1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include <linux/part_stat.h> 34 #include "blk.h" 35 #include "blk-ioprio.h" 36 #include "blk-throttle.h" 37 38 /* 39 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 40 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 41 * policy [un]register operations including cgroup file additions / 42 * removals. Putting cgroup file registration outside blkcg_pol_mutex 43 * allows grabbing it from cgroup callbacks. 44 */ 45 static DEFINE_MUTEX(blkcg_pol_register_mutex); 46 static DEFINE_MUTEX(blkcg_pol_mutex); 47 48 struct blkcg blkcg_root; 49 EXPORT_SYMBOL_GPL(blkcg_root); 50 51 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 52 EXPORT_SYMBOL_GPL(blkcg_root_css); 53 54 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 55 56 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 57 58 bool blkcg_debug_stats = false; 59 static struct workqueue_struct *blkcg_punt_bio_wq; 60 61 #define BLKG_DESTROY_BATCH_SIZE 64 62 63 static bool blkcg_policy_enabled(struct request_queue *q, 64 const struct blkcg_policy *pol) 65 { 66 return pol && test_bit(pol->plid, q->blkcg_pols); 67 } 68 69 /** 70 * blkg_free - free a blkg 71 * @blkg: blkg to free 72 * 73 * Free @blkg which may be partially allocated. 74 */ 75 static void blkg_free(struct blkcg_gq *blkg) 76 { 77 int i; 78 79 if (!blkg) 80 return; 81 82 for (i = 0; i < BLKCG_MAX_POLS; i++) 83 if (blkg->pd[i]) 84 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 85 86 free_percpu(blkg->iostat_cpu); 87 percpu_ref_exit(&blkg->refcnt); 88 kfree(blkg); 89 } 90 91 static void __blkg_release(struct rcu_head *rcu) 92 { 93 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 94 95 WARN_ON(!bio_list_empty(&blkg->async_bios)); 96 97 /* release the blkcg and parent blkg refs this blkg has been holding */ 98 css_put(&blkg->blkcg->css); 99 if (blkg->parent) 100 blkg_put(blkg->parent); 101 blkg_free(blkg); 102 } 103 104 /* 105 * A group is RCU protected, but having an rcu lock does not mean that one 106 * can access all the fields of blkg and assume these are valid. For 107 * example, don't try to follow throtl_data and request queue links. 108 * 109 * Having a reference to blkg under an rcu allows accesses to only values 110 * local to groups like group stats and group rate limits. 111 */ 112 static void blkg_release(struct percpu_ref *ref) 113 { 114 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 115 116 call_rcu(&blkg->rcu_head, __blkg_release); 117 } 118 119 static void blkg_async_bio_workfn(struct work_struct *work) 120 { 121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 122 async_bio_work); 123 struct bio_list bios = BIO_EMPTY_LIST; 124 struct bio *bio; 125 struct blk_plug plug; 126 bool need_plug = false; 127 128 /* as long as there are pending bios, @blkg can't go away */ 129 spin_lock_bh(&blkg->async_bio_lock); 130 bio_list_merge(&bios, &blkg->async_bios); 131 bio_list_init(&blkg->async_bios); 132 spin_unlock_bh(&blkg->async_bio_lock); 133 134 /* start plug only when bio_list contains at least 2 bios */ 135 if (bios.head && bios.head->bi_next) { 136 need_plug = true; 137 blk_start_plug(&plug); 138 } 139 while ((bio = bio_list_pop(&bios))) 140 submit_bio(bio); 141 if (need_plug) 142 blk_finish_plug(&plug); 143 } 144 145 /** 146 * blkg_alloc - allocate a blkg 147 * @blkcg: block cgroup the new blkg is associated with 148 * @q: request_queue the new blkg is associated with 149 * @gfp_mask: allocation mask to use 150 * 151 * Allocate a new blkg assocating @blkcg and @q. 152 */ 153 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 154 gfp_t gfp_mask) 155 { 156 struct blkcg_gq *blkg; 157 int i, cpu; 158 159 /* alloc and init base part */ 160 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 161 if (!blkg) 162 return NULL; 163 164 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 165 goto err_free; 166 167 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 168 if (!blkg->iostat_cpu) 169 goto err_free; 170 171 blkg->q = q; 172 INIT_LIST_HEAD(&blkg->q_node); 173 spin_lock_init(&blkg->async_bio_lock); 174 bio_list_init(&blkg->async_bios); 175 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 176 blkg->blkcg = blkcg; 177 178 u64_stats_init(&blkg->iostat.sync); 179 for_each_possible_cpu(cpu) 180 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 181 182 for (i = 0; i < BLKCG_MAX_POLS; i++) { 183 struct blkcg_policy *pol = blkcg_policy[i]; 184 struct blkg_policy_data *pd; 185 186 if (!blkcg_policy_enabled(q, pol)) 187 continue; 188 189 /* alloc per-policy data and attach it to blkg */ 190 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 191 if (!pd) 192 goto err_free; 193 194 blkg->pd[i] = pd; 195 pd->blkg = blkg; 196 pd->plid = i; 197 } 198 199 return blkg; 200 201 err_free: 202 blkg_free(blkg); 203 return NULL; 204 } 205 206 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 207 struct request_queue *q, bool update_hint) 208 { 209 struct blkcg_gq *blkg; 210 211 /* 212 * Hint didn't match. Look up from the radix tree. Note that the 213 * hint can only be updated under queue_lock as otherwise @blkg 214 * could have already been removed from blkg_tree. The caller is 215 * responsible for grabbing queue_lock if @update_hint. 216 */ 217 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 218 if (blkg && blkg->q == q) { 219 if (update_hint) { 220 lockdep_assert_held(&q->queue_lock); 221 rcu_assign_pointer(blkcg->blkg_hint, blkg); 222 } 223 return blkg; 224 } 225 226 return NULL; 227 } 228 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 229 230 /* 231 * If @new_blkg is %NULL, this function tries to allocate a new one as 232 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 233 */ 234 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 235 struct request_queue *q, 236 struct blkcg_gq *new_blkg) 237 { 238 struct blkcg_gq *blkg; 239 int i, ret; 240 241 WARN_ON_ONCE(!rcu_read_lock_held()); 242 lockdep_assert_held(&q->queue_lock); 243 244 /* request_queue is dying, do not create/recreate a blkg */ 245 if (blk_queue_dying(q)) { 246 ret = -ENODEV; 247 goto err_free_blkg; 248 } 249 250 /* blkg holds a reference to blkcg */ 251 if (!css_tryget_online(&blkcg->css)) { 252 ret = -ENODEV; 253 goto err_free_blkg; 254 } 255 256 /* allocate */ 257 if (!new_blkg) { 258 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 259 if (unlikely(!new_blkg)) { 260 ret = -ENOMEM; 261 goto err_put_css; 262 } 263 } 264 blkg = new_blkg; 265 266 /* link parent */ 267 if (blkcg_parent(blkcg)) { 268 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 269 if (WARN_ON_ONCE(!blkg->parent)) { 270 ret = -ENODEV; 271 goto err_put_css; 272 } 273 blkg_get(blkg->parent); 274 } 275 276 /* invoke per-policy init */ 277 for (i = 0; i < BLKCG_MAX_POLS; i++) { 278 struct blkcg_policy *pol = blkcg_policy[i]; 279 280 if (blkg->pd[i] && pol->pd_init_fn) 281 pol->pd_init_fn(blkg->pd[i]); 282 } 283 284 /* insert */ 285 