xref: /openbmc/linux/block/blk-cgroup.c (revision 3ddc8b84)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common Block IO controller cgroup interface
4  *
5  * Based on ideas and code from CFQ, CFS and BFQ:
6  * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7  *
8  * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9  *		      Paolo Valente <paolo.valente@unimore.it>
10  *
11  * Copyright (C) 2009 Vivek Goyal <vgoyal@redhat.com>
12  * 	              Nauman Rafique <nauman@google.com>
13  *
14  * For policy-specific per-blkcg data:
15  * Copyright (C) 2015 Paolo Valente <paolo.valente@unimore.it>
16  *                    Arianna Avanzini <avanzini.arianna@gmail.com>
17  */
18 #include <linux/ioprio.h>
19 #include <linux/kdev_t.h>
20 #include <linux/module.h>
21 #include <linux/sched/signal.h>
22 #include <linux/err.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/ctype.h>
29 #include <linux/resume_user_mode.h>
30 #include <linux/psi.h>
31 #include <linux/part_stat.h>
32 #include "blk.h"
33 #include "blk-cgroup.h"
34 #include "blk-ioprio.h"
35 #include "blk-throttle.h"
36 
37 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu);
38 
39 /*
40  * blkcg_pol_mutex protects blkcg_policy[] and policy [de]activation.
41  * blkcg_pol_register_mutex nests outside of it and synchronizes entire
42  * policy [un]register operations including cgroup file additions /
43  * removals.  Putting cgroup file registration outside blkcg_pol_mutex
44  * allows grabbing it from cgroup callbacks.
45  */
46 static DEFINE_MUTEX(blkcg_pol_register_mutex);
47 static DEFINE_MUTEX(blkcg_pol_mutex);
48 
49 struct blkcg blkcg_root;
50 EXPORT_SYMBOL_GPL(blkcg_root);
51 
52 struct cgroup_subsys_state * const blkcg_root_css = &blkcg_root.css;
53 EXPORT_SYMBOL_GPL(blkcg_root_css);
54 
55 static struct blkcg_policy *blkcg_policy[BLKCG_MAX_POLS];
56 
57 static LIST_HEAD(all_blkcgs);		/* protected by blkcg_pol_mutex */
58 
59 bool blkcg_debug_stats = false;
60 
61 static DEFINE_RAW_SPINLOCK(blkg_stat_lock);
62 
63 #define BLKG_DESTROY_BATCH_SIZE  64
64 
65 /*
66  * Lockless lists for tracking IO stats update
67  *
68  * New IO stats are stored in the percpu iostat_cpu within blkcg_gq (blkg).
69  * There are multiple blkg's (one for each block device) attached to each
70  * blkcg. The rstat code keeps track of which cpu has IO stats updated,
71  * but it doesn't know which blkg has the updated stats. If there are many
72  * block devices in a system, the cost of iterating all the blkg's to flush
73  * out the IO stats can be high. To reduce such overhead, a set of percpu
74  * lockless lists (lhead) per blkcg are used to track the set of recently
75  * updated iostat_cpu's since the last flush. An iostat_cpu will be put
76  * onto the lockless list on the update side [blk_cgroup_bio_start()] if
77  * not there yet and then removed when being flushed [blkcg_rstat_flush()].
78  * References to blkg are gotten and then put back in the process to
79  * protect against blkg removal.
80  *
81  * Return: 0 if successful or -ENOMEM if allocation fails.
82  */
83 static int init_blkcg_llists(struct blkcg *blkcg)
84 {
85 	int cpu;
86 
87 	blkcg->lhead = alloc_percpu_gfp(struct llist_head, GFP_KERNEL);
88 	if (!blkcg->lhead)
89 		return -ENOMEM;
90 
91 	for_each_possible_cpu(cpu)
92 		init_llist_head(per_cpu_ptr(blkcg->lhead, cpu));
93 	return 0;
94 }
95 
96 /**
97  * blkcg_css - find the current css
98  *
99  * Find the css associated with either the kthread or the current task.
100  * This may return a dying css, so it is up to the caller to use tryget logic
101  * to confirm it is alive and well.
102  */
103 static struct cgroup_subsys_state *blkcg_css(void)
104 {
105 	struct cgroup_subsys_state *css;
106 
107 	css = kthread_blkcg();
108 	if (css)
109 		return css;
110 	return task_css(current, io_cgrp_id);
111 }
112 
113 static bool blkcg_policy_enabled(struct request_queue *q,
114 				 const struct blkcg_policy *pol)
115 {
116 	return pol && test_bit(pol->plid, q->blkcg_pols);
117 }
118 
119 static void blkg_free_workfn(struct work_struct *work)
120 {
121 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
122 					     free_work);
123 	struct request_queue *q = blkg->q;
124 	int i;
125 
126 	/*
127 	 * pd_free_fn() can also be called from blkcg_deactivate_policy(),
128 	 * in order to make sure pd_free_fn() is called in order, the deletion
129 	 * of the list blkg->q_node is delayed to here from blkg_destroy(), and
130 	 * blkcg_mutex is used to synchronize blkg_free_workfn() and
131 	 * blkcg_deactivate_policy().
132 	 */
133 	mutex_lock(&q->blkcg_mutex);
134 	for (i = 0; i < BLKCG_MAX_POLS; i++)
135 		if (blkg->pd[i])
136 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
137 	if (blkg->parent)
138 		blkg_put(blkg->parent);
139 	spin_lock_irq(&q->queue_lock);
140 	list_del_init(&blkg->q_node);
141 	spin_unlock_irq(&q->queue_lock);
142 	mutex_unlock(&q->blkcg_mutex);
143 
144 	blk_put_queue(q);
145 	free_percpu(blkg->iostat_cpu);
146 	percpu_ref_exit(&blkg->refcnt);
147 	kfree(blkg);
148 }
149 
150 /**
151  * blkg_free - free a blkg
152  * @blkg: blkg to free
153  *
154  * Free @blkg which may be partially allocated.
155  */
156 static void blkg_free(struct blkcg_gq *blkg)
157 {
158 	if (!blkg)
159 		return;
160 
161 	/*
162 	 * Both ->pd_free_fn() and request queue's release handler may
163 	 * sleep, so free us by scheduling one work func
164 	 */
165 	INIT_WORK(&blkg->free_work, blkg_free_workfn);
166 	schedule_work(&blkg->free_work);
167 }
168 
169 static void __blkg_release(struct rcu_head *rcu)
170 {
171 	struct blkcg_gq *blkg = container_of(rcu, struct blkcg_gq, rcu_head);
172 	struct blkcg *blkcg = blkg->blkcg;
173 	int cpu;
174 
175 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
176 	WARN_ON(!bio_list_empty(&blkg->async_bios));
177 #endif
178 	/*
179 	 * Flush all the non-empty percpu lockless lists before releasing
180 	 * us, given these stat belongs to us.
181 	 *
182 	 * blkg_stat_lock is for serializing blkg stat update
183 	 */
184 	for_each_possible_cpu(cpu)
185 		__blkcg_rstat_flush(blkcg, cpu);
186 
187 	/* release the blkcg and parent blkg refs this blkg has been holding */
188 	css_put(&blkg->blkcg->css);
189 	blkg_free(blkg);
190 }
191 
192 /*
193  * A group is RCU protected, but having an rcu lock does not mean that one
194  * can access all the fields of blkg and assume these are valid.  For
195  * example, don't try to follow throtl_data and request queue links.
196  *
197  * Having a reference to blkg under an rcu allows accesses to only values
198  * local to groups like group stats and group rate limits.
199  */
200 static void blkg_release(struct percpu_ref *ref)
201 {
202 	struct blkcg_gq *blkg = container_of(ref, struct blkcg_gq, refcnt);
203 
204 	call_rcu(&blkg->rcu_head, __blkg_release);
205 }
206 
207 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
208 static struct workqueue_struct *blkcg_punt_bio_wq;
209 
210 static void blkg_async_bio_workfn(struct work_struct *work)
211 {
212 	struct blkcg_gq *blkg = container_of(work, struct blkcg_gq,
213 					     async_bio_work);
214 	struct bio_list bios = BIO_EMPTY_LIST;
215 	struct bio *bio;
216 	struct blk_plug plug;
217 	bool need_plug = false;
218 
219 	/* as long as there are pending bios, @blkg can't go away */
220 	spin_lock(&blkg->async_bio_lock);
221 	bio_list_merge(&bios, &blkg->async_bios);
222 	bio_list_init(&blkg->async_bios);
223 	spin_unlock(&blkg->async_bio_lock);
224 
225 	/* start plug only when bio_list contains at least 2 bios */
226 	if (bios.head && bios.head->bi_next) {
227 		need_plug = true;
228 		blk_start_plug(&plug);
229 	}
230 	while ((bio = bio_list_pop(&bios)))
231 		submit_bio(bio);
232 	if (need_plug)
233 		blk_finish_plug(&plug);
234 }
235 
236 /*
237  * When a shared kthread issues a bio for a cgroup, doing so synchronously can
238  * lead to priority inversions as the kthread can be trapped waiting for that
239  * cgroup.  Use this helper instead of submit_bio to punt the actual issuing to
240  * a dedicated per-blkcg work item to avoid such priority inversions.
241  */
242 void blkcg_punt_bio_submit(struct bio *bio)
243 {
244 	struct blkcg_gq *blkg = bio->bi_blkg;
245 
246 	if (blkg->parent) {
247 		spin_lock(&blkg->async_bio_lock);
248 		bio_list_add(&blkg->async_bios, bio);
249 		spin_unlock(&blkg->async_bio_lock);
250 		queue_work(blkcg_punt_bio_wq, &blkg->async_bio_work);
251 	} else {
252 		/* never bounce for the root cgroup */
253 		submit_bio(bio);
254 	}
255 }
256 EXPORT_SYMBOL_GPL(blkcg_punt_bio_submit);
257 
258 static int __init blkcg_punt_bio_init(void)
259 {
260 	blkcg_punt_bio_wq = alloc_workqueue("blkcg_punt_bio",
261 					    WQ_MEM_RECLAIM | WQ_FREEZABLE |
262 					    WQ_UNBOUND | WQ_SYSFS, 0);
263 	if (!blkcg_punt_bio_wq)
264 		return -ENOMEM;
265 	return 0;
266 }
267 subsys_initcall(blkcg_punt_bio_init);
268 #endif /* CONFIG_BLK_CGROUP_PUNT_BIO */
269 
270 /**
271  * bio_blkcg_css - return the blkcg CSS associated with a bio
272  * @bio: target bio
273  *
274  * This returns the CSS for the blkcg associated with a bio, or %NULL if not
275  * associated. Callers are expected to either handle %NULL or know association
276  * has been done prior to calling this.
