1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/genhd.h> 27 #include <linux/delay.h> 28 #include <linux/atomic.h> 29 #include <linux/ctype.h> 30 #include <linux/blk-cgroup.h> 31 #include <linux/tracehook.h> 32 #include <linux/psi.h> 33 #include "blk.h" 34 #include "blk-ioprio.h" 35 36 /* 37 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 38 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 39 * policy [un]register operations including cgroup file additions / 40 * removals. Putting cgroup file registration outside blkcg_pol_mutex 41 * allows grabbing it from cgroup callbacks. 42 */ 43 static DEFINE_MUTEX(blkcg_pol_register_mutex); 44 static DEFINE_MUTEX(blkcg_pol_mutex); 45 46 struct blkcg blkcg_root; 47 EXPORT_SYMBOL_GPL(blkcg_root); 48 49 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 50 EXPORT_SYMBOL_GPL(blkcg_root_css); 51 52 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 53 54 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 55 56 bool blkcg_debug_stats = false; 57 static struct workqueue_struct *blkcg_punt_bio_wq; 58 59 #define BLKG_DESTROY_BATCH_SIZE 64 60 61 static bool blkcg_policy_enabled(struct request_queue *q, 62 const struct blkcg_policy *pol) 63 { 64 return pol && test_bit(pol->plid, q->blkcg_pols); 65 } 66 67 /** 68 * blkg_free - free a blkg 69 * @blkg: blkg to free 70 * 71 * Free @blkg which may be partially allocated. 72 */ 73 static void blkg_free(struct blkcg_gq *blkg) 74 { 75 int i; 76 77 if (!blkg) 78 return; 79 80 for (i = 0; i < BLKCG_MAX_POLS; i++) 81 if (blkg->pd[i]) 82 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 83 84 free_percpu(blkg->iostat_cpu); 85 percpu_ref_exit(&blkg->refcnt); 86 kfree(blkg); 87 } 88 89 static void __blkg_release(struct rcu_head *rcu) 90 { 91 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 92 93 WARN_ON(!bio_list_empty(&blkg->async_bios)); 94 95 /* release the blkcg and parent blkg refs this blkg has been holding */ 96 css_put(&blkg->blkcg->css); 97 if (blkg->parent) 98 blkg_put(blkg->parent); 99 blkg_free(blkg); 100 } 101 102 /* 103 * A group is RCU protected, but having an rcu lock does not mean that one 104 * can access all the fields of blkg and assume these are valid. For 105 * example, don't try to follow throtl_data and request queue links. 106 * 107 * Having a reference to blkg under an rcu allows accesses to only values 108 * local to groups like group stats and group rate limits. 109 */ 110 static void blkg_release(struct percpu_ref *ref) 111 { 112 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 113 114 call_rcu(&blkg->rcu_head, __blkg_release); 115 } 116 117 static void blkg_async_bio_workfn(struct work_struct *work) 118 { 119 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 120 async_bio_work); 121 struct bio_list bios = BIO_EMPTY_LIST; 122 struct bio *bio; 123 struct blk_plug plug; 124 bool need_plug = false; 125 126 /* as long as there are pending bios, @blkg can't go away */ 127 spin_lock_bh(&blkg->async_bio_lock); 128 bio_list_merge(&bios, &blkg->async_bios); 129 bio_list_init(&blkg->async_bios); 130 spin_unlock_bh(&blkg->async_bio_lock); 131 132 /* start plug only when bio_list contains at least 2 bios */ 133 if (bios.head && bios.head->bi_next) { 134 need_plug = true; 135 blk_start_plug(&plug); 136 } 137 while ((bio = bio_list_pop(&bios))) 138 submit_bio(bio); 139 if (need_plug) 140 blk_finish_plug(&plug); 141 } 142 143 /** 144 * blkg_alloc - allocate a blkg 145 * @blkcg: block cgroup the new blkg is associated with 146 * @q: request_queue the new blkg is associated with 147 * @gfp_mask: allocation mask to use 148 * 149 * Allocate a new blkg assocating @blkcg and @q. 150 */ 151 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct request_queue *q, 152 gfp_t gfp_mask) 153 { 154 struct blkcg_gq *blkg; 155 int i, cpu; 156 157 /* alloc and init base part */ 158 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, q->node); 159 if (!blkg) 160 return NULL; 161 162 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 163 goto err_free; 164 165 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 166 if (!blkg->iostat_cpu) 167 goto err_free; 168 169 blkg->q = q; 170 INIT_LIST_HEAD(&blkg->q_node); 171 spin_lock_init(&blkg->async_bio_lock); 172 bio_list_init(&blkg->async_bios); 173 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 174 blkg->blkcg = blkcg; 175 176 u64_stats_init(&blkg->iostat.sync); 177 for_each_possible_cpu(cpu) 178 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 179 180 for (i = 0; i < BLKCG_MAX_POLS; i++) { 181 struct blkcg_policy *pol = blkcg_policy[i]; 182 struct blkg_policy_data *pd; 183 184 if (!blkcg_policy_enabled(q, pol)) 185 continue; 186 187 /* alloc per-policy data and attach it to blkg */ 188 pd = pol->pd_alloc_fn(gfp_mask, q, blkcg); 189 if (!pd) 190 goto err_free; 191 192 blkg->pd[i] = pd; 193 pd->blkg = blkg; 194 pd->plid = i; 195 } 196 197 return blkg; 198 199 err_free: 200 blkg_free(blkg); 201 return NULL; 202 } 203 204 struct blkcg_gq *blkg_lookup_slowpath(struct blkcg *blkcg, 205 struct request_queue *q, bool update_hint) 206 { 207 struct blkcg_gq *blkg; 208 209 /* 210 * Hint didn't match. Look up from the radix tree. Note that the 211 * hint can only be updated under queue_lock as otherwise @blkg 212 * could have already been removed from blkg_tree. The caller is 213 * responsible for grabbing queue_lock if @update_hint. 214 */ 215 blkg = radix_tree_lookup(&blkcg->blkg_tree, q->id); 216 if (blkg && blkg->q == q) { 217 if (update_hint) { 218 lockdep_assert_held(&q->queue_lock); 219 rcu_assign_pointer(blkcg->blkg_hint, blkg); 220 } 221 return blkg; 222 } 223 224 return NULL; 225 } 226 EXPORT_SYMBOL_GPL(blkg_lookup_slowpath); 227 228 /* 229 * If @new_blkg is %NULL, this function tries to allocate a new one as 230 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 231 */ 232 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, 233 struct request_queue *q, 234 struct blkcg_gq *new_blkg) 235 { 236 struct blkcg_gq *blkg; 237 int i, ret; 238 239 WARN_ON_ONCE(!rcu_read_lock_held()); 240 lockdep_assert_held(&q->queue_lock); 241 242 /* request_queue is dying, do not create/recreate a blkg */ 243 if (blk_queue_dying(q)) { 244 ret = -ENODEV; 245 goto err_free_blkg; 246 } 247 248 /* blkg holds a reference to blkcg */ 249 if (!css_tryget_online(&blkcg->css)) { 250 ret = -ENODEV; 251 goto err_free_blkg; 252 } 253 254 /* allocate */ 255 if (!new_blkg) { 256 new_blkg = blkg_alloc(blkcg, q, GFP_NOWAIT | __GFP_NOWARN); 257 if (unlikely(!new_blkg)) { 258 ret = -ENOMEM; 259 goto err_put_css; 260 } 261 } 262 blkg = new_blkg; 263 264 /* link parent */ 265 if (blkcg_parent(blkcg)) { 266 blkg->parent = __blkg_lookup(blkcg_parent(blkcg), q, false); 267 if (WARN_ON_ONCE(!blkg->parent)) { 268 ret = -ENODEV; 269 goto err_put_css; 270 } 271 blkg_get(blkg->parent); 272 } 273 274 /* invoke per-policy init */ 275 for (i = 0; i < BLKCG_MAX_POLS; i++) { 276 struct blkcg_policy *pol = blkcg_policy[i]; 277 278 if (blkg->pd[i] && pol->pd_init_fn) 279 pol->pd_init_fn(blkg->pd[i]); 280 } 281 282 /* insert */ 283 spin_lock(&blkcg->lock); 284 ret = radix_tree_insert(&blkcg->blkg_tree, q->id, blkg); 285 if (likely(!ret)) { 286 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 287 list_add(&blkg->q_node, &q->blkg_list); 288 289 for (i = 0; i < BLKCG_MAX_POLS; i++) { 290 struct blkcg_policy *pol = blkcg_policy[i]; 291 292 if (blkg->pd[i] && pol->pd_online_fn) 293 pol->pd_online_fn(blkg->pd[i]); 294 } 295 } 296 blkg->online = true; 297 spin_unlock(&blkcg->lock); 298 299 if (!ret) 300 return blkg; 301 302 /* @blkg failed fully initialized, use the usual release path */ 303 blkg_put(blkg); 304 return ERR_PTR(ret); 305 306 err_put_css: 307 css_put(&blkcg->css); 308 err_free_blkg: 309 blkg_free(new_blkg); 310 return ERR_PTR(ret); 311 } 312 313 /** 314 * blkg_lookup_create - lookup blkg, try to create one if not there 315 * @blkcg: blkcg of interest 316 * @q: request_queue of interest 317 * 318 * Lookup blkg for the @blkcg - @q pair. If it doesn't exist, try to 319 * create one. blkg creation is performed recursively from blkcg_root such 320 * that all non-root blkg's have access to the parent blkg. This function 321 * should be called under RCU read lock and takes @q->queue_lock. 322 * 323 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 324 * down from root. 325 */ 326 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 327 struct request_queue *q) 328 { 329 struct blkcg_gq *blkg; 330 unsigned long flags; 331 332 WARN_ON_ONCE(!rcu_read_lock_held()); 333 334 blkg = blkg_lookup(blkcg, q); 335 if (blkg) 336 return blkg; 337 338 spin_lock_irqsave(&q->queue_lock, flags); 339 blkg = __blkg_lookup(blkcg, q, true); 340 if (blkg) 341 goto found; 342 343 /* 344 * Create blkgs walking down from blkcg_root to @blkcg, so that all 345 * non-root blkgs have access to their parents. Returns the closest 346 * blkg to the intended blkg should blkg_create() fail. 347 */ 348 while (true) { 349 struct blkcg *pos = blkcg; 350 struct blkcg *parent = blkcg_parent(blkcg); 351 struct blkcg_gq *ret_blkg = q->root_blkg; 352 353 while (parent) { 354 blkg = __blkg_lookup(parent, q, false); 355 if (blkg) { 356 /* remember closest blkg */ 357 ret_blkg = blkg; 358 break; 359 } 360 pos = parent; 361 parent = blkcg_parent(parent); 362 } 363 364 blkg = blkg_create(pos, q, NULL); 365 if (IS_ERR(blkg)) { 366 blkg = ret_blkg; 367 break; 368 } 369 if (pos == blkcg) 370 break; 371 } 372 373 found: 374 spin_unlock_irqrestore(&q->queue_lock, flags); 375 return blkg; 376 } 377 378 static void blkg_destroy(struct blkcg_gq *blkg) 379 { 380 struct blkcg *blkcg = blkg->blkcg; 381 int i; 382 383 lockdep_assert_held(&blkg->q->queue_lock); 384 lockdep_assert_held(&blkcg->lock); 385 386 /* Something wrong if we are trying to remove same group twice */ 387 WARN_ON_ONCE(list_empty(&blkg->q_node)); 388 WARN_ON_ONCE(hlist_unhashed(&blkg->blkcg_node)); 389 390 for (i = 0; i < BLKCG_MAX_POLS; i++) { 391 struct blkcg_policy *pol = blkcg_policy[i]; 392 393 if (blkg->pd[i] && pol->pd_offline_fn) 394 pol->pd_offline_fn(blkg->pd[i]); 395 } 396 397 blkg->online = false; 398 399 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 400 list_del_init(&blkg->q_node); 401 hlist_del_init_rcu(&blkg->blkcg_node); 402 403 /* 404 * Both setting lookup hint to and clearing it from @blkg are done 405 * under queue_lock. If it's not pointing to @blkg now, it never 406 * will. Hint assignment itself can race safely. 407 */ 408 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 409 rcu_assign_pointer(blkcg->blkg_hint, NULL); 410 411 /* 412 * Put the reference taken at the time of creation so that when all 413 * queues are gone, group can be destroyed. 414 */ 415 percpu_ref_kill(&blkg->refcnt); 416 } 417 418 /** 419 * blkg_destroy_all - destroy all blkgs associated with a request_queue 420 * @q: request_queue of interest 421 * 422 * Destroy all blkgs associated with @q. 423 */ 424 static void blkg_destroy_all(struct request_queue *q) 425 { 426 struct blkcg_gq *blkg, *n; 427 int count = BLKG_DESTROY_BATCH_SIZE; 428 429 restart: 430 spin_lock_irq(&q->queue_lock); 431 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 432 struct blkcg *blkcg = blkg->blkcg; 433 434 spin_lock(&blkcg->lock); 435 blkg_destroy(blkg); 436 spin_unlock(&blkcg->lock); 437 438 /* 439 * in order to avoid holding the spin lock for too long, release 440 * it when a batch of blkgs are destroyed. 441 */ 442 if (!(--count)) { 443 count = BLKG_DESTROY_BATCH_SIZE; 444 spin_unlock_irq(&q->queue_lock); 445 cond_resched(); 446 goto restart; 447 } 448 } 449 450 q->root_blkg = NULL; 451 spin_unlock_irq(&q->queue_lock); 452 } 453 454 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 455 struct cftype *cftype, u64 val) 456 { 457 struct blkcg *blkcg = css_to_blkcg(css); 458 struct blkcg_gq *blkg; 459 int i, cpu; 460 461 mutex_lock(&blkcg_pol_mutex); 462 spin_lock_irq(&blkcg->lock); 463 464 /* 465 * Note that stat reset is racy - it doesn't synchronize against 466 * stat updates. This is a debug feature which shouldn't exist 467 * anyway. If you get hit by a race, retry. 468 */ 469 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 470 for_each_possible_cpu(cpu) { 471 struct blkg_iostat_set *bis = 472 per_cpu_ptr(blkg->iostat_cpu, cpu); 473 memset(bis, 0, sizeof(*bis)); 474 } 475 memset(&blkg->iostat, 0, sizeof(blkg->iostat)); 476 477 for (i = 0; i < BLKCG_MAX_POLS; i++) { 478 struct blkcg_policy *pol = blkcg_policy[i]; 479 480 if (blkg->pd[i] && pol->pd_reset_stats_fn) 481 pol->pd_reset_stats_fn(blkg->pd[i]); 482 } 483 } 484 485 spin_unlock_irq(&blkcg->lock); 486 mutex_unlock(&blkcg_pol_mutex); 487 return 0; 488 } 489 490 const char *blkg_dev_name(struct blkcg_gq *blkg) 491 { 492 if (!blkg->q->disk || !blkg->q->disk->bdi->dev) 493 return NULL; 494 return bdi_dev_name(blkg->q->disk->bdi); 495 } 496 497 /** 498 * blkcg_print_blkgs - helper for printing per-blkg data 499 * @sf: seq_file to print to 500 * @blkcg: blkcg of interest 501 * @prfill: fill function to print out a blkg 502 * @pol: policy in question 503 * @data: data to be passed to @prfill 504 * @show_total: to print out sum of prfill return values or not 505 * 506 * This function invokes @prfill on each blkg of @blkcg if pd for the 507 * policy specified by @pol exists. @prfill is invoked with @sf, the 508 * policy data and @data and the matching queue lock held. If @show_total 509 * is %true, the sum of the return values from @prfill is printed with 510 * "Total" label at the end. 511 * 512 * This is to be used to construct print functions for 513 * cftype->read_seq_string method. 