spin_lock(&blkcg->lock); 286 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 287 if (likely(!ret)) { 288 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 289 list_add(&blkg->q_node, &q->blkg_list); 290 291 for (i = 0; i < BLKCG_MAX_POLS; i++) { 292 struct blkcg_policy *pol = blkcg_policy[i]; 293 294 if (blkg->pd[i] && pol->pd_online_fn) 295 pol->pd_online_fn(blkg->pd[i]); 296 } 297 } 298 blkg->online = true; 299 spin_unlock(&blkcg->lock); 300 301 if (!ret) 302 return blkg; 303 304 /* @blkg failed fully initialized, use the usual release path */ 305 blkg_put(blkg); 306 return ERR_PTR(ret); 307 308 err_put_css: 309 css_put(&blkcg->css); 310 err_free_blkg: 311 blkg_free(new_blkg); 312 return ERR_PTR(ret); 313 } 314 315 /** 316 * blkg_lookup_create - lookup blkg, try to create one if not there 317 * @blkcg: blkcg of interest 318 * @q: request_queue of interest 319 * 320 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 321 * create one. blkg creation is performed recursively from blkcg_root such 322 * that all non-root blkg's have access to the parent blkg. This function 323 * should be called under RCU read lock and takes @q->queue_lock. 324 * 325 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 326 * down from root. 327 */ 328 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 329 struct request_queue *q) 330 { 331 struct blkcg_gq *blkg; 332 unsigned long flags; 333 334 WARN_ON_ONCE(!rcu_read_lock_held()); 335 336 blkg = blkg_lookup(blkcg, q); 337 if (blkg) 338 return blkg; 339 340 spin_lock_irqsave(&q->queue_lock, flags); 341 blkg = __blkg_lookup(blkcg, q, true); 342 if (blkg) 343 goto found; 344 345 /* 346 * Create blkgs walking down from blkcg_root to @blkcg, so that all 347 * non-root blkgs have access to their parents. Returns the closest 348 * blkg to the intended blkg should blkg_create() fail. 349 */ 350 while (true) { 351 struct blkcg *pos = blkcg; 352 struct blkcg *parent = blkcg_parent(blkcg); 353 struct blkcg_gq *ret_blkg = q->root_blkg; 354 355 while (parent) { 356 blkg = __blkg_lookup(parent, q, false); 357 if (blkg) { 358 /* remember closest blkg */ 359 ret_blkg = blkg; 360 break; 361 } 362 pos = parent; 363 parent = blkcg_parent(parent); 364 } 365 366 blkg = blkg_create(pos, q, NULL); 367 if (IS_ERR(blkg)) { 368 blkg = ret_blkg; 369 break; 370 } 371 if (pos == blkcg) 372 break; 373 } 374 375 found: 376 spin_unlock_irqrestore(&q->queue_lock, flags); 377 return blkg; 378 } 379 380 static void blkg_destroy(struct blkcg_gq *blkg) 381 { 382 struct blkcg *blkcg = blkg->blkcg; 383 int i; 384 385 lockdep_assert_held(&blkg->q->queue_lock); 386 lockdep_assert_held(&blkcg->lock); 387 388 /* Something wrong if we are trying to remove same group twice */ 389 WARN_ON_ONCE(list_empty(&blkg->q_node)); 390 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 391 392 for (i = 0; i < BLKCG_MAX_POLS; i++) { 393 struct blkcg_policy *pol = blkcg_policy[i]; 394 395 if (blkg->pd[i] && pol->pd_offline_fn) 396 pol->pd_offline_fn(blkg->pd[i]); 397 } 398 399 blkg->online = false; 400 401 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 402 list_del_init(&blkg->q_node); 403 hlist_del_init_rcu(&blkg->blkcg_node); 404 405 /* 406 * Both setting lookup hint to and clearing it from @blkg are done 407 * under queue_lock. If it's not pointing to @blkg now, it never 408 * will. Hint assignment itself can race safely. 409 */ 410 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 411 rcu_assign_pointer(blkcg->blkg_hint, NULL); 412 413 /* 414 * Put the reference taken at the time of creation so that when all 415 * queues are gone, group can be destroyed. 416 */ 417 percpu_ref_kill(&blkg->refcnt); 418 } 419 420 /** 421 * blkg_destroy_all - destroy all blkgs associated with a request_queue 422 * @q: request_queue of interest 423 * 424 * Destroy all blkgs associated with @q. 425 */ 426 static void blkg_destroy_all(struct request_queue *q) 427 { 428 struct blkcg_gq *blkg, *n; 429 int count = BLKG_DESTROY_BATCH_SIZE; 430 431 restart: 432 spin_lock_irq(&q->queue_lock); 433 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 434 struct blkcg *blkcg = blkg->blkcg; 435 436 spin_lock(&blkcg->lock); 437 blkg_destroy(blkg); 438 spin_unlock(&blkcg->lock); 439 440 /* 441 * in order to avoid holding the spin lock for too long, release 442 * it when a batch of blkgs are destroyed. 443 */ 444 if (!(--count)) { 445 count = BLKG_DESTROY_BATCH_SIZE; 446 spin_unlock_irq(&q->queue_lock); 447 cond_resched(); 448 goto restart; 449 } 450 } 451 452 q->root_blkg = NULL; 453 spin_unlock_irq(&q->queue_lock); 454 } 455 456 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 457 struct cftype *cftype, u64 val) 458 { 459 struct blkcg *blkcg = css_to_blkcg(css); 460 struct blkcg_gq *blkg; 461 int i, cpu; 462 463 mutex_lock(&blkcg_pol_mutex); 464 spin_lock_irq(&blkcg->lock); 465 466 /* 467 * Note that stat reset is racy - it doesn't synchronize against 468 * stat updates. This is a debug feature which shouldn't exist 469 * anyway. If you get hit by a race, retry. 470 */ 471 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 472 for_each_possible_cpu(cpu) { 473 struct blkg_iostat_set *bis = 474 per_cpu_ptr(blkg->iostat_cpu, cpu); 475 memset(bis, 0, sizeof(*bis)); 476 } 477 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 478 479 for (i = 0; i < BLKCG_MAX_POLS; i++) { 480 struct blkcg_policy *pol = blkcg_policy[i]; 481 482 if (blkg->pd[i] && pol->pd_reset_stats_fn) 483 pol->pd_reset_stats_fn(blkg->pd[i]); 484 } 485 } 486 487 spin_unlock_irq(&blkcg->lock); 488 mutex_unlock(&blkcg_pol_mutex); 489 return 0; 490 } 491 492 const char *blkg_dev_name(struct blkcg_gq *blkg) 493 { 494 if (!blkg->q->disk || !blkg->q->disk->bdi->dev) 495 return NULL; 496 return bdi_dev_name(blkg->q->disk->bdi); 497 } 498 499 /** 500 * blkcg_print_blkgs - helper for printing per-blkg data 501 * @sf: seq_file to print to 502 * @blkcg: blkcg of interest 503 * @prfill: fill function to print out a blkg 504 * @pol: policy in question 505 * @data: data to be passed to @prfill 506 * @show_total: to print out sum of prfill return values or not 507 * 508 * This function invokes @prfill on each blkg of @blkcg if pd for the 509 * policy specified by @pol exists. @prfill is invoked with @sf, the 510 * policy data and @data and the matching queue lock held. If @show_total 511 * is %true, the sum of the return values from @prfill is printed with 512 * "Total" label at the end. 513 * 514 * This is to be used to construct print functions for 515 * cftype->read_seq_string method. 