277  */
278 struct cgroup_subsys_state *bio_blkcg_css(struct bio *bio)
279 {
280 	if (!bio || !bio->bi_blkg)
281 		return NULL;
282 	return &bio->bi_blkg->blkcg->css;
283 }
284 EXPORT_SYMBOL_GPL(bio_blkcg_css);
285 
286 /**
287  * blkcg_parent - get the parent of a blkcg
288  * @blkcg: blkcg of interest
289  *
290  * Return the parent blkcg of @blkcg.  Can be called anytime.
291  */
292 static inline struct blkcg *blkcg_parent(struct blkcg *blkcg)
293 {
294 	return css_to_blkcg(blkcg->css.parent);
295 }
296 
297 /**
298  * blkg_alloc - allocate a blkg
299  * @blkcg: block cgroup the new blkg is associated with
300  * @disk: gendisk the new blkg is associated with
301  * @gfp_mask: allocation mask to use
302  *
303  * Allocate a new blkg assocating @blkcg and @q.
304  */
305 static struct blkcg_gq *blkg_alloc(struct blkcg *blkcg, struct gendisk *disk,
306 				   gfp_t gfp_mask)
307 {
308 	struct blkcg_gq *blkg;
309 	int i, cpu;
310 
311 	/* alloc and init base part */
312 	blkg = kzalloc_node(sizeof(*blkg), gfp_mask, disk->queue->node);
313 	if (!blkg)
314 		return NULL;
315 	if (percpu_ref_init(&blkg->refcnt, blkg_release, 0, gfp_mask))
316 		goto out_free_blkg;
317 	blkg->iostat_cpu = alloc_percpu_gfp(struct blkg_iostat_set, gfp_mask);
318 	if (!blkg->iostat_cpu)
319 		goto out_exit_refcnt;
320 	if (!blk_get_queue(disk->queue))
321 		goto out_free_iostat;
322 
323 	blkg->q = disk->queue;
324 	INIT_LIST_HEAD(&blkg->q_node);
325 	blkg->blkcg = blkcg;
326 #ifdef CONFIG_BLK_CGROUP_PUNT_BIO
327 	spin_lock_init(&blkg->async_bio_lock);
328 	bio_list_init(&blkg->async_bios);
329 	INIT_WORK(&blkg->async_bio_work, blkg_async_bio_workfn);
330 #endif
331 
332 	u64_stats_init(&blkg->iostat.sync);
333 	for_each_possible_cpu(cpu) {
334 		u64_stats_init(&per_cpu_ptr(blkg->iostat_cpu, cpu)->sync);
335 		per_cpu_ptr(blkg->iostat_cpu, cpu)->blkg = blkg;
336 	}
337 
338 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
339 		struct blkcg_policy *pol = blkcg_policy[i];
340 		struct blkg_policy_data *pd;
341 
342 		if (!blkcg_policy_enabled(disk->queue, pol))
343 			continue;
344 
345 		/* alloc per-policy data and attach it to blkg */
346 		pd = pol->pd_alloc_fn(disk, blkcg, gfp_mask);
347 		if (!pd)
348 			goto out_free_pds;
349 		blkg->pd[i] = pd;
350 		pd->blkg = blkg;
351 		pd->plid = i;
352 		pd->online = false;
353 	}
354 
355 	return blkg;
356 
357 out_free_pds:
358 	while (--i >= 0)
359 		if (blkg->pd[i])
360 			blkcg_policy[i]->pd_free_fn(blkg->pd[i]);
361 	blk_put_queue(disk->queue);
362 out_free_iostat:
363 	free_percpu(blkg->iostat_cpu);
364 out_exit_refcnt:
365 	percpu_ref_exit(&blkg->refcnt);
366 out_free_blkg:
367 	kfree(blkg);
368 	return NULL;
369 }
370 
371 /*
372  * If @new_blkg is %NULL, this function tries to allocate a new one as
373  * necessary using %GFP_NOWAIT.  @new_blkg is always consumed on return.
374  */
375 static struct blkcg_gq *blkg_create(struct blkcg *blkcg, struct gendisk *disk,
376 				    struct blkcg_gq *new_blkg)
377 {
378 	struct blkcg_gq *blkg;
379 	int i, ret;
380 
381 	lockdep_assert_held(&disk->queue->queue_lock);
382 
383 	/* request_queue is dying, do not create/recreate a blkg */
384 	if (blk_queue_dying(disk->queue)) {
385 		ret = -ENODEV;
386 		goto err_free_blkg;
387 	}
388 
389 	/* blkg holds a reference to blkcg */
390 	if (!css_tryget_online(&blkcg->css)) {
391 		ret = -ENODEV;
392 		goto err_free_blkg;
393 	}
394 
395 	/* allocate */
396 	if (!new_blkg) {
397 		new_blkg = blkg_alloc(blkcg, disk, GFP_NOWAIT | __GFP_NOWARN);
398 		if (unlikely(!new_blkg)) {
399 			ret = -ENOMEM;
400 			goto err_put_css;
401 		}
402 	}
403 	blkg = new_blkg;
404 
405 	/* link parent */
406 	if (blkcg_parent(blkcg)) {
407 		blkg->parent = blkg_lookup(blkcg_parent(blkcg), disk->queue);
408 		if (WARN_ON_ONCE(!blkg->parent)) {
409 			ret = -ENODEV;
410 			goto err_put_css;
411 		}
412 		blkg_get(blkg->parent);
413 	}
414 
415 	/* invoke per-policy init */
416 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
417 		struct blkcg_policy *pol = blkcg_policy[i];
418 
419 		if (blkg->pd[i] && pol->pd_init_fn)
420 			pol->pd_init_fn(blkg->pd[i]);
421 	}
422 
423 	/* insert */
424 	spin_lock(&blkcg->lock);
425 	ret = radix_tree_insert(&blkcg->blkg_tree, disk->queue->id, blkg);
426 	if (likely(!ret)) {
427 		hlist_add_head_rcu(&blkg->blkcg_node, &blkcg->blkg_list);
428 		list_add(&blkg->q_node, &disk->queue->blkg_list);
429 
430 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
431 			struct blkcg_policy *pol = blkcg_policy[i];
432 
433 			if (blkg->pd[i]) {
434 				if (pol->pd_online_fn)
435 					pol->pd_online_fn(blkg->pd[i]);
436 				blkg->pd[i]->online = true;
437 			}
438 		}
439 	}
440 	blkg->online = true;
441 	spin_unlock(&blkcg->lock);
442 
443 	if (!ret)
444 		return blkg;
445 
446 	/* @blkg failed fully initialized, use the usual release path */
447 	blkg_put(blkg);
448 	return ERR_PTR(ret);
449 
450 err_put_css:
451 	css_put(&blkcg->css);
452 err_free_blkg:
453 	if (new_blkg)
454 		blkg_free(new_blkg);
455 	return ERR_PTR(ret);
456 }
457 
458 /**
459  * blkg_lookup_create - lookup blkg, try to create one if not there
460  * @blkcg: blkcg of interest
461  * @disk: gendisk of interest
462  *
463  * Lookup blkg for the @blkcg - @disk pair.  If it doesn't exist, try to
464  * create one.  blkg creation is performed recursively from blkcg_root such
465  * that all non-root blkg's have access to the parent blkg.  This function
466  * should be called under RCU read lock and takes @disk->queue->queue_lock.
467  *
468  * Returns the blkg or the closest blkg if blkg_create() fails as it walks
469  * down from root.
470  */
471 static struct blkcg_gq *blkg_lookup_create(struct blkcg *blkcg,
472 		struct gendisk *disk)
473 {
474 	struct request_queue *q = disk->queue;
475 	struct blkcg_gq *blkg;
476 	unsigned long flags;
477 
478 	WARN_ON_ONCE(!rcu_read_lock_held());
479 
480 	blkg = blkg_lookup(blkcg, q);
481 	if (blkg)
482 		return blkg;
483 
484 	spin_lock_irqsave(&q->queue_lock, flags);
485 	blkg = blkg_lookup(blkcg, q);
486 	if (blkg) {
487 		if (blkcg != &blkcg_root &&
488 		    blkg != rcu_dereference(blkcg->blkg_hint))
489 			rcu_assign_pointer(blkcg->blkg_hint, blkg);
490 		goto found;
491 	}
492 
493 	/*
494 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
495 	 * non-root blkgs have access to their parents.  Returns the closest
496 	 * blkg to the intended blkg should blkg_create() fail.
497 	 */
498 	while (true) {
499 		struct blkcg *pos = blkcg;
500 		struct blkcg *parent = blkcg_parent(blkcg);
501 		struct blkcg_gq *ret_blkg = q->root_blkg;
502 
503 		while (parent) {
504 			blkg = blkg_lookup(parent, q);
505 			if (blkg) {
506 				/* remember closest blkg */
507 				ret_blkg = blkg;
508 				break;
509 			}
510 			pos = parent;
511 			parent = blkcg_parent(parent);
512 		}
513 
514 		blkg = blkg_create(pos, disk, NULL);
515 		if (IS_ERR(blkg)) {
516 			blkg = ret_blkg;
517 			break;
518 		}
519 		if (pos == blkcg)
520 			break;
521 	}
522 
523 found:
524 	spin_unlock_irqrestore(&q->queue_lock, flags);
525 	return blkg;
526 }
527 
528 static void blkg_destroy(struct blkcg_gq *blkg)
529 {
530 	struct blkcg *blkcg = blkg->blkcg;
531 	int i;
532 
533 	lockdep_assert_held(&blkg->q->queue_lock);
534 	lockdep_assert_held(&blkcg->lock);
535 
536 	/*
537 	 * blkg stays on the queue list until blkg_free_workfn(), see details in
538 	 * blkg_free_workfn(), hence this function can be called from
539 	 * blkcg_destroy_blkgs() first and again from blkg_destroy_all() before
540 	 * blkg_free_workfn().
541 	 */
542 	if (hlist_unhashed(&blkg->blkcg_node))
543 		return;
544 
545 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
546 		struct blkcg_policy *pol = blkcg_policy[i];
547 
548 		if (blkg->pd[i] && blkg->pd[i]->online) {
549 			blkg->pd[i]->online = false;
550 			if (pol->pd_offline_fn)
551 				pol->pd_offline_fn(blkg->pd[i]);
552 		}
553 	}
554 
555 	blkg->online = false;
556 
557 	radix_tree_delete(&blkcg->blkg_tree, blkg->q->id);
558 	hlist_del_init_rcu(&blkg->blkcg_node);
559 
560 	/*
561 	 * Both setting lookup hint to and clearing it from @blkg are done
562 	 * under queue_lock.  If it's not pointing to @blkg now, it never
563 	 * will.  Hint assignment itself can race safely.