514 */ 515 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 516 u64 (*prfill)(struct seq_file *, 517 struct blkg_policy_data *, int), 518 const struct blkcg_policy *pol, int data, 519 bool show_total) 520 { 521 struct blkcg_gq *blkg; 522 u64 total = 0; 523 524 rcu_read_lock(); 525 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 526 spin_lock_irq(&blkg->q->queue_lock); 527 if (blkcg_policy_enabled(blkg->q, pol)) 528 total += prfill(sf, blkg->pd[pol->plid], data); 529 spin_unlock_irq(&blkg->q->queue_lock); 530 } 531 rcu_read_unlock(); 532 533 if (show_total) 534 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 535 } 536 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 537 538 /** 539 * __blkg_prfill_u64 - prfill helper for a single u64 value 540 * @sf: seq_file to print to 541 * @pd: policy private data of interest 542 * @v: value to print 543 * 544 * Print @v to @sf for the device assocaited with @pd. 545 */ 546 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 547 { 548 const char *dname = blkg_dev_name(pd->blkg); 549 550 if (!dname) 551 return 0; 552 553 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 554 return v; 555 } 556 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 557 558 /* Performs queue bypass and policy enabled checks then looks up blkg. */ 559 static struct blkcg_gq *blkg_lookup_check(struct blkcg *blkcg, 560 const struct blkcg_policy *pol, 561 struct request_queue *q) 562 { 563 WARN_ON_ONCE(!rcu_read_lock_held()); 564 lockdep_assert_held(&q->queue_lock); 565 566 if (!blkcg_policy_enabled(q, pol)) 567 return ERR_PTR(-EOPNOTSUPP); 568 return __blkg_lookup(blkcg, q, true /* update_hint */); 569 } 570 571 /** 572 * blkcg_conf_open_bdev - parse and open bdev for per-blkg config update 573 * @inputp: input string pointer 574 * 575 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update 576 * from @input and get and return the matching bdev. *@inputp is 577 * updated to point past the device node prefix. Returns an ERR_PTR() 578 * value on error. 579 * 580 * Use this function iff blkg_conf_prep() can't be used for some reason. 581 */ 582 struct block_device *blkcg_conf_open_bdev(char **inputp) 583 { 584 char *input = *inputp; 585 unsigned int major, minor; 586 struct block_device *bdev; 587 int key_len; 588 589 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 590 return ERR_PTR(-EINVAL); 591 592 input += key_len; 593 if (!isspace(*input)) 594 return ERR_PTR(-EINVAL); 595 input = skip_spaces(input); 596 597 bdev = blkdev_get_no_open(MKDEV(major, minor)); 598 if (!bdev) 599 return ERR_PTR(-ENODEV); 600 if (bdev_is_partition(bdev)) { 601 blkdev_put_no_open(bdev); 602 return ERR_PTR(-ENODEV); 603 } 604 605 *inputp = input; 606 return bdev; 607 } 608 609 /** 610 * blkg_conf_prep - parse and prepare for per-blkg config update 611 * @blkcg: target block cgroup 612 * @pol: target policy 613 * @input: input string 614 * @ctx: blkg_conf_ctx to be filled 615 * 616 * Parse per-blkg config update from @input and initialize @ctx with the 617 * result. @ctx->blkg points to the blkg to be updated and @ctx->body the 618 * part of @input following MAJ:MIN. This function returns with RCU read 619 * lock and queue lock held and must be paired with blkg_conf_finish(). 620 */ 621 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 622 char *input, struct blkg_conf_ctx *ctx) 623 __acquires(rcu) __acquires(&bdev->bd_disk->queue->queue_lock) 624 { 625 struct block_device *bdev; 626 struct request_queue *q; 627 struct blkcg_gq *blkg; 628 int ret; 629 630 bdev = blkcg_conf_open_bdev(&input); 631 if (IS_ERR(bdev)) 632 return PTR_ERR(bdev); 633 634 q = bdev->bd_disk->queue; 635 636 rcu_read_lock(); 637 spin_lock_irq(&q->queue_lock); 638 639 blkg = blkg_lookup_check(blkcg, pol, q); 640 if (IS_ERR(blkg)) { 641 ret = PTR_ERR(blkg); 642 goto fail_unlock; 643 } 644 645 if (blkg) 646 goto success; 647 648 /* 649 * Create blkgs walking down from blkcg_root to @blkcg, so that all 650 * non-root blkgs have access to their parents. 651 */ 652 while (true) { 653 struct blkcg *pos = blkcg; 654 struct blkcg *parent; 655 struct blkcg_gq *new_blkg; 656 657 parent = blkcg_parent(blkcg); 658 while (parent && !__blkg_lookup(parent, q, false)) { 659 pos = parent; 660 parent = blkcg_parent(parent); 661 } 662 663 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 664 spin_unlock_irq(&q->queue_lock); 665 rcu_read_unlock(); 666 667 new_blkg = blkg_alloc(pos, q, GFP_KERNEL); 668 if (unlikely(!new_blkg)) { 669 ret = -ENOMEM; 670 goto fail; 671 } 672 673 if (radix_tree_preload(GFP_KERNEL)) { 674 blkg_free(new_blkg); 675 ret = -ENOMEM; 676 goto fail; 677 } 678 679 rcu_read_lock(); 680 spin_lock_irq(&q->queue_lock); 681 682 blkg = blkg_lookup_check(pos, pol, q); 683 if (IS_ERR(blkg)) { 684 ret = PTR_ERR(blkg); 685 blkg_free(new_blkg); 686 goto fail_preloaded; 687 } 688 689 if (blkg) { 690 blkg_free(new_blkg); 691 } else { 692 blkg = blkg_create(pos, q, new_blkg); 693 if (IS_ERR(blkg)) { 694 ret = PTR_ERR(blkg); 695 goto fail_preloaded; 696 } 697 } 698 699 radix_tree_preload_end(); 700 701 if (pos == blkcg) 702 goto success; 703 } 704 success: 705 ctx->bdev = bdev; 706 ctx->blkg = blkg; 707 ctx->body = input; 708 return 0; 709 710 fail_preloaded: 711 radix_tree_preload_end(); 712 fail_unlock: 713 spin_unlock_irq(&q->queue_lock); 714 rcu_read_unlock(); 715 fail: 716 blkdev_put_no_open(bdev); 717 /* 718 * If queue was bypassing, we should retry. Do so after a 719 * short msleep(). It isn't strictly necessary but queue 720 * can be bypassing for some time and it's always nice to 721 * avoid busy looping. 722 */ 723 if (ret == -EBUSY) { 724 msleep(10); 725 ret = restart_syscall(); 726 } 727 return ret; 728 } 729 EXPORT_SYMBOL_GPL(blkg_conf_prep); 730 731 /** 732 * blkg_conf_finish - finish up per-blkg config update 733 * @ctx: blkg_conf_ctx intiailized by blkg_conf_prep() 734 * 735 * Finish up after per-blkg config update. This function must be paired 736 * with blkg_conf_prep(). 737 */ 738 void blkg_conf_finish(struct blkg_conf_ctx *ctx) 739 __releases(&ctx->bdev->bd_disk->queue->queue_lock) __releases(rcu) 740 { 741 spin_unlock_irq(&ctx->bdev->bd_disk->queue->queue_lock); 742 rcu_read_unlock(); 743 blkdev_put_no_open(ctx->bdev); 744 } 745 EXPORT_SYMBOL_GPL(blkg_conf_finish); 746 747 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 748 { 749 int i; 750 751 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 752 dst->bytes[i] = src->bytes[i]; 753 dst->ios[i] = src->ios[i]; 754 } 755 } 756 757 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 758 { 759 int i; 760 761 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 762 dst->bytes[i] += src->bytes[i]; 763 dst->ios[i] += src->ios[i]; 764 } 765 } 766 767 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 768 { 769 int i; 770 771 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 772 dst->bytes[i] -= src->bytes[i]; 773 dst->ios[i] -= src->ios[i]; 774 } 775 } 776 777 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 778 { 779 struct blkcg *blkcg = css_to_blkcg(css); 780 struct blkcg_gq *blkg; 781 782 /* Root-level stats are sourced from system-wide IO stats */ 783 if (!cgroup_parent(css->cgroup)) 784 return; 785 786 rcu_read_lock(); 787 788 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 789 struct blkcg_gq *parent = blkg->parent; 790 struct blkg_iostat_set *bisc = per_cpu_ptr(blkg->iostat_cpu, cpu); 791 struct blkg_iostat cur, delta; 792 unsigned long flags; 793 unsigned int seq; 794 795 /* fetch the current per-cpu values */ 796 do { 797 seq = u64_stats_fetch_begin(&bisc->sync); 798 blkg_iostat_set(&cur, &bisc->cur); 799 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 800 801 /* propagate percpu delta to global */ 802 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 803 blkg_iostat_set(&delta, &cur); 804 blkg_iostat_sub(&delta, &bisc->last); 805 blkg_iostat_add(&blkg->iostat.cur, &delta); 806 blkg_iostat_add(&bisc->last, &delta); 807 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 808 809 /* propagate global delta to parent (unless that's root) */ 810 if (parent && parent->parent) { 811 flags = u64_stats_update_begin_irqsave(&parent->iostat.sync); 812 blkg_iostat_set(&delta, &blkg->iostat.cur); 813 blkg_iostat_sub(&delta, &blkg->iostat.last); 814 blkg_iostat_add(&parent->iostat.cur, &delta); 815 blkg_iostat_add(&blkg->iostat.last, &delta); 816 u64_stats_update_end_irqrestore(&parent->iostat.sync, flags); 817 } 818 } 819 820 rcu_read_unlock(); 821 } 822 823 /* 824 * We source root cgroup stats from the system-wide stats to avoid 825 * tracking the same information twice and incurring overhead when no 826 * cgroups are defined. For that reason, cgroup_rstat_flush in 827 * blkcg_print_stat does not actually fill out the iostat in the root 828 * cgroup's blkcg_gq. 829 * 830 * However, we would like to re-use the printing code between the root and 831 * non-root cgroups to the extent possible. For that reason, we simulate 832 * flushing the root cgroup's stats by explicitly filling in the iostat 833 * with disk level statistics. 834 */ 835 static void blkcg_fill_root_iostats(void) 836 { 837 struct class_dev_iter iter; 838 struct device *dev; 839 840 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 841 while ((dev = class_dev_iter_next(&iter))) { 842 struct block_device *bdev = dev_to_bdev(dev); 843 struct blkcg_gq *blkg = 844 blk_queue_root_blkg(bdev->bd_disk->queue); 845 struct blkg_iostat tmp; 846 int cpu; 847 848 memset(&tmp, 0, sizeof(tmp)); 849 for_each_possible_cpu(cpu) { 850 struct disk_stats *cpu_dkstats; 851 unsigned long flags; 852 853 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 854 tmp.ios[BLKG_IOSTAT_READ] += 855 cpu_dkstats->ios[STAT_READ]; 856 tmp.ios[BLKG_IOSTAT_WRITE] += 857 cpu_dkstats->ios[STAT_WRITE]; 858 tmp.ios[BLKG_IOSTAT_DISCARD] += 859 cpu_dkstats->ios[STAT_DISCARD]; 860 // convert sectors to bytes 861 tmp.bytes[BLKG_IOSTAT_READ] += 862 cpu_dkstats->sectors[STAT_READ] << 9; 863 tmp.bytes[BLKG_IOSTAT_WRITE] += 864 cpu_dkstats->sectors[STAT_WRITE] << 9; 865 tmp.bytes[BLKG_IOSTAT_DISCARD] += 866 cpu_dkstats->sectors[STAT_DISCARD] << 9; 867 868 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 869 blkg_iostat_set(&blkg->iostat.cur, &tmp); 870 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 871 } 872 } 873 } 874 875 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 876 { 877 struct blkg_iostat_set *bis = &blkg->iostat; 878 u64 rbytes, wbytes, rios, wios, dbytes, dios; 879 bool has_stats = false; 880 const char *dname; 881 unsigned seq; 882 int i; 883 884 if (!blkg->online) 885 return; 886 887 dname = blkg_dev_name(blkg); 888 if (!dname) 889 return; 890 891 seq_printf(s, "%s ", dname); 892 893 do { 894 seq = u64_stats_fetch_begin(&bis->sync); 895 896 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 897 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 898 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 899 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 900 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 901 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 902 } while (u64_stats_fetch_retry(&bis->sync, seq)); 903 904 if (rbytes || wbytes || rios || wios) { 905 has_stats = true; 906 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 907 rbytes, wbytes, rios, wios, 908 dbytes, dios); 909 } 910 911 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 912 has_stats = true; 913 seq_printf(s, " use_delay=%d delay_nsec=%llu", 914 atomic_read(&blkg->use_delay), 915 atomic64_read(&blkg->delay_nsec)); 916 } 917 918 for (i = 0; i < BLKCG_MAX_POLS; i++) { 919 struct blkcg_policy *pol = blkcg_policy[i]; 920 921 if (!blkg->pd[i] || !pol->pd_stat_fn) 922 continue; 923 924 if (pol->pd_stat_fn(blkg->pd[i], s)) 925 has_stats = true; 926 } 927 928 if (has_stats) 929 seq_printf(s, "\n"); 930 } 931 932 static int blkcg_print_stat(struct seq_file *sf, void *v) 933 { 934 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 935 struct blkcg_gq *blkg; 936 937 if (!seq_css(sf)->parent) 938 blkcg_fill_root_iostats(); 939 else 940 cgroup_rstat_flush(blkcg->css.cgroup); 941 942 rcu_read_lock(); 943 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 944 spin_lock_irq(&blkg->q->queue_lock); 945 blkcg_print_one_stat(blkg, sf); 946 spin_unlock_irq(&blkg->q->queue_lock); 947 } 948 rcu_read_unlock(); 949 return 0; 950 } 951 952 static struct cftype blkcg_files[] = { 953 { 954 .name = "stat", 955 .seq_show = blkcg_print_stat, 956 }, 957 { } /* terminate */ 958 }; 959 960 static struct cftype blkcg_legacy_files[] = { 961 { 962 .name = "reset_stats", 963 .write_u64 = blkcg_reset_stats, 964 }, 965 { } /* terminate */ 966 }; 967 968 /* 969 * blkcg destruction is a three-stage process. 970 * 971 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 972 * which offlines writeback. Here we tie the next stage of blkg destruction 973 * to the completion of writeback associated with the blkcg. This lets us 974 * avoid punting potentially large amounts of outstanding writeback to root 975 * while maintaining any ongoing policies. The next stage is triggered when 976 * the nr_cgwbs count goes to zero. 977 * 978 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 979 * and handles the destruction of blkgs. Here the css reference held by 980 * the blkg is put back eventually allowing blkcg_css_free() to be called. 981 * This work may occur in cgwb_release_workfn() on the cgwb_release 982 * workqueue. Any submitted ios that fail to get the blkg ref will be 983 * punted to the root_blkg. 984 * 985 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 986 * This finally frees the blkcg. 987 */ 988 989 /** 990 * blkcg_css_offline - cgroup css_offline callback 991 * @css: css of interest 992 * 993 * This function is called when @css is about to go away. Here the cgwbs are 994 * offlined first and only once writeback associated with the blkcg has 995 * finished do we start step 2 (see above). 