516 */ 517 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 518 u64 (*prfill)(struct seq_file *, 519 struct blkg_policy_data *, int), 520 const struct blkcg_policy *pol, int data, 521 bool show_total) 522 { 523 struct blkcg_gq *blkg; 524 u64 total = 0; 525 526 rcu_read_lock(); 527 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 528 spin_lock_irq(&blkg->q->queue_lock); 529 if (blkcg_policy_enabled(blkg->q, pol)) 530 total += prfill(sf, blkg->pd[pol->plid], data); 531 spin_unlock_irq(&blkg->q->queue_lock); 532 } 533 rcu_read_unlock(); 534 535 if (show_total) 536 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 537 } 538 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 539 540 /** 541 * __blkg_prfill_u64 - prfill helper for a single u64 value 542 * @sf: seq_file to print to 543 * @pd: policy private data of interest 544 * @v: value to print 545 * 546 * Print @v to @sf for the device assocaited with @pd. 547 */ 548 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 549 { 550 const char *dname = blkg_dev_name(pd->blkg); 551 552 if (!dname) 553 return 0; 554 555 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 556 return v; 557 } 558 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 559 560 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 561 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 562 const struct blkcg_policy *pol, 563 struct request_queue *q) 564 { 565 WARN_ON_ONCE(!rcu_read_lock_held()); 566 lockdep_assert_held(&q->queue_lock); 567 568 if (!blkcg_policy_enabled(q, pol)) 569 return ERR_PTR(-EOPNOTSUPP); 570 return __blkg_lookup(blkcg, q, true /* update_hint */); 571 } 572 573 /** 574 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 575 * @inputp: input string pointer 576 * 577 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 578 * from @input and get and return the matching bdev. *@inputp is 579 * updated to point past the device node prefix. Returns an ERR_PTR() 580 * value on error. 581 * 582 * Use this function iff blkg_conf_prep() can't be used for some reason. 583 */ 584 struct block_device *blkcg_conf_open_bdev(char **inputp) 585 { 586 char *input = *inputp; 587 unsigned int major, minor; 588 struct block_device *bdev; 589 int key_len; 590 591 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 592 return ERR_PTR(-EINVAL); 593 594 input += key_len; 595 if (!isspace(*input)) 596 return ERR_PTR(-EINVAL); 597 input = skip_spaces(input); 598 599 bdev = blkdev_get_no_open(MKDEV(major, minor)); 600 if (!bdev) 601 return ERR_PTR(-ENODEV); 602 if (bdev_is_partition(bdev)) { 603 blkdev_put_no_open(bdev); 604 return ERR_PTR(-ENODEV); 605 } 606 607 *inputp = input; 608 return bdev; 609 } 610 611 /** 612 * blkg_conf_prep - parse and prepare for per-blkg config update 613 * @blkcg: target block cgroup 614 * @pol: target policy 615 * @input: input string 616 * @ctx: blkg_conf_ctx to be filled 617 * 618 * Parse per-blkg config update from @input and initialize @ctx with the 619 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 620 * part of @input following MAJ:MIN. This function returns with RCU read 621 * lock and queue lock held and must be paired with blkg_conf_finish(). 622 */ 623 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 624 char *input, struct blkg_conf_ctx *ctx) 625 __acquires(rcu) __acquires(&bdev->bd_queue->queue_lock) 626 { 627 struct block_device *bdev; 628 struct request_queue *q; 629 struct blkcg_gq *blkg; 630 int ret; 631 632 bdev = blkcg_conf_open_bdev(&input); 633 if (IS_ERR(bdev)) 634 return PTR_ERR(bdev); 635 636 q = bdev_get_queue(bdev); 637 638 /* 639 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 640 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 641 */ 642 ret = blk_queue_enter(q, 0); 643 if (ret) 644 goto fail; 645 646 rcu_read_lock(); 647 spin_lock_irq(&q->queue_lock); 648 649 blkg = blkg_lookup_check(blkcg, pol, q); 650 if (IS_ERR(blkg)) { 651 ret = PTR_ERR(blkg); 652 goto fail_unlock; 653 } 654 655 if (blkg) 656 goto success; 657 658 /* 659 * Create blkgs walking down from blkcg_root to @blkcg, so that all 660 * non-root blkgs have access to their parents. 661 */ 662 while (true) { 663 struct blkcg *pos = blkcg; 664 struct blkcg *parent; 665 struct blkcg_gq *new_blkg; 666 667 parent = blkcg_parent(blkcg); 668 while (parent && !__blkg_lookup(parent, q, false)) { 669 pos = parent; 670 parent = blkcg_parent(parent); 671 } 672 673 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 674 spin_unlock_irq(&q->queue_lock); 675 rcu_read_unlock(); 676 677 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 678 if (unlikely(!new_blkg)) { 679 ret = -ENOMEM; 680 goto fail_exit_queue; 681 } 682 683 if (radix_tree_preload(GFP_KERNEL)) { 684 blkg_free(new_blkg); 685 ret = -ENOMEM; 686 goto fail_exit_queue; 687 } 688 689 rcu_read_lock(); 690 spin_lock_irq(&q->queue_lock); 691 692 blkg = blkg_lookup_check(pos, pol, q); 693 if (IS_ERR(blkg)) { 694 ret = PTR_ERR(blkg); 695 blkg_free(new_blkg); 696 goto fail_preloaded; 697 } 698 699 if (blkg) { 700 blkg_free(new_blkg); 701 } else { 702 blkg = blkg_create(pos, q, new_blkg); 703 if (IS_ERR(blkg)) { 704 ret = PTR_ERR(blkg); 705 goto fail_preloaded; 706 } 707 } 708 709 radix_tree_preload_end(); 710 711 if (pos == blkcg) 712 goto success; 713 } 714 success: 715 blk_queue_exit(q); 716 ctx->bdev = bdev; 717 ctx->blkg = blkg; 718 ctx->body = input; 719 return 0; 720 721 fail_preloaded: 722 radix_tree_preload_end(); 723 fail_unlock: 724 spin_unlock_irq(&q->queue_lock); 725 rcu_read_unlock(); 726 fail_exit_queue: 727 blk_queue_exit(q); 728 fail: 729 blkdev_put_no_open(bdev); 730 /* 731 * If queue was bypassing, we should retry. Do so after a 732 * short msleep(). It isn't strictly necessary but queue 733 * can be bypassing for some time and it's always nice to 734 * avoid busy looping. 735 */ 736 if (ret == -EBUSY) { 737 msleep(10); 738 ret = restart_syscall(); 739 } 740 return ret; 741 } 742 EXPORT_SYMBOL_GPL(blkg_conf_prep); 743 744 /** 745 * blkg_conf_finish - finish up per-blkg config update 746 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 747 * 748 * Finish up after per-blkg config update. This function must be paired 749 * with blkg_conf_prep(). 750 */ 751 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 752 __releases(&ctx->bdev->bd_queue->queue_lock) __releases(rcu) 753 { 754 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 755 rcu_read_unlock(); 756 blkdev_put_no_open(ctx->bdev); 757 } 758 EXPORT_SYMBOL_GPL(blkg_conf_finish); 759 760 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 761 { 762 int i; 763 764 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 765 dst->bytes[i] = src->bytes[i]; 766 dst->ios[i] = src->ios[i]; 767 } 768 } 769 770 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 771 { 772 int i; 773 774 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 775 dst->bytes[i] += src->bytes[i]; 776 dst->ios[i] += src->ios[i]; 777 } 778 } 779 780 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 781 { 782 int i; 783 784 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 785 dst->bytes[i] -= src->bytes[i]; 786 dst->ios[i] -= src->ios[i]; 787 } 788 } 789 790 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 791 { 792 struct blkcg *blkcg = css_to_blkcg(css); 793 struct blkcg_gq *blkg; 794 795 /* Root-level stats