564 	 */
565 	if (rcu_access_pointer(blkcg->blkg_hint) == blkg)
566 		rcu_assign_pointer(blkcg->blkg_hint, NULL);
567 
568 	/*
569 	 * Put the reference taken at the time of creation so that when all
570 	 * queues are gone, group can be destroyed.
571 	 */
572 	percpu_ref_kill(&blkg->refcnt);
573 }
574 
575 static void blkg_destroy_all(struct gendisk *disk)
576 {
577 	struct request_queue *q = disk->queue;
578 	struct blkcg_gq *blkg, *n;
579 	int count = BLKG_DESTROY_BATCH_SIZE;
580 	int i;
581 
582 restart:
583 	spin_lock_irq(&q->queue_lock);
584 	list_for_each_entry_safe(blkg, n, &q->blkg_list, q_node) {
585 		struct blkcg *blkcg = blkg->blkcg;
586 
587 		if (hlist_unhashed(&blkg->blkcg_node))
588 			continue;
589 
590 		spin_lock(&blkcg->lock);
591 		blkg_destroy(blkg);
592 		spin_unlock(&blkcg->lock);
593 
594 		/*
595 		 * in order to avoid holding the spin lock for too long, release
596 		 * it when a batch of blkgs are destroyed.
597 		 */
598 		if (!(--count)) {
599 			count = BLKG_DESTROY_BATCH_SIZE;
600 			spin_unlock_irq(&q->queue_lock);
601 			cond_resched();
602 			goto restart;
603 		}
604 	}
605 
606 	/*
607 	 * Mark policy deactivated since policy offline has been done, and
608 	 * the free is scheduled, so future blkcg_deactivate_policy() can
609 	 * be bypassed
610 	 */
611 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
612 		struct blkcg_policy *pol = blkcg_policy[i];
613 
614 		if (pol)
615 			__clear_bit(pol->plid, q->blkcg_pols);
616 	}
617 
618 	q->root_blkg = NULL;
619 	spin_unlock_irq(&q->queue_lock);
620 }
621 
622 static int blkcg_reset_stats(struct cgroup_subsys_state *css,
623 			     struct cftype *cftype, u64 val)
624 {
625 	struct blkcg *blkcg = css_to_blkcg(css);
626 	struct blkcg_gq *blkg;
627 	int i, cpu;
628 
629 	mutex_lock(&blkcg_pol_mutex);
630 	spin_lock_irq(&blkcg->lock);
631 
632 	/*
633 	 * Note that stat reset is racy - it doesn't synchronize against
634 	 * stat updates.  This is a debug feature which shouldn't exist
635 	 * anyway.  If you get hit by a race, retry.
636 	 */
637 	hlist_for_each_entry(blkg, &blkcg->blkg_list, blkcg_node) {
638 		for_each_possible_cpu(cpu) {
639 			struct blkg_iostat_set *bis =
640 				per_cpu_ptr(blkg->iostat_cpu, cpu);
641 			memset(bis, 0, sizeof(*bis));
642 
643 			/* Re-initialize the cleared blkg_iostat_set */
644 			u64_stats_init(&bis->sync);
645 			bis->blkg = blkg;
646 		}
647 		memset(&blkg->iostat, 0, sizeof(blkg->iostat));
648 		u64_stats_init(&blkg->iostat.sync);
649 
650 		for (i = 0; i < BLKCG_MAX_POLS; i++) {
651 			struct blkcg_policy *pol = blkcg_policy[i];
652 
653 			if (blkg->pd[i] && pol->pd_reset_stats_fn)
654 				pol->pd_reset_stats_fn(blkg->pd[i]);
655 		}
656 	}
657 
658 	spin_unlock_irq(&blkcg->lock);
659 	mutex_unlock(&blkcg_pol_mutex);
660 	return 0;
661 }
662 
663 const char *blkg_dev_name(struct blkcg_gq *blkg)
664 {
665 	if (!blkg->q->disk)
666 		return NULL;
667 	return bdi_dev_name(blkg->q->disk->bdi);
668 }
669 
670 /**
671  * blkcg_print_blkgs - helper for printing per-blkg data
672  * @sf: seq_file to print to
673  * @blkcg: blkcg of interest
674  * @prfill: fill function to print out a blkg
675  * @pol: policy in question
676  * @data: data to be passed to @prfill
677  * @show_total: to print out sum of prfill return values or not
678  *
679  * This function invokes @prfill on each blkg of @blkcg if pd for the
680  * policy specified by @pol exists.  @prfill is invoked with @sf, the
681  * policy data and @data and the matching queue lock held.  If @show_total
682  * is %true, the sum of the return values from @prfill is printed with
683  * "Total" label at the end.
684  *
685  * This is to be used to construct print functions for
686  * cftype->read_seq_string method.
687  */
688 void blkcg_print_blkgs(struct seq_file *sf, struct blkcg *blkcg,
689 		       u64 (*prfill)(struct seq_file *,
690 				     struct blkg_policy_data *, int),
691 		       const struct blkcg_policy *pol, int data,
692 		       bool show_total)
693 {
694 	struct blkcg_gq *blkg;
695 	u64 total = 0;
696 
697 	rcu_read_lock();
698 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
699 		spin_lock_irq(&blkg->q->queue_lock);
700 		if (blkcg_policy_enabled(blkg->q, pol))
701 			total += prfill(sf, blkg->pd[pol->plid], data);
702 		spin_unlock_irq(&blkg->q->queue_lock);
703 	}
704 	rcu_read_unlock();
705 
706 	if (show_total)
707 		seq_printf(sf, "Total %llu\n", (unsigned long long)total);
708 }
709 EXPORT_SYMBOL_GPL(blkcg_print_blkgs);
710 
711 /**
712  * __blkg_prfill_u64 - prfill helper for a single u64 value
713  * @sf: seq_file to print to
714  * @pd: policy private data of interest
715  * @v: value to print
716  *
717  * Print @v to @sf for the device associated with @pd.
718  */
719 u64 __blkg_prfill_u64(struct seq_file *sf, struct blkg_policy_data *pd, u64 v)
720 {
721 	const char *dname = blkg_dev_name(pd->blkg);
722 
723 	if (!dname)
724 		return 0;
725 
726 	seq_printf(sf, "%s %llu\n", dname, (unsigned long long)v);
727 	return v;
728 }
729 EXPORT_SYMBOL_GPL(__blkg_prfill_u64);
730 
731 /**
732  * blkg_conf_init - initialize a blkg_conf_ctx
733  * @ctx: blkg_conf_ctx to initialize
734  * @input: input string
735  *
736  * Initialize @ctx which can be used to parse blkg config input string @input.
737  * Once initialized, @ctx can be used with blkg_conf_open_bdev() and
738  * blkg_conf_prep(), and must be cleaned up with blkg_conf_exit().
739  */
740 void blkg_conf_init(struct blkg_conf_ctx *ctx, char *input)
741 {
742 	*ctx = (struct blkg_conf_ctx){ .input = input };
743 }
744 EXPORT_SYMBOL_GPL(blkg_conf_init);
745 
746 /**
747  * blkg_conf_open_bdev - parse and open bdev for per-blkg config update
748  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
749  *
750  * Parse the device node prefix part, MAJ:MIN, of per-blkg config update from
751  * @ctx->input and get and store the matching bdev in @ctx->bdev. @ctx->body is
752  * set to point past the device node prefix.
753  *
754  * This function may be called multiple times on @ctx and the extra calls become
755  * NOOPs. blkg_conf_prep() implicitly calls this function. Use this function
756  * explicitly if bdev access is needed without resolving the blkcg / policy part
757  * of @ctx->input. Returns -errno on error.
758  */
759 int blkg_conf_open_bdev(struct blkg_conf_ctx *ctx)
760 {
761 	char *input = ctx->input;
762 	unsigned int major, minor;
763 	struct block_device *bdev;
764 	int key_len;
765 
766 	if (ctx->bdev)
767 		return 0;
768 
769 	if (sscanf(input, "%u:%u%n", &major, &minor, &key_len) != 2)
770 		return -EINVAL;
771 
772 	input += key_len;
773 	if (!isspace(*input))
774 		return -EINVAL;
775 	input = skip_spaces(input);
776 
777 	bdev = blkdev_get_no_open(MKDEV(major, minor));
778 	if (!bdev)
779 		return -ENODEV;
780 	if (bdev_is_partition(bdev)) {
781 		blkdev_put_no_open(bdev);
782 		return -ENODEV;
783 	}
784 
785 	mutex_lock(&bdev->bd_queue->rq_qos_mutex);
786 	if (!disk_live(bdev->bd_disk)) {
787 		blkdev_put_no_open(bdev);
788 		mutex_unlock(&bdev->bd_queue->rq_qos_mutex);
789 		return -ENODEV;
790 	}
791 
792 	ctx->body = input;
793 	ctx->bdev = bdev;
794 	return 0;
795 }
796 
797 /**
798  * blkg_conf_prep - parse and prepare for per-blkg config update
799  * @blkcg: target block cgroup
800  * @pol: target policy
801  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
802  *
803  * Parse per-blkg config update from @ctx->input and initialize @ctx
804  * accordingly. On success, @ctx->body points to the part of @ctx->input
805  * following MAJ:MIN, @ctx->bdev points to the target block device and
806  * @ctx->blkg to the blkg being configured.
807  *
808  * blkg_conf_open_bdev() may be called on @ctx beforehand. On success, this
809  * function returns with queue lock held and must be followed by
810  * blkg_conf_exit().
811  */
812 int blkg_conf_prep(struct blkcg *blkcg, const struct blkcg_policy *pol,
813 		   struct blkg_conf_ctx *ctx)
814 	__acquires(&bdev->bd_queue->queue_lock)
815 {
816 	struct gendisk *disk;
817 	struct request_queue *q;
818 	struct blkcg_gq *blkg;
819 	int ret;
820 
821 	ret = blkg_conf_open_bdev(ctx);
822 	if (ret)
823 		return ret;
824 
825 	disk = ctx->bdev->bd_disk;
826 	q = disk->queue;
827 
828 	/*
829 	 * blkcg_deactivate_policy() requires queue to be frozen, we can grab
830 	 * q_usage_counter to prevent concurrent with blkcg_deactivate_policy().
831 	 */
832 	ret = blk_queue_enter(q, 0);
833 	if (ret)
834 		goto fail;
835 
836 	spin_lock_irq(&q->queue_lock);
837 
838 	if (!blkcg_policy_enabled(q, pol)) {
839 		ret = -EOPNOTSUPP;
840 		goto fail_unlock;
841 	}
842 
843 	blkg = blkg_lookup(blkcg, q);
844 	if (blkg)
845 		goto success;
846 
847 	/*
848 	 * Create blkgs walking down from blkcg_root to @blkcg, so that all
849 	 * non-root blkgs have access to their parents.