996 */ 997 static void blkcg_css_offline(struct cgroup_subsys_state *css) 998 { 999 struct blkcg *blkcg = css_to_blkcg(css); 1000 1001 /* this prevents anyone from attaching or migrating to this blkcg */ 1002 wb_blkcg_offline(blkcg); 1003 1004 /* put the base online pin allowing step 2 to be triggered */ 1005 blkcg_unpin_online(blkcg); 1006 } 1007 1008 /** 1009 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1010 * @blkcg: blkcg of interest 1011 * 1012 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1013 * is nested inside q lock, this function performs reverse double lock dancing. 1014 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1015 * blkcg_css_free to eventually be called. 1016 * 1017 * This is the blkcg counterpart of ioc_release_fn(). 1018 */ 1019 void blkcg_destroy_blkgs(struct blkcg *blkcg) 1020 { 1021 might_sleep(); 1022 1023 spin_lock_irq(&blkcg->lock); 1024 1025 while (!hlist_empty(&blkcg->blkg_list)) { 1026 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1027 struct blkcg_gq, blkcg_node); 1028 struct request_queue *q = blkg->q; 1029 1030 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1031 /* 1032 * Given that the system can accumulate a huge number 1033 * of blkgs in pathological cases, check to see if we 1034 * need to rescheduling to avoid softlockup. 1035 */ 1036 spin_unlock_irq(&blkcg->lock); 1037 cond_resched(); 1038 spin_lock_irq(&blkcg->lock); 1039 continue; 1040 } 1041 1042 blkg_destroy(blkg); 1043 spin_unlock(&q->queue_lock); 1044 } 1045 1046 spin_unlock_irq(&blkcg->lock); 1047 } 1048 1049 static void blkcg_css_free(struct cgroup_subsys_state *css) 1050 { 1051 struct blkcg *blkcg = css_to_blkcg(css); 1052 int i; 1053 1054 mutex_lock(&blkcg_pol_mutex); 1055 1056 list_del(&blkcg->all_blkcgs_node); 1057 1058 for (i = 0; i < BLKCG_MAX_POLS; i++) 1059 if (blkcg->cpd[i]) 1060 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1061 1062 mutex_unlock(&blkcg_pol_mutex); 1063 1064 kfree(blkcg); 1065 } 1066 1067 static struct cgroup_subsys_state * 1068 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1069 { 1070 struct blkcg *blkcg; 1071 struct cgroup_subsys_state *ret; 1072 int i; 1073 1074 mutex_lock(&blkcg_pol_mutex); 1075 1076 if (!parent_css) { 1077 blkcg = &blkcg_root; 1078 } else { 1079 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1080 if (!blkcg) { 1081 ret = ERR_PTR(-ENOMEM); 1082 goto unlock; 1083 } 1084 } 1085 1086 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1087 struct blkcg_policy *pol = blkcg_policy[i]; 1088 struct blkcg_policy_data *cpd; 1089 1090 /* 1091 * If the policy hasn't been attached yet, wait for it 1092 * to be attached before doing anything else. Otherwise, 1093 * check if the policy requires any specific per-cgroup 1094 * data: if it does, allocate and initialize it. 1095 */ 1096 if (!pol || !pol->cpd_alloc_fn) 1097 continue; 1098 1099 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1100 if (!cpd) { 1101 ret = ERR_PTR(-ENOMEM); 1102 goto free_pd_blkcg; 1103 } 1104 blkcg->cpd[i] = cpd; 1105 cpd->blkcg = blkcg; 1106 cpd->plid = i; 1107 if (pol->cpd_init_fn) 1108 pol->cpd_init_fn(cpd); 1109 } 1110 1111 spin_lock_init(&blkcg->lock); 1112 refcount_set(&blkcg->online_pin, 1); 1113 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1114 INIT_HLIST_HEAD(&blkcg->blkg_list); 1115 #ifdef CONFIG_CGROUP_WRITEBACK 1116 INIT_LIST_HEAD(&blkcg->cgwb_list); 1117 #endif 1118 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1119 1120 mutex_unlock(&blkcg_pol_mutex); 1121 return &blkcg->css; 1122 1123 free_pd_blkcg: 1124 for (i--; i >= 0; i--) 1125 if (blkcg->cpd[i]) 1126 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1127 1128 if (blkcg != &blkcg_root) 1129 kfree(blkcg); 1130 unlock: 1131 mutex_unlock(&blkcg_pol_mutex); 1132 return ret; 1133 } 1134 1135 static int blkcg_css_online(struct cgroup_subsys_state *css) 1136 { 1137 struct blkcg *blkcg = css_to_blkcg(css); 1138 struct blkcg *parent = blkcg_parent(blkcg); 1139 1140 /* 1141 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1142 * don't go offline while cgwbs are still active on them. Pin the 1143 * parent so that offline always happens towards the root. 1144 */ 1145 if (parent) 1146 blkcg_pin_online(parent); 1147 return 0; 1148 } 1149 1150 /** 1151 * blkcg_init_queue - initialize blkcg part of request queue 1152 * @q: request_queue to initialize 1153 * 1154 * Called from blk_alloc_queue(). Responsible for initializing blkcg 1155 * part of new request_queue @q. 1156 * 1157 * RETURNS: 1158 * 0 on success, -errno on failure. 1159 */ 1160 int blkcg_init_queue(struct request_queue *q) 1161 { 1162 struct blkcg_gq *new_blkg, *blkg; 1163 bool preloaded; 1164 int ret; 1165 1166 new_blkg = blkg_alloc(&blkcg_root, q, GFP_KERNEL); 1167 if (!new_blkg) 1168 return -ENOMEM; 1169 1170 preloaded = !radix_tree_preload(GFP_KERNEL); 1171 1172 /* Make sure the root blkg exists. */ 1173 rcu_read_lock(); 1174 spin_lock_irq(&q->queue_lock); 1175 blkg = blkg_create(&blkcg_root, q, new_blkg); 1176 if (IS_ERR(blkg)) 1177 goto err_unlock; 1178 q->root_blkg = blkg; 1179 spin_unlock_irq(&q->queue_lock); 1180 rcu_read_unlock(); 1181 1182 if (preloaded) 1183 radix_tree_preload_end(); 1184 1185 ret = blk_iolatency_init(q); 1186 if (ret) 1187 goto err_destroy_all; 1188 1189 ret = blk_ioprio_init(q); 1190 if (ret) 1191 goto err_destroy_all; 1192 1193 ret = blk_throtl_init(q); 1194 if (ret) 1195 goto err_destroy_all; 1196 1197 return 0; 1198 1199 err_destroy_all: 1200 blkg_destroy_all(q); 1201 return ret; 1202 err_unlock: 1203 spin_unlock_irq(&q->queue_lock); 1204 rcu_read_unlock(); 1205 if (preloaded) 1206 radix_tree_preload_end(); 1207 return PTR_ERR(blkg); 1208 } 1209 1210 /** 1211 * blkcg_exit_queue - exit and release blkcg part of request_queue 1212 * @q: request_queue being released 1213 * 1214 * Called from blk_exit_queue(). Responsible for exiting blkcg part. 1215 */ 1216 void blkcg_exit_queue(struct request_queue *q) 1217 { 1218 blkg_destroy_all(q); 1219 blk_throtl_exit(q); 1220 } 1221 1222 static void blkcg_bind(struct cgroup_subsys_state *root_css) 1223 { 1224 int i; 1225 1226 mutex_lock(&blkcg_pol_mutex); 1227 1228 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1229 struct blkcg_policy *pol = blkcg_policy[i]; 1230 struct blkcg *blkcg; 1231 1232 if (!pol || !pol->cpd_bind_fn) 1233 continue; 1234 1235 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) 1236 if (blkcg->cpd[pol->plid]) 1237 pol->cpd_bind_fn(blkcg->cpd[pol->plid]); 1238 } 1239 mutex_unlock(&blkcg_pol_mutex); 1240 } 1241 1242 static void blkcg_exit(struct task_struct *tsk) 1243 { 1244 if (tsk->throttle_queue) 1245 blk_put_queue(tsk->throttle_queue); 1246 tsk->throttle_queue = NULL; 1247 } 1248 1249 struct cgroup_subsys io_cgrp_subsys = { 1250 .css_alloc = blkcg_css_alloc, 1251 .css_online = blkcg_css_online, 1252 .css_offline = blkcg_css_offline, 1253 .css_free = blkcg_css_free, 1254 .css_rstat_flush = blkcg_rstat_flush, 1255 .bind = blkcg_bind, 1256 .dfl_cftypes = blkcg_files, 1257 .legacy_cftypes = blkcg_legacy_files, 1258 .legacy_name = "blkio", 1259 .exit = blkcg_exit, 1260 #ifdef CONFIG_MEMCG 1261 /* 1262 * This ensures that, if available, memcg is automatically enabled 1263 * together on the default hierarchy so that the owner cgroup can 1264 * be retrieved from writeback pages. 