1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Common Block IO controller cgroup interface 4 * 5 * Based on ideas and code from CFQ, CFS and BFQ: 6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk> 7 * 8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it> 9 * Paolo Valente <paolo.valente@unimore.it> 10 * 11 * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com> 12 * Nauman Rafique <nauman@google.com> 13 * 14 * For policy-specific per-blkcg data: 15 * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it> 16 * Arianna Avanzini <avanzini.arianna@gmail.com> 17 */ 18 #include <linux/ioprio.h> 19 #include <linux/kdev_t.h> 20 #include <linux/module.h> 21 #include <linux/sched/signal.h> 22 #include <linux/err.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/slab.h> 26 #include <linux/delay.h> 27 #include <linux/atomic.h> 28 #include <linux/ctype.h> 29 #include <linux/resume_user_mode.h> 30 #include <linux/psi.h> 31 #include <linux/part_stat.h> 32 #include "blk.h" 33 #include "blk-cgroup.h" 34 #include "blk-ioprio.h" 35 #include "blk-throttle.h" 36 37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu); 38 39 /* 40 * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation. 41 * blkcg_pol_register_mutex nests outside of it and synchronizes entire 42 * policy [un]register operations including cgroup file additions / 43 * removals. Putting cgroup file registration outside blkcg_pol_mutex 44 * allows grabbing it from cgroup callbacks. 45 */ 46 static DEFINE_MUTEX(blkcg_pol_register_mutex); 47 static DEFINE_MUTEX(blkcg_pol_mutex); 48 49 struct blkcg blkcg_root; 50 EXPORT_SYMBOL_GPL(blkcg_root); 51 52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css; 53 EXPORT_SYMBOL_GPL(blkcg_root_css); 54 55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS]; 56 57 static LIST_HEAD(all_blkcgs); /* protected by blkcg_pol_mutex */ 58 59 bool blkcg_debug_stats = false; 60 61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock); 62 63 #define BLKG_DESTROY_BATCH_SIZE 64 64 65 /* 66 * Lockless lists for tracking IO stats update 67 * 68 * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg). 69 * There are multiple blkg's (one for each block device) attached to each 70 * blkcg. The rstat code keeps track of which cpu has IO stats updated, 71 * but it doesn't know which blkg has the updated stats. If there are many 72 * block devices in a system, the cost of iterating all the blkg's to flush 73 * out the IO stats can be high. To reduce such overhead, a set of percpu 74 * lockless lists (lhead) per blkcg are used to track the set of recently 75 * updated iostat_cpu's since the last flush. An iostat_cpu will be put 76 * onto the lockless list on the update side [blk_cgroup_bio_start()] if 77 * not there yet and then removed when being flushed [blkcg_rstat_flush()]. 78 * References to blkg are gotten and then put back in the process to 79 * protect against blkg removal. 80 * 81 * Return: 0 if successful or -ENOMEM if allocation fails. 82 */ 83 static int init_blkcg_llists(struct blkcg *blkcg) 84 { 85 int cpu; 86 87 blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL); 88 if (!blkcg->lhead) 89 return -ENOMEM; 90 91 for_each_possible_cpu(cpu) 92 init_llist_head(per_cpu_ptr(blkcg->lhead, cpu)); 93 return 0; 94 } 95 96 /** 97 * blkcg_css - find the current css 98 * 99 * Find the css associated with either the kthread or the current task. 100 * This may return a dying css, so it is up to the caller to use tryget logic 101 * to confirm it is alive and well. 102 */ 103 static struct cgroup_subsys_state *blkcg_css(void) 104 { 105 struct cgroup_subsys_state *css; 106 107 css = kthread_blkcg(); 108 if (css) 109 return css; 110 return task_css(current, io_cgrp_id); 111 } 112 113 static bool blkcg_policy_enabled(struct request_queue *q, 114 const struct blkcg_policy *pol) 115 { 116 return pol && test_bit(pol->plid, q->blkcg_pols); 117 } 118 119 static void blkg_free_workfn(struct work_struct *work) 120 { 121 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 122 free_work); 123 struct request_queue *q = blkg->q; 124 int i; 125 126 /* 127 * pd_free_fn() can also be called from blkcg_deactivate_policy(), 128 * in order to make sure pd_free_fn() is called in order, the deletion 129 * of the list blkg->q_node is delayed to here from blkg_destroy(), and 130 * blkcg_mutex is used to synchronize blkg_free_workfn() and 131 * blkcg_deactivate_policy(). 132 */ 133 mutex_lock(&q->blkcg_mutex); 134 for (i = 0; i < BLKCG_MAX_POLS; i++) 135 if (blkg->pd[i]) 136 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 137 if (blkg->parent) 138 blkg_put(blkg->parent); 139 spin_lock_irq(&q->queue_lock); 140 list_del_init(&blkg->q_node); 141 spin_unlock_irq(&q->queue_lock); 142 mutex_unlock(&q->blkcg_mutex); 143 144 blk_put_queue(q); 145 free_percpu(blkg->iostat_cpu); 146 percpu_ref_exit(&blkg->refcnt); 147 kfree(blkg); 148 } 149 150 /** 151 * blkg_free - free a blkg 152 * @blkg: blkg to free 153 * 154 * Free @blkg which may be partially allocated. 155 */ 156 static void blkg_free(struct blkcg_gq *blkg) 157 { 158 if (!blkg) 159 return; 160 161 /* 162 * Both ->pd_free_fn() and request queue's release handler may 163 * sleep, so free us by scheduling one work func 164 */ 165 INIT_WORK(&blkg->free_work, blkg_free_workfn); 166 schedule_work(&blkg->free_work); 167 } 168 169 static void __blkg_release(struct rcu_head *rcu) 170 { 171 struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head); 172 struct blkcg *blkcg = blkg->blkcg; 173 int cpu; 174 175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 176 WARN_ON(!bio_list_empty(&blkg->async_bios)); 177 #endif 178 /* 179 * Flush all the non-empty percpu lockless lists before releasing 180 * us, given these stat belongs to us. 181 * 182 * blkg_stat_lock is for serializing blkg stat update 183 */ 184 for_each_possible_cpu(cpu) 185 __blkcg_rstat_flush(blkcg, cpu); 186 187 /* release the blkcg and parent blkg refs this blkg has been holding */ 188 css_put(&blkg->blkcg->css); 189 blkg_free(blkg); 190 } 191 192 /* 193 * A group is RCU protected, but having an rcu lock does not mean that one 194 * can access all the fields of blkg and assume these are valid. For 195 * example, don't try to follow throtl_data and request queue links. 196 * 197 * Having a reference to blkg under an rcu allows accesses to only values 198 * local to groups like group stats and group rate limits. 199 */ 200 static void blkg_release(struct percpu_ref *ref) 201 { 202 struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt); 203 204 call_rcu(&blkg->rcu_head, __blkg_release); 205 } 206 207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 208 static struct workqueue_struct *blkcg_punt_bio_wq; 209 210 static void blkg_async_bio_workfn(struct work_struct *work) 211 { 212 struct blkcg_gq *blkg = container_of(work, struct blkcg_gq, 213 async_bio_work); 214 struct bio_list bios = BIO_EMPTY_LIST; 215 struct bio *bio; 216 struct blk_plug plug; 217 bool need_plug = false; 218 219 /* as long as there are pending bios, @blkg can't go away */ 220 spin_lock(&blkg->async_bio_lock); 221 bio_list_merge(&bios, &blkg->async_bios); 222 bio_list_init(&blkg->async_bios); 223 spin_unlock(&blkg->async_bio_lock); 224 225 /* start plug only when bio_list contains at least 2 bios */ 226 if (bios.head && bios.head->bi_next) { 227 need_plug = true; 228 blk_start_plug(&plug); 229 } 230 while ((bio = bio_list_pop(&bios))) 231 submit_bio(bio); 232 if (need_plug) 233 blk_finish_plug(&plug); 234 } 235 236 /* 237 * When a shared kthread issues a bio for a cgroup, doing so synchronously can 238 * lead to priority inversions as the kthread can be trapped waiting for that 239 * cgroup. Use this helper instead of submit_bio to punt the actual issuing to 240 * a dedicated per-blkcg work item to avoid such priority inversions. 