850 	 */
851 	while (true) {
852 		struct blkcg *pos = blkcg;
853 		struct blkcg *parent;
854 		struct blkcg_gq *new_blkg;
855 
856 		parent = blkcg_parent(blkcg);
857 		while (parent && !blkg_lookup(parent, q)) {
858 			pos = parent;
859 			parent = blkcg_parent(parent);
860 		}
861 
862 		/* Drop locks to do new blkg allocation with GFP_KERNEL. */
863 		spin_unlock_irq(&q->queue_lock);
864 
865 		new_blkg = blkg_alloc(pos, disk, GFP_KERNEL);
866 		if (unlikely(!new_blkg)) {
867 			ret = -ENOMEM;
868 			goto fail_exit_queue;
869 		}
870 
871 		if (radix_tree_preload(GFP_KERNEL)) {
872 			blkg_free(new_blkg);
873 			ret = -ENOMEM;
874 			goto fail_exit_queue;
875 		}
876 
877 		spin_lock_irq(&q->queue_lock);
878 
879 		if (!blkcg_policy_enabled(q, pol)) {
880 			blkg_free(new_blkg);
881 			ret = -EOPNOTSUPP;
882 			goto fail_preloaded;
883 		}
884 
885 		blkg = blkg_lookup(pos, q);
886 		if (blkg) {
887 			blkg_free(new_blkg);
888 		} else {
889 			blkg = blkg_create(pos, disk, new_blkg);
890 			if (IS_ERR(blkg)) {
891 				ret = PTR_ERR(blkg);
892 				goto fail_preloaded;
893 			}
894 		}
895 
896 		radix_tree_preload_end();
897 
898 		if (pos == blkcg)
899 			goto success;
900 	}
901 success:
902 	blk_queue_exit(q);
903 	ctx->blkg = blkg;
904 	return 0;
905 
906 fail_preloaded:
907 	radix_tree_preload_end();
908 fail_unlock:
909 	spin_unlock_irq(&q->queue_lock);
910 fail_exit_queue:
911 	blk_queue_exit(q);
912 fail:
913 	/*
914 	 * If queue was bypassing, we should retry.  Do so after a
915 	 * short msleep().  It isn't strictly necessary but queue
916 	 * can be bypassing for some time and it's always nice to
917 	 * avoid busy looping.
918 	 */
919 	if (ret == -EBUSY) {
920 		msleep(10);
921 		ret = restart_syscall();
922 	}
923 	return ret;
924 }
925 EXPORT_SYMBOL_GPL(blkg_conf_prep);
926 
927 /**
928  * blkg_conf_exit - clean up per-blkg config update
929  * @ctx: blkg_conf_ctx initialized with blkg_conf_init()
930  *
931  * Clean up after per-blkg config update. This function must be called on all
932  * blkg_conf_ctx's initialized with blkg_conf_init().
933  */
934 void blkg_conf_exit(struct blkg_conf_ctx *ctx)
935 	__releases(&ctx->bdev->bd_queue->queue_lock)
936 	__releases(&ctx->bdev->bd_queue->rq_qos_mutex)
937 {
938 	if (ctx->blkg) {
939 		spin_unlock_irq(&bdev_get_queue(ctx->bdev)->queue_lock);
940 		ctx->blkg = NULL;
941 	}
942 
943 	if (ctx->bdev) {
944 		mutex_unlock(&ctx->bdev->bd_queue->rq_qos_mutex);
945 		blkdev_put_no_open(ctx->bdev);
946 		ctx->body = NULL;
947 		ctx->bdev = NULL;
948 	}
949 }
950 EXPORT_SYMBOL_GPL(blkg_conf_exit);
951 
952 static void blkg_iostat_set(struct blkg_iostat *dst, struct blkg_iostat *src)
953 {
954 	int i;
955 
956 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
957 		dst->bytes[i] = src->bytes[i];
958 		dst->ios[i] = src->ios[i];
959 	}
960 }
961 
962 static void blkg_iostat_add(struct blkg_iostat *dst, struct blkg_iostat *src)
963 {
964 	int i;
965 
966 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
967 		dst->bytes[i] += src->bytes[i];
968 		dst->ios[i] += src->ios[i];
969 	}
970 }
971 
972 static void blkg_iostat_sub(struct blkg_iostat *dst, struct blkg_iostat *src)
973 {
974 	int i;
975 
976 	for (i = 0; i < BLKG_IOSTAT_NR; i++) {
977 		dst->bytes[i] -= src->bytes[i];
978 		dst->ios[i] -= src->ios[i];
979 	}
980 }
981 
982 static void blkcg_iostat_update(struct blkcg_gq *blkg, struct blkg_iostat *cur,
983 				struct blkg_iostat *last)
984 {
985 	struct blkg_iostat delta;
986 	unsigned long flags;
987 
988 	/* propagate percpu delta to global */
989 	flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
990 	blkg_iostat_set(&delta, cur);
991 	blkg_iostat_sub(&delta, last);
992 	blkg_iostat_add(&blkg->iostat.cur, &delta);
993 	blkg_iostat_add(last, &delta);
994 	u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
995 }
996 
997 static void __blkcg_rstat_flush(struct blkcg *blkcg, int cpu)
998 {
999 	struct llist_head *lhead = per_cpu_ptr(blkcg->lhead, cpu);
1000 	struct llist_node *lnode;
1001 	struct blkg_iostat_set *bisc, *next_bisc;
1002 	unsigned long flags;
1003 
1004 	rcu_read_lock();
1005 
1006 	lnode = llist_del_all(lhead);
1007 	if (!lnode)
1008 		goto out;
1009 
1010 	/*
1011 	 * For covering concurrent parent blkg update from blkg_release().
1012 	 *
1013 	 * When flushing from cgroup, cgroup_rstat_lock is always held, so
1014 	 * this lock won't cause contention most of time.
1015 	 */
1016 	raw_spin_lock_irqsave(&blkg_stat_lock, flags);
1017 
1018 	/*
1019 	 * Iterate only the iostat_cpu's queued in the lockless list.
1020 	 */
1021 	llist_for_each_entry_safe(bisc, next_bisc, lnode, lnode) {
1022 		struct blkcg_gq *blkg = bisc->blkg;
1023 		struct blkcg_gq *parent = blkg->parent;
1024 		struct blkg_iostat cur;
1025 		unsigned int seq;
1026 
1027 		WRITE_ONCE(bisc->lqueued, false);
1028 
1029 		/* fetch the current per-cpu values */
1030 		do {
1031 			seq = u64_stats_fetch_begin(&bisc->sync);
1032 			blkg_iostat_set(&cur, &bisc->cur);
1033 		} while (u64_stats_fetch_retry(&bisc->sync, seq));
1034 
1035 		blkcg_iostat_update(blkg, &cur, &bisc->last);
1036 
1037 		/* propagate global delta to parent (unless that's root) */
1038 		if (parent && parent->parent)
1039 			blkcg_iostat_update(parent, &blkg->iostat.cur,
1040 					    &blkg->iostat.last);
1041 	}
1042 	raw_spin_unlock_irqrestore(&blkg_stat_lock, flags);
1043 out:
1044 	rcu_read_unlock();
1045 }
1046 
1047 static void blkcg_rstat_flush(struct cgroup_subsys_state *css, int cpu)
1048 {
1049 	/* Root-level stats are sourced from system-wide IO stats */
1050 	if (cgroup_parent(css->cgroup))
1051 		__blkcg_rstat_flush(css_to_blkcg(css), cpu);
1052 }
1053 
1054 /*
1055  * We source root cgroup stats from the system-wide stats to avoid
1056  * tracking the same information twice and incurring overhead when no
1057  * cgroups are defined. For that reason, cgroup_rstat_flush in
1058  * blkcg_print_stat does not actually fill out the iostat in the root
1059  * cgroup's blkcg_gq.
1060  *
1061  * However, we would like to re-use the printing code between the root and
1062  * non-root cgroups to the extent possible. For that reason, we simulate
1063  * flushing the root cgroup's stats by explicitly filling in the iostat
1064  * with disk level statistics.