1265 */ 1266 .depends_on = 1 << memory_cgrp_id, 1267 #endif 1268 }; 1269 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1270 1271 /** 1272 * blkcg_activate_policy - activate a blkcg policy on a request_queue 1273 * @q: request_queue of interest 1274 * @pol: blkcg policy to activate 1275 * 1276 * Activate @pol on @q. Requires %GFP_KERNEL context. @q goes through 1277 * bypass mode to populate its blkgs with policy_data for @pol. 1278 * 1279 * Activation happens with @q bypassed, so nobody would be accessing blkgs 1280 * from IO path. Update of each blkg is protected by both queue and blkcg 1281 * locks so that holding either lock and testing blkcg_policy_enabled() is 1282 * always enough for dereferencing policy data. 1283 * 1284 * The caller is responsible for synchronizing [de]activations and policy 1285 * [un]registerations. Returns 0 on success, -errno on failure. 1286 */ 1287 int blkcg_activate_policy(struct request_queue *q, 1288 const struct blkcg_policy *pol) 1289 { 1290 struct blkg_policy_data *pd_prealloc = NULL; 1291 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1292 int ret; 1293 1294 if (blkcg_policy_enabled(q, pol)) 1295 return 0; 1296 1297 if (queue_is_mq(q)) 1298 blk_mq_freeze_queue(q); 1299 retry: 1300 spin_lock_irq(&q->queue_lock); 1301 1302 /* blkg_list is pushed at the head, reverse walk to allocate parents first */ 1303 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1304 struct blkg_policy_data *pd; 1305 1306 if (blkg->pd[pol->plid]) 1307 continue; 1308 1309 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1310 if (blkg == pinned_blkg) { 1311 pd = pd_prealloc; 1312 pd_prealloc = NULL; 1313 } else { 1314 pd = pol->pd_alloc_fn(GFP_NOWAIT | __GFP_NOWARN, q, 1315 blkg->blkcg); 1316 } 1317 1318 if (!pd) { 1319 /* 1320 * GFP_NOWAIT failed. Free the existing one and 1321 * prealloc for @blkg w/ GFP_KERNEL. 1322 */ 1323 if (pinned_blkg) 1324 blkg_put(pinned_blkg); 1325 blkg_get(blkg); 1326 pinned_blkg = blkg; 1327 1328 spin_unlock_irq(&q->queue_lock); 1329 1330 if (pd_prealloc) 1331 pol->pd_free_fn(pd_prealloc); 1332 pd_prealloc = pol->pd_alloc_fn(GFP_KERNEL, q, 1333 blkg->blkcg); 1334 if (pd_prealloc) 1335 goto retry; 1336 else 1337 goto enomem; 1338 } 1339 1340 blkg->pd[pol->plid] = pd; 1341 pd->blkg = blkg; 1342 pd->plid = pol->plid; 1343 } 1344 1345 /* all allocated, init in the same order */ 1346 if (pol->pd_init_fn) 1347 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) 1348 pol->pd_init_fn(blkg->pd[pol->plid]); 1349 1350 __set_bit(pol->plid, q->blkcg_pols); 1351 ret = 0; 1352 1353 spin_unlock_irq(&q->queue_lock); 1354 out: 1355 if (queue_is_mq(q)) 1356 blk_mq_unfreeze_queue(q); 1357 if (pinned_blkg) 1358 blkg_put(pinned_blkg); 1359 if (pd_prealloc) 1360 pol->pd_free_fn(pd_prealloc); 1361 return ret; 1362 1363 enomem: 1364 /* alloc failed, nothing's initialized yet, free everything */ 1365 spin_lock_irq(&q->queue_lock); 1366 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1367 if (blkg->pd[pol->plid]) { 1368 pol->pd_free_fn(blkg->pd[pol->plid]); 1369 blkg->pd[pol->plid] = NULL; 1370 } 1371 } 1372 spin_unlock_irq(&q->queue_lock); 1373 ret = -ENOMEM; 1374 goto out; 1375 } 1376 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1377 1378 /** 1379 * blkcg_deactivate_policy - deactivate a blkcg policy on a request_queue 1380 * @q: request_queue of interest 1381 * @pol: blkcg policy to deactivate 1382 * 1383 * Deactivate @pol on @q. Follows the same synchronization rules as 1384 * blkcg_activate_policy(). 1385 */ 1386 void blkcg_deactivate_policy(struct request_queue *q, 1387 const struct blkcg_policy *pol) 1388 { 1389 struct blkcg_gq *blkg; 1390 1391 if (!blkcg_policy_enabled(q, pol)) 1392 return; 1393 1394 if (queue_is_mq(q)) 1395 blk_mq_freeze_queue(q); 1396 1397 spin_lock_irq(&q->queue_lock); 1398 1399 __clear_bit(pol->plid, q->blkcg_pols); 1400 1401 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1402 if (blkg->pd[pol->plid]) { 1403 if (pol->pd_offline_fn) 1404 pol->pd_offline_fn(blkg->pd[pol->plid]); 1405 pol->pd_free_fn(blkg->pd[pol->plid]); 1406 blkg->pd[pol->plid] = NULL; 1407 } 1408 } 1409 1410 spin_unlock_irq(&q->queue_lock); 1411 1412 if (queue_is_mq(q)) 1413 blk_mq_unfreeze_queue(q); 1414 } 1415 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1416 1417 /** 1418 * blkcg_policy_register - register a blkcg policy 1419 * @pol: blkcg policy to register 1420 * 1421 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1422 * successful registration. Returns 0 on success and -errno on failure. 1423 */ 1424 int blkcg_policy_register(struct blkcg_policy *pol) 1425 { 1426 struct blkcg *blkcg; 1427 int i, ret; 1428 1429 mutex_lock(&blkcg_pol_register_mutex); 1430 mutex_lock(&blkcg_pol_mutex); 1431 1432 /* find an empty slot */ 1433 ret = -ENOSPC; 1434 for (i = 0; i < BLKCG_MAX_POLS; i++) 1435 if (!blkcg_policy[i]) 1436 break; 1437 if (i >= BLKCG_MAX_POLS) { 1438 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1439 goto err_unlock; 1440 } 1441 1442 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1443 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1444 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1445 goto err_unlock; 1446 1447 /* register @pol */ 1448 pol->plid = i; 1449 blkcg_policy[pol->plid] = pol; 1450 1451 /* allocate and install cpd's */ 1452 if (pol->cpd_alloc_fn) { 1453 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1454 struct blkcg_policy_data *cpd; 1455 1456 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1457 if (!cpd) 1458 goto err_free_cpds; 1459 1460 blkcg->cpd[pol->plid] = cpd; 1461 cpd->blkcg = blkcg; 1462 cpd->plid = pol->plid; 1463 if (pol->cpd_init_fn) 1464 pol->cpd_init_fn(cpd); 1465 } 1466 } 1467 1468 mutex_unlock(&blkcg_pol_mutex); 1469 1470 /* everything is in place, add intf files for the new policy */ 1471 if (pol->dfl_cftypes) 1472 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1473 pol->dfl_cftypes)); 1474 if (pol->legacy_cftypes) 1475 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1476 pol->legacy_cftypes)); 1477 mutex_unlock(&blkcg_pol_register_mutex); 1478 return 0; 1479 1480 err_free_cpds: 1481 if (pol->cpd_free_fn) { 1482 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1483 if (blkcg->cpd[pol->plid]) { 1484 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1485 blkcg->cpd[pol->plid] = NULL; 1486 } 1487 } 1488 } 1489 blkcg_policy[pol->plid] = NULL; 1490 err_unlock: 1491 mutex_unlock(&blkcg_pol_mutex); 1492 mutex_unlock(&blkcg_pol_register_mutex); 1493 return ret; 1494 } 1495 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1496 1497 /** 1498 * blkcg_policy_unregister - unregister a blkcg policy 1499 * @pol: blkcg policy to unregister 1500 * 1501 * Undo blkcg_policy_register(@pol). Might sleep. 