -ENOMEM; 384 goto err_put_css; 385 } 386 } 387 blkg = new_blkg; 388 389 /* link parent */ 390 if (blkcg_parent(blkcg)) { 391 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 392 if (WARN_ON_ONCE(!blkg->parent)) { 393 ret = -ENODEV; 394 goto err_put_css; 395 } 396 blkg_get(blkg->parent); 397 } 398 399 /* invoke per-policy init */ 400 for (i = 0; i < BLKCG_MAX_POLS; i++) { 401 struct blkcg_policy *pol = blkcg_policy[i]; 402 403 if (blkg->pd[i] && pol->pd_init_fn) 404 pol->pd_init_fn(blkg->pd[i]); 405 } 406 407 /* insert */ 408 spin_lock(&blkcg->lock); 409 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 410 if (likely(!ret)) { 411 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 412 list_add(&blkg->q_node, &disk->queue->blkg_list); 413 414 for (i = 0; i < BLKCG_MAX_POLS; i++) { 415 struct blkcg_policy *pol = blkcg_policy[i]; 416 417 if (blkg->pd[i]) { 418 if (pol->pd_online_fn) 419 pol->pd_online_fn(blkg->pd[i]); 420 blkg->pd[i]->online = true; 421 } 422 } 423 } 424 blkg->online = true; 425 spin_unlock(&blkcg->lock); 426 427 if (!ret) 428 return blkg; 429 430 /* @blkg failed fully initialized, use the usual release path */ 431 blkg_put(blkg); 432 return ERR_PTR(ret); 433 434 err_put_css: 435 css_put(&blkcg->css); 436 err_free_blkg: 437 if (new_blkg) 438 blkg_free(new_blkg); 439 return ERR_PTR(ret); 440 } 441 442 /** 443 * blkg_lookup_create - lookup blkg, try to create one if not there 444 * @blkcg: blkcg of interest 445 * @disk: gendisk of interest 446 * 447 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 448 * create one. blkg creation is performed recursively from blkcg_root such 449 * that all non-root blkg's have access to the parent blkg. This function 450 * should be called under RCU read lock and takes @disk->queue->queue_lock. 451 * 452 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 453 * down from root. 454 */ 455 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 456 struct gendisk *disk) 457 { 458 struct request_queue *q = disk->queue; 459 struct blkcg_gq *blkg; 460 unsigned long flags; 461 462 WARN_ON_ONCE(!rcu_read_lock_held()); 463 464 blkg = blkg_lookup(blkcg, q); 465 if (blkg) 466 return blkg; 467 468 spin_lock_irqsave(&q->queue_lock, flags); 469 blkg = blkg_lookup(blkcg, q); 470 if (blkg) { 471 if (blkcg != &blkcg_root && 472 blkg != rcu_dereference(blkcg->blkg_hint)) 473 rcu_assign_pointer(blkcg->blkg_hint, blkg); 474 goto found; 475 } 476 477 /* 478 * Create blkgs walking down from blkcg_root to @blkcg, so that all 479 * non-root blkgs have access to their parents. Returns the closest 480 * blkg to the intended blkg should blkg_create() fail. 481 */ 482 while (true) { 483 struct blkcg *pos = blkcg; 484 struct blkcg *parent = blkcg_parent(blkcg); 485 struct blkcg_gq *ret_blkg = q->root_blkg; 486 487 while (parent) { 488 blkg = blkg_lookup(parent, q); 489 if (blkg) { 490 /* remember closest blkg */ 491 ret_blkg = blkg; 492 break; 493 } 494 pos = parent; 495 parent = blkcg_parent(parent); 496 } 497 498 blkg = blkg_create(pos, disk, NULL); 499 if (IS_ERR(blkg)) { 500 blkg = ret_blkg; 501 break; 502 } 503 if (pos == blkcg) 504 break; 505 } 506 507 found: 508 spin_unlock_irqrestore(&q->queue_lock, flags); 509 return blkg; 510 } 511 512 static void blkg_destroy(struct blkcg_gq *blkg) 513 { 514 struct blkcg *blkcg = blkg->blkcg; 515 int i; 516 517 lockdep_assert_held(&blkg->q->queue_lock); 518 lockdep_assert_held(&blkcg->lock); 519 520 /* 521 * blkg stays on the queue list until blkg_free_workfn(), see details in 522 * blkg_free_workfn(), hence this function can be called from 523 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 524 * blkg_free_workfn(). 525 */ 526 if (hlist_unhashed(&blkg->blkcg_node)) 527 return; 528 529 for (i = 0; i < BLKCG_MAX_POLS; i++) { 530 struct blkcg_policy *pol = blkcg_policy[i]; 531 532 if (blkg->pd[i] && blkg->pd[i]->online) { 533 blkg->pd[i]->online = false; 534 if (pol->pd_offline_fn) 535 pol->pd_offline_fn(blkg->pd[i]); 536 } 537 } 538 539 blkg->online = false; 540 541 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 542 hlist_del_init_rcu(&blkg->blkcg_node); 543 544 /* 545 * Both setting lookup hint to and clearing it from @blkg are done 546 * under queue_lock. If it's not pointing to @blkg now, it never 547 * will. Hint assignment itself can race safely. 548 */ 549 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 550 rcu_assign_pointer(blkcg->blkg_hint, NULL); 551 552 /* 553 * Put the reference taken at the time of creation so that when all 554 * queues are gone, group can be destroyed. 555 */ 556 percpu_ref_kill(&blkg->refcnt); 557 } 558 559 static void blkg_destroy_all(struct gendisk *disk) 560 { 561 struct request_queue *q = disk->queue; 562 struct blkcg_gq *blkg, *n; 563 int count = BLKG_DESTROY_BATCH_SIZE; 564 565 restart: 566 spin_lock_irq(&q->queue_lock); 567 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 568 struct blkcg *blkcg = blkg->blkcg; 569 570 spin_lock(&blkcg->lock); 571 blkg_destroy(blkg); 572 spin_unlock(&blkcg->lock); 573 574 /* 575 * in order to avoid holding the spin lock for too long, release 576 * it when a batch of blkgs are destroyed. 577 */ 578 if (!(--count)) { 579 count = BLKG_DESTROY_BATCH_SIZE; 580 spin_unlock_irq(&q->queue_lock); 581 cond_resched(); 582 goto restart; 583 } 584 } 585 586 q->root_blkg = NULL; 587 spin_unlock_irq(&q->queue_lock); 588 } 589 590 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 591 struct cftype *cftype, u64 val) 592 { 593 struct blkcg *blkcg = css_to_blkcg(css); 594 struct blkcg_gq *blkg; 595 int i, cpu; 596 597 mutex_lock(&blkcg_pol_mutex); 598 spin_lock_irq(&blkcg->lock); 599 600 /* 601 * Note that stat reset is racy - it doesn't synchronize against 602 * stat updates. This is a debug feature which shouldn't exist 603 * anyway. If you get hit by a race, retry. 