are sourced from system-wide IO stats */ 796 if (!cgroup_parent(css->cgroup)) 797 return; 798 799 rcu_read_lock(); 800 801 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 802 struct blkcg_gq *parent = blkg->parent; 803 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 804 struct blkg_iostat cur, delta; 805 unsigned long flags; 806 unsigned int seq; 807 808 /* fetch the current per-cpu values */ 809 do { 810 seq = u64_stats_fetch_begin(&bisc->sync); 811 blkg_iostat_set(&cur, &bisc->cur); 812 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 813 814 /* propagate percpu delta to global */ 815 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 816 blkg_iostat_set(&delta, &cur); 817 blkg_iostat_sub(&delta, &bisc->last); 818 blkg_iostat_add(&blkg->iostat.cur, &delta); 819 blkg_iostat_add(&bisc->last, &delta); 820 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 821 822 /* propagate global delta to parent (unless that's root) */ 823 if (parent && parent->parent) { 824 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync); 825 blkg_iostat_set(&delta, &blkg->iostat.cur); 826 blkg_iostat_sub(&delta, &blkg->iostat.last); 827 blkg_iostat_add(&parent->iostat.cur, &delta); 828 blkg_iostat_add(&blkg->iostat.last, &delta); 829 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags); 830 } 831 } 832 833 rcu_read_unlock(); 834 } 835 836 /* 837 * We source root cgroup stats from the system-wide stats to avoid 838 * tracking the same information twice and incurring overhead when no 839 * cgroups are defined. For that reason, cgroup_rstat_flush in 840 * blkcg_print_stat does not actually fill out the iostat in the root 841 * cgroup's blkcg_gq. 842 * 843 * However, we would like to re-use the printing code between the root and 844 * non-root cgroups to the extent possible. For that reason, we simulate 845 * flushing the root cgroup's stats by explicitly filling in the iostat 846 * with disk level statistics. 847 */ 848 static void blkcg_fill_root_iostats(void) 849 { 850 struct class_dev_iter iter; 851 struct device *dev; 852 853 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 854 while ((dev = class_dev_iter_next(&iter))) { 855 struct block_device *bdev = dev_to_bdev(dev); 856 struct blkcg_gq *blkg = 857 blk_queue_root_blkg(bdev_get_queue(bdev)); 858 struct blkg_iostat tmp; 859 int cpu; 860 861 memset(&tmp, 0, sizeof(tmp)); 862 for_each_possible_cpu(cpu) { 863 struct disk_stats *cpu_dkstats; 864 unsigned long flags; 865 866 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 867 tmp.ios[BLKG_IOSTAT_READ] += 868 cpu_dkstats->ios[STAT_READ]; 869 tmp.ios[BLKG_IOSTAT_WRITE] += 870 cpu_dkstats->ios[STAT_WRITE]; 871 tmp.ios[BLKG_IOSTAT_DISCARD] += 872 cpu_dkstats->ios[STAT_DISCARD]; 873 // convert sectors to bytes 874 tmp.bytes[BLKG_IOSTAT_READ] += 875 cpu_dkstats->sectors[STAT_READ] << 9; 876 tmp.bytes[BLKG_IOSTAT_WRITE] += 877 cpu_dkstats->sectors[STAT_WRITE] << 9; 878 tmp.bytes[BLKG_IOSTAT_DISCARD] += 879 cpu_dkstats->sectors[STAT_DISCARD] << 9; 880 881 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 882 blkg_iostat_set(&blkg->iostat.cur, &tmp); 883 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 884 } 885 } 886 } 887 888 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 889 { 890 struct blkg_iostat_set *bis = &blkg->iostat; 891 u64 rbytes, wbytes, rios, wios, dbytes, dios; 892 bool has_stats = false; 893 const char *dname; 894 unsigned seq; 895 int i; 896 897 if (!blkg->online) 898 return; 899 900 dname = blkg_dev_name(blkg); 901 if (!dname) 902 return; 903 904 seq_printf(s, "%s ", dname); 905 906 do { 907 seq = u64_stats_fetch_begin(&bis->sync); 908 909 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 910 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 911 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 912 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 913 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 914 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 915 } while (u64_stats_fetch_retry(&bis->sync, seq)); 916 917 if (rbytes || wbytes || rios || wios) { 918 has_stats = true; 919 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 920 rbytes, wbytes, rios, wios, 921 dbytes, dios); 922 } 923 924 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 925 has_stats = true; 926 seq_printf(s, " use_delay=%d delay_nsec=%llu", 927 atomic_read(&blkg->use_delay), 928 atomic64_read(&blkg->delay_nsec)); 929 } 930 931 for (i = 0; i < BLKCG_MAX_POLS; i++) { 932 struct blkcg_policy *pol = blkcg_policy[i]; 933 934 if (!blkg->pd[i] || !pol->pd_stat_fn) 935 continue; 936 937 if (pol->pd_stat_fn(blkg->pd[i], s)) 938 has_stats = true; 939 } 940 941 if (has_stats) 942 seq_printf(s, "\n"); 943 } 944 945 static int blkcg_print_stat(struct seq_file *sf, void *v) 946 { 947 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 948 struct blkcg_gq *blkg; 949 950 if (!seq_css(sf)->parent) 951 blkcg_fill_root_iostats(); 952 else 953 cgroup_rstat_flush(blkcg->css.cgroup); 954 955 rcu_read_lock(); 956 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 957 spin_lock_irq(&blkg->q->queue_lock); 958 blkcg_print_one_stat(blkg, sf); 959 spin_unlock_irq(&blkg->q->queue_lock); 960 } 961 rcu_read_unlock(); 962 return 0; 963 } 964 965 static struct cftype blkcg_files[] = { 966 { 967 .name = "stat", 968 .seq_show = blkcg_print_stat, 969 }, 970 { } /* terminate */ 971 }; 972 973 static struct cftype blkcg_legacy_files[] = { 974 { 975 .name = "reset_stats", 976 .write_u64 = blkcg_reset_stats, 977 }, 978 { } /* terminate */ 979 }; 980 981 /* 982 * blkcg destruction is a three-stage process. 983 * 984 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 985 * which offlines writeback. Here we tie the next stage of blkg destruction 986 * to the completion of writeback associated with the blkcg. This lets us 987 * avoid punting potentially large amounts of outstanding writeback to root 988 * while maintaining any ongoing policies. The next stage is triggered when 989 * the nr_cgwbs count goes to zero. 990 * 991 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 992 * and handles the destruction of blkgs. Here the css reference held by 993 * the blkg is put back eventually allowing blkcg_css_free() to be called. 994 * This work may occur in cgwb_release_workfn() on the cgwb_release 995 * workqueue. Any submitted ios that fail to get the blkg ref will be 996 * punted to the root_blkg. 997 * 998 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 999 * This finally frees the blkcg. 1000 */ 1001 1002 /** 1003 * blkcg_css_offline - cgroup css_offline callback 1004 * @css: css of interest 1005 * 1006 * This function is called when @css is about to go away. Here the cgwbs are 1007 * offlined first and only once writeback associated with the blkcg has 1008 * finished do we start step 2 (see above). 