1065  */
1066 static void blkcg_fill_root_iostats(void)
1067 {
1068 	struct class_dev_iter iter;
1069 	struct device *dev;
1070 
1071 	class_dev_iter_init(&iter, &block_class, NULL, &disk_type);
1072 	while ((dev = class_dev_iter_next(&iter))) {
1073 		struct block_device *bdev = dev_to_bdev(dev);
1074 		struct blkcg_gq *blkg = bdev->bd_disk->queue->root_blkg;
1075 		struct blkg_iostat tmp;
1076 		int cpu;
1077 		unsigned long flags;
1078 
1079 		memset(&tmp, 0, sizeof(tmp));
1080 		for_each_possible_cpu(cpu) {
1081 			struct disk_stats *cpu_dkstats;
1082 
1083 			cpu_dkstats = per_cpu_ptr(bdev->bd_stats, cpu);
1084 			tmp.ios[BLKG_IOSTAT_READ] +=
1085 				cpu_dkstats->ios[STAT_READ];
1086 			tmp.ios[BLKG_IOSTAT_WRITE] +=
1087 				cpu_dkstats->ios[STAT_WRITE];
1088 			tmp.ios[BLKG_IOSTAT_DISCARD] +=
1089 				cpu_dkstats->ios[STAT_DISCARD];
1090 			// convert sectors to bytes
1091 			tmp.bytes[BLKG_IOSTAT_READ] +=
1092 				cpu_dkstats->sectors[STAT_READ] << 9;
1093 			tmp.bytes[BLKG_IOSTAT_WRITE] +=
1094 				cpu_dkstats->sectors[STAT_WRITE] << 9;
1095 			tmp.bytes[BLKG_IOSTAT_DISCARD] +=
1096 				cpu_dkstats->sectors[STAT_DISCARD] << 9;
1097 		}
1098 
1099 		flags = u64_stats_update_begin_irqsave(&blkg->iostat.sync);
1100 		blkg_iostat_set(&blkg->iostat.cur, &tmp);
1101 		u64_stats_update_end_irqrestore(&blkg->iostat.sync, flags);
1102 	}
1103 }
1104 
1105 static void blkcg_print_one_stat(struct blkcg_gq *blkg, struct seq_file *s)
1106 {
1107 	struct blkg_iostat_set *bis = &blkg->iostat;
1108 	u64 rbytes, wbytes, rios, wios, dbytes, dios;
1109 	const char *dname;
1110 	unsigned seq;
1111 	int i;
1112 
1113 	if (!blkg->online)
1114 		return;
1115 
1116 	dname = blkg_dev_name(blkg);
1117 	if (!dname)
1118 		return;
1119 
1120 	seq_printf(s, "%s ", dname);
1121 
1122 	do {
1123 		seq = u64_stats_fetch_begin(&bis->sync);
1124 
1125 		rbytes = bis->cur.bytes[BLKG_IOSTAT_READ];
1126 		wbytes = bis->cur.bytes[BLKG_IOSTAT_WRITE];
1127 		dbytes = bis->cur.bytes[BLKG_IOSTAT_DISCARD];
1128 		rios = bis->cur.ios[BLKG_IOSTAT_READ];
1129 		wios = bis->cur.ios[BLKG_IOSTAT_WRITE];
1130 		dios = bis->cur.ios[BLKG_IOSTAT_DISCARD];
1131 	} while (u64_stats_fetch_retry(&bis->sync, seq));
1132 
1133 	if (rbytes || wbytes || rios || wios) {
1134 		seq_printf(s, "rbytes=%llu wbytes=%llu rios=%llu wios=%llu dbytes=%llu dios=%llu",
1135 			rbytes, wbytes, rios, wios,
1136 			dbytes, dios);
1137 	}
1138 
1139 	if (blkcg_debug_stats && atomic_read(&blkg->use_delay)) {
1140 		seq_printf(s, " use_delay=%d delay_nsec=%llu",
1141 			atomic_read(&blkg->use_delay),
1142 			atomic64_read(&blkg->delay_nsec));
1143 	}
1144 
1145 	for (i = 0; i < BLKCG_MAX_POLS; i++) {
1146 		struct blkcg_policy *pol = blkcg_policy[i];
1147 
1148 		if (!blkg->pd[i] || !pol->pd_stat_fn)
1149 			continue;
1150 
1151 		pol->pd_stat_fn(blkg->pd[i], s);
1152 	}
1153 
1154 	seq_puts(s, "\n");
1155 }
1156 
1157 static int blkcg_print_stat(struct seq_file *sf, void *v)
1158 {
1159 	struct blkcg *blkcg = css_to_blkcg(seq_css(sf));
1160 	struct blkcg_gq *blkg;
1161 
1162 	if (!seq_css(sf)->parent)
1163 		blkcg_fill_root_iostats();
1164 	else
1165 		cgroup_rstat_flush(blkcg->css.cgroup);
1166 
1167 	rcu_read_lock();
1168 	hlist_for_each_entry_rcu(blkg, &blkcg->blkg_list, blkcg_node) {
1169 		spin_lock_irq(&blkg->q->queue_lock);
1170 		blkcg_print_one_stat(blkg, sf);
1171 		spin_unlock_irq(&blkg->q->queue_lock);
1172 	}
1173 	rcu_read_unlock();
1174 	return 0;
1175 }
1176 
1177 static struct cftype blkcg_files[] = {
1178 	{
1179 		.name = "stat",
1180 		.seq_show = blkcg_print_stat,
1181 	},
1182 	{ }	/* terminate */
1183 };
1184 
1185 static struct cftype blkcg_legacy_files[] = {
1186 	{
1187 		.name = "reset_stats",
1188 		.write_u64 = blkcg_reset_stats,
1189 	},
1190 	{ }	/* terminate */
1191 };
1192 
1193 #ifdef CONFIG_CGROUP_WRITEBACK
1194 struct list_head *blkcg_get_cgwb_list(struct cgroup_subsys_state *css)
1195 {
1196 	return &css_to_blkcg(css)->cgwb_list;
1197 }
1198 #endif
1199 
1200 /*
1201  * blkcg destruction is a three-stage process.
1202  *
1203  * 1. Destruction starts.  The blkcg_css_offline() callback is invoked
1204  *    which offlines writeback.  Here we tie the next stage of blkg destruction
1205  *    to the completion of writeback associated with the blkcg.  This lets us
1206  *    avoid punting potentially large amounts of outstanding writeback to root
1207  *    while maintaining any ongoing policies.  The next stage is triggered when
1208  *    the nr_cgwbs count goes to zero.
1209  *
1210  * 2. When the nr_cgwbs count goes to zero, blkcg_destroy_blkgs() is called
1211  *    and handles the destruction of blkgs.  Here the css reference held by
1212  *    the blkg is put back eventually allowing blkcg_css_free() to be called.
1213  *    This work may occur in cgwb_release_workfn() on the cgwb_release
1214  *    workqueue.  Any submitted ios that fail to get the blkg ref will be
1215  *    punted to the root_blkg.
1216  *
1217  * 3. Once the blkcg ref count goes to zero, blkcg_css_free() is called.
1218  *    This finally frees the blkcg.
1219  */
1220 
1221 /**
1222  * blkcg_destroy_blkgs - responsible for shooting down blkgs
1223  * @blkcg: blkcg of interest
1224  *
1225  * blkgs should be removed while holding both q and blkcg locks.  As blkcg lock
1226  * is nested inside q lock, this function performs reverse double lock dancing.
1227  * Destroying the blkgs releases the reference held on the blkcg's css allowing
1228  * blkcg_css_free to eventually be called.
1229  *
1230  * This is the blkcg counterpart of ioc_release_fn().
1231  */
1232 static void blkcg_destroy_blkgs(struct blkcg *blkcg)
1233 {
1234 	might_sleep();
1235 
1236 	spin_lock_irq(&blkcg->lock);
1237 
1238 	while (!hlist_empty(&blkcg->blkg_list)) {
1239 		struct blkcg_gq *blkg = hlist_entry(blkcg->blkg_list.first,
1240 						struct blkcg_gq, blkcg_node);
1241 		struct request_queue *q = blkg->q;
1242 
1243 		if (need_resched() || !spin_trylock(&q->queue_lock)) {
1244 			/*
1245 			 * Given that the system can accumulate a huge number
1246 			 * of blkgs in pathological cases, check to see if we
1247 			 * need to rescheduling to avoid softlockup.
1248 			 */
1249 			spin_unlock_irq(&blkcg->lock);
1250 			cond_resched();
1251 			spin_lock_irq(&blkcg->lock);
1252 			continue;
1253 		}
1254 
1255 		blkg_destroy(blkg);
1256 		spin_unlock(&q->queue_lock);
1257 	}
1258 
1259 	spin_unlock_irq(&blkcg->lock);
1260 }
1261 
1262 /**
1263  * blkcg_pin_online - pin online state
1264  * @blkcg_css: blkcg of interest
1265  *
1266  * While pinned, a blkcg is kept online.  This is primarily used to
1267  * impedance-match blkg and cgwb lifetimes so that blkg doesn't go offline
1268  * while an associated cgwb is still active.
1269  */
1270 void blkcg_pin_online(struct cgroup_subsys_state *blkcg_css)
1271 {
1272 	refcount_inc(&css_to_blkcg(blkcg_css)->online_pin);
1273 }
1274 
1275 /**
1276  * blkcg_unpin_online - unpin online state
1277  * @blkcg_css: blkcg of interest
1278  *
1279  * This is primarily used to impedance-match blkg and cgwb lifetimes so
1280  * that blkg doesn't go offline while an associated cgwb is still active.
1281  * When this count goes to zero, all active cgwbs have finished so the
1282  * blkcg can continue destruction by calling blkcg_destroy_blkgs().
1283  */
1284 void blkcg_unpin_online(struct cgroup_subsys_state *blkcg_css)
1285 {
1286 	struct blkcg *blkcg = css_to_blkcg(blkcg_css);
1287 
1288 	do {
1289 		if (!refcount_dec_and_test(&blkcg->online_pin))
1290 			break;
1291 		blkcg_destroy_blkgs(blkcg);
1292 		blkcg = blkcg_parent(blkcg);
1293 	} while (blkcg);
1294 }
1295 
1296 /**
1297  * blkcg_css_offline - cgroup css_offline callback
1298  * @css: css of interest
1299  *
1300  * This function is called when @css is about to go away.  Here the cgwbs are
1301  * offlined first and only once writeback associated with the blkcg has
1302  * finished do we start step 2 (see above).
1303  */
1304 static void blkcg_css_offline(struct cgroup_subsys_state *css)
1305 {
1306 	/* this prevents anyone from attaching or migrating to this blkcg */
1307 	wb_blkcg_offline(css);
1308 
1309 	/* put the base online pin allowing step 2 to be triggered */
1310 	blkcg_unpin_online(css);
1311 }
1312 
1313 static void blkcg_css_free(struct cgroup_subsys_state *css)
1314 {
1315 	struct blkcg *blkcg = css_to_blkcg(css);
1316 	int i;
1317 
1318 	mutex_lock(&blkcg_pol_mutex);
1319 
1320 	list_del(&blkcg->all_blkcgs_node);
1321 
1322 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1323 		if (blkcg->cpd[i])
1324 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1325 
1326 	mutex_unlock(&blkcg_pol_mutex);
1327 
1328 	free_percpu(blkcg->lhead);
1329 	kfree(blkcg);
1330 }
1331 
1332 static struct cgroup_subsys_state *
1333 blkcg_css_alloc(struct cgroup_subsys_state *parent_css)
1334 {
1335 	struct blkcg *blkcg;
1336 	int i;
1337 
1338 	mutex_lock(&blkcg_pol_mutex);
1339 
1340 	if (!parent_css) {
1341 		blkcg = &blkcg_root;
1342 	} else {
1343 		blkcg = kzalloc(sizeof(*blkcg), GFP_KERNEL);
1344 		if (!blkcg)
1345 			goto unlock;
1346 	}
1347 
1348 	if (init_blkcg_llists(blkcg))
1349 		goto free_blkcg;
1350 
1351 	for (i = 0; i < BLKCG_MAX_POLS ; i++) {
1352 		struct blkcg_policy *pol = blkcg_policy[i];
1353 		struct blkcg_policy_data *cpd;
1354 
1355 		/*
1356 		 * If the policy hasn't been attached yet, wait for it
1357 		 * to be attached before doing anything else. Otherwise,
1358 		 * check if the policy requires any specific per-cgroup
1359 		 * data: if it does, allocate and initialize it.