241 */ 242 void blkcg_punt_bio_submit(struct bio *bio) 243 { 244 struct blkcg_gq *blkg = bio->bi_blkg; 245 246 if (blkg->parent) { 247 spin_lock(&blkg->async_bio_lock); 248 bio_list_add(&blkg->async_bios, bio); 249 spin_unlock(&blkg->async_bio_lock); 250 queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work); 251 } else { 252 /* never bounce for the root cgroup */ 253 submit_bio(bio); 254 } 255 } 256 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit); 257 258 static int __init blkcg_punt_bio_init(void) 259 { 260 blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio", 261 WQ_MEM_RECLAIM | WQ_FREEZABLE | 262 WQ_UNBOUND | WQ_SYSFS, 0); 263 if (!blkcg_punt_bio_wq) 264 return -ENOMEM; 265 return 0; 266 } 267 subsys_initcall(blkcg_punt_bio_init); 268 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */ 269 270 /** 271 * bio_blkcg_css - return the blkcg CSS associated with a bio 272 * @bio: target bio 273 * 274 * This returns the CSS for the blkcg associated with a bio, or %NULL if not 275 * associated. Callers are expected to either handle %NULL or know association 276 * has been done prior to calling this. 277 */ 278 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio) 279 { 280 if (!bio || !bio->bi_blkg) 281 return NULL; 282 return &bio->bi_blkg->blkcg->css; 283 } 284 EXPORT_SYMBOL_GPL(bio_blkcg_css); 285 286 /** 287 * blkcg_parent - get the parent of a blkcg 288 * @blkcg: blkcg of interest 289 * 290 * Return the parent blkcg of @blkcg. Can be called anytime. 291 */ 292 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg) 293 { 294 return css_to_blkcg(blkcg->css.parent); 295 } 296 297 /** 298 * blkg_alloc - allocate a blkg 299 * @blkcg: block cgroup the new blkg is associated with 300 * @disk: gendisk the new blkg is associated with 301 * @gfp_mask: allocation mask to use 302 * 303 * Allocate a new blkg assocating @blkcg and @q. 304 */ 305 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk, 306 gfp_t gfp_mask) 307 { 308 struct blkcg_gq *blkg; 309 int i, cpu; 310 311 /* alloc and init base part */ 312 blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node); 313 if (!blkg) 314 return NULL; 315 if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask)) 316 goto out_free_blkg; 317 blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask); 318 if (!blkg->iostat_cpu) 319 goto out_exit_refcnt; 320 if (!blk_get_queue(disk->queue)) 321 goto out_free_iostat; 322 323 blkg->q = disk->queue; 324 INIT_LIST_HEAD(&blkg->q_node); 325 blkg->blkcg = blkcg; 326 blkg->iostat.blkg = blkg; 327 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO 328 spin_lock_init(&blkg->async_bio_lock); 329 bio_list_init(&blkg->async_bios); 330 INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn); 331 #endif 332 333 u64_stats_init(&blkg->iostat.sync); 334 for_each_possible_cpu(cpu) { 335 u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync); 336 per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg; 337 } 338 339 for (i = 0; i < BLKCG_MAX_POLS; i++) { 340 struct blkcg_policy *pol = blkcg_policy[i]; 341 struct blkg_policy_data *pd; 342 343 if (!blkcg_policy_enabled(disk->queue, pol)) 344 continue; 345 346 /* alloc per-policy data and attach it to blkg */ 347 pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask); 348 if (!pd) 349 goto out_free_pds; 350 blkg->pd[i] = pd; 351 pd->blkg = blkg; 352 pd->plid = i; 353 pd->online = false; 354 } 355 356 return blkg; 357 358 out_free_pds: 359 while (--i >= 0) 360 if (blkg->pd[i]) 361 blkcg_policy[i]->pd_free_fn(blkg->pd[i]); 362 blk_put_queue(disk->queue); 363 out_free_iostat: 364 free_percpu(blkg->iostat_cpu); 365 out_exit_refcnt: 366 percpu_ref_exit(&blkg->refcnt); 367 out_free_blkg: 368 kfree(blkg); 369 return NULL; 370 } 371 372 /* 373 * If @new_blkg is %NULL, this function tries to allocate a new one as 374 * necessary using %GFP_NOWAIT. @new_blkg is always consumed on return. 375 */ 376 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk, 377 struct blkcg_gq *new_blkg) 378 { 379 struct blkcg_gq *blkg; 380 int i, ret; 381 382 lockdep_assert_held(&disk->queue->queue_lock); 383 384 /* request_queue is dying, do not create/recreate a blkg */ 385 if (blk_queue_dying(disk->queue)) { 386 ret = -ENODEV; 387 goto err_free_blkg; 388 } 389 390 /* blkg holds a reference to blkcg */ 391 if (!css_tryget_online(&blkcg->css)) { 392 ret = -ENODEV; 393 goto err_free_blkg; 394 } 395 396 /* allocate */ 397 if (!new_blkg) { 398 new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN); 399 if (unlikely(!new_blkg)) { 400 ret = -ENOMEM; 401 goto err_put_css; 402 } 403 } 404 blkg = new_blkg; 405 406 /* link parent */ 407 if (blkcg_parent(blkcg)) { 408 blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue); 409 if (WARN_ON_ONCE(!blkg->parent)) { 410 ret = -ENODEV; 411 goto err_put_css; 412 } 413 blkg_get(blkg->parent); 414 } 415 416 /* invoke per-policy init */ 417 for (i = 0; i < BLKCG_MAX_POLS; i++) { 418 struct blkcg_policy *pol = blkcg_policy[i]; 419 420 if (blkg->pd[i] && pol->pd_init_fn) 421 pol->pd_init_fn(blkg->pd[i]); 422 } 423 424 /* insert */ 425 spin_lock(&blkcg->lock); 426 ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg); 427 if (likely(!ret)) { 428 hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list); 429 list_add(&blkg->q_node, &disk->queue->blkg_list); 430 431 for (i = 0; i < BLKCG_MAX_POLS; i++) { 432 struct blkcg_policy *pol = blkcg_policy[i]; 433 434 if (blkg->pd[i]) { 435 if (pol->pd_online_fn) 436 pol->pd_online_fn(blkg->pd[i]); 437 blkg->pd[i]->online = true; 438 } 439 } 440 } 441 blkg->online = true; 442 spin_unlock(&blkcg->lock); 443 444 if (!ret) 445 return blkg; 446 447 /* @blkg failed fully initialized, use the usual release path */ 448 blkg_put(blkg); 449 return ERR_PTR(ret); 450 451 err_put_css: 452 css_put(&blkcg->css); 453 err_free_blkg: 454 if (new_blkg) 455 blkg_free(new_blkg); 456 return ERR_PTR(ret); 457 } 458 459 /** 460 * blkg_lookup_create - lookup blkg, try to create one if not there 461 * @blkcg: blkcg of interest 462 * @disk: gendisk of interest 463 * 464 * Lookup blkg for the @blkcg - @disk pair. If it doesn't exist, try to 465 * create one. blkg creation is performed recursively from blkcg_root such 466 * that all non-root blkg's have access to the parent blkg. This function 467 * should be called under RCU read lock and takes @disk->queue->queue_lock. 468 * 469 * Returns the blkg or the closest blkg if blkg_create() fails as it walks 470 * down from root. 471 */ 472 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg, 473 struct gendisk *disk) 474 { 475 struct request_queue *q = disk->queue; 476 struct blkcg_gq *blkg; 477 unsigned long flags; 478 479 WARN_ON_ONCE(!rcu_read_lock_held()); 480 481 blkg = blkg_lookup(blkcg, q); 482 if (blkg) 483 return blkg; 484 485 spin_lock_irqsave(&q->queue_lock, flags); 486 blkg = blkg_lookup(blkcg, q); 487 if (blkg) { 488 if (blkcg != &blkcg_root && 489 blkg != rcu_dereference(blkcg->blkg_hint)) 490 rcu_assign_pointer(blkcg->blkg_hint, blkg); 491 goto found; 492 } 493 494 /* 495 * Create blkgs walking down from blkcg_root to @blkcg, so that all 496 * non-root blkgs have access to their parents. Returns the closest 497 * blkg to the intended blkg should blkg_create() fail. 498 */ 499 while (true) { 500 struct blkcg *pos = blkcg; 501 struct blkcg *parent = blkcg_parent(blkcg); 502 struct blkcg_gq *ret_blkg = q->root_blkg; 503 504 while (parent) { 505 blkg = blkg_lookup(parent, q); 506 if (blkg) { 507 /* remember closest blkg */ 508 ret_blkg = blkg; 509 break; 510 } 511 pos = parent; 512 parent = blkcg_parent(parent); 513 } 514 515 blkg = blkg_create(pos, disk, NULL); 516 if (IS_ERR(blkg)) { 517 blkg = ret_blkg; 518 break; 519 } 520 if (pos == blkcg) 521 break; 522 } 523 524 found: 525 spin_unlock_irqrestore(&q->queue_lock, flags); 526 return blkg; 527 } 528 529 static void blkg_destroy(struct blkcg_gq *blkg) 530 { 531 struct blkcg *blkcg = blkg->blkcg; 532 int i; 533 534 lockdep_assert_held(&blkg->q->queue_lock); 535 lockdep_assert_held(&blkcg->lock); 536 537 /* 538 * blkg stays on the queue list until blkg_free_workfn(), see details in 539 * blkg_free_workfn(), hence this function can be called from 540 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before 541 * blkg_free_workfn(). 