1502 */ 1503 void blkcg_policy_unregister(struct blkcg_policy *pol) 1504 { 1505 struct blkcg *blkcg; 1506 1507 mutex_lock(&blkcg_pol_register_mutex); 1508 1509 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1510 goto out_unlock; 1511 1512 /* kill the intf files first */ 1513 if (pol->dfl_cftypes) 1514 cgroup_rm_cftypes(pol->dfl_cftypes); 1515 if (pol->legacy_cftypes) 1516 cgroup_rm_cftypes(pol->legacy_cftypes); 1517 1518 /* remove cpds and unregister */ 1519 mutex_lock(&blkcg_pol_mutex); 1520 1521 if (pol->cpd_free_fn) { 1522 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1523 if (blkcg->cpd[pol->plid]) { 1524 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1525 blkcg->cpd[pol->plid] = NULL; 1526 } 1527 } 1528 } 1529 blkcg_policy[pol->plid] = NULL; 1530 1531 mutex_unlock(&blkcg_pol_mutex); 1532 out_unlock: 1533 mutex_unlock(&blkcg_pol_register_mutex); 1534 } 1535 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1536 1537 bool __blkcg_punt_bio_submit(struct bio *bio) 1538 { 1539 struct blkcg_gq *blkg = bio->bi_blkg; 1540 1541 /* consume the flag first */ 1542 bio->bi_opf &= ~REQ_CGROUP_PUNT; 1543 1544 /* never bounce for the root cgroup */ 1545 if (!blkg->parent) 1546 return false; 1547 1548 spin_lock_bh(&blkg->async_bio_lock); 1549 bio_list_add(&blkg->async_bios, bio); 1550 spin_unlock_bh(&blkg->async_bio_lock); 1551 1552 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 1553 return true; 1554 } 1555 1556 /* 1557 * Scale the accumulated delay based on how long it has been since we updated 1558 * the delay. We only call this when we are adding delay, in case it's been a 1559 * while since we added delay, and when we are checking to see if we need to 1560 * delay a task, to account for any delays that may have occurred. 1561 */ 1562 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1563 { 1564 u64 old = atomic64_read(&blkg->delay_start); 1565 1566 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1567 if (atomic_read(&blkg->use_delay) < 0) 1568 return; 1569 1570 /* 1571 * We only want to scale down every second. The idea here is that we 1572 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1573 * time window. We only want to throttle tasks for recent delay that 1574 * has occurred, in 1 second time windows since that's the maximum 1575 * things can be throttled. We save the current delay window in 1576 * blkg->last_delay so we know what amount is still left to be charged 1577 * to the blkg from this point onward. blkg->last_use keeps track of 1578 * the use_delay counter. The idea is if we're unthrottling the blkg we 1579 * are ok with whatever is happening now, and we can take away more of 1580 * the accumulated delay as we've already throttled enough that 1581 * everybody is happy with their IO latencies. 1582 */ 1583 if (time_before64(old + NSEC_PER_SEC, now) && 1584 atomic64_cmpxchg(&blkg->delay_start, old, now) == old) { 1585 u64 cur = atomic64_read(&blkg->delay_nsec); 1586 u64 sub = min_t(u64, blkg->last_delay, now - old); 1587 int cur_use = atomic_read(&blkg->use_delay); 1588 1589 /* 1590 * We've been unthrottled, subtract a larger chunk of our 1591 * accumulated delay. 1592 */ 1593 if (cur_use < blkg->last_use) 1594 sub = max_t(u64, sub, blkg->last_delay >> 1); 1595 1596 /* 1597 * This shouldn't happen, but handle it anyway. Our delay_nsec 1598 * should only ever be growing except here where we subtract out 1599 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1600 * rather not end up with negative numbers. 1601 */ 1602 if (unlikely(cur < sub)) { 1603 atomic64_set(&blkg->delay_nsec, 0); 1604 blkg->last_delay = 0; 1605 } else { 1606 atomic64_sub(sub, &blkg->delay_nsec); 1607 blkg->last_delay = cur - sub; 1608 } 1609 blkg->last_use = cur_use; 1610 } 1611 } 1612 1613 /* 1614 * This is called when we want to actually walk up the hierarchy and check to 1615 * see if we need to throttle, and then actually throttle if there is some 1616 * accumulated delay. This should only be called upon return to user space so 1617 * we're not holding some lock that would induce a priority inversion. 1618 */ 1619 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1620 { 1621 unsigned long pflags; 1622 bool clamp; 1623 u64 now = ktime_to_ns(ktime_get()); 1624 u64 exp; 1625 u64 delay_nsec = 0; 1626 int tok; 1627 1628 while (blkg->parent) { 1629 int use_delay = atomic_read(&blkg->use_delay); 1630 1631 if (use_delay) { 1632 u64 this_delay; 1633 1634 blkcg_scale_delay(blkg, now); 1635 this_delay = atomic64_read(&blkg->delay_nsec); 1636 if (this_delay > delay_nsec) { 1637 delay_nsec = this_delay; 1638 clamp = use_delay > 0; 1639 } 1640 } 1641 blkg = blkg->parent; 1642 } 1643 1644 if (!delay_nsec) 1645 return; 1646 1647 /* 1648 * Let's not sleep for all eternity if we've amassed a huge delay. 1649 * Swapping or metadata IO can accumulate 10's of seconds worth of 1650 * delay, and we want userspace to be able to do _something_ so cap the 1651 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1652 * tasks will be delayed for 0.25 second for every syscall. If 1653 * blkcg_set_delay() was used as indicated by negative use_delay, the 1654 * caller is responsible for regulating the range. 1655 */ 1656 if (clamp) 1657 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1658 1659 if (use_memdelay) 1660 psi_memstall_enter(&pflags); 1661 1662 exp = ktime_add_ns(now, delay_nsec); 1663 tok = io_schedule_prepare(); 1664 do { 1665 __set_current_state(TASK_KILLABLE); 1666 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1667 break; 1668 } while (!fatal_signal_pending(current)); 1669 io_schedule_finish(tok); 1670 1671 if (use_memdelay) 1672 psi_memstall_leave(&pflags); 1673 } 1674 1675 /** 1676 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1677 * 1678 * This is only called if we've been marked with set_notify_resume(). Obviously 1679 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1680 * check to see if current->throttle_queue is set and if not this doesn't do 1681 * anything. This should only ever be called by the resume code, it's not meant 1682 * to be called by people willy-nilly as it will actually do the work to 1683 * throttle the task if it is setup for throttling. 