604 */ 605 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 606 for_each_possible_cpu(cpu) { 607 struct blkg_iostat_set *bis = 608 per_cpu_ptr(blkg->iostat_cpu, cpu); 609 memset(bis, 0, sizeof(*bis)); 610 } 611 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 612 613 for (i = 0; i < BLKCG_MAX_POLS; i++) { 614 struct blkcg_policy *pol = blkcg_policy[i]; 615 616 if (blkg->pd[i] && pol->pd_reset_stats_fn) 617 pol->pd_reset_stats_fn(blkg->pd[i]); 618 } 619 } 620 621 spin_unlock_irq(&blkcg->lock); 622 mutex_unlock(&blkcg_pol_mutex); 623 return 0; 624 } 625 626 const char *blkg_dev_name(struct blkcg_gq *blkg) 627 { 628 if (!blkg->q->disk) 629 return NULL; 630 return bdi_dev_name(blkg->q->disk->bdi); 631 } 632 633 /** 634 * blkcg_print_blkgs - helper for printing per-blkg data 635 * @sf: seq_file to print to 636 * @blkcg: blkcg of interest 637 * @prfill: fill function to print out a blkg 638 * @pol: policy in question 639 * @data: data to be passed to @prfill 640 * @show_total: to print out sum of prfill return values or not 641 * 642 * This function invokes @prfill on each blkg of @blkcg if pd for the 643 * policy specified by @pol exists. @prfill is invoked with @sf, the 644 * policy data and @data and the matching queue lock held. If @show_total 645 * is %true, the sum of the return values from @prfill is printed with 646 * "Total" label at the end. 647 * 648 * This is to be used to construct print functions for 649 * cftype->read_seq_string method. 650 */ 651 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 652 u64 (*prfill)(struct seq_file *, 653 struct blkg_policy_data *, int), 654 const struct blkcg_policy *pol, int data, 655 bool show_total) 656 { 657 struct blkcg_gq *blkg; 658 u64 total = 0; 659 660 rcu_read_lock(); 661 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 662 spin_lock_irq(&blkg->q->queue_lock); 663 if (blkcg_policy_enabled(blkg->q, pol)) 664 total += prfill(sf, blkg->pd[pol->plid], data); 665 spin_unlock_irq(&blkg->q->queue_lock); 666 } 667 rcu_read_unlock(); 668 669 if (show_total) 670 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 671 } 672 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 673 674 /** 675 * __blkg_prfill_u64 - prfill helper for a single u64 value 676 * @sf: seq_file to print to 677 * @pd: policy private data of interest 678 * @v: value to print 679 * 680 * Print @v to @sf for the device associated with @pd. 681 */ 682 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 683 { 684 const char *dname = blkg_dev_name(pd->blkg); 685 686 if (!dname) 687 return 0; 688 689 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 690 return v; 691 } 692 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 693 694 /** 695 * blkg_conf_init - initialize a blkg_conf_ctx 696 * @ctx: blkg_conf_ctx to initialize 697 * @input: input string 698 * 699 * Initialize @ctx which can be used to parse blkg config input string @input. 700 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and 701 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit(). 702 */ 703 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input) 704 { 705 *ctx = (struct blkg_conf_ctx){ .input = input }; 706 } 707 EXPORT_SYMBOL_GPL(blkg_conf_init); 708 709 /** 710 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update 711 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 712 * 713 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from 714 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is 715 * set to point past the device node prefix. 716 * 717 * This function may be called multiple times on @ctx and the extra calls become 718 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function 719 * explicitly if bdev access is needed without resolving the blkcg / policy part 720 * of @ctx->input. Returns -errno on error. 721 */ 722 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx) 723 { 724 char *input = ctx->input; 725 unsigned int major, minor; 726 struct block_device *bdev; 727 int key_len; 728 729 if (ctx->bdev) 730 return 0; 731 732 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 733 return -EINVAL; 734 735 input += key_len; 736 if (!isspace(*input)) 737 return -EINVAL; 738 input = skip_spaces(input); 739 740 bdev = blkdev_get_no_open(MKDEV(major, minor)); 741 if (!bdev) 742 return -ENODEV; 743 if (bdev_is_partition(bdev)) { 744 blkdev_put_no_open(bdev); 745 return -ENODEV; 746 } 747 748 ctx->body = input; 749 ctx->bdev = bdev; 750 return 0; 751 } 752 753 /** 754 * blkg_conf_prep - parse and prepare for per-blkg config update 755 * @blkcg: target block cgroup 756 * @pol: target policy 757 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 758 * 759 * Parse per-blkg config update from @ctx->input and initialize @ctx 760 * accordingly. On success, @ctx->body points to the part of @ctx->input 761 * following MAJ:MIN, @ctx->bdev points to the target block device and 762 * @ctx->blkg to the blkg being configured. 763 * 764 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this 765 * function returns with queue lock held and must be followed by 766 * blkg_conf_exit(). 767 */ 768 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 769 struct blkg_conf_ctx *ctx) 770 __acquires(&bdev->bd_queue->queue_lock) 771 { 772 struct gendisk *disk; 773 struct request_queue *q; 774 struct blkcg_gq *blkg; 775 int ret; 776 777 ret = blkg_conf_open_bdev(ctx); 778 if (ret) 779 return ret; 780 781 disk = ctx->bdev->bd_disk; 782 q = disk->queue; 783 784 /* 785 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 786 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 787 */ 788 ret = blk_queue_enter(q, 0); 789 if (ret) 790 goto fail; 791 792 spin_lock_irq(&q->queue_lock); 793 794 if (!blkcg_policy_enabled(q, pol)) { 795 ret = -EOPNOTSUPP; 796 goto fail_unlock; 797 } 798 799 blkg = blkg_lookup(blkcg, q); 800 if (blkg) 801 goto success; 802 803 /* 804 * Create blkgs walking down from blkcg_root to @blkcg, so that all 805 * non-root blkgs have access to their parents. 