1009 */ 1010 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1011 { 1012 struct blkcg *blkcg = css_to_blkcg(css); 1013 1014 /* this prevents anyone from attaching or migrating to this blkcg */ 1015 wb_blkcg_offline(blkcg); 1016 1017 /* put the base online pin allowing step 2 to be triggered */ 1018 blkcg_unpin_online(blkcg); 1019 } 1020 1021 /** 1022 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1023 * @blkcg: blkcg of interest 1024 * 1025 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1026 * is nested inside q lock, this function performs reverse double lock dancing. 1027 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1028 * blkcg_css_free to eventually be called. 1029 * 1030 * This is the blkcg counterpart of ioc_release_fn(). 1031 */ 1032 void blkcg_destroy_blkgs(struct blkcg *blkcg) 1033 { 1034 might_sleep(); 1035 1036 spin_lock_irq(&blkcg->lock); 1037 1038 while (!hlist_empty(&blkcg->blkg_list)) { 1039 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1040 struct blkcg_gq, blkcg_node); 1041 struct request_queue *q = blkg->q; 1042 1043 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1044 /* 1045 * Given that the system can accumulate a huge number 1046 * of blkgs in pathological cases, check to see if we 1047 * need to rescheduling to avoid softlockup. 1048 */ 1049 spin_unlock_irq(&blkcg->lock); 1050 cond_resched(); 1051 spin_lock_irq(&blkcg->lock); 1052 continue; 1053 } 1054 1055 blkg_destroy(blkg); 1056 spin_unlock(&q->queue_lock); 1057 } 1058 1059 spin_unlock_irq(&blkcg->lock); 1060 } 1061 1062 static void blkcg_css_free(struct cgroup_subsys_state *css) 1063 { 1064 struct blkcg *blkcg = css_to_blkcg(css); 1065 int i; 1066 1067 mutex_lock(&blkcg_pol_mutex); 1068 1069 list_del(&blkcg->all_blkcgs_node); 1070 1071 for (i = 0; i < BLKCG_MAX_POLS; i++) 1072 if (blkcg->cpd[i]) 1073 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1074 1075 mutex_unlock(&blkcg_pol_mutex); 1076 1077 kfree(blkcg); 1078 } 1079 1080 static struct cgroup_subsys_state * 1081 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1082 { 1083 struct blkcg *blkcg; 1084 struct cgroup_subsys_state *ret; 1085 int i; 1086 1087 mutex_lock(&blkcg_pol_mutex); 1088 1089 if (!parent_css) { 1090 blkcg = &blkcg_root; 1091 } else { 1092 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1093 if (!blkcg) { 1094 ret = ERR_PTR(-ENOMEM); 1095 goto unlock; 1096 } 1097 } 1098 1099 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1100 struct blkcg_policy *pol = blkcg_policy[i]; 1101 struct blkcg_policy_data *cpd; 1102 1103 /* 1104 * If the policy hasn't been attached yet, wait for it 1105 * to be attached before doing anything else. Otherwise, 1106 * check if the policy requires any specific per-cgroup 1107 * data: if it does, allocate and initialize it. 1108 */ 1109 if (!pol || !pol->cpd_alloc_fn) 1110 continue; 1111 1112 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1113 if (!cpd) { 1114 ret = ERR_PTR(-ENOMEM); 1115 goto free_pd_blkcg; 1116 } 1117 blkcg->cpd[i] = cpd; 1118 cpd->blkcg = blkcg; 1119 cpd->plid = i; 1120 if (pol->cpd_init_fn) 1121 pol->cpd_init_fn(cpd); 1122 } 1123 1124 spin_lock_init(&blkcg->lock); 1125 refcount_set(&blkcg->online_pin, 1); 1126 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1127 INIT_HLIST_HEAD(&blkcg->blkg_list); 1128 #ifdef CONFIG_CGROUP_WRITEBACK 1129 INIT_LIST_HEAD(&blkcg->cgwb_list); 1130 #endif 1131 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1132 1133 mutex_unlock(&blkcg_pol_mutex); 1134 return &blkcg->css; 1135 1136 free_pd_blkcg: 1137 for (i--; i >= 0; i--) 1138 if (blkcg->cpd[i]) 1139 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1140 1141 if (blkcg != &blkcg_root) 1142 kfree(blkcg); 1143 unlock: 1144 mutex_unlock(&blkcg_pol_mutex); 1145 return ret; 1146 } 1147 1148 static int blkcg_css_online(struct cgroup_subsys_state *css) 1149 { 1150 struct blkcg *blkcg = css_to_blkcg(css); 1151 struct blkcg *parent = blkcg_parent(blkcg); 1152 1153 /* 1154 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1155 * don't go offline while cgwbs are still active on them. Pin the 1156 * parent so that offline always happens towards the root. 1157 */ 1158 if (parent) 1159 blkcg_pin_online(parent); 1160 return 0; 1161 } 1162 1163 /** 1164 * blkcg_init_queue - initialize blkcg part of request queue 1165 * @q: request_queue to initialize 1166 * 1167 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1168 * part of new request_queue @q. 1169 * 1170 * RETURNS: 1171 * 0 on success, -errno on failure. 1172 */ 1173 int blkcg_init_queue(struct request_queue *q) 1174 { 1175 struct blkcg_gq *new_blkg, *blkg; 1176 bool preloaded; 1177 int ret; 1178 1179 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1180 if (!new_blkg) 1181 return -ENOMEM; 1182 1183 preloaded = !radix_tree_preload(GFP_KERNEL); 1184 1185 /* Make sure the root blkg exists. */ 1186 rcu_read_lock(); 1187 spin_lock_irq(&q->queue_lock); 1188 blkg = blkg_create(&blkcg_root, q, new_blkg); 1189 if (IS_ERR(blkg)) 1190 goto err_unlock; 1191 q->root_blkg = blkg; 1192 spin_unlock_irq(&q->queue_lock); 1193 rcu_read_unlock(); 1194 1195 if (preloaded) 1196 radix_tree_preload_end(); 1197 1198 ret = blk_ioprio_init(q); 1199 if (ret) 1200 goto err_destroy_all; 1201 1202 ret = blk_throtl_init(q); 1203 if (ret) 1204 goto err_destroy_all; 1205 1206 ret = blk_iolatency_init(q); 1207 if (ret) { 1208 blk_throtl_exit(q); 1209 goto err_destroy_all; 1210 } 1211 1212 return 0; 1213 1214 err_destroy_all: 1215 blkg_destroy_all(q); 1216 return ret; 1217 err_unlock: 1218 spin_unlock_irq(&q->queue_lock); 1219 rcu_read_unlock(); 1220 if (preloaded) 1221 radix_tree_preload_end(); 1222 return PTR_ERR(blkg); 1223 } 1224 1225 /** 1226 * blkcg_exit_queue - exit and release blkcg part of request_queue 1227 * @q: request_queue being released 1228 * 1229 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1230 */ 1231 void blkcg_exit_queue(struct request_queue *q) 1232 { 1233 blkg_destroy_all(q); 1234 blk_throtl_exit(q); 1235 } 1236 1237 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1238 { 1239 int i; 1240 1241 mutex_lock(&blkcg_pol_mutex); 1242 1243 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1244 struct blkcg_policy *pol = blkcg_policy[i]; 1245 struct blkcg *blkcg; 1246 1247 if (!pol || !pol->cpd_bind_fn) 1248 continue; 1249 1250 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1251 if (blkcg->cpd[pol->plid]) 1252 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1253 } 1254 mutex_unlock(&blkcg_pol_mutex); 1255 } 1256 1257 static void blkcg_exit(struct task_struct *tsk) 1258 { 1259 if (tsk->throttle_queue) 1260 blk_put_queue(tsk->throttle_queue); 1261 tsk->throttle_queue = NULL; 1262 } 1263 1264 struct cgroup_subsys io_cgrp_subsys = { 1265 .css_alloc = blkcg_css_alloc, 1266 .css_online = blkcg_css_online, 1267 .css_offline = blkcg_css_offline, 1268 .css_free = blkcg_css_free, 1269 .css_rstat_flush = blkcg_rstat_flush, 1270 .bind = blkcg_bind, 1271 .dfl_cftypes = blkcg_files, 1272 .legacy_cftypes = blkcg_legacy_files, 1273 .legacy_name = "blkio", 1274 .exit = blkcg_exit, 1275 #ifdef CONFIG_MEMCG 1276 /* 1277 * This ensures that, if available, memcg is automatically enabled 1278 * together on the default hierarchy so that the owner cgroup can 1279 * be retrieved from writeback pages. 