542 */ 543 if (hlist_unhashed(&blkg->blkcg_node)) 544 return; 545 546 for (i = 0; i < BLKCG_MAX_POLS; i++) { 547 struct blkcg_policy *pol = blkcg_policy[i]; 548 549 if (blkg->pd[i] && blkg->pd[i]->online) { 550 blkg->pd[i]->online = false; 551 if (pol->pd_offline_fn) 552 pol->pd_offline_fn(blkg->pd[i]); 553 } 554 } 555 556 blkg->online = false; 557 558 radix_tree_delete(&blkcg->blkg_tree, blkg->q->id); 559 hlist_del_init_rcu(&blkg->blkcg_node); 560 561 /* 562 * Both setting lookup hint to and clearing it from @blkg are done 563 * under queue_lock. If it's not pointing to @blkg now, it never 564 * will. Hint assignment itself can race safely. 565 */ 566 if (rcu_access_pointer(blkcg->blkg_hint) == blkg) 567 rcu_assign_pointer(blkcg->blkg_hint, NULL); 568 569 /* 570 * Put the reference taken at the time of creation so that when all 571 * queues are gone, group can be destroyed. 572 */ 573 percpu_ref_kill(&blkg->refcnt); 574 } 575 576 static void blkg_destroy_all(struct gendisk *disk) 577 { 578 struct request_queue *q = disk->queue; 579 struct blkcg_gq *blkg, *n; 580 int count = BLKG_DESTROY_BATCH_SIZE; 581 int i; 582 583 restart: 584 spin_lock_irq(&q->queue_lock); 585 list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) { 586 struct blkcg *blkcg = blkg->blkcg; 587 588 if (hlist_unhashed(&blkg->blkcg_node)) 589 continue; 590 591 spin_lock(&blkcg->lock); 592 blkg_destroy(blkg); 593 spin_unlock(&blkcg->lock); 594 595 /* 596 * in order to avoid holding the spin lock for too long, release 597 * it when a batch of blkgs are destroyed. 598 */ 599 if (!(--count)) { 600 count = BLKG_DESTROY_BATCH_SIZE; 601 spin_unlock_irq(&q->queue_lock); 602 cond_resched(); 603 goto restart; 604 } 605 } 606 607 /* 608 * Mark policy deactivated since policy offline has been done, and 609 * the free is scheduled, so future blkcg_deactivate_policy() can 610 * be bypassed 611 */ 612 for (i = 0; i < BLKCG_MAX_POLS; i++) { 613 struct blkcg_policy *pol = blkcg_policy[i]; 614 615 if (pol) 616 __clear_bit(pol->plid, q->blkcg_pols); 617 } 618 619 q->root_blkg = NULL; 620 spin_unlock_irq(&q->queue_lock); 621 } 622 623 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src) 624 { 625 int i; 626 627 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 628 dst->bytes[i] = src->bytes[i]; 629 dst->ios[i] = src->ios[i]; 630 } 631 } 632 633 static void __blkg_clear_stat(struct blkg_iostat_set *bis) 634 { 635 struct blkg_iostat cur = {0}; 636 unsigned long flags; 637 638 flags = u64_stats_update_begin_irqsave(&bis->sync); 639 blkg_iostat_set(&bis->cur, &cur); 640 blkg_iostat_set(&bis->last, &cur); 641 u64_stats_update_end_irqrestore(&bis->sync, flags); 642 } 643 644 static void blkg_clear_stat(struct blkcg_gq *blkg) 645 { 646 int cpu; 647 648 for_each_possible_cpu(cpu) { 649 struct blkg_iostat_set *s = per_cpu_ptr(blkg->iostat_cpu, cpu); 650 651 __blkg_clear_stat(s); 652 } 653 __blkg_clear_stat(&blkg->iostat); 654 } 655 656 static int blkcg_reset_stats(struct cgroup_subsys_state *css, 657 struct cftype *cftype, u64 val) 658 { 659 struct blkcg *blkcg = css_to_blkcg(css); 660 struct blkcg_gq *blkg; 661 int i; 662 663 mutex_lock(&blkcg_pol_mutex); 664 spin_lock_irq(&blkcg->lock); 665 666 /* 667 * Note that stat reset is racy - it doesn't synchronize against 668 * stat updates. This is a debug feature which shouldn't exist 669 * anyway. If you get hit by a race, retry. 670 */ 671 hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) { 672 blkg_clear_stat(blkg); 673 for (i = 0; i < BLKCG_MAX_POLS; i++) { 674 struct blkcg_policy *pol = blkcg_policy[i]; 675 676 if (blkg->pd[i] && pol->pd_reset_stats_fn) 677 pol->pd_reset_stats_fn(blkg->pd[i]); 678 } 679 } 680 681 spin_unlock_irq(&blkcg->lock); 682 mutex_unlock(&blkcg_pol_mutex); 683 return 0; 684 } 685 686 const char *blkg_dev_name(struct blkcg_gq *blkg) 687 { 688 if (!blkg->q->disk) 689 return NULL; 690 return bdi_dev_name(blkg->q->disk->bdi); 691 } 692 693 /** 694 * blkcg_print_blkgs - helper for printing per-blkg data 695 * @sf: seq_file to print to 696 * @blkcg: blkcg of interest 697 * @prfill: fill function to print out a blkg 698 * @pol: policy in question 699 * @data: data to be passed to @prfill 700 * @show_total: to print out sum of prfill return values or not 701 * 702 * This function invokes @prfill on each blkg of @blkcg if pd for the 703 * policy specified by @pol exists. @prfill is invoked with @sf, the 704 * policy data and @data and the matching queue lock held. If @show_total 705 * is %true, the sum of the return values from @prfill is printed with 706 * "Total" label at the end. 707 * 708 * This is to be used to construct print functions for 709 * cftype->read_seq_string method. 710 */ 711 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg, 712 u64 (*prfill)(struct seq_file *, 713 struct blkg_policy_data *, int), 714 const struct blkcg_policy *pol, int data, 715 bool show_total) 716 { 717 struct blkcg_gq *blkg; 718 u64 total = 0; 719 720 rcu_read_lock(); 721 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 722 spin_lock_irq(&blkg->q->queue_lock); 723 if (blkcg_policy_enabled(blkg->q, pol)) 724 total += prfill(sf, blkg->pd[pol->plid], data); 725 spin_unlock_irq(&blkg->q->queue_lock); 726 } 727 rcu_read_unlock(); 728 729 if (show_total) 730 seq_printf(sf, "Total %llu\n", (unsigned long long)total); 731 } 732 EXPORT_SYMBOL_GPL(blkcg_print_blkgs); 733 734 /** 735 * __blkg_prfill_u64 - prfill helper for a single u64 value 736 * @sf: seq_file to print to 737 * @pd: policy private data of interest 738 * @v: value to print 739 * 740 * Print @v to @sf for the device associated with @pd. 741 */ 742 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v) 743 { 744 const char *dname = blkg_dev_name(pd->blkg); 745 746 if (!dname) 747 return 0; 748 749 seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v); 750 return v; 751 } 752 EXPORT_SYMBOL_GPL(__blkg_prfill_u64); 753 754 /** 755 * blkg_conf_init - initialize a blkg_conf_ctx 756 * @ctx: blkg_conf_ctx to initialize 757 * @input: input string 758 * 759 * Initialize @ctx which can be used to parse blkg config input string @input. 760 * Once initialized, @ctx can be used with blkg_conf_open_bdev() and 761 * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit(). 762 */ 763 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input) 764 { 765 *ctx = (struct blkg_conf_ctx){ .input = input }; 766 } 767 EXPORT_SYMBOL_GPL(blkg_conf_init); 768 769 /** 770 * blkg_conf_open_bdev - parse and open bdev for per-blkg config update 771 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 772 * 773 * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from 774 * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is 775 * set to point past the device node prefix. 776 * 777 * This function may be called multiple times on @ctx and the extra calls become 778 * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function 779 * explicitly if bdev access is needed without resolving the blkcg / policy part 780 * of @ctx->input. Returns -errno on error. 781 */ 782 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx) 783 { 784 char *input = ctx->input; 785 unsigned int major, minor; 786 struct block_device *bdev; 787 int key_len; 788 789 if (ctx->bdev) 790 return 0; 791 792 if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2) 793 return -EINVAL; 794 795 input += key_len; 796 if (!isspace(*input)) 797 return -EINVAL; 798 input = skip_spaces(input); 799 800 bdev = blkdev_get_no_open(MKDEV(major, minor)); 801 if (!bdev) 802 return -ENODEV; 803 if (bdev_is_partition(bdev)) { 804 blkdev_put_no_open(bdev); 805 return -ENODEV; 806 } 807 808 mutex_lock(&bdev->bd_queue->rq_qos_mutex); 809 if (!disk_live(bdev->bd_disk)) { 810 blkdev_put_no_open(bdev); 811 mutex_unlock(&bdev->bd_queue->rq_qos_mutex); 812 return -ENODEV; 813 } 814 815 ctx->body = input; 816 ctx->bdev = bdev; 817 return 0; 818 } 819 820 /** 821 * blkg_conf_prep - parse and prepare for per-blkg config update 822 * @blkcg: target block cgroup 823 * @pol: target policy 824 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 825 * 826 * Parse per-blkg config update from @ctx->input and initialize @ctx 827 * accordingly. On success, @ctx->body points to the part of @ctx->input 828 * following MAJ:MIN, @ctx->bdev points to the target block device and 829 * @ctx->blkg to the blkg being configured. 830 * 831 * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this 832 * function returns with queue lock held and must be followed by 833 * blkg_conf_exit(). 