806 */ 807 while (true) { 808 struct blkcg *pos = blkcg; 809 struct blkcg *parent; 810 struct blkcg_gq *new_blkg; 811 812 parent = blkcg_parent(blkcg); 813 while (parent && !blkg_lookup(parent, q)) { 814 pos = parent; 815 parent = blkcg_parent(parent); 816 } 817 818 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 819 spin_unlock_irq(&q->queue_lock); 820 821 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 822 if (unlikely(!new_blkg)) { 823 ret = -ENOMEM; 824 goto fail_exit_queue; 825 } 826 827 if (radix_tree_preload(GFP_KERNEL)) { 828 blkg_free(new_blkg); 829 ret = -ENOMEM; 830 goto fail_exit_queue; 831 } 832 833 spin_lock_irq(&q->queue_lock); 834 835 if (!blkcg_policy_enabled(q, pol)) { 836 blkg_free(new_blkg); 837 ret = -EOPNOTSUPP; 838 goto fail_preloaded; 839 } 840 841 blkg = blkg_lookup(pos, q); 842 if (blkg) { 843 blkg_free(new_blkg); 844 } else { 845 blkg = blkg_create(pos, disk, new_blkg); 846 if (IS_ERR(blkg)) { 847 ret = PTR_ERR(blkg); 848 goto fail_preloaded; 849 } 850 } 851 852 radix_tree_preload_end(); 853 854 if (pos == blkcg) 855 goto success; 856 } 857 success: 858 blk_queue_exit(q); 859 ctx->blkg = blkg; 860 return 0; 861 862 fail_preloaded: 863 radix_tree_preload_end(); 864 fail_unlock: 865 spin_unlock_irq(&q->queue_lock); 866 fail_exit_queue: 867 blk_queue_exit(q); 868 fail: 869 /* 870 * If queue was bypassing, we should retry. Do so after a 871 * short msleep(). It isn't strictly necessary but queue 872 * can be bypassing for some time and it's always nice to 873 * avoid busy looping. 874 */ 875 if (ret == -EBUSY) { 876 msleep(10); 877 ret = restart_syscall(); 878 } 879 return ret; 880 } 881 EXPORT_SYMBOL_GPL(blkg_conf_prep); 882 883 /** 884 * blkg_conf_exit - clean up per-blkg config update 885 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 886 * 887 * Clean up after per-blkg config update. This function must be called on all 888 * blkg_conf_ctx's initialized with blkg_conf_init(). 889 */ 890 void blkg_conf_exit(struct blkg_conf_ctx *ctx) 891 __releases(&ctx->bdev->bd_queue->queue_lock) 892 { 893 if (ctx->blkg) { 894 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 895 ctx->blkg = NULL; 896 } 897 898 if (ctx->bdev) { 899 blkdev_put_no_open(ctx->bdev); 900 ctx->body = NULL; 901 ctx->bdev = NULL; 902 } 903 } 904 EXPORT_SYMBOL_GPL(blkg_conf_exit); 905 906 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 907 { 908 int i; 909 910 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 911 dst->bytes[i] = src->bytes[i]; 912 dst->ios[i] = src->ios[i]; 913 } 914 } 915 916 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 917 { 918 int i; 919 920 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 921 dst->bytes[i] += src->bytes[i]; 922 dst->ios[i] += src->ios[i]; 923 } 924 } 925 926 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 927 { 928 int i; 929 930 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 931 dst->bytes[i] -= src->bytes[i]; 932 dst->ios[i] -= src->ios[i]; 933 } 934 } 935 936 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 937 struct blkg_iostat *last) 938 { 939 struct blkg_iostat delta; 940 unsigned long flags; 941 942 /* propagate percpu delta to global */ 943 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 944 blkg_iostat_set(&delta, cur); 945 blkg_iostat_sub(&delta, last); 946 blkg_iostat_add(&blkg->iostat.cur, &delta); 947 blkg_iostat_add(last, &delta); 948 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 949 } 950 951 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 952 { 953 struct blkcg *blkcg = css_to_blkcg(css); 954 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 955 struct llist_node *lnode; 956 struct blkg_iostat_set *bisc, *next_bisc; 957 958 /* Root-level stats are sourced from system-wide IO stats */ 959 if (!cgroup_parent(css->cgroup)) 960 return; 961 962 rcu_read_lock(); 963 964 lnode = llist_del_all(lhead); 965 if (!lnode) 966 goto out; 967 968 /* 969 * Iterate only the iostat_cpu's queued in the lockless list. 970 */ 971 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 972 struct blkcg_gq *blkg = bisc->blkg; 973 struct blkcg_gq *parent = blkg->parent; 974 struct blkg_iostat cur; 975 unsigned int seq; 976 977 WRITE_ONCE(bisc->lqueued, false); 978 979 /* fetch the current per-cpu values */ 980 do { 981 seq = u64_stats_fetch_begin(&bisc->sync); 982 blkg_iostat_set(&cur, &bisc->cur); 983 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 984 985 blkcg_iostat_update(blkg, &cur, &bisc->last); 986 987 /* propagate global delta to parent (unless that's root) */ 988 if (parent && parent->parent) 989 blkcg_iostat_update(parent, &blkg->iostat.cur, 990 &blkg->iostat.last); 991 percpu_ref_put(&blkg->refcnt); 992 } 993 994 out: 995 rcu_read_unlock(); 996 } 997 998 /* 999 * We source root cgroup stats from the system-wide stats to avoid 1000 * tracking the same information twice and incurring overhead when no 1001 * cgroups are defined. For that reason, cgroup_rstat_flush in 1002 * blkcg_print_stat does not actually fill out the iostat in the root 1003 * cgroup's blkcg_gq. 1004 * 1005 * However, we would like to re-use the printing code between the root and 1006 * non-root cgroups to the extent possible. For that reason, we simulate 1007 * flushing the root cgroup's stats by explicitly filling in the iostat 1008 * with disk level statistics. 1009 */ 1010 static void blkcg_fill_root_iostats(void) 1011 { 1012 struct class_dev_iter iter; 1013 struct device *dev; 1014 1015 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1016 while ((dev = class_dev_iter_next(&iter))) { 1017 struct block_device *bdev = dev_to_bdev(dev); 1018 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 1019 struct blkg_iostat tmp; 1020 int cpu; 1021 unsigned long flags; 1022 1023 memset(&tmp, 0, sizeof(tmp)); 1024 for_each_possible_cpu(cpu) { 1025 struct disk_stats *cpu_dkstats; 1026 1027 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 1028 tmp.ios[BLKG_IOSTAT_READ] += 1029 cpu_dkstats->ios[STAT_READ]; 1030 tmp.ios[BLKG_IOSTAT_WRITE] += 1031 cpu_dkstats->ios[STAT_WRITE]; 1032 tmp.ios[BLKG_IOSTAT_DISCARD] += 1033 cpu_dkstats->ios[STAT_DISCARD]; 1034 // convert sectors to bytes 1035 tmp.bytes[BLKG_IOSTAT_READ] += 1036 cpu_dkstats->sectors[STAT_READ] << 9; 1037 tmp.bytes[BLKG_IOSTAT_WRITE] += 1038 cpu_dkstats->sectors[STAT_WRITE] << 9; 1039 tmp.bytes[BLKG_IOSTAT_DISCARD] += 1040 cpu_dkstats->sectors[STAT_DISCARD] << 9; 1041 } 1042 1043 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1044 blkg_iostat_set(&blkg->iostat.cur, &tmp); 1045 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1046 } 1047 } 1048 1049 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 1050 { 1051 struct blkg_iostat_set *bis = &blkg->iostat; 1052 u64 rbytes, wbytes, rios, wios, dbytes, dios; 1053 const char *dname; 1054 unsigned seq; 1055 int i; 1056 1057 if (!blkg->online) 1058 return; 1059 1060 dname = blkg_dev_name(blkg); 1061 if (!dname) 1062 return; 1063 1064 seq_printf(s, "%s ", dname); 1065 1066 do { 1067 seq = u64_stats_fetch_begin(&bis->sync); 1068 1069 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1070 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1071 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1072 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1073 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1074 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1075 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1076 1077 if (rbytes || wbytes || rios || wios) { 1078 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1079 rbytes, wbytes, rios, wios, 1080 dbytes, dios); 1081 } 1082 1083 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1084 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1085 atomic_read(&blkg->use_delay), 1086 atomic64_read(&blkg->delay_nsec)); 1087 } 1088 1089 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1090 struct blkcg_policy *pol = blkcg_policy[i]; 1091 1092 if (!blkg->pd[i] || !pol->pd_stat_fn) 1093 continue; 1094 1095 pol->pd_stat_fn(blkg->pd[i], s); 1096 } 1097 1098 seq_puts(s, "\n"); 1099 } 1100 1101 static int blkcg_print_stat(struct seq_file *sf, void *v) 1102 { 1103 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1104 struct blkcg_gq *blkg; 1105 1106 if (!seq_css(sf)->parent) 1107 blkcg_fill_root_iostats(); 1108 else 1109 cgroup_rstat_flush(blkcg->css.cgroup); 1110 1111 rcu_read_lock(); 1112 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1113 spin_lock_irq(&blkg->q->queue_lock); 1114 blkcg_print_one_stat(blkg, sf); 1115 spin_unlock_irq(&blkg->q->queue_lock); 1116 } 1117 rcu_read_unlock(); 1118 return 0; 1119 } 1120 1121 static struct cftype blkcg_files[] = { 1122 { 1123 .name = "stat", 1124 .seq_show = blkcg_print_stat, 1125 }, 1126 { } /* terminate */ 1127 }; 1128 1129 static struct cftype blkcg_legacy_files[] = { 1130 { 1131 .name = "reset_stats", 1132 .write_u64 = blkcg_reset_stats, 1133 }, 1134 { } /* terminate */ 1135 }; 1136 1137 #ifdef CONFIG_CGROUP_WRITEBACK 1138 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1139 { 1140 return &css_to_blkcg(css)->cgwb_list; 1141 } 1142 #endif 1143 1144 /* 1145 * blkcg destruction is a three-stage process. 1146 * 1147 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1148 * which offlines writeback. Here we tie the next stage of blkg destruction 1149 * to the completion of writeback associated with the blkcg. This lets us 1150 * avoid punting potentially large amounts of outstanding writeback to root 1151 * while maintaining any ongoing policies. The next stage is triggered when 1152 * the nr_cgwbs count goes to zero. 1153 * 1154 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1155 * and handles the destruction of blkgs. Here the css reference held by 1156 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1157 * This work may occur in cgwb_release_workfn() on the cgwb_release 1158 * workqueue. Any submitted ios that fail to get the blkg ref will be 1159 * punted to the root_blkg. 1160 * 1161 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1162 * This finally frees the blkcg. 1163 */ 1164 1165 /** 1166 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1167 * @blkcg: blkcg of interest 1168 * 1169 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1170 * is nested inside q lock, this function performs reverse double lock dancing. 1171 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1172 * blkcg_css_free to eventually be called. 1173 * 1174 * This is the blkcg counterpart of ioc_release_fn(). 1175 */ 1176 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1177 { 1178 might_sleep(); 1179 1180 spin_lock_irq(&blkcg->lock); 1181 1182 while (!hlist_empty(&blkcg->blkg_list)) { 1183 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1184 struct blkcg_gq, blkcg_node); 1185 struct request_queue *q = blkg->q; 1186 1187 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1188 /* 1189 * Given that the system can accumulate a huge number 1190 * of blkgs in pathological cases, check to see if we 1191 * need to rescheduling to avoid softlockup. 1192 */ 1193 spin_unlock_irq(&blkcg->lock); 1194 cond_resched(); 1195 spin_lock_irq(&blkcg->lock); 1196 continue; 1197 } 1198 1199 blkg_destroy(blkg); 1200 spin_unlock(&q->queue_lock); 1201 } 1202 1203 spin_unlock_irq(&blkcg->lock); 1204 } 1205 1206 /** 1207 * blkcg_pin_online - pin online state 1208 * @blkcg_css: blkcg of interest 1209 * 1210 * While pinned, a blkcg is kept online. This is primarily used to 1211 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1212 * while an associated cgwb is still active. 1213 */ 1214 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1215 { 1216 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1217 } 1218 1219 /** 1220 * blkcg_unpin_online - unpin online state 1221 * @blkcg_css: blkcg of interest 1222 * 1223 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1224 * that blkg doesn't go offline while an associated cgwb is still active. 1225 * When this count goes to zero, all active cgwbs have finished so the 1226 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1227 */ 1228 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1229 { 1230 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1231 1232 do { 1233 if (!refcount_dec_and_test(&blkcg->online_pin)) 1234 break; 1235 blkcg_destroy_blkgs(blkcg); 1236 blkcg = blkcg_parent(blkcg); 1237 } while (blkcg); 1238 } 1239 1240 /** 1241 * blkcg_css_offline - cgroup css_offline callback 1242 * @css: css of interest 1243 * 1244 * This function is called when @css is about to go away. Here the cgwbs are 1245 * offlined first and only once writeback associated with the blkcg has 1246 * finished do we start step 2 (see above). 