1280 */ 1281 .depends_on = 1 << memory_cgrp_id, 1282 #endif 1283 }; 1284 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1285 1286 /** 1287 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1288 * @q: request_queue of interest 1289 * @pol: blkcg policy to activate 1290 * 1291 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1292 * bypass mode to populate its blkgs with policy_data for @pol. 1293 * 1294 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1295 * from IO path. Update of each blkg is protected by both queue and blkcg 1296 * locks so that holding either lock and testing blkcg_policy_enabled() is 1297 * always enough for dereferencing policy data. 1298 * 1299 * The caller is responsible for synchronizing [de]activations and policy 1300 * [un]registerations. Returns 0 on success, -errno on failure. 1301 */ 1302 int blkcg_activate_policy(struct request_queue *q, 1303 const struct blkcg_policy *pol) 1304 { 1305 struct blkg_policy_data *pd_prealloc = NULL; 1306 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1307 int ret; 1308 1309 if (blkcg_policy_enabled(q, pol)) 1310 return 0; 1311 1312 if (queue_is_mq(q)) 1313 blk_mq_freeze_queue(q); 1314 retry: 1315 spin_lock_irq(&q->queue_lock); 1316 1317 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1318 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1319 struct blkg_policy_data *pd; 1320 1321 if (blkg->pd[pol->plid]) 1322 continue; 1323 1324 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1325 if (blkg == pinned_blkg) { 1326 pd = pd_prealloc; 1327 pd_prealloc = NULL; 1328 } else { 1329 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1330 blkg->blkcg); 1331 } 1332 1333 if (!pd) { 1334 /* 1335 * GFP_NOWAIT failed. Free the existing one and 1336 * prealloc for @blkg w/ GFP_KERNEL. 1337 */ 1338 if (pinned_blkg) 1339 blkg_put(pinned_blkg); 1340 blkg_get(blkg); 1341 pinned_blkg = blkg; 1342 1343 spin_unlock_irq(&q->queue_lock); 1344 1345 if (pd_prealloc) 1346 pol->pd_free_fn(pd_prealloc); 1347 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1348 blkg->blkcg); 1349 if (pd_prealloc) 1350 goto retry; 1351 else 1352 goto enomem; 1353 } 1354 1355 blkg->pd[pol->plid] = pd; 1356 pd->blkg = blkg; 1357 pd->plid = pol->plid; 1358 } 1359 1360 /* all allocated, init in the same order */ 1361 if (pol->pd_init_fn) 1362 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1363 pol->pd_init_fn(blkg->pd[pol->plid]); 1364 1365 __set_bit(pol->plid, q->blkcg_pols); 1366 ret = 0; 1367 1368 spin_unlock_irq(&q->queue_lock); 1369 out: 1370 if (queue_is_mq(q)) 1371 blk_mq_unfreeze_queue(q); 1372 if (pinned_blkg) 1373 blkg_put(pinned_blkg); 1374 if (pd_prealloc) 1375 pol->pd_free_fn(pd_prealloc); 1376 return ret; 1377 1378 enomem: 1379 /* alloc failed, nothing's initialized yet, free everything */ 1380 spin_lock_irq(&q->queue_lock); 1381 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1382 struct blkcg *blkcg = blkg->blkcg; 1383 1384 spin_lock(&blkcg->lock); 1385 if (blkg->pd[pol->plid]) { 1386 pol->pd_free_fn(blkg->pd[pol->plid]); 1387 blkg->pd[pol->plid] = NULL; 1388 } 1389 spin_unlock(&blkcg->lock); 1390 } 1391 spin_unlock_irq(&q->queue_lock); 1392 ret = -ENOMEM; 1393 goto out; 1394 } 1395 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1396 1397 /** 1398 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1399 * @q: request_queue of interest 1400 * @pol: blkcg policy to deactivate 1401 * 1402 * Deactivate @pol on @q. Follows the same synchronization rules as 1403 * blkcg_activate_policy(). 1404 */ 1405 void blkcg_deactivate_policy(struct request_queue *q, 1406 const struct blkcg_policy *pol) 1407 { 1408 struct blkcg_gq *blkg; 1409 1410 if (!blkcg_policy_enabled(q, pol)) 1411 return; 1412 1413 if (queue_is_mq(q)) 1414 blk_mq_freeze_queue(q); 1415 1416 spin_lock_irq(&q->queue_lock); 1417 1418 __clear_bit(pol->plid, q->blkcg_pols); 1419 1420 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1421 struct blkcg *blkcg = blkg->blkcg; 1422 1423 spin_lock(&blkcg->lock); 1424 if (blkg->pd[pol->plid]) { 1425 if (pol->pd_offline_fn) 1426 pol->pd_offline_fn(blkg->pd[pol->plid]); 1427 pol->pd_free_fn(blkg->pd[pol->plid]); 1428 blkg->pd[pol->plid] = NULL; 1429 } 1430 spin_unlock(&blkcg->lock); 1431 } 1432 1433 spin_unlock_irq(&q->queue_lock); 1434 1435 if (queue_is_mq(q)) 1436 blk_mq_unfreeze_queue(q); 1437 } 1438 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1439 1440 /** 1441 * blkcg_policy_register - register a blkcg policy 1442 * @pol: blkcg policy to register 1443 * 1444 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1445 * successful registration. Returns 0 on success and -errno on failure. 1446 */ 1447 int blkcg_policy_register(struct blkcg_policy *pol) 1448 { 1449 struct blkcg *blkcg; 1450 int i, ret; 1451 1452 mutex_lock(&blkcg_pol_register_mutex); 1453 mutex_lock(&blkcg_pol_mutex); 1454 1455 /* find an empty slot */ 1456 ret = -ENOSPC; 1457 for (i = 0; i < BLKCG_MAX_POLS; i++) 1458 if (!blkcg_policy[i]) 1459 break; 1460 if (i >= BLKCG_MAX_POLS) { 1461 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1462 goto err_unlock; 1463 } 1464 1465 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1466 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1467 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1468 goto err_unlock; 1469 1470 /* register @pol */ 1471 pol->plid = i; 1472 blkcg_policy[pol->plid] = pol; 1473 1474 /* allocate and install cpd's */ 1475 if (pol->cpd_alloc_fn) { 1476 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1477 struct blkcg_policy_data *cpd; 1478 1479 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1480 if (!cpd) 1481 goto err_free_cpds; 1482 1483 blkcg->cpd[pol->plid] = cpd; 1484 cpd->blkcg = blkcg; 1485 cpd->plid = pol->plid; 1486 if (pol->cpd_init_fn) 1487 pol->cpd_init_fn(cpd); 1488 } 1489 } 1490 1491 mutex_unlock(&blkcg_pol_mutex); 1492 1493 /* everything is in place, add intf files for the new policy */ 1494 if (pol->dfl_cftypes) 1495 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1496 pol->dfl_cftypes)); 1497 if (pol->legacy_cftypes) 1498 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1499 pol->legacy_cftypes)); 1500 mutex_unlock(&blkcg_pol_register_mutex); 1501 return 0; 1502 1503 err_free_cpds: 1504 if (pol->cpd_free_fn) { 1505 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1506 if (blkcg->cpd[pol->plid]) { 1507 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1508 blkcg->cpd[pol->plid] = NULL; 1509 } 1510 } 1511 } 1512 blkcg_policy[pol->plid] = NULL; 1513 err_unlock: 1514 mutex_unlock(&blkcg_pol_mutex); 1515 mutex_unlock(&blkcg_pol_register_mutex); 1516 return ret; 1517 } 1518 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1519 1520 /** 1521 * blkcg_policy_unregister - unregister a blkcg policy 1522 * @pol: blkcg policy to unregister 1523 * 1524 * Undo blkcg_policy_register(@pol). Might sleep. 