834 */ 835 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol, 836 struct blkg_conf_ctx *ctx) 837 __acquires(&bdev->bd_queue->queue_lock) 838 { 839 struct gendisk *disk; 840 struct request_queue *q; 841 struct blkcg_gq *blkg; 842 int ret; 843 844 ret = blkg_conf_open_bdev(ctx); 845 if (ret) 846 return ret; 847 848 disk = ctx->bdev->bd_disk; 849 q = disk->queue; 850 851 /* 852 * blkcg_deactivate_policy() requires queue to be frozen, we can grab 853 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy(). 854 */ 855 ret = blk_queue_enter(q, 0); 856 if (ret) 857 goto fail; 858 859 spin_lock_irq(&q->queue_lock); 860 861 if (!blkcg_policy_enabled(q, pol)) { 862 ret = -EOPNOTSUPP; 863 goto fail_unlock; 864 } 865 866 blkg = blkg_lookup(blkcg, q); 867 if (blkg) 868 goto success; 869 870 /* 871 * Create blkgs walking down from blkcg_root to @blkcg, so that all 872 * non-root blkgs have access to their parents. 873 */ 874 while (true) { 875 struct blkcg *pos = blkcg; 876 struct blkcg *parent; 877 struct blkcg_gq *new_blkg; 878 879 parent = blkcg_parent(blkcg); 880 while (parent && !blkg_lookup(parent, q)) { 881 pos = parent; 882 parent = blkcg_parent(parent); 883 } 884 885 /* Drop locks to do new blkg allocation with GFP_KERNEL. */ 886 spin_unlock_irq(&q->queue_lock); 887 888 new_blkg = blkg_alloc(pos, disk, GFP_KERNEL); 889 if (unlikely(!new_blkg)) { 890 ret = -ENOMEM; 891 goto fail_exit_queue; 892 } 893 894 if (radix_tree_preload(GFP_KERNEL)) { 895 blkg_free(new_blkg); 896 ret = -ENOMEM; 897 goto fail_exit_queue; 898 } 899 900 spin_lock_irq(&q->queue_lock); 901 902 if (!blkcg_policy_enabled(q, pol)) { 903 blkg_free(new_blkg); 904 ret = -EOPNOTSUPP; 905 goto fail_preloaded; 906 } 907 908 blkg = blkg_lookup(pos, q); 909 if (blkg) { 910 blkg_free(new_blkg); 911 } else { 912 blkg = blkg_create(pos, disk, new_blkg); 913 if (IS_ERR(blkg)) { 914 ret = PTR_ERR(blkg); 915 goto fail_preloaded; 916 } 917 } 918 919 radix_tree_preload_end(); 920 921 if (pos == blkcg) 922 goto success; 923 } 924 success: 925 blk_queue_exit(q); 926 ctx->blkg = blkg; 927 return 0; 928 929 fail_preloaded: 930 radix_tree_preload_end(); 931 fail_unlock: 932 spin_unlock_irq(&q->queue_lock); 933 fail_exit_queue: 934 blk_queue_exit(q); 935 fail: 936 /* 937 * If queue was bypassing, we should retry. Do so after a 938 * short msleep(). It isn't strictly necessary but queue 939 * can be bypassing for some time and it's always nice to 940 * avoid busy looping. 941 */ 942 if (ret == -EBUSY) { 943 msleep(10); 944 ret = restart_syscall(); 945 } 946 return ret; 947 } 948 EXPORT_SYMBOL_GPL(blkg_conf_prep); 949 950 /** 951 * blkg_conf_exit - clean up per-blkg config update 952 * @ctx: blkg_conf_ctx initialized with blkg_conf_init() 953 * 954 * Clean up after per-blkg config update. This function must be called on all 955 * blkg_conf_ctx's initialized with blkg_conf_init(). 956 */ 957 void blkg_conf_exit(struct blkg_conf_ctx *ctx) 958 __releases(&ctx->bdev->bd_queue->queue_lock) 959 __releases(&ctx->bdev->bd_queue->rq_qos_mutex) 960 { 961 if (ctx->blkg) { 962 spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock); 963 ctx->blkg = NULL; 964 } 965 966 if (ctx->bdev) { 967 mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex); 968 blkdev_put_no_open(ctx->bdev); 969 ctx->body = NULL; 970 ctx->bdev = NULL; 971 } 972 } 973 EXPORT_SYMBOL_GPL(blkg_conf_exit); 974 975 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src) 976 { 977 int i; 978 979 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 980 dst->bytes[i] += src->bytes[i]; 981 dst->ios[i] += src->ios[i]; 982 } 983 } 984 985 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src) 986 { 987 int i; 988 989 for (i = 0; i < BLKG_IOSTAT_NR; i++) { 990 dst->bytes[i] -= src->bytes[i]; 991 dst->ios[i] -= src->ios[i]; 992 } 993 } 994 995 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur, 996 struct blkg_iostat *last) 997 { 998 struct blkg_iostat delta; 999 unsigned long flags; 1000 1001 /* propagate percpu delta to global */ 1002 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1003 blkg_iostat_set(&delta, cur); 1004 blkg_iostat_sub(&delta, last); 1005 blkg_iostat_add(&blkg->iostat.cur, &delta); 1006 blkg_iostat_add(last, &delta); 1007 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1008 } 1009 1010 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu) 1011 { 1012 struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu); 1013 struct llist_node *lnode; 1014 struct blkg_iostat_set *bisc, *next_bisc; 1015 unsigned long flags; 1016 1017 rcu_read_lock(); 1018 1019 lnode = llist_del_all(lhead); 1020 if (!lnode) 1021 goto out; 1022 1023 /* 1024 * For covering concurrent parent blkg update from blkg_release(). 1025 * 1026 * When flushing from cgroup, cgroup_rstat_lock is always held, so 1027 * this lock won't cause contention most of time. 1028 */ 1029 raw_spin_lock_irqsave(&blkg_stat_lock, flags); 1030 1031 /* 1032 * Iterate only the iostat_cpu's queued in the lockless list. 1033 */ 1034 llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) { 1035 struct blkcg_gq *blkg = bisc->blkg; 1036 struct blkcg_gq *parent = blkg->parent; 1037 struct blkg_iostat cur; 1038 unsigned int seq; 1039 1040 /* 1041 * Order assignment of `next_bisc` from `bisc->lnode.next` in 1042 * llist_for_each_entry_safe and clearing `bisc->lqueued` for 1043 * avoiding to assign `next_bisc` with new next pointer added 1044 * in blk_cgroup_bio_start() in case of re-ordering. 1045 * 1046 * The pair barrier is implied in llist_add() in blk_cgroup_bio_start(). 1047 */ 1048 smp_mb(); 1049 1050 WRITE_ONCE(bisc->lqueued, false); 1051 if (bisc == &blkg->iostat) 1052 goto propagate_up; /* propagate up to parent only */ 1053 1054 /* fetch the current per-cpu values */ 1055 do { 1056 seq = u64_stats_fetch_begin(&bisc->sync); 1057 blkg_iostat_set(&cur, &bisc->cur); 1058 } while (u64_stats_fetch_retry(&bisc->sync, seq)); 1059 1060 blkcg_iostat_update(blkg, &cur, &bisc->last); 1061 1062 propagate_up: 1063 /* propagate global delta to parent (unless that's root) */ 1064 if (parent && parent->parent) { 1065 blkcg_iostat_update(parent, &blkg->iostat.cur, 1066 &blkg->iostat.last); 1067 /* 1068 * Queue parent->iostat to its blkcg's lockless 1069 * list to propagate up to the grandparent if the 1070 * iostat hasn't been queued yet. 1071 */ 1072 if (!parent->iostat.lqueued) { 1073 struct llist_head *plhead; 1074 1075 plhead = per_cpu_ptr(parent->blkcg->lhead, cpu); 1076 llist_add(&parent->iostat.lnode, plhead); 1077 parent->iostat.lqueued = true; 1078 } 1079 } 1080 } 1081 raw_spin_unlock_irqrestore(&blkg_stat_lock, flags); 1082 out: 1083 rcu_read_unlock(); 1084 } 1085 1086 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu) 1087 { 1088 /* Root-level stats are sourced from system-wide IO stats */ 1089 if (cgroup_parent(css->cgroup)) 1090 __blkcg_rstat_flush(css_to_blkcg(css), cpu); 1091 } 1092 1093 /* 1094 * We source root cgroup stats from the system-wide stats to avoid 1095 * tracking the same information twice and incurring overhead when no 1096 * cgroups are defined. For that reason, cgroup_rstat_flush in 1097 * blkcg_print_stat does not actually fill out the iostat in the root 1098 * cgroup's blkcg_gq. 1099 * 1100 * However, we would like to re-use the printing code between the root and 1101 * non-root cgroups to the extent possible. For that reason, we simulate 1102 * flushing the root cgroup's stats by explicitly filling in the iostat 1103 * with disk level statistics. 