1247 */ 1248 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1249 { 1250 /* this prevents anyone from attaching or migrating to this blkcg */ 1251 wb_blkcg_offline(css); 1252 1253 /* put the base online pin allowing step 2 to be triggered */ 1254 blkcg_unpin_online(css); 1255 } 1256 1257 static void blkcg_css_free(struct cgroup_subsys_state *css) 1258 { 1259 struct blkcg *blkcg = css_to_blkcg(css); 1260 int i; 1261 1262 mutex_lock(&blkcg_pol_mutex); 1263 1264 list_del(&blkcg->all_blkcgs_node); 1265 1266 for (i = 0; i < BLKCG_MAX_POLS; i++) 1267 if (blkcg->cpd[i]) 1268 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1269 1270 mutex_unlock(&blkcg_pol_mutex); 1271 1272 free_percpu(blkcg->lhead); 1273 kfree(blkcg); 1274 } 1275 1276 static struct cgroup_subsys_state * 1277 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1278 { 1279 struct blkcg *blkcg; 1280 int i; 1281 1282 mutex_lock(&blkcg_pol_mutex); 1283 1284 if (!parent_css) { 1285 blkcg = &blkcg_root; 1286 } else { 1287 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1288 if (!blkcg) 1289 goto unlock; 1290 } 1291 1292 if (init_blkcg_llists(blkcg)) 1293 goto free_blkcg; 1294 1295 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1296 struct blkcg_policy *pol = blkcg_policy[i]; 1297 struct blkcg_policy_data *cpd; 1298 1299 /* 1300 * If the policy hasn't been attached yet, wait for it 1301 * to be attached before doing anything else. Otherwise, 1302 * check if the policy requires any specific per-cgroup 1303 * data: if it does, allocate and initialize it. 1304 */ 1305 if (!pol || !pol->cpd_alloc_fn) 1306 continue; 1307 1308 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1309 if (!cpd) 1310 goto free_pd_blkcg; 1311 1312 blkcg->cpd[i] = cpd; 1313 cpd->blkcg = blkcg; 1314 cpd->plid = i; 1315 } 1316 1317 spin_lock_init(&blkcg->lock); 1318 refcount_set(&blkcg->online_pin, 1); 1319 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1320 INIT_HLIST_HEAD(&blkcg->blkg_list); 1321 #ifdef CONFIG_CGROUP_WRITEBACK 1322 INIT_LIST_HEAD(&blkcg->cgwb_list); 1323 #endif 1324 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1325 1326 mutex_unlock(&blkcg_pol_mutex); 1327 return &blkcg->css; 1328 1329 free_pd_blkcg: 1330 for (i--; i >= 0; i--) 1331 if (blkcg->cpd[i]) 1332 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1333 free_percpu(blkcg->lhead); 1334 free_blkcg: 1335 if (blkcg != &blkcg_root) 1336 kfree(blkcg); 1337 unlock: 1338 mutex_unlock(&blkcg_pol_mutex); 1339 return ERR_PTR(-ENOMEM); 1340 } 1341 1342 static int blkcg_css_online(struct cgroup_subsys_state *css) 1343 { 1344 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1345 1346 /* 1347 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1348 * don't go offline while cgwbs are still active on them. Pin the 1349 * parent so that offline always happens towards the root. 1350 */ 1351 if (parent) 1352 blkcg_pin_online(&parent->css); 1353 return 0; 1354 } 1355 1356 int blkcg_init_disk(struct gendisk *disk) 1357 { 1358 struct request_queue *q = disk->queue; 1359 struct blkcg_gq *new_blkg, *blkg; 1360 bool preloaded; 1361 int ret; 1362 1363 INIT_LIST_HEAD(&q->blkg_list); 1364 mutex_init(&q->blkcg_mutex); 1365 1366 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1367 if (!new_blkg) 1368 return -ENOMEM; 1369 1370 preloaded = !radix_tree_preload(GFP_KERNEL); 1371 1372 /* Make sure the root blkg exists. */ 1373 /* spin_lock_irq can serve as RCU read-side critical section. */ 1374 spin_lock_irq(&q->queue_lock); 1375 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1376 if (IS_ERR(blkg)) 1377 goto err_unlock; 1378 q->root_blkg = blkg; 1379 spin_unlock_irq(&q->queue_lock); 1380 1381 if (preloaded) 1382 radix_tree_preload_end(); 1383 1384 ret = blk_ioprio_init(disk); 1385 if (ret) 1386 goto err_destroy_all; 1387 1388 ret = blk_throtl_init(disk); 1389 if (ret) 1390 goto err_ioprio_exit; 1391 1392 return 0; 1393 1394 err_ioprio_exit: 1395 blk_ioprio_exit(disk); 1396 err_destroy_all: 1397 blkg_destroy_all(disk); 1398 return ret; 1399 err_unlock: 1400 spin_unlock_irq(&q->queue_lock); 1401 if (preloaded) 1402 radix_tree_preload_end(); 1403 return PTR_ERR(blkg); 1404 } 1405 1406 void blkcg_exit_disk(struct gendisk *disk) 1407 { 1408 blkg_destroy_all(disk); 1409 blk_throtl_exit(disk); 1410 } 1411 1412 static void blkcg_exit(struct task_struct *tsk) 1413 { 1414 if (tsk->throttle_disk) 1415 put_disk(tsk->throttle_disk); 1416 tsk->throttle_disk = NULL; 1417 } 1418 1419 struct cgroup_subsys io_cgrp_subsys = { 1420 .css_alloc = blkcg_css_alloc, 1421 .css_online = blkcg_css_online, 1422 .css_offline = blkcg_css_offline, 1423 .css_free = blkcg_css_free, 1424 .css_rstat_flush = blkcg_rstat_flush, 1425 .dfl_cftypes = blkcg_files, 1426 .legacy_cftypes = blkcg_legacy_files, 1427 .legacy_name = "blkio", 1428 .exit = blkcg_exit, 1429 #ifdef CONFIG_MEMCG 1430 /* 1431 * This ensures that, if available, memcg is automatically enabled 1432 * together on the default hierarchy so that the owner cgroup can 1433 * be retrieved from writeback pages. 1434 */ 1435 .depends_on = 1 << memory_cgrp_id, 1436 #endif 1437 }; 1438 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1439 1440 /** 1441 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1442 * @disk: gendisk of interest 1443 * @pol: blkcg policy to activate 1444 * 1445 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1446 * bypass mode to populate its blkgs with policy_data for @pol. 1447 * 1448 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1449 * from IO path. Update of each blkg is protected by both queue and blkcg 1450 * locks so that holding either lock and testing blkcg_policy_enabled() is 1451 * always enough for dereferencing policy data. 1452 * 1453 * The caller is responsible for synchronizing [de]activations and policy 1454 * [un]registerations. Returns 0 on success, -errno on failure. 1455 */ 1456 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1457 { 1458 struct request_queue *q = disk->queue; 1459 struct blkg_policy_data *pd_prealloc = NULL; 1460 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1461 int ret; 1462 1463 if (blkcg_policy_enabled(q, pol)) 1464 return 0; 1465 1466 if (queue_is_mq(q)) 1467 blk_mq_freeze_queue(q); 1468 retry: 1469 spin_lock_irq(&q->queue_lock); 1470 1471 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1472 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1473 struct blkg_policy_data *pd; 1474 1475 if (blkg->pd[pol->plid]) 1476 continue; 1477 1478 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1479 if (blkg == pinned_blkg) { 1480 pd = pd_prealloc; 1481 pd_prealloc = NULL; 1482 } else { 1483 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1484 GFP_NOWAIT | __GFP_NOWARN); 1485 } 1486 1487 if (!pd) { 1488 /* 1489 * GFP_NOWAIT failed. Free the existing one and 1490 * prealloc for @blkg w/ GFP_KERNEL. 