1525 */ 1526 void blkcg_policy_unregister(struct blkcg_policy *pol) 1527 { 1528 struct blkcg *blkcg; 1529 1530 mutex_lock(&blkcg_pol_register_mutex); 1531 1532 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1533 goto out_unlock; 1534 1535 /* kill the intf files first */ 1536 if (pol->dfl_cftypes) 1537 cgroup_rm_cftypes(pol->dfl_cftypes); 1538 if (pol->legacy_cftypes) 1539 cgroup_rm_cftypes(pol->legacy_cftypes); 1540 1541 /* remove cpds and unregister */ 1542 mutex_lock(&blkcg_pol_mutex); 1543 1544 if (pol->cpd_free_fn) { 1545 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1546 if (blkcg->cpd[pol->plid]) { 1547 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1548 blkcg->cpd[pol->plid] = NULL; 1549 } 1550 } 1551 } 1552 blkcg_policy[pol->plid] = NULL; 1553 1554 mutex_unlock(&blkcg_pol_mutex); 1555 out_unlock: 1556 mutex_unlock(&blkcg_pol_register_mutex); 1557 } 1558 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1559 1560 bool __blkcg_punt_bio_submit(struct bio *bio) 1561 { 1562 struct blkcg_gq *blkg = bio->bi_blkg; 1563 1564 /* consume the flag first */ 1565 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1566 1567 /* never bounce for the root cgroup */ 1568 if (!blkg->parent) 1569 return false; 1570 1571 spin_lock_bh(&blkg->async_bio_lock); 1572 bio_list_add(&blkg->async_bios, bio); 1573 spin_unlock_bh(&blkg->async_bio_lock); 1574 1575 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1576 return true; 1577 } 1578 1579 /* 1580 * Scale the accumulated delay based on how long it has been since we updated 1581 * the delay. We only call this when we are adding delay, in case it's been a 1582 * while since we added delay, and when we are checking to see if we need to 1583 * delay a task, to account for any delays that may have occurred. 1584 */ 1585 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1586 { 1587 u64 old = atomic64_read(&blkg->delay_start); 1588 1589 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1590 if (atomic_read(&blkg->use_delay) < 0) 1591 return; 1592 1593 /* 1594 * We only want to scale down every second. The idea here is that we 1595 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1596 * time window. We only want to throttle tasks for recent delay that 1597 * has occurred, in 1 second time windows since that's the maximum 1598 * things can be throttled. We save the current delay window in 1599 * blkg->last_delay so we know what amount is still left to be charged 1600 * to the blkg from this point onward. blkg->last_use keeps track of 1601 * the use_delay counter. The idea is if we're unthrottling the blkg we 1602 * are ok with whatever is happening now, and we can take away more of 1603 * the accumulated delay as we've already throttled enough that 1604 * everybody is happy with their IO latencies. 1605 */ 1606 if (time_before64(old + NSEC_PER_SEC, now) && 1607 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1608 u64 cur = atomic64_read(&blkg->delay_nsec); 1609 u64 sub = min_t(u64, blkg->last_delay, now - old); 1610 int cur_use = atomic_read(&blkg->use_delay); 1611 1612 /* 1613 * We've been unthrottled, subtract a larger chunk of our 1614 * accumulated delay. 1615 */ 1616 if (cur_use < blkg->last_use) 1617 sub = max_t(u64, sub, blkg->last_delay >> 1); 1618 1619 /* 1620 * This shouldn't happen, but handle it anyway. Our delay_nsec 1621 * should only ever be growing except here where we subtract out 1622 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1623 * rather not end up with negative numbers. 1624 */ 1625 if (unlikely(cur < sub)) { 1626 atomic64_set(&blkg->delay_nsec, 0); 1627 blkg->last_delay = 0; 1628 } else { 1629 atomic64_sub(sub, &blkg->delay_nsec); 1630 blkg->last_delay = cur - sub; 1631 } 1632 blkg->last_use = cur_use; 1633 } 1634 } 1635 1636 /* 1637 * This is called when we want to actually walk up the hierarchy and check to 1638 * see if we need to throttle, and then actually throttle if there is some 1639 * accumulated delay. This should only be called upon return to user space so 1640 * we're not holding some lock that would induce a priority inversion. 1641 */ 1642 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1643 { 1644 unsigned long pflags; 1645 bool clamp; 1646 u64 now = ktime_to_ns(ktime_get()); 1647 u64 exp; 1648 u64 delay_nsec = 0; 1649 int tok; 1650 1651 while (blkg->parent) { 1652 int use_delay = atomic_read(&blkg->use_delay); 1653 1654 if (use_delay) { 1655 u64 this_delay; 1656 1657 blkcg_scale_delay(blkg, now); 1658 this_delay = atomic64_read(&blkg->delay_nsec); 1659 if (this_delay > delay_nsec) { 1660 delay_nsec = this_delay; 1661 clamp = use_delay > 0; 1662 } 1663 } 1664 blkg = blkg->parent; 1665 } 1666 1667 if (!delay_nsec) 1668 return; 1669 1670 /* 1671 * Let's not sleep for all eternity if we've amassed a huge delay. 1672 * Swapping or metadata IO can accumulate 10's of seconds worth of 1673 * delay, and we want userspace to be able to do _something_ so cap the 1674 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1675 * tasks will be delayed for 0.25 second for every syscall. If 1676 * blkcg_set_delay() was used as indicated by negative use_delay, the 1677 * caller is responsible for regulating the range. 1678 */ 1679 if (clamp) 1680 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1681 1682 if (use_memdelay) 1683 psi_memstall_enter(&pflags); 1684 1685 exp = ktime_add_ns(now, delay_nsec); 1686 tok = io_schedule_prepare(); 1687 do { 1688 __set_current_state(TASK_KILLABLE); 1689 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1690 break; 1691 } while (!fatal_signal_pending(current)); 1692 io_schedule_finish(tok); 1693 1694 if (use_memdelay) 1695 psi_memstall_leave(&pflags); 1696 } 1697 1698 /** 1699 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1700 * 1701 * This is only called if we've been marked with set_notify_resume(). Obviously 1702 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1703 * check to see if current->throttle_queue is set and if not this doesn't do 1704 * anything. This should only ever be called by the resume code, it's not meant 1705 * to be called by people willy-nilly as it will actually do the work to 1706 * throttle the task if it is setup for throttling. 