1360 		 */
1361 		if (!pol || !pol->cpd_alloc_fn)
1362 			continue;
1363 
1364 		cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1365 		if (!cpd)
1366 			goto free_pd_blkcg;
1367 
1368 		blkcg->cpd[i] = cpd;
1369 		cpd->blkcg = blkcg;
1370 		cpd->plid = i;
1371 	}
1372 
1373 	spin_lock_init(&blkcg->lock);
1374 	refcount_set(&blkcg->online_pin, 1);
1375 	INIT_RADIX_TREE(&blkcg->blkg_tree, GFP_NOWAIT | __GFP_NOWARN);
1376 	INIT_HLIST_HEAD(&blkcg->blkg_list);
1377 #ifdef CONFIG_CGROUP_WRITEBACK
1378 	INIT_LIST_HEAD(&blkcg->cgwb_list);
1379 #endif
1380 	list_add_tail(&blkcg->all_blkcgs_node, &all_blkcgs);
1381 
1382 	mutex_unlock(&blkcg_pol_mutex);
1383 	return &blkcg->css;
1384 
1385 free_pd_blkcg:
1386 	for (i--; i >= 0; i--)
1387 		if (blkcg->cpd[i])
1388 			blkcg_policy[i]->cpd_free_fn(blkcg->cpd[i]);
1389 	free_percpu(blkcg->lhead);
1390 free_blkcg:
1391 	if (blkcg != &blkcg_root)
1392 		kfree(blkcg);
1393 unlock:
1394 	mutex_unlock(&blkcg_pol_mutex);
1395 	return ERR_PTR(-ENOMEM);
1396 }
1397 
1398 static int blkcg_css_online(struct cgroup_subsys_state *css)
1399 {
1400 	struct blkcg *parent = blkcg_parent(css_to_blkcg(css));
1401 
1402 	/*
1403 	 * blkcg_pin_online() is used to delay blkcg offline so that blkgs
1404 	 * don't go offline while cgwbs are still active on them.  Pin the
1405 	 * parent so that offline always happens towards the root.
1406 	 */
1407 	if (parent)
1408 		blkcg_pin_online(&parent->css);
1409 	return 0;
1410 }
1411 
1412 int blkcg_init_disk(struct gendisk *disk)
1413 {
1414 	struct request_queue *q = disk->queue;
1415 	struct blkcg_gq *new_blkg, *blkg;
1416 	bool preloaded;
1417 	int ret;
1418 
1419 	INIT_LIST_HEAD(&q->blkg_list);
1420 	mutex_init(&q->blkcg_mutex);
1421 
1422 	new_blkg = blkg_alloc(&blkcg_root, disk, GFP_KERNEL);
1423 	if (!new_blkg)
1424 		return -ENOMEM;
1425 
1426 	preloaded = !radix_tree_preload(GFP_KERNEL);
1427 
1428 	/* Make sure the root blkg exists. */
1429 	/* spin_lock_irq can serve as RCU read-side critical section. */
1430 	spin_lock_irq(&q->queue_lock);
1431 	blkg = blkg_create(&blkcg_root, disk, new_blkg);
1432 	if (IS_ERR(blkg))
1433 		goto err_unlock;
1434 	q->root_blkg = blkg;
1435 	spin_unlock_irq(&q->queue_lock);
1436 
1437 	if (preloaded)
1438 		radix_tree_preload_end();
1439 
1440 	ret = blk_ioprio_init(disk);
1441 	if (ret)
1442 		goto err_destroy_all;
1443 
1444 	ret = blk_throtl_init(disk);
1445 	if (ret)
1446 		goto err_ioprio_exit;
1447 
1448 	return 0;
1449 
1450 err_ioprio_exit:
1451 	blk_ioprio_exit(disk);
1452 err_destroy_all:
1453 	blkg_destroy_all(disk);
1454 	return ret;
1455 err_unlock:
1456 	spin_unlock_irq(&q->queue_lock);
1457 	if (preloaded)
1458 		radix_tree_preload_end();
1459 	return PTR_ERR(blkg);
1460 }
1461 
1462 void blkcg_exit_disk(struct gendisk *disk)
1463 {
1464 	blkg_destroy_all(disk);
1465 	blk_throtl_exit(disk);
1466 }
1467 
1468 static void blkcg_exit(struct task_struct *tsk)
1469 {
1470 	if (tsk->throttle_disk)
1471 		put_disk(tsk->throttle_disk);
1472 	tsk->throttle_disk = NULL;
1473 }
1474 
1475 struct cgroup_subsys io_cgrp_subsys = {
1476 	.css_alloc = blkcg_css_alloc,
1477 	.css_online = blkcg_css_online,
1478 	.css_offline = blkcg_css_offline,
1479 	.css_free = blkcg_css_free,
1480 	.css_rstat_flush = blkcg_rstat_flush,
1481 	.dfl_cftypes = blkcg_files,
1482 	.legacy_cftypes = blkcg_legacy_files,
1483 	.legacy_name = "blkio",
1484 	.exit = blkcg_exit,
1485 #ifdef CONFIG_MEMCG
1486 	/*
1487 	 * This ensures that, if available, memcg is automatically enabled
1488 	 * together on the default hierarchy so that the owner cgroup can
1489 	 * be retrieved from writeback pages.
1490 	 */
1491 	.depends_on = 1 << memory_cgrp_id,
1492 #endif
1493 };
1494 EXPORT_SYMBOL_GPL(io_cgrp_subsys);
1495 
1496 /**
1497  * blkcg_activate_policy - activate a blkcg policy on a gendisk
1498  * @disk: gendisk of interest
1499  * @pol: blkcg policy to activate
1500  *
1501  * Activate @pol on @disk.  Requires %GFP_KERNEL context.  @disk goes through
1502  * bypass mode to populate its blkgs with policy_data for @pol.
1503  *
1504  * Activation happens with @disk bypassed, so nobody would be accessing blkgs
1505  * from IO path.  Update of each blkg is protected by both queue and blkcg
1506  * locks so that holding either lock and testing blkcg_policy_enabled() is
1507  * always enough for dereferencing policy data.
1508  *
1509  * The caller is responsible for synchronizing [de]activations and policy
1510  * [un]registerations.  Returns 0 on success, -errno on failure.
1511  */
1512 int blkcg_activate_policy(struct gendisk *disk, const struct blkcg_policy *pol)
1513 {
1514 	struct request_queue *q = disk->queue;
1515 	struct blkg_policy_data *pd_prealloc = NULL;
1516 	struct blkcg_gq *blkg, *pinned_blkg = NULL;
1517 	int ret;
1518 
1519 	if (blkcg_policy_enabled(q, pol))
1520 		return 0;
1521 
1522 	if (queue_is_mq(q))
1523 		blk_mq_freeze_queue(q);
1524 retry:
1525 	spin_lock_irq(&q->queue_lock);
1526 
1527 	/* blkg_list is pushed at the head, reverse walk to initialize parents first */
1528 	list_for_each_entry_reverse(blkg, &q->blkg_list, q_node) {
1529 		struct blkg_policy_data *pd;
1530 
1531 		if (blkg->pd[pol->plid])
1532 			continue;
1533 
1534 		/* If prealloc matches, use it; otherwise try GFP_NOWAIT */
1535 		if (blkg == pinned_blkg) {
1536 			pd = pd_prealloc;
1537 			pd_prealloc = NULL;
1538 		} else {
1539 			pd = pol->pd_alloc_fn(disk, blkg->blkcg,
1540 					      GFP_NOWAIT | __GFP_NOWARN);
1541 		}
1542 
1543 		if (!pd) {
1544 			/*
1545 			 * GFP_NOWAIT failed.  Free the existing one and
1546 			 * prealloc for @blkg w/ GFP_KERNEL.
1547 			 */
1548 			if (pinned_blkg)
1549 				blkg_put(pinned_blkg);
1550 			blkg_get(blkg);
1551 			pinned_blkg = blkg;
1552 
1553 			spin_unlock_irq(&q->queue_lock);
1554 
1555 			if (pd_prealloc)
1556 				pol->pd_free_fn(pd_prealloc);
1557 			pd_prealloc = pol->pd_alloc_fn(disk, blkg->blkcg,
1558 						       GFP_KERNEL);
1559 			if (pd_prealloc)
1560 				goto retry;
1561 			else
1562 				goto enomem;
1563 		}
1564 
1565 		spin_lock(&blkg->blkcg->lock);
1566 
1567 		pd->blkg = blkg;
1568 		pd->plid = pol->plid;
1569 		blkg->pd[pol->plid] = pd;
1570 
1571 		if (pol->pd_init_fn)
1572 			pol->pd_init_fn(pd);
1573 
1574 		if (pol->pd_online_fn)
1575 			pol->pd_online_fn(pd);
1576 		pd->online = true;
1577 
1578 		spin_unlock(&blkg->blkcg->lock);
1579 	}
1580 
1581 	__set_bit(pol->plid, q->blkcg_pols);
1582 	ret = 0;
1583 
1584 	spin_unlock_irq(&q->queue_lock);
1585 out:
1586 	if (queue_is_mq(q))
1587 		blk_mq_unfreeze_queue(q);
1588 	if (pinned_blkg)
1589 		blkg_put(pinned_blkg);
1590 	if (pd_prealloc)
1591 		pol->pd_free_fn(pd_prealloc);
1592 	return ret;
1593 
1594 enomem:
1595 	/* alloc failed, take down everything */
1596 	spin_lock_irq(&q->queue_lock);
1597 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1598 		struct blkcg *blkcg = blkg->blkcg;
1599 		struct blkg_policy_data *pd;
1600 
1601 		spin_lock(&blkcg->lock);
1602 		pd = blkg->pd[pol->plid];
1603 		if (pd) {
1604 			if (pd->online && pol->pd_offline_fn)
1605 				pol->pd_offline_fn(pd);
1606 			pd->online = false;
1607 			pol->pd_free_fn(pd);
1608 			blkg->pd[pol->plid] = NULL;
1609 		}
1610 		spin_unlock(&blkcg->lock);
1611 	}
1612 	spin_unlock_irq(&q->queue_lock);
1613 	ret = -ENOMEM;
1614 	goto out;
1615 }
1616 EXPORT_SYMBOL_GPL(blkcg_activate_policy);
1617 
1618 /**
1619  * blkcg_deactivate_policy - deactivate a blkcg policy on a gendisk
1620  * @disk: gendisk of interest
1621  * @pol: blkcg policy to deactivate
1622  *
1623  * Deactivate @pol on @disk.  Follows the same synchronization rules as
1624  * blkcg_activate_policy().