1491 */ 1492 if (pinned_blkg) 1493 blkg_put(pinned_blkg); 1494 blkg_get(blkg); 1495 pinned_blkg = blkg; 1496 1497 spin_unlock_irq(&q->queue_lock); 1498 1499 if (pd_prealloc) 1500 pol->pd_free_fn(pd_prealloc); 1501 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1502 GFP_KERNEL); 1503 if (pd_prealloc) 1504 goto retry; 1505 else 1506 goto enomem; 1507 } 1508 1509 blkg->pd[pol->plid] = pd; 1510 pd->blkg = blkg; 1511 pd->plid = pol->plid; 1512 pd->online = false; 1513 } 1514 1515 /* all allocated, init in the same order */ 1516 if (pol->pd_init_fn) 1517 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1518 pol->pd_init_fn(blkg->pd[pol->plid]); 1519 1520 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1521 if (pol->pd_online_fn) 1522 pol->pd_online_fn(blkg->pd[pol->plid]); 1523 blkg->pd[pol->plid]->online = true; 1524 } 1525 1526 __set_bit(pol->plid, q->blkcg_pols); 1527 ret = 0; 1528 1529 spin_unlock_irq(&q->queue_lock); 1530 out: 1531 if (queue_is_mq(q)) 1532 blk_mq_unfreeze_queue(q); 1533 if (pinned_blkg) 1534 blkg_put(pinned_blkg); 1535 if (pd_prealloc) 1536 pol->pd_free_fn(pd_prealloc); 1537 return ret; 1538 1539 enomem: 1540 /* alloc failed, nothing's initialized yet, free everything */ 1541 spin_lock_irq(&q->queue_lock); 1542 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1543 struct blkcg *blkcg = blkg->blkcg; 1544 1545 spin_lock(&blkcg->lock); 1546 if (blkg->pd[pol->plid]) { 1547 pol->pd_free_fn(blkg->pd[pol->plid]); 1548 blkg->pd[pol->plid] = NULL; 1549 } 1550 spin_unlock(&blkcg->lock); 1551 } 1552 spin_unlock_irq(&q->queue_lock); 1553 ret = -ENOMEM; 1554 goto out; 1555 } 1556 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1557 1558 /** 1559 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1560 * @disk: gendisk of interest 1561 * @pol: blkcg policy to deactivate 1562 * 1563 * Deactivate @pol on @disk. Follows the same synchronization rules as 1564 * blkcg_activate_policy(). 1565 */ 1566 void blkcg_deactivate_policy(struct gendisk *disk, 1567 const struct blkcg_policy *pol) 1568 { 1569 struct request_queue *q = disk->queue; 1570 struct blkcg_gq *blkg; 1571 1572 if (!blkcg_policy_enabled(q, pol)) 1573 return; 1574 1575 if (queue_is_mq(q)) 1576 blk_mq_freeze_queue(q); 1577 1578 mutex_lock(&q->blkcg_mutex); 1579 spin_lock_irq(&q->queue_lock); 1580 1581 __clear_bit(pol->plid, q->blkcg_pols); 1582 1583 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1584 struct blkcg *blkcg = blkg->blkcg; 1585 1586 spin_lock(&blkcg->lock); 1587 if (blkg->pd[pol->plid]) { 1588 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1589 pol->pd_offline_fn(blkg->pd[pol->plid]); 1590 pol->pd_free_fn(blkg->pd[pol->plid]); 1591 blkg->pd[pol->plid] = NULL; 1592 } 1593 spin_unlock(&blkcg->lock); 1594 } 1595 1596 spin_unlock_irq(&q->queue_lock); 1597 mutex_unlock(&q->blkcg_mutex); 1598 1599 if (queue_is_mq(q)) 1600 blk_mq_unfreeze_queue(q); 1601 } 1602 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1603 1604 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1605 { 1606 struct blkcg *blkcg; 1607 1608 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1609 if (blkcg->cpd[pol->plid]) { 1610 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1611 blkcg->cpd[pol->plid] = NULL; 1612 } 1613 } 1614 } 1615 1616 /** 1617 * blkcg_policy_register - register a blkcg policy 1618 * @pol: blkcg policy to register 1619 * 1620 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1621 * successful registration. Returns 0 on success and -errno on failure. 1622 */ 1623 int blkcg_policy_register(struct blkcg_policy *pol) 1624 { 1625 struct blkcg *blkcg; 1626 int i, ret; 1627 1628 mutex_lock(&blkcg_pol_register_mutex); 1629 mutex_lock(&blkcg_pol_mutex); 1630 1631 /* find an empty slot */ 1632 ret = -ENOSPC; 1633 for (i = 0; i < BLKCG_MAX_POLS; i++) 1634 if (!blkcg_policy[i]) 1635 break; 1636 if (i >= BLKCG_MAX_POLS) { 1637 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1638 goto err_unlock; 1639 } 1640 1641 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1642 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1643 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1644 goto err_unlock; 1645 1646 /* register @pol */ 1647 pol->plid = i; 1648 blkcg_policy[pol->plid] = pol; 1649 1650 /* allocate and install cpd's */ 1651 if (pol->cpd_alloc_fn) { 1652 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1653 struct blkcg_policy_data *cpd; 1654 1655 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1656 if (!cpd) 1657 goto err_free_cpds; 1658 1659 blkcg->cpd[pol->plid] = cpd; 1660 cpd->blkcg = blkcg; 1661 cpd->plid = pol->plid; 1662 } 1663 } 1664 1665 mutex_unlock(&blkcg_pol_mutex); 1666 1667 /* everything is in place, add intf files for the new policy */ 1668 if (pol->dfl_cftypes) 1669 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1670 pol->dfl_cftypes)); 1671 if (pol->legacy_cftypes) 1672 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1673 pol->legacy_cftypes)); 1674 mutex_unlock(&blkcg_pol_register_mutex); 1675 return 0; 1676 1677 err_free_cpds: 1678 if (pol->cpd_free_fn) 1679 blkcg_free_all_cpd(pol); 1680 1681 blkcg_policy[pol->plid] = NULL; 1682 err_unlock: 1683 mutex_unlock(&blkcg_pol_mutex); 1684 mutex_unlock(&blkcg_pol_register_mutex); 1685 return ret; 1686 } 1687 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1688 1689 /** 1690 * blkcg_policy_unregister - unregister a blkcg policy 1691 * @pol: blkcg policy to unregister 1692 * 1693 * Undo blkcg_policy_register(@pol). Might sleep. 1694 */ 1695 void blkcg_policy_unregister(struct blkcg_policy *pol) 1696 { 1697 mutex_lock(&blkcg_pol_register_mutex); 1698 1699 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1700 goto out_unlock; 1701 1702 /* kill the intf files first */ 1703 if (pol->dfl_cftypes) 1704 cgroup_rm_cftypes(pol->dfl_cftypes); 1705 if (pol->legacy_cftypes) 1706 cgroup_rm_cftypes(pol->legacy_cftypes); 1707 1708 /* remove cpds and unregister */ 1709 mutex_lock(&blkcg_pol_mutex); 1710 1711 if (pol->cpd_free_fn) 1712 blkcg_free_all_cpd(pol); 1713 1714 blkcg_policy[pol->plid] = NULL; 1715 1716 mutex_unlock(&blkcg_pol_mutex); 1717 out_unlock: 1718 mutex_unlock(&blkcg_pol_register_mutex); 1719 } 1720 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1721 1722 /* 1723 * Scale the accumulated delay based on how long it has been since we updated 1724 * the delay. We only call this when we are adding delay, in case it's been a 1725 * while since we added delay, and when we are checking to see if we need to 1726 * delay a task, to account for any delays that may have occurred. 