1707 */ 1708 void blkcg_maybe_throttle_current(void) 1709 { 1710 struct request_queue *q = current->throttle_queue; 1711 struct cgroup_subsys_state *css; 1712 struct blkcg *blkcg; 1713 struct blkcg_gq *blkg; 1714 bool use_memdelay = current->use_memdelay; 1715 1716 if (!q) 1717 return; 1718 1719 current->throttle_queue = NULL; 1720 current->use_memdelay = false; 1721 1722 rcu_read_lock(); 1723 css = kthread_blkcg(); 1724 if (css) 1725 blkcg = css_to_blkcg(css); 1726 else 1727 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1728 1729 if (!blkcg) 1730 goto out; 1731 blkg = blkg_lookup(blkcg, q); 1732 if (!blkg) 1733 goto out; 1734 if (!blkg_tryget(blkg)) 1735 goto out; 1736 rcu_read_unlock(); 1737 1738 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1739 blkg_put(blkg); 1740 blk_put_queue(q); 1741 return; 1742 out: 1743 rcu_read_unlock(); 1744 blk_put_queue(q); 1745 } 1746 1747 /** 1748 * blkcg_schedule_throttle - this task needs to check for throttling 1749 * @q: the request queue IO was submitted on 1750 * @use_memdelay: do we charge this to memory delay for PSI 1751 * 1752 * This is called by the IO controller when we know there's delay accumulated 1753 * for the blkg for this task. We do not pass the blkg because there are places 1754 * we call this that may not have that information, the swapping code for 1755 * instance will only have a request_queue at that point. This set's the 1756 * notify_resume for the task to check and see if it requires throttling before 1757 * returning to user space. 1758 * 1759 * We will only schedule once per syscall. You can call this over and over 1760 * again and it will only do the check once upon return to user space, and only 1761 * throttle once. If the task needs to be throttled again it'll need to be 1762 * re-set at the next time we see the task. 1763 */ 1764 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1765 { 1766 if (unlikely(current->flags & PF_KTHREAD)) 1767 return; 1768 1769 if (current->throttle_queue != q) { 1770 if (!blk_get_queue(q)) 1771 return; 1772 1773 if (current->throttle_queue) 1774 blk_put_queue(current->throttle_queue); 1775 current->throttle_queue = q; 1776 } 1777 1778 if (use_memdelay) 1779 current->use_memdelay = use_memdelay; 1780 set_notify_resume(current); 1781 } 1782 1783 /** 1784 * blkcg_add_delay - add delay to this blkg 1785 * @blkg: blkg of interest 1786 * @now: the current time in nanoseconds 1787 * @delta: how many nanoseconds of delay to add 1788 * 1789 * Charge @delta to the blkg's current delay accumulation. This is used to 1790 * throttle tasks if an IO controller thinks we need more throttling. 1791 */ 1792 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1793 { 1794 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1795 return; 1796 blkcg_scale_delay(blkg, now); 1797 atomic64_add(delta, &blkg->delay_nsec); 1798 } 1799 1800 /** 1801 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1802 * @bio: target bio 1803 * @css: target css 1804 * 1805 * As the failure mode here is to walk up the blkg tree, this ensure that the 1806 * blkg->parent pointers are always valid. This returns the blkg that it ended 1807 * up taking a reference on or %NULL if no reference was taken. 1808 */ 1809 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1810 struct cgroup_subsys_state *css) 1811 { 1812 struct blkcg_gq *blkg, *ret_blkg = NULL; 1813 1814 rcu_read_lock(); 1815 blkg = blkg_lookup_create(css_to_blkcg(css), 1816 bdev_get_queue(bio->bi_bdev)); 1817 while (blkg) { 1818 if (blkg_tryget(blkg)) { 1819 ret_blkg = blkg; 1820 break; 1821 } 1822 blkg = blkg->parent; 1823 } 1824 rcu_read_unlock(); 1825 1826 return ret_blkg; 1827 } 1828 1829 /** 1830 * bio_associate_blkg_from_css - associate a bio with a specified css 1831 * @bio: target bio 1832 * @css: target css 1833 * 1834 * Associate @bio with the blkg found by combining the css's blkg and the 1835 * request_queue of the @bio. An association failure is handled by walking up 1836 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1837 * and q->root_blkg. This situation only happens when a cgroup is dying and 1838 * then the remaining bios will spill to the closest alive blkg. 1839 * 1840 * A reference will be taken on the blkg and will be released when @bio is 1841 * freed. 1842 */ 1843 void bio_associate_blkg_from_css(struct bio *bio, 1844 struct cgroup_subsys_state *css) 1845 { 1846 if (bio->bi_blkg) 1847 blkg_put(bio->bi_blkg); 1848 1849 if (css && css->parent) { 1850 bio->bi_blkg = blkg_tryget_closest(bio, css); 1851 } else { 1852 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 1853 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 1854 } 1855 } 1856 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1857 1858 /** 1859 * bio_associate_blkg - associate a bio with a blkg 1860 * @bio: target bio 1861 * 1862 * Associate @bio with the blkg found from the bio's css and request_queue. 1863 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1864 * already associated, the css is reused and association redone as the 1865 * request_queue may have changed. 1866 */ 1867 void bio_associate_blkg(struct bio *bio) 1868 { 1869 struct cgroup_subsys_state *css; 1870 1871 rcu_read_lock(); 1872 1873 if (bio->bi_blkg) 1874 css = &bio_blkcg(bio)->css; 1875 else 1876 css = blkcg_css(); 1877 1878 bio_associate_blkg_from_css(bio, css); 1879 1880 rcu_read_unlock(); 1881 } 1882 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1883 1884 /** 1885 * bio_clone_blkg_association - clone blkg association from src to dst bio 1886 * @dst: destination bio 1887 * @src: source bio 1888 */ 1889 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1890 { 1891 if (src->bi_blkg) { 1892 if (dst->bi_blkg) 1893 blkg_put(dst->bi_blkg); 1894 blkg_get(src->bi_blkg); 1895 dst->bi_blkg = src->bi_blkg; 1896 } 1897 } 1898 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1899 1900 static int blk_cgroup_io_type(struct bio *bio) 1901 { 1902 if (op_is_discard(bio->bi_opf)) 1903 return BLKG_IOSTAT_DISCARD; 1904 if (op_is_write(bio->bi_opf)) 1905 return BLKG_IOSTAT_WRITE; 1906 return BLKG_IOSTAT_READ; 1907 } 1908 1909 void blk_cgroup_bio_start(struct bio *bio) 1910 { 1911 int rwd = blk_cgroup_io_type(bio), cpu; 1912 struct blkg_iostat_set *bis; 1913 unsigned long flags; 1914 1915 cpu = get_cpu(); 1916 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1917 flags = u64_stats_update_begin_irqsave(&bis->sync); 1918 1919 /* 1920 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1921 * bio and we would have already accounted for the size of the bio. 1922 */ 1923 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1924 bio_set_flag(bio, BIO_CGROUP_ACCT); 1925 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1926 } 1927 bis->cur.ios[rwd]++; 1928 1929 u64_stats_update_end_irqrestore(&bis->sync, flags); 1930 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1931 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1932 put_cpu(); 1933 } 1934 1935 static int __init blkcg_init(void) 1936 { 1937 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1938 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1939 WQ_UNBOUND | WQ_SYSFS, 0); 1940 if (!blkcg_punt_bio_wq) 1941 return -ENOMEM; 1942 return 0; 1943 } 1944 subsys_initcall(blkcg_init); 1945 1946 module_param(blkcg_debug_stats, bool, 0644); 1947 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1948