1684 */ 1685 void blkcg_maybe_throttle_current(void) 1686 { 1687 struct request_queue *q = current->throttle_queue; 1688 struct cgroup_subsys_state *css; 1689 struct blkcg *blkcg; 1690 struct blkcg_gq *blkg; 1691 bool use_memdelay = current->use_memdelay; 1692 1693 if (!q) 1694 return; 1695 1696 current->throttle_queue = NULL; 1697 current->use_memdelay = false; 1698 1699 rcu_read_lock(); 1700 css = kthread_blkcg(); 1701 if (css) 1702 blkcg = css_to_blkcg(css); 1703 else 1704 blkcg = css_to_blkcg(task_css(current, io_cgrp_id)); 1705 1706 if (!blkcg) 1707 goto out; 1708 blkg = blkg_lookup(blkcg, q); 1709 if (!blkg) 1710 goto out; 1711 if (!blkg_tryget(blkg)) 1712 goto out; 1713 rcu_read_unlock(); 1714 1715 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1716 blkg_put(blkg); 1717 blk_put_queue(q); 1718 return; 1719 out: 1720 rcu_read_unlock(); 1721 blk_put_queue(q); 1722 } 1723 1724 /** 1725 * blkcg_schedule_throttle - this task needs to check for throttling 1726 * @q: the request queue IO was submitted on 1727 * @use_memdelay: do we charge this to memory delay for PSI 1728 * 1729 * This is called by the IO controller when we know there's delay accumulated 1730 * for the blkg for this task. We do not pass the blkg because there are places 1731 * we call this that may not have that information, the swapping code for 1732 * instance will only have a request_queue at that point. This set's the 1733 * notify_resume for the task to check and see if it requires throttling before 1734 * returning to user space. 1735 * 1736 * We will only schedule once per syscall. You can call this over and over 1737 * again and it will only do the check once upon return to user space, and only 1738 * throttle once. If the task needs to be throttled again it'll need to be 1739 * re-set at the next time we see the task. 1740 */ 1741 void blkcg_schedule_throttle(struct request_queue *q, bool use_memdelay) 1742 { 1743 if (unlikely(current->flags & PF_KTHREAD)) 1744 return; 1745 1746 if (current->throttle_queue != q) { 1747 if (!blk_get_queue(q)) 1748 return; 1749 1750 if (current->throttle_queue) 1751 blk_put_queue(current->throttle_queue); 1752 current->throttle_queue = q; 1753 } 1754 1755 if (use_memdelay) 1756 current->use_memdelay = use_memdelay; 1757 set_notify_resume(current); 1758 } 1759 1760 /** 1761 * blkcg_add_delay - add delay to this blkg 1762 * @blkg: blkg of interest 1763 * @now: the current time in nanoseconds 1764 * @delta: how many nanoseconds of delay to add 1765 * 1766 * Charge @delta to the blkg's current delay accumulation. This is used to 1767 * throttle tasks if an IO controller thinks we need more throttling. 1768 */ 1769 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 1770 { 1771 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 1772 return; 1773 blkcg_scale_delay(blkg, now); 1774 atomic64_add(delta, &blkg->delay_nsec); 1775 } 1776 1777 /** 1778 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 1779 * @bio: target bio 1780 * @css: target css 1781 * 1782 * As the failure mode here is to walk up the blkg tree, this ensure that the 1783 * blkg->parent pointers are always valid. This returns the blkg that it ended 1784 * up taking a reference on or %NULL if no reference was taken. 1785 */ 1786 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 1787 struct cgroup_subsys_state *css) 1788 { 1789 struct blkcg_gq *blkg, *ret_blkg = NULL; 1790 1791 rcu_read_lock(); 1792 blkg = blkg_lookup_create(css_to_blkcg(css), 1793 bio->bi_bdev->bd_disk->queue); 1794 while (blkg) { 1795 if (blkg_tryget(blkg)) { 1796 ret_blkg = blkg; 1797 break; 1798 } 1799 blkg = blkg->parent; 1800 } 1801 rcu_read_unlock(); 1802 1803 return ret_blkg; 1804 } 1805 1806 /** 1807 * bio_associate_blkg_from_css - associate a bio with a specified css 1808 * @bio: target bio 1809 * @css: target css 1810 * 1811 * Associate @bio with the blkg found by combining the css's blkg and the 1812 * request_queue of the @bio. An association failure is handled by walking up 1813 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 1814 * and q->root_blkg. This situation only happens when a cgroup is dying and 1815 * then the remaining bios will spill to the closest alive blkg. 1816 * 1817 * A reference will be taken on the blkg and will be released when @bio is 1818 * freed. 1819 */ 1820 void bio_associate_blkg_from_css(struct bio *bio, 1821 struct cgroup_subsys_state *css) 1822 { 1823 if (bio->bi_blkg) 1824 blkg_put(bio->bi_blkg); 1825 1826 if (css && css->parent) { 1827 bio->bi_blkg = blkg_tryget_closest(bio, css); 1828 } else { 1829 blkg_get(bio->bi_bdev->bd_disk->queue->root_blkg); 1830 bio->bi_blkg = bio->bi_bdev->bd_disk->queue->root_blkg; 1831 } 1832 } 1833 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 1834 1835 /** 1836 * bio_associate_blkg - associate a bio with a blkg 1837 * @bio: target bio 1838 * 1839 * Associate @bio with the blkg found from the bio's css and request_queue. 1840 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 1841 * already associated, the css is reused and association redone as the 1842 * request_queue may have changed. 1843 */ 1844 void bio_associate_blkg(struct bio *bio) 1845 { 1846 struct cgroup_subsys_state *css; 1847 1848 rcu_read_lock(); 1849 1850 if (bio->bi_blkg) 1851 css = &bio_blkcg(bio)->css; 1852 else 1853 css = blkcg_css(); 1854 1855 bio_associate_blkg_from_css(bio, css); 1856 1857 rcu_read_unlock(); 1858 } 1859 EXPORT_SYMBOL_GPL(bio_associate_blkg); 1860 1861 /** 1862 * bio_clone_blkg_association - clone blkg association from src to dst bio 1863 * @dst: destination bio 1864 * @src: source bio 1865 */ 1866 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 1867 { 1868 if (src->bi_blkg) { 1869 if (dst->bi_blkg) 1870 blkg_put(dst->bi_blkg); 1871 blkg_get(src->bi_blkg); 1872 dst->bi_blkg = src->bi_blkg; 1873 } 1874 } 1875 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 1876 1877 static int blk_cgroup_io_type(struct bio *bio) 1878 { 1879 if (op_is_discard(bio->bi_opf)) 1880 return BLKG_IOSTAT_DISCARD; 1881 if (op_is_write(bio->bi_opf)) 1882 return BLKG_IOSTAT_WRITE; 1883 return BLKG_IOSTAT_READ; 1884 } 1885 1886 void blk_cgroup_bio_start(struct bio *bio) 1887 { 1888 int rwd = blk_cgroup_io_type(bio), cpu; 1889 struct blkg_iostat_set *bis; 1890 1891 cpu = get_cpu(); 1892 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 1893 u64_stats_update_begin(&bis->sync); 1894 1895 /* 1896 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 1897 * bio and we would have already accounted for the size of the bio. 1898 */ 1899 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 1900 bio_set_flag(bio, BIO_CGROUP_ACCT); 1901 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 1902 } 1903 bis->cur.ios[rwd]++; 1904 1905 u64_stats_update_end(&bis->sync); 1906 if (cgroup_subsys_on_dfl(io_cgrp_subsys)) 1907 cgroup_rstat_updated(bio->bi_blkg->blkcg->css.cgroup, cpu); 1908 put_cpu(); 1909 } 1910 1911 static int __init blkcg_init(void) 1912 { 1913 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 1914 WQ_MEM_RECLAIM | WQ_FREEZABLE | 1915 WQ_UNBOUND | WQ_SYSFS, 0); 1916 if (!blkcg_punt_bio_wq) 1917 return -ENOMEM; 1918 return 0; 1919 } 1920 subsys_initcall(blkcg_init); 1921 1922 module_param(blkcg_debug_stats, bool, 0644); 1923 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 1924