1727 */ 1728 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1729 { 1730 u64 old = atomic64_read(&blkg->delay_start); 1731 1732 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1733 if (atomic_read(&blkg->use_delay) < 0) 1734 return; 1735 1736 /* 1737 * We only want to scale down every second. The idea here is that we 1738 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1739 * time window. We only want to throttle tasks for recent delay that 1740 * has occurred, in 1 second time windows since that's the maximum 1741 * things can be throttled. We save the current delay window in 1742 * blkg->last_delay so we know what amount is still left to be charged 1743 * to the blkg from this point onward. blkg->last_use keeps track of 1744 * the use_delay counter. The idea is if we're unthrottling the blkg we 1745 * are ok with whatever is happening now, and we can take away more of 1746 * the accumulated delay as we've already throttled enough that 1747 * everybody is happy with their IO latencies. 1748 */ 1749 if (time_before64(old + NSEC_PER_SEC, now) && 1750 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1751 u64 cur = atomic64_read(&blkg->delay_nsec); 1752 u64 sub = min_t(u64, blkg->last_delay, now - old); 1753 int cur_use = atomic_read(&blkg->use_delay); 1754 1755 /* 1756 * We've been unthrottled, subtract a larger chunk of our 1757 * accumulated delay. 1758 */ 1759 if (cur_use < blkg->last_use) 1760 sub = max_t(u64, sub, blkg->last_delay >> 1); 1761 1762 /* 1763 * This shouldn't happen, but handle it anyway. Our delay_nsec 1764 * should only ever be growing except here where we subtract out 1765 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1766 * rather not end up with negative numbers. 1767 */ 1768 if (unlikely(cur < sub)) { 1769 atomic64_set(&blkg->delay_nsec, 0); 1770 blkg->last_delay = 0; 1771 } else { 1772 atomic64_sub(sub, &blkg->delay_nsec); 1773 blkg->last_delay = cur - sub; 1774 } 1775 blkg->last_use = cur_use; 1776 } 1777 } 1778 1779 /* 1780 * This is called when we want to actually walk up the hierarchy and check to 1781 * see if we need to throttle, and then actually throttle if there is some 1782 * accumulated delay. This should only be called upon return to user space so 1783 * we're not holding some lock that would induce a priority inversion. 1784 */ 1785 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1786 { 1787 unsigned long pflags; 1788 bool clamp; 1789 u64 now = ktime_to_ns(ktime_get()); 1790 u64 exp; 1791 u64 delay_nsec = 0; 1792 int tok; 1793 1794 while (blkg->parent) { 1795 int use_delay = atomic_read(&blkg->use_delay); 1796 1797 if (use_delay) { 1798 u64 this_delay; 1799 1800 blkcg_scale_delay(blkg, now); 1801 this_delay = atomic64_read(&blkg->delay_nsec); 1802 if (this_delay > delay_nsec) { 1803 delay_nsec = this_delay; 1804 clamp = use_delay > 0; 1805 } 1806 } 1807 blkg = blkg->parent; 1808 } 1809 1810 if (!delay_nsec) 1811 return; 1812 1813 /* 1814 * Let's not sleep for all eternity if we've amassed a huge delay. 1815 * Swapping or metadata IO can accumulate 10's of seconds worth of 1816 * delay, and we want userspace to be able to do _something_ so cap the 1817 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1818 * tasks will be delayed for 0.25 second for every syscall. If 1819 * blkcg_set_delay() was used as indicated by negative use_delay, the 1820 * caller is responsible for regulating the range. 1821 */ 1822 if (clamp) 1823 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1824 1825 if (use_memdelay) 1826 psi_memstall_enter(&pflags); 1827 1828 exp = ktime_add_ns(now, delay_nsec); 1829 tok = io_schedule_prepare(); 1830 do { 1831 __set_current_state(TASK_KILLABLE); 1832 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1833 break; 1834 } while (!fatal_signal_pending(current)); 1835 io_schedule_finish(tok); 1836 1837 if (use_memdelay) 1838 psi_memstall_leave(&pflags); 1839 } 1840 1841 /** 1842 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1843 * 1844 * This is only called if we've been marked with set_notify_resume(). Obviously 1845 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1846 * check to see if current->throttle_disk is set and if not this doesn't do 1847 * anything. This should only ever be called by the resume code, it's not meant 1848 * to be called by people willy-nilly as it will actually do the work to 1849 * throttle the task if it is setup for throttling. 1850 */ 1851 void blkcg_maybe_throttle_current(void) 1852 { 1853 struct gendisk *disk = current->throttle_disk; 1854 struct blkcg *blkcg; 1855 struct blkcg_gq *blkg; 1856 bool use_memdelay = current->use_memdelay; 1857 1858 if (!disk) 1859 return; 1860 1861 current->throttle_disk = NULL; 1862 current->use_memdelay = false; 1863 1864 rcu_read_lock(); 1865 blkcg = css_to_blkcg(blkcg_css()); 1866 if (!blkcg) 1867 goto out; 1868 blkg = blkg_lookup(blkcg, disk->queue); 1869 if (!blkg) 1870 goto out; 1871 if (!blkg_tryget(blkg)) 1872 goto out; 1873 rcu_read_unlock(); 1874 1875 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1876 blkg_put(blkg); 1877 put_disk(disk); 1878 return; 1879 out: 1880 rcu_read_unlock(); 1881 } 1882 1883 /** 1884 * blkcg_schedule_throttle - this task needs to check for throttling 1885 * @disk: disk to throttle 1886 * @use_memdelay: do we charge this to memory delay for PSI 1887 * 1888 * This is called by the IO controller when we know there's delay accumulated 1889 * for the blkg for this task. We do not pass the blkg because there are places 1890 * we call this that may not have that information, the swapping code for 1891 * instance will only have a block_device at that point. This set's the 1892 * notify_resume for the task to check and see if it requires throttling before 1893 * returning to user space. 