1625  */
1626 void blkcg_deactivate_policy(struct gendisk *disk,
1627 			     const struct blkcg_policy *pol)
1628 {
1629 	struct request_queue *q = disk->queue;
1630 	struct blkcg_gq *blkg;
1631 
1632 	if (!blkcg_policy_enabled(q, pol))
1633 		return;
1634 
1635 	if (queue_is_mq(q))
1636 		blk_mq_freeze_queue(q);
1637 
1638 	mutex_lock(&q->blkcg_mutex);
1639 	spin_lock_irq(&q->queue_lock);
1640 
1641 	__clear_bit(pol->plid, q->blkcg_pols);
1642 
1643 	list_for_each_entry(blkg, &q->blkg_list, q_node) {
1644 		struct blkcg *blkcg = blkg->blkcg;
1645 
1646 		spin_lock(&blkcg->lock);
1647 		if (blkg->pd[pol->plid]) {
1648 			if (blkg->pd[pol->plid]->online && pol->pd_offline_fn)
1649 				pol->pd_offline_fn(blkg->pd[pol->plid]);
1650 			pol->pd_free_fn(blkg->pd[pol->plid]);
1651 			blkg->pd[pol->plid] = NULL;
1652 		}
1653 		spin_unlock(&blkcg->lock);
1654 	}
1655 
1656 	spin_unlock_irq(&q->queue_lock);
1657 	mutex_unlock(&q->blkcg_mutex);
1658 
1659 	if (queue_is_mq(q))
1660 		blk_mq_unfreeze_queue(q);
1661 }
1662 EXPORT_SYMBOL_GPL(blkcg_deactivate_policy);
1663 
1664 static void blkcg_free_all_cpd(struct blkcg_policy *pol)
1665 {
1666 	struct blkcg *blkcg;
1667 
1668 	list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1669 		if (blkcg->cpd[pol->plid]) {
1670 			pol->cpd_free_fn(blkcg->cpd[pol->plid]);
1671 			blkcg->cpd[pol->plid] = NULL;
1672 		}
1673 	}
1674 }
1675 
1676 /**
1677  * blkcg_policy_register - register a blkcg policy
1678  * @pol: blkcg policy to register
1679  *
1680  * Register @pol with blkcg core.  Might sleep and @pol may be modified on
1681  * successful registration.  Returns 0 on success and -errno on failure.
1682  */
1683 int blkcg_policy_register(struct blkcg_policy *pol)
1684 {
1685 	struct blkcg *blkcg;
1686 	int i, ret;
1687 
1688 	mutex_lock(&blkcg_pol_register_mutex);
1689 	mutex_lock(&blkcg_pol_mutex);
1690 
1691 	/* find an empty slot */
1692 	ret = -ENOSPC;
1693 	for (i = 0; i < BLKCG_MAX_POLS; i++)
1694 		if (!blkcg_policy[i])
1695 			break;
1696 	if (i >= BLKCG_MAX_POLS) {
1697 		pr_warn("blkcg_policy_register: BLKCG_MAX_POLS too small\n");
1698 		goto err_unlock;
1699 	}
1700 
1701 	/* Make sure cpd/pd_alloc_fn and cpd/pd_free_fn in pairs */
1702 	if ((!pol->cpd_alloc_fn ^ !pol->cpd_free_fn) ||
1703 		(!pol->pd_alloc_fn ^ !pol->pd_free_fn))
1704 		goto err_unlock;
1705 
1706 	/* register @pol */
1707 	pol->plid = i;
1708 	blkcg_policy[pol->plid] = pol;
1709 
1710 	/* allocate and install cpd's */
1711 	if (pol->cpd_alloc_fn) {
1712 		list_for_each_entry(blkcg, &all_blkcgs, all_blkcgs_node) {
1713 			struct blkcg_policy_data *cpd;
1714 
1715 			cpd = pol->cpd_alloc_fn(GFP_KERNEL);
1716 			if (!cpd)
1717 				goto err_free_cpds;
1718 
1719 			blkcg->cpd[pol->plid] = cpd;
1720 			cpd->blkcg = blkcg;
1721 			cpd->plid = pol->plid;
1722 		}
1723 	}
1724 
1725 	mutex_unlock(&blkcg_pol_mutex);
1726 
1727 	/* everything is in place, add intf files for the new policy */
1728 	if (pol->dfl_cftypes)
1729 		WARN_ON(cgroup_add_dfl_cftypes(&io_cgrp_subsys,
1730 					       pol->dfl_cftypes));
1731 	if (pol->legacy_cftypes)
1732 		WARN_ON(cgroup_add_legacy_cftypes(&io_cgrp_subsys,
1733 						  pol->legacy_cftypes));
1734 	mutex_unlock(&blkcg_pol_register_mutex);
1735 	return 0;
1736 
1737 err_free_cpds:
1738 	if (pol->cpd_free_fn)
1739 		blkcg_free_all_cpd(pol);
1740 
1741 	blkcg_policy[pol->plid] = NULL;
1742 err_unlock:
1743 	mutex_unlock(&blkcg_pol_mutex);
1744 	mutex_unlock(&blkcg_pol_register_mutex);
1745 	return ret;
1746 }
1747 EXPORT_SYMBOL_GPL(blkcg_policy_register);
1748 
1749 /**
1750  * blkcg_policy_unregister - unregister a blkcg policy
1751  * @pol: blkcg policy to unregister
1752  *
1753  * Undo blkcg_policy_register(@pol).  Might sleep.
1754  */
1755 void blkcg_policy_unregister(struct blkcg_policy *pol)
1756 {
1757 	mutex_lock(&blkcg_pol_register_mutex);
1758 
1759 	if (WARN_ON(blkcg_policy[pol->plid] != pol))
1760 		goto out_unlock;
1761 
1762 	/* kill the intf files first */
1763 	if (pol->dfl_cftypes)
1764 		cgroup_rm_cftypes(pol->dfl_cftypes);
1765 	if (pol->legacy_cftypes)
1766 		cgroup_rm_cftypes(pol->legacy_cftypes);
1767 
1768 	/* remove cpds and unregister */
1769 	mutex_lock(&blkcg_pol_mutex);
1770 
1771 	if (pol->cpd_free_fn)
1772 		blkcg_free_all_cpd(pol);
1773 
1774 	blkcg_policy[pol->plid] = NULL;
1775 
1776 	mutex_unlock(&blkcg_pol_mutex);
1777 out_unlock:
1778 	mutex_unlock(&blkcg_pol_register_mutex);
1779 }
1780 EXPORT_SYMBOL_GPL(blkcg_policy_unregister);
1781 
1782 /*
1783  * Scale the accumulated delay based on how long it has been since we updated
1784  * the delay.  We only call this when we are adding delay, in case it's been a
1785  * while since we added delay, and when we are checking to see if we need to
1786  * delay a task, to account for any delays that may have occurred.
1787  */
1788 static void blkcg_scale_delay(struct blkcg_gq *blkg, u64 now)
1789 {
1790 	u64 old = atomic64_read(&blkg->delay_start);
1791 
1792 	/* negative use_delay means no scaling, see blkcg_set_delay() */
1793 	if (atomic_read(&blkg->use_delay) < 0)
1794 		return;
1795 
1796 	/*
1797 	 * We only want to scale down every second.  The idea here is that we
1798 	 * want to delay people for min(delay_nsec, NSEC_PER_SEC) in a certain
1799 	 * time window.  We only want to throttle tasks for recent delay that
1800 	 * has occurred, in 1 second time windows since that's the maximum
1801 	 * things can be throttled.  We save the current delay window in
1802 	 * blkg->last_delay so we know what amount is still left to be charged
1803 	 * to the blkg from this point onward.  blkg->last_use keeps track of
1804 	 * the use_delay counter.  The idea is if we're unthrottling the blkg we
1805 	 * are ok with whatever is happening now, and we can take away more of
1806 	 * the accumulated delay as we've already throttled enough that
1807 	 * everybody is happy with their IO latencies.
1808 	 */
1809 	if (time_before64(old + NSEC_PER_SEC, now) &&
1810 	    atomic64_try_cmpxchg(&blkg->delay_start, &old, now)) {
1811 		u64 cur = atomic64_read(&blkg->delay_nsec);
1812 		u64 sub = min_t(u64, blkg->last_delay, now - old);
1813 		int cur_use = atomic_read(&blkg->use_delay);
1814 
1815 		/*
1816 		 * We've been unthrottled, subtract a larger chunk of our
1817 		 * accumulated delay.
1818 		 */
1819 		if (cur_use < blkg->last_use)
1820 			sub = max_t(u64, sub, blkg->last_delay >> 1);
1821 
1822 		/*
1823 		 * This shouldn't happen, but handle it anyway.  Our delay_nsec
1824 		 * should only ever be growing except here where we subtract out
1825 		 * min(last_delay, 1 second), but lord knows bugs happen and I'd
1826 		 * rather not end up with negative numbers.
1827 		 */
1828 		if (unlikely(cur < sub)) {
1829 			atomic64_set(&blkg->delay_nsec, 0);
1830 			blkg->last_delay = 0;
1831 		} else {
1832 			atomic64_sub(sub, &blkg->delay_nsec);
1833 			blkg->last_delay = cur - sub;
1834 		}
1835 		blkg->last_use = cur_use;
1836 	}
1837 }
1838 
1839 /*
1840  * This is called when we want to actually walk up the hierarchy and check to
1841  * see if we need to throttle, and then actually throttle if there is some
1842  * accumulated delay.  This should only be called upon return to user space so
1843  * we're not holding some lock that would induce a priority inversion.
1844  */
1845 static void blkcg_maybe_throttle_blkg(struct blkcg_gq *blkg, bool use_memdelay)
1846 {
1847 	unsigned long pflags;
1848 	bool clamp;
1849 	u64 now = ktime_to_ns(ktime_get());
1850 	u64 exp;
1851 	u64 delay_nsec = 0;
1852 	int tok;
1853 
1854 	while (blkg->parent) {
1855 		int use_delay = atomic_read(&blkg->use_delay);
1856 
1857 		if (use_delay) {
1858 			u64 this_delay;
1859 
1860 			blkcg_scale_delay(blkg, now);
1861 			this_delay = atomic64_read(&blkg->delay_nsec);
1862 			if (this_delay > delay_nsec) {
1863 				delay_nsec = this_delay;
1864 				clamp = use_delay > 0;
1865 			}
1866 		}
1867 		blkg = blkg->parent;
1868 	}
1869 
1870 	if (!delay_nsec)
1871 		return;
1872 
1873 	/*
1874 	 * Let's not sleep for all eternity if we've amassed a huge delay.
1875 	 * Swapping or metadata IO can accumulate 10's of seconds worth of
1876 	 * delay, and we want userspace to be able to do _something_ so cap the
1877 	 * delays at 0.25s. If there's 10's of seconds worth of delay then the
1878 	 * tasks will be delayed for 0.25 second for every syscall. If
1879 	 * blkcg_set_delay() was used as indicated by negative use_delay, the
1880 	 * caller is responsible for regulating the range.