1104 */ 1105 static void blkcg_fill_root_iostats(void) 1106 { 1107 struct class_dev_iter iter; 1108 struct device *dev; 1109 1110 class_dev_iter_init(&iter, &block_class, NULL, &disk_type); 1111 while ((dev = class_dev_iter_next(&iter))) { 1112 struct block_device *bdev = dev_to_bdev(dev); 1113 struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg; 1114 struct blkg_iostat tmp; 1115 int cpu; 1116 unsigned long flags; 1117 1118 memset(&tmp, 0, sizeof(tmp)); 1119 for_each_possible_cpu(cpu) { 1120 struct disk_stats *cpu_dkstats; 1121 1122 cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu); 1123 tmp.ios[BLKG_IOSTAT_READ] += 1124 cpu_dkstats->ios[STAT_READ]; 1125 tmp.ios[BLKG_IOSTAT_WRITE] += 1126 cpu_dkstats->ios[STAT_WRITE]; 1127 tmp.ios[BLKG_IOSTAT_DISCARD] += 1128 cpu_dkstats->ios[STAT_DISCARD]; 1129 // convert sectors to bytes 1130 tmp.bytes[BLKG_IOSTAT_READ] += 1131 cpu_dkstats->sectors[STAT_READ] << 9; 1132 tmp.bytes[BLKG_IOSTAT_WRITE] += 1133 cpu_dkstats->sectors[STAT_WRITE] << 9; 1134 tmp.bytes[BLKG_IOSTAT_DISCARD] += 1135 cpu_dkstats->sectors[STAT_DISCARD] << 9; 1136 } 1137 1138 flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync); 1139 blkg_iostat_set(&blkg->iostat.cur, &tmp); 1140 u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags); 1141 } 1142 } 1143 1144 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s) 1145 { 1146 struct blkg_iostat_set *bis = &blkg->iostat; 1147 u64 rbytes, wbytes, rios, wios, dbytes, dios; 1148 const char *dname; 1149 unsigned seq; 1150 int i; 1151 1152 if (!blkg->online) 1153 return; 1154 1155 dname = blkg_dev_name(blkg); 1156 if (!dname) 1157 return; 1158 1159 seq_printf(s, "%s ", dname); 1160 1161 do { 1162 seq = u64_stats_fetch_begin(&bis->sync); 1163 1164 rbytes = bis->cur.bytes[BLKG_IOSTAT_READ]; 1165 wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE]; 1166 dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD]; 1167 rios = bis->cur.ios[BLKG_IOSTAT_READ]; 1168 wios = bis->cur.ios[BLKG_IOSTAT_WRITE]; 1169 dios = bis->cur.ios[BLKG_IOSTAT_DISCARD]; 1170 } while (u64_stats_fetch_retry(&bis->sync, seq)); 1171 1172 if (rbytes || wbytes || rios || wios) { 1173 seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu", 1174 rbytes, wbytes, rios, wios, 1175 dbytes, dios); 1176 } 1177 1178 if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) { 1179 seq_printf(s, " use_delay=%d delay_nsec=%llu", 1180 atomic_read(&blkg->use_delay), 1181 atomic64_read(&blkg->delay_nsec)); 1182 } 1183 1184 for (i = 0; i < BLKCG_MAX_POLS; i++) { 1185 struct blkcg_policy *pol = blkcg_policy[i]; 1186 1187 if (!blkg->pd[i] || !pol->pd_stat_fn) 1188 continue; 1189 1190 pol->pd_stat_fn(blkg->pd[i], s); 1191 } 1192 1193 seq_puts(s, "\n"); 1194 } 1195 1196 static int blkcg_print_stat(struct seq_file *sf, void *v) 1197 { 1198 struct blkcg *blkcg = css_to_blkcg(seq_css(sf)); 1199 struct blkcg_gq *blkg; 1200 1201 if (!seq_css(sf)->parent) 1202 blkcg_fill_root_iostats(); 1203 else 1204 cgroup_rstat_flush(blkcg->css.cgroup); 1205 1206 rcu_read_lock(); 1207 hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) { 1208 spin_lock_irq(&blkg->q->queue_lock); 1209 blkcg_print_one_stat(blkg, sf); 1210 spin_unlock_irq(&blkg->q->queue_lock); 1211 } 1212 rcu_read_unlock(); 1213 return 0; 1214 } 1215 1216 static struct cftype blkcg_files[] = { 1217 { 1218 .name = "stat", 1219 .seq_show = blkcg_print_stat, 1220 }, 1221 { } /* terminate */ 1222 }; 1223 1224 static struct cftype blkcg_legacy_files[] = { 1225 { 1226 .name = "reset_stats", 1227 .write_u64 = blkcg_reset_stats, 1228 }, 1229 { } /* terminate */ 1230 }; 1231 1232 #ifdef CONFIG_CGROUP_WRITEBACK 1233 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css) 1234 { 1235 return &css_to_blkcg(css)->cgwb_list; 1236 } 1237 #endif 1238 1239 /* 1240 * blkcg destruction is a three-stage process. 1241 * 1242 * 1. Destruction starts. The blkcg_css_offline() callback is invoked 1243 * which offlines writeback. Here we tie the next stage of blkg destruction 1244 * to the completion of writeback associated with the blkcg. This lets us 1245 * avoid punting potentially large amounts of outstanding writeback to root 1246 * while maintaining any ongoing policies. The next stage is triggered when 1247 * the nr_cgwbs count goes to zero. 1248 * 1249 * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called 1250 * and handles the destruction of blkgs. Here the css reference held by 1251 * the blkg is put back eventually allowing blkcg_css_free() to be called. 1252 * This work may occur in cgwb_release_workfn() on the cgwb_release 1253 * workqueue. Any submitted ios that fail to get the blkg ref will be 1254 * punted to the root_blkg. 1255 * 1256 * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called. 1257 * This finally frees the blkcg. 1258 */ 1259 1260 /** 1261 * blkcg_destroy_blkgs - responsible for shooting down blkgs 1262 * @blkcg: blkcg of interest 1263 * 1264 * blkgs should be removed while holding both q and blkcg locks. As blkcg lock 1265 * is nested inside q lock, this function performs reverse double lock dancing. 1266 * Destroying the blkgs releases the reference held on the blkcg's css allowing 1267 * blkcg_css_free to eventually be called. 1268 * 1269 * This is the blkcg counterpart of ioc_release_fn(). 1270 */ 1271 static void blkcg_destroy_blkgs(struct blkcg *blkcg) 1272 { 1273 might_sleep(); 1274 1275 spin_lock_irq(&blkcg->lock); 1276 1277 while (!hlist_empty(&blkcg->blkg_list)) { 1278 struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first, 1279 struct blkcg_gq, blkcg_node); 1280 struct request_queue *q = blkg->q; 1281 1282 if (need_resched() || !spin_trylock(&q->queue_lock)) { 1283 /* 1284 * Given that the system can accumulate a huge number 1285 * of blkgs in pathological cases, check to see if we 1286 * need to rescheduling to avoid softlockup. 1287 */ 1288 spin_unlock_irq(&blkcg->lock); 1289 cond_resched(); 1290 spin_lock_irq(&blkcg->lock); 1291 continue; 1292 } 1293 1294 blkg_destroy(blkg); 1295 spin_unlock(&q->queue_lock); 1296 } 1297 1298 spin_unlock_irq(&blkcg->lock); 1299 } 1300 1301 /** 1302 * blkcg_pin_online - pin online state 1303 * @blkcg_css: blkcg of interest 1304 * 1305 * While pinned, a blkcg is kept online. This is primarily used to 1306 * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline 1307 * while an associated cgwb is still active. 1308 */ 1309 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css) 1310 { 1311 refcount_inc(&css_to_blkcg(blkcg_css)->online_pin); 1312 } 1313 1314 /** 1315 * blkcg_unpin_online - unpin online state 1316 * @blkcg_css: blkcg of interest 1317 * 1318 * This is primarily used to impedance-match blkg and cgwb lifetimes so 1319 * that blkg doesn't go offline while an associated cgwb is still active. 1320 * When this count goes to zero, all active cgwbs have finished so the 1321 * blkcg can continue destruction by calling blkcg_destroy_blkgs(). 1322 */ 1323 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css) 1324 { 1325 struct blkcg *blkcg = css_to_blkcg(blkcg_css); 1326 1327 do { 1328 if (!refcount_dec_and_test(&blkcg->online_pin)) 1329 break; 1330 blkcg_destroy_blkgs(blkcg); 1331 blkcg = blkcg_parent(blkcg); 1332 } while (blkcg); 1333 } 1334 1335 /** 1336 * blkcg_css_offline - cgroup css_offline callback 1337 * @css: css of interest 1338 * 1339 * This function is called when @css is about to go away. Here the cgwbs are 1340 * offlined first and only once writeback associated with the blkcg has 1341 * finished do we start step 2 (see above). 1342 */ 1343 static void blkcg_css_offline(struct cgroup_subsys_state *css) 1344 { 1345 /* this prevents anyone from attaching or migrating to this blkcg */ 1346 wb_blkcg_offline(css); 1347 1348 /* put the base online pin allowing step 2 to be triggered */ 1349 blkcg_unpin_online(css); 1350 } 1351 1352 static void blkcg_css_free(struct cgroup_subsys_state *css) 1353 { 1354 struct blkcg *blkcg = css_to_blkcg(css); 1355 int i; 1356 1357 mutex_lock(&blkcg_pol_mutex); 1358 1359 list_del(&blkcg->all_blkcgs_node); 1360 1361 for (i = 0; i < BLKCG_MAX_POLS; i++) 1362 if (blkcg->cpd[i]) 1363 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1364 1365 mutex_unlock(&blkcg_pol_mutex); 1366 1367 free_percpu(blkcg->lhead); 1368 kfree(blkcg); 1369 } 1370 1371 static struct cgroup_subsys_state * 1372 blkcg_css_alloc(struct cgroup_subsys_state *parent_css) 1373 { 1374 struct blkcg *blkcg; 1375 int i; 1376 1377 mutex_lock(&blkcg_pol_mutex); 1378 1379 if (!parent_css) { 1380 blkcg = &blkcg_root; 1381 } else { 1382 blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL); 1383 if (!blkcg) 1384 goto unlock; 1385 } 1386 1387 if (init_blkcg_llists(blkcg)) 1388 goto free_blkcg; 1389 1390 for (i = 0; i < BLKCG_MAX_POLS ; i++) { 1391 struct blkcg_policy *pol = blkcg_policy[i]; 1392 struct