1894 * 1895 * We will only schedule once per syscall. You can call this over and over 1896 * again and it will only do the check once upon return to user space, and only 1897 * throttle once. If the task needs to be throttled again it'll need to be 1898 * re-set at the next time we see the task. 1899 */ 1900 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 1901 { 1902 if (unlikely(current->flags & PF_KTHREAD)) 1903 return; 1904 1905 if (current->throttle_disk != disk) { 1906 if (test_bit(GD_DEAD, &disk->state)) 1907 return; 1908 get_device(disk_to_dev(disk)); 1909 1910 if (current->throttle_disk) 1911 put_disk(current->throttle_disk); 1912 current->throttle_disk = disk; 1913 } 1914 1915 if (use_memdelay) 1916 current->use_memdelay = use_memdelay; 1917 set_notify_resume(current); 1918 } 1919 1920 /** 1921 * blkcg_add_delay - add delay to this blkg 1922 * @blkg: blkg of interest 1923 * @now: the current time in nanoseconds 1924 * @delta: how many nanoseconds of delay to add 1925 * 1926 * Charge @delta to the blkg's current delay accumulation. This is used to 1927 * throttle tasks if an IO controller thinks we need more throttling. 1928 */ 1929 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1930 { 1931 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1932 return; 1933 blkcg_scale_delay(blkg, now); 1934 atomic64_add(delta, &blkg->delay_nsec); 1935 } 1936 1937 /** 1938 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1939 * @bio: target bio 1940 * @css: target css 1941 * 1942 * As the failure mode here is to walk up the blkg tree, this ensure that the 1943 * blkg->parent pointers are always valid. This returns the blkg that it ended 1944 * up taking a reference on or %NULL if no reference was taken. 1945 */ 1946 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1947 struct cgroup_subsys_state *css) 1948 { 1949 struct blkcg_gq *blkg, *ret_blkg = NULL; 1950 1951 rcu_read_lock(); 1952 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 1953 while (blkg) { 1954 if (blkg_tryget(blkg)) { 1955 ret_blkg = blkg; 1956 break; 1957 } 1958 blkg = blkg->parent; 1959 } 1960 rcu_read_unlock(); 1961 1962 return ret_blkg; 1963 } 1964 1965 /** 1966 * bio_associate_blkg_from_css - associate a bio with a specified css 1967 * @bio: target bio 1968 * @css: target css 1969 * 1970 * Associate @bio with the blkg found by combining the css's blkg and the 1971 * request_queue of the @bio. An association failure is handled by walking up 1972 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1973 * and q->root_blkg. This situation only happens when a cgroup is dying and 1974 * then the remaining bios will spill to the closest alive blkg. 1975 * 1976 * A reference will be taken on the blkg and will be released when @bio is 1977 * freed. 1978 */ 1979 void bio_associate_blkg_from_css(struct bio *bio, 1980 struct cgroup_subsys_state *css) 1981 { 1982 if (bio->bi_blkg) 1983 blkg_put(bio->bi_blkg); 1984 1985 if (css && css->parent) { 1986 bio->bi_blkg = blkg_tryget_closest(bio, css); 1987 } else { 1988 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1989 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1990 } 1991 } 1992 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1993 1994 /** 1995 * bio_associate_blkg - associate a bio with a blkg 1996 * @bio: target bio 1997 * 1998 * Associate @bio with the blkg found from the bio's css and request_queue. 1999 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2000 * already associated, the css is reused and association redone as the 2001 * request_queue may have changed. 2002 */ 2003 void bio_associate_blkg(struct bio *bio) 2004 { 2005 struct cgroup_subsys_state *css; 2006 2007 rcu_read_lock(); 2008 2009 if (bio->bi_blkg) 2010 css = bio_blkcg_css(bio); 2011 else 2012 css = blkcg_css(); 2013 2014 bio_associate_blkg_from_css(bio, css); 2015 2016 rcu_read_unlock(); 2017 } 2018 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2019 2020 /** 2021 * bio_clone_blkg_association - clone blkg association from src to dst bio 2022 * @dst: destination bio 2023 * @src: source bio 2024 */ 2025 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2026 { 2027 if (src->bi_blkg) 2028 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2029 } 2030 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2031 2032 static int blk_cgroup_io_type(struct bio *bio) 2033 { 2034 if (op_is_discard(bio->bi_opf)) 2035 return BLKG_IOSTAT_DISCARD; 2036 if (op_is_write(bio->bi_opf)) 2037 return BLKG_IOSTAT_WRITE; 2038 return BLKG_IOSTAT_READ; 2039 } 2040 2041 void blk_cgroup_bio_start(struct bio *bio) 2042 { 2043 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2044 int rwd = blk_cgroup_io_type(bio), cpu; 2045 struct blkg_iostat_set *bis; 2046 unsigned long flags; 2047 2048 /* Root-level stats are sourced from system-wide IO stats */ 2049 if (!cgroup_parent(blkcg->css.cgroup)) 2050 return; 2051 2052 cpu = get_cpu(); 2053 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2054 flags = u64_stats_update_begin_irqsave(&bis->sync); 2055 2056 /* 2057 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2058 * bio and we would have already accounted for the size of the bio. 2059 */ 2060 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2061 bio_set_flag(bio, BIO_CGROUP_ACCT); 2062 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2063 } 2064 bis->cur.ios[rwd]++; 2065 2066 /* 2067 * If the iostat_cpu isn't in a lockless list, put it into the 2068 * list to indicate that a stat update is pending. 2069 */ 2070 if (!READ_ONCE(bis->lqueued)) { 2071 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2072 2073 llist_add(&bis->lnode, lhead); 2074 WRITE_ONCE(bis->lqueued, true); 2075 percpu_ref_get(&bis->blkg->refcnt); 2076 } 2077 2078 u64_stats_update_end_irqrestore(&bis->sync, flags); 2079 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 2080 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2081 put_cpu(); 2082 } 2083 2084 bool blk_cgroup_congested(void) 2085 { 2086 struct cgroup_subsys_state *css; 2087 bool ret = false; 2088 2089 rcu_read_lock(); 2090 for (css = blkcg_css(); css; css = css->parent) { 2091 if (atomic_read(&css->cgroup->congestion_count)) { 2092 ret = true; 2093 break; 2094 } 2095 } 2096 rcu_read_unlock(); 2097 return ret; 2098 } 2099 2100 module_param(blkcg_debug_stats, bool, 0644); 2101 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2102