1881 	 */
1882 	if (clamp)
1883 		delay_nsec = min_t(u64, delay_nsec, 250 * NSEC_PER_MSEC);
1884 
1885 	if (use_memdelay)
1886 		psi_memstall_enter(&pflags);
1887 
1888 	exp = ktime_add_ns(now, delay_nsec);
1889 	tok = io_schedule_prepare();
1890 	do {
1891 		__set_current_state(TASK_KILLABLE);
1892 		if (!schedule_hrtimeout(&exp, HRTIMER_MODE_ABS))
1893 			break;
1894 	} while (!fatal_signal_pending(current));
1895 	io_schedule_finish(tok);
1896 
1897 	if (use_memdelay)
1898 		psi_memstall_leave(&pflags);
1899 }
1900 
1901 /**
1902  * blkcg_maybe_throttle_current - throttle the current task if it has been marked
1903  *
1904  * This is only called if we've been marked with set_notify_resume().  Obviously
1905  * we can be set_notify_resume() for reasons other than blkcg throttling, so we
1906  * check to see if current->throttle_disk is set and if not this doesn't do
1907  * anything.  This should only ever be called by the resume code, it's not meant
1908  * to be called by people willy-nilly as it will actually do the work to
1909  * throttle the task if it is setup for throttling.
1910  */
1911 void blkcg_maybe_throttle_current(void)
1912 {
1913 	struct gendisk *disk = current->throttle_disk;
1914 	struct blkcg *blkcg;
1915 	struct blkcg_gq *blkg;
1916 	bool use_memdelay = current->use_memdelay;
1917 
1918 	if (!disk)
1919 		return;
1920 
1921 	current->throttle_disk = NULL;
1922 	current->use_memdelay = false;
1923 
1924 	rcu_read_lock();
1925 	blkcg = css_to_blkcg(blkcg_css());
1926 	if (!blkcg)
1927 		goto out;
1928 	blkg = blkg_lookup(blkcg, disk->queue);
1929 	if (!blkg)
1930 		goto out;
1931 	if (!blkg_tryget(blkg))
1932 		goto out;
1933 	rcu_read_unlock();
1934 
1935 	blkcg_maybe_throttle_blkg(blkg, use_memdelay);
1936 	blkg_put(blkg);
1937 	put_disk(disk);
1938 	return;
1939 out:
1940 	rcu_read_unlock();
1941 }
1942 
1943 /**
1944  * blkcg_schedule_throttle - this task needs to check for throttling
1945  * @disk: disk to throttle
1946  * @use_memdelay: do we charge this to memory delay for PSI
1947  *
1948  * This is called by the IO controller when we know there's delay accumulated
1949  * for the blkg for this task.  We do not pass the blkg because there are places
1950  * we call this that may not have that information, the swapping code for
1951  * instance will only have a block_device at that point.  This set's the
1952  * notify_resume for the task to check and see if it requires throttling before
1953  * returning to user space.
1954  *
1955  * We will only schedule once per syscall.  You can call this over and over
1956  * again and it will only do the check once upon return to user space, and only
1957  * throttle once.  If the task needs to be throttled again it'll need to be
1958  * re-set at the next time we see the task.
1959  */
1960 void blkcg_schedule_throttle(struct gendisk *disk, bool use_memdelay)
1961 {
1962 	if (unlikely(current->flags & PF_KTHREAD))
1963 		return;
1964 
1965 	if (current->throttle_disk != disk) {
1966 		if (test_bit(GD_DEAD, &disk->state))
1967 			return;
1968 		get_device(disk_to_dev(disk));
1969 
1970 		if (current->throttle_disk)
1971 			put_disk(current->throttle_disk);
1972 		current->throttle_disk = disk;
1973 	}
1974 
1975 	if (use_memdelay)
1976 		current->use_memdelay = use_memdelay;
1977 	set_notify_resume(current);
1978 }
1979 
1980 /**
1981  * blkcg_add_delay - add delay to this blkg
1982  * @blkg: blkg of interest
1983  * @now: the current time in nanoseconds
1984  * @delta: how many nanoseconds of delay to add
1985  *
1986  * Charge @delta to the blkg's current delay accumulation.  This is used to
1987  * throttle tasks if an IO controller thinks we need more throttling.
1988  */
1989 void blkcg_add_delay(struct blkcg_gq *blkg, u64 now, u64 delta)
1990 {
1991 	if (WARN_ON_ONCE(atomic_read(&blkg->use_delay) < 0))
1992 		return;
1993 	blkcg_scale_delay(blkg, now);
1994 	atomic64_add(delta, &blkg->delay_nsec);
1995 }
1996 
1997 /**
1998  * blkg_tryget_closest - try and get a blkg ref on the closet blkg
1999  * @bio: target bio
2000  * @css: target css
2001  *
2002  * As the failure mode here is to walk up the blkg tree, this ensure that the
2003  * blkg->parent pointers are always valid.  This returns the blkg that it ended
2004  * up taking a reference on or %NULL if no reference was taken.
2005  */
2006 static inline struct blkcg_gq *blkg_tryget_closest(struct bio *bio,
2007 		struct cgroup_subsys_state *css)
2008 {
2009 	struct blkcg_gq *blkg, *ret_blkg = NULL;
2010 
2011 	rcu_read_lock();
2012 	blkg = blkg_lookup_create(css_to_blkcg(css), bio->bi_bdev->bd_disk);
2013 	while (blkg) {
2014 		if (blkg_tryget(blkg)) {
2015 			ret_blkg = blkg;
2016 			break;
2017 		}
2018 		blkg = blkg->parent;
2019 	}
2020 	rcu_read_unlock();
2021 
2022 	return ret_blkg;
2023 }
2024 
2025 /**
2026  * bio_associate_blkg_from_css - associate a bio with a specified css
2027  * @bio: target bio
2028  * @css: target css
2029  *
2030  * Associate @bio with the blkg found by combining the css's blkg and the
2031  * request_queue of the @bio.  An association failure is handled by walking up
2032  * the blkg tree.  Therefore, the blkg associated can be anything between @blkg
2033  * and q->root_blkg.  This situation only happens when a cgroup is dying and
2034  * then the remaining bios will spill to the closest alive blkg.
2035  *
2036  * A reference will be taken on the blkg and will be released when @bio is
2037  * freed.
2038  */
2039 void bio_associate_blkg_from_css(struct bio *bio,
2040 				 struct cgroup_subsys_state *css)
2041 {
2042 	if (bio->bi_blkg)
2043 		blkg_put(bio->bi_blkg);
2044 
2045 	if (css && css->parent) {
2046 		bio->bi_blkg = blkg_tryget_closest(bio, css);
2047 	} else {
2048 		blkg_get(bdev_get_queue(bio->bi_bdev)->root_blkg);
2049 		bio->bi_blkg = bdev_get_queue(bio->bi_bdev)->root_blkg;
2050 	}
2051 }
2052 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2053 
2054 /**
2055  * bio_associate_blkg - associate a bio with a blkg
2056  * @bio: target bio
2057  *
2058  * Associate @bio with the blkg found from the bio's css and request_queue.
2059  * If one is not found, bio_lookup_blkg() creates the blkg.  If a blkg is
2060  * already associated, the css is reused and association redone as the
2061  * request_queue may have changed.
2062  */
2063 void bio_associate_blkg(struct bio *bio)
2064 {
2065 	struct cgroup_subsys_state *css;
2066 
2067 	rcu_read_lock();
2068 
2069 	if (bio->bi_blkg)
2070 		css = bio_blkcg_css(bio);
2071 	else
2072 		css = blkcg_css();
2073 
2074 	bio_associate_blkg_from_css(bio, css);
2075 
2076 	rcu_read_unlock();
2077 }
2078 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2079 
2080 /**
2081  * bio_clone_blkg_association - clone blkg association from src to dst bio
2082  * @dst: destination bio
2083  * @src: source bio
2084  */
2085 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2086 {
2087 	if (src->bi_blkg)
2088 		bio_associate_blkg_from_css(dst, bio_blkcg_css(src));
2089 }
2090 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2091 
2092 static int blk_cgroup_io_type(struct bio *bio)
2093 {
2094 	if (op_is_discard(bio->bi_opf))
2095 		return BLKG_IOSTAT_DISCARD;
2096 	if (op_is_write(bio->bi_opf))
2097 		return BLKG_IOSTAT_WRITE;
2098 	return BLKG_IOSTAT_READ;
2099 }
2100 
2101 void blk_cgroup_bio_start(struct bio *bio)
2102 {
2103 	struct blkcg *blkcg = bio->bi_blkg->blkcg;
2104 	int rwd = blk_cgroup_io_type(bio), cpu;
2105 	struct blkg_iostat_set *bis;
2106 	unsigned long flags;
2107 
2108 	if (!cgroup_subsys_on_dfl(io_cgrp_subsys))
2109 		return;
2110 
2111 	/* Root-level stats are sourced from system-wide IO stats */
2112 	if (!cgroup_parent(blkcg->css.cgroup))
2113 		return;
2114 
2115 	cpu = get_cpu();
2116 	bis = per_cpu_ptr(bio->bi_blkg->iostat_cpu, cpu);
2117 	flags = u64_stats_update_begin_irqsave(&bis->sync);
2118 
2119 	/*
2120 	 * If the bio is flagged with BIO_CGROUP_ACCT it means this is a split
2121 	 * bio and we would have already accounted for the size of the bio.
2122 	 */
2123 	if (!bio_flagged(bio, BIO_CGROUP_ACCT)) {
2124 		bio_set_flag(bio, BIO_CGROUP_ACCT);
2125 		bis->cur.bytes[rwd] += bio->bi_iter.bi_size;
2126 	}
2127 	bis->cur.ios[rwd]++;
2128 
2129 	/*
2130 	 * If the iostat_cpu isn't in a lockless list, put it into the
2131 	 * list to indicate that a stat update is pending.
2132 	 */
2133 	if (!READ_ONCE(bis->lqueued)) {
2134 		struct llist_head *lhead = this_cpu_ptr(blkcg->lhead);
2135 
2136 		llist_add(&bis->lnode, lhead);
2137 		WRITE_ONCE(bis->lqueued, true);
2138 	}
2139 
2140 	u64_stats_update_end_irqrestore(&bis->sync, flags);
2141 	cgroup_rstat_updated(blkcg->css.cgroup, cpu);
2142 	put_cpu();
2143 }
2144 
2145 bool blk_cgroup_congested(void)
2146 {
2147 	struct cgroup_subsys_state *css;
2148 	bool ret = false;
2149 
2150 	rcu_read_lock();
2151 	for (css = blkcg_css(); css; css = css->parent) {
2152 		if (atomic_read(&css->cgroup->congestion_count)) {
2153 			ret = true;
2154 			break;
2155 		}
2156 	}
2157 	rcu_read_unlock();
2158 	return ret;
2159 }
2160 
2161 module_param(blkcg_debug_stats, bool, 0644);
2162 MODULE_PARM_DESC(blkcg_debug_stats, "True if you want debug stats, false if not");
2163