blkcg_policy_data *cpd; 1393 1394 /* 1395 * If the policy hasn't been attached yet, wait for it 1396 * to be attached before doing anything else. Otherwise, 1397 * check if the policy requires any specific per-cgroup 1398 * data: if it does, allocate and initialize it. 1399 */ 1400 if (!pol || !pol->cpd_alloc_fn) 1401 continue; 1402 1403 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1404 if (!cpd) 1405 goto free_pd_blkcg; 1406 1407 blkcg->cpd[i] = cpd; 1408 cpd->blkcg = blkcg; 1409 cpd->plid = i; 1410 } 1411 1412 spin_lock_init(&blkcg->lock); 1413 refcount_set(&blkcg->online_pin, 1); 1414 INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN); 1415 INIT_HLIST_HEAD(&blkcg->blkg_list); 1416 #ifdef CONFIG_CGROUP_WRITEBACK 1417 INIT_LIST_HEAD(&blkcg->cgwb_list); 1418 #endif 1419 list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs); 1420 1421 mutex_unlock(&blkcg_pol_mutex); 1422 return &blkcg->css; 1423 1424 free_pd_blkcg: 1425 for (i--; i >= 0; i--) 1426 if (blkcg->cpd[i]) 1427 blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]); 1428 free_percpu(blkcg->lhead); 1429 free_blkcg: 1430 if (blkcg != &blkcg_root) 1431 kfree(blkcg); 1432 unlock: 1433 mutex_unlock(&blkcg_pol_mutex); 1434 return ERR_PTR(-ENOMEM); 1435 } 1436 1437 static int blkcg_css_online(struct cgroup_subsys_state *css) 1438 { 1439 struct blkcg *parent = blkcg_parent(css_to_blkcg(css)); 1440 1441 /* 1442 * blkcg_pin_online() is used to delay blkcg offline so that blkgs 1443 * don't go offline while cgwbs are still active on them. Pin the 1444 * parent so that offline always happens towards the root. 1445 */ 1446 if (parent) 1447 blkcg_pin_online(&parent->css); 1448 return 0; 1449 } 1450 1451 void blkg_init_queue(struct request_queue *q) 1452 { 1453 INIT_LIST_HEAD(&q->blkg_list); 1454 mutex_init(&q->blkcg_mutex); 1455 } 1456 1457 int blkcg_init_disk(struct gendisk *disk) 1458 { 1459 struct request_queue *q = disk->queue; 1460 struct blkcg_gq *new_blkg, *blkg; 1461 bool preloaded; 1462 int ret; 1463 1464 new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL); 1465 if (!new_blkg) 1466 return -ENOMEM; 1467 1468 preloaded = !radix_tree_preload(GFP_KERNEL); 1469 1470 /* Make sure the root blkg exists. */ 1471 /* spin_lock_irq can serve as RCU read-side critical section. */ 1472 spin_lock_irq(&q->queue_lock); 1473 blkg = blkg_create(&blkcg_root, disk, new_blkg); 1474 if (IS_ERR(blkg)) 1475 goto err_unlock; 1476 q->root_blkg = blkg; 1477 spin_unlock_irq(&q->queue_lock); 1478 1479 if (preloaded) 1480 radix_tree_preload_end(); 1481 1482 ret = blk_ioprio_init(disk); 1483 if (ret) 1484 goto err_destroy_all; 1485 1486 ret = blk_throtl_init(disk); 1487 if (ret) 1488 goto err_ioprio_exit; 1489 1490 return 0; 1491 1492 err_ioprio_exit: 1493 blk_ioprio_exit(disk); 1494 err_destroy_all: 1495 blkg_destroy_all(disk); 1496 return ret; 1497 err_unlock: 1498 spin_unlock_irq(&q->queue_lock); 1499 if (preloaded) 1500 radix_tree_preload_end(); 1501 return PTR_ERR(blkg); 1502 } 1503 1504 void blkcg_exit_disk(struct gendisk *disk) 1505 { 1506 blkg_destroy_all(disk); 1507 blk_throtl_exit(disk); 1508 } 1509 1510 static void blkcg_exit(struct task_struct *tsk) 1511 { 1512 if (tsk->throttle_disk) 1513 put_disk(tsk->throttle_disk); 1514 tsk->throttle_disk = NULL; 1515 } 1516 1517 struct cgroup_subsys io_cgrp_subsys = { 1518 .css_alloc = blkcg_css_alloc, 1519 .css_online = blkcg_css_online, 1520 .css_offline = blkcg_css_offline, 1521 .css_free = blkcg_css_free, 1522 .css_rstat_flush = blkcg_rstat_flush, 1523 .dfl_cftypes = blkcg_files, 1524 .legacy_cftypes = blkcg_legacy_files, 1525 .legacy_name = "blkio", 1526 .exit = blkcg_exit, 1527 #ifdef CONFIG_MEMCG 1528 /* 1529 * This ensures that, if available, memcg is automatically enabled 1530 * together on the default hierarchy so that the owner cgroup can 1531 * be retrieved from writeback pages. 1532 */ 1533 .depends_on = 1 << memory_cgrp_id, 1534 #endif 1535 }; 1536 EXPORT_SYMBOL_GPL(io_cgrp_subsys); 1537 1538 /** 1539 * blkcg_activate_policy - activate a blkcg policy on a gendisk 1540 * @disk: gendisk of interest 1541 * @pol: blkcg policy to activate 1542 * 1543 * Activate @pol on @disk. Requires %GFP_KERNEL context. @disk goes through 1544 * bypass mode to populate its blkgs with policy_data for @pol. 1545 * 1546 * Activation happens with @disk bypassed, so nobody would be accessing blkgs 1547 * from IO path. Update of each blkg is protected by both queue and blkcg 1548 * locks so that holding either lock and testing blkcg_policy_enabled() is 1549 * always enough for dereferencing policy data. 1550 * 1551 * The caller is responsible for synchronizing [de]activations and policy 1552 * [un]registerations. Returns 0 on success, -errno on failure. 1553 */ 1554 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol) 1555 { 1556 struct request_queue *q = disk->queue; 1557 struct blkg_policy_data *pd_prealloc = NULL; 1558 struct blkcg_gq *blkg, *pinned_blkg = NULL; 1559 int ret; 1560 1561 if (blkcg_policy_enabled(q, pol)) 1562 return 0; 1563 1564 if (queue_is_mq(q)) 1565 blk_mq_freeze_queue(q); 1566 retry: 1567 spin_lock_irq(&q->queue_lock); 1568 1569 /* blkg_list is pushed at the head, reverse walk to initialize parents first */ 1570 list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) { 1571 struct blkg_policy_data *pd; 1572 1573 if (blkg->pd[pol->plid]) 1574 continue; 1575 1576 /* If prealloc matches, use it; otherwise try GFP_NOWAIT */ 1577 if (blkg == pinned_blkg) { 1578 pd = pd_prealloc; 1579 pd_prealloc = NULL; 1580 } else { 1581 pd = pol->pd_alloc_fn(disk, blkg->blkcg, 1582 GFP_NOWAIT | __GFP_NOWARN); 1583 } 1584 1585 if (!pd) { 1586 /* 1587 * GFP_NOWAIT failed. Free the existing one and 1588 * prealloc for @blkg w/ GFP_KERNEL. 1589 */ 1590 if (pinned_blkg) 1591 blkg_put(pinned_blkg); 1592 blkg_get(blkg); 1593 pinned_blkg = blkg; 1594 1595 spin_unlock_irq(&q->queue_lock); 1596 1597 if (pd_prealloc) 1598 pol->pd_free_fn(pd_prealloc); 1599 pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg, 1600 GFP_KERNEL); 1601 if (pd_prealloc) 1602 goto retry; 1603 else 1604 goto enomem; 1605 } 1606 1607 spin_lock(&blkg->blkcg->lock); 1608 1609 pd->blkg = blkg; 1610 pd->plid = pol->plid; 1611 blkg->pd[pol->plid] = pd; 1612 1613 if (pol->pd_init_fn) 1614 pol->pd_init_fn(pd); 1615 1616 if (pol->pd_online_fn) 1617 pol->pd_online_fn(pd); 1618 pd->online = true; 1619 1620 spin_unlock(&blkg->blkcg->lock); 1621 } 1622 1623 __set_bit(pol->plid, q->blkcg_pols); 1624 ret = 0; 1625 1626 spin_unlock_irq(&q->queue_lock); 1627 out: 1628 if (queue_is_mq(q)) 1629 blk_mq_unfreeze_queue(q); 1630 if (pinned_blkg) 1631 blkg_put(pinned_blkg); 1632 if (pd_prealloc) 1633 pol->pd_free_fn(pd_prealloc); 1634 return ret; 1635 1636 enomem: 1637 /* alloc failed, take down everything */ 1638 spin_lock_irq(&q->queue_lock); 1639 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1640 struct blkcg *blkcg = blkg->blkcg; 1641 struct blkg_policy_data *pd; 1642 1643 spin_lock(&blkcg->lock); 1644 pd = blkg->pd[pol->plid]; 1645 if (pd) { 1646 if (pd->online && pol->pd_offline_fn) 1647 pol->pd_offline_fn(pd); 1648 pd->online = false; 1649 pol->pd_free_fn(pd); 1650 blkg->pd[pol->plid] = NULL; 1651 } 1652 spin_unlock(&blkcg->lock); 1653 } 1654 spin_unlock_irq(&q->queue_lock); 1655 ret = -ENOMEM; 1656 goto out; 1657 } 1658 EXPORT_SYMBOL_GPL(blkcg_activate_policy); 1659 1660 /** 1661 * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk 1662 * @disk: gendisk of interest 1663 * @pol: blkcg policy to deactivate 1664 * 1665 * Deactivate @pol on @disk. Follows the same synchronization rules as 1666 * blkcg_activate_policy(). 1667 */ 1668 void blkcg_deactivate_policy(struct gendisk *disk, 1669 const struct blkcg_policy *pol) 1670 { 1671 struct request_queue *q = disk->queue; 1672 struct blkcg_gq *blkg; 1673 1674 if (!blkcg_policy_enabled(q, pol)) 1675 return; 1676 1677 if (queue_is_mq(q)) 1678 blk_mq_freeze_queue(q); 1679 1680 mutex_lock(&q->blkcg_mutex); 1681 spin_lock_irq(&q->queue_lock); 1682 1683 __clear_bit(pol->plid, q->blkcg_pols); 1684 1685 list_for_each_entry(blkg, &q->blkg_list, q_node) { 1686 struct blkcg *blkcg = blkg->blkcg; 1687 1688 spin_lock(&blkcg->lock); 1689 if (blkg->pd[pol->plid]) { 1690 if (blkg->pd[pol->plid]->online && pol->pd_offline_fn) 1691 pol->pd_offline_fn(blkg->pd[pol->plid]); 1692 pol->pd_free_fn(blkg->pd[pol->plid]); 1693 blkg->pd[pol->plid] = NULL; 1694 } 1695 spin_unlock(&blkcg->lock); 1696 } 1697 1698 spin_unlock_irq(&q->queue_lock); 1699 mutex_unlock(&q->blkcg_mutex); 1700 1701 if (queue_is_mq(q)) 1702 blk_mq_unfreeze_queue(q); 1703 } 1704 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy); 1705 1706 static void blkcg_free_all_cpd(struct blkcg_policy *pol) 1707 { 1708 struct blkcg *blkcg; 1709 1710 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1711 if (blkcg->cpd[pol->plid]) { 1712 pol->cpd_free_fn(blkcg->cpd[pol->plid]); 1713 blkcg->cpd[pol->plid] = NULL; 1714 } 1715 } 1716 } 1717 1718 /** 1719 * blkcg_policy_register - register a blkcg policy 1720 * @pol: blkcg policy to register 1721 * 1722 * Register @pol with blkcg core. Might sleep and @pol may be modified on 1723 * successful registration. Returns 0 on success and -errno on failure. 1724 */ 1725 int blkcg_policy_register(struct blkcg_policy *pol) 1726 { 1727 struct blkcg *blkcg; 1728 int i, ret; 1729 1730 mutex_lock(&blkcg_pol_register_mutex); 1731 mutex_lock(&blkcg_pol_mutex); 1732 1733 /* find an empty slot */ 1734 ret = -ENOSPC; 1735 for (i = 0; i < BLKCG_MAX_POLS; i++) 1736 if (!blkcg_policy[i]) 1737 break; 1738 if (i >= BLKCG_MAX_POLS) { 1739 pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n"); 1740 goto err_unlock; 1741 } 1742 1743 /* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */ 1744 if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) || 1745 (!pol->pd_alloc_fn ^ !pol->pd_free_fn)) 1746 goto err_unlock; 1747 1748 /* register @pol */ 1749 pol->plid = i; 1750 blkcg_policy[pol->plid] = pol; 1751 1752 /* allocate and install cpd's */ 1753 if (pol->cpd_alloc_fn) { 1754 list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) { 1755 struct blkcg_policy_data *cpd; 1756 1757 cpd = pol->cpd_alloc_fn(GFP_KERNEL); 1758 if (!cpd) 1759 goto err_free_cpds; 1760 1761 blkcg->cpd[pol->plid] = cpd; 1762 cpd->blkcg = blkcg; 1763 cpd->plid = pol->plid; 1764 } 1765 } 1766 1767 mutex_unlock(&blkcg_pol_mutex); 1768 1769 /* everything is in place, add intf files for the new policy */ 1770 if (pol->dfl_cftypes) 1771 WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys, 1772 pol->dfl_cftypes)); 1773 if (pol->legacy_cftypes) 1774 WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys, 1775 pol->legacy_cftypes)); 1776 mutex_unlock(&blkcg_pol_register_mutex); 1777 return 0; 1778 1779 err_free_cpds: 1780 if (pol->cpd_free_fn) 1781 blkcg_free_all_cpd(pol); 1782 1783 blkcg_policy[pol->plid] = NULL; 1784 err_unlock: 1785 mutex_unlock(&blkcg_pol_mutex); 1786 mutex_unlock(&blkcg_pol_register_mutex); 1787 return ret; 1788 } 1789 EXPORT_SYMBOL_GPL(blkcg_policy_register); 1790 1791 /** 1792 * blkcg_policy_unregister - unregister a blkcg policy 1793 * @pol: blkcg policy to unregister 1794 * 1795 * Undo blkcg_policy_register(@pol). Might sleep. 1796 */ 1797 void blkcg_policy_unregister(struct blkcg_policy *pol) 1798 { 1799 mutex_lock(&blkcg_pol_register_mutex); 1800 1801 if (WARN_ON(blkcg_policy[pol->plid] != pol)) 1802 goto out_unlock; 1803 1804 /* kill the intf files first */ 1805 if (pol->dfl_cftypes) 1806 cgroup_rm_cftypes(pol->dfl_cftypes); 1807 if (pol->legacy_cftypes) 1808 cgroup_rm_cftypes(pol->legacy_cftypes); 1809 1810 /* remove cpds and unregister */ 1811 mutex_lock(&blkcg_pol_mutex); 1812 1813 if (pol->cpd_free_fn) 1814 blkcg_free_all_cpd(pol); 1815 1816 blkcg_policy[pol->plid] = NULL; 1817 1818 mutex_unlock(&blkcg_pol_mutex); 1819 out_unlock: 1820 mutex_unlock(&blkcg_pol_register_mutex); 1821 } 1822 EXPORT_SYMBOL_GPL(blkcg_policy_unregister); 1823 1824 /* 1825 * Scale the accumulated delay based on how long it has been since we updated 1826 * the delay. We only call this when we are adding delay, in case it's been a 1827 * while since we added delay, and when we are checking to see if we need to 1828 * delay a task, to account for any delays that may have occurred. 1829 */ 1830 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now) 1831 { 1832 u64 old = atomic64_read(&blkg->delay_start); 1833 1834 /* negative use_delay means no scaling, see blkcg_set_delay() */ 1835 if (atomic_read(&blkg->use_delay) < 0) 1836 return; 1837 1838 /* 1839 * We only want to scale down every second. The idea here is that we 1840 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain 1841 * time window. We only want to throttle tasks for recent delay that 1842 * has occurred, in 1 second time windows since that's the maximum 1843 * things can be throttled. We save the current delay window in 1844 * blkg->last_delay so we know what amount is still left to be charged 1845 * to the blkg from this point onward. blkg->last_use keeps track of 1846 * the use_delay counter. The idea is if we're unthrottling the blkg we 1847 * are ok with whatever is happening now, and we can take away more of 1848 * the accumulated delay as we've already throttled enough that 1849 * everybody is happy with their IO latencies. 1850 */ 1851 if (time_before64(old + NSEC_PER_SEC, now) && 1852 atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) { 1853 u64 cur = atomic64_read(&blkg->delay_nsec); 1854 u64 sub = min_t(u64, blkg->last_delay, now - old); 1855 int cur_use = atomic_read(&blkg->use_delay); 1856 1857 /* 1858 * We've been unthrottled, subtract a larger chunk of our 1859 * accumulated delay. 1860 */ 1861 if (cur_use < blkg->last_use) 1862 sub = max_t(u64, sub, blkg->last_delay >> 1); 1863 1864 /* 1865 * This shouldn't happen, but handle it anyway. Our delay_nsec 1866 * should only ever be growing except here where we subtract out 1867 * min(last_delay, 1 second), but lord knows bugs happen and I'd 1868 * rather not end up with negative numbers. 1869 */ 1870 if (unlikely(cur < sub)) { 1871 atomic64_set(&blkg->delay_nsec, 0); 1872 blkg->last_delay = 0; 1873 } else { 1874 atomic64_sub(sub, &blkg->delay_nsec); 1875 blkg->last_delay = cur - sub; 1876 } 1877 blkg->last_use = cur_use; 1878 } 1879 } 1880 1881 /* 1882 * This is called when we want to actually walk up the hierarchy and check to 1883 * see if we need to throttle, and then actually throttle if there is some 1884 * accumulated delay. This should only be called upon return to user space so 1885 * we're not holding some lock that would induce a priority inversion. 1886 */ 1887 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay) 1888 { 1889 unsigned long pflags; 1890 bool clamp; 1891 u64 now = ktime_to_ns(ktime_get()); 1892 u64 exp; 1893 u64 delay_nsec = 0; 1894 int tok; 1895 1896 while (blkg->parent) { 1897 int use_delay = atomic_read(&blkg->use_delay); 1898 1899 if (use_delay) { 1900 u64 this_delay; 1901 1902 blkcg_scale_delay(blkg, now); 1903 this_delay = atomic64_read(&blkg->delay_nsec); 1904 if (this_delay > delay_nsec) { 1905 delay_nsec = this_delay; 1906 clamp = use_delay > 0; 1907 } 1908 } 1909 blkg = blkg->parent; 1910 } 1911 1912 if (!delay_nsec) 1913 return; 1914 1915 /* 1916 * Let's not sleep for all eternity if we've amassed a huge delay. 1917 * Swapping or metadata IO can accumulate 10's of seconds worth of 1918 * delay, and we want userspace to be able to do _something_ so cap the 1919 * delays at 0.25s. If there's 10's of seconds worth of delay then the 1920 * tasks will be delayed for 0.25 second for every syscall. If 1921 * blkcg_set_delay() was used as indicated by negative use_delay, the 1922 * caller is responsible for regulating the range. 1923 */ 1924 if (clamp) 1925 delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC); 1926 1927 if (use_memdelay) 1928 psi_memstall_enter(&pflags); 1929 1930 exp = ktime_add_ns(now, delay_nsec); 1931 tok = io_schedule_prepare(); 1932 do { 1933 __set_current_state(TASK_KILLABLE); 1934 if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS)) 1935 break; 1936 } while (!fatal_signal_pending(current)); 1937 io_schedule_finish(tok); 1938 1939 if (use_memdelay) 1940 psi_memstall_leave(&pflags); 1941 } 1942 1943 /** 1944 * blkcg_maybe_throttle_current - throttle the current task if it has been marked 1945 * 1946 * This is only called if we've been marked with set_notify_resume(). Obviously 1947 * we can be set_notify_resume() for reasons other than blkcg throttling, so we 1948 * check to see if current->throttle_disk is set and if not this doesn't do 1949 * anything. This should only ever be called by the resume code, it's not meant 1950 * to be called by people willy-nilly as it will actually do the work to 1951 * throttle the task if it is setup for throttling. 1952 */ 1953 void blkcg_maybe_throttle_current(void) 1954 { 1955 struct gendisk *disk = current->throttle_disk; 1956 struct blkcg *blkcg; 1957 struct blkcg_gq *blkg; 1958 bool use_memdelay = current->use_memdelay; 1959 1960 if (!disk) 1961 return; 1962 1963 current->throttle_disk = NULL; 1964 current->use_memdelay = false; 1965 1966 rcu_read_lock(); 1967 blkcg = css_to_blkcg(blkcg_css()); 1968 if (!blkcg) 1969 goto out; 1970 blkg = blkg_lookup(blkcg, disk->queue); 1971 if (!blkg) 1972 goto out; 1973 if (!blkg_tryget(blkg)) 1974 goto out; 1975 rcu_read_unlock(); 1976 1977 blkcg_maybe_throttle_blkg(blkg, use_memdelay); 1978 blkg_put(blkg); 1979 put_disk(disk); 1980 return; 1981 out: 1982 rcu_read_unlock(); 1983 } 1984 1985 /** 1986 * blkcg_schedule_throttle - this task needs to check for throttling 1987 * @disk: disk to throttle 1988 * @use_memdelay: do we charge this to memory delay for PSI 1989 * 1990 * This is called by the IO controller when we know there's delay accumulated 1991 * for the blkg for this task. We do not pass the blkg because there are places 1992 * we call this that may not have that information, the swapping code for 1993 * instance will only have a block_device at that point. This set's the 1994 * notify_resume for the task to check and see if it requires throttling before 1995 * returning to user space. 1996 * 1997 * We will only schedule once per syscall. You can call this over and over 1998 * again and it will only do the check once upon return to user space, and only 1999 * throttle once. If the task needs to be throttled again it'll need to be 2000 * re-set at the next time we see the task. 2001 */ 2002 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay) 2003 { 2004 if (unlikely(current->flags & PF_KTHREAD)) 2005 return; 2006 2007 if (current->throttle_disk != disk) { 2008 if (test_bit(GD_DEAD, &disk->state)) 2009 return; 2010 get_device(disk_to_dev(disk)); 2011 2012 if (current->throttle_disk) 2013 put_disk(current->throttle_disk); 2014 current->throttle_disk = disk; 2015 } 2016 2017 if (use_memdelay) 2018 current->use_memdelay = use_memdelay; 2019 set_notify_resume(current); 2020 } 2021 2022 /** 2023 * blkcg_add_delay - add delay to this blkg 2024 * @blkg: blkg of interest 2025 * @now: the current time in nanoseconds 2026 * @delta: how many nanoseconds of delay to add 2027 * 2028 * Charge @delta to the blkg's current delay accumulation. This is used to 2029 * throttle tasks if an IO controller thinks we need more throttling. 2030 */ 2031 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta) 2032 { 2033 if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0)) 2034 return; 2035 blkcg_scale_delay(blkg, now); 2036 atomic64_add(delta, &blkg->delay_nsec); 2037 } 2038 2039 /** 2040 * blkg_tryget_closest - try and get a blkg ref on the closet blkg 2041 * @bio: target bio 2042 * @css: target css 2043 * 2044 * As the failure mode here is to walk up the blkg tree, this ensure that the 2045 * blkg->parent pointers are always valid. This returns the blkg that it ended 2046 * up taking a reference on or %NULL if no reference was taken. 2047 */ 2048 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio, 2049 struct cgroup_subsys_state *css) 2050 { 2051 struct blkcg_gq *blkg, *ret_blkg = NULL; 2052 2053 rcu_read_lock(); 2054 blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk); 2055 while (blkg) { 2056 if (blkg_tryget(blkg)) { 2057 ret_blkg = blkg; 2058 break; 2059 } 2060 blkg = blkg->parent; 2061 } 2062 rcu_read_unlock(); 2063 2064 return ret_blkg; 2065 } 2066 2067 /** 2068 * bio_associate_blkg_from_css - associate a bio with a specified css 2069 * @bio: target bio 2070 * @css: target css 2071 * 2072 * Associate @bio with the blkg found by combining the css's blkg and the 2073 * request_queue of the @bio. An association failure is handled by walking up 2074 * the blkg tree. Therefore, the blkg associated can be anything between @blkg 2075 * and q->root_blkg. This situation only happens when a cgroup is dying and 2076 * then the remaining bios will spill to the closest alive blkg. 2077 * 2078 * A reference will be taken on the blkg and will be released when @bio is 2079 * freed. 2080 */ 2081 void bio_associate_blkg_from_css(struct bio *bio, 2082 struct cgroup_subsys_state *css) 2083 { 2084 if (bio->bi_blkg) 2085 blkg_put(bio->bi_blkg); 2086 2087 if (css && css->parent) { 2088 bio->bi_blkg = blkg_tryget_closest(bio, css); 2089 } else { 2090 blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg); 2091 bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg; 2092 } 2093 } 2094 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css); 2095 2096 /** 2097 * bio_associate_blkg - associate a bio with a blkg 2098 * @bio: target bio 2099 * 2100 * Associate @bio with the blkg found from the bio's css and request_queue. 2101 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is 2102 * already associated, the css is reused and association redone as the 2103 * request_queue may have changed. 2104 */ 2105 void bio_associate_blkg(struct bio *bio) 2106 { 2107 struct cgroup_subsys_state *css; 2108 2109 rcu_read_lock(); 2110 2111 if (bio->bi_blkg) 2112 css = bio_blkcg_css(bio); 2113 else 2114 css = blkcg_css(); 2115 2116 bio_associate_blkg_from_css(bio, css); 2117 2118 rcu_read_unlock(); 2119 } 2120 EXPORT_SYMBOL_GPL(bio_associate_blkg); 2121 2122 /** 2123 * bio_clone_blkg_association - clone blkg association from src to dst bio 2124 * @dst: destination bio 2125 * @src: source bio 2126 */ 2127 void bio_clone_blkg_association(struct bio *dst, struct bio *src) 2128 { 2129 if (src->bi_blkg) 2130 bio_associate_blkg_from_css(dst, bio_blkcg_css(src)); 2131 } 2132 EXPORT_SYMBOL_GPL(bio_clone_blkg_association); 2133 2134 static int blk_cgroup_io_type(struct bio *bio) 2135 { 2136 if (op_is_discard(bio->bi_opf)) 2137 return BLKG_IOSTAT_DISCARD; 2138 if (op_is_write(bio->bi_opf)) 2139 return BLKG_IOSTAT_WRITE; 2140 return BLKG_IOSTAT_READ; 2141 } 2142 2143 void blk_cgroup_bio_start(struct bio *bio) 2144 { 2145 struct blkcg *blkcg = bio->bi_blkg->blkcg; 2146 int rwd = blk_cgroup_io_type(bio), cpu; 2147 struct blkg_iostat_set *bis; 2148 unsigned long flags; 2149 2150 if (!cgroup_subsys_on_dfl(io_cgrp_subsys)) 2151 return; 2152 2153 /* Root-level stats are sourced from system-wide IO stats */ 2154 if (!cgroup_parent(blkcg->css.cgroup)) 2155 return; 2156 2157 cpu = get_cpu(); 2158 bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu); 2159 flags = u64_stats_update_begin_irqsave(&bis->sync); 2160 2161 /* 2162 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split 2163 * bio and we would have already accounted for the size of the bio. 2164 */ 2165 if (!bio_flagged(bio, BIO_CGROUP_ACCT)) { 2166 bio_set_flag(bio, BIO_CGROUP_ACCT); 2167 bis->cur.bytes[rwd] += bio->bi_iter.bi_size; 2168 } 2169 bis->cur.ios[rwd]++; 2170 2171 /* 2172 * If the iostat_cpu isn't in a lockless list, put it into the 2173 * list to indicate that a stat update is pending. 2174 */ 2175 if (!READ_ONCE(bis->lqueued)) { 2176 struct llist_head *lhead = this_cpu_ptr(blkcg->lhead); 2177 2178 llist_add(&bis->lnode, lhead); 2179 WRITE_ONCE(bis->lqueued, true); 2180 } 2181 2182 u64_stats_update_end_irqrestore(&bis->sync, flags); 2183 cgroup_rstat_updated(blkcg->css.cgroup, cpu); 2184 put_cpu(); 2185 } 2186 2187 bool blk_cgroup_congested(void) 2188 { 2189 struct cgroup_subsys_state *css; 2190 bool ret = false; 2191 2192 rcu_read_lock(); 2193 for (css = blkcg_css(); css; css = css->parent) { 2194 if (atomic_read(&css->cgroup->congestion_count)) { 2195 ret = true; 2196 break; 2197 } 2198 } 2199 rcu_read_unlock(); 2200 return ret; 2201 } 2202 2203 module_param(blkcg_debug_stats, bool, 0644); 2204 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not"); 2205